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Abstract. Motivated by some numerical observations on molecular dynamics sim-
ulations, we analyze metastable trajectories in a very simple setting, namely paths
generated by a one-dimensional overdamped Langevin equation for a double well
potential. Specifically, we are interested in so-called reactive paths, namely tra-
jectories which leave definitely one well and reach the other one. The aim of this
paper is to precisely analyze the distribution of the lengths of reactive paths in the
limit of small temperature, and to compare the theoretical results to numerical re-
sults obtained by a Monte Carlo method, namely the multi-level splitting approach
(see Cérou et al. (2011)).

1. Introduction and main results

1.1. Motivation and presentation of reactive paths. A prototypical example of a
dynamics which is used to describe the evolution of a molecular system is the so-
called overdamped Langevin dynamics:

dX
(ε)
t = −∇V

(

X
(ε)
t

)

dt+
√
2εdBt, (1.1)
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where X
(ε)
t ∈ R

d denotes the position of the particles (think of the nuclei of a
molecule), V : Rd → R is the given potential function modeling the interaction be-
tween the particles, (Bt)t≥0 is a standard Brownian motion on R

d and ε is a (small)
positive parameter proportional to temperature. The potential V is assumed to be
smooth and to grow sufficiently fast to infinity at infinity so that the stochastic
differential equation (1.1) admits a unique strong solution. One common feature of
many molecular dynamics simulations is that the dynamics (1.1) is metastable: the

stochastic process
(

X
(ε)
t

)

t≥0
spends a lot of time in some region before hopping to

another region. These hopping events are exactly those of interest, since they are
associated to large changes of conformations of the molecular system, which can be
seen at the macroscopic level.

In the following, we focus on the limit of small temperature (namely ε goes to
zero). In this case, the Freidlin-Wentzell theory (see Freidlin and Wentzell (1998))
is very useful to understand these hopping events. Specifically, it turns out that
the metastable states are neighborhoods of the local minima of the potential V ,
and that the time it takes to leave a metastable state to reach another one is of the
order of

C exp(δV/ε). (1.2)

Here, δV is the height of the barrier to be overcome (namely the difference in
energy between the saddle point and the initial local minimum), and C is a constant
depending on the eigenvalues of the Hessian of the potential at the minimum and
at the saddle point (see Equation (1.3) below for a precise formula in the one-
dimensional case). This is the so-called Eyring-Kramers (or Arrhenius) law, and
we refer for example to Bovier et al. (2004); Berglund (2011); Menz and Schlichting
(2012) for more precise results.

Actually, the most interesting part of a transition path between two metastable
states is the final part, namely the piece of the trajectory which definitely leaves
the initial metastable state and then goes to the next metastable region: this is the
so-called reactive trajectory (or reactive path), see Hummer (2004); E and Vanden-
Eijnden (2004) and Lu and Nolen (2013) for a recent mathematical analysis of such
paths. In particular, reactive paths provide relevant information on the transition
states between the two metastable states. One numerical challenge in molecular
dynamics is thus to be able to efficiently sample these reactive paths. Notice that
from the Eyring-Kramers law (1.2), a naive Monte Carlo method (which means,
generating trajectories according to (1.1) and waiting for a transition event) cannot
provide efficiently a large sample of reactive paths, hence the need for dedicated
algorithms.

In Cérou et al. (2011), we proposed a numerical method based on an adaptive
multilevel splitting algorithm to sample reactive trajectories. One interesting ob-
servation we made is that the lengths of these reactive paths seem to behave very
differently from (1.2), see Figure 1.2 below. It seems that, in the limit of small ε,
the distribution of these lengths is a fixed distribution shifted by an additive factor
− log ε. The aim of this work is to use analytical tools to precisely analyze this
distribution in the asymptotic regime ε goes to zero, and to give a proof of this
numerical observation.

1.2. The one-dimensional setting and our main results. In the following, we con-
sider a one-dimensional case (d = 1), and we assume (for simplicity) that the
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potential V admits exactly two local minima (V is a double-well potential). Specif-
ically, let us denote x∗ < y∗ the two local minima of V and z∗ ∈ (x∗, y∗) the point
where V reaches its local maximum in between. As explained above, we are inter-
ested in trajectories solution to (1.1) from x∗ to y∗, and more precisely in the end
of the path from x∗ to y∗ (the reactive paths). In order to precisely define these
reactive paths, let us introduce the first hitting time of a ball centered at y∗ with
(small) radius δy > 0, starting from x∗:

T x∗

y∗ = inf
{

t > 0 : |X(ε)
t − y∗| < δy

}

with X
(ε)
0 = x∗.

In this setting, formula (1.2) writes (notice that V ′′(x∗) > 0 and V ′′(z∗) < 0):

E

(

T x∗

y∗

)

∼
ε→0

2π
√

V ′′(x∗)|V ′′(z∗)|
exp ((V (z∗)− V (x∗))/ε) . (1.3)

The d-dimensional version of this result is established in Bovier et al. (2004). Let
us also introduce the last exit time from the ball centered at x∗ with (small) radius

δx > 0 before the time T x∗

y∗ (again starting from X
(ε)
0 = x∗):

Sx∗

y∗ = sup
{

t < T x∗

y∗ : |X(ε)
t − x∗| < δx

}

.

The question we would like to address is: how long is a reactive path, that is the
time T x∗

y∗ − Sx∗

y∗ as ε goes to 0?
This question was partially addressed in Freidlin and Wentzell (1998) where

the ball centered around y∗ is replaced by the complementary of the domain of
attraction of x∗ for the deterministic dynamical system corresponding to (1.1) with
ε = 0. Several papers are dedicated to the more subtle situation where points on
the boundary of this domain are not attracted to x∗. In our simple framework, such
a domain is given by (−∞, z∗) (see Maier and Stein (1997) for such a study). In
Day (1990, 1992, 1995), the author is interested in the law of the exit time from a
domain containing an unstable equilibrium when the diffusion starts on the stable
manifold (see also Berglund and Gentz (2004); Bakhtin (2008)). Up to a translation
term, these exit times converge to a random variable of law − log |N | where N is
a standard Gaussian variable. The probability density function of such a random
variable is given by

x 7→
√

2

π
exp

(

−x− 1

2
e−2x

)

.

This is not the one of a Gumbel variable (see (1.7)). Nevertheless this Gumbel
distribution also appears for example in Proposition 3.3 in Day (1992). Note also
that similar questions can be formulated in a discrete context (see for example
Schonmann (1992)).

In order to specify our purpose, let us now make our assumptions on the poten-
tial V more precise.

Assumption 1.1. The potential V is smooth, has exactly two local minima x∗ < 0
and y∗ > 0 and a local maximum z∗ = 0. Moreover, V ′ is positive on (x∗, 0) and
negative on (0, y∗) and the local maximum at 0 is assumed to be non-degenerate:

V (0) = 0, V ′(0) = 0, and V ′′(0) = −α < 0. (1.4)



362 Cérou et al.

x

V

x∗A −bε−cε cε bε y∗B

Figure 1.1. Shape of the potential V defined in (1.6). The points
±bε and ±cε go to 0 as ε→ 0.

Notice that the potential V is close to x 7→ −αx2/2 for values of x around 0.
More precisely, it is easy to show that there exist K > 0 and δ > 0 such that, for
all |x| < δ,

−Kx2 ≤ V ′(x) + αx ≤ Kx2 and − K|x|3
3

≤ V (x) +
αx2

2
≤ K|x|3

3
. (1.5)

Example 1.2. An example of a potential which satisfies Assumption 1.1 is (see also
Figure 1.1)

V : x 7→ x4

4
− x2

2
. (1.6)

In this case, −1 and +1 are the two (global) minima. This is a double well potential
with a local maximum at x = 0 which is non degenerate, with α = 1.

Let us denote A = x∗ + δx ∈ (x∗, 0), B = y∗ − δy ∈ (0, y∗) and x ∈ (A, 0). We
are interested in the behavior of

Tx→B = inf
{

t > 0 : X
(ε)
t = B

}

cond. to the event
{

X
(ε)
0 = x, TB < TA

}

,

when ε goes to zero. At the end of the day, the aim is to let x go to A. As mentioned
above, simulations in Cérou et al. (2011) suggest that, if the local maximum is non
degenerated, then the law of this length looks like a fixed law shifted as ε goes to 0.
Figure 1.2 presents the density of the reactive path Tx→B for several values of ε,
when V (x) = x4/4 − x2/2, A = −0.9, B = 0.9, and x = −0.89. In Cérou et al.
(2011); Luccioli et al. (2010), it is suggested that the asymptotic shape of these
laws is an Inverse Gaussian distribution. In fact, it is not the case: it turns out to
be a Gumbel distribution.

Definition 1.3 (Standard Gumbel distribution). The standard Gumbel distribu-
tion is defined by its density function

f(x) = exp
(

−x− e−x
)

. (1.7)

Its Laplace transform is given by

E
(

e−sG
)

=

{

Γ(1 + s) if s > −1,

+∞ otherwise,

where Γ(z) =
∫∞
0 tz−1e−t dt is the Euler’s Gamma function.

The main result of the paper is the following convergence in distribution.
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Theorem 1.4. Under Assumption 1.1, for any A ∈ (x∗, 0), B ∈ (0, y∗), and

x ∈ (A, 0) we have, conditionally to the event
{

X
(ε)
0 = x, TB < TA

}

,

Tx→B +
1

α
log ε

L−−−→
ε→0

1

α
(log(|x|B) + F (x) + F (B)− logα+G)

where G is a standard Gumbel random variable and

F (s) =

∫ 0

s

(

α

V ′(t)
+

1

t

)

dt

for any s ∈ (x∗, y∗).

Notice that by (1.4), the integral defining the function F is well defined. We
slightly abuse notation and denote TA→B the limit of Tx→B when x goes to A. We
then have

TA→B +
1

α
log ε

L−−−→
ε→0

1

α
(log(|A|B) + F (A) + F (B) − logα+G).

Example 1.5. Let us come back to our previous example where the potential V is
defined as

V : x 7→ x4

4
− x2

2
.

In this case, α = 1 and if we choose A = −0.9, B = 0.9, and x = −0.89, we get

T−0.89→0.9 + log ε
L−−−→

ε→0
log(0.89× 0.9)− 1

2
log(1− 0.892)− 1

2
log(1− 0.92) +G.

This is illustrated on the left hand side of Figure 1.2 and on Figure 4.4 below.

The paper is organized as follows. Section 2 recalls classical tools that are used in
the proofs. Section 3 provides a key estimate for the (repulsive) Ornstein-Uhlenbeck
process. The proof of Theorem 1.4 is given in Section 4. Finally, Section 5 is
devoted to particular potentials that are degenerated at the origin (i.e., V ′′(0) = 0)
or singular (e.g., V (x) = −|x|).

2. Classical tools

2.1. Laplace transform of the exit time. Let us first recall how one can link the
Laplace transform of the exit time of an interval to the infinitesimal generator Aε

of the diffusion process (1.1) where

Aεf(x) = εf ′′(x)− V ′(x)f ′(x).

Fix a < x < b and denote by H
(ε)
a,b the first exit time from (a, b), starting from x:

H
(ε)
a,b = inf

{

t > 0 : X
(ε)
t /∈ (a, b)

}

= T (ε)
a ∧ T (ε)

b ,

where

T (ε)
c = inf

{

t > 0 : X
(ε)
t = c

}

.

In the sequel, for the ease of notation, we may sometimes drop the superscript ε

and the indices a and b. For example, we will denote H for H
(ε)
a,b .

Notice that
{

X
(ε)
H = b

}

= {Tb < Ta}. For any s ∈ [0,+∞) and x ∈ (a, b), let us

define

Fε(s, x) := Ex

(

e−sH |X(ε)
H = b

)

and Fε(s) = lim
x→a

Fε(s, x), (2.1)
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Figure 1.2. Left: Density of the length Tx→B for different values
of ε (from left to right, ε = 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01) when
V (x) = x4/4 − x2/2, A = −0.9, B = 0.9, and x = −0.89. Right:
Empirically centered versions of these densities.

where Ex denotes the expectation for the stochastic process starting from x. Let
us also introduce the function us solution of

{

Aεus(x) = sus(x), x ∈ (a, b),

us(a) = 0, us(b) = 1.
(2.2)

It’s formula ensures that (us(X
(ε)
t )e−st)t≥0 is a martingale and then

us(x) = Ex

(

us(X
(ε)
H )e−sH

)

= Ex

(

e−sH
1

{

X
(ε)
H =b

}

)

.

Consequently,

Fε(s, x) =
us(x)

u0(x)
. (2.3)

This formula will play a crucial role in the following.

Remark 2.1. When s = 0, Equation (2.2) is easy to solve: for any x ∈ (a, b),

u0(x) = Px(Tb < Ta) =

∫ x

a e
V (s)/ε ds

∫ b

a
eV (s)/ε ds

. (2.4)

2.2. The h-transform of Doob. The process (X
(ε)
t )t≥0 solution of the stochastic

differential equation (1.1) conditionally to the event {Tb < Ta} is still a Markov
process. Moreover, it can be seen as the solution of a modified stochastic differential
equation with a drift that depends on the exit probabilities for the process. This is
the so-called h-transform.
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Proposition 2.2. Conditionally to the event {Tb < Ta}, the process X(ε) is a dif-
fusion process and it is the solution of

dX̄
(ε)
t =

√
2ε dBt +

(

−V ′(X̄(ε)
t ) + 2ε

h′ε(X̄
(ε)
t )

hε(X̄
(ε)
t )

1{t<Tb}

)

dt (2.5)

where, for any x ∈ (a, b),

hε(x) =

∫ x

a
eV (s)/ε ds

∫ b

a e
V (s)/ε ds

.

See Day (1992) for the proof of this assertion via Girsanov’s theorem. Similarly,
one could write the equation satisfied by a diffusion process conditioned to reach
a given point at a given time (see Marchand (2011) for instance). Notice that this
construction can be generalized in a multidimensional context, but the the singular
drift is not explicitly known in this case (see Lu and Nolen (2013)).

Remark 2.3. The additional drift is singular at point a and is equivalent to 2ε(x−
a)−1 when x → a. This ensures that Y cannot hit a in finite time (see Feller’s
condition in Revuz and Yor (1991)).

Let us associate to a potential V the modified drift induced by the h-transform
on the interval (a, b):

bV (x) = −V ′(x) + 2ε
h′ε(x)

hε(x)
= −V ′(x) + 2ε

eV (x)/ε

∫ x

a e
V (s)/ε ds

. (2.6)

Lemma 2.4. Let us assume that x∗ < a < 0 < b < y∗ and that V satisfies
Assumption 1.1. Then, for any x ∈ (a, b),

bV (x) −−−→
ε→0

|V ′(x)|.

Proof : Since V is increasing on (a, 0) then, for any x ∈ (a, 0),
∫ x

a

eV (s)/ε ds ∼
ε→0

ε
eV (x)/ε

V ′(x)
and bV (x) ∼

ε→0
V ′(x) = |V ′(x)|,

where, here and in the following, the notation a(ε) ∼ε→0 b(ε) means that the ratio
a(ε)/b(ε) goes to 1 as ε → 0. In other words, the h-transform turns the negative
drift −V ′(x) to its opposite. Moreover, it is obvious that, for any x > 0, hε(x)
goes to 1 as ε → 0 and h′ε(x)/hε(x) goes to 0 exponentially fast: in this case,
bV (x) → −V ′(x) = |V ′(x)|. Finally, one can notice that

bV (0) =
2ε

∫ 0

a
eV (s)/ε ds

∼
ε→0

√

8|V ′′(0)|ε
π

,

since V (s) ∼ V ′′(0)s2/2 when s goes to zero. �

The h-transform and the previous lemma will be two major ingredients for the
arguments below.

In the former proof, and in the following, we constantly use Laplace’s method to
get equivalents of integrals when ε tends to 0. Let us recall these classical results:

Lemma 2.5. Let [a, b) be some interval of R (with possibly b = ∞), ψ : [a, b) → R

a function continuous at point a such that ψ(a) 6= 0 and ϕ : [a, b) → R a function

of class C2 such that ϕ′ < 0 on (a, b). Let us denote f(ε) =
∫ b

a exp(ϕ(x)/ε)ψ(x) dx.
Then, we have:
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• If ϕ′(a) = 0 and ϕ′′(a) < 0,

f(ε) ∼
ε→0

√

πε

2|ϕ′′(a)| exp(ϕ(a)/ε)ψ(a).

• If ϕ′(a) < 0,

f(ε) ∼
ε→0

ε

|ϕ′(a)| exp(ϕ(a)/ε)ψ(a).

3. Main example: the repulsive Ornstein-Uhlenbeck process

In this section, we deal with the simplest example of a potential that is smooth
and strictly concave at the origin. We assume here that V (x) = −αx2/2 on the set
[−b, b] with b, α > 0, and then investigate the behavior of the process:

dY
(ε,α)
t =

√
2εdBt + αY

(ε,α)
t dt. (3.1)

In the sequel, we denote

T ε,α,x
b = inf

{

t ≥ 0 : Y
(ε,α)
t = b

}

with Y
(ε,α)
0 = x ∈ (−b, b).

For the sake of simplicity, we first deal with the case α = 1 and then we will get
the general result thanks to a straightforward scaling. The strategy is to express
the Laplace transform of this exit time in terms of special functions and then to

derive its asymptotic form as ε goes to 0. In the sequel, Tb stands for T
(ε,1,x)
b .

Proposition 3.1. Let x ∈ (−b, b). For any s > −1, we have

Ex

(

e−sTb
∣

∣Tb < T−b

)

∼
ε→0



















Γ(1 + s)e−s(− log ε+log b+log |x|) if x ∈ (−b, 0),
2s/2√
π
Γ

(

1 + s

2

)

e−s(− log
√
ε+log b) if x = 0,

e−s(log b−log x) if x ∈ (0, b).

(3.2)

One can also notice that limε→0 Ex

(

e−sTb
∣

∣Tb < T−b

)

= ∞ if s ≤ −1.

Proof : The Laplace transform of the exit time is linked by (2.3) to the solution us
of











εu′′s (x) + xu′s(x) = sus(x), x ∈ (−b, b),
us(−b) = 0,

us(b) = 1.

(3.3)

Let us define bε = b/
√
ε and the function vs on (−bε, bε) by vs(y) = us(y

√
ε). Then

vs is the solution of










v′′s (y) + yv′s(y) = svs(y), y ∈ (−bε, bε),
vs(−bε) = 0,

vs(bε) = 1.

(3.4)

As recalled in Section 2.1 (see (2.3)), one has

Ex

(

e−sTb |Tb < T−b

)

=
us(x)

u0(x)
=
vs(x/

√
ε)

v0(x/
√
ε)
.
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One can express the function vs in terms of some special functions. Let ν > 0 and
define the parabolic cylinder function D−ν as

D−ν(x) =
1

Γ(ν)
e−x2/4

∫ ∞

0

tν−1e−t2/2−xt dt, x ∈ R.

The so-called Whittaker function D−ν is solution of

D′′
−ν(x)−

(

x2

4
+ ν − 1

2

)

D−ν(x) = 0.

See Abramowitz and Stegun (1964, ch.19) or Borodin and Salminen (2002, p.639)
for further details. Define the function ϕν by

ϕν(x) = e−x2/4D−ν(x).

A straightforward computation leads to

ϕ′′
ν(x) + xϕ′

ν(x) = (ν − 1)ϕν(x). (3.5)

In the sequel, s and ν are linked by the relation

ν = s+ 1 > 0.

Notice that ψν : x 7→ ϕν(−x) is also solution of (3.5), and that ψν and ϕν are
linearly independent. Then, the solution of (3.4) is a linear combination of ϕν and
ψν satisfying the boundary conditions. The function vs is given by

vs(x) =
ϕν(−bε)ϕν(−x)− ϕν(bε)ϕν(x)

ϕν(−bε)2 − ϕν(bε)2
. (3.6)

Let us study the asymptotic behavior of ϕν(b) and ϕν(−b) as b → +∞. Laplace’s
method ensures that

∫ ∞

0

tν−1e−t2/2e−bt dt ∼
b→+∞

Γ(ν)

bν
.

As a consequence,

ϕν(b) ∼
b→+∞

e−b2/2

bν
.

Moreover,

ϕν(−b) =
1

Γ(ν)

∫ ∞

0

tν−1e−(t−b)2/2 dt

∼
b→+∞

√
2π

Γ(ν)
bν−1.

In particular, one obtains that

ϕν(−b)2 − ϕν(b)
2 ∼

b→+∞
ϕν(−b)2 ∼

b→+∞

2π

Γ(ν)2
b2(ν−1).

Moreover, for any γ ∈ (0, 1), we get

ϕν(−b)ϕν(γb)− ϕν(b)ϕν(−γb) ∼
b→+∞

√
2π

Γ(ν)
bν−1 e

−γ2b2/2

(γb)ν
−

√
2π

Γ(ν)
(γb)ν−1 e

−b2/2

bν

∼
b→+∞

√
2π

Γ(ν)

e−γ2b2/2

γνb
.
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As a conclusion

ϕν(−b)ϕν(γb)− ϕν(b)ϕν(−γb)
ϕν(−b)2 − ϕν(b)2

∼
b→+∞

Γ(ν)√
2π

e−γ2b2/2

γνb2ν−1
=

Γ(ν)√
2π

e−γ2b2/2

(γb)νbν−1
. (3.7)

One can then deduce the asymptotic behavior of vs solution of Equation (3.4) at
the point x/

√
ε (with x < 0) replacing in Equation (3.7) b by bε = b/

√
ε and γ by

−x/b with γ ∈ (0, 1). Since ν = s+ 1, this leads to

vs(x/
√
ε) ∼

ε→0

Γ(1 + s)√
2π

e−x2/(2ε)

(−x/√ε)s+1(b/
√
ε)s

,

and
vs(x/

√
ε)

v0(x/
√
ε)

∼
ε→0

Γ(1 + s)

(−x/√ε)s(b/√ε)s = Γ(1 + s)

(

ε

|x|b

)s

.

This is the expression of the Laplace transform in Equation (3.2) when x ∈ (−b, 0).
The two other cases are easier to deal with. If x = 0, since v0(0) = 1/2, one has

vs(0)

v0(0)
∼

ε→0

2ϕν(0)

ϕν(−bε)
∼

ε→0

√

2

π

1

bsε

∫ +∞

0

tse−t2/2 dt =
2s/2√
π
Γ

(

1 + s

2

)

1

bsε
.

At last, if x = γb with γ ∈ (0, 1), then

vs(γbε)

v0(γbε)
∼

ε→0

ϕν(−γbε)
ϕν(−bε)

= γs =
(x

b

)s

.

�

Remark 3.2. The parabolic cylinder functions D−ν also appear in Breiman (1967,
Section 2), where the author studies the first exit time from a square root boundary
for the Brownian motion.

Proposition 3.1 yields the following convergence in distribution.

Theorem 3.3. Let α > 0 and x ∈ (−b, b). We have, conditionally to the event
{

T
(ε,α,x)
b < T

(ε,α,x)
−b

}

,

• if x ∈ (−b, 0)

T
(ε,α,x)
b +

1

α
log ε

L−−−→
ε→0

1

α
(log(|x|b) +G− logα),

• if x = 0

T
(ε,α,x)
b +

1

α
log

√
ε

L−−−→
ε→0

1

α

(

log b+ G̃− log
√
α
)

,

• if x ∈ (0, b)

T
(ε,α,x)
b

L−−−→
ε→0

1

α
(log b− log x),

where the law of G is the standard Gumbel distribution and G̃ is a random variable
with Laplace transform given by

E

(

e−sG̃
)

=







2s/2√
π
Γ

(

1 + s

2

)

if s > −1,

+∞ otherwise.
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Figure 3.3. Mean length of the reactive path for the repulsive

Ornstein-Uhlenbeck process dY
(ε)
t =

√
2εdBt+Y

(ε)
t dt, with Y

(ε)
0 =

−0.89, on the set [−0.9, 0.9] as a function of log ε (see Theorem 3.3).
The 95% confidence intervals are of the size of the points. The
function log ε 7→ − log ε+ log(| − 0.89| × 0.9) + γ is drawn in red.
These results have been obtained with the algorithm described in
Cérou et al. (2011).

Proof : The case α = 1 is a straightforward consequence of Proposition 3.1. More-
over, for any positive constants τ and σ, and for any t ≥ 0, one has

σY
(ε,α)
τt = σY

(ε,α)
0 + σ

√
2εBτt + σα

∫ τt

0

Y (ε,α)
s ds

L
= σY

(ε,α)
0 +

√
τσ2

√
2εBt + ατ

∫ t

0

σY (ε,α)
τu du.

This ensures that if σ =
√
α and τ = 1/α, then the process (σY

(ε,α)
τt )t≥0 is solution

of Equation (3.1) with α = 1 and the initial condition σY
(ε,α)
0 . In particular,

L
(

T
(ε,α,x)
b |T (ε,α,x)

b < T
(ε,α,x)
−b

)

= L
(

α−1T
(ε,1,x/

√
α)

b/
√
α

|T (ε,1,x/
√
α)

b/
√
α

< T
(ε,1,x/

√
α)

−b/
√
α

)

.

The result for α 6= 1 is a straightforward consequence of the result for α = 1. �

Notice that the formulas in Theorem 3.3 admit a limit when x goes to −b. Before
coming back to the general case, let us conclude this section with a few remarks
about the case of the Ornstein-Uhlenbeck process.

Remark 3.4. Let us discuss the asymptotic behavior of the formulas in Theorem 3.3
for the length of the reactive path when x ∈ (−b, 0) and ε goes to 0, assuming for
simplicity that α = 1. The time log(b/

√
ε) is the time needed by the deterministic

process Y (0,1) to go from
√
ε to b since Y

(0,1)
t = et

√
ε. The Freidlin-Wentzell theory

tells us that the first part of the reactive path (from x to −√
ε) has a similar length

log(|x|/√ε). Finally, the Gumbel variable G accounts for the (asymptotic) random
time needed by Y (ε,1) to go from −√

ε to
√
ε.

Remark 3.5. It is easy to check from the proof that the results of Proposition 3.1
are still valid if b = bε and x = xε depend on ε as long as bε/

√
ε and xε/

√
ε go to
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infinity when ε goes to zero. For example, if bε > 0 is such that limε→0 bε/
√
ε = ∞

and xε ∈ (−bε, 0) is such that limε→0 xε/
√
ε = −∞, then

T
(ε,α,xε)
bε

+
1

α
(log ε− log(|xε|bε)) L−−−→

ε→0

1

α
(G− logα) .

This remark will be useful in Section 4.3.

Remark 3.6. Figure 3.3 illustrates Theorem 3.3 for the so-called repulsive Ornstein-

Uhlenbeck process dY
(ε)
t =

√
2εdBt + Y

(ε)
t dt, with Y

(ε)
0 = −0.89, on the set

[−0.9, 0.9]. Denoting T−0.89→0.9 the length of the reactive path from −0.89 to
0.9, then Theorem 3.3 ensures that E[T−0.89→0.9] is equivalent to − log ε+ log(| −
0.89|×0.9)+γ, when ε goes to zero (γ stands here for Euler’s constant). Figure 3.3
compares this theoretical result with the empirical means obtained thanks to the
algorithm described in Cérou et al. (2011) for ε ranging from 0.01 to 1.

4. The general (strictly convex) case

Let us now come back to the general strictly convex case described in Section 1.
We recall the notations (see Figure 1.1). The potential V has exactly two local
minima x∗ < 0 and y∗ > 0 and a local maximum z∗ = 0. Moreover, V ′ is positive
on (x∗, 0) and negative on (0, y∗) and

V (0) = 0, V ′(0) = 0, and V ′′(0) = −α < 0.

Let us consider A ∈ (x∗, 0), B ∈ (0, y∗) and x ∈ (A, 0). We are interested in the
behavior of

Tx→B = inf
{

t > 0 : X
(ε)
t = B

}

cond. to the event
{

X
(ε)
0 = x, TB < TA

}

,

when ε goes to zero.
According to the Markov property, and considering the initial point x ∈ (A, 0),

the strategy is to decompose the reactive path from x to B into three independent
pieces:

H = Tx→−cε + T−cε→bε + Tbε→B (4.1)

on the event {TB < TA} where 0 < cε < bε < |x| ∧B will be specified in the sequel.
More precisely, we will choose

bε = εβ and cε = εγ with
2

5
< β < γ <

1

2
.

The first and third times in (4.1) are essentially deterministic, as specified by the
following result.

Proposition 4.1. If 0 < β, γ < 1/2, then, conditionally to the event {TB < TA},

Tbε→B − tbε→B
P−−−→

ε→0
0 and Tx→−cε − t−cε→x

P−−−→
ε→0

0,

where tbε→B is the time for the unnoised process to reach B from bε ∈ (0, B):

tbε→B = −
∫ B

bε

1

V ′(s)
ds,

and t−cε→x is the time for the unnoised process to reach x from −cε ∈ (x, 0):

t−cε→x = −
∫ x

−cε

1

V ′(s)
ds.
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This is proved in Sections 4.1 and 4.2. In Section 4.3 we compare the second
time in (4.1) to the reactive time of an Ornstein-Uhlenbeck process.

4.1. Going down is easy. The easiest part is to study the third time Tbε→B. Our
goal here is to prove that, starting at bε, the processX

(ε) is close to the deterministic
path (xt)t≥0 solution of the ordinary differential equation

{

ẋt = −V ′(xt) t ≥ 0,

x0 = bε.

In this aim, we need to state a few intermediate results. First, it is readily seen

that, starting at bε, the probability for the process (X
(ε)
t )t≥0 to hit 0 before B goes

to 0 at an exponential rate when ε goes to 0. Indeed, we have (see Equation (2.4)):

Pbε(T0 < TB) =

∫ B

bε
eV (s)/εds

∫ B

0
eV (s)/εds

≤ BeV (bε)/ε

∫ B

0
eV (s)/εds

.

Using the fact that
∫ B

0
eV (s)/εds ∼

ε→0

√

πε
2α , bε = εβ with β < 1/2 and (1.5), we

thus easily get that Pbε(T0 < TB) converges exponentially fast to 0 as ε goes to 0.
In the following, we will denote Ωε the event on which this does not occur, so that
P(Ωε) goes to 1 when ε goes to 0.

Of course, this will also be true for the event Ωx which is defined as: the process
starts at a fixed point x ∈ (0, B) (independent of ε) and does not hit 0 before B.
Again, P(Ωx) goes to 1 when ε goes to 0. Then, starting at x ∈ (0, B), our aim
is to compare the deterministic path (xt)t≥0 solution of the ordinary differential
equation

{

ẋt = −V ′(xt) t ≥ 0,

x0 = x,
(4.2)

and the random process
{

dX
(ε)
t = −V ′(X(ε)

t ) dt+
√
2εdBt t ≥ 0,

X
(ε)
0 = x.

For this, let us introduce c ∈ (B, y∗) such that c − B < B − x, the deterministic
time tc = tx→c = inf {t > 0 : xt = c} and the stochastic time

Tc = Tx→c = inf
{

t > 0 : X
(ε)
t = c

}

.

Lemma 4.2. Define K := sups∈[0,c] |V ′′(s)|, then

P

(

Ωx ∩
{

sup
0≤s≤tc∧Tc

|X(ε)
s − xs| ≥ η

})

≤ 2 exp

(

−η
2e−2Ktc

4εtc

)

.

Proof : Let us assume that we work on the event Ωx. For any t ≤ tc ∧ Tc,

X
(ε)
t − xt = −

∫ t

0

(V ′(X(ε)
s )− V ′(xs)) ds+

√
2εBt.

The Gronwall Lemma ensures that

sup
0≤s≤tc∧Tc

|X(ε)
s − xs| ≤

√
2εeK(tc∧Tc) sup

0≤s≤tc∧Tc

|Bs| ≤
√
2εeKtc sup

0≤s≤tc

|Bs|.
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Finally, the reflection principle for the Brownian motion ensures that sup0≤s≤tBs

has the law of |Bt|. As a consequence, for any r, t ≥ 0,

P

(

sup
0≤s≤t

|Bs| ≥ r

)

≤ 2P

(

sup
0≤s≤t

Bs ≥ r

)

= 2P(|Bt| ≥ r) ≤ 2e−r2/(2t).

This concludes the proof. �

The first consequence of this result is that the stochastic time Tx→B required by
the random process to go from x ∈ (0, B) to B converges to the deterministic time
tx→B as ε→ 0.

Corollary 4.3. Let 0 < x < B, then

Tx→B
P−−−→

ε→0
tx→B.

Proof : Since we will apply the result of the previous lemma, we still work on the
event Ωx. Let us denote η a real number such that 0 < η < c − B. Then, on the

event Ωx ∩
{

sup0≤s≤tc∧Tc
|X(ε)

s − xs| ≤ η
}

, the random time Tx→B belongs to the

deterministic interval [tx→B−η, tx→B+η]. In other words,

∫ B

B−η

ds

V ′(s)
= −tB−η→B ≤ Tx→B − tx→B ≤ tB→B+η = −

∫ B+η

B

ds

V ′(s)
.

As a consequence, for any η ∈ (0, c−B),

|Tx→B − tx→B| ≤ η × sup
s∈[B−η,B+η]

1

|V ′(s)| .

Finally, for any η ∈ (0, c−B),

P

(

Ωx ∩
{

|Tx→B − tx→B| ≥ η × sup
s∈[B−η,B+η]

1

|V ′(s)|

})

≤ 2 exp

(

−η
2e−2Ktc

4εtc

)

,

where tc = tx→c. This concludes the proof of the corollary. �

Our next goal is to prove that this result still holds if the starting point, namely
bε = εβ, goes to 0 sufficiently slowly as ε → 0, that means if β < 1/2. Let us fix
D ∈ (bε, B) (for sufficiently small ε) such that

sup
s∈[0,D]

|V ′′(s)| < α

2β
.

This is always possible since β < 1/2, |V ′′(0)| = α, and V is assumed to be smooth.
Then, as previously, we fix c ∈ (D,B) such that c−D < D − bε, and

K := sup
s∈[0,c]

|V ′′(s)| < α

2β
.

Corollary 4.4. If 0 < bε = εβ with β < 1/2, then

|Tbε→D − tbε→D| P−−−→
ε→0

0.
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Proof : Here, we work on the event Ωε, which is not a problem since, as mentioned
above, P(Ωε) goes to 1 as ε goes to zero. The first part of the proof is similar to
the ones of Lemma 4.2 and Corollary 4.3. For any η ∈ (0, c−D),

P

(

Ωε ∩
{

|Tbε→D − tbε→D| ≥ η × sup
s∈[D−η,D+η]

1

|V ′(s)|

})

≤ 2 exp

(

−η
2e−2Ktc

4εtc

)

,

where tc = tbε→c. Moreover, since V ′(s) ∼s→0 −αs, we have

tbε→c = −
∫ c

bε

ds

V ′(s)
= − 1

α
log bε + Oε(1).

As a consequence,

e−2Ktc

4εtc
∼

ε→0

αε
2Kβ
α −1

−4β log ε
−−−→
ε→0

+∞.

This proves the convergence in probability of Tbε→D as ε goes to 0. �

Finally, according to the Markov property, we can summary the previous results
by decomposing the path from bε to B into two independent pieces:

Tbε→B = Tbε→D + TD→B.

Using Corollaries 4.3 and 4.4, we immediately get the following proposition.

Proposition 4.5. If 0 < bε = εβ with β < 1/2, then

|Tbε→B − tbε→B | P−−−→
ε→0

0 where tbε→B = −
∫ B

bε

ds

V ′(s)
.

Remark 4.6. If V is given by (1.6), one can compute the expression of the solution
(xt)t≥0 of (4.2). Let us define the function Ψ on (0, 1) by

Ψ(x) = log

(

x√
1− x2

)

.

Notice that

Ψ′(x) =
1

x
− 1/2

x− 1
− 1/2

x+ 1
= − 1

V ′(x)
.

As a consequence, the derivative of t 7→ Ψ(xt) is equal to 1 and

xt = Ψ−1(Ψ(x) + t).

Moreover, the elapsed time from x ∈ (0, B) to B ∈ (0, 1) is given by

tx→B = Ψ(B)−Ψ(x) = − log(x) + Ψ(B) +
1

2
log(1 − x2).

As was just proved, this result still holds when x = bε as long as 0 < β < 1/2.

4.2. The climbing period.

Proposition 4.7. If cε = εγ with γ < 1/2, then, for x ∈ (A, 0), conditionally to
the event {T−cε < TA},

|Tx→−cε − t−cε→x| P−−−→
ε→0

0 where t−cε→x = −
∫ x

−cε

ds

V ′(s)
.

Proof : One has to consider the h-transformed process and use the fact that the
new drift converges to V ′(s) uniformly on [A+ δ,−cε] for any δ small enough as ε
goes to 0, see Lemma 2.4 above. �
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4.3. Central behavior. Let us finally study the behavior of T−cε→bε conditionally to
the event {Tbε < TA}. In all what follows, bε = εβ , cε = εγ , with 0 < β < γ < 1/2.
Additional conditions on β will be made precise below.

The sketch of proof is as follows:

(1) Prove that one may assume that the process does not go below −bε;
(2) Rescale space to map (−bε, bε) onto (−1, 1);
(3) Consider the h-transformed process to get the evolution of the process con-

ditioned on {T1 < T−1};
(4) Introduce the h-transformed repulsive Ornstein-Uhlenbeck process;
(5) Compare the drifts;
(6) Use Theorem 4.3 in Day (1992);
(7) Conclude.

Step 1. The first step is to notice that it is equivalent to look at T−cε→bε condi-
tionally to {Tbε < T−bε} or conditionally to {Tbε < TA}.
Lemma 4.8. If 0 < β < γ < 1/2, there exists a constant C > 0 such that, for any
s > 0

1− Cεγ−β ≤ E−cε

(

e−sHA,bε |Tbε < TA
)

E−cε(e
−sH−bε,bε |Tbε < T−bε)

≤ 1 + Cεγ−β.

Proof : By continuity,

{Tbε < TA} = {Tbε < T−bε} ∪ {T−bε < Tbε < TA},
where the two sets on the right hand side are disjoints. Moreover, the strong Markov
property ensures that, for any s ≥ 0,

0 ≤ E−cε

(

e−sHA,bε
1{T−bε<Tbε<TA}

)

≤ E−bε

(

e−sHA,bε
1{Tbε<TA}

)

≤ P−bε(T−cε < TA)E−cε

(

e−sHA,bε
1{Tbε<TA}

)

.

As a consequence, for any s ≥ 0,

1 ≤
E−cε

[

e−sHA,bε
1{Tbε<TA}

]

E−cε

[

e−sH−bε,bε
1

{

Tbε<T
−bε

}

] ≤ 1+P−bε(T−cε < TA) ≤
1

1− P−bε(T−cε < TA)
.

Taking s = 0 in this equation leads to

1− P−bε(T−cε < TA) ≤
P−cε(Tbε < T−bε)

P−cε(Tbε < TA)
≤ 1.

Consequently,

1− P−bε(T−cε < TA) ≤
E−cε

(

e−sHA,bε |Tbε < TA
)

E−cε(e
−sH−bε,bε |Tbε < T−bε)

≤ 1 + P−bε(T−cε < TA).

To conclude, one just has to remark that, since V (−bε) ≤ V (−cε),

P−bε(T−cε < TA) =

∫ −bε
A

eV (s)/ε ds
∫ −cε
A

eV (s)/ε ds
∼

ε→0
εγ−βe(V (−bε)−V (−cε))/ε ≤ εγ−β.

�
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Step 2. Let us define ηε = ε/b2ε and the process Y by Yt = X
(ε)
t /bε (dropping for

simplicity the explicit dependence on ε in the notation for Y ). Obviously, if X
(ε)
0

is equal to −cε, then Y is solution of






dYt =
√

2ηεdBt −
V ′(bεYt)

bε
dt,

Y0 = −cε/bε.
In terms of Y , we are interested in the hitting time of 1 conditionally to the event
{T1 < T−1}.
Step 3. Thanks to the h-transform of Doob, one can see Y , conditionally to the
event {T1 < T−1}, as a diffusion process. Define, for any y ∈ (−1, 1),

hε(y) =

∫ y

−1
eV (bεs)/ε ds

∫ 1

−1e
V (bεs)/ε ds

and
h′ε(y)

hε(y)
=

eV (bεy)/ε

∫ y

−1
eV (bεs)/ε ds

.

Conditionally to {T1 < T−1}, the process Y is solution of






dYt =
√

2ηεdBt +

(

−V
′(bεYt)

bε
+ 2ηε

h′ε(Yt)

hε(Yt)
1{t≤T1}

)

dt,

Y0 = −cε/bε.

Step 4. Similarly, the repulsive Ornstein-Uhlenbeck process (Zt)t≥0 solution of
{

dZt =
√
2ηε dBt + αZt dt,

Z0 = −cε/bε,

evolves, conditionally to the event {T1 < T−1}, as






dZt =
√

2ηεdBt +

(

αZt + 2ηε
g′ε(Zt)

gε(Zt)
1{t≤T1}

)

dt,

Z0 = −cε/bε,
where

gε(y) =

∫ y

−1
e−αs2/(2ηε) ds

∫ 1

−1e
−αs2/(2ηε) ds

and
g′ε(y)

gε(y)
=

e−αy2/(2ηε)

∫ y

−1
e−αs2/(2ηε) ds

.

Step 5. Let us now notice that the drifts of the stochastic differential equations
that drive Y and Z conditionally to the event {T1 < T−1} are close.

Lemma 4.9. Under Assumption 1.1, if 4/9 < β < 1/2, then

1

ηε
× sup

y∈(−1,−1]

∣

∣

∣

∣

(

−V
′(bεy)

bε
+ 2ηε

h′ε(y)

hε(y)

)

−
(

αy + 2ηε
g′ε(y)

gε(y)

)∣

∣

∣

∣

−−−→
ε→0

0. (4.3)

Proof of Lemma 4.9: Thanks to Assumption 1.1, as soon as bε < δ, we have, for
any y ∈ [−1, 1],

∣

∣

∣

∣

−V
′(bεy)

bε
− αy

∣

∣

∣

∣

≤ Kbεy
2 ≤ Kbε,

so that
1

ηε
× sup

y∈(−1,−1]

∣

∣

∣

∣

−V
′(bεy)

bε
− αy

∣

∣

∣

∣

−−−→
ε→0

0
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as soon as β > 1/3. It remains to prove that supy∈(−1,−1] |∆ε(y)| goes to zero when
ε goes to zero, where

∆ε(y) :=
h′ε(y)

hε(y)
− g′ε(y)

gε(y)
=

eV (bεy)/ε

∫ y

−1
eV (bεs)/ε ds

− e−αy2/(2ηε)

∫ y

−1
e−αs2/(2ηε) ds

.

We propose to do this in two steps: first for y ∈ [−1+εκ, 1], then for y ∈ (−1,−1+
εκ], where κ = β/2.

(1) y ∈ [−1 + εκ, 1]: Thanks to assumption 1.1, we have for all s ∈ [−1, 1]

V (bεs) = −αb2εs2/2 + θε(s)b
3
εs

3,

with

sup
s∈[−1,1]

|θε(s)| ≤
1

6
sup

x∈[−bε,bε]

V (3)(x) ≤ C,

where C is a constant independent of ε. As a consequence, since bε = εβ

and ηε = ε1−2β ,

eV (bεs)/ε = e−αs2/(2ηε)eθε(s)s
3ε3β−1

.

Now, we can write

eθε(s)s
3ε3β−1

= 1 + δε(s)θε(s)s
3ε3β−1,

with

sup
s∈[−1,1]

|δε(s)| ≤ eCε3β−1 ≤ C̃,

where C̃ is a constant independent of ε. For the sake of simplicity, we
denote θε(s) for δε(s)θε(s). This leads to the following decomposition

h′ε(y)

hε(y)
=

1

1 +
∫ y
−1

e−αs2/(2ηε)θε(s)s3ε3β−1 ds
∫

y
−1

e−αs2/(2ηε) ds

× e−αy2/(2ηε)

∫ y

−1
e−αs2/(2ηε) ds

(

1 + θε(y)y
3ε3β−1

)

.

Now, let us notice that for any y ∈ (−1, 1],
∣

∣

∣

∣

∣

∫ y

−1e
−αs2/(2ηε)θε(s)s

3ε3β−1 ds
∫ y

−1e
−αs2/(2ηε) ds

∣

∣

∣

∣

∣

≤ Dε3β−1,

with D independent of ε. Consequently,

1

1 +
∫

y
−1

e−αs2/(2ηε)θε(s)s3ε3β−1 ds
∫

y
−1

e−αs2/(2ηε) ds

= 1− λε(y)ε
3β−1,

and there exists a constant E, independent of ε, such that

sup
y∈(−1,1]

|λε(y)| < E.

Thus we can write

h′ε(y)

hε(y)
=
(

1 + νε(y)ε
3β−1

)

× e−αy2/(2ηε)

∫ y

−1
e−αs2/(2ηε) ds

,

and there exists a constant F , independent of ε, such that

sup
y∈(−1,1]

|νε(y)| < F.
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Finally, for all y ∈ (−1, 1], we have obtained

|∆ε(y)| :=
∣

∣

∣

∣

h′ε(y)

hε(y)
− g′ε(y)

gε(y)

∣

∣

∣

∣

≤ Fε3β−1 × e−αy2/(2ηε)

∫ y

−1
e−αs2/(2ηε) ds

, (4.4)

and the goal is now to upper-bound the last term in this equation. In this
aim, we first consider the case where y ∈ [−1 + εκ, 0]. In the integral, we
make the change of variable

v = ε−γ × s2 − y2

2ηε
,

with γ = (5β − 2)/2, so that γ > 0 as soon as β > 2/5. We get
∫ y

−1

e−αs2/(2ηε) ds = ηεε
γe−αy2/(2ηε)Iε(y),

where

Iε(y) :=

∫
ε−γ (1−y2)

(2ηε)

0

e−αεγv

√

2ηεεγv + y2
dv.

Since ηεε
γ = εβ/2 and y ∈ [−1 + εκ, 0], with κ = β/2, it is clear that for ε

small enough, one has: ∀y ∈ [−1 + εκ, 1],

Iε(y) ≥ Jε :=

∫ 1/2

0

e−αεγv

√
2εβ/2v + 1

dv −−−→
ε→0

1

2
,

so that for ε small enough, one has Iε(y) ≥ 1/4. Putting all things together
gives

|∆ε(y)| ≤ 4Fε3β−1 × ε−β/2 = 4Fεγ −−−→
ε→0

0,

and the uniform convergence is proved for y ∈ [−1 + εκ, 0]. In order to
conclude for y ∈ [−1 + εκ, 1], it remains to notice that if y ∈ [0, 1], one has

e−αy2/(2ηε)

∫ y

−1e
−αs2/(2ηε) ds

≤ 1
∫ 0

−1
e−αs2/(2ηε) ds

∼
ε→0

√

2α

πηε
.

Coming back to Equation (4.4) yields, for all y ∈ [0, 1] and for ε small
enough,

|∆ε(y)| ≤ Fε3β−1 × εβ−1/2 = Fε4β−3/2 −−−→
ε→0

0,

since β > 2/5. This concludes the case where y ∈ [−1 + εκ, 1].
(2) y ∈ (−1,−1 + εκ]: let us denote y = −1 + pεκ, with 0 < p ≤ 1, so that our

goal is now to upper-bound

|∆ε(p)| :=
∣

∣

∣

∣

h′ε(−1 + pεκ)

hε(−1 + pεκ)
− g′ε(−1 + pεκ)

gε(−1 + pεκ)

∣

∣

∣

∣

,

that is to say

|∆ε(p)| =
∣

∣

∣

∣

∣

eV (bε(−1+pεκ))/ε

∫ −1+pεκ

−1 eV (bεs)/ε ds
− e−α(−1+pεκ)2/(2ηε)

∫ −1+pεκ

−1 e−αs2/(2ηε) ds

∣

∣

∣

∣

∣

,

independently of p ∈ (0, 1]. For any smooth function f on [−1, 0], we may
write the following Taylor expansions

f(−1 + pεκ) = f(−1) + f ′(−1)pεκ +
f ′′(θ1)

2
p2ε2κ,
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and
∫ −1+pεκ

−1

f(s) ds = f(−1)pεκ +
f ′(−1)

2
p2ε2κ +

f ′′(θ2)

6
p3ε3κ,

where θ1 and θ2 belong to the interval (−1,−1+ εκ), and depend on p and
ε. This leads to

f(−1 + pεκ)
∫ −1+pεκ

−1
f(s) ds

=
1

pεκ
×

1 + f ′(−1)
f(−1) pε

κ + 1
2
f ′′(θ1)
f(−1) p

2ε2κ

1 + 1
2
f ′(−1)
f(−1) pε

κ + 1
6
f ′′(θ2)
f(−1) p

2ε2κ
.

Considering f(s) = e−αs2/(2ηε), we get

f ′(−1)

f(−1)
pεκ = αpεβ/2ε−1+2β = αpεγ ,

and
f ′′(θ)

f(−1)
p2ε2κ = p2

(

α2θ2

η2ε
− α

ηε

)

ε2κeα(1−θ2)/(2ηε).

Now, since θ ∈ (−1,−1 + εκ), then 0 ≤ 1 − θ2 ≤ 2εκ and, uniformly w.r.t
θ,

eα(1−θ2)/(2ηε) −−−→
ε→0

1 and
f ′′(θ)

f(−1)
p2ε2κ ∼

ε→0
α2p2ε2γ .

Thus we have the following Taylor expansion

f(−1 + pεκ)
∫ −1+pεκ

−1
f(s) ds

=
1

pεκ
×
(

1 +
αp

2
εγ + φε(p)pε

2γ
)

,

with sup0<p≤1 |φε(p)| <∞. Considering this time f(s) = eV (bεs)/ε, we get

f ′(−1)

f(−1)
pεκ = pεκ × bεV

′(−bε)
ε

= αpεγ + ξε(p)ε
γ+β,

and

f ′′(θ)

f(−1)
p2ε2κ = p2

(

(

bεV
′(bεθ)

ε

)2

+
b2εV

′′(bεθ)

ε

)

ε2κe(V (bεθ)−V (−bε))/ε.

For the same reason as above, we have then

f ′′(θ)

f(−1)
p2ε2κ ∼

ε→0
α2p2ε2γ .

Since β > γ, we have the following Taylor expansion

f(−1 + pεκ)
∫ −1+pεκ

−1 f(s) ds
=

1

pεκ
×
(

1 +
αp

2
εγ + ϕε(p)pε

2γ
)

,

with sup0<p≤1 |ϕε(p)| <∞. Gathering the intermediate results, we get

|∆ε(p)| = |ϕε(p)− φε(p)|ε2γ−κ ≤ Gε(9β−4)/2,

where G is independent of ε. It turns out that the uniform convergence is
ensured as soon as β > 4/9.

This concludes the proof of Lemma 4.9.
�
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Step 6. The difference of the two drifts in (4.3) is negligible with respect to the
variance ηε of the Brownian component as soon as 4/9 < β < 1/2. Theorem 4.3 in
Day (1992) ensures that L(Y·|T1 < T−1) and L(Z·|T1 < T−1) are then asymptoti-
cally equivalent. This approximation result relies on the Girsanov Theorem. The
Novikov condition ensuring that the exponential martingale is uniformly integrable
can be checked as in Day (1992). In particular, a consequence of the results in Day
(1992) is that, in the limit ε→ 0, T Y

1 and TZ
1 have the same law.

Step 7. After an obvious scaling, we have to estimate the reactive time for a
repulsive Ornstein-Uhlenbeck process between −bε and bε starting at

xε = −cε = −εγ −−−→
ε→0

0.

Since bε/
√
ε and cε/

√
ε both go to infinity when ε goes to zero, the estimates in

the proof of Theorem 3.3 (see also Remark 3.5) ensure that

TZ
1 +

1

α
(log ε− log cε − log bε)

L−−−→
ε→0

1

α
(G− logα),

where the law of G is a standard Gumbel distribution. Putting all things together,
we have established the following estimate.

Proposition 4.10. Conditionally to the event {Tbε < TA},

T−cε→bε +
1

α
(log ε− log cε − log bε)

L−−−→
ε→0

1

α
(G− logα),

where the law of G is a standard Gumbel distribution.

4.4. Conclusion. The estimates of Propositions 4.1 and 4.10 are the key points of
the proof of Theorem 1.4.

Proof of Theorem 1.4: One can write

−
∫ B

bε

ds

V ′(s)
= − 1

α

(

∫ B

bε

(

α

V ′(s)
+

1

s

)

ds−
∫ B

bε

ds

s

)

Thanks to Assumption 1.1, s 7→ αV ′(s)−1 + s−1 is integrable on (0, B).

tbε→B = − log bε
α

+
logB

α
− 1

α

∫ B

0

(

α

V ′(s)
+

1

s

)

ds+ oε(1).

Similarly,

t−cε→x = − log cε
α

+
log |x|
α

+
1

α

∫ 0

x

(

α

V ′(s)
+

1

s

)

ds+ oε(1).

Using the fact that

Tx→B = Tx→−cε + T−cε→bε + Tbε→B ,

Propositions 4.1 and 4.10 and the two previous estimates on tbε→B and t−cε→x

imply that for any x ∈ (A, 0), conditionally to {TB < TA},

Tx→B +
1

α
log ε

L−−−→
ε→0

1

α
(log(|x|B) + F (x) + F (B) − logα+G).

This concludes the proof of Theorem 1.4. Notice that one can let x go to A in this
expression. �



380 Cérou et al.

Figure 4.4. Mean time of the reactive path for the potential V
given in (1.6) as a function of log ε. The 95% confidence intervals
are of the size of the points. These results have been obtained with
the algorithm described in Cérou et al. (2011). The theoretical
asymptotic behavior (when ε goes to 0) is drawn in red.

Figure 4.4 illustrates this result for the process

dX
(ε)
t = −V ′(X(ε)

t ) dt+
√
2εdBt,

with V (x) = x4/4−x2/2, X(ε)
0 = x = −0.89, on the set [A,B] = [−0.9, 0.9]. Denot-

ing T−0.89→0.9 the length of the reactive path from -0.89 to 0.9, then Theorem 1.4
ensures that, when ε goes to zero, E[T−0.89→0.9] is equivalent to

− log ε+ log(0.89× 0.9)− 1

2
log(1− 0.892)− 1

2
log(1− 0.92) + γ,

where γ stands for Euler’s constant. Figure 4.4 compares this theoretical result
(continuous line) with the empirical means obtained thanks to the algorithm de-
scribed in Cérou et al. (2011) for ε ranging from 0.007 to 1 (circles).

5. Other examples

The aim of this section is to analyze the distribution of the lengths of the reactive
paths, when the potential V has a maximum at point z∗ = 0, but does not satisfy
Assumption 1.1. More precisely, we successively consider three cases:

(1) V behaves like −|x| around x = 0,
(2) V is constant equal to 0 around x = 0,
(3) V is regular at 0 but V ′′(0) = 0.

We will derive explicit expressions for the distributions of the lengths of the reactive
paths in the asymptotic regime ε goes to 0. In all these cases, it turns out that the
asymptotic behaviors are very different from what we obtained in Theorem 1.4.

5.1. Brownian motion with drift. The easiest case to deal with is the one of the
singular potential V (x) = −β|x|. It corresponds to a Brownian motion with a
piecewise constant drift, namely:

dX
(ε)
t = β sgn

(

X
(ε)
t

)

dt+
√
2εdBt,
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where β is a positive real number and sgn(x) stands for the sign of x (see for example
Veretennikov (1980); Gyöngy and Krylov (1996) for the existence and uniqueness of
strong solutions to this stochastic differential equation). In that case, Equation (2.2)
is a second order ordinary differential equation with constant coefficients.

Let us recall the expression of the Laplace transform of the conditioned first exit
time on (a, b) for a Brownian motion with drift (see Borodin and Salminen (2002,
p.309)).

Proposition 5.1. Choose a < x < b, µ ∈ R, and consider the process W (µ) defined

by W
(µ)
t = µt+Wt. Let us denote by H the first exit time of (a, b). Then,

Ex

(

e−sH |W (µ)
H = b

)

=
sinh((b − a)|µ|)
sinh((x − a)|µ|)

sinh((x − a)
√

2s+ µ2)

sinh((b − a)
√

2s+ µ2)
.

A few remarks are in order.

Remark 5.2. Notice that the law of H knowing that Tb < Ta does not depend on
the sign of the drift µ. This may seem surprising at first sight but it is consistent
with the fact that going up is equivalent to going down after introducing the h-
transformed process, see Section 4.2 above.

Remark 5.3. Notice that

lim
x→a

Ex

(

e−sH |W (µ)
H = b

)

=
sinh((b − a)|µ|)

|µ|

√

2s+ µ2

sinh((b− a)
√

2s+ µ2)
. (5.1)

Remark 5.4. If µ > 0, then H converges to Hb the hitting time of b as a→ −∞:

lim
a→−∞

Ex

(

e−sH |W (µ)
H = b

)

= eµ(b−x)(1−
√

1+2s/µ2),

which is the Laplace transform of the inverse Gaussian distribution with parameter
m = (b − x)/µ and ℓ = m2. We recall that the density of the inverse Gaussian
distribution with parameters (m, ℓ) is

f(x) =

√

ℓ

2π
x−3/2 exp

(

− ℓ(x−m)2

2m2x

)

1{x>0}.

We can use these results to study the law of the hitting of 0 starting from x = −δ
if the process X(ε) satisfies, at least when X

(ε)
t ∈ (−δ, 0):

X
(ε)
t = x+

√
2εBt − βt.

From the scaling property of the Brownian motion, we can compute the Laplace

transform F of H = inf
{

t ≥ 0 : X
(ε)
t 6∈ (−δ, 0)

}

conditionally to
{

X
(ε)
H = 0

}

,

using (5.1):

Fε(s) =
sinh(δβ/(2ε))

sinh(δ
√

β2/(2ε)2 + s/ε)

√

β2/(2ε)2 + s/ε

β/(2ε)

=
exp

(

δβ
2ε

(

1−
√

1 + 4εs
β2

))

− exp
(

− δβ
2ε

(

1 +
√

1 + 4εs
β2

))

1− exp
(

− δβ
ε

√

1 + 4εs
β2

)

√

1 +
4εs

β2
.
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For a fixed s, we thus get limε→0 Fε(s) = exp
(

− δs
β

)

, and

E

(

exp

(

−sH − δ/β√
ε

))

= exp

(

sδ/β√
ε

)

Fε(s/
√
ε)

=
exp

(

sδ
β
√
ε

)

√

1 + 4
√
εs

β2

exp

(

δβ
2ε

(

1−
√

1 + 4
√
εs

β2

))

− exp

(

− δβ
2ε

(

1 +
√

1 + 4
√
εs

β2

))

1− exp

(

− δβ
ε

√

1 + 4
√
εs

β2

)

∼
ε→0

exp

(

sδ

β
√
ε
+
δβ

2ε

(

1− 1− 2
√
εs

β2
+

2εs2

β4

))

∼
ε→0

exp

(

δs2

β3

)

.

As a consequence,

H
a.s.−−−→
ε→0

δ

β
and

H − δ/β√
ε

L−−−→
ε→0

N
(

0,
2δ

β3

)

.

In this case, with the same reasoning as in Section 4.1, one can deduce that
the length of the reactive path between points −δ and +δ has the deterministic
limit 2δ/β when ε tends to zero. The absence of any asymptotic randomness in the
length of the reactive path, in contrast with Theorem 1.4, is due to the fact that
in this case, we do not have V ′(0) = 0. The next situation that we propose to deal
with is the opposite one, specifically when V ′(x) = 0 in a neighborhood of 0, and
we call it the totally flat potential.

5.2. Totally flat potential. Let us investigate in this section the case when the po-
tential V is flat around the saddle point. Specifically, let us consider the process

given by X
(ε)
t =

√
2εBt, b > 0 and

H = inf
{

t > 0, X
(ε)
t /∈ (−b, b)

}

.

One has, for any s ≥ 0,

Fε(s) = E−b

(

e−sH |X(ε)
H = b

)

=

√

4b2s/ε

sinh
(

√

4b2s/ε
) .

Moreover,

E−b

(

esH |X(ε)
H = b

)

=

√

4b2s/ε

sin
(

√

4b2s/ε
) if 0 ≤ s ≤ π2

4b2
ε.

Notice that, for any s ∈
[

0, π2

4b2 ε
]

,

E−b

(

esH |X(ε)
H = b

)

= G

(

4b2s

ε

)

where G(x) =
1

∑

k≥0
(−x)k

(2k+1)!

.

In particular,

E

(

H |X(ε)
H = b

)

=
2b2

3ε
and V

(

H |X(ε)
H = b

)

=
8b4

45ε2
.



On the length of one-dimensional reactive paths 383

Lemma 5.5 (Borodin and Salminen (2002)). For any ε > 0 and b > 0, one has,

conditionally to X
(ε)
0 = x and Tb < T−b, and in the limit x→ −b,

H
(ε)
−b,b =

b2

ε

(

2

3
+

2
√
2

3
√
5
Y

)

,

where E(Y ) = 0, V(Y ) = 1, and its Laplace transform is given by

E
(

e−sY
)

=

√
As

sinh
(√

As
)eBs where A =

6
√
5√
2

and B =

√
5√
2
.

In conclusion, in the case of a totally flat potential, the length of a reactive path
goes to infinity at rate 1/ε when ε goes to zero. Again, this is different from the
non-degenerate case of Theorem 1.4 where the length of a reactive path goes to
infinity at a slower rate, namely log(1/ε) (if V ′′(0) = −1).

5.3. Degenerate concave potentials. Between the two extreme situations of Sec-
tion 5.1 (where V ′(0) 6= 0) and Section 5.2 (totally flat potential), the main result
of this paper stated in Theorem 1.4 studies the length of a reactive path for a po-
tential V which is non-degenerate at 0 (also called quadratic case: V ′(0) = 0 but
V ′′(0) 6= 0). In this last section, we briefly discuss some intermediate situations,
when the second derivative of the potential V is equal to 0 at the local maximum 0.
Again, we will see that the asymptotic of the length of the reactive path is very dif-
ferent from the quadratic case of Theorem 1.4. To that end, we focus on monomial
potentials: the potential V is given by

V (x) = − x2n+2

2n+ 2
with n ≥ 1.

We consider the diffusion process (X
(ε)
t )t≥0 solution of

X
(ε)
t = x+

√
2εBt +

∫ t

0

(X(ε)
s )2n+1 ds. (5.2)

As will be explained below, in this case, the length of a reactive path goes to
infinity at rate ε−

n
n+1 when ε goes to zero. Notice that when n goes to infinity,

ε−
n

n+1 tends to 1/ε, which is consistent with the scaling obtained in Section 5.2 for
a totally flat potential.

For convenience, we drop in the sequel the parameter ε. Let us define

tε = ε−
n

n+1 , aε = ε
1

2n+2 , bε =
b

aε
, xε =

x

aε
,

and introduce the process (X̃t)t≥0 defined by

X̃t =
Xtεt

aε
.

The process (X̃t)t≥0 is solution of the stochastic differential equation

X̃t = xε +
√
2Bt +

∫ t

0

X̃2n+1
s ds, (5.3)

and we have that

{Tb < T−b} =
{

T̃bε < T̃−bε

}

,
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with obvious notation. On this event, Tb = tεT̃bε . In Equation (5.3), the parameter
ε only appears in the boundary conditions as in Equation (3.4) for the Ornstein-
Uhlenbeck process. Notice that, in the Ornstein-Uhlenbeck case (n = 0), tε is equal

to 1. As in the Ornstein-Uhlenbeck case, conditionally to the event
{

T̃bε < T̃−bε

}

,

(X̃t)t≥0 is still a Markov process starting from xε and solution of

dYt =
√
2 dBt + fε(Yt)1{T̃bε>t} dt with fε(y) = −V ′(y) + 2

eV (y)

∫ y

−bε
eV (s) ds

.

Our goal is to show that, conditionally to
{

T̃bε < T̃−bε

}

, T̃bε has a limit in law

when ε goes to zero. This will show that Tb (conditionally to the event {Tb < T−b})
scales like ε−

n
n+1 , which is the scaling announced above.

The idea is to compare (Yt)t≥0 to the solution (Zt)t≥0 of the following equation

dZt =
√
2dBt + f(Zt) dt with f(z) = −V ′(z) + 2

eV (z)

∫ z

−∞e
V (s) ds

. (5.4)

The following lemma ensures that (Zt)t≥0 goes to +∞ in a finite (and integrable)
time, even if it ‘starts from −∞’.

Lemma 5.6. If (Zt)t≥0 is solution of Equation (5.4) starting from x ∈ R, then it

goes to +∞ at a (random) finite time τe. Moreover, τe is integrable and it converges
almost surely to an integrable random time when x goes to −∞:

lim
x→−∞

Ex(τe) =

∫ +∞

−∞
(p(+∞)− p(y))m(y) dy < +∞,

where

m(x) = exp

(
∫ x

0

f(z) dz

)

and p(x) =

∫ x

0

exp

(

−
∫ y

0

f(z) dz

)

dy =

∫ x

0

dy

m(y)
.

Proof of Lemma 5.6: The result on the longtime behavior of (Zt)t≥0 is a conse-
quence of the behavior at infinity of the drift f given by Equation (5.4). For any
x < 0, three successive integrations by parts lead to

0 ≤
∫ x

−∞
eV (s) ds+

eV (x)

x2n+1

(

1− 2n+ 1

x2n+2

)

≤ −(2n+ 1)(4n+ 3)
eV (x)

x6n+5
. (5.5)

As a by-product, we get that for any x < −(2n+ 1)
1

2n+2 ,

0 < −x2n+1 ≤ f(x) ≤ −x2n+1

(

2

1− 2n+1
x2n+2

− 1

)

. (5.6)

Let us introduce, for any n ≥ 1,

Cn =

∫ +∞

−∞
eV (s) ds =

∫ +∞

−∞
e

−s2n+2

2n+2 ds.

For any x > 0, we have
∫ x

−∞
eV (s) ds = Cn −

∫ −x

−∞
eV (s) ds,
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so that the previous computations imply that for any x > 0 sufficiently large so

that eV (x)

x2n+1 < Cn, we have

0 < x2n+1 ≤ f(x) ≤ x2n+1 +
2eV (x)

Cn − eV (x)

x2n+1

. (5.7)

A quick inspection of the estimates (5.6) and (5.7) indicates in particular that

f(x) ∼
|x|→+∞

|x|2n+1.

As a consequence, the process (Zt)t≥0 starting from x ∈ R explodes with probability
1 at a (random) finite time τe and Zt → +∞ as t → τe (see for instance Karatzas
and Shreve (1991, ch.6)). In short, this is a straightforward consequence of the
expression of Ex(Ta ∧ Tb) that can be found in Karatzas and Shreve (1991, ch.6)
and the fact that 1/f(x) is integrable at ±∞. Indeed, for any x ∈ (a, b),

Ex(Ta ∧ Tb) = −
∫ x

a

(p(x) − p(y))m(y) dy +
p(x) − p(a)

p(b)− p(a)

∫ b

a

(p(b)− p(y))m(y) dy,

with

m(x) = exp

(
∫ x

0

f(z) dz

)

and p(x) =

∫ x

0

dy

m(y)
.

One has obviously that p(b) → p(+∞) ∈ (0,+∞) as b → +∞, and p(a) → −∞ as
a→ −∞. Thus,

lim
a→−∞
b→+∞

p(x)− p(a)

p(b)− p(a)

∫ b

a

(p(b)−p(y))m(y) dy =

∫ ∞

∞
(p(+∞)−p(y))m(y) dy ∈ (0,+∞].

Now, to show that τe is integrable (including in the limit x→ −∞), we need to
prove that

∫ +∞

−∞
(p(+∞)− p(y))m(y) dy < +∞.

In this aim, let us first notice that for any real number y, we have

(p(+∞)− p(y))m(y) =

(
∫ +∞

y

exp

(

−
∫ x

0

f(s) ds

)

dx

)

× exp

(
∫ y

0

f(s) ds

)

=

∫ +∞

y

exp

(

−
∫ x

y

f(s) ds

)

dx.

From the definition of f , one clearly has f(s) ≥ s2n+1 for any s ∈ R. Hence, for
any y > 0,

0 ≤ (p(+∞)− p(y))m(y) ≤ e
y2n+2

2n+2

∫ +∞

y

e
−x2n+2

2n+2 dx.

The symmetry of the potential V and an integration by parts show that for any
y > 0,

∫ +∞

y

e
−x2n+2

2n+2 dx =

∫ −y

−∞
eV (s) ds ≤ e

−y2n+2

2n+2

y2n+1
,

so that

0 ≤ (p(+∞)− p(y))m(y) ≤ 1

y2n+1
.
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Since n ≥ 1, the integrability of the function y 7→ (p(+∞) − p(y))m(y) when y
tends to +∞ is established. In order to conclude, we have to estimate this quantity
when y goes to −∞ as well. For this, let us first recall that

f(s) ∼
s→−∞

|s|2n+1
,

so that p(+∞)m(y) is clearly integrable when y goes to −∞. The estimation of
the remaining term is slightly more involved. We rewrite it as follows

−p(y)m(y) = −m(y)

∫ y

0

exp(−F (x)) dx,

where for any real number x, we define F (x) as the primitive of f with value 0 at 0

F (x) =

∫ x

0

f(s) ds.

Notice that limx→−∞ F (x) = −∞. Then an integration by parts gives
∫ y

0

exp(−F (x)) dx =
Cn

4
− exp(−F (y)

f(y)
−
∫ y

0

f ′(x)

f(x)2
exp(−F (x)) dx. (5.8)

Next, we focus on the last term of this equation, namely
∫ y

0

f ′(x)

f(x)2
exp(−F (x)) dx.

For this, we first deduce from the definition of f that

f ′(x) = −V ′′(x) + 2
eV (x)

∫ x

−∞e
V (s) ds

(

V ′(x) − eV (x)

∫ x

−∞e
V (s) ds

)

.

From Equation (5.5), we know that

eV (x)

∫ x

−∞e
V (s) ds

∼
x→−∞

|x|2n+1,

and more precisely that

V ′(x)− eV (x)

∫ x

−∞e
V (s) ds

∼
x→−∞

−(2n+ 1)

|x| .

This leads to

f ′(x) ∼
x→−∞

−(2n+ 1)x2n,

and
f ′(x)

f(x)2
exp(−F (x)) ∼

x→−∞
−(2n+ 1)

x2n+2
exp(−F (x)).

From this we deduce
∫ 0

−∞

f ′(x)

f(x)2
exp(−F (x)) dx = −∞.

Since f ′(x)
f(x)2 exp(−F (x)) = o(exp(−F (x))) when x tends to −∞, we have

∫ y

0

f ′(x)

f(x)2
exp(−F (x)) dx =

y→−∞
o

(
∫ y

0

exp(−F (x)) dx
)

,
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and coming back to Equation (5.8) gives the following asymptotics
∫ y

0

exp(−F (x)) dx ∼
y→−∞

− exp(−F (y))
f(y)

,

so that

−m(y)

∫ y

0

exp(−F (x)) dx ∼
y→−∞

1

f(y)
∼

y→−∞
1

|y|2n+1
.

To sum up, we have shown that

∫ +∞

−∞
(p(+∞)− p(y))m(y) dy < +∞.

This ensures that

Ex(τe) = lim
a→−∞
b→+∞

Ex(Ta ∧ Tb)

= −
∫ x

−∞
(p(x) − p(y))m(y) dy +

∫ +∞

−∞
(p(+∞)− p(y))m(y) dy.

In particular, Ex(τe) is finite for any x ∈ R. Finally, by the monotone convergence
theorem, τe has a limit almost surely when x→ −∞ and

lim
x→−∞

Ex(τe) =

∫ +∞

−∞
(p(+∞)− p(y))m(y) dy < +∞.

This concludes the proof of Lemma 5.6. �

Thanks to Lemma 5.6, we see that TZ
a→b converges almost surely to a positive

and integrable random variable TZ
∞ as a→ −∞ and b→ +∞. Moreover,

E(TZ
∞) =

∫ +∞

−∞
(p(+∞)− p(y))m(y) dy < +∞.

Now, notice that the drift fε that drives Y is greater than f . This ensures that
if Z0 = Y0 then, almost surely, Zt ≤ Yt, for any t ∈ [0, T̃bε). As a consequence,
for any x ∈ (−bε, b), one has T Y

x→b ≤ TZ
x→b. By monotone convergence, T Y

xε→bε
converges to a random variable which is integrable since

E
(

T Y
xε→bε

)

≤ E
(

TZ
∞
)

<∞.

To prove this result with full details, one would need to cut reactive trajectories
into pieces, as done in Section 4 above for the quadratic case. This concludes the

proof of the fact that T̃bε , conditionally to
{

T̃bε < T̃−bε

}

, has a limit in law when

ε goes to zero, and consequently, that Tb (conditionally to the event {Tb < T−b})
scales like ε−

n
n+1 .
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Probability and its Applications. Birkhäuser Verlag, Basel, second edition (2002).
ISBN 3-7643-6705-9. MR1912205.

A. Bovier, M. Eckhoff, V. Gayrard and M. Klein. Metastability in reversible diffu-
sion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math.
Soc. (JEMS) 6 (4), 399–424 (2004). MR2094397.

L. Breiman. First exit times from a square root boundary. In Proc. Fifth Berke-
ley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II:
Contributions to Probability Theory, Part 2, pages 9–16. Univ. California Press,
Berkeley, Calif. (1967). MR0212865.
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via approximations. Probab. Theory Related Fields 105 (2), 143–158 (1996).
MR1392450.

G. Hummer. From transition paths to transition states and rate coefficients. J.
Chem. Phys. 120 (2), 516–523 (2004). DOI: 10.1063/1.1630572.

http://www.ams.org/mathscinet-getitem?mr=MR0167642
http://www.ams.org/mathscinet-getitem?mr=MR2411523
http://arxiv.org/abs/1106.5799
http://www.ams.org/mathscinet-getitem?mr=MR2039489
http://www.ams.org/mathscinet-getitem?mr=MR1912205
http://www.ams.org/mathscinet-getitem?mr=MR2094397
http://www.ams.org/mathscinet-getitem?mr=MR0212865
http://dx.doi.org/10.1063/1.3518708
http://www.ams.org/mathscinet-getitem?mr=MR1110156
http://www.ams.org/mathscinet-getitem?mr=MR1175267
http://www.ams.org/mathscinet-getitem?mr=MR1376805
http://www.ams.org/mathscinet-getitem?mr=MR2089952
http://www.ams.org/mathscinet-getitem?mr=MR1652127
http://www.ams.org/mathscinet-getitem?mr=MR1392450
http://dx.doi.org/10.1063/1.1630572


On the length of one-dimensional reactive paths 389

I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, volume 113
of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition
(1991). ISBN 0-387-97655-8. MR1121940.

J. Lu and J. Nolen. Reactive trajectories and the transition path process. ArXiv
Mathematics e-prints (2013). arXiv: 1303.1744.

S. Luccioli, A. Imparato, S. Mitternacht, A. Irbck and A. Torcini. Unfolding times
for proteins in a force clamp. Phys Rev E Stat Nonlin Soft Matter Phys 81, (1
Pt 1):010902 (2010). DOI: 10.1103/PhysRevE.81.010902.

R. S. Maier and D. L. Stein. Limiting exit location distributions in the stochastic
exit problem. SIAM J. Appl. Math. 57 (3), 752–790 (1997). MR1450848.

J.-L. Marchand. Conditioning diffusions with respect to partial observations. ArXiv
Mathematics e-prints (2011). arXiv: 1105.1608.

G. Menz and A. Schlichting. Spectral gap estimates at low temperature by
decomposition of the energy landscape. ArXiv Mathematics e-prints (2012).
arXiv: 1202.1510.

D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin (1991). MR1083357.

Roberto H. Schonmann. The pattern of escape from metastability of a stochastic
Ising model. Comm. Math. Phys. 147 (2), 231–240 (1992). MR1174411.

A. Ju. Veretennikov. Strong solutions and explicit formulas for solutions of sto-
chastic integral equations. Mat. Sb. (N.S.) 111(153) (3), 434–452, 480 (1980).
MR568986.

http://www.ams.org/mathscinet-getitem?mr=MR1121940
http://arxiv.org/abs/1303.1744
http://dx.doi.org/10.1103/PhysRevE.81.010902
http://www.ams.org/mathscinet-getitem?mr=MR1450848
http://arxiv.org/abs/1105.1608
http://arxiv.org/abs/1202.1510
http://www.ams.org/mathscinet-getitem?mr=MR1083357
http://www.ams.org/mathscinet-getitem?mr=MR1174411
http://www.ams.org/mathscinet-getitem?mr=MR568986

	1. Introduction and main results
	1.1. Motivation and presentation of reactive paths
	1.2. The one-dimensional setting and our main results

	2. Classical tools
	2.1. Laplace transform of the exit time
	2.2. The h-transform of Doob

	3. Main example: the repulsive Ornstein-Uhlenbeck process
	4. The general (strictly convex) case
	4.1. Going down is easy
	4.2. The climbing period
	4.3. Central behavior
	4.4. Conclusion

	5. Other examples
	5.1. Brownian motion with drift
	5.2. Totally flat potential
	5.3. Degenerate concave potentials

	Acknowledgements
	References

