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Barrio Universitario, Avenida Esteban Iturra s/n, Casilla 160-C
Concepción, Chile.
E-mail address: cmora@ing-mat.udec.cl

URL: http://www.ing-mat.udec.cl/~cmora

Abstract. We study stochastic evolution equations describing the dynamics of
open quantum systems. First, using resolvent approximations, we obtain a suf-
ficient condition for regularity of solutions to linear stochastic Schrödinger equa-
tions driven by cylindrical Brownian motions applying to many physical systems.
Then, we establish well-posedness and norm conservation property of a wide class
of open quantum systems described in position representation. Moreover, we prove
Ehrenfest-type theorems that describe the evolution of the mean value of quantum
observables in open systems. Finally, we give a new criterion for the existence and
uniqueness of weak solutions to non-linear stochastic Schrödinger equations. We
apply our results to physical systems such as fluctuating ion traps and quantum
measurement processes of position.
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1. Introduction

Stochastic Schrödinger equations are frequently used to describe quantum mea-
surement processes (see, e.g., Barchielli and Gregoratti (2009); Wiseman and Mil-
burn (2010)) and, in general, quantum systems that are sensitive to the environment
influence (see, e.g., Gardiner and Zoller (2004); Carmichael (2008)). Moreover,
non-linear stochastic Schrödinger equations are becoming an established tool for
numerical simulation of the evolution of open quantum systems (see, e.g., Breuer
and Petruccione (2002); Percival (1998)). This motivates the study of mathemati-
cal properties of stochastic Schrödinger equations allowing us to obtain information
on physical phenomena. In this research direction, we first investigate regularity
of solutions to linear and non-linear stochastic Schrödinger equations arising in the
study of quantum systems with continuous variables, namely having L2

(
Rd,C

)
as

state space. Then, we prove a version of Ehrenfest’s theorem for open quantum
systems. As a concrete physical application, we deduce rigorously the linear heating
in a Paul trap.

In Section 2, we first focus on open quantum systems described by the linear
stochastic evolution equation in a complex separable Hilbert space (h, 〈·, ·〉):

Xt (ξ) = ξ +

∫ t

0

G (s)Xs (ξ) ds+

∞∑

ℓ=1

∫ t

0

Lℓ (s)Xs (ξ) dW ℓ
s , (1.1)

see, e.g., Barchielli and Gregoratti (2009); Barchielli and Holevo (1995); Bassi et al.
(2010); Belavkin (1989); Breuer and Petruccione (2002); Gehm et al. (1998); Gough
and Sobolev (2004); Grotz et al. (2006); Halliwell and Zoupas (1995); Schneider
and Milburn (1999); Singh and Rost (2007) and the references therein. The driv-
ing noise

(
W ℓ
)
ℓ≥1

is a sequence of real valued independent Wiener processes on

a filtered complete probability space
(
Ω,F, (Ft)t≥0 ,P

)
, the solution X is a path-

wise continuous adapted stochastic processes taking values in h, ξ ∈ L2(Ω,P), and
(G (t))t≥0 , (Lℓ (t))t≥0 are given families of linear operators on h satisfying

G (t) = −iH (t) − 1

2

∞∑

ℓ=1

Lℓ (t)∗ Lℓ (t) (1.2)

on suitable common domain with H (t) symmetric operator. The relation (1.2) is
a necessary condition for mean norm square conservation of Xt (ξ), an important
physical property that must hold in the application to open quantum systems.

In Subsection 2.1 we establish a sufficient condition for regularity of solutions
to (1.1), closely adapted to its special structure. Regular solutions are essentially
solutions with finite energy, indeed, regularity of Xt (ξ) is characterized through

E ‖CXt(ξ)‖2
< ∞ for suitable non-negative operators C on h, with a domain con-

tained in the domains of G(t) and Lℓ(t), allowing us to control unboundedness of
these operators. Taking inspiration from resolvent approximation methods devel-
oped in Fagnola and Wills (2003), we strengthen results of Mora (2004) and Mora
and Rebolledo (2007, 2008) and improve their applicability to open quantum sys-
tems with infinite dimensional state space in coordinate representation (see Section
2.1.1 for a review of previous works). Moreover, we prove that regularity of X

implies the mean norm square conservation property, namely E ‖Xt(ξ)‖2
= E ‖ξ‖2

for all t ≥ 0.
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In Subsection 2.2, we report our careful verification that existence and uniqueness
of the regular solution to (1.1) yields existence and uniqueness of the regular solution
to

Yt = Y0 +

∫ t

0

G (s, Ys) ds+

∞∑

ℓ=1

∫ t

0

(Lℓ (s)Ys − ℜ〈Ys, Lℓ (s)Ys〉 Ys) dW
ℓ
s (1.3)

with

G (s, y) = G (s) y +

∞∑

ℓ=1

(
ℜ 〈y, Lℓ (s) y〉Lℓ (s) y − 1

2
ℜ2 〈y, Lℓ (s) y〉 y

)
.

We thus get from Subsection 2.1 a sufficient condition for well-posedness of (1.3).
This non-linear stochastic Schrödinger equation is a fundamental tool for modeling
the dynamics of states in quantum measurement processes (see, e.g., Barchielli and
Holevo (1995); Barchielli and Gregoratti (2009); Bassi et al. (2010); Belavkin (1989);
Breuer and Petruccione (2002); Gough and Sobolev (2004)), as well as numerical
simulation of the evolution of mean values of quantum observables (see, e.g., Breuer
and Petruccione (2002); Mora (2005); Percival (1998)), which are represented by
E〈Yt, AYt〉.

Mathematics of closed quantum systems is well established, on the contrary, only
a few papers deal with open quantum systems whose state space h contains, among
its components, L2

(
Rd,C

)
(see, e.g., Bassi et al. (2010); Chebotarev and Fagnola

(1998); Kolokol′tsov (1998); Gough and Sobolev (2004); Mora and Rebolledo (2008);
Mora (2013) and references therein). However, important physical phenomena are
realistically described by open quantum systems involving continuous variables such
as position (see, e.g., D’Agosta and Di Ventra (2008); Gough and Sobolev (2004);
Halliwell and Zoupas (1995); Haroche and Raimond (2006); Wiseman and Milburn
(2010)). This motivates Section 3 where we use our general results as the starting
point for investigating well-posedness and norm conservation property of physical
systems described in position representation with Hilbert space h = L2

(
Rd,C

)
,

Hamiltonian

H(t) = −α∆ + i

d∑

j=1

(
Aj(t, ·)∂j + ∂jA

j(t, ·)
)

+ V (t, ·) (1.4)

and noise coefficients

Lℓ (t) =

{ ∑d
j=1 σℓj (t, ·) ∂j + ηℓ (t, ·) , if 1 ≤ ℓ ≤ m

0, if ℓ > m
, (1.5)

where t ≥ 0, m ∈ N, α is a non-negative real constant, ∂j denotes the partial

derivative with respect to the jth-coordinate, V,Aj : [0,+∞[×Rd → R and σℓj ,
ηℓ : [0,+∞[×Rd → C are measurable smooth functions. We thus include in our
study concrete physical situations like: continuous measurements of position Bassi
and Dürr (2008); Dürr et al. (2011); Gough and Sobolev (2004); Kolokol′tsov (1998),
atoms in interaction with polarized lasers Singh and Rost (2007), quantum systems
in fluctuating traps Grotz et al. (2006); Schneider and Milburn (1999) and collisions
of heavy-ions Alicki (1982); Chebotarev and Fagnola (1998). The main difficulties in
the study of stochastic partial differential equations (1.1) and (1.3) with Hamilton-
ian (1.4) and noise operators (1.5) lies in the unboundedness of partial derivatives ∂j

in the noise coefficients as well as in the magnetic fields terms Aj(t, ·)∂j +∂jA
j(t, ·),
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a possible linear growth of functions ηℓ and the possible quadratic behavior of the
potential V ; solving (1.1) and (1.3) we must cope with all of them at the same time.

We overcome these difficulties by using the reference operator C = −∆ + |x|2, to-
gether with non-trivial algebraic and analytic manipulations.

In Section 4, we derive rigorously Ehrenfest-type theorems for open quantum
systems. Indeed, assuming that (1.1) has a unique C-regular solution, we prove,
roughly speaking, that the mean value of a C-bounded observable A satisfies:

E 〈Xt (ξ) , AXt (ξ)〉 = E 〈ξ, Aξ〉 +

∫ t

0

E 〈A∗Xs (ξ) , G (s)Xs (ξ)〉 ds (1.6)

+

∫ t

0

E 〈G (s)Xs (ξ) , AXs (ξ)〉 ds

+

∫ t

0

(
∞∑

ℓ=1

E 〈Lℓ (s)Xs (ξ) , ALℓ (s)Xs (ξ)〉
)
ds.

States of quantum systems are described by density operators, i.e., positive oper-
ators on h with unit trace. Under, for instance, the Born-Markov approximation,
the density operator at time t is given (in Dirac notation) by

ρt = E |Xt (ξ)〉 〈Xt (ξ)|

whenever the initial density operator is E |ξ〉 〈ξ| (see, e.g., Barchielli and Gregoratti
(2009); Breuer and Petruccione (2002); Mora (2013); Percival (1998)). Hence the
mean value of a C-bounded observable A is well-defined by tr (ρtA), which is equal
to E〈Xt (ξ) , AXt (ξ)〉 (see, e.g., Mora (2013)), and (1.6) becomes

d

dt
tr (ρtA) = tr

(
ρt

(
−i [A,H (t)] +

1

2
Lℓ (t)

∗
[A,Lℓ (t)] +

1

2

[
Lℓ (t)

∗
, A
]
Lℓ (t)

))
,

(1.7)
where [·, ·] stands for the commutator between two operators and tr (·) denotes the
trace operation.

Ehrenfest-type theorems describe the rate of change of mean values of quantum
observables. In the physical literature on open quantum systems, the generalized
Ehrenfest equations (1.6) and (1.7) have been used, for example, to demonstrate
connections between quantum and classical mechanics (see, e.g., Percival (1998)),
and to estimate the behavior of the expected value of important quantum ob-
servables Breuer and Petruccione (2002); Englert and Morigi (2002); Halliwell and
Zoupas (1995); Hupin and Lacroix (2010); Salmilehto et al. (2012). Nevertheless,
(1.6) and (1.7) have not been rigorously examined from the mathematical view-
point. This motivates Section 4 where we present the first, to the best of our
knowledge, rigorous proof of the Ehrenfest equations (1.6) and (1.7) for open quan-
tum systems with infinite-dimensional state space h. We would like to point out
here that Ehrenfest-type theorems for closed quantum systems have been recently
proved by Friesecke and Koppen (2009); Friesecke and Schmidt (2010); our results
also generalize this work.

In Section 4, we also introduce sufficient conditions for validity of (1.6) and
(1.7) applied to the system with Hamiltonian (1.4) and noise operators (1.5). This,
together with Section 3, provides a sound framework for studying open quantum
systems in coordinate representation with smooth potentials.
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As a concrete physical application we consider ions traps (see, e.g., Wineland
et al. (1998) for a description). Quadrupole ion traps were initially developed by
Hans Georg Dehmelt and Wolfgang Paul who were awarded the Nobel Prize in
Physics for this work having a great impact in quantum information. Experiments
show that these traps lose coherence, because the coupling with the environment
is relatively strong (see, e.g., Grotz et al. (2006); Leibfried et al. (2003); Wineland
et al. (1998) and references therein). This drastically reduces life times of trapped
atoms. Here, we prove rigorously the linear heating in a model of a Paul trap
whenever the initial density operator is regular enough, providing a mathematically
rigorous presentation of the arguments given by Schneider and Milburn (1999).

1.1. Notation. In this article, (h, 〈·, ·〉) is a separable complex Hilbert space whose
scalar product 〈·, ·〉 is linear in the second variable and anti-linear in the first one.
We write D (A) for the domain of A, whenever A is a linear operator in h. If X,
Z are normed spaces, then we denote by L (X,Z) the set of all bounded operators
from X to Z and we define L (X) = L (X,X). We set [A,B] = AB −BA when A,B
are operators in h. By B (Y) we mean the set of all Borel set of the topological
space Y.

Suppose that C is a self-adjoint positive operator in h. For any x, y ∈ D (C)
we define the graph scalar product 〈x, y〉C = 〈x, y〉 + 〈Cx,Cy〉 and the graph

norm ‖x‖C =
√
〈x, x〉C . We use the symbol L2 (P, h) to denote the set of all square

integrable random variables from (Ω,F,P) to (h,B (h)). Moreover, L2
C (P, h) stands

for the set of all ξ ∈ L2 (P, h) such that ξ ∈ D (C) a.s. and E ‖ξ‖2
C <∞. We define

πC : h → h by πC(x) = x if x ∈ D (C) and πC(x) = 0 if x /∈ D (C).
In case g : Rn 7→ C is Borel measurable, ⌈g⌉ stands for the multiplication operator

in L2 (Rn,C) given by f 7→ gf . We abbreviate ⌈g⌉ to g when no confusion can arise.
We denote by Ck

(
Rd,K

)
with K = R,C, the set of all functions from Rd to K whose

partial derivatives up to order k are with continuous. Moreover, C∞
c

(
Rd,C

)
is the

set of all functions of C∞
(
Rd,C

)
having compact support. If f : Rd 7→ C, then ∂kf

denotes the partial derivative of f with respect to its k-th argument, ∇f stands for
the gradient of f and ∆f is the Laplacian of f .

In what follows, the letter K denotes generic constants. We will write K (·)
for different non-decreasing non-negative functions on the interval [0,∞[ when no
confusion is possible.

2. Stochastic Schrödinger equations

2.1. Linear stochastic Schrödinger equation.

2.1.1. Previous works. In the autonomous case, Holevo (1996) obtained the exis-
tence and uniqueness of the weak (topological) solution to (1.1) whenever G is the
infinitesimal generator of a contraction semigroup. A drawback of such weak solu-

tions is that they may not preserve the mean value of ‖Xt(ξ)‖2
(see, e.g., Holevo

(1996)). Rozovskĭı (1990) proved the existence and uniqueness of variational so-
lutions for a class dissipative linear stochastic evolution equations on real Hilbert
spaces, where the regularity of Xt(ξ) is essentially characterized through a strictly
positive operator C. In particular, approximating G (s) by G (s) − ǫC2 in (1.1),
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Rozovskĭı (1990) obtained a solution of (1.1) as a limit of solutions to coercive
stochastic evolution equations that are treated using the Galerkin method. This
indirect proof makes it difficult to address some properties of the SSEs as time-
global estimates needed for establishing the existence of regular invariant measures
for (1.3), and time-local estimates appearing in the numerical solution of (1.1) and
(1.3) (see, e.g., Mora (2004)). Using Galerkin approximations, Grecksch and Lisei
(2011) proved the existence and uniqueness of variational solutions to

dXt = (i (−H0Xt + f (t,Xt))) dt+ ig (t,Xt) dWt, (2.1)

where W is a cylindrical Brownian motion with values in a separable real Hilbert
space, f , g are locally Lipschitz functions and −H0 is a coercive operator with
discrete spectrum. These conditions are strong in case (2.1) becomes linear.

Applying directly the Galerkin method, together with a priori estimates of the
graph norm of the approximating solutions with respect to the reference positive
operator C, Mora (2004) and Mora and Rebolledo (2007) proved that (1.1) has a
unique strong regular solution, in the autonomous case. The assumptions of Mora
(2004) and Mora and Rebolledo (2007) include the existence of an orthonormal
basis (en)n of (h, 〈·, ·〉) that satisfies, for instance, supn∈Z+

‖CPnx‖ ≤ ‖Cx‖ for all
x belonging to the domain of C, where Pn is the orthogonal projection of h over
the linear manifold spanned by e0, . . . en and summability of the series

∑
ℓ ‖L∗

ℓen‖2

together with some domain hypotheses on the adjoint G∗ of G. Summability of the

series
∑

ℓ ‖L∗
ℓen‖2

, in particular, is a strong mathematical requirement that may
not hold even when the operators G and Lℓ are bounded. In Section 2.1.2, we prove
the well-posedness of (1.1), as well as the regularity of its solution, under hypotheses
that do not involve the orthogonal basis (en)n, the summability condition and tech-
nical hypotheses on adjoints of G and Lℓ (that now are also time-dependent). Then,
we obtain stronger results with simplified proofs and wider range of applications.

Finally, the non-commutative version of (1.1) has been treated using resolvent
approximations and a priori estimates by Fagnola and Wills (2003).

2.1.2. Main results. We start by making precise the notion of strong regular solu-
tion to (1.1).

Hypothesis 1. Let C be a self-adjoint positive operator in h such that:

(H1.1) For any ℓ ≥ 1 and t ≥ 0, D (C) ⊂ D (Lℓ (t)) and Lℓ (·) ◦ πC is measurable
as a function from ([0,∞[ × h,B ([0,∞[ × h)) to (h,B (h)).

(H1.2) For all t ≥ 0, D (C) ⊂ D (G (t)). Moreover,

G (·) ◦ πC : ([0,∞[ × h,B ([0,∞[ × h)) → (h,B (h))

is measurable.

Definition 2.1. Let Hypothesis 1 hold. Assume that I is either [0,∞[ or the inter-
val [0, T ], with T ∈ R+. An h-valued adapted process (Xt (ξ))t∈I with continuous
sample paths is called strong C-solution of (1.1) on I with initial datum ξ if and
only if, for all t ∈ I:

• E ‖Xt (ξ)‖2 ≤ E ‖ξ‖2, Xt (ξ) ∈ D (C) a.s. and sups∈[0,t] E ‖CXs (ξ)‖2 <∞.

• Xt (ξ) = ξ+
∫ t

0 G (s)πC (Xs (ξ)) ds+
∑∞

ℓ=1

∫ t

0 Lℓ (s)πC (Xs (ξ)) dW ℓ
s P-a.s.

The lemma below guarantees that Hypothesis 1 is valid in many physical models.
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Lemma 2.2. Consider the self-adjoint positive operator C : D (C) ⊂ h → h.
Suppose that each family of linear operators (G (t))t≥0 and (Lℓ (t))t≥0, with ℓ ∈ N,
can be written as (

n∑

k=1

fk (t)Φk

)

t≥0

,

where f1, . . . , fn : ([0,∞[ ,B ([0,∞[)) → (C,B (C)) are measurable and Φ1, . . . ,Φn

belong to L ((D (C) , ‖·‖C) , h). Then Hypothesis 1 is fulfilled.

Proof : Deferred to Subsection 5.1. �

Remark 2.3. Assume that (1.1) is autonomous, i.e., G (t) and Lℓ (t) do not de-
pend on t. From Lemma 2.2 we have that Hypothesis 1 holds in case G,Lℓ ∈
L ((D (C) , ‖·‖C) , h), where C is a self-adjoint positive operator on h.

The following theorem provides a new general sufficient condition for the exis-
tence and uniqueness of strong C-solutions to (1.1).

Hypothesis 2. Let C satisfy Hypothesis 1. In addition assume that:

(H2.1) For all t ≥ 0 and x ∈ D (C), ‖G (t)x‖2 ≤ K (t) ‖x‖2
C .

(H2.2) For every natural number ℓ there exists a non-decreasing function Kℓ on

[0,∞[ satisfying ‖Lℓ (t)x‖2 ≤ Kℓ (t) ‖x‖2
C for all x ∈ D (C) and t ≥ 0.

(H2.3) There exists a non-decreasing non-negative function α such that

2ℜ
〈
C2x,G (t)x

〉
+

∞∑

ℓ=1

‖CLℓ (t)x‖2 ≤ α (t) ‖x‖2
C

for all t ≥ 0 and any x belonging to a core D1 of C2.

(H2.4) There exists a core D2 of C such that 2ℜ 〈x,G (t)x〉+∑∞
ℓ=1 ‖Lℓ (t)x‖2 ≤ 0

for all x ∈ D2 and t ≥ 0.

Theorem 2.4. Let Hypothesis 2 hold and assume that ξ ∈ L2
C (P, h) is F0-mea-

surable. Then (1.1) has a unique strong C-solution (Xt (ξ))t≥0 with initial datum
ξ. Moreover,

E ‖CXt (ξ)‖2 ≤ exp (tα (t))
(
E ‖Cξ‖2

+ tα (t) E ‖ξ‖2
)
.

Proof : Deferred to Subsection 5.2. �

Remark 2.5. Under the assumptions and notation of Theorem 2.4, we can prove the
Markov property of Xt (ξ) by techniques of well-posed martingale problems (see,
e.g., Mora and Rebolledo (2008)).

The next lemma provides an equivalent formulation of Condition H2.3, stated
in terms of random variables.

Lemma 2.6. Suppose that C is a self-adjoint positive operator in h such that G (t)
and CLℓ (t) belong to L

((
D
(
C2
)
, ‖·‖C2

)
, h
)

for all t ≥ 0 and ℓ ∈ N. We define

L+ (t, x) to be the positive part of 2ℜ
〈
C2x,G (t)x

〉
+
∑∞

ℓ=1 ‖CLℓ (t)x‖2
whenever

t ≥ 0 and x ∈ D
(
C2
)
. Assume that D1 is a a core of C2. Then, Condition H2.3

holds if and only if:

(H2.3’) For all ζ ∈ L2
C (P, h) satisfying ζ ∈ D1 and ‖ζ‖ = 1, the function

t 7→ E
(
L+ (t, ζ)

)

is bounded on any interval [0, T ], with T > 0.
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Proof : Deferred to Subsection 5.3. �

Under Hypothesis 2 and Condition H3.1 below, we can obtain the mean norm
square conservation of Xt(ξ), a crucial physical property of the quantum systems.

Hypothesis 3. Let Hypothesis 1 hold together with Condition H2.1. Suppose that:

(H3.1) For all t ≥ 0 and x ∈ D (C), 2ℜ 〈x,G (t)x〉 +
∑∞

ℓ=1 ‖Lℓ (t)x‖2 = 0.
(H3.2) For any initial datum ξ belonging to L2

C (P, h), (1.1) has a unique strong
C-solution on any bounded interval.

Theorem 2.7. Assume that Hypothesis 3 holds, together with ξ ∈ L2
C (P; h). Then(

‖Xt (ξ)‖2
)

t
is a martingale. In particular E ‖Xt(ξ)‖2

= ‖ξ‖2
for all t ≥ 0.

Proof : Deferred to Subsection A.1. �

Remark 2.8. Condition H3.1 is a quadratic form version of (1.2). It arises from
physical situations where we can expect that the solutions of the quantum master
equations have trace 1 at any time. Nevertheless, (1.2) is not a sufficient condition
for a minimal quantum dynamical semigroup to be identity preserving (see, e.g.,
Fagnola (1999)).

Remark 2.9. Hypothesis 2, together with Condition H3.1, constitutes a generalized
version of non-explosion criteria used to guarantee the conservation of the proba-
bility mass of minimal quantum dynamical semigroups (see, e.g., Chebotarev and
Fagnola (1998); Chebotarev et al. (1998); Fagnola (1999)). This can be verified in
a wide range of applications.

Remark 2.10. The operator C in Theorem 2.4 plays the role of superharmonic
(or excessive) functions in the Lyapunov condition for non-explosion of classical
minimal Markov processes. For simplicity, suppose that G (t) and Lℓ (t) are time-
independent. In this case Condition H2.3 of Hypothesis 2 formally reads as

L
(
C2
)
≤ α

(
C2 + I

)
,

where α > 0 and L (X) := G∗X + XG +
∑∞

ℓ=1 L
∗
ℓXLℓ. Here L (X) represents

the infinitesimal generator of the Markov process Xt applied to the function x 7→
〈x,Xx〉. Actually, we can choose C satisfying L

(
C2
)
≤ αC2, hence

d

dt
exp (−αt)C2 + L

(
exp (−αt)C2

)
≤ 0.

Thus, φ (t, x) := exp (−αt) ‖Cx‖2
is, roughly speaking, an α-excessive function.

Therefore, applying formally Itô’s formula we obtain that exp (−αt) ‖CXt‖2 is a
supermartingale. Heuristically, φ helps us to prove thatXt does not escape from the
domain of C, like the existence of superharmonic functions prevents finite explosion
times in classical Markov processes.

2.2. Non-linear stochastic Schrödinger equations. Using the linear stochastic Schrö-
dinger equation (1.1), Barchielli and Holevo (1995) construct a weak probabilistic
solution of (1.3) provided that G and L1, L2, . . . are bounded operators; they actu-
ally considered driven noises with jumps in place of some W ℓ. In the case where
h is finite-dimensional and at most a finite number of Lk are different from 0, the
existence and uniqueness of the strong solution of (1.3) was obtained in Lemma 5 of
Mora (2005) by classical methods for stochastic differential equations with locally



Stochastic Schrödinger equations 199

Lipschitz coefficients, see also Barchielli and Gregoratti (2009); Pellegrini (2008,
2010).

Gatarek and Gisin (1991) established the existence and pathwise uniqueness of
solutions of (1.3) in the following two examples:

• H = 0, L1 self-adjoint and Lℓ = 0 for all ℓ ≥ 2.
• Let h = L2 (R,C). Choose H = −∆, L1f (x) = xf (x), and L2 = L3 =
· · · = 0.

To handle the uniqueness property, Gatarek and Gisin (1991) used strongly that
L1 is a self-adjoint operator. Mora and Rebolledo (2008) obtained the existence
and weak uniqueness of regular solutions to (1.3) under the assumptions of Mora
and Rebolledo (2007), which were discussed in Section 2.1.1. In the preparation of
this paper, we verified that applying the same arguments of the proof of Theorem 1
of Mora and Rebolledo (2008) we can prove Theorem 2.12, asserting the existence
and uniqueness of solutions to the non-linear stochastic Schrödinger equation (1.3)
under Hypothesis 3. We thus get that Theorem 2.4 provides a sufficient condition
for the existence and uniqueness of weak (in the probabilistic sense) regular solution
to (1.3).

Definition 2.11. Let C satisfy Hypothesis 1. Suppose that I is either [0,+∞[ or

[0, r] with r ∈ R+. We say that
(
Ω,F, (Ft)t∈I ,Q, (Yt)t∈I ,

(
W ℓ

t

)ℓ∈N

t∈I

)
is a solution of

class C of (1.3) with initial distribution θ on the interval I if and only if:

•
(
W ℓ
)
ℓ≥1

is a sequence of real valued independent Brownian motions on the

filtered complete probability space
(
Ω,F, (Ft)t∈I ,Q

)
.

• (Yt)t∈I is an h-valued process with continuous sample paths such that the
law of Y0 coincides with θ and Q (‖Yt‖ = 1 for all t ∈ I) = 1. Moreover, for

every t ∈ I, Yt ∈ D (C) Q-a.s. and sups∈[0,t] EQ ‖CYs‖2
<∞.

• Q-a.s., for all t ∈ I,

Yt = Y0 +

∫ t

0

G (s, πC (Ys)) ds

+
∞∑

ℓ=1

∫ t

0

(Lℓ (s)πC (Ys) −ℜ〈Ys, Lℓ (s)πC (Ys)〉Ys) dW
ℓ
s .

We shall say, for short, that
(
Q, (Yt)t∈I , (Wt)t∈I

)
is a C-solution of (1.3).

Theorem 2.12. Let C satisfy Hypothesis 3. Assume that θ is a probability measure

on h concentrated on D(C)∩{y ∈ h : ‖y‖ = 1} such that
∫

h
‖Cx‖2

θ (dx) <∞. Then

(1.3) has a unique C-solution
(

Q, (Yt)t≥0 , (Wt)t≥0

)
with initial law θ.

Proof : Theorem 2.7 allows us to use arguments of Theorem 1 in Mora and Re-
bolledo (2008) to show our statement. �

Remark 2.13. Let the assumptions of Theorem 2.12 hold, and let (Xt (ξ))t≥0 be

the strong C-solution of (1.1), where ξ is distributed according to θ. For a given

T ∈ ]0,+∞[, we define Q = ‖XT (ξ)‖2 · P,

Bℓ
t = W ℓ

t −
∫ t

0

1

‖Xs (ξ)‖2 d
[
W ℓ, ‖X (ξ)‖2

]

s
,
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and

Yt =

{
Xt (ξ) / ‖Xt (ξ)‖ , if Xt (ξ) 6= 0
0, if Xt (ξ) = 0

,

where t ∈ [0, T ] and ℓ ∈ N. By Theorem 2.7, proceeding along the same lines as in
the proof of Proposition 1 of Mora and Rebolledo (2008) we can obtain that

(
Ω,F, (Ft)t∈[0,T ] ,Q, (Yt)t∈[0,T ] ,

(
Bℓ

t

)ℓ∈N

t∈[0,T ]

)

is a C-solution of (1.3) with initial distribution θ.

3. Open quantum systems in coordinate representation

We now focus on the model given by (1.4) and (1.5), with the functions σℓh

satisfying ∑

ℓ≥1

σℓk (t, x) (∂jσℓh)(t, x) =
∑

ℓ≥1

σℓk (t, x) (∂jσℓh)(t, x) (3.1)

for all j, h, k. It is worth noticing that (3.1) obviously holds when functions σℓk do
not depend on x and also when they are real valued or can be transformed into real
valued functions by a suitable change of phase. A counterexample due to Fagnola
and Pantaleo Martnez (2012) shows that mean norm square conservation may fail
when (3.1) does not hold and phases of σℓk depend on the space variable x. We next
collect our smoothness assumptions on the functions involved in (1.4) and (1.5).

Hypothesis 4. Let Lℓ(t) be the operator (1.5) and assume that (3.1) holds. For
all t ≥ 0, define G (t) = −iH (t) − 1

2

∑m
ℓ=1 L

∗
ℓ (t)Lℓ (t), where H (t) is as in (1.4).

Suppose that there exists a continuous increasing function K : [0,+∞[→]0,+∞[
such that:

(H4.1) For all t ≥ 0 and 1 ≤ j ≤ d, V (t, ·) ∈ C2
(
Rd,R

)
, Aj (t, ·) ∈ C3

(
Rd,R

)
.

Moreover, max
{
|V (t, x)| , |∆V (t, x)| ,

∣∣∂j(∆A
j)
∣∣} ≤ K (t)

(
1 + |x|2

)
,

max
{
|∂jV (t, x)| ,

∣∣Aj (t, x)
∣∣ ,
∣∣(∂j′∂jA

j)(t, x)
∣∣} ≤ K (t) (1 + |x|)

and
∣∣∂j′A

j (t, x)
∣∣ ≤ K (t), where t ≥ 0, x ∈ Rd and 1 ≤ j, j′ ≤ d.

(H4.2) For all 1 ≤ ℓ ≤ m and t ≥ 0 we have |σℓk (t, ·)| ≤ K(t), with 1 ≤ k ≤ d,
ηℓ (t, ·) ∈ C3

(
Rd,C

)
and the absolute values of all the partial derivatives of

ηℓ (t, ·) from the first up to the third order are bounded by K(t). Moreover,
at least one of the following conditions holds:

(H4.2.a) For all 1 ≤ ℓ ≤ m, 1 ≤ k ≤ d and t ≥ 0 we have |ηℓ (t, ·)| ≤
K(t), σℓk (t, ·) ∈ C3

(
Rd,C

)
, and the absolute values of all partial deriva-

tives of σℓk (t, ·) up to the third order are dominated by K(t).
(H4.2.b) For any 1 ≤ ℓ ≤ m and 1 ≤ k ≤ d, the function (t, x) 7→

σℓk (t, x) does not depend on x and |ηℓ (t, 0)| ≤ K(t).

Note that condition (H4.2.b) allows linear growth in x of η(t, x) while (H4.2.a)
does not. Theorems 2.4 and 2.7 help us to establish the following result.

Theorem 3.1. Suppose that Hypothesis 4 holds and set C = −∆+ |x|2. Let ξ be a

F0 - measurable random variable taking values in L2
(
Rd,C

)
such that E ‖ξ‖2

= 1

and E ‖Cξ‖2 <∞. Then (1.1) has a unique strong C-solution with initial datum ξ.

Moreover, E ‖Xt (ξ)‖2
= ‖ξ‖2

for all t > 0. If in addition ‖ξ| = 1 a.s., then (1.3)
has a unique C-solution whose initial distribution coincides with that of ξ.
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Proof : Deferred to Subsection 5.4. �

Theorem 3.1 applies in a number of physical models like those listed below,
which, for simplicity, are restricted to h = L2 (R,C) and m = 1.

(E.1) Choose α = 1/ (2M), A1 (t, x) = cx, σ11(t, x) = b, and η1 (t, x) = ax, where
a, b, c ∈ R and M > 0. Moreover, the potential V is a smooth function.
This describes a large particle coupled to a bath of harmonic oscillators in
thermal equilibrium (see, e.g., Halliwell and Zoupas (1995)).

(E.2) Let α = 1/ (2M), with M > 0. Moreover, we take A1 (t, x) = σ11(t, x) = 0
and η1 (t, x) = ηx, where η is a real number. This model describes the
dynamics of the continuous measurement of position of a free quantum
particle subject to a time-dependent potential V (t, ·) (see, e.g., Bassi and
Dürr (2008); Gough and Sobolev (2004)), a process that can be observed
with detectors.

(E.3) Singh and Rost (2007) modeled the application of intense linearly polarized
laser to the hydrogen atom by means of: α = 1/2, A1(t, ·) = σ11(t, ·) = 0,
η1 (t, x) = −iηx, and

V (t, x) = V0 (x) + xF (t) ,

where V0 (x) = −1/
(
x2 + ǫ2

)1/2
and

F (t) = F0 sin (βt+ δ) ·






sin (πt/ (2τ)) , if t < τ
1, if τ ≤ t ≤ T − τ
cos2 (π (t+ τ − T ) / (2τ)) , if T − τ ≤ t ≤ T

.

Here β, η, δ ∈ R and ǫ, F0, τ, T are positive constants. This simulates the
evolution of the electron of the hydrogen atom under the influence of a laser
field F (t). The soft core potential V approximates the Coulomb potential
of the atom.

(E.4) To describe the evolution of a quantum system in a parabolic fluctuating
trap, we follow Grotz et al. (2006) and Schneider and Milburn (1999) in
assuming α = 1/ (2M), A1(t, x) = σ11(t, x) = 0, V (t, x) = 1

2Mω2x2 and
η1 (t, x) = −iηx, where M,η > 0 and ω ∈ R.

(E.5) A free particle confined by a moving Gaussian well, in interaction with a
heat bath, is simulated by α = 1/ (2M), A1 (t, x) = 0,

V (t, x) = −V0 exp
(
−α (x− r (t))2

)
,

σ11(t, x) = b and η1 (t, x) = ax, where a, b ∈ R and M,V0, α > 0. The
measurable bounded function r : [0,∞[ → R represents the displacement
of the trap’s center.

4. Ehrenfest’s theorem

4.1. Markovian open quantum systems. The next theorem provides a rigorous der-
ivation of a version of Ehrenfest’s equations for open quantum systems in Lindblad
form.

Hypothesis 5. Let C satisfy Hypothesis 3. Suppose that:
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(H5.1) For all t ≥ 0 and any x belonging to a core of C,

∞∑

ℓ=1

∥∥∥C1/2Lℓ (t)x
∥∥∥

2

≤ K (t) ‖x‖2
C .

Let A = B∗
1B2, where B1, B2 are operators in h such that:

(H5.2) For all x ∈ D
(
C1/2

)
, max{‖B1x‖2

, ‖B2x‖2} ≤ K ‖x‖2
C1/2 .

(H5.3) max
{
‖Ax‖2

, ‖A∗x‖2
}
≤ K ‖x‖2

C whenever x ∈ D (C).

Theorem 4.1. Let Hypothesis 5 hold, together with ξ ∈ L2
C (P; h). Then, for all

t ≥ 0 we have

E 〈Xt (ξ) , AXt (ξ)〉 = E 〈ξ, Aξ〉 +

∫ t

0

E 〈A∗Xs (ξ) , G (s)Xs (ξ)〉 ds (4.1)

+

∫ t

0

E 〈G (s)Xs (ξ) , AXs (ξ)〉 ds

+

∫ t

0

(
∞∑

ℓ=1

E 〈B1Lℓ (s)Xs (ξ) , B2Lℓ (s)Xs (ξ)〉
)
ds.

Proof : Deferred to Subsection 5.5. �

Suppose that Xt (ξ) is the unique strong C-solution of (1.1). Set

ρt := E |Xt (ξ)〉 〈Xt (ξ)| ,

where we use Dirac notation. Then ρt is a C-regular density operator and

tr (ρtA) = E 〈Xt (ξ) , AXt (ξ)〉 ,

provided that A is C-bounded (see Mora (2013) for details). In the homogeneous
case, from Mora (2013) we have that ρt is the unique solution of the quantum
master equation

d

dt
ρt = Gρt + ρtG

∗ +

∞∑

ℓ=1

LℓρtL
∗
ℓ , ρ0 = E |ξ〉 〈ξ| .

We now combine Theorem 4.1 with Theorem 3.2 of Mora (2013) to deduce the
following corollary, which asserts which asserts the validity (1.7) whenever essen-
tially ALℓ is C-bounded. To this end, we use basic properties of the adjoints of
unbounded operators (see, e.g., Kato (1976)).

Corollary 4.2. In addition to Hypothesis 5 and ξ ∈ L2
C (P; h), suppose that the

operators G (t) , B1L1 (t) , B2L2 (t) , . . . are cerrable for all t ≥ 0. Then

tr (Aρt) = tr (Aρ0) +

∫ t

0

(
tr (G (s) ρsA) + tr

(
AρsG (s)

∗))
ds (4.2)

+

∫ t

0

(
∞∑

ℓ=1

tr
(
B2Lℓ (s) ρsLℓ (s)

∗
B∗

1

)
)
ds,

where t ≥ 0 and ρt := E |Xt (ξ)〉 〈Xt (ξ)|.
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4.2. Applications. We begin by applying Theorem 4.1 to the model given by (1.4)
and (1.5).

Theorem 4.3. Assume the context of (1.4) and (1.5), together with Hypothesis 4.
Let A = B∗

1B2, where B1 and B2 satisfy one of the following conditions:

• B1 = ⌈c1⌉ and B2 = ⌈c2⌉ provided that c1, c2 : Rd → R are Borel measurable
functions such that |cj (x)| ≤ K (1 + |x|) for all x ∈ Rd and j = 1, 2.

• For any j = 1, 2, Bj is either ∂k ⌈aj⌉, ⌈bj⌉∂k or ⌈cj⌉, where k = 1, . . . , d,
aj ∈ C2

(
Rd,R

)
and bj , cj ∈ C1

(
Rd,R

)
. Moreover, for all x ∈ Rd and

l, k = 1, . . . , d we have: max {|aj (x)| , |bj (x)|} ≤ K,

max {|cj (x)| , |∂laj (x)| , |∂lbj (x)|} ≤ K (1 + |x|) ,

and max {|∂lcj (x)| , |∂k∂laj (x)|} ≤ K
(
1 + |x|2

)
.

Then (4.1) and (4.2) hold in case ξ ∈ L2
−∆+|x|2

(P; h).

Proof : Deferred to Subsection 5.6. �

Using Theorem 4.3 we can obtain expressions describing the evolution of some
important observables, which sometimes are closed systems of ordinary differen-
tial equations. For instance, the following theorem makes mathematically rigorous
computations given in Schneider and Milburn (1999), which establish the linear
heating of a Paul trap due to fluctuating electrical fields that change the center of
this ion trap (see also Gehm et al. (1998); Grotz et al. (2006)).

Corollary 4.4. Consider (1.4) and (1.5) with d = 1, α = 1/(2M), Aj(t, x) =
0, V (t, x) = V (x), σℓk(t, x) = 0 and η1 (t, x) = −iηx, where M,η > 0 and

V ∈ C2 (R,R). Suppose that for any x ∈ R, |V (x)| ≤ K
(
1 + |x|2

)
, |V ′ (x)| ≤

K (1 + |x|) and |V ′′ (x)| ≤ K
(
1 + |x|2

)
. Then for all t ≥ 0,

E 〈Xt (ξ) , HXt (ξ)〉 = E 〈ξ,Hξ〉 +
1

2M
η2t. (4.3)

Proof : Deferred to Subsection 5.7. �

Remark 4.5. Schneider and Milburn (1999) restricted their attention to

V (x) = Mω2x2/2.

5. Proofs

5.1. Proof of Lemma 2.2. We first characterize the domain of C by means of Yosida
approximations of −C.

Lemma 5.1. Let C be a self-adjoint positive operator in h. Then

D (C) = {x ∈ h : (CRnx)n converges} =

{
x ∈ h : sup

n∈N

‖CRnx‖ <∞
}
,

where Rn = n (n+ C)
−1

.

Proof : Since −C is dissipative and self-adjoint, for all x ∈ D (C) we have

CRnx −→n→∞ Cx

(see, e.g., Pazy (1983)). Thus D (C) ⊂ {x ∈ h : (CRnx)n converges}.
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Now, assume that (‖CRnx‖)n∈N is bounded. Using the Banach-Alaoglu theorem
we deduce that there exists a subsequence (CRnk

x)k∈N which converges weakly to
a vector z ∈ h. Since Rnx −→n→∞ x, for any y ∈ D (C) we have

〈x,Cy〉 = lim
k→∞

〈Rnk
x,Cy〉 = lim

k→∞
〈CRnk

x, y〉 = 〈z, y〉 .

Hence x ∈ D (C∗) (= D (C)), and so {x ∈ h : supn∈N ‖CRnx‖ <∞} ⊂ D (C). �

The assertion of Lemma 2.2 follows straightforward from the next lemma.

Lemma 5.2. Let C be a self-adjoint positive operator on h. Suppose that L ∈
L ((D (C) , ‖·‖C) , h). Then L ◦ πC : (h,B (h)) → (h,B (h)) is measurable.

Proof : Let Rn be as in Lemma 5.1. Using Lemma 5.1 we obtain that D (C) is a
Borel set of h since CRn ∈ L (h), and so πC : (h,B (h)) → (h,B (h)) is measurable.
Since the range of Rn is a subset of D (C) and L ∈ L ((D (C) , ‖·‖C) , h), LRn ∈
L (h). Hence LRn ◦ πC is measurable. It follows from Rn −→n→∞ I and

CRnx −→n→∞ Cx

that LRn ◦ πC −→n→∞ L ◦ πC , which implies the measurability of L ◦ πC . �

5.2. Proof of Theorem 2.4. First, we extend the inequality given in Condition H2.3
to D

(
C2
)
.

Remark 5.3. Let L be a closable operator in h such that D (C) ⊂ D (L), with
C self-adjoint positive operator in h. Applying the closed graph theorem gives
L ∈ L ((D (C) , ‖·‖C) , h).

Lemma 5.4. Suppose that C satisfies Conditions H2.1 - H2.3 of Hypothesis 2. If
x belongs to D

(
C2
)

and t ≥ 0, then Lℓ (t)x ∈ D (C) for any ℓ ∈ N, and

2ℜ
〈
C2x,G (t)x

〉
+

∞∑

ℓ=1

‖CLℓ (t)x‖2 ≤ α (t) ‖x‖2
C . (5.1)

Proof : Since D1 is a core of C2, there exists a sequence (xn)n∈N in D1 converging

to x such that C2xn −→n→∞ C2x. Using Remark 5.3 and Condition H2.1 we
deduce that G (t) ∈ L

((
D
(
C2
)
, ‖·‖C2

)
, h
)
, and so Condition H2.3 leads to

lim
n,n′→∞

∞∑

ℓ=1

‖CLℓ (t) (xn − xn′)‖2
= 0. (5.2)

By C is closed, from (5.2) we have Lℓ (t)x ∈ D (C) and CLℓ (t)xn → CLℓ (t)x as
n→ ∞. Then (5.1) follows immediately, because (5.1) is true for xn for all n.

�

The inequality of Condition H2.4 can be immediately extended to D (C), by the
definition of core and Fatou’s lemma, following the lines of the proof of Lemma 5.4.

Lemma 5.5. Under Conditions H2.1, H2.2 and H2.4, for all x in D (C) we have

2ℜ 〈x,G (t)x〉 +

∞∑

k=1

‖Lℓ (t)x‖2 ≤ 0.

In contrast to Mora and Rebolledo (2007), where we used the Galerkin method,
in the proof of Theorem 2.4 we obtain Xt (ξ) as the L2 (P, h)-weak limit of the
solutions to the sequence of stochastic evolution equations (5.3) given below.
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Definition 5.6. Let Hypothesis 1 hold, together with Conditions H2.1 and H2.2.
Suppose that ξ is a F0-measurable random variable belonging to L2 (P, h). For each
natural number n, we define Xn to be the unique continuous solution of

Xn
t = ξ +

∫ t

0

Gn (s)Xn
s ds+

n∑

ℓ=1

∫ t

0

Ln
ℓ (s)Xn

s dW
ℓ
s , (5.3)

where Gn (s) = R̃nG (s) R̃n and Ln
ℓ (s) = Lℓ (s) R̃n with R̃n = n

(
n+ C2

)−1
.

Remark 5.7. Recall that C2R̃n ∈ L (h) and
∥∥∥R̃n

∥∥∥ ≤ 1. As a consequence, Xn

is well-defined because H2.1 and H2.2 imply that Gn (t) and Ln
ℓ (t) are bounded

operators in h whose norms are uniformly bounded on compact time intervals.

Though the next three estimates for Xn essentially coincide with those given in
Lemma 2.3 of Mora and Rebolledo (2007), the infinite-dimensional nature of (5.3)
forces us to use a more refined analysis.

Lemma 5.8. Adopt Hypothesis 1, together with Conditions H2.1, H2.2 and H2.4.

Then for any t ≥ 0, E ‖Xn
t ‖2 ≤ E ‖ξ‖2

. Moreover, for all x ∈ h and t ≥ 0 we have

2ℜ 〈x,Gn (t)x〉 +

∞∑

ℓ=1

‖Ln
ℓ (t)x‖2 ≤ 0. (5.4)

Proof : Since the range of R̃n is a subset of D
(
C2
)
, Lemma 5.5 leads to (5.4). Using

complex Itô’s formula we obtain

‖Xn
t ‖2 ≤ ‖ξ‖2 +

n∑

ℓ=1

∫ t

0

2ℜ 〈Xn
s , L

n
ℓ (s)Xn

s 〉 dW ℓ
s . (5.5)

Set τj = inf {t ≥ 0 : ‖Xn
t ‖ > j}. Then τj ր ∞ as j → ∞, because Xn is pathwise

continuous. By (5.5), Fatou’s lemma yields E ‖Xn
t ‖

2 ≤ lim infj→∞ E
∥∥∥Xn

t∧τj

∥∥∥
2

≤
E ‖ξ‖2

. �

Lemma 5.9. Let Hypothesis 2 hold. If ξ ∈ L2
C (P, h), then

E ‖CXn
t ‖2 ≤ exp (tα (t))

(
E ‖Cξ‖2

+ tα (t) E ‖ξ‖2
)
. (5.6)

Proof : Combining Condition H2.1 with Lemma 5.4 we obtain that CGn (t) and
CLn

ℓ (t) are bounded operators on h whose norms are uniformly bounded on com-

pact intervals. Lemma 5.8 gives E ‖CGn (t)Xn
t ‖2 ≤ ‖CGn (t)‖2 E ‖ξ‖2

and

E ‖CLn
ℓ (t)Xn

t ‖2 ≤ ‖CLn
ℓ (t)‖2 E ‖ξ‖2 .

Therefore CXn
t = Y n

t a.s. for any t ≥ 0, where

Y n = Cξ +

∫ ·

0

CGn (s)Xn
s ds+

n∑

ℓ=1

∫ ·

0

CLn
ℓ (s)Xn

s dW
ℓ
s .

This follows from, for instance, Propositions 1.6 and 4.15 of Da Prato and Zabczyk
(1992).
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Since R̃n commutes with both C and C2, using Lemma 5.4 and
∥∥∥R̃n

∥∥∥ ≤ 1 we

deduce that for any x ∈ D
(
C2
)

and t ≥ 0,

2ℜ 〈Cx,CGn (t)x〉 +

n∑

ℓ=1

‖CLn
ℓ (t)x‖2

≤ 2ℜ
〈
C2R̃nx,G (t) R̃nx

〉
+

∞∑

ℓ=1

∥∥∥CLℓ (t) R̃nx
∥∥∥

2

≤ α (t)
∥∥∥R̃nx

∥∥∥
2

C
≤ α (t) ‖x‖2

C .

As D
(
C2
)

is a core of C, by a passage to the limit we get that for all y ∈ D (C)
and t ≥ 0,

2ℜ 〈Cy,CGn (t) y〉 +
n∑

ℓ=1

‖CLn
ℓ (t) y‖2 ≤ α (t) ‖y‖2

C . (5.7)

Finally, choose τj = inf {t ≥ 0 : ‖Y n
t ‖ > j}. Applying Itô’s formula yields

E
∥∥∥Y n

t∧τj

∥∥∥
2

= E ‖Cξ‖2
+ E

∫ t∧τj

0

(
2ℜ 〈Y n

s , CG
n (s)Xn

s 〉 +

n∑

ℓ=1

‖CLn
ℓ (s)Xn

s ‖2

)
ds,

because E
∣∣∣ℜ
〈
Y n

s∧τj
, CLn

ℓ (s)Xn
s

〉∣∣∣
2

≤ j2 ‖CLn
ℓ (s)‖2 E ‖ξ‖2

by Lemma 5.8. Since

Y n
s = CXn

s a.s., combining (5.7) with Lemma 5.8 we have

E
∥∥∥Y n

t∧τj

∥∥∥
2

≤ E ‖Cξ‖2 + α (t)

∫ t

0

E ‖CXn
s ‖2 ds+ tα (t) E ‖ξ‖2 ,

and so

E ‖Y n
t ‖2 ≤ lim inf

j→∞
E
∥∥∥Y n

t∧τj

∥∥∥
2

≤ E ‖Cξ‖2 + tα (t) E ‖ξ‖2 + α (t)

∫ t

0

E ‖Y n
s ‖2 ds.

The Gronwall-Bellman lemma now leads to (5.6). �

Lemma 5.10. Fix T > 0. Under the assumptions of Theorem 2.4,

E ‖Xn
t −Xn

s ‖
2 ≤ KT,ξ (t− s) , (5.8)

where 0 ≤ s ≤ t < T and KT,ξ is a constant depending of T and ξ.

Proof : Consider τj = inf {t ≥ 0 : ‖Xn
t ‖ > j}. According to Itô’s formula we have

E
∥∥∥Xn

t∧τj
−Xn

s∧τj

∥∥∥
2

= E

∫ t∧τj

s∧τj

(
2ℜ
〈
Xn

r −Xn
s∧τj

, Gn (r)Xn
r

〉
+

n∑

ℓ=1

‖Ln
ℓ (r)Xn

r ‖2

)
ds,

and hence (5.4) leads to

E
∥∥∥Xn

t∧τj
−Xn

s∧τj

∥∥∥
2

≤ −E

∫ t∧τj

s∧τj

2ℜ 〈Xn
s , G

n (r)Xn
r 〉 dr.

From Condition H2.1,
∥∥∥R̃n

∥∥∥ ≤ 1 and R̃nC ⊂ CR̃n we deduce that ‖Gn (t)x‖2 ≤
K (t) ‖x‖2

C for all x ∈ D (C). Therefore

E
∥∥∥Xn

t∧τj
−Xn

s∧τj

∥∥∥
2

≤ K (t) E

∫ t∧τj

s∧τj

‖Xn
s ‖ ‖Xn

r ‖C dr
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by Xn
s ∈ D (C) a.s., and so Fatou’s lemma implies

E ‖Xn
t −Xn

s ‖
2 ≤ lim inf

j→∞
E
∥∥∥Xn

t∧τj
−Xn

s∧τj

∥∥∥
2

≤ K (t)

∫ t

s

√
E ‖Xn

r ‖
2
C

√
E ‖Xn

s ‖
2
dr.

Applying Lemmata 5.8 and 5.9 we obtain (5.8). �

We next obtain a strong C-solution of (1.1) by means of a limit procedure.

Definition 5.11. For any natural number n, we define
(
Gξ,n

s

)
s≥0

to be the fil-

tration that satisfies the usual hypotheses generated by ξ and W 1, . . . ,Wn. Let

t be a non-negative real number. By G
ξ,W
t we mean the σ-algebra generated by

∪n∈NG
ξ,n
t . As usual, G

ξ,W
t+ = ∩ǫ>0G

ξ,W
t+ǫ .

Lemma 5.12. Let the assumptions of Theorem 2.4 hold. Fix T > 0. Then, we can
extract from any subsequence of (Xn)n∈N a subsequence (Xnk)k∈N for which there

exists a
(
G

ξ,W
t+

)

t∈[0,T ]
-predictable process (Zt)t∈[0,T ] such that for any t ∈ [0, T ],

Xnk
t −→k→∞ Zt weakly in L2

((
Ω,Gξ,W

t ,P
)
, h
)
. (5.9)

Proof : By Lemmata 5.8 and 5.10, using a compactness method in the same way as
in the proof of Lemma 2.4 of Mora and Rebolledo (2007) we obtain our assertion
(see Subsection A.2 for details). �

In contrast with Mora and Rebolledo (2007), in the following steps we do not
make assumptions about the adjoints of G (t) and Lℓ (t), which even may not exist.

Lemma 5.13. Adopt the assumptions of Theorem 2.4, together with the notation

of Lemma 5.12. Let t ∈ [0, T ]. Then E ‖Zt‖2 ≤ E ‖ξ‖2
, Zt ∈ Dom(C) a.s., and

E ‖CZt‖2 ≤ exp (α (t) t)
(

E ‖Cξ‖2
+ α (t) tE ‖ξ‖2

)
. (5.10)

Moreover, Gnk (t)Xnk
t −→k→∞ G (t)Zt weakly in L2

((
Ω,Gξ,W

t ,P
)
, h
)
, and for

all ℓ ∈ N,

Lnk

ℓ (t)Xnk
t −→k→∞ Lℓ (t)Zt weakly in L2

((
Ω,Gξ,W

t ,P
)
, h
)
. (5.11)

Proof : By (5.9), Lemma 5.8 leads to E ‖Zt‖2 ≤ E ‖ξ‖2
.

For a given U ∈ L2
((

Ω,Gξ,W
t ,P

)
, h
)
, the dominated convergence theorem

yields R̃nU −→n→∞ U in L2
((

Ω,Gξ,W
t ,P

)
, h
)
, and so using (5.9) we get

xE
〈
U, R̃nk

Xnk
t

〉
= E

〈
R̃nk

U,Xnk
t

〉
−→k→∞ E 〈U,Zt〉 . (5.12)

Suppose that L ∈ L ((D (C) , ‖·‖C) , h), and define Ln = LR̃n. Since R̃nC ⊂
CR̃n and

∥∥∥R̃n

∥∥∥ ≤ 1, applying Lemma 5.9 and the Banach-Alaoglu theorem we

deduce that any subsequence of (nk)k∈N contains a subsequence denoted (to shorten

notation) by (l)l∈N such that
(
LlX l

t

)
l∈N

and
(
CR̃lX

l
t

)

l∈N
are weakly convergent in

L2
((

Ω,Gξ,W
t ,P

)
, h
)
. By (5.12),

(
R̃lX

l
t, L

lX l
t, CR̃lX

l
t

)
converges weakly in L2

((
Ω,Gξ,W

t ,P
)
, h3
)
.
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The set D (C) × L (D (C)) × C (D (C)) is closed in h3, because L is relatively
bounded with respect to C. Then the set of all triple (η,Aη, Lη), with η ∈
L2

C

((
Ω,Gξ,W

t ,P
)
, h
)
, is a closed linear linear manifold of L2

((
Ω,Gξ,W

t ,P
)
, h3
)
,

and hence closed with respect to the weak topology of L2
((

Ω,Gξ,W
t ,P

)
, h3
)
. Using

(5.12) we now get
(
R̃lX

l
t, L

lX l
t, CR̃lX

l
t

)
converges weakly in L2

((
Ω,Gξ,W

t ,P
)
, h3
)

to (Zt, LZt, CZt) as l → ∞, which implies

LnkXnk
t −→k→∞ LZt weakly in L2

((
Ω,Gξ,W

t ,P
)
, h
)
, (5.13)

and so (5.11) holds by Condition H2.2. Taking L = C in (5.13) and using Lemma
5.9 we get (5.10).

Condition H2.1, together with (5.13), shows that G (t) R̃nk
Xnk

t converges to

G (t)Zt weakly in L2
((

Ω,Gξ,W
t ,P

)
, h
)

as n → ∞. It follows that for any U ∈

L2
((

Ω,Gξ,W
t ,P

)
, h
)
,

E
〈
U, R̃nk

G (t) R̃nk
Xnk

t

〉
= E

〈
R̃nk

U,G (t) R̃nk
Xnk

t

〉
−→k→∞ E 〈U,G (t)Zt〉 . �

By Lemma 5.13, as in Lemma 2.5 of Mora and Rebolledo (2007) we establish
that Zt (ξ) satisfies (1.1) a.s. using the following predictable representation.

Remark 5.14. Let χ ∈ L2
((

Ω,Gξ,m
t ,P

)
,C
)
, with t ∈ [0, T ]. Then, there ex-

ist
(
Gξ,m

s

)
s

- predictable processes H1, · · · , Hm such that: (i) H1, · · · , Hm ∈
L2 (([0, T ]× Ω, dt⊗ P) ,C); and (ii) χ = E

(
χ|Gξ,m

0

)
+
∑m

j=1

∫ t

0 H
j
sdW

j
s .

Lemma 5.15. Assume the setting of Theorem 2.4. Suppose that (Xnk)k∈N and χ
are as in Lemma 5.12 and Remark 5.14 respectively. If x ∈ h, then

lim
k→∞

E

〈
χx,

nk∑

ℓ=1

∫ t

0

Lnk

ℓ (s)Xnk
s dW j

s

〉
= E

〈
χx,

∞∑

ℓ=1

∫ t

0

Lℓ (s)π (Zs) dW
ℓ
s

〉
.

Proof : Throughout this proof, H1, · · · , Hm are as in Remark 5.14. First, using
Lemma 5.8, basic properties of stochastic integrals and Fubini’s theorem we deduce
that for all n ≥ m,

Eχ

〈
x,

n∑

ℓ=1

∫ t

0

Ln
ℓ (s)Xn

s dW
ℓ
s

〉
=

m∑

ℓ=1

∫ t

0

EHℓ
s 〈x, Ln

ℓ (s)Xn
s 〉 ds.

By
∥∥∥R̃n

∥∥∥ ≤ 1 and R̃nC ⊂ CR̃n, combining (5.11), Lemmata 5.8 and 5.9, and the

dominated convergence theorem we obtain that for any ℓ = 1, . . . ,m,
∫ t

0

EHℓ
s 〈x, Lnk

ℓ (s)Xnk
s 〉 ds −→k→∞

∫ t

0

EHℓ
s 〈x, Lℓ (s)π (Zs)〉 ds,

and so

lim
k→∞

E

〈
χx,

nk∑

ℓ=1

∫ t

0

Lnk

ℓ (s)Xnk
s dW ℓ

s

〉
=

m∑

ℓ=1

∫ t

0

EHℓ
s 〈x, Lℓ (s)π (Zs)〉 ds.
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Second, Lemmata 5.8 and 5.9, together with Condition H2.2, yield

m∑

ℓ=1

∫ t

0

EHℓ
s 〈x, Lℓ (s)π (Zs)〉 ds =

n∑

ℓ=1

Eχ

∫ t

0

〈x, Lℓ (s)π (Zs)〉 dW ℓ
s

whenever n ≥ m. Condition H2.1 and Lemma 5.5 show that
∑∞

k=1 ‖Lℓ (t) y‖2 ≤
K (t) ‖y‖2

C for all y in D (C) and t ≥ 0. Therefore
∑n

ℓ=1

∫ t

0 Lℓ (s)π (Zs) dW
ℓ
s con-

verges in L2 (P, h) to
∑∞

ℓ=1

∫ t

0 Lℓ (s)π (Zs) dW
ℓ
s , which implies that

m∑

ℓ=1

∫ t

0

EHℓ
s 〈x, Lℓ (s)π (Zs)〉 ds =

∞∑

ℓ=1

Eχ

∫ t

0

〈x, Lℓ (s)π (Zs)〉 dW ℓ
s .

�

Lemma 5.16. Adopt the assumptions of Theorem 2.4. Let T and Z be defined as
in Lemma 5.12. Then for all t ∈ [0, T ] we have

Zt = ξ +

∫ t

0

G (s)πC (Zs) ds+

∞∑

ℓ=1

∫ t

0

Lℓ (s)πC (Zs) dW
ℓ
s a.s.

Proof : Consider x ∈ h and let (Xnk)k∈N be as in Lemma 5.12. According to Lemma
5.15 we have

lim
k→∞

E

〈
χx,

nk∑

ℓ=1

∫ t

0

Lnk

ℓ (s)Xnk
s dW ℓ

s

〉
= E

〈
χx,

∞∑

ℓ=1

∫ t

0

Lℓ (s)π (Zs) dW
ℓ
s

〉
.

Using Lemmata 5.8, 5.9 and 5.13 and the dominated convergence theorem we obtain
∫ t

0

E
[
〈x,Gnk (s)Xnk

s 〉E
[
χ|Gξ,W

s

]]
ds →k→∞

∫ t

0

E
[
〈x,G (s)π (Zs)〉E

[
χ|Gξ,W

s

]]
ds,

since E
[
χ |Gξ,W

s

]
∈ L2 (P,C). Thus, combining (5.9) with the definition of Xn

yields

Eχ 〈x, Zt〉 = Eχ

〈
x, ξ +

∫ t

0

G (s)π (Zs) ds+

∞∑

ℓ=1

∫ t

0

〈x, Lℓ (s)π (Zs)〉 dW ℓ
s

〉
.

(5.14)
As in Mora and Rebolledo (2007), using a monotone class theorem (e.g., Th. I.21
of Dellacherie and Meyer (1978)) we extend the range of validity of (5.14) from χ ∈
L2
((

Ω,Gξ,m
t ,P

)
,C
)

to any bounded χ ∈ L2
((

Ω,Gξ,W
t ,P

)
,C
)
, which completes

the proof. �

We are now in a position to finish the proof of Theorem 2.4 by classical argu-
ments.

Proof of Theorem 2.4: Consider T > 0. First, we combine Lemma 5.5 with Itô’s
formula to deduce that there exists at most one strong C-solution of (1.1) on [0, T ]
(see proof of Lemma 2.2 of Mora and Rebolledo (2007) for details). Second, for all
t ∈ [0, T ], we set

ZT
t = ξ +

∫ t

0

G (s)πC (Zs) ds+

∞∑

ℓ=1

∫ t

0

Lℓ (s)πC (Zs) dW
ℓ
s ,
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where Z is as in Lemma 5.12. Using Lemma 5.16 we see that ZT is a continuous
version of Z. Hence ZT is a strong C-solution of (1.1) on [0, T ], and so ZT is the
unique one.

Define Ω̃ to be the set of all ω satisfying Zn
t (ω) = Zn+1

t (ω) for all n ∈ N and any
t ∈ [0, n]. For any t ∈ [0, n] with n ∈ N, we choose Xt (ξ) (ω) = Zn

t (ω) whenever

ω ∈ Ω̃. Set X (ξ) ≡ 0 in the complement of Ω̃. Thus X (ξ) is the unique strong
C-solution of (1.1) on [0,∞[. �

5.3. Proof of Lemma 2.6.

Proof : According to Lemma 5.2 we have that G (t) ◦ πC2 and CLℓ (t) ◦ πC2 are
measurable functions from (h,B (h)) to (h,B (h)), and so L+ (t, ζ) is a positive
random variable for every ζ ∈ L2

C (P, h)
⋂

D1. Hence E (L+ (t, ζ)) is well-defined.
Condition H2.3 leads straightforward to Condition H2.3’. In the other direction,

we assume from now on that H2.3’ holds. Fix t ≥ 0. To obtain a contradiction,
suppose that for any n ∈ N there exists xn ∈ D1 such that

2ℜ
〈
C2xn, G (t)xn

〉
+

∞∑

ℓ=1

‖CLℓ (t)xn‖2
> n ‖xn‖2

C . (5.15)

We can consider a random variable ζ defined by

P (ζ = yn) =
p

n2
(
1 + ‖Cyn‖2

) ,

where yn = xn/ ‖xn‖ and

1/p =
∞∑

n=1

1

n2
(
1 + ‖Cyn‖2

) <∞.

Then ‖ζ‖ = 1, ζ ∈ D1, and E ‖ζ‖2
C = p

∑∞
n=1 1/n2 <∞. Using (5.15) yields

EL+ (t, ζ) ≥ p

∞∑

n=1

1/n = ∞,

which contradicts Condition H2.3’. Therefore, there exists a constant β (t) ≥ 0
such that for all x ∈ D1,

2ℜ
〈
C2x,G (t)x

〉
+

∞∑

ℓ=1

‖CLℓ (t)x‖2 ≤ β (t) ‖x‖2
C . (5.16)

By abuse of notation, we denote by β (t) the smallest β (t) satisfying (5.16).
Suppose, contrary to H2.3, that supt∈[0,T ] β (t) = ∞ for some T > 0. Then,

there exists a sequence (sn)n∈N of different elements of [0, T ] such that

2ℜ
〈
C2zn, G (sn) zn

〉
+

∞∑

ℓ=1

‖CLℓ (sn) zn‖2 > n3 ‖zn‖2
C (5.17)

for some zn ∈ D1 satisfying ‖zn‖ = 1. Similarly to the paragraph above, we can
choose a random variable ζ defined by

P (ζ = zn) =
p

n2
(
1 + ‖Czn‖2

) ,
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with 1/p =
∑∞

n=1 1/
(
n2
(
1 + ‖Czn‖2

))
< ∞. Hence E ‖ζ‖2

C < ∞ . From (5.17)

we deduce that
EL+ (sn, ζ) ≥ L+ (sn, zn) ≥ np,

which contradicts Condition H2.3’. Taking

α (t) = sup
t∈[0,t]

β (s) <∞.

we can assert that Condition H2.3 holds. �

5.4. Proof of Theorem 3.1. Throughout this subsection, C denotes the operator

in L2
(
Rd,C

)
given by C = −∆ + |x|2. Moreover, ‖·‖ stands for the norm in

L2
(
Rd,C

)
, and we shall often use Einstein summation convention (each index can

appear at most twice in any term, repeated indexes are implicitly summed over).

Since |x|2 is locally in L2
(
Rd,C

)
, the operator −∆+|x|2 is essentially self-adjoint

on C∞
c

(
Rd,C

)
(see, e.g., Th. X.29 of Reed and Simon (1975)). The Hermite

functions (i.e., Hermite polynomials multiplied by e−x2/2) are the eigenfunctions of
the operator in L2 (R,C) given by −d2/dx2 + x2, and hence the Schwarz space of

rapidly decreasing functions is an essential domain for
(
−d2/dx2 + x2

)2
. We can

now use standard approximation arguments to show that C∞
c (R,C) is a core for(

−d2/dx2 + x2
)2

, which implies that C∞
c

(
Rd,C

)
is a core for C2 (see, e.g., Th.

VIII.33 of Reed and Simon (1980)), and so C∞
c

(
Rd,C

)
is an essential domain for

C. As −∆ + |x|2 =
∑d

j=1(∂j + xj)
∗(∂j + xj) + dI, the operator C is bounded from

below by d times the identity operator I.
We next provide some relative bounds on C, ∆ and the multiplication operator

by |x|2.
Lemma 5.17. Let f ∈ C∞

c

(
Rd,C

)
. Then

‖Cf‖2
= ‖∆f‖2

+
∥∥ |x|2f

∥∥2
+ 2

d∑

j=1

〈
∂jf, |x|2∂jf

〉
− 2d ‖f‖2

, (5.18)

d∑

j=1

‖(1 + |x|)∂jf‖2 ≤ 4 ‖Cf‖2 , (5.19)

∥∥ (1 + |x|2)f
∥∥2 ≤ 8 ‖Cf‖2 . (5.20)

Proof : Using integration by parts yields

‖Cf‖2
=

d∑

j,k=1

(〈
−∂2

j f,−∂2
kf
〉

+
〈
x2

jf, x
2
kf
〉)

−
d∑

j,k=1

〈
f, (∂2

j x
2
k + x2

j∂
2
k)f
〉
. (5.21)

A short computation based on the commutation relation [∂j , xj ] = I gives

(∂2
j x

2
j + x2

j∂
2
j )f = 2∂jx

2
j∂jf + 2(∂jxj − xj∂j)f = 2∂jx

2
j∂jf + 2f. (5.22)

For any j 6= k we have ∂2
j x

2
k + x2

j∂
2
k = ∂jx

2
k∂j + ∂kx

2
j∂k on C∞

c

(
Rd,C

)
, which

together with (5.21) and (5.22) implies (5.18).
We now check inequality (5.19). Combining (5.18) with the inequality

d∑

j=1

‖(1 + |x|)∂jf‖2 ≤ 2

d∑

j=1

〈
∂jf, (1 + |x|2)∂jf

〉
= 2 〈f,−∆f〉+2

d∑

j=1

〈
∂jf, |x|2∂jf

〉
,
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we obtain
∑d

j=1 ‖(1 + |x|)∂jf‖2 ≤ 2 〈f,−∆f〉−‖∆f‖2−
∥∥ |x|2f

∥∥2
+‖Cf‖2+2d ‖f‖2,

and hence

d∑

j=1

‖(1 + |x|)∂jf‖2 ≤ −‖(∆ + 1)f‖2
+ ‖Cf‖2

+ (2d+ 1) ‖f‖2
. (5.23)

By C2 ≥ d21, (2d + 1) ‖f‖2 ≤ (2d−1 + d−2) ‖Cf‖2 ≤ 3 ‖Cf‖2
since d ≥ 1. Then,

(5.19) follows from (5.23).
According to (5.18), we have

∥∥(1 + |x|2)f
∥∥2 ≤ 2 ‖f‖2

+ 2
∥∥|x|2f

∥∥2 ≤ 2(2d+ 1) ‖f‖2
+ 2 ‖Cf‖2

.

Then
∥∥(1 + |x|2)f

∥∥2 ≤ 2(1 + 2d−1 + d−2) ‖Cf‖2, which leads to (5.20). �

Lemma 5.18. Under Hypothesis 4, the operators G(t) and Lℓ(t) satisfy Hypothesis
1, as well as Conditions H2.1 and H2.2 of Hypothesis 2.

Proof : For all f ∈ C∞
c

(
Rd,C

)
we have (Einstein summation convention on j)

‖H(t)f‖ ≤ α ‖∆f‖ + 2
∥∥Aj(t, ·)∂jf

∥∥+
∥∥f∂jA

j(t, ·)
∥∥+ ‖V (t, ·)f‖ .

Combining the Schwarz inequality with (5.19) gives

∥∥Aj(t, ·)∂jf
∥∥ ≤ K(t)

(
d
∑d

j=1 ‖(1 + |x|) ∂jf‖2
)1/2

≤ 2d1/2K(t) ‖Cf‖ .

By (5.20), ‖V (t, ·)f‖ ≤ 81/2K(t) ‖Cf‖. Moreover, Condition H4.1 implies
∥∥f∂jA

j(t, ·)f
∥∥ ≤ dK(t) ‖f‖ ,

and the identity (5.18) yields ‖∆f‖ ≤ ‖Cf‖ + (2d)1/2 ‖f‖. Therefore

‖H(t)f‖ ≤
(
α+

(
2d1/2 + 81/2

)
K(t)

)
‖Cf‖ +

(
α(2d)1/2 + dK(t)

)
‖f‖ . (5.24)

A straightforward computation yields

Lℓ(t)
∗Lℓ(t) = −σℓjσℓk∂j∂k − (σℓkηℓ − ηℓσℓk + σℓj ⌈∂jσℓk⌉) ∂k + (ηℓηℓ − σℓj ⌈∂jηℓ⌉)

Since 1 ≤ ℓ ≤ m, using Condition H4.2 and the Schwarz inequality we deduce that

‖σℓjσℓk∂j∂kf‖ ≤ mdK(t)2
(∑d

j,k=1 ‖∂j∂kf‖2
)1/2

= mdK(t)2 ‖∆f‖ .

From |ηℓ| ≤ K(t)(1 + |x|), |σℓj | ≤ K(t) and |∂jσℓj | ≤ K(t) we have

‖(ηℓηℓ − σℓj ⌈∂jηℓ⌉) f‖ ≤ ‖ηℓηℓf‖ + ‖σℓj ⌈∂jηℓ⌉ f‖
≤ 2mK(t)2

∥∥(1 + |x|2)f
∥∥+ 2mdK(t)2 ‖(1 + |x|)f‖

≤ 2m(2d+ 1)K(t)2
∥∥(1 + |x|2)f

∥∥ .

Similarly, combining the Schwarz inequality with (5.19) yields

‖(σℓj ⌈∂jσℓk⌉ − ηℓσℓk + ηℓσℓk) ∂kf‖ ≤ 4mK(t)2
d∑

k=1

‖(1 + |x|)∂kf‖

≤ 8md1/2K(t)2 ‖Cf‖ .
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Summing up,
∑m

ℓ=1 ‖Lℓ(t)
∗Lℓ(t)f‖ is less than or equal to mK(t)2 times

8d1/2 ‖Cf‖ + d ‖∆f‖ + 2(2d+ 1)
∥∥|x|2f

∥∥+ 2(2d+ 1) ‖f‖
≤ 8d1/2 ‖Cf‖ + 2(2d+ 1)

(
‖∆f‖ +

∥∥|x|2f
∥∥)+ 2(2d+ 1) ‖f‖

≤ 8d1/2 ‖Cf‖ + 2(2d+ 1)
(
‖Cf‖ + (2d)1/2 ‖f‖

)
+ 2(2d+ 1) ‖f‖ .

This, together with (5.24), shows thatG(t) satisfies Condition H2.1 since C∞
c (Rd; C)

is a core for C. In a similar, but simpler, way (we deal now with first order
differential operators), we can prove that the operators Lℓ(t) satisfy Condition
H2.2.

Let g ∈ C∞
c (Rd; C). Since σℓk (t, ·) is continuous, using Fubini’s theorem we

deduce the measurability of t 7→
〈
φ, σℓk (t, ·)g

〉
for all φ ∈ C∞

c (Rd; C), and so t 7→
σℓk (t, ·)g is measurable. Combining Lemma 5.2 with (5.19) yields the measurability
of f 7→ ∂kπC (f) as a map from L2

(
Rd,C

)
to L2

(
Rd,C

)
. Therefore (t, f) 7→〈

σℓk (t, ·)g, ∂kπC (f)
〉

is measurable, which implies the measurability of (t, f) 7→
σℓk (t, ·) ∂kπC (f) as a function from [0,∞[×L2

(
Rd,C

)
to L2

(
Rd,C

)
. In the same

manner we can see that (t, f) 7→ ηℓk (t, ·)πC (f) is measurable, hence Condition
H1.1 holds. Similarly, we can obtain that G(t) satisfies Condition H1.2. �

We now verify Condition H2.3 with D1 = C∞
c

(
Rd,C

)
, which is the most com-

plicated step of our proof. The key inequality in Condition H2.3 at a formal
purely algebraic level reads as L(C2) ≤ α(t)

(
C2 + I

)
, where L is the formal

time-dependent Lindbladian associated with the operators G(t) and Lℓ(t), namely
L(X) = G(t)∗X +

∑
ℓ Lℓ(t)

∗XLℓ(t) + XG(t). Decomposing L as the sum of a
Hamiltonian part i[H(t), ·] and a dissipative part L0(X) = L(X) − i[H(t), X ] we
check separately that i[H(t), C2] ≤ K(t)

(
C2 + I

)
(Lemma 5.19) and L0(C

2) ≤
K(t)

(
C2 + I

)
(Lemmata 5.20, 5.21 and 5.22) in the quadratic form sense.

Lemma 5.19. Suppose that Hypothesis 4 holds. Then, for all f ∈ C∞
c

(
Rd,C

)
we

have

2ℜ
〈
C2f, iH(t)f

〉
≤ K(t)

(
‖Cf‖2

+ ‖f‖2
)
. (5.25)

Proof : Since f ∈ C∞
c

(
Rd,C

)
,

〈
C2f, iH(t)f

〉
+
〈
iH(t)f, C2f

〉

= 〈Cf, i(H(t)C + [C,H(t)])f〉 + 〈i(H(t)C + [C,H(t)])f, Cf〉
= −i 〈Cf, [H(t), C]f〉 + i 〈[H(t), C]f, Cf〉 .

Then
∣∣2ℜ

〈
C2f, iH(t)f

〉∣∣ = |2ℑ 〈Cf, [H(t), C]f〉| ≤ 2 ‖Cf‖ · ‖[H(t), C]f‖. A com-
putation allows us to write the commutator [H(t), C] as

4i
⌈
∂kA

j
⌉
∂k∂j +

(
2 ⌈∂jV ⌉ − 4αxj + 2i

⌈
∆Aj

⌉
+ i
⌈
∂j∂kA

k
⌉)
∂j

+
(
⌈∆V ⌉ − 2αd+ i

⌈
∂j∆A

j
⌉

+ 4ixjA
j
)
.

Using Condition H4.1 and the Schwarz inequality we obtain that the norm of the
first term, acting on a function f , is less than or equal to

4K(t)
∑d

j,k=1 ‖∂k∂jf‖ ≤ 4K(t)d
(∑d

j,k=1 ‖∂k∂jf‖2
)1/2

= 2K(t)d ‖∆f‖ .
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The norm of the second term, with first order partial derivatives of f , is upper

bounded by K (t)
∑d

k=1 ‖(1 + |x|)∂kf‖, which is less than or equal to

d1/2K(t)

(
d∑

k=1

‖(1 + |x|)∂kf‖2

)1/2

.

The third term is not bigger than K(t)
∥∥(1 + |x|2)f

∥∥. We now use Lemma 5.17 to
get (5.25). �

Starting from the formal algebraic equality

L0(C
2) = CL0(C) + L0(C)C +

d∑

ℓ=1

[C,Lℓ(t)]
∗
[C,Lℓ(t)]

written in the quadratic form sense, we now establish an estimate of
∣∣〈f,L0(C

2)f〉
∣∣

(formally the left-hand side of the inequality (5.26) given below). Note that L0(C
2)

does not make sense as a sixth (or fourth, after simplifications) order differential
operator acting on f ∈ C∞

c

(
Rd,C

)
because σℓk, ηℓ are only three-times differen-

tiable, but L0(C) does. The right-hand side of (5.26), however, can be written

rigorously as
∑m

ℓ=1 ‖[C,Lℓ] f‖2
+ 2 ‖Cf‖ · ‖L0(C)f‖.

Lemma 5.20. For all f ∈ C∞
c

(
Rd,C

)
we have

m∑

ℓ=1

(
‖CLℓf‖2 −ℜ

〈
C2f, L∗

ℓLℓf
〉)

≤
m∑

ℓ=1

‖[C,Lℓ] f‖2
(5.26)

+ ‖Cf‖
∥∥∥∥∥

m∑

ℓ=1

(L∗
ℓ [C,Lℓ] + [L∗

ℓ , C]Lℓ) f

∥∥∥∥∥ .

Proof : Rearranging terms we have that for all ℓ = 1, . . . ,m,

〈CLℓf, CLℓf〉 −
〈
C2f, L∗

ℓLℓf
〉

= 〈(LℓC + [C,Lℓ]) f, (LℓC + [C,Lℓ]) f〉 − 〈Cf, (L∗
ℓC + [C,L∗

ℓ ])Lℓf〉
= 〈LℓCf,LℓCf〉 + 〈LℓCf, [C,Lℓ] f〉 + 〈[C,Lℓ] f, LℓCf〉 + 〈[C,Lℓ] f, [C,Lℓ] f〉

− 〈LℓCf,CLℓf〉 − 〈Cf, [C,L∗
ℓ ]Lℓf〉

Note that the sum of the first, second and fifth term vanishes and the third is equal
to 〈L∗

ℓ [C,Lℓ] f, Cf〉. We find then

〈CLℓf, CLℓf〉−
〈
C2f, L∗

ℓLℓf
〉

= ‖[C,Lℓ] f‖2
+〈L∗

ℓ [C,Lℓ] f, Cf〉+〈Cf, [L∗
ℓ , C]Lℓf〉 ,

and so taking the real part we can write

〈CLℓf, CLℓf〉 − ℜ
〈
C2f, L∗

ℓLℓf
〉

= ‖[C,Lℓ] f‖2
+

1

2
〈L∗

ℓ [C,Lℓ] f, Cf〉

+
1

2
〈Cf,L∗

ℓ [C,Lℓ] f〉 +
1

2
(〈Cf, [L∗

ℓ , C]Lℓf〉 + 〈[L∗
ℓ , C]Lℓf, Cf〉) ,

which implies

〈CLℓf, CLℓf〉 − ℜ
〈
C2f, L∗

ℓLℓf
〉

= ‖[C,Lℓ] f‖2
+

1

2
〈L∗

ℓ [C,Lℓ] f, Cf〉

+
1

2
〈[L∗

ℓ , C]Lℓf, Cf〉 +
1

2
(〈Cf, [L∗

ℓ , C]Lℓf〉 + 〈Cf,L∗
ℓ [C,Lℓ] f〉) .

The conclusion follows summing up over ℓ and applying the Schwarz inequality. �
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We now show that L0(C) is a second order differential operator with well-behaved
coefficients allowing us to prove that L0(C) is relatively bounded with respect to
C.

Lemma 5.21. Under the Hypothesis 4, for all f ∈ C∞
c (Rd,C) we have

‖L0(C)f‖ ≤ K(t) ‖Cf‖ . (5.27)

Proof : Simple algebraic computations yield

2L0(xj) = (L∗
ℓ [xj , Lℓ] + [L∗

ℓ , xj ]Lℓ) = (∂kσℓk − ηℓ)σℓj − σℓj (σℓk∂k + ηℓ)

= ∂k(σ∗σ)kj − (σ∗σ)jk∂k − ηℓσℓj − σℓjηℓ,

which implies 2L0(xj) = ((σ∗σ)kj − (σ∗σ)jk) ∂k+⌈∂k(σ∗σ)kj⌉−ηℓσℓj−ηℓσℓj. From
L0(|x|2) = xjL0(xj) + L0(xj)xj + [xj , L

∗
ℓ ][Lℓ, xj ] it follows that

L0(|x|2) = xj ((σ∗σ)kj − (σ∗σ)kj) ∂k + xj ⌈∂k(σ∗σ)kj⌉ − 2ℜ(ηℓσℓj)xj + (σ∗σ)jj .
(5.28)

In a similar way −∆ =
∑

j −∂j∂j , and

2L0(∂j) = L∗
ℓ [∂j , Lℓ] + [L∗

ℓ , ∂j ]Lℓ

= (−∂hσℓh + ηℓ) (⌈∂jσℓk⌉∂k + ⌈∂jηℓ⌉)
+ (∂h ⌈∂jσℓh⌉ − ⌈∂jηℓ⌉) (σℓk∂k + ηℓ) .

In the above differential operator, second order terms cancel. In fact, we can write
the expression −∂hσℓh ⌈∂jσℓk⌉ ∂k +∂h ⌈∂jσℓh⌉σℓk∂k, by an exchange of summation
indexes h, k in the second term, in the form

∂kσℓh ⌈∂jσℓk⌉ ∂h − ∂h σℓh ⌈∂jσℓk⌉∂k = (σℓh ⌈∂jσℓk⌉ − σℓh ⌈∂jσℓk⌉) ∂h∂k

+ (⌈∂kσℓh⌉ ⌈∂jσℓk⌉ + σℓh ⌈∂j∂kσℓk⌉) ∂h − (⌈∂hσℓh⌉ ⌈∂jσℓk⌉ + σℓh ⌈∂h∂jσℓk⌉) ∂k.

This is a first order differential operator because both the second order coefficient
vanishes by (3.1) and 2L(∂j) is equal to

(⌈∂kσℓh⌉ ⌈∂jσℓk⌉ + σℓh ⌈∂j∂kσℓk⌉ + ⌈∂jσℓh⌉ ηℓ − σℓh ⌈∂jηℓ⌉) ∂h

− (⌈∂hσℓh⌉ ⌈∂jσℓk⌉ + σℓh ⌈∂h∂jσℓk⌉ + ⌈∂jηℓ⌉σℓk − ηℓ ⌈∂jσℓk⌉) ∂k

+ ⌈∂j∂hσℓh⌉ ηℓ + ⌈∂jσℓh⌉ ⌈∂hηℓ⌉ −⌈∂hσℓh⌉ ⌈∂jηℓ⌉ −σℓh ⌈∂j∂hηℓ⌉+ 2iℑ (ηℓ ⌈∂jηℓ⌉) .
Therefore L0(∂j) = νjk∂k + ξj , where νjk := ℜ (⌈∂jσℓk⌉ ηℓ − σℓk ⌈∂jηℓ⌉) and

2ξj := ⌈∂j∂hσℓh⌉ ηℓ + ⌈∂jσℓh⌉ ⌈∂hηℓ⌉ − ⌈∂hσℓh⌉ ⌈∂jηℓ⌉ − σℓh ⌈∂j∂hηℓ⌉
+2iℑ (ηℓ ⌈∂jηℓ⌉) .

Since L0(∆) = ∂jL0(∂j) + L0(∂j)∂j + [∂j , L
∗
ℓ ][∂j , Lℓ],

L0(∆) = ∂j (νjh∂h + ξj) + (νjk∂k + ξj) ∂j

+ (⌈∂jηℓ⌉ − ∂h ⌈∂jσℓh⌉) (⌈∂jσℓk⌉∂k + ⌈∂jηℓ⌉) .
This gives

L0(∆) = 2νjk∂j∂k + ⌈∂jνjk⌉ ∂k + 2ξj∂j + ⌈∂jξj⌉ − ⌈∂jσℓh⌉ ⌈∂jσℓk⌉∂h∂k (5.29)

− (⌈∂h∂jσℓh⌉ ⌈∂jσℓk⌉ + ⌈∂jσℓh⌉ ⌈∂h∂jσℓk⌉) ∂k + ⌈∂jηℓ⌉ ⌈∂jσℓk⌉∂k

− ⌈∂jσℓh⌉ ⌈∂jηℓ⌉∂h − ⌈∂h∂jσℓh⌉ ⌈∂jηℓ⌉ − ⌈∂jσℓh⌉ ⌈∂h∂jηℓ⌉
+ ⌈∂jηℓ⌉ ⌈∂jηℓ⌉ .

By Condition H4.2, combining L0(C) = L0(−∆)+L0(|x|2) with (5.28) and (5.29)
we deduce that L0(C) is a second order differential operator of the form

∑
|µ|≤2 aµ∂µ
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(in multiindex notation µ = (µ1, . . . , µd), |µ| = µ1+· · ·+µd, ∂µ = ∂µ1
· · · ∂µd

) with:
aµ bounded for |µ| = 2, |aµ| ≤ K(t)(1 + |x|) for |µ| = 1 and |aµ| ≤ K(t)(1 + |x|2)
for |µ| = 0. The conclusion follows them from applications of Lemma 5.17 with
some long but straightforward computations. �

Lemma 5.22. Under the Hypothesis 4, Condition H2.3 holds.

Proof : Since [C,Lℓ] = ((−∂j + xj) [∂j + xj , Lℓ] + [−∂j + xj , Lℓ] (−∂j + xj)),

[C,Lℓ] = (−∂j + xj) (⌈∂jσℓk⌉ ∂k + ⌈∂jηℓ⌉ − δjkσℓk)

+ (−⌈∂jσℓk⌉∂k − ⌈∂jηℓ⌉ − δjkσℓk) (−∂j + xj),

where δjk is the Kronecker delta. The term with two partial derivatives writes as

−∂j ⌈∂jσℓk⌉∂k + ⌈∂jσℓk⌉∂k∂j = 2 ⌈∂jσℓk⌉∂k∂j −
⌈
∂2

j σℓk

⌉
∂k,

terms with a single partial derivative are

−∂j ⌈∂jηℓ⌉ + δjk∂jσℓk + xj ⌈∂jσℓk⌉ ∂k + ⌈∂jηℓ⌉ ∂j + δjkσℓk∂j − ⌈∂jσℓk⌉ ∂kxj

= −⌈∆ηℓ⌉ + 2δjkσℓk∂j ,

and terms with no partial derivatives sum up −2δjkxjσℓk. Therefore

[C,Lℓ] = 2 ⌈∂jσℓk⌉ ∂j∂k −
⌈
∂2

j σℓk

⌉
∂k + 2σℓj∂j − 2xjσℓj − ⌈∆ηℓ⌉ .

We now use Condition H4.2 and Lemma 5.17, together with straightforward in-

equalities and estimates, to obtain ‖[C,Lℓ(t)]f‖2 ≤ K(t)
(
‖Cf‖2

+ ‖f‖2
)
. Thus,

the claimed inequality in Condition H2.3 follows from Lemmata 5.19, 5.20 and
5.21. �

Proof of Theorem 3.1: Hypothesis 1 and Conditions H2.1, H2.2 of Hypothesis 2
hold by Lemma 5.18. In Lemma 5.22 we verify Condition H2.3. According the defi-

nition of G (t) we have 2ℜ 〈f,G (t) f〉+∑∞
ℓ=1 ‖Lℓ (t) f‖2

= 0 for all f ∈ C∞
c (Rd; C).

Therefore, Condition H3.1 (stronger form of H2.4) holds, because C∞
c (Rd; C) is a

core for C and the operators G(t), Lℓ(t) are relatively bounded with respect to C
with bound uniform for t in bounded intervals [0, T ]. Hence, applying Theorems
2.4, 2.7 and 2.12 we get the assertions of the theorem. �

5.5. Proof of Theorem 4.1.

Proof of Theorem 4.1: Consider the stopping time

τm = inf {t ≥ 0 : ‖Xt (ξ)‖ > m} ∧ T,
where T > 0 and m ∈ N. For any n ∈ N, we set An = RnARn, with Rn =
n (n+ C)

−1
. From A ∈ L ((D (C) , ‖·‖C) , h) it follows that An ∈ L (h), and so

using the complex Itô formula we obtain

〈Xt∧τm (ξ) , AnXt∧τm (ξ)〉 = 〈ξ, Anξ〉+
∫ t∧τm

0

L (s,An, Xs (ξ)) ds+Mt∧τm , (5.30)

where t ∈ [0, T ],

Mt =

∞∑

ℓ=1

∫ t

0

(〈Xs (ξ) , AnLℓ (s)Xs (ξ)〉 + 〈Lℓ (s)Xs (ξ) , AnXs (ξ)〉) dW ℓ
s ,



Stochastic Schrödinger equations 217

and for all x ∈ D (C),

L (s,An, x) = 〈x,AnG (s)x〉 + 〈G (s)x,Anx〉 +

∞∑

ℓ=1

〈Lℓ (s) x,AnLℓ (s)x〉 .

Combining Lemma 5.5 with the Cauchy-Schwarz inequality we get

E
∞∑

ℓ=1

∫ t∧τm

0

|〈Xs (ξ) , AnLℓ (s)Xs (ξ)〉 + 〈Lℓ (s)Xs (ξ) , AnXs (ξ)〉|2 ds

≤ 8m3 ‖An‖2
∫ T

0

E ‖G (s)Xs (ξ)‖ ds,

which together with Condition H2.1, yields EMt∧τm = 0. Then, (5.30) leads to

E 〈Xt∧τm (ξ) , AnXt∧τm (ξ)〉 = E 〈ξ, Anξ〉 + E

∫ t∧τm

0

L (s,An, Xs (ξ)) ds. (5.31)

Since E sups∈[0,T ] ‖Xs (ξ)‖2
< +∞, applying the dominated convergence theorem

gives

lim
m→∞

E 〈Xt∧τm (ξ) , AnXt∧τm (ξ)〉 = E 〈Xt (ξ) , AnXt (ξ)〉 .

Letting m → ∞ in (5.31) we deduce, using the dominated convergence theorem,
that

E 〈Xt (ξ) , AnXt (ξ)〉 = E 〈ξ, Anξ〉 + E

∫ t

0

L (s,An, Xs (ξ)) ds,

and so from Fubini’s theorem we obtain

E 〈Xt (ξ) , AnXt (ξ)〉 = E 〈ξ, Anξ〉 +

∫ t

0

EL (s,An, Xs (ξ)) ds. (5.32)

Let x ∈ D (C). By Conditions H2.2 and H5.1, analysis similar to that in the
proof of Lemma 5.4 shows that Lℓ (s)x ∈ D

(
C1/2

)
and

∞∑

ℓ=1

∥∥∥C1/2Lℓ (s)x
∥∥∥

2

≤ K (s) ‖x‖2
C . (5.33)

Since RnC ⊂ CRn, C1/2 commutes with Rn, and so Condition H5.2 leads to

‖BjRnLℓ (s)x−BjLℓ (s)x‖2

≤ K

(∥∥∥RnC
1/2Lℓ (s)x− C1/2Lℓ (s)x

∥∥∥
2

+ ‖RnLℓ (s)x− Lℓ (s)x‖2

)
,

with j = 1, 2. This implies

BjRnLℓ (s)x −→n→∞ BjLℓ (s)x. (5.34)

Moreover, using RnC
1/2 ⊂ C1/2Rn we deduce that

‖BjRnLℓ (s)x‖2 ≤ K

(∥∥∥RnC
1/2Lℓ (s)x

∥∥∥
2

+ ‖RnLℓ (s)x‖2

)

≤ K

(∥∥∥C1/2Lℓ (s)x
∥∥∥

2

+ ‖Lℓ (s)x‖2

)
.
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Lemma 5.5 and Condition H2.1 lead to
∑∞

ℓ=1 ‖Lℓ (s)x‖2 ≤ K (s) ‖x‖2
C . There-

fore, applying the dominated convergence theorem, together with (5.33) and (5.34),
yields

∫ t

0

E
∞∑

ℓ=1

〈B1RnLℓ (s)Xs (ξ) , B2RnLℓ (s)Xs (ξ)〉 ds

−→n→∞

∫ t

0

E
∞∑

ℓ=1

〈B1Lℓ (s)Xs (ξ) , B2Lℓ (s)Xs (ξ)〉 ds.

Hence
∫ t

0

E
∞∑

ℓ=1

〈B1RnLℓ (s)Xs (ξ) , B2RnLℓ (s)Xs (ξ)〉 ds (5.35)

−→n→∞

∫ t

0

∞∑

ℓ=1

E 〈B1Lℓ (s)Xs (ξ) , B2Lℓ (s)Xs (ξ)〉 ds.

According to R∗
n = Rn, for any x ∈ D (C) we have

L (s,An, x) = 〈RnA
∗Rnx,G (s)x〉 + 〈G (s)x,RnARnx〉

+
∞∑

ℓ=1

〈B1RnLℓ (s)x,B2RnLℓ (s)x〉 .

By (5.35) and Condition H5.3, letting n→ ∞ in (5.32) we get (4.1). �

5.6. Proof of Theorem 4.3.

Proof of Theorem 4.3: Let C = −∆ + |x|2. According to Theorem 3.1, (1.1) has a
unique strong C-solution with initial datum in L2

C (P; h). Moreover, in the proof of
Theorem 3.1 we verify that C satisfies Hypothesis 2.

Suppose that f belongs to C∞
c (Rd,C), which is a core for C. Then, for any

ℓ = 1, . . . ,m and t ≥ 0 we have

∥∥∥C1/2Lℓ (t) f
∥∥∥

2

=

d∑

j=1

‖i∂j (Lℓ (t) f)‖2
+ ‖|x|Lℓ (t) f‖2

.

Since
d∑

j,k=1

‖∂j∂kf‖2 = ‖−∆f‖2 , (5.36)

combining Hypothesis 4 with Lemma 5.17 yields Condition H5.1.

Consider f ∈ C∞
c (Rd,C). Then ‖⌈cj⌉ f‖2 ≤ K

(
‖f‖2

+
〈
f, |x|2 f

〉)
and

‖⌈bj⌉ ∂kf‖2 ≤ K
〈
f,−∂2

kf
〉
.

In addition, ‖∂k ⌈aj⌉ f‖2 ≤ 2 ‖⌈∂kaj⌉ f‖2 + 2 ‖⌈aj⌉ ∂kf‖2. Therefore

‖Bjf‖2 ≤ K
(
‖f‖2

+ 〈f, Cf〉
)

= K ‖f‖2
C1/2 ,

and so Bj satisfies Condition H5.2, because C∞
c (Rd,C) is a core for C1/2.
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We now take B1 = ⌈b1⌉ ∂ℓ and B2 = ∂k ⌈a2⌉, and so A = −∂ℓ

⌈
b̄1
⌉
∂k ⌈a2⌉. For

any f ∈ C∞
c (Rd,C),

Af = −
(
∂ℓb̄1

)
(∂ka2) f − b̄1 (∂ℓ∂ka2) f − b̄1 (∂ka2) ∂ℓf −

(
∂ℓb̄1

)
a2∂kf

−b̄1 (∂ℓa2) ∂kf − b̄1a2∂ℓ∂kf.

Using Lemma 5.17, together with (5.36), yields ‖Af‖2 ≤ K ‖f‖2
C , and hence for all

f ∈ D (C), ‖Af‖2 ≤ K ‖f‖2
C since C∞

c (Rd,C) is a core for C. Similarly, we obtain

‖A∗f‖2 ≤ K ‖f‖2
C for all f ∈ D (C). Thus Condition H5.3 holds in this case. In the

same manner we can check Condition H5.3 for the other possible choices of B1 and
B2. Finally, applying Theorems 4.1 and 4.2 we get (4.1) and (4.2), respectively. �

5.7. Proof of Corollary 4.4.

Proof of Corollary 4.4: Set P = −id/dx. Suppose that either A = P 2 or A = ⌈V ⌉.
From L∗

1 = −L1 it follows that for all f ∈ C∞
c (R,C),

〈A∗f,Gf〉+〈Gf,Af〉+
〈√

AL1f,
√
AL1f

〉
=

〈
f,

(
−i [A,H ] − 1

2
[[L1, A] , L1]

)
f

〉
.

Using [ ⌈V ⌉ , P ] = i ⌈V ′⌉ yields

−i [A,H ] − 1

2
[[L1, A] , L1] =

{
1

2M (⌈V ′⌉P + P ⌈V ′⌉) , if A = ⌈V ⌉
− (⌈V ′⌉P + P ⌈V ′⌉) + η2, if A = P 2 .

Since A, G,
√
AL1, ⌈V ′⌉P and P ⌈V ′⌉ are relatively bounded with respect to C =

−d2/dx2 +
⌈
x2
⌉
, for all f ∈ D (C) we have

〈A∗f,Gf〉 + 〈Gf,Af〉 +
〈√

AL1f,
√
AL1f

〉
(5.37)

=

{
1

2M 〈f, (⌈V ′⌉P + P ⌈V ′⌉) f〉 , if A = ⌈V ⌉
− 〈f, (⌈V ′⌉P + P ⌈V ′⌉) f〉 +

〈
f, η2f

〉
, if A = P 2 ,

because C∞
c (R,C) is a core for C. Combining (5.37) with Theorem 4.3 we obtain

E 〈Xt, ⌈V ⌉Xt〉 = E 〈ξ, ⌈V ⌉ ξ〉 +
1

2M

∫ t

0

E 〈Xs, (⌈V ′⌉P + P ⌈V ′⌉)Xs〉 ds (5.38)

and

E

〈
Xt,

1

2M
P 2Xt

〉
= E

〈
ξ,

1

2M
P 2ξ

〉
− 1

2M

∫ t

0

E 〈Xs, (⌈V ′⌉P + P ⌈V ′⌉)Xs〉 ds

+
η2

2M
t, (5.39)

where we abbreviate Xt (ξ) to Xt. Adding (5.38) and (5.39) gives (4.3). �

Appendix A.

A.1. Proof of Theorem 2.7.

Proof of Theorem 2.7: Define τn = inf {t ≥ 0 : ‖Xt (ξ)‖ > n}∧T , where T is a given
positive real number and n ∈ N. Combining Condition H3.1 with Itô’s formula we
obtain

‖Xt∧τn (ξ)‖2
= ‖ξ‖2

+

∞∑

ℓ=1

∫ t∧τn

0

2ℜ 〈Xs (ξ) , Lℓ (s)Xs (ξ)〉 dW ℓ
s . (A.1)
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Conditions H2.1 and H3.1 yield
∞∑

ℓ=1

E

∫ τn

0

(ℜ 〈Xs (ξ) , Lℓ (s)Xs (ξ)〉)2 ds ≤ Kn,T

(
1 + E ‖ξ‖2

C

)
,

where Kn,T is a constant depending of n and T , hence (A.1) shows that ‖Xτn (ξ)‖2

is a martingale. We now use Fatou’s lemma to deduce the supermartingale property

of
(
‖Xt (ξ)‖2

)

t∈[0,T ]
.

Since E
(
sups∈[0,T ] ‖Xs (ξ)‖2

)
< ∞ (see, e.g., Th. 4.2.5 of Prévôt and Röckner

(2007)), applying the dominated convergence theorem gives

E ‖Xt (ξ)‖2
= lim

n→∞
E ‖Xt∧τn (ξ)‖2

= lim
n→∞

E ‖ξ‖2
.

Therefore the supermartingale
(
‖Xt (ξ)‖2

)

t∈[0,T ]
is in fact a martingale. �

A.2. Proof of Lemma 5.12.

Proof of Lemma 5.12: Let (χj)j∈N
be an orthonormal basis of

L2
((

Ω,Gξ,W
T ,P

)
, h
)
.

Combining the Cauchy-Schwarz inequality with (5.8) we obtain the equiconti-
nuity of the family of complex functions (E 〈χj , X

n〉)n∈N
, with j ∈ N. Using

Lemma 5.8, the Arzelà-Ascoli theorem and diagonalization arguments we deduce
that can extract from any subsequence of (Xn)n∈N a subsequence (Xnk)k∈N such
that E 〈χj , X

nk〉 is uniformly convergent in [0, T ] for any j ∈ N. Lemma 5.8 now

shows that Xnk
t is weakly convergent in L2

((
Ω,Gξ,W

T ,P
)
, h
)

for any t ∈ [0, T ].

Since Xnk
t is G

ξ,W
t -measurable, for any t ∈ [0, T ] there exists a G

ξ,W
t -measurable

random variable ψt satisfying

Xnk
t −→k→∞ ψt weakly in L2

((
Ω,Gξ,W

t ,P
)
, h
)
. (A.2)

Assume that (ej)j∈N
is an orthonormal basis of h. According to (A.2) we have

〈ej , X
nk
t 〉 −→k→∞ 〈ej , ψt〉 weakly in L2

((
Ω,Gξ,W

t ,P
)
,C
)
.

Thus, from (5.8) it follows that

E |〈ej , ψt − ψs〉|2 ≤ lim inf
k→∞

E |〈ej, X
nk
t −Xnk

t 〉|2 ≤ KT,ξ (t− s) .

It follows that 〈ej , ψ〉 has a
(
G

ξ,W
t+

)

t∈[0,T ]
-predictable version 〈̃ej , ψ〉 (see, e.g.,

Proposition 3.6 of Da Prato and Zabczyk (1992)). We define a to be the set of all

(t, ω) belonging to [0, T ] × Ω such that
∑n

j=1 〈̃ej , ψ〉t (ω) ej converge as n goes to

∞. The proof is completed by choosing Zt (ω) =
∑∞

j=1 〈̃ej , ψ〉t (ω) ej if (t, ω) ∈ a,

and Zt (ω) = 0 provided that (t, ω) /∈ a. Thus Z becomes a version of ψ. �
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