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Abstract. We derive a new result for exponential approximation using Stein’s
method of exchangeable pairs. As an application, an exponential limit theorem
with error term is derived for |Tr(U)|2, where Tr(U) denotes the trace of a matrix
chosen from the Haar measure of the unitary group U(n, C).

1. Introduction

The purpose of this paper is to further develop exponential approximation, us-
ing Stein’s method of exchangeable pairs. The first use of exchangeable pairs in
exponential approximation was in the paper Chatterjee et al. (2011), which studied
the spectrum of the Bernoulli-Laplace Markov chain. Unfortunately the results in
Chatterjee et al. (2011), which use the Kolmogorov metric, are very complicated
and seem quite hard to apply in other examples. We provide approximation results
similar to those in Chatterjee et al. (2011), but which are significantly easier to
compute. In particular, we do not see how to apply the results of Chatterjee et al.
(2011) to the example in this paper.

We work in a “smooth” test function metric, but also provide bounds in the
Kolmogorov metric, which is defined for random variables W and Z to be

dK(W, Z) = sup
t∈R

|P(W ≤ t) − P(Z ≤ t)|.

Received by the editors july 29, 2012; accepted december 18, 2012.

2010 Mathematics Subject Classification. 60B20, 15B52, 60F05.

Key words and phrases. random matrix, Stein’s method, heat kernel, exponential approxima-

tion.

1

http://alea.impa.br/english/index_v10.htm
http://www-bcf.usc.edu/~fulman/
http://www.stat.berkeley.edu/~ross/


2 Jason Fulman and Nathan Ross

Our main theoretical result is the following theorem (see also Theorem 2.1 below).

Theorem 1.1. Let Z be a mean one exponential random variable. If W ≥ 0 is
a random variable with finite second moment and (W, W ′) is an exchangeable pair
such that for some a > 0 and sigma-field F ⊇ σ(W ),

E[W ′ − W |F ] = −a(W − 1) + R, (1.1)

then for all δ > 0,

dK(W, Z) ≤ 8
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Remark: The theorem is stated with a choice of δ in order to simplify the error
bound, but it is obvious that in applications δ should be chosen to minimize the
bound.

One of the attractive points about this result is that the terms are very similar
to those which one encounters in normal approximation. To see the parallels, here
is a normal approximation theorem of Rinott and Rotar (2000) (in the Kolmogorov
metric).

Theorem 1.2. Let (W, W ′) be an exchangeable pair of real random variables such
that E(W ) = 0, E(W 2) = 1 and E(W ′|W ) = (1 − a)W + R(W ) with 0 < a < 1.
Then for all real x0,
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E(R2)

a
+ 6

√

1

a
E|W ′ − W |3.

For normal approximation, there are natural examples related to Markov chain
spectra and random matrices (see Fulman 2008, 2009, 2012; Fulman and Röllin
2011), which are perfectly suited for the bounding of terms such as V ar(E[(W ′ −
W )2|W ]) and E|W ′ − W |3. This is why we believe the bound in Theorem 1.1 will
be useful for exponential approximation.

Indeed, in Section 3, we consider the random variable W = |Tr(U)|2, where
Tr denotes trace and U is from the Haar measure of the unitary group U(n, C).
Since Tr(U) converges to a complex normal Diaconis and Shahshahani (1994), it
follows that |Tr(U)|2 converges to an exponential with mean 1. In studying the
correspondence between unitary eigenvalues and zeros of the Riemann zeta function,
it is conjectured in Coram and Diaconis (2003) that the convergence of |Tr(U)|2 to
an exponential limit is extremely rapid, more precisely that there are positive c, δ
such that for all n ≥ 1, t ≥ 0,

|P(|Tr(U)|2 ≥ t) − e−t| ≤ cn−δn.

The authors suggest that this should follow from methods in the remarkable paper
Johansson (1997). This seems challenging to make rigorous, particularly if one
wants to make c, δ explicit. In Section 3, we give the first rigorous and explicit error
term for this problem, proving that the Kolmogorov distance between |Tr(U)|2 and
a standard mean 1 exponential is at most 29/4/

√
n. Another approach to this result
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might be to use the multivariate central limit theorems in Döbler and Stolz (2011);
we do not pursue this here.

To close the introduction, we mention some related results using Stein’s method
for exponential approximation. Aside from Chatterjee et al. (2011) which we al-
ready mentioned, the recent paper Chatterjee and Shao (2011) (and similar results
in Section 13.4 of the text Chen et al. (2011)), use Stein’s method of exchangeable
pairs for exponential approximation. However our approach is quite different than
theirs since they assume the exchangeable pair (W, W ′) satisfies

E(W ′ − W |W ) = 1/c0 + R(W ),

with c0 a positive constant, rather than the linearity condition (1.1) assumed here.
Another approach to Stein’s method for exponential approximation is the “equilib-
rium distribution” coupling for which we refer the reader to the papers Peköz and
Röllin (2011a,b), and to the references therein. For the generator method (in the
more general context of chi-squared approximation), one can consult Luk (1994)
or Reinert (2005). We note that the examples in Luk (1994) and Reinert (2005)
are about independent random variables, whereas the example in the current pa-
per involves dependence. Finally, the introductory survey Ross (2011) has some
discussion of these approaches in the wider context of Stein’s method.

2. General theorem

The purpose of this section is to prove Theorem 1.1 from the introduction. We
first prove an intermediate result which can be thought of as an approximation
result for “smooth” test functions. In what follows ‖ · ‖ denotes the supremum
norm.

Theorem 2.1. Let Z be a mean one exponential random variable. If W ≥ 0 is
a random variable with finite second moment and (W, W ′) is an exchangeable pair
such that for some a > 0 and sigma-field F ⊇ σ(W ),

E[W ′ − W |F ] = −a(W − 1) + R, (2.1)

then for all twice differentiable functions h with ‖h′‖, ‖h′′‖ < ∞,

|Eh(W ) − Eh(Z)| ≤ 4‖h′‖E

∣

∣

∣

∣

W − E[(W ′ − W )2|F ]

2a

∣

∣

∣

∣

+ ‖h′‖|EW − 1| (2.2)

+ (2(5 − 6/e)‖h′‖ + 3‖h′′‖) E|W ′ − W |3
4a

+ 4‖h′‖E|R|
a

. (2.3)

The proof of Theorem 2.1 roughly follows the usual development of Stein’s
method of exchangeable pairs for distributional approximation. Specifically, for
W the random variable of interest and Z having the exponential distribution, we
want to bound |Eh(W ) − Eh(Z)| for functions h in some predetermined family of
test functions (here, twice differentiable functions h with ‖h′‖, ‖h′′‖ < ∞). Typi-
cally, this program has three components.

1. Define a characterizing operator A for the exponential distribution which
has the property that

EAf(Z) = 0

for all f in a large enough class of functions if and only if Z ∼ Exp(1).



4 Jason Fulman and Nathan Ross

2. For functions h in the class of interest, define fh to solve

Afh(x) = h(x) − Eh(Z). (2.4)

3. Using (2.4), note that

|Eh(W ) − Eh(Z)| = |EAfh(W )|.
Now use properties of the solutions fh and the auxiliary randomization of
exchangeable pairs to bound this last term.

The next lemma takes care of Items 1 and 2 and also provides the bounds on the
solutions fh needed for Item 3 in the program above. The proof of Theorem 2.1 is
immediately after the proof of the lemma.

Lemma 2.2. Let Z be a mean one exponential random variable. If h is a function
such that the following integrals are well defined, then

f(w) = fh(w) = −ew

w

∫ ∞

w

(h(x) − Eh(Z))e−xdx (2.5)

defined for w > 0, solves the differential equation

wf ′(w) − (w − 1)f(w) = h(w) − Eh(Z). (2.6)

If h is absolutely continuous with ‖h′‖ < ∞, then

‖f‖ ≤
(

1 +
2

e

)

‖h′‖, ‖f ′‖ ≤ 2‖h′‖. (2.7)

If in addition, h′(0) = 0 and h′ is absolutely continuous with ‖h′′‖ < ∞, then

‖f ′′‖ ≤ (5 − 6/e)‖h′‖ + 3‖h′′‖.

Proof : The fact that (2.5) solves (2.6) is straightforward to verify. Now, using that
Eh(Z) =

∫ ∞
0

h(x)e−xdx, we can rewrite (2.5) as

f(w) = −ew

w

∫ ∞

w

h(x)e−xdx +
1

w

∫ ∞

0

e−xh(x)dx

= −ew(1 − e−w)

w

∫ ∞

w

h(x)e−xdx +
1

w

∫ w

0

h(x)e−xdx. (2.8)

To prove (2.7), first note that since translating h by a constant leaves f unchanged,
we may (and do) assume without loss of generality that h(0) = 0, so that h(x) ≤
‖h′‖|x|. Using this fact and also that

∫

xe−xdx = −e−x(x + 1) in the equality
below, we find

|f(w)| ≤ ‖h′‖
[

ew(1 − e−w)

w

∫ ∞

w

xe−xdx +
1

w

∫ w

0

xe−xdx

]

= ‖h′‖
[

(1 − e−w)(w + 2)

w
− e−w

]

.

To bound this last expression, we compare derivatives to find

(1 − e−w)(w + 2) − we−w ≤ (1 + 2/e)w, w ≥ 0,

which yields the first assertion of (2.7).
For the second assertion note that (2.6) implies that

f ′(w) =
h(w)

w
−

(

(1 − w)f(w) + Eh(Z)

w

)

. (2.9)
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Since |h(x)| ≤ ‖h′‖|x|, the first term of (2.9) is bounded in absolute value by
‖h′‖, so we only need to find an appropriate bound on the term of (2.9) that is in
parentheses. We have by (2.8) that

(1 − w)f(w) + Eh(Z)

w
=

(

ew − 1

w
− ew − 1 − w

w2

) ∫ ∞

w

h(x)e−xdx

+
1

w2

∫ w

0

h(x)e−xdx.

(2.10)

One easily checks that
ew − 1

w
− ew − 1 − w

w2
≥ 0.

Indeed, this is equivalent to wew ≥ ew−1, which is proved by comparing derivatives.
Now taking the absolute value of (2.10), using the triangle inequality, bounding
|h(x)| ≤ ‖h′‖|x|, and using

∫

xe−xdx = −e−x(x + 1) , we find
∣

∣

∣

∣

(1 − w)f(w) + Eh(Z)

w

∣

∣

∣

∣

≤ ‖h′‖
(

(w + 1)(w + e−w − 1)

w2
+

1 − (w + 1)e−w

w2

)

= ‖h′‖,

which now yields the second assertion of (2.7).
To prove the final statement of the lemma, take the derivative of (2.9) using the

expression (2.10) to find

f ′′(w) =
h′(w)

w
+

(w − 2)h(w)

w2
(2.11)

+
2 − (w2 − 2w + 2)ew

w3

∫ ∞

w

h(x)e−xdx +
2

w3

∫ w

0

h(x)e−xdx. (2.12)

To bound these expressions we first note that since h′(0) = h(0) = 0,

|h(x)| ≤ min{‖h′‖|x|, ‖h′′‖x2/2}, and |h′(x)| ≤ ‖h′′‖|x|

and in particular, |h(x)| is bounded above by both terms appearing in the minimum.
Thus, the absolute value of the right hand side of (2.11) is bounded above by

‖h′′‖ + min{|w/2 − 1|‖h′′‖, |1 − 2/w|‖h′‖} ≤ ‖h′′‖ + max{‖h′‖, ‖h′′‖},
≤ 2‖h′′‖ + ‖h′‖

where we have used that min{|w/2 − 1|, |1 − 2/w|} ≤ 1.
We bound the second term (2.12) differently according to w ≥ 1 or w < 1.

Suppose that w ≥ 1. Then note that (w2 − 2w + 2)ew ≥ ew ≥ 2. Using that
|h(x)| ≤ ‖h′‖|x| and

∫

xe−xdx = −e−x(x + 1), we find the absolute value of (2.12)
is bounded above by

‖h′‖
[

((w2 − 2w + 2)ew − 2)(w + 1)e−w

w3
+

2(1 − (w + 1)e−w)

w3

]

= ‖h′‖w3 − w2 + 4 − 4(w + 1)e−w

w3

≤ ‖h′‖w3 + 3(1 − (w + 1)e−w)

w3
, (2.13)
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where we have used that 1 − w2 ≤ 0. By comparing derivatives we find

1 − (w + 1)e−w ≤ (1 − 2/e)w3, w ≥ 1,

so that (2.13) (and hence (2.12)) is bounded above by (4 − 6/e)‖h′‖ for w ≥ 1.
If 0 ≤ w < 1, then

(w2 − 2w + 2)ew ≥ (w2 − 2w + 2)

(

1 + w +
w2

2

)

=
w4 + 4

2
≥ 2.

Using that |h(x)| ≤ ‖h′′‖x2/2 and
∫

x2e−xdx = −e−x(2 + 2x + x2), we find the
absolute value of (2.12) is bounded above by

‖h′′‖
[

((w2 − 2w + 2)ew − 2)(2 + 2w + w2)e−w

2w3
+

2 − (2 + 2w + w2)e−w

w3

]

= ‖h′′‖w4 + 8 − 4e−w(2 + 2w + w2)

2w3
. (2.14)

Again by comparing derivatives we find

w4 + 8 − 4e−w(2 + 2w + w2) ≤ 2w3, 0 ≤ w < 1,

so that (2.14) (and hence (2.12)) is bounded above by ‖h′′‖ for 0 < w ≤ 1. �

Proof of Theorem 2.1: We show that for h as in the theorem, |Eh(W ) − Eh(Z)|
is appropriately bounded. We would like to follow the program outlined at the
beginning of the section, but in order to apply the bounds of Lemma 2.2, we must
have h′(0) = 0, which is not assumed in Theorem 2.1. We circumvent this problem

by replacing h with h̃(x) = h(x) − xh′(0), and we have

|Eh(W ) − Eh(Z)| ≤ |Eh̃(W ) − Eh̃(Z)| + |h′(0)||EW − EZ|
≤ |Eh̃(W ) − Eh̃(Z)| + ‖h′‖|EW − 1|. (2.15)

In order to bound |Eh̃(W )−Eh̃(Z)|, we use Lemma 2.2 in conjunction with Item 3
of the program outlined at the beginning of this section to show that the absolute
value of

E[Wf ′(W ) − (W − 1)f(W )] (2.16)

is appropriately bounded, where f satisfies (2.6) with h replaced by h̃.
Using exchangeability and the linearity condition (2.1), we observe that

E[(W ′ − W )(f(W ) − f(W ′))] = 2E[f(W )(W ′ − W )]

= −2aE[(W − 1)f(W )] + 2E[Rf(W )],

so that (2.16) is equal to

E[Wf ′(W )] − (2a)−1
E[(W ′ − W )(f(W ′) − f(W ))] − a−1

E[Rf(W )].

We rewrite this expression as

E

[

f ′(W )

(

W − E[(W ′ − W )2|F ]

2a

)]

− E

[

(W ′ − W )

2a

∫ W ′−W

0

[f ′(W + t) − f ′(W )]dt

]

− a−1
E[Rf(W )].
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Now taking the absolute value of this last expression, we find that (2.16) in absolute
value is bounded above by

‖f ′‖E

∣

∣

∣

∣

W − E[(W ′ − W )2|F ]

2a

∣

∣

∣

∣

+ ‖f ′′‖E

[

|W ′ − W |
2a

∫ W ′−W

0

|t|dt

]

+ ‖f‖E|R|
a

.

The result now easily follows after applying the bounds of Lemma 2.2, with h
replaced by h̃, noting that ‖h̃′′‖ = ‖h′′‖ and ‖h̃′‖ = ‖h′ − h′(0)‖ ≤ 2‖h′‖, and
recalling (2.15). �

We are now in a position to prove Theorem 1.1. First define the function for
t, x ≥ 0, and δ > 0,

ht,δ(x) =



















1, x ≤ t − δ,

1 − 2(x−t+δ)2

δ2 , t − δ < x ≤ t − δ/2,
2(x−t)2

δ2 , t − δ/2 < x ≤ t,
0, x > t.

(2.17)

The next lemma states some important facts regarding the use of ht,δ in our
framework.

Lemma 2.3. If t ≥ 0, δ > 0, and ht,δ is defined by (2.17), then

‖ht,δ‖ ≤ 1, ‖h′
t,δ‖ ≤ 2/δ, ‖h′′

t,δ‖ = 4/δ2.

If W ≥ 0 is a random variable and Z has the exponential distribution with mean
one, then

dK(W, Z) ≤ sup
t≥0

|Eht,δ(W ) − Eht,δ(Z)| + δ/2. (2.18)

Proof : The first assertion follows from direct computation; to be precise, the first
inequality is an equality if t ≥ δ, the second is an equality if t ≥ δ/2, and these are
strict inequalities otherwise. For the second, note that

P(W ≤ t) − P(Z ≤ t) ≤ Eht+δ,δ(W ) − P(Z ≤ t)

= Eht+δ,δ(W ) − Eht+δ,δ(Z) + Eht+δ,δ(Z) − P(Z ≤ t)

≤ |Eht+δ,δ(W ) − Eht+δ,δ(Z)| +
∫ t+δ

t

ht+δ,δ(x)e−xdx.

Since e−x ≤ 1 for x > 0, we find by direct computation that
∫ t+δ

t

ht+δ,δ(x)e−xdx ≤
∫ t+δ

t

ht+δ,δ(x)dx = δ/2.

Taking supremums, we have shown

sup
t≥0

[P(W ≤ t) − P(Z ≤ t)] ≤ sup
t≥0

|Eht,δ(W ) − Eht,δ(Z)| + δ/2. (2.19)

A similar argument starting from

P(Z ≤ t) − P(W ≤ t) ≤ P(Z ≤ t) − Eht,δ(W )

establishes (2.19) with the left hand side replaced by

sup
t≥0

[P(Z ≤ t) − P(W ≤ t)],
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which proves the lemma. �

Proof of Theorem 1.1: First apply Theorem 2.1 with h replaced by ht,δ to obtain
a bound on supt≥0 |Eht,δ(W ) − Eht,δ(Z)|. From this point, the result follows from
the bounds of Lemma 2.3 and (2.18). �

3. Exponential approximation of |Tr(U)|2

The main purpose of this section is to prove the following result.

Theorem 3.1. Let W = |Tr(U)|2, where U is from the Haar measure of U(n, C).
Then for n ≥ 8, the Kolmogorov distance between W and an exponential with mean
one is at most 29/4/

√
n.

To construct an exchangeable pair to be used in our application, we use the
heat kernel of U(n, C). This has proved useful in other Stein’s method problems
about random matrices Fulman (2012); Fulman and Röllin (2011); Döbler and Stolz
(2011). See Grigor’yan (2009); Rosenberg (1997) for a detailed discussion of heat
kernels on compact Lie groups. The papers Lévy (2008); Liu (1999); Rains (1997)
illustrate combinatorial uses of heat kernels on compact Lie groups, and Liu (1999)
also discusses the use of the heat kernel for finite groups.

The heat kernel on a compact Lie group G is defined by setting for x, y ∈ G and
t ≥ 0,

K(t, x, y) =
∑

n≥0

e−λntφn(x)φn(y), (3.1)

where the λn are the eigenvalues of the Laplacian repeated according to multiplicity,
and the φn are an orthonormal basis of eigenfunctions of L2(G); these can be taken
to be the irreducible characters of G.

We use the following properties of the heat kernel, where ∆ denotes the Lapla-
cian of G. Part 1 of Lemma 3.2 is from Section 3.4 of Rosenberg (1997). Part
2 of Lemma 3.2 is immediate from the expansion (3.1). Part 3 of Lemma 3.2 is
Lemma 2.5 of Döbler and Stolz (2011).

Lemma 3.2. Let G be a compact Lie group, x, y ∈ G, and t ≥ 0.

(1) K(t, x, y) converges and is non-negative for all x, y, t.
(2)

∫

y∈G K(t, x, y)dy = 1, where the integration is with respect to Haar measure

of G.
(3) For smooth φ, as t → 0, one has that

∫

y∈G

K(t, x, y)φ(y)dy = φ(x) + t(∆φ)(x) + O(t2).

The symmetry in x and y of K(t, x, y) shows that the heat kernel is a reversible
Markov process with respect to the Haar measure of G. It is a standard fact
Rinott and Rotar (1997); Stein (1986) that reversible Markov processes lead to ex-
changeable pairs (W, W ′). Namely suppose one has a Markov chain with transition
probabilities K(x, y) on a state space X , and that the Markov chain is reversible
with respect to a probability distribution π on X . Then given a function f on X , if
one lets W = f(x) where x is chosen from π and W ′ = f(x′) where x′ is obtained
by moving from x according to K(x, y), then (W, W ′) is an exchangeable pair. In
the special case of the heat kernel on a compact Lie group G, given a function f
on G, one can construct an exchangeable pair (W, W ′) by letting W = f(U) where
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U is chosen from Haar measure, and W ′ = f(U ′), where U ′ is obtained by moving
time t from U via the heat kernel. To define the exchangeable pair (W, W ′) used
in this paper, we further specialize by setting f(U) = |Tr(U)|2.

If λ is an integer partition, and mj denotes the multiplicity of part j in λ, we
define pλ(U) =

∏

j Tr(U j)mj . For example, p5,3,3(U) = Tr(U5)Tr(U3)2. Typically
we suppress the U and use the notation pλ.

The next three lemmas are from Rains (1997); here ∇f · ∇g is defined by

∇f · ∇g =
1

2
[∆(fg) − g∆f − f∆g].

Lemma 3.3. ∆U(n)p1 = −np1.

Lemma 3.4. For all integers k and l (not necessarily positive), and unitary U ,

(∇pk(U)) · (∇pl(U)) = −kl · pk+l(U).

Lemma 3.5. For all unitary matrices U and class functions f1, · · · , fk

∆





∏

1≤i≤k

fi(U)





=





∏

1≤i≤k

fi(U)









∑

1≤i≤k

∆fi(U)

fi(U)
+ 2

∑

1≤i<j≤k

(∇fi(U)) · (∇fj(U))

fi(U)fj(U)



 .

The next lemma is a moment computation from Diaconis and Evans (2001).

Lemma 3.6. If U is Haar distributed on U(n, C), (a1, · · · , ak) and (b1, · · · , bk) are

vectors of non-negative integers, then for all n ≥ max(
∑k

j=1 jaj ,
∑k

j=1 jbj),

E





k
∏

j=1

Tr(U j)aj Tr(U j)bj



 = δ~a~b

k
∏

j=1

jaj aj!.

Throughout we let W (U) = |Tr(U)|2 = p1(U)p1(U).
Lemma 3.7 computes the conditional expectation E[W ′ − W |U ].

Lemma 3.7.

E[W ′ − W |U ] = 2nt(1 − W ) + O(t2).

Proof : Applying part 3 of Lemma 3.2,

E[W ′|U ] = W + t∆(p1p1) + O(t2)

= W + t[p1∆(p1) + p1∆(p1) + 2(∇p1) · (∇p1)] + O(t2)

= W + t[−2np1p1 + 2n] + O(t2).

The second equality was Lemma 3.5. The final equality used Lemmas 3.3 and 3.4,
and the fact that p1 = p−1. �

Lemma 3.8 computes E[(W ′ − W )2|U ].

Lemma 3.8.

E[(W ′ − W )2|U ] = t[−2p2p1,1 − 2p2p1,1 + 4nW ] + O(t2).
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Proof : Clearly

E[(W ′ − W )2|U ] = E[(W ′)2|U ] − 2WE[W ′|U ] + W 2.

By part 3 of Lemma 3.2,

E[(W ′)2|U ] = W 2 + t∆[p1,1p1,1] + O(t2).

Using Lemma 3.5, and then Lemmas 3.3 and 3.4, one computes that

∆[p1,1p1,1]

= p1,1p1,1

[

2∆p1

p1
+

2∆p1

p1
+

2∇p1 · ∇p1

p1,1
+

2∇p1 · ∇p1

p1,1
+

8∇p1 · ∇p1

p1p1

]

= −4np1,1p1,1 − 2p2p1,1 − 2p2p1,1 + 8np1p1.

Thus

E[(W ′)2|U ] = W 2 + t [−4np1,1p1,1 − 2p2p1,1 − 2p2p1,1 + 8np1p1] + O(t2).

By Lemma 3.7,

−2WE[W ′|U ] = −2W 2 + t[−4nW + 4nW 2] + O(t2).

Thus

E[(W ′)2|U ] − 2WE[W ′|U ] + W 2 = t[−2p2p1,1 − 2p2p1,1 + 4nW ] + O(t2).

�

Next we compute low order moments of W ′ − W .

Lemma 3.9. Suppose that n ≥ 8. Then

(1) E(W ′ − W )2 = 4nt + O(t2).
(2) E(W ′ − W )4 = O(t2).
(3) E|W ′ − W |3 = O(t3/2).

Proof : Lemma 3.8 implies that

E(W ′ − W )2 = tE [−2p2p1,1 − 2p2p1,1 + 4nW ] + O(t2).

By Lemma 3.6, E[p2p1,1] = 0, E[p2p1,1] = 0, and E[W ] = 1; the first part of the
lemma follows.

For part 2, first note that since

E[(W ′ − W )4] = E(W 4) − 4E(W 3W ′) + 6E[W 2(W ′)2] − 4E[W (W ′)3] + E[(W ′)4],

exchangeability of (W, W ′) gives that

E(W ′ − W )4 = 2E(W 4) − 8E(W 3W ′) + 6E[W 2(W ′)2]

= 2E(W 4) − 8E[W 3
E[W ′|U ]] + 6E[W 2

E[(W ′)2|U ]].

By Lemma 3.7,

−8E[W 3
E[W ′|U ]] = −8E[W 3(W + t(2n − 2nW ) + O(t2))]

= −8E(W 4) + tE[−16nW 3 + 16nW 4] + O(t2)

= −8E(W 4) + tn[−16(6) + 16(24)] + O(t2)

= −8E(W 4) + 288tn + O(t2),

where the penultimate equality used Lemma 3.6.
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By the proof of Lemma 3.8, and then Lemma 3.6,

6E[W 2
E[(W ′)2|U ]]

= 6E
[

W 2
(

W 2 + t[−4nW 2 − 2p2p1,1 − 2p2p1,1 + 8nW ] + O(t2)
)]

= 6E[W 4] + tnE[−24W 4 + 48W 3] + O(t2)

= 6E[W 4] + tn[−24(24) + 48(6)] + O(t2)

= 6E[W 4] − 288tn + O(t2).

Summarizing, it follows that

E(W ′ − W )4 = 2E(W 4) − 8E[W 3
E[W ′|U ]] + 6E[W 2

E[(W ′)2|U ]]

= O(t2),

proving part 2 of the lemma.
For part 3 of the lemma, one uses the Cauchy-Schwarz inequality to obtain that

E|W ′ − W |3 ≤
√

E(W ′ − W )2E(W ′ − W )4.

Part 3 then follows from parts 1 and 2 of the lemma. �

Now we proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1: By Lemma 3.7, one can apply Theorem 1.1 with a = 2nt.
By Lemma 3.8, and the triangle inequality,

E

∣

∣

∣

∣

W − E[(W ′ − W )2|W ]

2a

∣

∣

∣

∣

= E

∣

∣

∣

∣

W − t[−2p2p1,1 − 2p2p1,1 + 4nW ]

4nt
+

O(t2)

4nt

∣

∣

∣

∣

=
1

2n
E|p2p1,1 + p2p1,1| + O(t)

≤ 1

2n

√

E(p2,2p1,1,1,1 + 2p2,1,1p2,1,1 + p2,2p1,1,1,1) + O(t).

By Lemma 3.6, this is
√

2
n + O(t); letting t → 0 gives an upper bound

E

∣

∣

∣

∣

W − E[(W ′ − W )2|W ]

2a

∣

∣

∣

∣

≤
√

2

n
.

The second term in Theorem 1.1 is 0 since by Lemma 3.6, E(W ) = 1.

To bound E|W ′−W |3
a , note by Lemma 3.9 that E|W ′ − W |3 = O(t3/2). Since

a = 2nt, the term E|W ′−W |3
a tends to 0 as t → 0.

Finally, note from Lemma 3.7 that R = O(t2). Since a = 2nt, it follows that

E|R|
a

≤
√

E(R(W )2)

a
= O(t)

tends to 0 as t → 0.
Summarizing, by letting t → 0, Theorem 1.1 implies that for δ > 0,

dK(W, Z) ≤ 8
√

2

δn
+ δ/2.

Choosing δ = 4 · 21/4/
√

n, yields the claimed result. �
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Remarks:

(1) The moments of the random variable |Tr(U)|2 have a combinatorial inter-
pretation. Indeed, from Rains (1998) one has for all positive integers l, n
that

P(Ln ≤ l) =
1

n!

∫

U(l,C)

|Tr(U)|2n.

Here Ln is the length of the longest increasing subsequence of a random
permutation on n symbols.

(2) The technique used in this section can be used to prove that for positive
integers k, |Tr(Uk)|2/k tends to an exponential with mean 1, for U a Haar
distributed unitary matrix from U(n, C), as n → ∞. The bookkeeping is
quite tedious, so we do not carry this out.
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