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Abstract. We study the asymptotic behavior of the number of cuts X(Tn) needed
to isolate the root in a rooted binary random tree Tn with n leaves. We focus on
the case of subtrees of the Continuum Random Tree generated by uniform sampling
of leaves. We elaborate on a recent result by Abraham and Delmas, who showed
that X(Tn)/

√
2n converges a.s. towards a Rayleigh-distributed random variable

Θ, which gives a continuous analog to an earlier result by Janson on conditioned,
finite-variance Galton-Watson trees. We prove a convergence in distribution of
n−1/4(X(Tn)−

√
2nΘ) towards a random mixture of Gaussian variables. The proofs

use martingale limit theor y for random processes defined on the CRT, related to
the theory of records of Poisson point processes.

1. Introduction

The Continuum Random Tree (CRT) is a random metric measure space, intro-
duced by Aldous (Aldous (1991)) as a scaling limit of various discrete random tree
models. In particular, if we consider µ, a critical probability measure on N, with
variance 0 < σ2 < ∞ and if we consider a random Galton-Watson tree Tn with off-
spring distribution µ, conditioned on having n vertices, then we have the following
convergence in distribution:

lim
n→∞

σ√
n

Tn = T , (1.1)

in the sense of Gromov-Hausdorff convergence of compact metric spaces (see for
instance Duquesne and Le Gall (2005) for more information about the Gromov-
Hausdorff topology), where T is a CRT. The family of conditioned Galton-Watson
trees turns out to be quite large, since it contains for instance uniform rooted
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planar binary trees (take µ(0) = µ(2) = 1/2) or uniform rooted labelled trees
(Cayley trees, take µ(k) = e1/k!, k ≥ 0). There is a combinatorial characterization
of conditioned Galton-Watson trees: they correspond to the class of so-called simply
generated trees (see Janson (2012) for a detailed survey).

In their 1970 paper (Meir and Moon (1970)), Meir and Moon considered the
problem of isolating the root through uniform cuts in random Cayley trees. The
problem is as follows: start with a rooted discrete tree Tn, having exactly n edges
(in our context, rooted means that, among the n + 1 vertices of Tn, one has been
distinguished). At each step, remove an edge, selected uniformly among all edges,
then discard the connected component not containing the root. This procedure is
iterated on the remaining tree until the root is the only remaining vertex. The
number X(Tn) of cuts that is needed to isolate the root is random, with values in
{1, . . . , n}.

Meir and Moon showed that when Tn is a uniform Cayley tree with n edges,

E[X(Tn)] ∼
√

πn/2 and Var(X(Tn)) ∼ (2 − 1/π)n.

Later, the limiting distribution was found to be the Rayleigh distribution (the
distribution on [0, ∞) with density x exp(−x2/2)dx) by Panholzer f or (a subset of)
the class of simply generated trees (Panholzer (2006)) and, using a different proof,
by Janson for the class of critical, finite-variance, conditioned Galton-Watson trees
(Janson (2006)).

In Janson (2006), the distribution of the limiting Rayleigh variable was obtained
using a moment problem, but the question arose whether it had a connection with
the convergence (1.1) above. Indeed, it is well-known that the distance from the root
to a uniform leaf of the CRT is Rayleigh-distributed. As a consequence, several ap-
proaches were used to describe a cutting procedure on the CRT that could account
for the convergence of X(Tn)/

√
n. All these works are relying on the Aldous-Pitman

fragmentation of the CRT, first described in (Aldous and Pitman (1998)). We will
give below a brief description of this procedure, as it will be central in this work.
Using an extension of the Aldous-Broder algorithm, Addario-Berry, Broutin and
Holmgren described a fragmentation-reconstruction procedure for Cayley trees and
its analog for the CRT. The invariance they prove shows that the limiting random
variable in Janson’s result can indeed be realized as the height of a uniform leaf
in a CRT. However, it is not the same CRT as the one arising from the scaling
limit of Tn/

√
n. Indeed, the random variables n−1/2Tn and n−1/2X(Tn) do not

converge jointly to a CRT T and the height of a random leaf H(T ). Bertoin and
Miermont (Bertoin and Miermont (2012)) describe the so-called cut-tree cut(T ) of
a given CRT T following the genealogy of fragments in the Aldous-Pitman frag-
mentation. The limiting variable can then be described as the height of a uniform
leaf in cut(T ), which is again a CRT, thus recovering Rayleigh distribution.

Following Abraham and Delmas (Abraham and Delmas (2013)), we will use a
different point of view, based on the theory of records of Poisson point processes.
We will now review some of their results, in order to set the notations and to
describe the framework.

1.1. The Brownian CRT. In this section, we will recall some basic facts about the
Brownian CRT. For details, see Aldous (1991); Duquesne and Le Gall (2005). We
will write T for the set of (pointed isometry classes of) compact, rooted real trees
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endowed with a finite Borel measure. Recall that real trees are metric spaces (X, d)
such that

(i) For every s, t ∈ X, there is a unique isometric map fs,t from [0, d(s, t)] to
X such that fs,t(0) = s and fs,t(d(s, t)) = t. The image of fs,t is notedJs, tK.

(ii) For every s, t ∈ X, if q is a continuous injective map from [0, 1] to X such
that q(0) = s and q(1) = t, then q([0, 1]) = fs,t([0, d(s, t)]).

There exists a metric on T that makes it a Polish metric space, but we will not
attempt to describe it here. For more details, see Abraham et al. (2013).

The Brownian CRT (or Aldous’s CRT) is a random element of T, defined using
the so-called contour process description: if f is a continuous nonnegative map
f : [0, σ] → R+, such that f(0) = f(σ) = 0, then the real tree encoded by f is
defined by Tf = [0, σ]/∼f

, where ∼f is the equivalence relation

x ∼f y ⇔ f(x) = f(y) = min
u∈[x∧y,x∨y]

f(u), x, y ∈ [0, σ].

The metric on Tf is defined by

df (x, y) = f(x) + f(y) − 2 min
u∈[x∧y,x∨y]

f(u), x, y ∈ [0, σ],

so that df (x, y) = 0 if and only if x ∼f y. Hence, df is definite-positive on Tf

and defines a true metric. It can be checked (see Duquesne and Le Gall (2005))
that (Tf , df ) is indeed a real tree. We define the mass-measure mTf on Tf as
the image of Lebesgue measure on [0, σ] by the canonical projection [0, σ] → Tf .
Thus, mTf is a finite measure on Tf , with total mass mTf (Tf ) = σ. When the
context is clear, we will usually drop the reference to the tree and write m for the
mass-measure mT .

Now, the Brownian Continuum Random Tree (CRT) corresponds to the real tree
encoded by f = 2Bex, twice the normalized Brownian excursion. Since the length
of the normalized Brownian excursion is 1 a.s., the CRT has total mass 1, i.e. the
mass measure m is a probability measure. The distribution of the CRT will be
noted P, or sometimes P(1) if we want to emphasize the fact that m has mass 1.
Sometimes, we will consider scaled versions of the CRT. If r > 0, we consider the
scaled Brownian excursion

Bex,r
t =

√
rBex

t/r, t ∈ [0, r]

and the associated real tree T2Bex,r , whose distribution will be noted P(r). Note
that the transformation above corresponds to rescaling all the distances in a P(1)-
distributed tree by a factor

√
r.

The measure m is supported by the set of leaves of T , which are the points x ∈ T
such that T \ {x} is connected. There is another natural measure ` defined on the
CRT, called length measure, which is σ-finite and such that `(Jx, yK) = d(x, y).
Also, the CRT is rooted at one particular vertex ∅, which is the equivalence class of
0, but it can be shown (see Proposition 4.8 in Duquesne and Le Gall (2005)) that
if x is chosen according to m, then, if T x is the tree T re-rooted at x, (T , x) has
same distribution as (T x, ∅).

When we consider the real tree T encoded by 2B, where B is an excursion of
Brownian motion, distributed under the (σ-finite) excursion measure N, we get that
T is a compact metric space, with a length measure ` and with a finite measure
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m. We will write σ for the (random) total mass of m. Under N, σ is distributed
as the length of a random excursion of Brownian Motion, that is

N[σ ≥ t] =
√

2
πt

.

The Brownian CRT can be seen as a conditioned version of the tree distributed as
N[dT ], in the sense that, if F is some nonnegative measurable functional defined
on the tree space T, then

N[F (T )] =
∫ ∞

0

dσ√
2π σ3/2

E(σ)[F (T )].

In the sequel, we will make use of this disintegration of N, since some computations
are easier to do under N (see Lemma 2.4).

1.2. The Aldous-Pitman fragmentation. Given a CRT T , we consider a Poisson
point process

N (ds, dt) =
∑
i∈I

δ(si,ti)(ds, dt)

on T ×R+, with intensity `(ds)⊗dt. We will sometimes refer to N as the fragmen-
tation measure. If (si, ti) is an atom of N , we will say that the point si was marked
at time ti. For t ≥ 0, we can consider the connected components of T separated
by the atoms of N (· × [0, t]). They define a random forest Ft of subtrees of T .
Aldous and Pitman proved that if we consider the trees (Tk(t), k ≥ 1) composing
Ft, ranked by decreasing order of their mass, then the process

((m(T1(t)), m(T2(t)), . . . ), t ≥ 0)
is a binary, self-similar fragmentation process, with index 1/2 and erosion coefficient
0, according to the terminology later framed by Bertoin.

1.3. Separation times. In order to give a continuous analogue to the cutting proce-
dure on discrete trees described above, we will use the Aldous-Pitman fragmentation
on the CRT. Given a CRT T and a fragmentation measure N , we will define, for
any s ∈ T , the separation time from the root ∅ by

θ(s) = inf {t ≥ 0, N (J∅, sK × [0, t]) ≥ 1},

with the convention inf ∅ = +∞. This separation process will be our main object
of study. Note that, under the definition above, conditionally on T , θ(∅) = ∞ a.s.,
and θ(s) < ∞ a.s. for all s 6= ∅, since θ(s) is then exponentially distributed with
parameter `(J∅, sK) = d(∅, s). Note also that θ(s) → ∞ when s → ∅, which justifies
our convention for θ(∅).

It is also possible to define the separation process started from any q ≥ 0,
rather than from infinity. In order to do this, we consider only the marks whose
t-component is smaller than q:

θ(s) = inf {0 ≤ t ≤ q, N (J∅, sK × [0, t]) ≥ 1}, (1.2)
with the convention inf ∅ = q. Note that, under this definition, we always have
θ(∅) = q, as well as lim θ(s)s→∅ = q a.s. In the case where q = ∞, we recover
the same distribution as the separation process defined earlier. The (quenched)
distribution of the separation process started at q ∈ [0, ∞] on a given CRT T will
be noted PT

q .
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We will also note P(r)
q the (annealed) distribution of the process (θ(s), s ∈ T )

started at q ∈ [0, ∞], when T is distributed as a Brownian CRT with mass r > 0:

P(r)
q =

∫
T
P(r)(dT ) PT

q .

Again, to keep things simple, we will usually work under P∞ = P(1)
∞ . The jump

points of the separation process correspond to points s marked by the fragmentation
measure at a time t where they belong to the connected component of the root.
This implies that they accumulate in the neighbourhood of the root if q = ∞. If T
is a subtree of T , we note X(T ) the number of jumps of the separation process on
T . This number can be finite or infinite, according to whether T contains the root
or not, in the case q = ∞.

1.4. Linear record process. One can consider the record process on the real line (i.e.
when T = R+), defined using a Poisson point measure with intensity ds ⊗ dt. We
get, for any q ∈ (0, ∞], a random process (θ(s), s ≥ 1) such that θ(0) = q, PR+

q -a.s.
The distribution of this process will be noted Pq = PR+

q . We can consider the jump
process

Xt =
∑

s∈[0,t]

1{θ(s−)>θ(s)},

counting the number of jumps of θ on [0, t]. It should be noted that if q = ∞, then
θ jumps infinitely often in the neighbourhood of the root, so that a.s. Xt = ∞
for any t > 0. It is easy to check that, for any bounded, measurable functional g
defined on [0, q], we have

Eq [g(θ(s))] = e−qs g(q) +
∫ q

0
g(x)s e−sx dx.

In particular,

Eq [θ(s)] = 1 − e−qs

s
. (1.3)

When q < ∞, if t ≥ 0, and conditionally on θ(t) = q′, the next jump of θ can
be seen to be equal to inf {s ≥ t, N ([0, q′], [t, s]) ≥ 1}, which is exponentially
distributed, with parameter q′. Thus, X is the counting process of a point measure
on R+ with intensity θ(s)ds. Elementary properties of counting processes of point
measures (see Abraham and Delmas (2013) for more details) then show that, for
any q ∈ (0, ∞), the processes(

Nt = Xt −
∫ t

0
θ(s) ds, t ≥ 0

)
(1.4)(

N2
t −

∫ t

0
θ(s) ds, t ≥ 0

)
(1.5)(

N4
t − 3

(∫ t

0
θ(s) ds

)2

−
∫ t

0
θ(s) ds, t ≥ 0

)
(1.6)

are Pq-martingales in the natural filtration of θ.
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1.5. Number of records on subtrees. Given a CRT T , let (xn, n ≥ 1) be an iid
sequence of leaves of T , sampled according to m. If n ≥ 1, we consider Tn, the
subtree spanned by the leaves (∅, x1, . . . , xn). The tree Tn is a random rooted
binary tree with edge-lengths, whose distribution is explicitly known (see Aldous
(1993)). Its length Ln = `(Tn) is known to be distributed according to the Chi(2n)-
distribution, that is

P(Ln ∈ dx) = 21−n

(n − 1)!
x2n−1 exp(−x2/2)1{x>0} dx. (1.7)

Note that the case n = 1 gives a Rayleigh distribution, as was mentioned earlier.
It is proven in Abraham and Delmas (2013) that, a.s.:

lim
n→∞

Ln√
2n

= 1. (1.8)

The tree Tn has exactly 2n − 1 edges. The edge adjacent to the root will be notedJ∅, s∅,nK, where s∅,n is the first branching point in Tn; the height of s∅,n is noted
h∅,n = `(J∅, s∅,nK). Recall from Proposition 4.10 in Abraham and Delmas (2013)
that

√
nh∅,n converges in distribution to a nondegenerate random variable, and

that we have the following moment computation, for α > −1:

E
[
hα

∅,n

]
= Γ(α + 1)

2α/2
Γ(n − 1/2)

Γ(n + α/2 − 1/2)
∼n→∞ Γ(α + 1)2−α/2n−α/2. (1.9)

We will also use the notation T∗
n = (Tn \J∅, s∅,nK)∪{s∅,n} for the subtree above the

lowest branching point in Tn. When a new leaf xn is sampled, it gets attached to
the tree Tn−1 through a new edge, that connects to Tn−1 at the vertex sn ∈ Tn−1.
We write

Bn = (Tn \ Tn−1) ∪ {sn} = Jsn, xnK.
The quantity X∗

n is the continuum counterpart of the edge-cutting number X(Tn)
that can be found in the literature. Indeed, as soon as a jump appears on the first
edge J∅, s∅,nK, all subsequent jumps will be on this edge, even closer to the root.
Thus, X∗

n can be seen as the number of cuts before the first cut on J∅, s∅,nK was
made. In some sense, the first mark appearing on J∅, s∅,nK is analog to the last cut
needed to isolate the root in the discrete case.

The following theorem is the analog of the convergence (in distribution) that can
be found in Janson (2006) X(Tn)/

√
n → R, where R is Rayleigh-distributed. We

will write Θ for the mean separation time
∫

T θ(ds)m(ds).

Theorem (Abraham and Delmas (2013)). We have P∞-a.s:

lim
n→∞

X∗
n√
2n

= Θ. (1.10)

Furthermore, under P∞, Θ has Rayleigh distribution.

Note that T∗
n has 2n − 2 edges, so that the rescaling is

√
2n. In comparison,

Janson considers random trees with n edges, which explains the difference between
the two results. It should be noted that Abraham and Delmas show a slightly more
general result, since they consider scaled versions of the CRT, proving the result
under all the measures P(r)

∞ , r > 0. While our main result, Theorem 1.1 below is
still true in these cases, we restrict ourselves to the case of Aldous’s tree (r = 1)
for convenience.
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The purpose of this work is to investigate the fluctuations of X∗
n/

√
2n around

its limit Θ. It is shown in Theorem 1.1, which is the main result of this work, that
these fluctuations are typically of the order n1/4.

Theorem 1.1. Under P∞, we have the following convergence in distribution:

lim
n→∞

n1/4
(

X∗
n√
2n

− Θ
)

= Z, (1.11)

where Z is a random variable which is, conditionally on Θ, distributed according to

E∞
[
eitZ

∣∣Θ] = e−t2Θ/
√

2. (1.12)

In other words, Z is distributed as 21/4
√

ΘG, where G is an independent standard
normal random variable. As Θ is Rayleigh-distributed under P∞, the Laplace
transform (1.12) can be explicitly computed, but does not correspond to any known
distribution.

The proof of Theorem 1.1 will be carried out in two steps: we write(
X∗

n√
2n

− Θ
)

= 1√
2n

(
X∗

n −
∫

T∗
n

θ(s)`(ds)

)
+

(
1√
2n

∫
T∗

n

θ(s)`(ds) − Θ

)
. (1.13)

In Section 2, we will show that, when averaging over T , the variance arising from
the random choice of the leaves (xn, n ≥ 1) does not bring any significant con-
tribution to (1.11). We prove this by decomposing T conditionally on its subtree
Tn and by proving a general disintegration formula (Lemma 2.4). Therefore, the
second term in (1.13) converges to 0 when suitably renormalized.

In Section 3, we prove Theorem 1.1 by showing that, when properly rescaled, the
difference (X∗

n−
∫

T∗
n

θ(s)m(ds)) is asymptotically normally distributed (Proposition
2.3). This is a consequence of the classical martingale convergence theorems of Hall
and Heyde (1980).

In the Appendix, we collect several technical lemmas.

2. Variance in the weak convergence of length measure to mass measure

The main result of this section is Proposition 2.1.

Proposition 2.1. As n → ∞, we have the following convergence in probability:

lim
n→∞

n1/4

(∫
T∗

n

θ(s)`(ds)√
2n

− Θ

)
= 0. (2.1)

Recall that, conditionally on T , we sample independent leaves (xn, n ≥ 1) with
common distribution m(dx). We will consider the filtration (Fn, n ≥ 1) defined by

Fn = σ ({(T1, . . . , Tn), (θ(s), s ∈ Tn)}) , n ≥ 1.

A key step in the proof of the a.s. convergence of X∗
n/

√
2n to Θ in Abraham and

Delmas (2013) is the convergence of Mn = E∞[Θ|Fn]. Since (Mn, n ≥ 1) is a closed
L2 martingale, it converges P(1)

∞ -a.s. (and in L2) towards M∞ = Θ (notice that Θ
is indeed F∞-measurable, since ∪n≥1Tn is dense in T , and since θ is continuous
m-almost everywhere). The proof of Proposition 2.1 will be divided in two. First,
we prove the next proposition:
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Proposition 2.2. We have the following convergence in probability:

lim
n→∞

n1/4

(
1√
2n

∫
T∗

n

θ(s)`(ds) − E∞[Θ|Fn]

)
= 0. (2.2)

Then, we prove a more precise statement than the convergence of E∞[Θ|Fn]
towards Θ.

Proposition 2.3. We have

lim
n→∞

n1/4 (E∞[Θ|Fn] − Θ) = 0, (2.3)

in probability, as n → ∞.

Of course, Propositions 2.2 and 2.3 imply Proposition 2.1. Before we can prove
Proposition 2.2, we need to describe more precisely how the marked tree (T , θ) is
distributed conditionally on Fn.

2.1. Subtree decomposition. Given the subtree Tn, the set T \Tn is a random forest;
let (Xi, i ∈ In) be the collection of its connected components. For any connected
component Xi of T \ Tn, there is a unique point si ∈ Tn such that∩

x∈Xi

J∅, xK = J∅, siK.
For any i ∈ In, we will write Ti for the tree Xi ∪ {si}, rooted at si ∈ Tn. We will
sometimes use the notation

En ={s ∈ T , J∅, sK ∩ T∗
n = ∅} (2.4)

=(J∅, s∅,nK \ {s∅,n}) ∪
∪

i∈In, si∈J∅,s∅,nK Xi

for the set of all vertices in the tree such that the unique path linking them to the
root intersects Tn on J∅, s∅,nK. Many things are known about the distribution of
the forest (Ti, i ∈ In). For instance, Pitman pointed out (see Dong et al. (2006))
that the stickbreaking construction of the CRT in Aldous (1991) implied that the
sequence (m(Ti), i ∈ In), ranked in decreasing order, is distributed according to
the Poisson-Dirichlet distribution with parameters α = 1/2 and θ = n − 1/2 (for
more background on Poisson-Dirichlet distributions, see Pitman (2006)). We will
give another description, focusing on the tree structure of T conditionally on Fn.
This description can be seen as a conditioned version of Theorem 3 in Le Gall
(1993).

Lemma 2.4. Let F be a nonnegative functional on T × Tn. Then

E∞

[∑
i∈In

F (Ti, si)

∣∣∣∣∣Fn

]
=
∫ 1

0

e−L2
nv/(2−2v)

√
2πv3/2(1 − v)3/2

dv

∫
Tn

`(ds)E(v)
θ(s)[F (T , s)].

(2.5)
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Proof : Let Y be a Fn-measurable random variable; let us compute the quantity
E(1)

∞
[
Y
∑

i∈In
F (Ti, si)

]
. In order to do this computation, we will perform a disin-

tegration with respect to σ in the following expression: for µ ≥ 0,

I(µ) = N∞

[
Y
∑
i∈In

F (Ti, si) e−µσ

]

= N∞

[
Y
∑
i∈In

F (Ti, si) e−µσi e−µ
∑

j 6=i
σj

]
.

Using a Palm formula, we get:

= N∞

[
Y

∫
Tn

`(ds)Nθ(s)[F (T , s) e−µσ]

× exp
(

−
∫

Tn

`(ds)
∫ ∞

0

du√
2πu3/2

(1 − e−µu)
)]

= N∞

[
Y

∫
Tn

`(ds)Nθ(s)[F (T , s) e−µσ] e−Ln
√

2µ

]
,

since N[1 − exp(−µσ)] =
√

2µ. We can disintegrate the σ-finite measure Nθ(s)
according to the total mass σ:

I(µ) = N∞

[
Y

∫
Tn

`(ds)
∫ ∞

0

dv√
2πv3/2

E(v)
θ(s)[F (T , s) e−µσ] e−Ln

√
2µ

]
= N∞

[
Y

∫
Tn

`(ds)
∫ ∞

0

dv√
2πv3/2

E(v)
θ(s)[F (T , s)] e−µv

×
∫ ∞

0
Ln

dr√
2πr3

e−µr−L2
n/(2r)

]
,

using the well-known formula

ea
√

2s =
∫ ∞

0
e−sr a√

2πr3
e−a2/2r dr,

for the Laplace transform of the density of the 1/2-stable subordinator (see for
instance Chapter III, Proposition (3.7) in Revuz and Yor (1999)). By the Fubini-
Tonelli theorem, we then get:

I(µ) = N∞

[
Y

∫
Tn

`(ds)
∫ ∞

0

dv√
2πv3/2

E(v)
θ(s)[F (T , s)] e−µv

×
∫ ∞

v

Ln e−µ(t−v) dt√
2π(t − v)3/2

e−L2
n/(2t−2v)

]
=
∫ ∞

0

e−µt dt√
2πt3/2

N∞

[
Y

∫
Tn

`(ds)
∫ t

0

Lnt3/2 dv√
2πv3/2(t − v)3/2

× e−L2
n/(2t−2v) E(v)

θ(s)[F (T , s)]
]

.
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Now, we can use the scaling property of the marked tree (T , θ) under N∞ and the
fact that the total mass σ has density dt/(

√
2πt3/2) under N∞, to get that, for any

Fn-measurable random variable Y ,

E∞

[
Y
∑
i∈In

F (Ti, si)

]
= N∞

[
Y

1√
2π

∫ 1

0

Ln dv

v3/2(1 − v)3/2 e−L2
n/(2−2v)

×
∫

Tn

`(ds)E(v)
θ(s)[F (T , s)]

]
.

Now, recall the absolute continuity relation the distribution of Tn under N∞ and
under E∞ (Corollary 4 in Le Gall (1993)): for any measurable bounded G,

E∞[G(Tn)] = N∞

[
`(Tn) e−`(Tn)2/2 G(Tn)

]
.

Since exp(−L2
n/(2 − 2v)) = exp(−L2

n/2) · exp(−L2
nv/(2 − 2v)), we get:

E∞

[
Y
∑
i∈In

F (Ti, si)

]
= E∞

[
Y

1√
2π

∫ 1

0

dv

v3/2(1 − v)3/2 e−L2
nv/(2−2v)

×
∫

Tn

`(ds)E(v)
θ(s)[F (T , s)]

]
.

Taking conditional expectations with respect to Fn gives the desired result. �

Remark 2.5. Notice that if F (T , s) = m(T ), we find the striking identity

1√
2π

∫ 1

0

Ln e−L2
nv/(2−2v)

v1/2(1 − v)3/2 dv = 1. (2.6)

In other words, the function fa(v) = a e−a2v/(2−2v) /(
√

2πv1/2(1−v)3/2)) is a prob-
ability density on (0, 1) for any a > 0. This probability distribution has already
been described in the context of the Aldous-Pitman fragmentation: if a > 0, Aldous
and Pitman show that it is the distribution of the size of the fragment containing
the root at time a. We refer to Aldous and Pitman (1998); Bertoin (2006) for more
information on the “tagged fragment” process in self-similar fragmentations.

2.2. Proof of Proposition 2.2. We now have everything we need to prove Proposition
2.2.

Proof of Proposition 2.2: We will start from Lemma 4.14 in Abraham and Delmas
(2013): we have a.s. for n ≥ 1

− Rn ≤ E∞[Θ|Fn] − 1
Ln

∫
T∗

n

θ(s) `(ds) ≤ Vn, (2.7)

where we noted Vn = E∞[
∫

En
θ(s)m(ds)|Fn] (recall the definition of En in (2.4)) and

where Rn = exp(−L2
n/4)θ(h∅,n)2/4. Furthermore, there P∞-a.s. exists a constant

C > 0 such that
Rn ≤ Cn8 e−L2

n/8 .

Thus, considering that Ln/
√

2n converges a.s. to 1 (1.8), we get that n1/4Rn

converges a.s. to 0. Therefore, we needn’t worry about the left-hand side of (2.7)
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and the only thing we need to prove is that n1/4Vn converges in distribution to 0 as
n → ∞. The proof in Abraham and Delmas (2013) uses a dominated convergence
argument to show that Vn a.s. converges to 0, but we will need a more precise
estimate for Vn. By definition, using the notation

Θ(n)
i =

∫
Ti

θ(s) m(ds), i ∈ In,

we have

Vn = E∞

[∫
En

θ(s) m(ds)
∣∣∣Fn

]
= E∞

[∑
i∈In

Θ(n)
i 1{si∈J∅, xracK}

∣∣∣Fn

]
.

Using the disintegration formula from Lemma 2.4, we get:

Vn = 1√
2π

∫ 1

0

dv

v3/2(1 − v)3/2 e−L2
nv/(2−2v)

∫
J∅,s∅,nK E

(v)
θ(s)[Θ] `(ds).

Using the fact that θ(s) is, conditionally on Tn, exponentially distributed with
parameter s, we get:

E∞ [Vn|Tn] = 1√
2π

∫ 1

0

dv

v3/2(1 − v)3/2 e−L2
nv/(2−2v)

∫ h∅,n

0
ds

∫ ∞

0
s e−st E(v)

t [Θ] dt

≤ 1
2

∫ 1

0

dv

v3/2(1 − v)3/2 e−L2
nv/(2−2v)

×
∫ h∅,n

0
ds

(∫ v−1/2

0
stv e−st dt +

∫ ∞

v−1/2
s
√

v e−st dt

)
,

using the domination E(v)
q [Θ] ≤

√
π/2 min(qv,

√
v) (Lemma A.4). For technical

reasons, we will restrict ourselves to the event {h∅,n < 1/2}, but this will not be
too restrictive, since h∅,n → 0 a.s. Computing the integrals, we eventually get that
E∞[Vn|Tn]1{h∅,n<1/2} is dominated by

Wn =

(
1
2

∫ 1

0

dv

v1/2(1 − v)3/2 e−L2
nv/(2−2v)

∫ h∅,n

0

1 − e−s/
√

v

s
ds

)
1{h∅,n<1/2}.

We will use the domination (1 − exp(−s))/s ≤ 1[0,1](s) + 2/(s + 1)1(1,∞)(s), which
gives:

Wn ≤ 1
2

∫ 1

0

e−L2
nv/(2−2v)

v1/2(1 − v)3/2 dv

(
h∅,n√

v
1{h∅,n/

√
v≤1}

+
(

1 + 2 log
(

h∅,n/
√

v + 1
2

))
1{h∅,n/

√
v≥1}

)
1{h∅,n<1/2}

=

(
1
2

∫ h2
∅,n

0

e−L2
nv/(2−2v)

v1/2(1 − v)3/2

(
1 − 2 log 2 + 2 log

(
h∅,n√

v
+ 1
))

dv

)
1{h∅,n<1/2}

(2.8)

+

(
1
2

∫ 1

h2
∅,n

e−L2
nv/(2−2v)

v1/2(1 − v)3/2
h∅,n√

v
dv

)
1{h∅,n<1/2}. (2.9)
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As far as (2.8) is concerned, we can dominate exp(−αL2
nv/(1 − v)) by 1 as well as

(1 − v)−3/2 by its value at h2
∅,n, i.e. (1 − h2

∅,n)−3/2 < (3/4)−3/2 to get:

(2.8) ≤ 1
2(3/4)3/2

∫ h2
∅,n

0

dv√
v

(
1 − 2 log 2 + 2 log

(
h∅,n√

v
+ 1
))

1{h∅,n<1/2}

= C · h∅,n1{h∅,n<1/2},

where C is some deterministic constant. Concerning (2.9), we can bound 1/
√

v by
1/h∅,n, to get:

(2.9) ≤

(
1

Ln

∫ 1

h2
∅,n

1
2

Ln e−L2
nv/(2−2v)

v1/2(1 − v)3/2 dv

)
1{h∅,n<1/2}

≤

(
1

Ln

∫ 1

0

1
2

Ln e−L2
nv/(2−2v)

v1/2(1 − v)3/2 dv

)
1{h∅,n<1/2} =

√
π√

2Ln

1{h∅,n<1/2},

by equation (2.6). Putting things together, we get that P∞-a.s.

E∞ [Vn|Tn] 1{h∅,n<1/2} ≤ C · h∅,n1{h∅,n<1/2} +
√

π√
2Ln

. (2.10)

Now, n1/4h∅,n1{h∅,n<1/2} converges in L1 to 0 thanks to (1.9). Similarly, an easy
moment computation using (1.7) for the density of Ln shows that n1/4/Ln also
converges in L1 to 0, so that the same is true for n1/4Vn1{h∅,n<1/2}. Hence,
n1/4Vn1{h∅,n<1/2} converges to 0 in probability. Since a.s. there is a (random)
n0 ≥ 1 such that h∅,n < 1/2 for any n ≥ n0, we also get that n1/4Vn converges
to 0 in probability. Combining this with the a.s. convergence to 0 for n1/4Rn, we
indeed get a convergence in probability:

lim
n→∞

n1/4

(
E∞[Θ|Fn] − 1

Ln

∫
T∗

n

θ(s) `(ds)

)
= 0. (2.11)

To get the announced result, we still have to prove that

lim
n→∞

n1/4
(

1
Ln

− 1√
2n

)∫
T∗

n

θ(s) `(ds) = 0. (2.12)

This is not difficult: simply write

n1/4
(

1
Ln

− 1√
2n

)∫
T∗

n

θ(s)`(ds) = n1/4
(

1 − Ln√
2n

)(
1

Ln

∫
T∗

n

θ(s)`(ds)

)
.

Now, recall that 1/Ln

∫
T∗

n
θ(s)`(ds) converges to Θ P∞-a.s., hence in probability.

Furthermore, we can compute

n1/2E∞

[(
1 − Ln√

2n

)2
]

= n1/2E∞

(
1 + L2

n

2n
− 2 Ln√

2n

)
,

Using the density (1.7) of Ln, we easily get that

E∞[Ln] =
√

2Γ(n + 1/2)
Γ(n)

; E∞
[
L2

n

]
= 2n.
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Therefore, after computations, we get n1/2E∞[(1 − Ln/
√

2n)2] ∼ 1/(8
√

n), so that
in the end, n1/4(1 − Ln/

√
2n) converges to 0 in L2. This implies convergence in

probability, hence the convergence of (2.12). �

2.3. Rate of convergence in the Martingale Convergence Theorem. Before we can
move on to Proposition 2.3, we are going to state a lemma that will be needed in
the proof.

Lemma 2.6. If 1 < α < 2, then, the sequence
∫

T∗
n

θ(s)α`(ds)/Ln is bounded in
L1(P∞).

Proof : The main idea is that the measure `(ds)/Ln converges a.s. to the mass
measure m(ds), in the sense of weak convergence of probability measures on T .
Since the function θ is neither continuous nor bounded on T , we cannot use this
fact directly, but it will be the inspiration for the proof. We will compute the first
moment of Zn =

∫
T∗

n
θ(s)α`(ds)/L∗

n, using the notation L∗
n = `(T∗

n). Since θ(s) is,
conditionally on T , exponentially distributed with parameter `(J∅, sK), we get

E∞[Zn] = E∞

[∫
T∗

n

`(J∅, sK)−α `(ds)
L∗

n

]

= E∞

[∫
T

(d(∅, s) − d(s, T∗
n))−α1T \En

(s) m(ds)
]

,

where d(s, T∗
n) is the distance from the leaf s to the closed subtree T∗

n of T . The last
equality comes from the fact that if s is a leaf of T selected uniformly (according to
m(ds)) among all leaves of T \ En, then its projection π(s, Tn) on Tn is uniformly
distributed (according to length measure) on T∗

n. We will rewrite the last expression
so as to make the leaves ∅, x1, . . . , xn apparent. The set T \ En can be written as

T \ En = {s ∈ T , J∅, π(∅, T∗
n)K ∩ Js, π(s, T∗

n)K = ∅}, (2.13)

since π(∅, T∗
n) = s∅,n. Note that T∗

n is actually the subtree spanned by the n leaves
x1, . . . , xn and that its definition does not depend on ∅ or on s.

We then apply the fundamental re-rooting invariance of the Brownian CRT,
which implies, in this context, that when re-rooting T at s, the re-rooted tree T s

is distributed as a CRT, and the sequence (∅, x1, . . . , xn) is distributed as a sample
of n + 1 uniform leaves in T s. Thus,

E∞[Zn] = E∞

[∫
T

(d(∅, s) − d(s, T∗
n))−α1{J∅,π(∅,T∗

n)K∩Js,π(s,T∗
n)K=∅}(s) m(ds)

]
= E∞

[∫
T

(d(∅, s) − h∅,n)−α1{J∅,π(∅,T∗
n)K∩Js,π(s,T∗

n)K=∅}(s) m(ds)
]

,

since in the re-rooting, d(s, T∗
n) becomes d(∅, T∗

n) = h∅,n. Therefore, we get, using
(2.13) again,

E∞[Zn] = E∞

[∫
T

(d(∅, s) − h∅,n)−α1T \En
(s) m(ds)

]
= E∞

[∫
T

(1)
n ∪T

(2)
n

d(s∅,n, s)−αm(ds)
]

,
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where T
(1)

n and T
(2)

n are the connected components of T \ (En ∪ {s∅,n}), joined
together by their common root s∅,n. We can now use the self-similarity property
of the fragmentation at heights of the Brownian CRT (see Bertoin (2002)) which
shows that, conditionally on σ

(1)
n = m(T (1)

n ) and σ
(2)
n = m(T (2)

n ), the trees T
(1)

n

and T
(2)

n are rescaled copies of the Brownian CRT. Thus,

E∞[Zn] = E∞

[∫
T

(1)
n

d(s∅,n, s)−αm(ds)
]

+ E∞

[∫
T

(2)
n

d(s∅,n, s)−αm(ds)
]

= E∞

∫
T

(1)
n

(σ(1)
n )−α/2

(
d(s∅,n, s)
(σ(1)

n )1/2

)−α

σ(1)
n

m(ds)
σ

(1)
n


+ E∞

∫
T

(2)
n

(σ(2)
n )−α/2

(
d(s∅,n, s)
(σ(2)

n )1/2

)−α

σ(2)
n

m(ds)
σ

(2)
n


= E∞

[(
(σ(1)

n )1−α/2 + (σ(2)
n )1−α/2

)∫
T

d(∅, s)−αm(ds)
]

,

using the scaling invariance of the Brownian CRT. Then, as 0 < 1 − α/2, we can
simply dominate (σ(1)

n )1−α/2 and (σ(1)
n )1−α/2 by 1 to get that

E∞[Zn] ≤ 2 · E∞

[∫
T

d(∅, s)−αm(ds)
]

.

Now, since d(∅, s) is Rayleigh-distributed under E∞, we easily see that it has mo-
ments of order −α for any α < 2, which shows that E∞[Zn] is indeed bounded,
ending our proof. �

We can now turn to the proof of Proposition 2.3.

Proof of Proposition 2.3: Let Mn = E∞[Θ|Fn]. We will use the fact that

n1/4 (Θ − E∞[Θ|Fn]) = n1/4
∞∑

k=n+1

E∞[Mk − Mk−1|Fk−1]. (2.14)

Let ε > 0 be small enough, and consider the events

E1
k = {Lk ≥ k1/2−ε} ; E2

k = {k−2 ≤ h∅,k ≤ 1/2}, k ≥ 1.

Recalling that L2
k is distributed as the sum of k independent exponential random

variables with parameter 1, a simple application of Chernoff’s inequality shows that

P∞
(
E1

k

)
≥ 1 − k−2εk exp(k − k1−2ε). (2.15)

For E2
k, we can use the moment estimation (1.9) for h∅,k to find that, for any

0 ≤ α ≤ 1, and for any β > 0,

1 − P∞
(
E2

k

)
= P∞

(
{h∅,k > 1/2} ∪ {h∅,k < k−2}

)
≤ P∞(h∅,k > 1/2) + P∞

(
h−1

∅,k ≥ k2
)

≤ 2βE∞

[
hβ

∅,k

]
+ k−2αE∞

[
h−α

∅,k

]
∼ C · k−β/2 + C ′ · k−2αkα/2.
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Hence, by taking α = 1 − η (and β > 3α), we get, for sufficiently large k,

P∞
(
E2

k

)
≥ 1 − k−3/2+3/2η. (2.16)

Thus, combining equations (2.15) and (2.16), we get that∑
k≥1

P∞

((
E1

k

)c ∪
(
E2

k

)c
)

≤
∑
k≥1

P∞
(
(E1

k)c
)

+ P∞
(
(E2

k)c
)

< ∞.

Thus, by the Borel-Cantelli lemma, there a.s. exists k0 ≥ 1 such that for k ≥ k0,
Lk ≥ k1/2−ε and k−2 ≤ h∅,k ≤ 1/2. We will use this truncating events in the
following way: since the event Ek = E1

k ∩E2
k is Fk-measurable, the usual martingale

computations show that

E∞

(n1/4
∞∑

k=n

(Mk − Mk−1)1Ek−1

)2
 = n1/2

∞∑
k=n

E∞[(Mk − Mk−1)21Ek−1 ].

We will now give precise estimations of E∞[(Mk − Mk−1)2|Fk−1] using the disinte-
gration formula from Lemma 2.4. By definition, for all k ≥ 1, we can write

Θ =
∫

T

θ(s) m(ds) =
∑
i∈Ik

Θ(k)
i .

Then,

Mk = E∞[Θ|Fk]

= E∞

[ ∑
i∈Ik−1

Θ(k−1)
i

∣∣∣Fk

]

= E∞[Θ(k−1)
ik

|Fk] + E∞

[ ∑
i∈Ik−1\{ik}

Θ(k−1)
i

∣∣∣Fk

]
,

where ik is the unique index in Ik−1 such that xk ∈ Tik
. We then define:

Gk = E∞

[
Θ(k−1)

ik
|Fk

]
Hk = E∞

[ ∑
i∈Ik−1\{ik}

Θ(k−1)
i

∣∣∣Fk

]
− E∞

[ ∑
i∈Ik−1

Θ(k−1)
i

∣∣∣Fk−1

]
,

so that we have Mk − Mk−1 = Gk + Hk and

E∞
[
(Mk − Mk−1)2|Fk−1

]
≤ 2E∞

[
G2

k|Fk−1
]

+ 2E∞
[
H2

k |Fk−1
]

.

As far as Gk is concerned, conditionally on Fk, Θ(k−1)
ik

can be expressed as the sum∑
i∈Ik

Θ(k)
i 1{si∈Bk}, so that we can use the disintegration formula of Lemma 2.4 to

get:

Gk = 1√
2π

∫ 1

0

e−L2
kv/(2−2v)

v3/2(1 − v)3/2 dv

∫
Bk

E(v)
θ(s)[Θ] `(ds).



798 Patrick Hoscheit

Hence, using this expression, we can now compute:

E∞[G2
k|Fk−1] = E∞

( 1√
2π

∫ 1

0

e−L2
kv/(2−2v)

v3/2(1 − v)3/2 dv

∫
Bk

E(v)
θ(s)[Θ] `(ds)

)2 ∣∣∣Fk−1


≤ E∞

( 1√
2π

∫ 1

0

e−L2
kv/(2−2v)

v1/2(1 − v)3/2 dv

∫
Bk

`(ds)θ(s)

)2 ∣∣∣Fk−1

 ,

since E(v)
θ(s)[Θ] ≤ vθ(s) (Lemma A.4). Now, the measure

Ln e−L2
nv/(2−2v)

√
2πv1/2(1 − v)3/2

dv

is a probability density on [0,1] (cf. (2.6)), so that we get, using the fact that
Lk−1 < Lk,

E∞
[
G2

k|Fk−1
]

≤ E∞

[(
1

Lk

∫
Bk

`(ds)θ(s)
)2 ∣∣∣Fk−1

]

≤ 1
L2

k−1
E∞

[(∫
Bk

`(ds)θ(s)
)2 ∣∣∣Fk−1

]
.

Now, conditionally on Fk−1, the record process on Bk has the distribution of
an independent record process on R+, started from θ(sk), stopped at time `(Bk).
Furthermore, it is a consequence from the stickbreaking construction of Aldous (see
Aldous (1991)) that, conditionally on Fk−1, the random variables sk and `(Bk) are
independent. Furthermore, sk is distributed uniformly on Tk−1, and `(Bk) can be
expressed as the length of the interval between the (k − 1)th and the kth jump
of a Poisson process with intensity t1[0,∞)(t)dt. Therefore, conditionally on Fk−1,
`(Bk) has density

rLk−1(dx) = (Lk−1 + x) e−x2/2−Lk−1x dx. (2.17)

Thus, using the notation F (q, t) = Eq[(
∫ t

0 θ(s)ds)2] for 0 < q < ∞ and t ≥ 0, we
get

E∞
[
G2

k|Fk−1
]

≤ 1
L2

k−1

∫
Tk−1

`(ds)
Lk−1

∫ ∞

0
rLk−1(dx)F (θ(s), x).

We will cut the integral in two parts, according to Tk−1 = T∗
k−1 ∪ (Tk−1 \ T∗

k−1).
We then use Lemma A.2 to dominate F (θ(s), x): inequality (A.2) for s ∈ T∗

k−1 and
(A.3) for s ∈ Tk−1 \ T∗

k−1. This leads to:

E∞
[
G2

k|Fk−1
]

≤ 1
L2

k−1

∫
T∗

k−1

`(ds)
Lk−1

∫ ∞

0
rLk−1(dx)

(
C1θ(s)3/2x3/2 + C2θ(s)x2

)
+ 1

L2
k−1

∫
Tk−1\T∗

k−1

`(ds)
Lk−1

∫ ∞

0
rLk−1(dx)

(
C3θ(s)1/2x1/2 + C4θ(s)−1/2x1/2

)
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= C1

L2
k−1

(∫ ∞

0
rLk−1(dx)x3/2

)(∫
T∗

k−1

`(ds)
Lk−1

θ(s)3/2

)

+ C2

L2
k−1

(∫ ∞

0
rLk−1(dx)x2

)(∫
T∗

k−1

`(ds)
Lk−1

θ(s)

)

+ C3

L3
k−1

(∫ ∞

0
rLk−1(dx)x1/2

)(∫
Tk−1\T∗

k−1

`(ds)θ(s)1/2

)

+ C4

L3
k−1

(∫ ∞

0
rLk−1(dx)x1/2

)(∫
Tk−1\T∗

k−1

`(ds)θ(s)−1/2

)
.

We can then compute, using Lemma A.3 for the asymptotic moments of rLk−1(dx):

E∞
[
G2

k1Ek−1

]
= E∞

[
E∞

[
G2

k|Fk−1
]

1Ek−1

]
≤ E∞

[∫
T∗

k−1

`(ds)
Lk−1

θ(s)3/2

]
· O(k−7/4+7/2ε) (2.18)

+ E∞

[(∫
T∗

k−1

`(ds)
Lk−1

θ(s)

)
1Ek−1

]
· O(k−2+4ε) (2.19)

+ E∞

[(∫
Tk−1\T∗

k−1

`(ds)θ(s)1/2

)]
· O(k−7/4+7/2ε) (2.20)

+ E∞

[(∫
Tk−1\T∗

k−1

`(ds)θ(s)−1/2

)]
· O(k−7/4+7/2ε). (2.21)

Using Lemma 2.6, we see that (2.18) is indeed of the order k−7/4+7/2ε. As far as
(2.19) is concerned, we simply use Lemma A.1, whose proof can be found in the
Appendix, and which implies in particular that (2.19) is of the order k−2+4ε.

In the two remaining terms (2.20) and (2.21), the integral is taken on a single
branch; therefore, we can use the linear case to get

E∞

[(∫
Tk−1\T∗

k−1

`(ds)θ(s)1/2

)
1Ek−1

]
= E∞

[
E∞

[∫ h∅,k−1

0
θ(s)1/2ds

]
1Ek−1

]
= C · E∞[h1/2

∅,k−11Ek−1 ],

which easily converges to 0 as k → ∞. A similar argument shows that (2.21)
converges to 0 as E∞[h3/2

∅,k−11Ek−1 ]. Putting everything together, we find that
E∞[G2

k1Ek−1 ] is of the order k−7/4+7/2ε as k → ∞, so that
∑∞

k=n E∞[G2
k1Ek−1 ] is

of the order n−3/4+7/2ε.
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Turning to Hk, we note that Ik−1 \ {ik} = {i ∈ Ik, si /∈ Bk}, so that, using
Lemma 2.4, we get:

Hk =E∞

[∑
i∈Ik

Θ(k)
i 1{si /∈Bk}

∣∣∣∣∣Fk

]
− E∞

[ ∑
i∈Ik−1

Θ(k−1)
i

∣∣∣∣∣Fk−1

]

=
∫ 1

0

e−L2
kv/(2−2v)

√
2πv3/2(1 − v)3/2

dv

∫
Tk

`(ds)E(v)
θ(s)[Θ]1{s/∈Bk}

−
∫ 1

0

e−L2
k−1v/(2−2v)

√
2πv3/2(1 − v)3/2

dv

∫
Tk−1

`(ds)E(v)
θ(s)[Θ],

thus, considering that Tk = Tk−1 ∪ (Bk \ {sk}), and that of course `({sk}) = 0,

Hk =
∫ 1

0

dv√
2πv3/2(1 − v)3/2

∫
Tk−1

`(ds)E(v)
θ(s)[Θ]

(
e−L2

kv/(2−2v) − e−L2
k−1v/(2−2v)

)
.

We then use the inequality | e−at − e−as | ≤ a e−at(s − t), valid for any a > 0, and
t ≤ s, to find:

E∞
[
H2

k |Fk−1
]

≤
(

1√
2π

∫ 1

0

e−L2
k−1v/(2−2v)

v3/2(1 − v)3/2
v

2 − 2v
dv

∫
Tk−1

E(v)
θ(s)[Θ] `(ds)

)2

× E∞
[
(L2

k − L2
k−1)2|Fk−1

]
. (2.22)

On the one hand, we will use the change of variables

u = L2
k−1v/(2 − 2v) ⇔ v = u/(L2

k−1/2 + u).

in the integral, which gives:(
1√
2π

∫ ∞

0

e−u

(L2
k−1/2)1/2

L2
k−1/2 + u

√
u

du

∫
Tk−1

`(ds)
L2

k−1
E(u/(L2

k−1/2+u))
θ(s) [Θ]

)2

. (2.23)

We then cut the integral in two parts, according to Tk−1 = T∗
k−1 ∪ (Tk−1 \ T∗

k−1),
and we use the simple domination E(v)

θ(s)[Θ] ≤ vθ(s) on T∗
k−1, and the domination

E(v)
θ(s)[Θ] ≤ E(v)

∞ [Θ] =
√

πv/2 on Tk−1 \ T∗
k−1 to get

(2.23) ≤
(

1√
π

∫ ∞

0

du

L3
k−1

L2
k−1/2 + u

√
u

e−u

∫
T∗

k−1

`(ds)θ(s) u

L2
k−1/2 + u

+
∫ ∞

0

du

L3
k−1

L2
k−1/2 + u

√
2u

e−u h∅,k−1

√
u√

L2
k−1/2 + u

2

.

The integrals can be computed, giving

(2.23) ≤

(
1√

πL2
k−1

∫ ∞

0

√
u e−u du

∫
T∗

k−1

`(ds)
Lk−1

θ(s)

+
∫ ∞

0

du√
2L2

k−1

√
1/2 + u/L2

k−1 e−u h∅,k−1

)2

.
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On the other hand, the term E∞[(L2
k − L2

k−1)2|Fk−1] appearing in the domination
(2.22) can be expanded into

E∞
[
`(Bk)4|Fk−1

]
+ 4L2

k−1E∞
[
`(Bk)2|Fk−1

]
+ 4Lk−1E∞

[
`(Bk)3|Fk−1

]
Then, recall the density (2.17) of `(Bk) conditionally on Fk−1. In the proof of
Lemma A.3, we show that for any λ > 0, we have a.s.

E∞

[
` (Bk)λ |Fk−1

]
=
∫

rLk−1(dx)xλ ≤ C1 · L−λ
k−1 + C2 · L−λ−2

k−1

with C1 and C2 deterministic constants. Thus, E∞[(L2
k − L2

k−1)2|Fk−1] is a.s.
bounded by F (Lk−1), where F is a nonincreasing bounded nonnegative function.
In the end, we get

E∞
[
H2

k1Ek−1

]
≤ E∞

[(
C

L2
k−1

∫
T∗

k−1

θ(s) `(ds)
Lk−1

+
∫ ∞

0

e−u du

2L2
k−1

√
1/2 + u/L2

k−1h∅,k

)2

F (Lk−1)1Ek−1

]

≤ F (k2−4ε)

(
C · k−2+4εE∞

(∫
T∗

k−1

θ(s) `(ds)
Lk−1

)2


+C ′ · k−2+4ε

(∫ ∞

0
e−u

√
1/2 + u/k1−2ε

)2

E∞[h2
∅,k]

)
.

Hence, using the fact that
∫

T∗
k−1

θ(s)`(ds)/Lk−1 is bounded in L2 (which is pre-
cisely Lemma A.1), we find that E∞[H2

k1Ek−1 ] = O(k−2+4ε). Putting this to-
gether with the estimate on E∞[G2

k1Ek−1 ], we get that E∞[(Mk − Mk−1)21Ek−1 ] =
O(k−7/4+7/2ε). If ε < 1/14,

E∞[(Mk − Mk−1)21Ek−1 ] = O(k−7/4+7/2ε) = o(k−3/2).
Hence, we get

lim
n→∞

n1/2
∞∑

k=n

E∞
[
(Mk − Mk−1)21Ek−1

]
= 0.

This shows that the random sequence n1/4∑∞
k=n(Mk −Mk−1)1Ek−1 converges to 0

in L2, hence in probability. But, since there a.s. exists k0 ≥ 1 such that 1Ek
= 1 for

all k ≥ k0, the sequence n1/4∑∞
k=n(Mk − Mk−1) also converges to 0 in probability,

which is what we wanted to prove. �

3. Proof of the main theorem

We can now turn to the proof of the actual convergence towards a nontrivial
limit, in the asymptotic n1/4. The main idea is to apply the Martingale Central
Limit Theorem (Corollary 3.1 in Hall and Heyde (1980)) to

M∗
n = X∗

n −
∫

T∗
n

θ(s) `(ds).
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We recall this theorem below for convenience:

Theorem (Hall and Heyde (1980)). Let (Mn, n ≥ 1) be a zero-mean square-
integrable (Gn)-martingale, and let η2 be an a.s. finite random variable. Suppose
that, for some sequence an increasing to +∞, we have

(1) (Asymptotic smallness) For all ε > 0, we have the convergence in probabil-
ity

lim
n→∞

a−2
n

n∑
k=1

E
[
(Mk − Mk−1)21{|Mk−Mk−1|>εak}

∣∣Gk−1
]

= 0.

(2) (Convergence of the conditional variance) We have the convergence in prob-
ability

lim
n→∞

a−2
n

n∑
k=1

E
[
(Mk − Mk−1)2|Gk−1

]
= η2.

Then, the sequence (a−1
n Mn, n ≥ 1) converges in distribution to a random variable

Z with characteristic function E[exp(−η2t2/2)].

However, M∗
n is not a martingale in the filtration (Fn, n ≥ 1), because the

(n + 1)st branch Bn+1 might be connected to Tn through a vertex on J∅, s∅,nK. In
that case, M∗

n+1 −M∗
n has a nonnegative Fn-measurable part, corresponding to the

atoms on Js∅,n+1, s∅,nK. For this reason, we will consider

M̂n =
∑

s∈Tn\T1

1{θ(s−)>θ(s)} −
∫

Tn\T1

θ(s) `(ds), n ≥ 2

and M̂1 = 0. The process (M̂n, n ≥ 1) is a (Fn)-martingale. It is actually more
convenient to introduce the filtration (Gn, n ≥ 1), defined by:

Gn = σ({(Tm, m ≥ 1), (θ(s), s ∈ Tn)}),

Notice that the branching point sn+1 = Bn+1 ∩ Tn, as well as `(Bn+1) and θ(sn+1)
are all Gn-measurable. In this filtration, M̂ is also a martingale. Indeed, it is
obvious that M̂ is G-adapted. Furthermore, we have

M̂n+1 − M̂n =
∑

s∈Bn+1

1{θ(s−)>θ(s)} −
∫

Bn+1

θ(s) `(ds),

which is, conditionally on Gn, distributed as N`(Bn+1), where N is the martin-
gale from (1.4) for a linear record process started at θ(sn+1). Thus, we find that
E∞[M̂n+1 − M̂n|Gn] = 0.

3.1. Convergence of the conditional variance. In order to get a convergence in dis-
tribution of n−1/4M̂n, we first need to compute the asymptotic variance of the
martingale. This is done in the following proposition.

Proposition 3.1. We have:

lim
n→∞

1√
n

n∑
k=2

E∞

[(
M̂k − M̂k−1

)2 ∣∣∣Gk−1

]
=

√
2Θ, (3.1)

in probability.
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Proof : Using the martingale from (1.5), in the present case of a linear record process
started at θ(sk), we easily get that, for k ≥ 2,

E∞

[(
M̂k − M̂k−1

)2 ∣∣∣Gk−1

]
= E∞

[∫
Bk

θ(s) `(ds)
∣∣∣Gk−1

]
. (3.2)

A Law of Large Numbers argument will show that we have

lim
n→∞

1√
n

n∑
k=2

E∞

[∫
Bk

θ(s) `(ds)
∣∣∣Gk−1

]
= lim

n→∞

1√
n

∫
T∗

n\Js∅,n,x1K θ(s) `(ds). (3.3)

We postpone the proof of this equality to the end of this section. Now, recall
Proposition 4.13 in Abraham and Delmas (2013), which shows that a.s.

lim
n→∞

1√
n

∫
T∗

n

θ(s) `(ds) =
√

2Θ.

Since Tn \ B1 = T∗
n \ Js∅,n, x1K, the convergence (3.1) will follow if we manage to

prove that

Sn = 1√
n

∫
Js∅,n,x1K θ(s) `(ds)

converges in probability to 0. We will simply compute the first moment:

√
nE∞[Sn] = E∞

[∫
Js∅,n,x1K θ(s) `(ds)

]
= E∞

[∫ L1

h∅,n

θ(s) ds

]

= E∞

[∫ L1−h∅,n

0
Eθ(s∅,n)[θ(s)] ds

]
,

by the Markov property of θ at h∅,n. We can compute this expectation using (1.3):

E∞

[∫ L1−h∅,n

0
Eθ(s∅,n)[θ(s)] ds

]
= E∞

[∫ L1−h∅,n

0

1 − e−sθ(s∅,n)

s
ds

]

≤ E∞

[∫ L1

0

1
s

(sθ(s∅,n))1/4 ds

]
= 4E∞

[
θ(s∅,n)1/4L

1/4
1

]
,

by the elementary inequality 1 − exp(−t) ≤ t1/4. The Cauchy-Schwarz inequality
then gives the bound

√
nE∞[Sn] ≤ C · E∞

[
θ(s∅,n)1/2

]1/2
. (3.4)

As θ(s∅,n) is, conditionally on T , exponentially distributed with parameter h∅,n,
we get

E∞[Sn] ≤ C · n−1/2E∞[h−1/2
∅,n ]1/2,

which converges to 0 as n → ∞ by (1.9), which shows (3.1).
We still have to show (3.3) to end the proof. The process(

Qn =
n∑

k=2

∫
Bk

θ(s)`(ds) − E∞

[∫
Bk

θ(s)`(ds)
∣∣∣∣Gk−1

]
, n ≥ 1

)
(3.5)



804 Patrick Hoscheit

is a G-martingale. We will write

〈Q〉n =
n∑

k=1

E∞

[(∫
Bk

θ(s) `(ds)
)2
∣∣∣∣∣Gk−1

]
− E∞

[∫
Bk

θ(s) `(ds)
∣∣∣Gk−1

]2

(3.6)

for its quadratic variation process. Conditionally on Gk−1, (θ(s), s ∈ Bk) is dis-
tributed as a linear record process started from θ(sk). Hence, using (1.9) and (1.3),
we get:

E∞

[∫
Bk

θ(s) `(ds)
∣∣∣Gk−1

]
= Eθ(sk)

[∫ `(Bk)

0
θ(s) ds

]
=
∫ θ(sk)`(Bk)

0

1 − e−u

u
du.

(3.7)
Similarly, we have:

E∞

[(∫
Bk

θ(s) `(ds)
)2
∣∣∣∣∣Gk−1

]
= Eθ(sk)

(∫ `(Bk)

0
θ(s) ds

)2


= 2 · Eθ(sk)

[∫ `(Bk)

0
du

∫ u

0
dv θ(u)θ(v)

]
.

The latter can be computed by applying the Markov property at u, as well as (1.3),
giving

E∞

[(∫
Bk

θ(s) `(ds)
)2
∣∣∣∣∣Gk−1

]
= 1

θ(sk)

∫ θ(sk)`(Bk)

0

1 − e−s

s
− e−s ds

+ 2
∫ θ(sk)`(Bk)

0
ds

∫ s

0
dt

1
s − t

(
1 − e−t

t
− 1 − e−s

s

)
. (3.8)

Now, putting (3.7) and (3.8) together, compensations occur, so that we get, after
tedious computations:

〈Q〉n =
n∑

k=1

E∞

[(∫
Bk

θ(s) `(ds)
)2
∣∣∣∣∣Gk−1

]
− E∞

[∫
Bk

θ(s) `(ds)
∣∣∣Gk−1

]2

=
n∑

k=1

2
θ(sk)

∫ θ(sk)`(Bk)

0

1 − e−s

s
− e−s ds

+2
∫ θ(sk)`(Bk)

0
ds

∫ s

0
dt

s e−s −t e−t −(s − t) e−(s+t)

st(s − t)
.

The term s e−s −t e−t −(s − t) e−(s+t) being negative for t < s, we get

0 ≤ 〈Q〉n ≤
n∑

k=1

2
θ(sk)

∫ θ(sk)`(Bk)

0

1 − e−s

s
− e−s ds

≤
n∑

k=1

2
θ(sk)

θ(sk)`(Bk) = 2
n∑

k=1

`(Bk),

the second inequality coming from (1 − e−s)/s − e−s ≤ 1 if s > 0. Then, recall that
by definition,

∑n
k=1 `(Bk) ≤ Ln, and that Ln is the square root of a Gamma(n, 1)-

distributed variable (Lemma 4.8 in Abraham and Delmas (2013)). Thus, for any
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γ > 1/2, we have
1

nγ
E∞[〈Q〉n] ≤ 2

nγ
E∞[Ln] → 0 (3.9)

Then, by the conditional Law of Large Numbers (Theorem 1.3.17 in Duflo (1997)),
we get that n−1/4−εQn converges a.s. to 0 for any ε > 0, which implies (3.3), hence
ends the proof. �

3.2. Asymptotic smallness. We now turn to the proof of the asymptotic smallness
of the sequence (M̂n, n ≥ 1). In order to prove this, we will use a Liapounov-type
criterion, which is sufficient to prove asymptotic negligibility.

Proposition 3.2. We have the following convergence in probability:

lim
n→∞

1√
n

n∑
k=1

E∞

[
(M̂k − M̂k−1)21{|M̂k−M̂k−1|>εn1/4}

∣∣∣Gk−1

]
= 0.

Proof : We use the standard inequality 1{|M̂k−M̂k−1|>εn1/4} ≤ (M̂k − M̂k−1)2/ε2√
n

to get that, for ε > 0:

1√
n

n∑
k=1

E∞

[(
M̂k − M̂k−1

)2
1{|M̂k−M̂k−1|>εn1/4}

∣∣∣Gk−1

]

≤ 1
ε2n

n∑
k=1

E∞

[(
M̂k − M̂k−1

)4
∣∣∣∣∣Gk−1

]
.

Using the martingale from (1.6), we find that:

1
ε2n

n∑
k=2

E∞

[(
M̂k − M̂k−1

)4
∣∣∣∣∣Gk−1

]
= 3

ε2n

n∑
k=2

E∞

[(∫
Bk

θ(s) `(ds)
)2
∣∣∣∣∣Gk−1

]

+ 1
ε2n

n∑
k=2

E∞

[∫
Bk

θ(s) `(ds)
∣∣∣Gk−1

]
.

In this expression, the term n−1∑n
k=2 E[

∫
Bk

θ(s)`(ds)|Gk−1] converges in probabil-
ity to 0, according to (3.2) and Proposition 3.1. Furthermore, recall from (3.6)
that

3
ε2n

n∑
k=1

E∞

[(∫
Bk

θ(s) `(ds)
)2
∣∣∣∣∣Gk−1

]

= 3〈Q〉n

ε2n
+ 3

ε2n

n∑
k=1

E∞

[∫
Bk

θ(s) `(ds)
∣∣∣Gk−1

]2

,

where Q is the martingale defined in (3.5). The quadratic variation process 〈Q〉n/n
converges in probability to 0 by (3.9). Also, applying Lemma A.5 to the sequence
ak = E∞[

∫
Bk

θ(s)`(ds)|Gk−1], we find that

1
n

n∑
k=1

E∞

[∫
Bk

θ(s) `(ds)
∣∣∣Gk−1

]2

= 0,

which ends the proof. �

Putting all the previous elements together, we can now prove Theorem 1.1.
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Proof of Theorem 1.1: First, we write that

n1/4
(

X∗
n√
2n

− Θ
)

= M̂n√
2n1/4

+ M∗
n − M̂n√
2n1/4

+ n1/4

(
1√
2n

∫
T∗

n

θ(s) `(ds) − Θ

)
.

The convergence in distribution of n−1/4M̂n towards a non-degenerate limit Z is a
consequence of the Martingale Central Limit Theorem recalled at the beginning of
this section with an = n1/4, as well as the two Propositions 3.1 and 3.2. Further-
more, the limiting random variable Z is indeed distributed as announced:

E∞
[
eitZ

]
= E∞

[
e−t2√

2Θ/2
]

.

The term en = M∗
n − M̂n can be expressed as

en = M∗
n − M̂n =

∑
s∈Js∅,n,x1K 1{θ(s−)>θ(s)} −

∫
Js∅,n,x1K θ(s) `(ds).

Using the martingale (1.5) to compute its second moment, we get

E∞
[
e2

n

]
= E∞

[∫
Js∅,n,x1K θ(s) `(ds)

]
,

so that n−1/4(M∗
n − M̂n) converges to 0 in L2, hence in distribution as n → ∞, by

the previously used bound (3.4). Finally, Proposition 2.2 and Proposition 2.3 show
that the term ((2n)−1/2 ∫

T∗
n

θ(s) `(ds)−Θ) brings no contribution in the asymptotic
n1/4. This ends the proof. �

Remark 3.3. Note that, under our assumptions, since Θ > 0, P∞-a.s., we can ac-
tually prove that the convergence in distribution of n−1/4M̂n is mixing (see Aldous
and Eagleson (1978) for more details on mixing limit theorems). This implies in
particular that we can obtain a standard normal limit by renormalizing by the
random factor Vn, where V 2

n is the conditional variance

V 2
n =

n∑
k=1

E∞

[(
M̂k − M̂k−1

)2 ∣∣∣Gk−1

]
,

instead of the deterministic renormalization n1/4. Corollary 3.2 in Hall and Heyde
(1980) then shows that V −1

n M̂n converges in distribution to a standard N (0, 1)
random variable.

Appendix A. Technical appendix

In this appendix, we will state and prove several lemmas that are used throughout
the paper. First, we start by Lemma A.1, which is instrumental in the proof of
Proposition 2.3.

Lemma A.1. E∞

[(∫
T∗

k−1
θ(s)`(ds)/Lk−1

)2
1Ek−1

]
is bounded as k → ∞.

Proof of Lemma A.1: Recall (2.7):

− Rk−1 ≤ E∞[Θ|Fk−1] − 1
Lk−1

∫
T∗

k−1

θ(s) `(ds) ≤ Vk−1. (A.1)
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Therefore, we can write

E∞

(∫
T∗

k−1

`(ds)
Lk−1

θ(s) − E∞[Θ|Fk−1]

)2

1Ek−1


≤ E∞

[
(Rk−1 ∨ Vk−1)21Ek−1

]
≤ E∞

[
R2

k−11Ek−1

]
+ E∞

[
V 2

k−11Ek−1

]
.

Using (2.10), we can see that, since Ek−1 ∈ σ({Tn}),

E∞
[
V 2

k−11Ek−1

]
≤ E∞

[(
C · h∅,k−1 +

√
π√

2Lk−1

)2

1Ek−1

]
≤ E∞

[
(C · h∅,k−1 +

√
π/2/Lk−1)2

]
.

Hence, as h∅,k−1 and L−1
k−1 are integrable and decrease to 0 a.s., E∞[V 2

k−11Ek−1 ]
converges to 0 by monotone convergence. As for E∞[R2

k−11Ek−1 ], we use the fact
that, conditionally on Tk−1, θ(h∅,k−1) is exponentially distributed with parameter
h∅,k−1 to find

E∞
[
R2

k−11Ek−1

]
= E∞

[
1
16

e−L2
k−1/2 h−4

∅,k−11Ek−1

]
≤ 1

16
k8E∞

[
e−L2

k−1/2
]

,

which easily converges to 0 as k → ∞. Hence, since E∞[Θ|Fk−1] converges in L2 to
Θ, it is of course L2-bounded, so that E∞[(

∫
T∗

k−1
θ(s)`(ds)/Lk−1)21Ek−1 ] is indeed

bounded as k → ∞, as announced. �

The following lemmata are purely analytic in nature, and their proofs are el-
ementary, so we gather them here, for the reader’s convenience. First, we prove
some universal bounds on F (q, t) = Eq[(

∫ t

0 θ(s)ds)2].

Lemma A.2. There exists C1, C2, C3, C4 > 0 such that

F (q, t) ≤ C1(qt)3/2 + C2qt2 (A.2)

F (q, t) ≤ C3 log2(qt) + C4q−1/2t1/2 (A.3)

Proof : First, we recall that, according to (3.8),

F (q, t) = Eq

[(∫ t

0
θ(s) ds

)2
]

= 1
q

∫ qt

0

1 − e−s

s
− e−s ds + 2

∫ qt

0
ds

∫ s

0
dt

1
s − t

(
1 − e−t

t
− 1 − e−s

s

)
:= F̃ (q, t) + 2 · G(qt).

The two estimates (A.2) and (A.3) will come from an asymptotic analysis of

F̃ (q, t) = 1
q

∫ qt

0

1 − e−s

s
− e−s ds

and

G(qt) =
∫ qt

0
ds

∫ s

0
dt

1
s − t

(
1 − e−t

t
− 1 − e−s

s

)
.
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Let us start with F̃ . We have

F̃ (q, t) = 1
q

∫ qt

0

1 − e−s

s
− e−s ds

= 1
q

lim
ε→0

(∫ qt

ε

1 − e−s

s
− e−s ds

)
= 1

q

(
log(qt) + e−qt −1 +

∫ ∞

qt

e−s

s
ds − lim

ε→0

(
log(ε) +

∫ ∞

ε

e−s

s
ds

))
.

Using integration by parts, we find that
∫∞

ε
exp(−s)/s ds =

∫∞
ε

log(s) e−s ds −
log(ε) e−ε, so that in the end

F̃ (q, t) = 1
q

(
γ + log(qt) +

∫ ∞

qt

e−s

s
ds + e−qt −1

)
,

where γ =
∫∞

0 log(u) e−u du is Euler’s constant. It is elementary to check that the
function γ + log(x) +

∫∞
x

e−t

t dt + e−x −1 is equivalent to x2/4 at x = 0, and equiv-
alent to log(x) = o(

√
x) when x → ∞. Since

√
x = o(x2) in the neighbourhood of

+∞ and x2 = o(
√

x) in the neighbourhood of 0, by continuity, we can find con-
stants C2 and C4 such that F̃ (q, t) ≤ C2(qt)2/q and such that F̃ (q, t) ≤ C4(qt)1/2/q.
Turning to the function G, we can write

G(x) =
∫ x

0
ds

∫ s

0
dt

1
s − t

(
1 − e−t

t
− 1 − e−s

s

)
=
∫ 1

0
du

∫ u

0
dv

1
u − v

(
1 − e−xv

v
− 1 − e−xu

u

)
,

so that

G′(x) =
∫ 1

0
du

∫ u

0
dv

1
u − v

(e−xv − e−xu),

and that

G′′(x) =
∫ 1

0
du

∫ u

0
dv

1
u − v

(u e−xu −v e−xv).

Thus, we have G(0) = G′(0) = 0 and G′′(0) = 1/2. Since G is smooth, we get that
G(x) ∼ x2/4 when x → 0.

As far as the asymptotic x → ∞ is concerned, we can express G′(x) in terms of
the exponential integral1 function Ei(x) =

∫ x

−∞ exp(t)/t dt:

G′(x) =
∫ 1

0
du

∫ u

0

dv

u − v
(e−xv − e−xu)

=
∫ 1

0
du e−xu

∫ xu

0

dv

v
(ev −1)

=
∫ 1

0
du e−xu(Ei(xu) − log(xu) − γ).

1Note that this integral has to be taken in the sense of Cauchy’s principal value.
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When x → ∞, we get

G′(x) ∼
∫ 1

0
du e−xu Ei(xu) = 1

x

∫ x

0
du e−t Ei(t)

∼ log x

x
.

Integrating from 0 to x, we get G(x) ∼ log2 x = o(
√

x) when x → ∞. Again,√
(x) = o(x2) in the neighbourhood of +∞ and x2 = o(

√
x) in the neighbourhood

of 0, so that by continuity, there exist two constants C1 and C2 such that both
G(x) ≤ C1x2 and G(x) ≤ C2x1/2. Thus, we get the two dominations (A.2) and
(A.3). �

We now turn to a useful estimation of the moments of the distribution ra(dx)
introduced in (2.17): ra(dx) = (a + x) e−x2/2−ax 1(0,∞)(x) dx.

Lemma A.3. Let λ > 0. If (a(n), n ≥ 1) is some sequence in R+ increasing to
+∞, then, as n → ∞, we have

∫∞
0 ra(n)(dx)xλ = O(a(n)−λ).

Proof : This is fairly easy: if λ > 0, we can write∫ ∞

0
ra(n)(dx)xλ =

∫ ∞

0
xλ(a(n) + x) e−x2/2−a(n)x dx

=
∫ ∞

0

uλ

a(n)λ

(
a(n) + u

a(n)

)
e−u2/(2a(n)2)−u du

a(n)

≤ 1
a(n)λ

∫ ∞

0
uλ e−u du + 1

a(n)λ+2

∫ ∞

0
uλ+1 e−u du,

which ends the proof. �

Lemma A.4. For any 0 < q < ∞ and any v ≥ 0, we have

E(v)
q [Θ] ≤

√
π/2 min(qv,

√
v).

Proof : We will use formula (36) from Abraham and Delmas (2013), stating that,
in our context, if Y is a Rayleigh-distributed variable, then

E(v)
q [Θ] =

√
v

∫ q
√

v

0
E
[
e−tY

]
dt.

We simply expand the Laplace transform, giving

E(v)
q [Θ] =

√
v

∫ q
√

v

0

∫ ∞

0
x e−x2/2 e−tx dx dt

=
√

v

∫ ∞

0
e−x2/2

(
1 − e−xq

√
v
)

dx.

Now, we use the obvious inequality 1 − exp(−x) ≤ min(x, 1), to get the desired
domination, since qv

∫∞
0 x exp(−x2/2) = qv and

√
v
∫∞

0 e−x2/2 dx =
√

πv/2. �

Finally, the next lemma is needed to prove the asymptotic smallness of the
martingale M̂n.
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Lemma A.5. Let (an, n ≥ 1) be a nonnegative sequence such that

lim
n→∞

1√
n

n∑
k=1

ak < ∞.

Then, we have

lim
n→∞

1
n

n∑
k=1

a2
k = 0.

Proof : Let sn = n−1/2∑n
k=1 ak. Taking the difference sn −sn−1, we easily see that

n−1/2an converges to 0. Then, if ε > 0, there exists n0 ≥ 1 such that for all n ≥ n0,
an < ε

√
n. Thus, if n ≥ n0, we have

sup
k≤n

ak ≤ sup
k<n0

ak + sup
n0≤k≤n

ak

≤ sup
k<n0

ak + ε
√

n,

which proves that actually

lim
n→∞

supk≤n ak√
n

= 0.

Then, we simply write

1
n

n∑
k=1

a2
k ≤

( supk≤n ak√
n

)(
1√
n

n∑
k=1

ak

)
to conclude. �
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Probab. Theory Related Fields 131 (4), 553–603 (2005). MR2147221.

P. Hall and C. C. Heyde. Martingale limit theory and its application. Academic
Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). ISBN 0-
12-319350-8. Probability and Mathematical Statistics. MR624435.

S. Janson. Random cutting and records in deterministic and random trees. Random
Structures Algorithms 29 (2), 139–179 (2006). MR2245498.

S. Janson. Simply generated trees, conditioned Galton-Watson trees, random allo-
cations and condensation. Probab. Surv. 9, 103–252 (2012). MR2908619.

J.-F. Le Gall. The uniform random tree in a Brownian excursion. Probab. Theory
Related Fields 96 (3), 369–383 (1993). MR1231930.

A. Meir and J. W. Moon. Cutting down random trees. J. Austral. Math. Soc. 11,
313–324 (1970). MR0284370.

A. Panholzer. Cutting down very simple trees. Quaest. Math. 29 (2), 211–227
(2006). MR2233368.

J. Pitman. Combinatorial stochastic processes, volume 1875 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin (2006). ISBN 978-3-540-30990-1; 3-540-
30990-X. Lectures from the 32nd Summer School on Probability Theory held in
Saint-Flour, July 7–24, 2002, With a foreword by Jean Picard. MR2245368.

D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, third edition (1999). ISBN 3-
540-64325-7. MR1725357.

http://www.ams.org/mathscinet-getitem?mr=MR2253162
http://arxiv.org/abs/1201.4081
http://www.ams.org/mathscinet-getitem?mr=MR2288702
http://www.ams.org/mathscinet-getitem?mr=MR1485774
http://www.ams.org/mathscinet-getitem?mr=MR2147221
http://www.ams.org/mathscinet-getitem?mr=MR624435
http://www.ams.org/mathscinet-getitem?mr=MR2245498
http://www.ams.org/mathscinet-getitem?mr=MR2908619
http://www.ams.org/mathscinet-getitem?mr=MR1231930
http://www.ams.org/mathscinet-getitem?mr=MR0284370
http://www.ams.org/mathscinet-getitem?mr=MR2233368
http://www.ams.org/mathscinet-getitem?mr=MR2245368
http://www.ams.org/mathscinet-getitem?mr=MR1725357

	1. Introduction
	1.1. The Brownian CRT
	1.2. The Aldous-Pitman fragmentation
	1.3. Separation times
	1.4. Linear record process
	1.5. Number of records on subtrees

	2. Variance in the weak convergence of length measure to mass measure
	2.1. Subtree decomposition
	2.2. Proof of Proposition 2.2
	2.3. Rate of convergence in the Martingale Convergence Theorem

	3. Proof of the main theorem
	3.1. Convergence of the conditional variance
	3.2. Asymptotic smallness

	Appendix A. Technical appendix
	References

