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Abstract. This is the second part of a series of papers on the construction of
stochastic integrals of Wiener’s type for the centered δ-dimensional Bessel processes
(BES(δ)-processes in short) and their variants. The approach adopted in the present
paper is via the Brascamp-Lieb inequality. This method works well for the BES(δ)-
processes, BES(δ)-bridges with δ ≥ 3, the Brownian meander and their extensions
described by a class of stochastic differential equations, but not for their powers.
As we have seen in the first part, another approach via Hardy’s L2 inequality is
effective for BES(δ)-processes with δ ≥ 1 and their powers. The method used in
this paper is powerful to establish a family of accurate bounds on the distributions
of these Wiener integrals.

1. Introduction

This paper, which is the second part of a series of papers, is concerned with the
definition of stochastic integrals for non-random integrands f = {f(t); t ∈ [0, 1]}
relative to a certain class of non-negative processes x = {x(t); t ∈ [0, 1]} starting
at 0. The class of stochastic processes x we shall treat includes δ-dimensional
Bessel processes (BES(δ)-processes in short), BES(δ)-bridges, Brownian meander
and others which are, in general, described by stochastic differential equations with
coefficients subject to certain conditions. Since these processes x satisfy x(t) ≥ 0 for
all t ∈ [0, 1] while x(0) = 0, they exhibit a singularity at least for t near 0, especially
due to the 1/2-scaling property of the Bessel processes. One of the main purposes
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of the present paper is to demonstrate that such a singularity can be compensated
by considering stochastic integrals relative to the centered processes x̂ instead of
x. In other words, the singularity is taken care of by the (deterministic) Stieltjes
integrals relative to the mean values x̄ of x.

In the study of stochastic processes, there is a deep parallel between certain sto-
chastic integrals and the semi-convergent integrals (or principal values) in analysis;
these semi-convergent (stochastic) integrals arise in the following:

(1) Compensation of jumps for Lévy processes and, indeed, existence of the
Lévy processes, when the Lévy measure is not bounded. This goes back to
Lévy.

(2) Jeulin’s lemma and its variants (Jeulin (1980, p. 44); also Jeulin (1982),
Pitman and Yor (1986, section 6)).

(3) The Varadhan type renormalization results Varadhan (1969); Rosen (1986);
Dynkin (1988); Le Gall (1992).

Let us now formulate our problems more precisely. We shall consider the BES(δ)-
processes R ≡ Rδ = {Rδ(t); t ∈ [0, 1]}, the BES(δ)-bridges rb ≡ rδ

b = {rδ
b (t); t ∈

[0, 1]} reaching b ≥ 0 (i.e. rb(1) = b) and the Brownian meander m = {m(t); t ∈
[0, 1]}, see Revuz and Yor (1999), Yor (1992). In fact, our study concerning Rδ may
be included in that of the more general family of solutions X(t) of the stochastic
differential equations (2.1) (with a = 0) below. All these processes start at 0:
R(0) = X(0) = rb(0) = m(0) = 0. In general, for a stochastic process x =
{x(t); t ∈ [0, 1]}, we denote its mean by x̄(t) = E[x(t)] and the centered process by
x̂(t) = x(t) − x̄(t), respectively. One of the goals of the series of papers is to define
the stochastic integrals of Wiener’s type

I(f ; x̂) =

∫ 1

0

f(t)dx̂(t), (1.1)

for a suitable class of (non-random) functions f = {f(t); t ∈ [0, 1]} relative to the
centered processes x̂ of x introduced above.

This paper presents an approach based on the Brascamp-Lieb inequality, which
was originally exploited for applications to statistical mechanics or quantum physics
Brascamp and Lieb (1976), for x = Rδ, rδ

b with δ ≥ 3, m and their extensions. One
can actually define the Wiener integrals I(f ; x̂) for the centered processes of such x
and for all f ∈ L2([0, 1]). Another approach which relies upon Hardy’s L2 inequality
for x = Rδ with δ > 1 was discussed in our first part Funaki, Hariya and Yor (2006)
where it was shown that the Wiener integrals can be defined even for the centered
processes of x = (Rδ)α, the αth power of the BES(δ)-process Rδ, with δ > 0 and
α ∈ (0, 2) satisfying that α ≥ (2 − δ)+, for all f such that fα ∈ L2([0, 1]), where
fα(t) = t(α−1)/2f(t).

The Brascamp-Lieb inequality and Hardy’s L2 inequality have different virtues.
The former inequality holds due to the effect of “squeezing random variables around
their means”, so that the variance always becomes smaller under certain kind of
comparison. In this sense, this inequality is rather accurate and powerful; however,
it only works directly for a limited class of processes. In fact, our main results in
the present paper, formulated in Proposition 4.1 and Theorem 4.2 below, give the
inequalities

E[ψ(I(f ; x̂))] ≤ E[ψ(I(f ; ŷ))] (1.2)
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for the pairs (x, y) = (Rδ , B), (rδ
b , βb) with δ ≥ 3 or (m,B) and for every convex

function ψ on R bounded below. Here, B = {B(t); t ∈ [0, 1]} is the (one-dimensional
standard) Brownian motion and βb = {βb(t); t ∈ [0, 1]} is the Brownian bridge
reaching b (i.e. βb(1) = b), both starting at 0: B(0) = βb(0) = 0. The class of
the processes x can be generalized to the solutions X of the stochastic differential
equations (2.1) satisfying the conditions (A.1) and (A.2) stated in Section 2, and
the processes Xb obtained by conditioning X such that Xb(1) = b. On the other
hand, as we have mentioned, Hardy’s L2 inequality works for the BES(δ)-processes
with δ ≥ 1 (taking α = 1). Thus, each approach has advantages and drawbacks,
but complements each other.

As we shall see in Section 4, to apply the Brascamp-Lieb inequality, the log-
concavity of the density functions D = D(x) of the distributions of the processes
x = {x(t); t ∈ [0, 1]} (with respect to the Wiener measure) on path space plays
an essential role, see also Section 3. Section 5 points out that, as far as the L2-
estimates (i.e., the estimates (1.2) with ψ(a) = a2) are concerned, the log-concavity
of the partition functions Zh(η), which are defined from the density functions D,
only at η = 0 is sufficient.

In order to define the Wiener integrals I(f ;x) for the processes x themselves,
decomposing them into a sum of integrals relative to x̂ and x̄, we are led to analyze

the Stieltjes integrals relative to x̄, which are denoted by I(f ; x̄) =
∫ 1

0 f(t) dx̄(t),

as well. Indeed, because of the singularity of ˙̄x(t) at t = 0 (and at t = 1 for
x̄ = r̄0), we shall see that the integrals I(f ; x̄) converge under Jeulin’s condition,
which guarantees some integrability property related to the reciprocals 1/Rδ(t) of
the BES(δ)-processes, see Section 6.

Some applications of the results of this paper are made in Funaki and Ishi-
tani (2006), with the study of the integration by parts formulae for the pinned or
the standard Wiener measures restricted on a space of paths staying between two

curves, in which the stochastic integrals I(f ;x) =
∫ 1

0
f(t) dx(t) relative to x = r3b

or m are needed. The functions f are determined from the derivatives of the curves
in this setting, so that they are non-random.

2. A class of SDEs and examples

In this section, we introduce a class of stochastic processes taking values in R+ =
[0,∞), described by certain stochastic differential equations (SDEs), including the
BES(δ)-processes with δ ≥ 3, and then we define the generalized meanders.

For a given C1-function b : R
◦
+ → R, we consider the SDE on R

◦
+ = (0,∞) of

the form
{

dX(t) = dB(t) + b(X(t))dt, t ∈ [0, 1],

X(0) = a > 0,
(2.1)

where B(t) is the one-dimensional Brownian motion. We assume the following two
conditions:

(A.1) X(t) has no explosion and admits 0 as an entrance boundary Revuz and
Yor (1999, p. 306).

(A.2) b′(u) ≤ 0 for every u ∈ R
◦
+ and b2(u) + b′(u) is convex on R

◦
+.

Let Pa be the distribution of the unique solution X = {X(t); t ∈ [0, 1]} of the
SDE (2.1) on the space C◦

+ = C([0, 1],R◦
+). Since Pa is monotone in a (due to the

comparison theorem, see, e.g. Theorem (3.7) on p. 394 of Revuz and Yor (1999)), it
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has a weak limit P0 as a ↓ 0, which is a distribution on the space C+ = C([0, 1],R+).
The condition (A.1) implies that, P0-a.s., x ∈ C+ starts at 0, but immediately leaves
there and afterwards obeys the SDE (2.1) without coming back to 0. Namely, the
point 0 is an entrance-not-exit boundary. It is well-known (see p. 108 of Itô and
McKean (1965)) that this is equivalent to:

−
∫ 1

0+

s(u)m(du) <∞ and lim
v↓0

m((v, 1))s(v) = −∞,

where

s(u) =

∫ u

1

exp

(

−
∫ y

1

2b(z)dz

)

dy and m(du) = 2 exp

(
∫ u

1

2b(y)dy

)

du,

for u ∈ R
◦
+. The condition (A.2) implies that both functions

ϕ1(u) = −
∫ u

1

b(y)dy and ϕ2(u) =
1

2

(

b2(u) + b′(u)
)

(2.2)

are convex on R
◦
+.

Example 2.1. (1) (BES(δ)-processes) The drift is given by b(u) = (δ− 1)/2u and
(A.1) holds if δ ≥ 2, while (A.2) holds if δ ≥ 3. In fact, in this case, we have that
ϕ1(u) = − δ−1

2 logu and ϕ2(u) = 1
8u2 (δ − 1)(δ − 3) for u ∈ R

◦
+.

(2) (Norms of Ornstein-Uhlenbeck processes; Pitman and Yor (1982), Exercise
(1.13) on p. 448 of Revuz and Yor (1999)) The drift is given by b(u) = (δ−1)/2u+
bu/2, for some b ∈ R. The condition (A.2) holds if δ ≥ 3 and b ≤ 0. When b = 0,
the (Euclidean) norm of the δ-dimensional OU-process is the BES(δ)-process.
(3) (BES(δ)-processes with naive drift; p. 104 of Yor (1984)) b(u) = (δ−1)/2u+C
and (A.2) holds if δ ≥ 3 and C ≥ 0.

We next define the distribution M δ′,δ
a on C+ of the generalized meander mδ′,δ =

{mδ′,δ(t); t ∈ [0, 1]}, 0 < δ′ < δ, starting at a ≥ 0 by

dM δ′,δ
a = z−1

a,δ′,δx(1)−δ′

dP δ
a , (2.3)

where P δ
a stands for the distribution of the BES(δ)-process starting at a and za,δ′,δ

is the normalizing constant. Such processes are introduced in (3.7) on p. 43 of Yor

(1992) and, in fact, M δ′,δ
0 is the distribution of the process x(t) = {r(t)2+R(t)2}1/2

with the BES(δ′)-bridge r(t) = rδ′

0 (t) and the BES(δ− δ′)-process R(t) = Rδ−δ′

(t).

In particular, M1,3
0 is the distribution of the Brownian meander.

3. Girsanov’s formula

For x ∈ C = C([0, 1],R) and α ∈ R, we denote σα = inf{t ∈ [0, 1];x(t) = α}.
We write σα > 1 if x(t) 6= α for all t ∈ [0, 1]. Let Wa be the Wiener measure on C
starting at a ≥ 0 and recall that Pa is the distribution on C+ of the solution X of
the SDE (2.1).

Lemma 3.1. Assume (A.1) and a > 0. Then we have

dPa = exp

{

−ϕ1(x(1)) + ϕ1(a) −
∫ 1

0

ϕ2(x(t)) dt

}

1{σ0>1} dWa, (3.1)

where ϕ1 and ϕ2 are the functions defined by (2.2).
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Remark 3.2. (1) Note that σ0 > 1 implies inft∈[0,1] x(t) > 0 so that the functional

F (x) = ϕ1(x(1)) +
∫ 1

0 ϕ2(x(t)) dt appearing inside the exponential in the formula
(3.1) is well-defined on this event. Note also that the condition “σ0 > 1” may be
replaced with “σ0 ≥ 1” because the probability Wa(σ0 = 1) is equal to 0.
(2) (3.1) implies that EWa [e−F , σ0 > 1] = e−ϕ1(a).
(3) For the distribution P 3

a of the BES(3)-process, (3.1) is equivalent to Imhof ’s
relation, since dM1,3

a = z−11{σ0>1} dWa with z = Wa(σ0 > 1) and ϕ1(u) =

− logu, ϕ2(u) ≡ 0 for P 3
a .

(4) Lemma 3.1 can be found as Exercise (1.22) on p.451 of Revuz and Yor (1999)
for the BES(δ)-processes, as (6.3) of Pitman and Yor (1982) for the (squares of)
norms of OU-processes.

Proof . For every 0 < η < min{a, a−1}, choose ϕ1,η ∈ C2
b (R), which coincides with

ϕ1 on the interval [η, η−1], and define two functions ϕ2,η and bη on R, respectively,
by ϕ2,η =

{

(ϕ′
1,η)2 − ϕ′′

1,η

}

/2 and bη = −ϕ′
1,η from ϕ1,η . Note that ϕ2,η and

bη coincide with ϕ2 and b on the interval [η, η−1], respectively. Let Pa;η be the
distribution on C of the solution X = Xη of the SDE:

dX(t) = dB(t) + bη(X(t)) dt, t ∈ [0, 1],

starting at a: X(0) = a. Then, Girsanov’s formula for Pa;η implies that

dPa;η = exp {−Fη(x) + ϕ1,η(a)} dWa,

where Fη is the functional F inside the exponential in (3.1) (see Remark 3.2-(1))
defined with ϕ1 and ϕ2 replaced by ϕ1,η and ϕ2,η , respectively.

On the event Kη =
{

x ∈ C; min{ση , ση−1} ≥ 1
}

, by the strong Markov property
of x under Pa, we see that

Pa( · ∩Kη) = Pa;η( · ∩Kη).

Accordingly, for every Φ ∈ Cb(C), we have

EPa [Φ,Kη] = EWa [Φe−F+ϕ1(a),Kη],

because Fη = F on the event Kη. Letting η ↓ 0, since Kη ↗ ∪λ>0Kλ = {σ0 > 1}
and Pa(σ0 > 1) = 1 from the condition (A.1), we obtain (3.1). �

Let Pa,b be the conditional probability of Pa under the condition that x(1) = b >
0, and let Wa,b be the distribution of the Brownian bridge on C starting at a and
reaching b. The following corollary for Pa,b immediately follows by conditioning Pa

in (3.1) as x(1) = b.

Corollary 3.3. Assume (A.1) and a, b > 0. Then we have

dPa,b = Z−1
a,b exp

{

−
∫ 1

0

ϕ2(x(t)) dt

}

1{σ0>1} dWa,b, (3.2)

where Za,b = EWa,b [e−
R

1

0
ϕ2(x(t)) dt, σ0 > 1]

(

= eϕ1(b)−ϕ1(a)
)

is the normalizing
constant.

One can let b ↓ 0 and define Pa,b for all a, b ≥ 0 by noting the monotonicity due
to the comparison result. In particular, P δ

a,b is the distribution of the BES(δ)-bridge

starting at a and reaching b, obtained by conditioning the distribution P δ
a of the

BES(δ)-process with x(1) = b.
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4. Wiener integrals via Brascamp-Lieb inequality

Let S be the class of all step functions f on [0, 1], i.e. f(t) =
∑n

k=1 fk1[tk−1,tk)(t)
with fk ∈ R, 1 ≤ k ≤ n, 0 = t0 < t1 < · · · < tn = 1 and n = 1, 2, . . .. We define the
stochastic integrals of such f ’s relative to the centered process x̂ of x by

I(f ; x̂) =

n
∑

k=1

fk

(

x̂(tk) − x̂(tk−1)
)

.

The following proposition, which is valid for the solutions X of the SDE (2.1)
satisfying the conditions (A.1) and (A.2), their conditioned processes Xb reaching

b ≥ 0 and the generalized meanders mδ′,δ(t) with δ ≥ 3 and 0 < δ′ ≤ (δ− 1)/2, is a
consequence of the Brascamp-Lieb inequality. Recall the definitions of the processes
B and βb stated after (1.2).

Proposition 4.1. Let (x, y) be the pairs of processes (X,B), (Xb, βb), b ≥ 0 or

(mδ′,δ, B) with δ ≥ 3 and 0 < δ′ ≤ (δ − 1)/2. Then, the inequalities

E[ψ(I(f ; x̂))] ≤ E[ψ(I(f ; ŷ))], (4.1)

hold for every f ∈ S and every convex function ψ on R bounded below.

For each f ∈ L2([0, 1]), one can find a sequence fn ∈ S, n = 1, 2, . . . such that

‖fn − f‖2 → 0 as n → ∞, where ‖f‖2 =
{ ∫ 1

0
f2(t) dt

}1/2
stands for the usual

norm of the space L2([0, 1]). We shall denote the corresponding inner product by

〈 , 〉2. Since E[I(f ; B̂)2] = ‖f‖2
2 and E[I(f ; β̂b)

2] = ‖f‖2
2 − 〈f, 1〉22 ≤ ‖f‖2

2 for every
f ∈ S, (4.1) especially with ψ(a) = a2 shows that {I(fn; x̂)}n is a Cauchy sequence

in L2(P ) for x = X,Xb or mδ′,δ. Thus one can define the stochastic integrals
I(f ; x̂) for every f ∈ L2([0, 1]) relative to the centered processes x̂ of such x’s as the
limits. Then, noting that (4.1) implies the uniform integrability of {ψ(I(fn; x̂))}n

(see Lemma 4.6 below), Proposition 4.1 can be extended to all f ∈ L2([0, 1]).

Theorem 4.2. The statement of Proposition 4.1 holds for all f ∈ L2([0, 1]).

In the following, we shall give the proof of Proposition 4.1. The idea lies in the
fact that the distributions of the processes x admit log-concave Girsanov densities
with respect to the Wiener measure or the pinned Wiener measure as long as they
start at a > 0 (and reach b > 0), cf. Lemma 3.1 and Corollary 3.3.

The first task is to establish the polygonal approximations for Pa. Those for
Pa,b are parallel and will be discussed later. Let ℘ = {0 = t0 < t1 < · · · < tn = 1}
be a finite partition of the interval [0, 1]. Let π℘ : C → C be the polygonalization
of x ∈ C associated with ℘; namely, π℘ = π℘,2 ◦ π℘,1 and π℘,1 : C → R

n is defined
by π℘,1x ≡ ((π℘,1x)k)n

k=1 = (x(tk))n
k=1 for x ∈ C, while π℘,2 : R

n → C and π℘,2x
describes the polygon determined from x = (xk)n

k=1 ∈ R
n supplemented by x0 = a

as

(π℘,2x)(t) = {(t− tk−1)xk + (tk − t)xk−1}/(tk − tk−1), t ∈ [tk−1, tk], (4.2)

for 1 ≤ k ≤ n. We define µa,℘ ∈ P(Rn) for a > 0 by

dµa,℘(x) = Z−1
℘ exp {−F℘(x)} 1{mink xk>0} dWa ◦ π−1

℘,1(x), (4.3)

with the normalizing constant Z℘ ≡ Za,℘, where

F℘(x) = ϕ1(xn) +

n
∑

k=1

ϕ2(xk)(tk − tk−1), x = (xk)n
k=1 ∈ (R◦

+)n.
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We denote the family of all Borel probability measures on a topological space E by
P(E).

Lemma 4.3. If a > 0, µa,℘ ◦ π−1
℘,2 weakly converges to Pa on C+ as

|℘| = max
1≤k≤n

(tk − tk−1) → 0.

Proof . Let us consider P̃a,℘ ∈ P(C) defined by

dP̃a,℘(x) = Z̃−1
℘ exp {−F℘(π℘,1x)} 1{σ0>1} dWa(x),

with the normalizing constant Z̃℘. Then, P̃a,℘ weakly converges to Pa as |℘| → 0.
To this end, we first prove the convergence of the normalizing factor by decomposing
it as follows for sufficiently small η > 0:

Z̃℘ = EWa [e−F℘(π℘,1x), σ0 > 1]

= EWa [e−F℘(π℘,1x),Kη] +EWa [e−F℘(π℘,1x), {σ0 > 1} ∩Kc
η]

=: Z̃℘,1,η + Z̃℘,2,η.

Since ϕ1 and ϕ2 are convex functions on R
◦
+, ϕ1(u), ϕ2(u) ≥ −C1u− C2 for some

C1, C2 > 0. In particular, −F℘(x) is at most linearly growing in x and we have

that sup℘ E
Wa [e−pF℘(π℘,1x)] <∞ for all p > 1. This implies that

Z̃℘,2,η ≤ EWa [e−pF℘(π℘,1x)]1/pWa({σ0 > 1} ∩Kc
η)1/q −→ 0

as η ↓ 0 uniformly in ℘, where 1/p + 1/q = 1. On the other hand, for arbitrarily
fixed η > 0, since F℘(π℘,1x) → F (x) as |℘| → 0 for every x ∈ Kη, we have that

lim
|℘|→0

Z̃℘,1,η = EWa [e−F ,Kη].

We thus obtain that

lim
|℘|→0

Z̃℘ = Za

(

= EWa [e−F , σ0 > 1] = e−ϕ1(a)
)

.

It is now easy to see, for each Φ ∈ Cb(C), that as |℘| → 0

EP̃a,℘ [Φ] = Z̃−1
℘ EWa [Φe−F℘(π℘,1x), σ0 > 1]

→ Z−1
a EWa [Φe−F (x), σ0 > 1] = EPa [Φ]

by Lemma 3.1. This shows the weak convergence of P̃a,℘ to Pa as |℘| → 0.

To establish the weak convergence of µa,℘ ◦ π−1
℘,2 to Pa, we see that

Eµa,℘◦π−1

℘,2 [Φ] = Z−1
℘ EWa [Φ(π℘x)e

−F℘(π℘,1x),min
k

(π℘,1x)k > 0].

However, since

lim
|℘|→0

Wa

(

min
k

(π℘,1x)k > 0
)

= Wa(σ0 > 1), (4.4)

we have for Φ ∈ Cb(C) that

lim
|℘|→0

∣

∣

∣
EWa [Φ(π℘x)e

−F℘(π℘,1x),min
k

(π℘,1x)k > 0]

−EWa [Φ(x)e−F℘(π℘,1x), σ0 > 1]
∣

∣

∣
= 0.
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This with Φ ≡ 1, in particular, shows that |Z℘− Z̃℘| → 0 and accordingly Z℘ → Za

as |℘| → 0. We therefore obtain:

lim
|℘|→0

∣

∣

∣
Eµa,℘◦π−1

℘,2 [Φ] −EP̃a,℘ [Φ]
∣

∣

∣
= 0,

and this completes the proof of the lemma. To see (4.4), we may only prove

lim sup
|℘|→0

Wa

(

min
k

(π℘,1x)k > 0
)

≤Wa(σ−η > 1),

for every η > 0. This follows from the estimate (see Varadhan (1984)):

Wa(‖x− π℘x‖∞ ≥ η) ≤ exp{−Cη2/|℘|}
with some C > 0. �

The probability measure µa,℘ defined by (4.3) is supported on (R◦
+)n and its

log-density function −F℘(x) has a singularity at the boundary. We extend it on
R

n by introducing penalized convex potentials. Namely, for ε > 0, let ϕ1,ε and ϕ2,ε

be convex functions on R, which coincide with ϕ1 and ϕ2 on the interval [ε,∞),
respectively, and satisfy that limε↓0 ϕi,ε(u) = ∞ for all u ≤ 0 and i = 1, 2; recall
that ϕ1 and ϕ2 are both convex on R

◦
+. With these extended potentials, we define

µa,℘,ε ∈ P(Rn) as

dµa,℘,ε(x) = Z−1
℘,ε exp {−F℘,ε(x)} dWa ◦ π−1

℘,1(x), (4.5)

where Z℘,ε is the normalizing constant and F℘,ε is the function F℘ with (ϕ1, ϕ2)
replaced by (ϕ1,ε, ϕ2,ε).

Lemma 4.4. If a > 0, µa,℘,ε weakly converges to µa,℘ on R
n as ε ↓ 0.

Proof . We have limε↓0 F℘,ε(x) = F℘(x) for x ∈ (R◦
+)n and = ∞ for x ∈ R

n\(R◦
+)n,

so that the proof is obvious. �

We are now in a position to state the Brascamp-Lieb inequality on a finite-
dimensional Euclidean space R

n. Let A be an n × n positive-definite symmetric
matrix and let ν ∈ P(Rn) be the Gaussian measure with mean 0 and covariance
matrix A−1. Assume that µ ∈ P(Rn) is given and it is absolutely continuous
with respect to ν with a log-concave Radon-Nikodym derivative dµ/dν; namely,
− log dµ/dν is a convex function on R

n. Then the celebrated Brascamp-Lieb in-
equality, in the form due to Caffarelli (2002), is formulated as follows; see also (1.2)
in Giacomin (2003).

Lemma 4.5. For every v ∈ R
n and every convex function ψ on R bounded below,

we have
Eµ

[

ψ
(

v · x−Eµ[v · x]
)]

≤ Eν
[

ψ
(

v · y
)]

,

where the random variables x and y are distributed as µ and ν, respectively, and

v · x =
∑n

k=1 vkxk denotes the inner product of v = (vk)n
k=1 and x = (xk)n

k=1 in
R

n.

In order to pass to the limit (as ε ↓ 0, |℘| → 0 or a ↓ 0) after applying Lemma
4.5, we prepare the following lemma, which guarantees the uniform integrability.

Lemma 4.6. Let ν ∈ P(R) be given. Then, for every non-negative convex function
ψ on R such that

∫

R
ψ(a) dν(a) < ∞, one can find another non-negative convex

function ψ̃ on R satisfying
∫

R
ψ̃(a) dν(a) <∞ and lim|a|→∞ ψ̃(a)/ψ(a) = ∞.
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Proof . Apply Theorem 22 on page 24-II in Dellacherie and Meyer (1978) with
H = {ψ} and L1 = L1(ν), noting that the function G appearing there is convex,

increasing and non-negative. We may take ψ̃(a) = G(ψ(a)). �

After these preparations, we are now ready to complete the proof of Proposition
4.1.

Proof of Proposition 4.1 for the pair (X,B): Since F℘,ε(x) is a convex function on

R
n, for the pair (µ, ν) = “(µa,℘,ε,Wa ◦ π−1

℘,1) shifted by a”, one can apply Lemma
4.5 and get

Eµa,℘,ε
[

ψ
(

v · x̂
)]

≤ EWa◦π−1

℘,1

[

ψ
(

v · ŷ
)]

, (4.6)

for every v ∈ R
n and convex function ψ on R bounded below, where x̂ and ŷ indicate

the centered random variables of x and y, respectively. We let ε ↓ 0 in (4.6). In

fact, since Lemma 4.6 taking ν as the distribution of v · ŷ under Wa ◦π−1
℘,1 and (4.6)

with ψ̃ (determined from ψ ∨ 0) instead of ψ imply the uniform integrability of
ψ(v · x̂) under the family {µa,℘,ε}ε>0, one can let ε ↓ 0 and Lemma 4.4 shows that

Eµa,℘
[

ψ
(

v · x̂
)]

≤ EWa◦π−1

℘,1

[

ψ
(

v · ŷ
)]

. (4.7)

This further implies

Eµa,℘◦π−1

℘,2

[

ψ
(

I(f ; x̂)
)]

≤ EWa
[

ψ
(

I(f ; x̂)
)]

, (4.8)

if the division points ℘f = {t̄k}n̄
k=1 of the step function f ∈ S are contained in the

partition ℘. For each f ∈ S, we let |℘| → 0 in (4.8) in such a way that ℘f ⊂ ℘ and
then obtain from Lemmas 4.3 and 4.6 that

EPa
[

ψ
(

I(f ; x̂)
)]

≤ EWa
[

ψ
(

I(f ; x̂)
)]

= EW0

[

ψ
(

I(f ; x̂)
)]

. (4.9)

This proves (4.1) for the pair (X,B) finally by letting a ↓ 0, since Pa weakly
converges to P0. �

Proof of Proposition 4.1 for the pair (Xb, βb): First, we introduce the polygonal
approximations for Pa,b, and this can be carried out simultaneously for Pa. Indeed,
for a finite partition ℘ = {tk}n

k=0 of [0, 1], we consider the polygonalization π̃℘ =

π̃℘,2 ◦ π̃℘,1 : C → C, where π̃℘,1 : C → R
n−1 is defined by π̃℘,1x = (x(tk))n−1

k=1

while π̃℘,2 : R
n−1 → C is the map which associates the polygon determined in

(4.2) with x = (xk)n−1
k=1 ∈ R

n−1 supplemented by x0 = a and xn = b. We define
µa,b,℘ ∈ P(Rn−1) for a, b > 0 by

dµa,b,℘(x) = Z−1
a,b,℘ exp {−G℘(x)} 1{mink xk>0} dWa,b ◦ π̃−1

℘,1(x),

with the normalizing constant Za,b,℘, where

G℘(x) =

n−1
∑

k=1

ϕ2(xk)(tk − tk−1), x = (xk)n−1
k=1 ∈ (R◦

+)n−1.

Then, if a, b > 0, one can prove similarly to Lemma 4.3 that µa,b,℘ ◦ π̃−1
℘,2 weakly

converges to Pa,b on C+ as |℘| → 0; note that (4.4) holds for Wa,b in place of Wa.
The penalized measure µa,b,℘,ε of µa,b,℘ is introduced as in (4.5) with G℘,ε,

naturally defined from G℘, instead of F℘,ε. Thus, since ϕ2 is convex on R
◦
+, letting

ε ↓ 0 and then |℘| → 0, we obtain the Brascamp-Lieb inequality for the pair
(Pa,b,Wa,b):

EPa,b
[

ψ
(

I(f ; x̂)
)]

≤ EWa,b
[

ψ
(

I(f ; x̂)
)]

.
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Letting a ↓ 0 and b ↓ 0 (when we discuss X0), this shows (4.1) for the pair (Xb, βb).
�

Proof of Proposition 4.1 for the pair (mδ′,δ, B): From (2.3) and (3.1), if a > 0, we
have

dM δ′,δ
a = z−1

a,δ′,δ exp
{

−
(

δ′ log x(1) + F δ(x)
)

+ ϕδ
1(a)

}

1{σ0>1} dWa,

with F δ determined by (ϕ1, ϕ2) = (ϕδ
1, ϕ

δ
2), the functions given in Example 2.1-(1).

In other words, comparing to the distribution P δ
a of the BES(δ)-process, ϕδ

1(u) is
replaced by ϕδ

1(u) + δ′ logu, which is still convex if (δ − 1)/2 ≥ δ′. The rest of the
proof is completely the same as that for the pair (X,B) under the condition that
δ ≥ 3 and 0 < δ′ ≤ (δ − 1)/2. �

We conclude this section with a comparison between the results obtained in this
paper and our previous one Funaki, Hariya and Yor (2006). Theorem 4.2, especially,
(4.1) with ψ(a) = a2 implies the L2-estimate:

E[I(f ; x̂)2] ≤ ‖f‖2
2 (4.10)

for the Wiener integrals I(f ; x̂) of f ∈ L2([0, 1]) relative to the centered processes

x̂ of x = X and mδ′,δ with δ ≥ 3 and 0 < δ′ ≤ (δ − 1)/2. The right hand side of
(4.10) is refined as ‖f‖2

2−〈f, 1〉22 when x = Xb as we have noticed after Proposition
4.1. Note that the (implicit) constant K in front of ‖f‖2

2 on the right hand side
can be taken as K = 1, which is optimal. The estimate (4.10) implies the non-
negativity of the quadratic forms J(f, f) = ‖f‖2

2 − E[I(f ; x̂)2] when x = X and

mδ′,δ, or J(f, f) = ‖f‖2
2 − 〈f, 1〉22 −E[I(f ; x̂)2] when x = Xb. Direct proofs of the

non-negativity J(f, f) ≥ 0 for Rδ and rδ
0 are given in the first part Funaki, Hariya

and Yor (2006) based on some explicit computations for the covariances of BES(δ)-
processes and BES(δ)-bridges with δ ≥ 1. This covers a wider range of δ than those
treatable by means of Theorem 4.2 as far as the L2-estimates are concerned. The
next section discusses this difference based on the Cameron-Martin formula.

One of the advantages of the Brascamp-Lieb inequality is that it yields a wide

variety of accurate estimates. One can actually take ψ(a) = a2, |a|p, ea, eεa2

for
p ≥ 1 and small ε > 0 and others, see Funaki and Spohn (1997); Deuschel, Giacomin
and Ioffe (2000) for some applications. For instance, the choice of ψ(a) = ea

provides:

E
[

eI(f ;x̂)
]

≤ e‖f‖2

2
/2 (4.11)

for x = X,mδ′,δ (and also for Xb). The methods developed in Funaki, Hariya and
Yor (2006) would require further efforts to derive such kind of estimates.

5. L2-estimates via Cameron-Martin formula

This section shows that, in order to derive the L2-estimates (4.10), it suffices to
require the log-concavity of the partition functions Zh(η) defined by (5.1) at η = 0,
and not necessarily for every η ∈ R. As we shall see, the latter condition follows
from the log-concavity of the density function D(x) in x ∈ C, which ensures that the
Brascamp-Lieb inequality holds. We shall also give an expression for the quadratic
form J(f, f) in the present setting, see Proposition 5.4.

Recall that W (≡ Wa for some a ∈ R) denotes the Wiener measure on C. For a
non-negative bounded function D(x), x ∈ C such that EW [D(x)] = 1, we define a
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new probability measure P on C by

dP (x) = D(x) dW (x).

For f ∈ L2([0, 1]), we set h(t) ≡ hf (t) :=
∫ t

0
f(u) du. Then, clearly, h belongs to

H , the Cameron-Martin subspace of C:

H = {k ∈ C; k(0) = 0, k is absolutely continuous, ‖k‖2
H :=

∫ 1

0

k̇(t)2 dt <∞}.

Note that, by definition:

[h](x) =

∫ 1

0

f(t) dx(t),

with f = ḣ, where [·] denotes the Wiener integral.
For η ∈ R, we define the partition functions Zh(η) ≡ ZD

h (η) by

Zh(η) = EW [D(x+ ηh)]. (5.1)

The purpose of this section is to point out the following proposition.

Proposition 5.1. The following identity holds:

EP [[h](x)2] −EP [[h](x)]2 = ‖h‖2
H + Z ′′

h(0) − Z ′
h(0)2, (5.2)

that is,

EP [I(f ; x̂)2] = ‖f‖2
2 +

d2

dη2
logZh(η)

∣

∣

∣

η=0
.

In particular, if

Zh is log-concave in a neighborhood of η = 0, (5.3)

then we have

EP [I(f ; x̂)2] ≤ ‖f‖2
2. (5.4)

Proof . By the Cameron-Martin relation,

Zh(η) = EW

[

D(x) exp

(

η[h](x) − 1

2
η2‖h‖2

H

)]

.

Differentiating both sides and taking η = 0, we get Z ′
h(0) = EW [[h](x)D(x)], hence

from the definition of P ,

Z ′
h(0) = EP [[h](x)].

Similarly we have

Z ′′
h(0) = EP [[h](x)2] − ‖h‖2

H .

Combining these leads to (5.2). �

As we shall see, when D(x) is log-concave in x (i.e., for all x, y ∈ C and λ ∈ (0, 1),
D(λx+ (1 − λ)y) ≥ D(x)λD(y)1−λ), then (5.3) holds; in fact, in that case, it may
be seen that Zh is log-concave on the whole of R. To this end, we first recall the
following lemma which asserts that the marginals of log-concave functions are still
log-concave. This fact is due to Prékopa and Leindler, see Corollary 3.5 in Brascamp
and Lieb (1976) and Theorem 13.2 in Simon (1979).
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Lemma 5.2. Let G(x, y), x ∈ R
m, y ∈ R

n, be log-concave on R
m+n. Then the

function

x 7→
∫

Rn

G(x, y) dy

is log-concave.

Suppose that there exists a sequence (Dn(x))n=1,2,... of log-concave functions on
C such that each Dn(x) only depends on (x(tk))n

k=1 for some sequence (tk)n
k=1 in

[0, 1], and that (Dn(x))n=1,2,... approximates D(x). By the above lemma, it is clear
that EW [Dn(x + ηh)] is log-concave in η since the finite-dimensional distribution
function of (x(tk))n

k=1 under W is log-concave. Therefore, for η1, η2 ∈ R and λ ∈
(0, 1),

EW [Dn(x+ {λη1 + (1 − λ)η2}h)] ≥ EW [Dn(x + η1h)]
λEW [Dn(x + η2h)]

1−λ,

and taking the limit n→ ∞ on both sides, we get

Zh(λη1 + (1 − λ)η2) ≥ Zh(η1)
λZh(η2)

1−λ,

which implies that Zh is log-concave on the whole of R.

Remark 5.3. The distribution Pa of the process starting at a > 0 treated in Section
4 admits a log-concave density with respect to Wa. Therefore, from the above argu-
ment, the corresponding Zh(η) is log-concave in η and, in particular, the estimate
(5.4) holds.

In order to unify our discussion here with that in Funaki, Hariya and Yor (2006),
it may be worthwhile presenting the expression of a quadratic form bearing on
f ∈ L2([0, 1]) corresponding to the term (d2/dη2) logZh(η)|η=0 in Proposition 5.1.
From now on, we assume that D(x) is given in the form D(x) = exp(−F (x)) and
F is H-differentiable. We denote by ∇F (x) the H-derivative of F at x ∈ C; that
is, ∇F (x) is the unique element in H such that

〈∇F (x), k〉H =
∂

∂k
F (x) for all k ∈ H.

Here ∂/∂k denotes the directional derivative along k. We write ρ(·, ·) for the co-
variance function of the Brownian motion: ρ(s, t) = min{s, t}. Note that in the
present setting (i.e., the setting of the classical Wiener space), ∇F (x)(s), s ∈ [0, 1],
may be given by

∂

∂ρ(s, ·)F (x), s ∈ [0, 1].

Proposition 5.4. It holds that

EP [I(f ; x̂)2] = ‖f‖2
2 − JP (f, f),

where

JP (f, f) = 2

∫ 1

0

du f(u)

∫ u

0

ds f(s)
d

ds
EP

[

x̂(s)
d

du

∂

∂ρ(u, ·)F (x)

]

.

Proof . Define the Ft ≡ σ{x(s); s ≤ t}-martingale {M(t); t ∈ [0, 1]} by M(t) =
EW [D|Ft]. By the Clark-Ocone formula Ocone (1984),

M(t) = 1 +

∫ t

0

EW

[

d

du

∂

∂ρ(u, ·)D
∣

∣

∣
Fu

]

(x) dx(u).
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Thus, by Girsanov’s formula, the process {B(t); t ∈ [0, 1]} defined by

B(t) = x(t) −
∫ t

0

EW [ d
du

∂
∂ρ(u,·)D

∣

∣Fu](x)

M(u)
du

is the Brownian motion under P . Hence, denoting:

vu(x) =
EW [ d

du
∂

∂ρ(u,·)D
∣

∣Fu](x)

M(u)
,

the canonical process x under P is a semimartingale which decomposes as

x(t) = B(t) +

∫ t

0

vu(x) du.

Thus, we obtain:

EP [I(f ; x̂)2] = ‖f‖2
2 + 2EP

[
∫ 1

0

du f(u)v̂u

∫ u

0

f(s) dx̂(s)

]

= ‖f‖2
2 + 2

∫ 1

0

du f(u)

∫ u

0

ds f(s)
d

ds
EP [x̂(s)v̂u]. (5.5)

Note that, for u > s,

EP [x̂(s)v̂u] ≡ EP [x̂(s)vu]

= EW

[

(x(s) −EP [x(s)])
EW [ d

du
∂

∂ρ(u,·)D
∣

∣Fu](x)

M(u)
D(x)

]

= EW

[

(x(s) −EP [x(s)])
d

du

∂

∂ρ(u, ·)D(x)

]

= −EW

[

(x(s) −EP [x(s)])

{

d

du

∂

∂ρ(u, ·)F (x)

}

exp(−F (x))

]

= −EP

[

x̂(s)
d

du

∂

∂ρ(u, ·)F (x)

]

,

where the third line follows by conditioning on Fu. Combining this with (5.5), we
obtain the conclusion of the proposition. �

6. Remarks on Stieltjes integrals for the mean x̄(t)

The Wiener integrals I(f ;x) relative to x(t) themselves may be defined by de-
composing them into the sum

I(f ;x) = I(f ; x̂) + I(f ; x̄). (6.1)

We have extensively studied the first term on the right hand side, and in this
section, we make some remarks about the second term.

Before doing this, we first recall Jeulin’s lemma which we already mentioned
in Section 1 of Funaki, Hariya and Yor (2006), see also p. 44 of Jeulin (1980) or
Lemma 2 in Pitman and Yor (1986): let Y = {Y (t); t ∈ [0, 1]} be an R+-valued
process such that E[Y (t)] < ∞ for t 6= 0 and, for some positive Borel function ϕ,
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the distribution of Y (t)/ϕ(t) does not depend on t. Then, for every Borel measure
µ on (0, 1], we have

∫ 1

0

Y (t)µ(dt) <∞ (a.s.) ⇐⇒
∫ 1

0

ϕ(t)µ(dt) <∞.

For instance, since one can choose ϕ(t) = 1/
√
t for Y (t) = 1/R(t) by the scaling

law of the BES(δ)-processes R = Rδ, we have
∫ 1

0

|f(t)|
R(t)

dt <∞ (a.s.) ⇐⇒
∫ 1

0

|f(t)|√
t
dt <∞.

Example 6.1. The function f(t) = t−1/2(log 2
t )

−α with 1
2 < α ≤ 1 satisfies f ∈

L2([0, 1]), but
∫ 1

0 |f(t)|/
√
t dt = ∞.

We now go back to the definability of I(f ; x̄). For
∫ 1

0
|f(t)| |dx̄(t)| to be finite,

for R̄(t) = R̄3(t), r̄b(t) = r̄3b (t) (b 6= 0) and m̄(t) = m̄1,3(t), Jeulin’s condition is

sufficient:
∫ 1

0 |f(t)|/
√
t dt < ∞, while for r̄0(t) = r̄30(t),

∫ 1

0 |f(t)|/
√

t(1 − t) dt < ∞
is sufficient. This can be seen from the following formulas (6.2)-(6.6) and (6.8)-
(6.13).

R̄(t) =

√

8

π
t, (6.2)

r̄0(t) =

√

8

π
t(1 − t), (6.3)

r̄b(t) =
eb2/2

bt3/2

∫ ∞

0

y2e−y2/2t{p(1− t, y, b) − p(1 − t, y,−b)} dy, (6.4)

m̄(t) =

√

2

π

{

√

t(1 − t) +
π

2
− arctan

√

1 − t

t

}

(

=

∫ ∞

0

r̄b(t) be
−b2/2 db

)

, (6.5)

˙̄m(t) =

√

2

π

(1

t
− 1

)

, (6.6)

where p(t, y, z) is the heat kernel on R. In fact, (6.2) follows from E[R(t)] =√
tE[R(1)] by the scaling property and

E[R(1)] =

√

2

π

∫ ∞

0

y3e−y2/2 dy =

√

8

π
.

To prove (6.3) and (6.4), we note the explicit formulas for the distributions of rb(t):

`t(y)q1−t(y, b)

`1(b)
dy or

√
8π`t(y)`1−t(y)dy

according as b 6= 0 or b = 0 for y > 0, where `t(y) = y
t p(t, 0, y) and qt(x, y) =

p(t, x, y) − p(t, x,−y), see p. 464 of Revuz and Yor (1999). In particular, we have

r̄0(t) =

√

2

π
t−3/2(1 − t)−3/2

∫ ∞

0

y3e−y2/2t(1−t) dy

=

√

2

π
t−3/2(1 − t)−3/2 · 2t2(1 − t)2
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and this yields (6.3). For (6.5) and (6.6), we first notice that, in its own filtration,
m(t) admits the semimartingale decomposition

m(t) = B(t) +

∫ t

0

ds√
1 − s

(Φ′

Φ

)( m(s)√
1 − s

)

ds, (6.7)

where B(t) is a Brownian motion and Φ(a) =
∫ a

0
e−y2/2dy. This can be deduced

from Imhof’s relation:

dM1,3
0

∣

∣

Ft
=

1

x(t)
Φ

( x(t)√
1 − t

)

dP 3
0

∣

∣

Ft

for t ∈ [0, 1] and Ft = σ{x(s); s ≤ t}, and Girsanov’s formula. Then, taking the
expectation on both sides of (6.7) and applying Imhof’s relation again, we obtain
(6.5). The identity (6.6) follows from (6.5).

The formulas (6.2)-(6.6) imply the following asymptotic behaviors as t ↓ 0 or
t ↑ 1:

R̄(t), r̄0(t), r̄b(t), m̄(t) ∼
√

8

π
t as t ↓ 0, (6.8)

˙̄R(t), ˙̄r0(t), ˙̄rb(t), ˙̄m(t) ∼
√

2

πt
as t ↓ 0, (6.9)

R̄(t) →
√

8

π
, ˙̄R(t) →

√

2

π
as t ↑ 1, (6.10)

r̄0(t) → 0, ˙̄r0(t) ∼ −
√

2

π(1 − t)
as t ↑ 1, (6.11)

r̄b(t) → b, ˙̄rb(t) → b− 1

b
as t ↑ 1, (6.12)

m̄(t) →
√

π

2
, ˙̄m(t) → 0 as t ↑ 1, (6.13)

where ∼ means that the ratio of both sides tends to 1. The details are omitted.
Accordingly, if the function f satisfies “f ∈ L2([0, 1]) and Jeulin’s condition”, then
the sum in (6.1) is definable for x = R3, r3b (b ≥ 0) and m1,3.

Recalling the SDE (2.1) (with b(u) = (δ−1)/2u) for R = Rδ, the Wiener integrals
for the BES(δ)-processes R can be directly defined by

I(f ;R) = I(f ;B) +
δ − 1

2

∫ 1

0

f(t)

R(t)
dt.

The first term on the right is well defined for every f ∈ L2([0, 1]), while Jeulin’s

lemma shows that
∫ 1

0 |f(t)|/R(t) dt < ∞ (a.s.) if and only if
∫ 1

0 |f(t)|/
√
t dt < ∞,

which coincides with the condition just required above.
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