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Abstract. A well-known problem in Malliavin calculus concerns the relation be-
tween the determinant of the Malliavin matrix of a random vector and the deter-
minant of its covariance matrix. We give an explicit relation between these two
determinants for couples of random vectors of multiple integrals. In particular, if
the multiple integrals are of the same order and this order is at most 4, we prove
that two random variables in the same Wiener chaos either admit a joint density, ei-
ther are proportional and that the result is not true for random variables in Wiener
chaoses of different orders.

1. Introduction

The original motivation of the Malliavin calculus was to study the existence and
the regularity of the densities of random variables. In this research direction, the
determinant of the so-callled Malliavin matrix plays a crucial role.

We give here an explicit formula that connects the determinant of the Malli-
avin matrix and the determinant of the covariance matrix of a couple of multiple
stochastic integrals. This is related to two open problems stated in Nourdin et al.
(2012). In this reference, the authors showed that, if F = (F1, .., Fd) is a random
vector whose components belong to a finite sum of Wiener chaoses, then the law of
F is not absolutely continuous with respect to the Lebesque measure if and only if
E detΛ = 0. Here Λ denotes the Malliavin matrix of the vector F . In particular,
they proved that a couple of multiple integrals of order 2 either admits a density
or its components are proportional.
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They stated two open questions (Questions 6.1 and 6.2 in Nourdin et al. (2012),
arXiv version): if C is the covariance matrix and Λ the Malliavin matrix of a vector
of multiple stochastic integrals,

• is there true that E detΛ ≥ cdetC, with c > 0 an universal constant?
• is there true that the law of a two dimensional vector of multiple integrals
with components in the same Wiener chaos is either absolutely continuous
with respect to the Lesque measure or its components are proportional?

We make a first step in order to answer to these two open problems. Actually,
we find an explicit relation that connects the two determinants. In particular, if
the multiple integrals are of the same order and this order is at most 4, we prove
that two random variables in the same Wiener chaos either admit a joint density,
either are proportional. The basic idea is to write the Malliavin matrix as a sum
of squares and to compute the dominant term of its determinant.

We organized our paper as follows. Section 2 contains some preliminaries on
analysis on Wiener chaos. Section 3 is devoted to express the Malliavin matrix as
the sum of the squares of some random variables and in Section 4 we derive an
explicit formula for the determinant of Λ which also involves the determinant of
the covariance matrix. In Section 5 we discuss the existence of the joint density of
a vector of multiple integrals.

2. Preliminaries

We briefly describe the tools from the analysis on Wiener space that we will
need in our work. For complete presentations, we refer to Nualart (2006) or Nour-
din and Peccati (2012). Let H be a real and separable Hilbert space and con-
sider (W (h), h ∈ H) an isonormal process. That is, (W (h), h ∈ H) is a family of
centered Gaussian random variables on the probability space (Ω,F , P ) such that
EW (h)W (g) = 〈f, g〉H for every h, g ∈ H. Assume that the σ-algebra F is gener-
ated by W .

Denote, for n ≥ 0, by Hn the nth Wiener chaos generated by W . That is, Hn

is the vector subspace of L2(Ω) generated by (Hn(W (h)), h ∈ H, ‖h‖ = 1) where
Hn the Hermite polynomial of degree n. For any n ≥ 1, the mapping In(h

⊗n) =
Hn(W (h)) can be extended to an isometry between the Hilbert space H⊗n endowed

with the norm
√
n!‖ · ‖H⊗n and the nth Wiener chaos Hn. The random variable

In(f) is called the multiple Wiener Itô integral of f with respect to W .
Consider (ej)j≥1 a complete orthonormal system in H and let f ∈ H⊗n, g ∈

H⊗m be two symmetric functions with n,m ≥ 1. Then

f =
∑

j1,..,jn≥1

λj1,..,jnej1 ⊗ ...⊗ ejn (2.1)

and

g =
∑

k1,..,km≥1

βk1,..,kmek1 ⊗ ..⊗ ekm (2.2)

where the coefficients λi and βj satisfy λjσ(1),...jσ(n)
= λj1,..,jn and βkπ(1),...,kπ(m)

=

βk1,..,km for every permutation σ of the set {1, ..., n} and for every permutation π of
the set {1, ..,m}. Actually λj1,..,jn = 〈f, ej1 ⊗ ...⊗ ejn〉 and βk1,..,km = 〈g, ek1 ⊗ ..⊗
ekm〉 in (2.1) and (2.2). Note that, throughout the paper we will use the notation
〈·, ·〉 to indicate the scalar product in H⊗k, independently of k.
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If f ∈ H⊗n, g ∈ H⊗m are symmetric given by (2.1), (2.2) respectively, then the
contraction of order r of f and g is given by

f ⊗r g =
∑

i1,..,ir≥1

∑
j1,..,jn−r≥1

∑
k1,..,km−r≥1

λi1,..,ir,j1,..,jn−r
βi1,..,ir,k1,..,km−r

×
(
ej1 ⊗ ..⊗ ejn−r

)
⊗
(
ek1 ⊗ ..⊗ ekm−r

)
(2.3)

for every r = 0, ..,m ∧ n. In particular f ⊗0 g = f ⊗ g. Note that f ⊗r g belongs
to H⊗(m+n−2r) for every r = 0, ..,m ∧ n and it is not in general symmetric. We
will denote by f⊗̃rg the symmetrization of f ⊗r g. In the particular case when
H = L2(T,B, µ) where µ is a sigma-finite measure without atoms, (2.3) becomes

(f ⊗r g)(t1, .., tm+n−2r)

=

∫
T r

dµ(u1)..dµ(ur)f(u1, .., ur, t1, .., tn−r)g(u1, .., ur, tn−r+1, .., tm+n−2r). (2.4)

An important role will be played by the following product formula for multiple
Wiener-Itô integrals: if f ∈ H⊗n, g ∈ H⊗m are symmetric, then

In(f)Im(g) =

m∧n∑
r=0

r!Cr
mCr

nIm+n−2r

(
f⊗̃rg

)
. (2.5)

We will need the concept of Malliavin derivative D with respect to W , but we will
use only its action on Wiener chaos. In order to avoid too many details, we will
just say that, if f is given by (2.1) and In(f) denotes its multiple integral of order
n with respect to W , then

DIn(f) = n
∑

j1,..,jn≥1

λj1,..,jnIn−1 (ej2 ⊗ ..⊗ ejn) ej1 .

If F,G are two random variables which are differentiable in the Malliavin sense,
we will denote throughout the paper by C the covariance matrix and by Λ the
Malliavin matrix of the random vector (F,G). That is,

Λ =

(
‖DF‖2 〈DF,DG〉

〈DF,DG〉 ‖DF‖2
)
.

3. The Malliavin matrix as a sum of squares

In this section we will express the determinant of the Malliavin matrix of a
random couple as a sum of squares of certain random variables. This will be useful
in order to derive the exact formula for the determinant of the Malliavin matrix and
its connection with the determinant of the covariance matrix for a given random
vector of dimension 2.

Let f ∈ H⊗n and g ∈ H⊗m be given by (2.1) and (2.2) respectively, with
n,m ≥ 1. Let F = In(f), G = Im(g) denote the multiple Wiener-Itô integrals of f
and g with respect to W respectively. Then

In(f) =
∑

j1,..,jn≥1

λj1,..,jnIn (ej1 ⊗ ...⊗ ejn) (3.1)

and

Im(g) =
∑

k1,..,km≥1

βk1,..,kmIm (ek1 ⊗ ..⊗ ekm) . (3.2)
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From (3.1) and (3.2) we have

DF = n
∑

j1,..,jn≥1

λj1,..,jnIn−1 (ej2 ⊗ ..⊗ ejn) ej1

and
DG = m

∑
k1,..,km≥1

βk1,..,km
Im−1 (ek2

⊗ ..⊗ ekm
) ek1

.

This implies

‖DF‖2 = n2
∑
i≥1

∑
j2,..,jn≥1

∑
k1,..,kn≥1

λi,j2,..,jnλi,k2,..,knIn−1 (ej2 ⊗ ..⊗ ejn)

× In−1 (ek2 ⊗ ..⊗ ekn)

and

‖DG‖2 = m2
∑
l≥1

∑
l,j2,..,jn≥1

∑
l,k2,..,kn≥1

βl,j2,..,jmβl,k2,..,km
Im−1 (ej2 ⊗ ..⊗ ejm)

× Im−1 (ek2 ⊗ ..⊗ ekm)

and

〈DF,DG〉 = nm
∑
i≥1

∑
j2,..,jn≥1

∑
k1,..,km≥1

λi,j2,..,jnβi,j1,..,jmIn−1 (ej2 ⊗ ..⊗ ejn)

× Im−1 (ek2 ⊗ ..⊗ ekm) .

Let us make the following notation. For every i ≥ 1, let

Si,f = n〈DF, ei〉 = n
∑

j2,..,jn≥1

λi,j2,..,jnIn−1 (ej2 ⊗ ..⊗ ejn) (3.3)

and
Si,g = m〈DG, ei〉 = m

∑
k2,..,km≥1

βi,k2,..,kmIm−1 (ek2 ⊗ ..⊗ ekm) . (3.4)

We can write

‖DF‖2 =
∑
i≥1

S2
i,f , ‖DG‖2 =

∑
l≥1

S2
l,g, 〈DF,DG〉 =

∑
i≥1

Si,fSi,g

and

det(Λ) = ‖DF‖2‖DG‖2 − 〈DF,DG〉2 =
∑
i,l≥1

S2
i,fS

2
l,g −

∑
i≥1

Si,fSi,g

2

.

A key observation is that

∑
i,l≥1

S2
i,fS

2
l,g −

∑
i≥1

Si,fSi,g

2

=
1

2

∑
i,l≥1

(Si,fSl,g − Sl,fSi,g)
2
. (3.5)

We obtained

Proposition 3.1. The determinant of the Malliavin matrix Λ of the vector (F,G) =
(In(f), Im(g)) can be expressed as

detΛ =
1

2

∑
i,l≥1

(Si,fSl,g − Sl,fSi,g)
2
=

1

2

∑
i,l≥1

(〈DF, ei〉〈DG, el〉 − 〈DF, el〉〈DG, ei〉)2
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where Si,f , Si,g are given by (3.3) and (3.4) respectively.

4. The determinant of the Malliavin matrix on Wiener chaos

Fix n,m ≥ 1 and f, g in H⊗n,H⊗m respectively defined by (2.1) and (2.2).
Consider the random vector (F,G) = (In(f), Im(g)) and denote by Λ its Malliavin
matrix and by C its covariance matrix.

Let us compute E detΛ. Denote, for every i, l ≥ 1

si,f = n(f ⊗1 ei) = n
∑

j2,..,jm≥1

λi,j2,..,jnej2 ⊗ ..⊗ ejn (4.1)

and

sl,g = m(g ⊗l el) = m
∑

k2,..,km≥1

βl.k2,..,kmek2 ⊗ ..⊗ ekm . (4.2)

Clearly, for every i, l ≥ 1

Si,f = In−1(si,f ), Si,g = Im−1(si,g). (4.3)

The following lemma plays a key role in our construction.

Lemma 4.1. If f ∈ H⊗n and g ∈ H⊗m are given by (2.1) and (2.2) respectively
and si,f , si,g by (4.1), (4.2) respectively, then for every r = 0, .., (n ∧m)− 1

f ⊗r+1 g =
1

nm

∑
i≥1

(si,f ⊗r si,g) .

Proof : From relations (4.1) and (4.2), we have

1

nm

∑
i≥1

(si,f ⊗r si,g) =
∑
i≥1

(f ⊗1 ei)⊗r (g ⊗1 ei) = f ⊗r+1 g.

�

We make a first step to compute E detΛ.

Lemma 4.2. Let f ∈ H⊗n, g ∈ H⊗m be symmetric and denote by Λ the Malliavin
matrix of the vector (F,G) = (In(f), Im(g)). Then we have

E detΛ =

(n−1)∧(m−1)∑
k=0

Tk

where we denote, for k = 0, .., (m− 1) ∧ (n− 1),

Tk :=
1

2

∑
i,l≥1

k!2
(
Ck

m−1

)2 (
Ck

m−1

)2
(m+n−2−2k)!‖si,f ⊗̃ksl,g−sl,f ⊗̃ksi,g‖2 (4.4)

and si,f , si,g are given by (4.1), (4.2) for i ≥ 1.

Proof : By Proposition 3.1 and relation (4.3)

2 detΛ =
∑
i,l≥1

(In−1(si,f )Im−1(sl,g)− In−1(sl,f )Im−1(si,g))
2

=
∑
i,l≥1

(m−1)∧(n−1)∑
k=0

k!Ck
m−1C

k
n−1Im+n−2−2k

(
si,f ⊗̃ksl,g − sl,f ⊗̃ksi,g

)2
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where we used the the product formula (2.5). Consequently, from the isometry of
multiple stochastic integrals,

E detΛ =
1

2

∑
i,l≥1

(n−1)∧(m−1)∑
k=0

k!2
(
Ck

m−1

)2 (
Ck

n−1

)2
(m+ n− 2− 2k)!

×‖si,f ⊗̃ksl,g − sl,f ⊗̃ksi,g‖2

=

(n−1)∧(m−1)∑
k=0

Tk.

�

For every n,m ≥ 1 let us denote by

Rn,m :=

(n−1)∧(m−1)∑
k=1

Tk, Rn := Rn,n. (4.5)

Remark 4.3. Obviously all the terms Tk above are positive, for k = 0, .., (n − 1) ∧
(m− 1).

We will need two more auxiliary lemmas.

Lemma 4.4. Assume f1, f3 ∈ H⊗n and f2, f4 ∈ H⊗m are symmetric functions.
Then for every r = 0, .., (m− 1) ∧ (n− 1) we have

〈f1 ⊗n−r f3, f2 ⊗m−r f4〉 = 〈f1 ⊗r f2, f3 ⊗r f4〉.

Proof : It follows easily from (2.3). �
Lemma 4.5. Suppose f1, f4 ∈ H⊗n, f2, f3 ∈ H⊗m are symmetric functions. Then

〈f1⊗̃f2, f3⊗̃f4〉 =
m!n!

(m+ n)!

m∧n∑
r=0

Cr
nC

r
m〈f1 ⊗r f3, f4 ⊗r f2〉.

Proof : This has been stated and proven in Nourdin and Rosinski (2013, to appear)
in the case m = n. Exactly the same lines of the proofs apply for m 6= n. �

We first compute the term T0 obtained for k = 0 in (4.4).

Proposition 4.6. Let T0 be given by (4.4) with k = 0.

T0 =

(n−1)∧(m−1)∑
r=0

mnm!n!Cr
n−1C

r
m−1

[
‖f ⊗r g‖2 − ‖f ⊗r+1 g‖2

]
.

Proof : From (4.4),

T0 =
1

2
(m+ n− 2)!

∑
i,l≥1

‖si,f ⊗̃sl,g − sl,f ⊗̃si,g‖2

=
1

2
(m+ n− 2)!

∑
i,l≥1

[
‖si,f ⊗̃sl,g‖2 + ‖sl,f ⊗̃si,g‖2 − 2〈si,f ⊗̃sl,g, sl,f ⊗̃si,g〉

]
.

Let us apply Lemma 4.5 to compute these norms and scalar products. We obtain,
by letting f1 = si,f = f4 and f2 = sl,g = f3 (note that si,f , si,g are symmetric
functions in H⊗n,H⊗m respectively)
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(m+ n− 2)!〈si,f ⊗̃sl,g, si,f ⊗̃sl,g〉
= (m+ n− 2)!〈si,f ⊗̃sl,g, sl,g⊗̃si,f 〉

= (m− 1)!(n− 1)!

(n−1)∧(m−1)∑
r=0

Cr
n−1C

r
m−1〈si,f ⊗r sl,g, si,f ⊗r sl,g〉

= (m− 1)!(n− 1)!

(n−1)∧(m−1)∑
r=0

Cr
n−1C

r
m−1‖si,f ⊗r sl,g‖2.

Analogously, for f1 = sl,f = f4 and f2 = si,g = f3 in Lemma 4.5 we get

(m+ n− 2)!〈sl,f ⊗̃si,g, sl,f ⊗̃si,g〉

=

(n−1)∧(m−1)∑
r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1‖sl,f ⊗r si,g‖2.

Next, with f1 = si,f , f2 = sl,g, f4 = sl,f , f3 = si,g

(m+ n− 2)!〈si,f ⊗̃sl,g, sl,f ⊗̃si,g〉
= (m+ n− 2)!〈si,f ⊗̃sl,g, si,g⊗̃sl,f 〉

=

(n−1)∧(m−1)∑
r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1〈si,f ⊗r si,g, sl,f ⊗r sl,g〉.

Then

(m+ n−2)!
∑
i,l≥1

‖si,f ⊗̃sl,g − sl,f ⊗̃si,g‖2

=

(n−1)∧(m−1)∑
r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1

×
∑
i,l≥1

[
‖sl,f ⊗r si,g‖2 + ‖si,f ⊗r sl,g‖2 − 2〈si,f ⊗r si,g, sl,f ⊗r sl,g〉

]
= 2

(n−1)∧(m−1)∑
r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1

×
∑
i,l≥1

[
‖si,f ⊗r sl,g‖2 − 〈si,f ⊗r si,g, sl,f ⊗r sl,g〉

]
= 2

(n−1)∧(m−1)∑
r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1

×

∑
i,l≥1

‖si,f ⊗r sl,g‖2 − 〈
∑
i≥1

si,f ⊗r si,g,
∑
l≥1

sl,f ⊗r sl,g〉


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= 2

(n−1)∧(m−1)∑
r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1

×

∑
i,l≥1

‖si,f ⊗r sl,g‖2 − ‖
∑
i≥1

si,f ⊗r si,g‖2
 . (4.6)

Notice that, by Lemma 4.1, for every r = 0, .., n− 1

‖
∑
i≥1

(si,f ⊗r si,g)‖2 = n2m2‖f ⊗r+1 g‖2. (4.7)

We apply now Lemma 4.4 and we get∑
i,l≥1

‖si,f ⊗r sl,g‖2 =
∑
i,l≥1

〈si,f ⊗r sl,g, si,f ⊗r sl,g〉

=
∑
i,l≥1

〈si,f ⊗n−1−r si,f , sl,g ⊗m−1−r sl,g〉

= 〈
∑
i≥1

〈(si,f ⊗n−1−r si,f ),
∑
l≥1

(sl,g ⊗m−r−1 sl,g)〉

and by Lemma 4.1 and Lemma 4.4, this equals∑
i,l≥1

‖si,f ⊗r sl,g‖2 = n2m2〈f ⊗n−r f, g ⊗m−r g〉

= n2m2‖f ⊗r g‖2. (4.8)

By replacing (4.7) and (4.8) in (4.6) we obtain

T0 =
1

2
(m+ n− 2)!

∑
i,l≥1

‖si,f ⊗̃sl,g − sl,f ⊗̃si,g‖2

=

(n−1)∧(m−1)∑
r=0

mnm!n!Cr
n−1C

r
m−1

[
‖f ⊗r g‖2 − ‖f ⊗r+1 g‖2

]
.

�

Let us state the main results of this section.

Theorem 4.7. Let f ∈ H⊗n, g ∈ H⊗m(n,m ≥ 1) be symmetric and denote by Λ
the Malliavin matrix of the vector (F,G) = (In(f), Im(g)). Then

E detΛ =

(n−1)∧(m−1)∑
r=0

mnm!n!Cr
n−1C

r
m−1

[
‖f ⊗r g‖2 − ‖f ⊗r+1 g‖2

]
+Rn,m

where for every n,m ≥ 1, Rn,m is given by (4.5). Note that Rn,m ≥ 0 for every
n,m ≥ 1.

Proof : It follows from Proposition 4.6 and Lemma 4.2. �

In the case when the two multiple integrals live in the same Wiener chaos, we
have a nicer expression.
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Theorem 4.8. Under the same assumptions as in Theorem 4.7 but with m = n,
we have

E detΛ =

m2 detC + (mm!)2
[m−1

2 ]∑
r=1

(
(Cr

m−1)
2 − (Cr−1

m−1)
2
) (

‖f ⊗r g‖2 − ‖f ⊗n−r g‖2
)
+Rm

with Rm given by (4.5). Here [x] denotes the integer part of x.

Proof : Suppose n ≤ m and that m is odd. The case m even is similar. From
Theorem 4.7 we have

E detΛ = (mm!)2

[
m−1∑
r=0

(
Cr

m−1

)2 ‖f ⊗r g‖2 −
m−1∑
r=0

(
Cr

m−1

)2 ‖f ⊗r+1 g‖2
]

= (mm!)2

m−1
2∑

r=0

(
Cr

m−1

)2 ‖f ⊗r g‖2 −
m−1∑

r=m−1
2

(
Cr

m−1

)2 ‖f ⊗r+1 g‖2


+(mm!)2

m−1∑
m−1

2

(
Cr

m−1

)2 ‖f ⊗r g‖2 −

m−1
2∑

r=0

(
Cr

m−1

)2 ‖f ⊗r+1 g‖2


= (mm!)2

m−1
2∑

r=0

(
Cr

m−1

)2 [‖f ⊗r g‖2 − ‖f ⊗n−r g
]

+(mm!)2

m−1
2∑

r=1

(
Cr−1

m−1

)2 [‖f ⊗n−r g‖2 − ‖f ⊗r g‖2
]

where we made the change of index r′ = n − 1 − r in the second and third sum
above. Finally, noticing that for r = 0 we have

m2m!2
(
C0

m−1

)2 [‖f ⊗0 g‖2 − ‖f ⊗n g‖
]
= m2 detC

we obtain the conclusion. �

Example 4.9. Suppose m = n = 2. Then

E detΛ = 16
[
‖f ⊗ g‖2 − ‖f ⊗2 g‖2

]
+R2

= 4detC +R2.

We retrieve the formula in Nourdin et al. (2012) with
R2 = 32

(
‖f ⊗1 g‖2 − ‖f⊗̃1g‖2

)
.

Assume m = n = 3. Then

E detΛ = 9× 36
[(
‖f ⊗ g‖2 − ‖f ⊗3 g‖2

)
+9× 36×

(
(C1

2 )
2 − 1

) (
‖f ⊗1 g‖2 − ‖f ⊗2 g‖2

)]
+R3

= 9detC + 9× 36× 3
(
‖f ⊗1 g‖2 − ‖f ⊗2 g‖2

)
+R3.

Suppose m = n = 4. Then

E detΛ = 16 detC + 16× 4!× 4!
(
(C1

3 )
2 − 1

) (
‖f ⊗1 g‖2 − ‖f ⊗3 g‖2

)
+R4.
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5. Densities of vectors of multiple integrals

Let us discuss when a couple of multiple stochastic integrals has a law which is
absolutely continuous with respect to the Lebesque measure. The situations when
the components of the vector are in the same chaos of in chaoses of different orders
need to be separated.

Let us first discuss the case of variables in the same chaos. In order better
understand the relation between detΛ and detC we need more information on the
terms Rm in Theorem 4.8. It is actually possible to compute the last term Tm−1

in (4.4).

Proposition 5.1. Suppose m = n and let Tm−1 be the term obtained in (4.4) for
k = m− 1. Then

Tm−1 = m2m!2
[
‖f ⊗m−1 g‖2 − 〈f ⊗1 g, g ⊗1 f〉

]
.

Proof : From (4.4),

Tm−1 =
1

2

∑
i,l≥1

(m− 1)!2‖si,f ⊗̃m−1sl,g − sl,f ⊗̃m−1si,g‖2

=
1

2

∑
i,l≥1

(m− 1)!2‖si,f ⊗m−1 sl,g − sl,f ⊗m−1 si,g‖2

=
1

2

∑
i,l≥1

(m− 1)!2 [〈si,f , sl,g〉 − 〈sl,f , si,g〉]2

= (m− 1)!2

∑
i,l≥1

〈si,f , sl,g〉2 −
∑
i,l≥1

〈si,f , sl,g〉〈sl,f , si,g〉


= (m− 1)!2

∑
i,l≥1

〈si,f ⊗ si,f , sl,g ⊗ sl,g〉 −
∑
i,l≥1

〈si,f ⊗ si,g, sl,g ⊗ sl,f 〉


= (m− 1)!2m4 [〈f ⊗1 f, g ⊗1 g〉 − 〈f ⊗1 g, g ⊗1 f〉]
= m2m!2

[
‖f ⊗m−1 g‖2 − 〈f ⊗1 g, g ⊗1 f〉

]
where we applied Lemmas 4.4 and 4.1. �

We first answer the open problem 6.2 in Nourdin et al. (2012) for chaoses of
order lesser than five.

Theorem 5.2. Let m ≤ 4 and let f, g ∈ H⊗m be symmetric. Then the random
vector (F,G) = (Im(f), Im(g)) does not admit a density if and only if

detC = 0.

In other words, the vector (F,G) does not admit a density if and only if its compo-
nents are proportional.

Proof : The case m = n = 1 is obvious and the case m = n = 2 follows from
Nourdin et al. (2012) (it also follows from Example 4.9). Suppose m = n = 3.
Then

E detΛ = 9detC + 9× 36×
(
(C1

2 )
2 − 1

) [
‖f ⊗1 g‖2 − ‖f ⊗2 g‖2

]
+9× 36

[
‖f ⊗2 g‖2 − 〈f ⊗2 g, g ⊗2 f〉

]
+R′

3
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where R′
3 is the term with k = 1 in (4.4). Using 〈f ⊗1 g, g ⊗1 f〉 = 〈f ⊗2 g, g ⊗2 f〉

(Lemma 4.4) we get

E detΛ = 9detC + 9× 36× 3
[
‖f ⊗1 g‖2 − 〈f ⊗1 g, g ⊗1 f〉

]
−9× 36× 2

[
‖f ⊗2 g‖2 − 〈f ⊗2 g, g ⊗2 f〉

]
+R′

3.

Suppose detΛ = 0. Then T0, T1, T2 from (4.4) vanish. In particular T2 = 0 in (4.4)
and so

‖f ⊗2 g‖2 − 〈f ⊗2 g, g ⊗2 f〉 = 0.

This implies

9 detC + 9× 36× 3
[
‖f ⊗1 g‖2 − 〈f ⊗1 g, g ⊗1 f〉

]
= 0

and therefore detC = 0 because ‖f ⊗1 g‖2 −〈f ⊗1 g, g⊗1 f〉 is positive by Cauchy-
Schwarz.

Suppose m = n = 4.

E detΛ = 16 detC + 16× 4!2
(
(C1

3 )
2 − 1

) [
‖f ⊗1 g‖2 − ‖f ⊗3 g‖2

]
+16× 4!2

[
‖f ⊗3 g‖2 − 〈f ⊗3 g, g ⊗3 f〉

]
+R′

4

where R′
4 is the sum of terms obtained for k = 1 and k = 2 in (4.4). Since

〈f ⊗3 g, g ⊗3 f〉 = 〈f ⊗1 g, g ⊗1 f〉(Lemma 4.4) we get

E detΛ = 16 detC + 16× 4!2
(
(C1

3 )
2 − 1

) [
‖f ⊗1 g‖2 − 〈f ⊗1 g, g ⊗1 f〉

]
−16× 4!2

(
(C1

3 )
2 − 2

) [
‖f ⊗3 g‖2 − 〈f ⊗3 g, g ⊗3 f〉

]
+R′

4.

Assume detΛ = 0. Then in particular T3 from (4.4) vanishes. So

‖f ⊗3 g‖2 − 〈f ⊗3 g, g ⊗3 f〉 = 0

and this implies detC = 0. �

Remark 5.3. For m = n ≥ 5, we have

E detΛ = 25 detC + 25× 5!2
(
(C1

4 )
2 − 1

) [
‖f ⊗1 g‖2 − ‖f ⊗4 g‖2

]
+25× 5!2

(
(C2

4 )
2 − 1

) [
‖f ⊗2 g‖2 − ‖f ⊗3 g‖2

]
+25× 5!2

[
‖f ⊗4 g‖2 − 〈f ⊗4 g, g ⊗4 f〉

]
+R′

5

If det Λ = 0 then, since T4 vanishes, we get that ‖f⊗4g‖2−〈f⊗4g, g⊗4f〉 vanishes.
But this is not enough. We need some additional information in order to handle the
difference ‖f ⊗2 g‖2−‖f ⊗3 g‖2. One possibility is to look to the terms T1, T2, T3 in
(4.4) but these terms cannot be written in a closed form, since they involve more
complicated contractions (some ”contractions of contractions”).

Let us finish by some comments concerning the case of variables in chaoses of
different orders. Consider (F,G) = (In(f), Im(g)) with n 6= m. First, let us note
that E detΛ = 0 does not imply detC = 0. This can be viewed by considering the
following example.

Example 5.4. Take F = I1(h) and G = I2(h
⊗2) where ‖h‖ = 1. In this case

detC = 2 and detΛ = 0.

One can also choose F = In(h
⊗n) and G = Im(h⊗m) with m 6= n and ‖h‖ = 1.
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In the case (In(f), I1(g)) there is only one term in (4.4) obtained for k = 0. It
reads

T0 = nn!
[
‖f ⊗2 g‖2 − ‖f ⊗1 g‖2

]
.

and therefore the condition for the existence of the joint density is ‖f⊗2 g‖2−‖f⊗1

g‖2 > 0.
The case (In(f), I2(g)) is more complicated and needs new ideas in order to

obtain the if and only if condition for the existence of the density of the vector.
Even the ”last term”in (4.4) (that is, the term obtained for k = (m− 1) ∧ (n− 1)
cannot be written is a nice form.
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