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Abstract. Let the nodes of a Poisson point process move independently in Rd

according to Brownian motions. We study the isolation time for a target particle
that is placed at the origin, namely how long it takes until there is no node of the
Poisson point process within distance r of it. In the case when the target particle
does not move, we obtain asymptotics for the tail probability which are tight up to
constants in the exponent in dimension d ≥ 3 and tight up to logarithmic factors
in the exponent for dimensions d = 1, 2. In the case when the target particle is
allowed to move independently of the Poisson point process, we show that the best
strategy for the target to avoid isolation is to stay put.

1. Introduction

Let Π0 = {Xi} be a Poisson point process over Rd with intensity λ > 0. To avoid
ambiguity, we refer to the points of Π0 as nodes. For each s > 0, let Πs be obtained
by letting the nodes of Π0 move according to independent Brownian motions. More
formally, for each Xi ∈ Π0, let (ξi(t))t be a Brownian motion starting at the origin
of Rd, independent over different i. We define

Πs =
∪
i

{Xi + ξi(s)}.

It follows by standard arguments (see e.g. van den Berg et al. (1997)) that, for any
fixed s ≥ 0, the process Πs is a Poisson point process of intensity λ. Henceforth we
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consider λ and r to be fixed constants and omit dependencies on these quantities
from the notation.

We add a target particle at the origin of Rd at time 0 and consider the case
where this particle does not move. We define the isolation time Tisol as the first
time t at which all nodes of Πt have distance at least r from the target particle.
More formally,

Tisol = inf
{
t ≥ 0: 0 6∈

∪
i

B(Xi + ξi(t), r)
}
,

where B(x, r) denotes the ball of radius r centered at x.
In this paper we derive bounds for P (Tisol > t) that are tight up to logarithmic

factors in the exponent. In order to simplify the statement of our theorems, we
define the function Ψd(t) as

Ψd(t) =


√
t, for d = 1

log t, for d = 2
1, for d ≥ 3.

(1.1)

Then, Theorem 1.1, whose proof is given in Section 2, establishes an upper bound
for the tail of Tisol.

Theorem 1.1. For all d ≥ 1 and any λ, r > 0, there exist t0 > 0 and a positive
constant c such that

P (Tisol > t) ≤ exp

(
−c

t

Ψd(t)

)
,

for all t ≥ t0.

It is easy to see that there is a positive constant c so that the following lower
bound holds in all dimensions d ≥ 1:

P (Tisol > t) ≥ exp (−ct) . (1.2)

This is true since, with constant probability, there is a node within distance r/2
of the origin at time 0 and the probability that, from time 0 to t, this node never
leaves a ball of radius r/2 centered at its initial position is e−Θ(t) (see for instance
Ciesielski and Taylor (1962)); this implies that this node is within distance r of the
origin throughout the time interval [0, t] with probability e−Θ(t). Here and in the
rest of the paper, Θ(t) denotes any function which is bounded above and below
by constant multiples of t. Comparing Theorem 1.1 with (1.2), we see that the
exponent in Theorem 1.1 is tight up to constant factors for d ≥ 3 and tight up to
logarithmic factors for d = 2. For d = 1, the lower bound in (1.2) is far from the
upper bound in Theorem 1.1. We obtain a better lower bound in the next theorem,
which we prove in Section 3. This lower bound matches the upper bound up to
logarithmic factors in the exponent.

Theorem 1.2. For d = 1 and any λ, r > 0, there exist t0 > 0 and a positive
constant c such that

P (Tisol > t) ≥ exp
(
−c

√
t log t log log t

)
,

for all t ≥ t0.

The isolation time, as defined above, can be generalized in two distinct ways:
by replacing the balls in the definition of Tisol with more general sets of the same
volume, or by allowing the target particle to move. The next theorem, which we
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prove in Section 4, establishes that both these generalization can only decrease the
tail of the isolation time. In order to state the theorem, let (Ds)s≥0 be a collection
of closed sets in Rd. We say that the target is detected at time t if some node of
the Poisson point process is in the set Dt at time t. We define the isolation time in
this context as

TD
isol = inf{t ≥ 0 : ∀i, Xi + ξi(t) /∈ Dt}.

Theorem 1.3. Let (Ds)s be a collection of closed sets in Rd that are uniformly
bounded, i.e., there exists Lt > 0 such that ∪s≤tDs ⊆ B(0, Lt). Then, for all t ≥ 0,
we have

P
(
TD
isol > t

)
≤ P

(
TB
isol > t

)
,

where (Bs)s are closed balls in Rd centered at the origin with vol (Bs) = vol (Ds)
for all s.

The corollary below handles the case when the target moves independently of
the nodes of Π0; it establishes that the best strategy for the target to avoid isolation
is to stay put. This is obtained by letting g(s) be the location of the target at time
s, and setting Ds = B(g(s), r) in Theorem 1.3.

Corollary 1.4. Let r > 0. Let the location of the target be given by a function
g : R+ → Rd that is bounded on compact time intervals and is independent of the
nodes of Π0. If we define

T g
isol = inf

{
t ≥ 0: g(t) 6∈

∪
i

B(Xi + ξi(t), r)
}
,

then, for any t ≥ 0, the probability P (T g
isol > t) is maximized when g ≡ 0.

The isolation time is closely related to other quantities involving Poisson Brow-
nian motions that have been studied in the context of mobile geometric graphs.
We discuss these connections and give some motivation in Section 5, where we also
discuss some open problems.

2. Proof of the upper bound

We start with a high-level description of the proof of Theorem 1.1. We fix λ
and r, and let K be a large positive constant. We take the nodes of Π0 and split
them into K independent Poisson point processes Φ1,Φ2, . . . ,ΦK of intensity λ

K
each. We consider the first Poisson point process Φ1 and look at the amount of
time during the time interval [0, t] that the origin has been detected by at least
one node of Φ1. We show that this quantity is at most t/2, with probability at
least 1 − e−ct/Ψd(t), for some positive constant c. This can be achieved by setting
K sufficiently large. Then, considering only the times at which the origin has not
been detected by the nodes of Φ1, which we denote by I2, we show that the amount
of time within I2 that the origin is detected by a node of Φ2 is at most t/4, with
probability at least 1− e−ct/Ψd(t). Then, we repeat this procedure for each Poisson
point process Φj , and, considering only the times at which the origin has not been
detected by the nodes of Φ1,Φ2, . . . ,Φj−1, which we denote by Ij , we show that
the amount of time within Ij that the nodes of Φj detect the origin is at most
t
2j with probability at least 1 − e−ct/Ψd(t). Then, taking the union bound over

j = 1, 2, . . . ,K, we have that, with probability at least 1−Ke−ct/Ψd(t), the amount
of time the origin has been detected by at least one node of Π0 during [0, t] is at
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most t
2 + t

4 + t
8 + · · ·+ t

2K
< t. We remark that the sets I2, I3, . . ., will be slightly

different than the definition above, but we defer the details to the formal proof,
which we give below.

Proof of Theorem 1.1: Let K be a fixed and sufficiently large integer and define
Φ1,Φ2, . . . ,ΦK to be independent Poisson point processes of intensity λ

K each.

Using the superposition property of Poisson processes, we obtain that ∪K
j=1Φj is

also a Poisson point process in Rd of intensity λ. Thus, we can couple the nodes of
Π0 with the nodes of Φ1,Φ2, . . . ,ΦK so that Π0 = ∪K

j=1Φj .

Denote the points of Φj by {X(j)
i }i=1,2,... and let (ξ

(j)
i (s))s≥0 be the Brownian

motion that X
(j)
i performs, independent over different i and j. Thus the position

of the node X
(j)
i of Φj at time s is X

(j)
i + ξ

(j)
i (s). We say that a node detects the

origin at time s if the node is inside the ball B(0, r) at time s.
Now, let I1 = [0, t] and

Z1 = {s ∈ I1 : ∃X(1)
i ∈ Φ1 s.t. X

(1)
i + ξ

(1)
i (s) ∈ B(0, r)}.

In words, Z1 is the set of times during the interval [0, t] at which the origin is
detected by at least one node of Φ1. Then, for j ≥ 2, we define inductively Jj =

[0, t] \ (∪j−1
`=1Z`), which is the set of times at which no node of Φ1 ∪Φ2 ∪ · · · ∪Φj−1

detects the origin. Our goal is to analyze the amount of time within Jj that nodes of
Φj detect the origin. However, when Jj turns out to be large, it will be convenient
to consider only a subset of Jj of given size. We will denote the set of times we
consider by Ij and, for any given subset A ⊂ R, we define |A| to be the Lebesgue
measure of A. Then, if |Jj | ≤ t

2j−1 , we set Ij = Jj ; otherwise, we let Ij be an

arbitrary subset of Jj such that |Ij | = t
2j−1 . With this, let Zj be the set of times

within the set Ij at which the origin is detected by at least one node of Φj ; more
formally, we have

Zj = {s ∈ Ij : ∃X(j)
i ∈ Φj s.t. X

(j)
i + ξ

(j)
i (s) ∈ B(0, r)}.

The lemma below gives a bound for the probability that |Zj | is large.

Lemma 2.1. For all dimensions d ≥ 1, there exists a constant c such that, for any
j ∈ {1, 2, . . . ,K}, we have

P

(
|Zj | >

t

2j

)
≤ exp

(
−c

t

Ψd(t)

)
.

We will give the proof of Lemma 2.1 in a moment; first, we show how to use
Lemma 2.1 to complete the proof of Theorem 1.1. Clearly, if |Zj | ≤ t

2j for all j,
then the amount of time at which at least one node of Π0 detects the origin is

at most
∑K

j=1
t
2j < t, which yields Tisol ≤ t. Therefore, using this and the union

bound, we have

P (Tisol > t) ≤ P

 K∪
j=1

{
|Zj | >

t

2j

} ≤
K∑
j=1

P

(
|Zj | >

t

2j

)
≤ K exp

(
−c

t

Ψd(t)

)
,

which completes the proof of Theorem 1.1. �

Before proving Lemma 2.1 we introduce some notation and prove a few prelimi-
nary results.
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In what follows we fix j ∈ {1, 2, . . . ,K}. Let

Φ′
j = {X(j)

i ∈ Φj : ∃s ∈ [0, t] s.t. X
(j)
i + ξ

(j)
i (s) ∈ B(0, r)};

that is, Φ′
j is the set of nodes of Φj that detect the origin at some time in [0, t].

Then Φ′
j is a thinned Poisson point process with intensity given by

Λ(x) = λ
K P (x ∈ ∪s≤tB(ξ(s), r)) ,

where (ξ(s))s is a standard Brownian motion.
Let Nj be a Poisson random variable of mean

E [Nj ] = Λ(Rd) =
λ

K
E [vol (W0(t))] , (2.1)

where

W0(t) = ∪s≤tB(ξ(s), r) (2.2)

is the Wiener sausage with radius r up to time t. It is known (see for instance Spitzer
(1964); Berezhkovskĭı et al. (1989)) that, as t → ∞, the expected volume of the
Wiener sausage satisfies

E [vol (W0(t))] =
c(d, r)t

Ψd(t)
(1 + o(1)), (2.3)

for an explicit positive constant c(d, r).
For all ` = 1, 2, . . ., we let X` be i.i.d. random variables in Rd distributed ac-

cording to Λ(x)
Λ(Rd)

and (ξ`(s))s be a Brownian motion conditioned on X` + ξ` hitting

the ball B(0, r) before time t, independent over different `. Finally we define

S` =

∫
Ij

1 (X` + ξ`(s) ∈ B(0, r)) ds,

i.e. the time in Ij that X`+ ξ` spends in the ball B(0, r). Note that we should have
written S`,j but we dropped the dependence on j to simplify notation.

Lemma 2.2. We have that

P

(
|Zj | >

t

2j

)
≤ P

 Nj∑
`=1

S` >
t

2j

 .

Proof: Let Mj = |Φ′
j(Rd)| be the total number of nodes of Φ′

j . Then Mj is a
Poisson random variable of mean

E [Mj ] =
λ

K

∫
Rd

P

x ∈
∪
s≤t

B(ξ(s), r)

 dx =
λ

K
E [vol (W0(t))] , (2.4)

where W0(t) is the Wiener sausage as defined above. Hence, Mj has the same law
as Nj .

Let Φ′
j = {X ′

1, . . . , X
′
Mj

}. Then the positions of the nodes X ′
i are independent

and distributed according to Λ(x)
Λ(Rd)

. From that it now follows that |Zj | is no larger

than the sum S1 + . . .+ SNj and this concludes the proof of the lemma. �
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Claim 2.3. For all j we have

E

 Nj∑
`=1

S`

 =
λωdr

d E [|Ij |]
K

and E

 Nj∑
`=1

S`

 = E [Nj ]E [S1] , (2.5)

where ωd stands for the volume of the unit ball in Rd.

Proof: By standard properties of Poisson processes, the process {X(j)
i + ξ

(j)
i (s)}i

is a Poisson point process of intensity λ, for every s (see e.g. van den Berg et al.
(1997)). Using that fact and Fubini’s theorem we have

E

 Nj∑
`=1

S`

= E

[∫
Ij

E

[∑
i

1
(
X

(j)
i + ξ

(j)
i (s) ∈ B(0, r)

) ∣∣∣∣∣ Ij
]
ds

]
=

λωdr
d E [|Ij |]
K

.

The independence between Nj and (X`) gives the second equality. �

We now introduce a sequence of i.i.d. random variables given by

Y` =
S` −E [S`]

Ψd(t)
, for all ` = 1, 2, . . .

We emphasize that the random variables (S`) and (Y`) depend on t.

Lemma 2.4. There exists a positive constant γ such that

sup
t≥0

E
[
eγY1

]
≤ C,

where C is a positive finite constant.

Proof: Let ζ be a Brownian motion started according to Λ(x)
Λ(Rd)

and conditioned on

hitting B(0, r) before time t. Then the construction of (S`) gives that S1 has the
same law as the time that ζ spends in B(0, r) before time t. Note that after hitting
∂B(0, r), the process ζ evolves as an unconditioned Brownian motion. For any x,
if ξ is a standard Brownian motion, then the time Lx in [0, t] that x+ ξ spends in
the ball B(0, r) satisfies

E [Lx] = E

[∫ t

0

1 (x+ ξ(s) ∈ B(0, r)) ds

]
(2.6)

≤ 1 +

∫ t

1

∫
B(0,r)

1

(2πs)d/2
dy ds ≤ c1Ψd(t), (2.7)

for some positive constant c1. By rotational invariance of Brownian motion we have
that

S1 is stochastically dominated by Lx, for any x on the boundary of B(0, r).
(2.8)

Using this, we will show that there exists a positive constant c2 such that for all
n ≥ 1

P (S1 > nc1Ψd(t)) ≤ e−c2n. (2.9)

Before showing (2.9), we explain how we use it to prove the lemma. From the
definition of Y1 we get that for all n

P (Y1 > c1n) ≤ e−c2n.
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This shows that this exponential tail bound is independent of t, and hence there
exists a γ > 0 such that supt≥0 E

[
eγY1

]
≤ C < ∞.

In order to show (2.9), note that, by (2.6), (2.8) and Markov’s inequality, we
have

P (S1 > 2c1Ψd(t)) ≤
1

2
.

We now condition on {S1 > 2c1Ψd(t)}. After X1+ξ1 has spent 2c1Ψd(t) time inside
B(0, r), let x be its position at that time. Then on the event {S1 > 2c1Ψd(t)},
we have that S1 − 2c1Ψd(t) is stochastically dominated by Lx. Using the fact
that (2.6) holds for all x and applying Markov’s inequality once more, we obtain
that the probability that X1 + ξ1 spends an additional amount of 2c1Ψd(t) time
inside B(0, r) is again at most 1/2; that is,

P (S1 > 4c1Ψd(t) | S1 > 2c1Ψd(t)) ≤
1

2
.

Thus, by iterating n/2 times, we establish (2.9). �

Lemma 2.5. For all sufficiently large K, there exists a positive constant c so that
for all j

P

4E[Nj ]∑
`=1

Y` >
t

Ψd(t)2j+1

 ≤ exp

(
− ct

Ψd(t)

)
. (2.10)

Proof: Let θ > 0. Since the random variables Y` are independent, by Chernoff’s
inequality and using (2.1) and (2.3) , we obtain for a positive constant c3 that

P

4E[Nj ]∑
`=1

Y` >
t

Ψd(t)2j+1

 ≤
(
E
[
eθY1

])4E[Nj ]
exp

(
− θt

Ψd(t)2j+1

)

= exp

(
− θt

Ψd(t)2j+1
+ 4E [Nj ] logE

[
eθY1

])
≤ exp

(
− θt

Ψd(t)2j+1
+

4c3λt

KΨd(t)
logE

[
eθY1

])
.

We set φ(θ) = φt(θ) = logE
[
eθY1

]
, for θ ≤ γ, where γ is the constant of Lemma 2.4.

By the existence of the exponential moment of Y1 (cf. Lemma 2.4) and the domi-
nated convergence theorem, we get that φ is differentiable and its derivative is given
by

φ′(θ) =
E
[
Y1e

θY1
]

E [eθY1 ]
.

Also, φ′(0) = E [Y1] = 0, and again using the existence of the exponential moment
of Y1 and the dominated convergence theorem, we have that φ′ is differentiable with
derivative given by

φ′′(θ) =
E
[
Y 2
1 e

θY1
]
E
[
eθY1

]
−E

[
Y1e

θY1
]2

E [eθY1 ]
2 .

We will now show that there exists a positive constant c4 such that uniformly over
all t

φ′′(θ) ≤ c4, for all θ ≤ γ/2. (2.11)
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Note that by the definition of Y1 and (2.6) and (2.8), we get Y1 ≥ −E[S1]
Ψd(t)

≥ −c1.

Using this when Y1 ≤ 0 and the fact that the function y2e−γy/4 for y > 0 is
maximized at y = 8/γ, we have

E
[
Y 2
1 e

θY1
]
≤ c21 +

64

γ2
E
[
e(γ/4+θ)Y1

]
.

By Jensen’s inequality and the fact that E [Y1] = 0 we obtain

E
[
eθY1

]
≥ exp(θE [Y1]) = 1.

Thus, Lemma 2.4 and the above two inequalities prove (2.11).
Since φ′(0) = 0 and φ′′ is continuous (which follows again by the dominated

convergence theorem) we get

|φ′(θ)| ≤ c4θ, for all θ < γ/2.

Also, since φ(0) = 0, we obtain

|φ(θ)| ≤ c4θ
2/2,

and hence, we get that there exists δ small enough depending on j such that uni-
formly for all t

|φ(δ)| ≤ 2−j−1δ.

Thus, putting everything together we have

P

4E[Nj ]∑
`=1

Y` >
t

Ψd(t)2j+1

 ≤ exp

(
− δt

Ψd(t)2j+1
+

4c4λt

KΨd(t)
2−j−1δ

)

= exp

(
− δt

Ψd(t)2j+1

(
1− 4c4λ

K

))
.

Taking now K large enough establishes (2.10). �

Proof of Lemma 2.1: It only remains to show that there exists a positive con-
stant c1 such that

P

 Nj∑
`=1

S` >
t

2j

 ≤ exp(−c1t/Ψd(t)), (2.12)

which together with Lemma 2.2 concludes the proof of Lemma 2.1. We can write

P

 Nj∑
`=1

S` >
t

2j

 ≤ P

 Nj∑
`=1

S` >
t

2j
, Nj < 4E [Nj ]

+P (Nj ≥ 4E [Nj ])

≤ P

4E[Nj ]∑
`=1

(S` −E [S`]) >
t

2j
− 4E [Nj ]E [S1]

+P (Nj ≥ 4E [Nj ])

≤ P

4E[Nj ]∑
`=1

Y` >
t

2jΨd(t)

(
1− 8λωdr

d/K
)+ exp (−2E [Nj ]) ,

where the first term on the right-hand side above follows from Claim 2.3 and the
fact that |Ij | ≤ t

2j−1 . The last term follows by applying the Chernoff bound to the
Poisson random variable Nj .



The Isolation Time of Poisson Brownian Motions 821

If we now choose K large enough we can make
(
1− 8λωdr

d/K
)
larger than

1/2, and hence using Lemma 2.5 we get the desired tail probability bound, since
E [Nj ] = Θ(t/Ψd(t)) by (2.1) and (2.3). �

3. Lower bound in d = 1

Proof of Theorem 1.2: We want to show that

P (Tisol > t) ≥ exp
(
−c

√
t log t log log t

)
,

for some positive constant c. Instead of looking at the interval [0, t], we consider the
interval [t, 2t] and analyze the event that the origin is detected throughout [t, 2t].
Clearly, due to stationarity, this is equivalent to the event {Tisol > t}.

Now, consider the interval of length
√
t centered at the origin. Let M be the set

of nodes of Π0 that fall in this interval at time 0. Then, the number of nodes in M ,
which we denote by |M |, is given by a Poisson random variable with mean λ

√
t.

Let C > 0 be a sufficiently large constant that we will set later. We have that

P
(
|M | ≥ C

√
t log t

)
≥ exp(−λ

√
t)(λ

√
t)C

√
t log t

(C
√
t log t)!

≥ exp(−λ
√
t)(λ)C

√
t log t

(C log t)C
√
t log t

≥ exp
(
−c1

√
t log t log log t

)
,

for some positive constant c1.
We now divide the time interval [t, 2t] into t subintervals of length 1. We fix one

such subinterval [s, s+1]. The probability that the origin is detected by a given node
of M throughout [s, s+ 1] is at least c2√

t
for some positive constant c2. To see this,

note that the probability that this particular node (which started in the interval
[−

√
t/2,

√
t/2] at time 0) is in B(0, r/2) at time s is Θ( 1√

t
) since s ∈ [t, 2t] and,

once this node is inside the ball B(0, r/2) at time s, there is a positive probability
that it will stay in B(0, r) for one unit of time.

Then, for any given subinterval [s, s+ 1], we have

P
(
no node of M detects the origin throughout [s, s+ 1]

∣∣∣ |M | ≥ C
√
t log t

)
≤
(
1− c2√

t

)C
√
t log t

≤ t−c2C .

If for each s there is a node of M detecting the origin throughout [s, s + 1], then
Tisol > t. Thus, by taking the union bound over all subintervals, we have

P
(
Tisol > t

∣∣∣ |M | ≥ C
√
t log t

)
≥ 1− t−c2C+1.

Finally,

P (Tisol > t) ≥ P
(
Tisol > t

∣∣∣ |M | ≥ C
√
t log t

)
P
(
|M | ≥ C

√
t log t

)
≥ (1− t−c2C+1) exp

(
−c1

√
t log t log log t

)
.

The proof of Theorem 1.2 is then completed by setting C sufficiently large so that
C > 1/c2. �
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4. Best strategy to avoid isolation

In this section we prove Theorem 1.3. The measurability of the event {TD
isol > t}

is explained at the end of the section.
In order to prove Theorem 1.3 we first prove a preliminary lemma in the case

where time is discrete and there is a finite number k of Brownian motions started
from uniform points in a big ball. Moreover, it will be convenient to generalize the
problem so that, instead of having one single collection of sets (Ds)s for all nodes,
we will have one collection of sets for each node.

Lemma 4.1. Let (xi)i≤k be i.i.d. uniformly in the ball B(0, R) for some R > 0 and
let (ξi(s))i≤k be independent standard Brownian motions. Let {U i

m : m ≤ n, i ≤ k}
be a collection of closed bounded sets in Rd. Then

P
(
∀m = 0, . . . , n, ∃i = 1, . . . , k : xi + ξi(m) ∈ U i

m

)
≤ P

(
∀m = 0, . . . , n, ∃i = 1, . . . , k : xi + ξi(m) ∈ Bi

m

)
,

where (Bi
m)m,i are balls centered at the origin with vol

(
Bi

m

)
= vol

(
U i
m

)
for all m

and i.

Proof: We now focus on the first node x1 + ξ1 and define a sequence of stopping
times as follows. Let T0 = 0 and

T1 = inf{m ≥ 0 : ∀i = 2, . . . , k xi + ξi(m) /∈ U i
m}.

Define inductively

Tj+1 = inf{m ≥ Tj + 1 : ∀i = 2, . . . , k xi + ξi(m) /∈ U i
m}.

Let κ = sup{` ≥ 0 : T` ≤ n}. Then we have

P
(
∀m= 0, . . . , n, ∃i = 1, . . . k : xi + ξi(m) ∈ U i

m

)
= E

 κ∏
j=1

1(x1 + ξ1(Tj) ∈ U1
Tj
)

.
By the independence of the motions of the nodes 1, . . . , k and the Markov property,
the right-hand side above can be written as

E

∫
Rd

· · ·
∫
Rd

1(z0 ∈ B(0, R))

vol (B(0, R))

κ∏
j=1

1(zj ∈ U1
Tj
)pTj−Tj−1

(zj−1, zj) dz0 . . . dzκ

 ,

where pt(x, y) stands for the transition kernel of Brownian motion. Applying the
rearrangement inequality as in Brascamp et al. (1974, Theorem 1.2) to the integral
appearing inside the expectation (the transition kernel pt(x, y) of the Brownian
motion is symmetric decreasing as a function of the distance |x − y|), we get that
this last expression is smaller than

E

∫
Rd

· · ·
∫
Rd

1(z0 ∈ B(0, R))

vol (B(0, R))

κ∏
j=1

1(zj ∈ B1
Tj
)pTj−Tj−1

(zj−1, zj) dz0 . . . dzκ

 ,

which is equal to

P
(
∀m = 0, . . . , n, ∃i = 1, . . . , k : xi + ξi(m) ∈ V i

m

)
,

where V i
m = U i

m for i = 2, . . . , k and V 1
m = B1

m for all m.
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Continuing in the same way, i.e. fixing node 2 and looking at the times that the
other particles, 1, 3, 4, . . . , k do not detect the target before time n, we get that this
last probability is increased when the sets V 2

m are replaced by the balls B2
m for all

m. Then we apply the same procedure for nodes 3, 4, . . . , k and this concludes the
proof. �

Before proving Theorem 1.3, we give some definitions that will be used in the
proofs repeatedly.

For n ∈ N and t > 0, define the dyadic rationals of level n as

Dn,t =

{
jt

2n
: j = 0, . . . , 2n

}
.

Let (Us)s≤t be closed sets in Rd. For each s and n, we define the set

Us,n = {z ∈ Rd : d(z, Us) ≤ (t/2n)
1/3}, (4.1)

which is clearly closed. (The metric d(x,A) stands for the Euclidean distance
between the point x and the set A.)

For every ` ∈ Dn (we drop the dependence on t from Dn,t to simplify notation),

we will define a set Ũ`,n as follows. For each such ` take s = s(`) ∈ [`, ` + t/2n)
such that

vol (Us,n) ≤ inf
u∈[`,`+t/2n)

vol (Uu,n) +
1

n
.

We now define Ũ`,n = Us(`),n and finally for every n and i we let

Ωn,i =

{
∀h ≤ t/2n : sup

s,u:|s−u|≤h

‖ξi(s)− ξi(u)‖ ≤ h1/3

2

}
. (4.2)

Lemma 4.2. Let (Us)s≤t be closed sets in Rd that are uniformly bounded; i.e.,
there exists Lt > 0 such that ∪s≤tUs ⊆ B(0, Lt). Then, with the definitions given
above, we have that, almost surely,

{∀s ≤ t, ∃i : Xi + ξi(s) ∈ Us} ⊆
∪
n0

∩
n≥n0

{∀` ∈ Dn, ∃i : Xi + ξi(`) ∈ Ũ`,n}.

Proof: We first notice that, almost surely,

{∀s ≤ t, ∃i : Xi + ξi(s) ∈ Us} = ∪R{∀s ≤ t, ∃i = 1, . . . NR : Xi + ξi(s) ∈ Us},
(4.3)

where NR is the number of nodes of the Poisson process that started in the ball
B(0, R), so NR is a Poisson random variable of parameter λ vol (B(0, R)). Indeed,
if Fn denotes the event that some node that started outside the ball B(0, n) detects
the target before time t, then we will show that

P (Fn) → 0 as n → ∞.

Let Φn be the point process defined as follows

Φn = {Xi ∈ Π0 : Xi /∈ B(0, n) and ∃s ≤ t : Xi + ξi(s) ∈ Us}.

Then, by the thinning property of Poisson processes, Φn is a Poisson process of
total intensity

E
[
Φn(Rd)

]
= λE [vol (∪s≤t (ξ(s) + Us) ∩B(0, n)c)] ,
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where (ξ(s))s is a Brownian motion starting from the origin. Clearly, by Markov’s
inequality, we have

P (Fn) = P
(
Φn(Rd) ≥ 1

)
≤ E

[
Φn(Rd)

]
.

Since for all s ≤ t the sets Us are contained in B(0, Lt), we have

∪s≤t (ξ(s) + Us) ⊆ ∪s≤t (ξ(s) +B(0, Lt)) .

As n → ∞, by dominated convergence, we have that

E [vol (∪s≤t (ξ(s) + Us) ∩B(0, n)c)] → 0,

since vol (∪s≤t (ξ(s) + Us) ∩B(0, n)c) ≤ vol (∪s≤t (ξ(s) +B(0, Lt))) and the latter
has finite expectation given by (2.3) for r = Lt. This shows (4.3).

We will now show that, on the event ∩i ∪n Ωn,i, the following holds for all k:

{∀s ≤ t, ∃i ≤ k : Xi + ξi(s) ∈ Us} ⊆
∪
n0

∩
n≥n0

{∀` ∈ Dn, ∃i ≤ k : Xi + ξi(`) ∈ Ũ`,n}.

(4.4)

Take n0 large enough so that Ωn,i holds for all n ≥ n0 and all i = 1, . . . , k (since
the sets Ωn,i are increasing in n). We want to show that, for all ` ∈ Dn, there exists

i = 1, . . . , k for which Xi + ξi(`) ∈ Ũ`,n. Take i such that Xi + ξi(s(`)) ∈ Us(`).
Then we have

d(Xi + ξi(`), Us(`)) ≤ d(ξi(`), ξi(s(`))) + d(Xi + ξi(s(`)), Us(`))

≤ 1

2
(t/2n)1/3 < (t/2n)1/3,

since Us(`) is a closed set.
By the same reasoning that led to (4.3) we get that, almost surely,

∪R ∪n0 ∩n≥n0{∀` ∈ Dn, ∃i = 1, . . . , NR : Xi + ξi(`) ∈ Ũ`,n}

= ∪n0 ∩n≥n0 {∀` ∈ Dn, ∃i : Xi + ξi(`) ∈ Ũ`,n}.

This together with the fact that P (∩i ∪n Ωn,i) = 1, which follows from Lévy’s
modulus of continuity theorem (see for instance Mörters and Peres (2010, Theo-
rem 1.14)), concludes the proof of the lemma. �

Proof of Theorem 1.3: By Lemma 4.2 we have that

P (∀s ≤ t, ∃i : Xi + ξi(s) ∈ Ds)

≤ lim
n0→∞

lim
n1→∞

P

(
n1∩

n=n0

{∀` ∈ Dn, ∃i : Xi + ξi(`) ∈ D̃`,n}

)
.

Since the sets (Ds) are uniformly bounded, by the same reasoning that led to (4.3)
we get

n1∩
n=n0

{∀` ∈ Dn, ∃i : Xi + ξi(`) ∈ D̃`,n}

=
∪
R

n1∩
n=n0

{∀` ∈ Dn, ∃Xi ∈ Π0 ∩B(0, R) : Xi + ξi(`) ∈ D̃`,n}.

Let NR be the number of nodes of the Poisson process Π0 that are in B(0, R). Then
NR is a Poisson random variable of parameter α = λ vol (B(0, R)). If we condition
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on NR, then by standard properties of Poisson processes, we get that the positions
of the nodes Xi are independent and uniformly distributed in B(0, R). So we obtain

P

(
n1∩

n=n0

{∀` ∈ Dn, ∃Xi ∈ Π0 ∩B(0, R) : Xi + ξi(`) ∈ D̃`,n}

)

=

∞∑
k=0

e−αα
k

k!
P

(
n1∩

n=n0

{∀` ∈ Dn, ∃i = 1, . . . , k : xi + ξi(`) ∈ D̃`,n}

)
,

where the xi’s are i.i.d. uniformly in the ball B(0, R).
Using Lemma 4.1 we deduce that, for all k,

P

(
n1∩

n=n0

{∀` ∈ Dn, ∃i ≤ k : xi + ξi(`) ∈ D̃`,n}

)

≤ P

(
n1∩

n=n0

{∀` ∈ Dn, ∃i ≤ k : xi + ξi(`) ∈ B(0, r̃`,n)}

)
,

where r̃`,n satisfies vol (B(0, r̃`,n)) = vol
(
D̃`,n

)
.

Thus if rs,n is such that vol (B(0, rs,n)) = vol (Ds,n), then for every s ∈ [`, `+ t/2n)

r̃`,n ≤ rs,n

(
1 +

1

rds,nc(d)n

)1/d

, (4.5)

where c(d) is a constant that depends only on the dimension.
Hence we get

P

(
n1∩

n=n0

{∀` ∈ Dn, ∃i : Xi + ξi(`) ∈ D̃`,n}

)

≤ P

(
n1∩

n=n0

{∀` ∈ Dn, ∃i : Xi + ξi(`) ∈ B(0, r̃`,n)}

)
and thus

P (∀s ≤ t, ∃i : Xi + ξi(s) ∈ Ds)

≤ P

∪
n0

∩
n≥n0

{∀` ∈ Dn, ∃i : Xi + ξi(`) ∈ B(0, r̃`,n)}

 .

Now it only remains to show that a.s.

{∀s ≤ t, ∃i : Xi + ξi(s) ∈ Bs} =
∪
n0

∩
n≥n0

{∀` ∈ Dn, ∃i : Xi + ξi(`) ∈ B(0, r̃`,n)}.

(4.6)

In the notation introduced before Lemma 4.2 we have B(0, r̃`,n) = B̃`,n. Then
applying Lemma 4.2, we get that the left-hand side of (4.6) is contained in the
right-hand side of (4.6).

To show the other inclusion, notice first that since all the balls are uniformly
bounded, by the same reasoning that led to (4.3), it suffices to look at a finite



826 Peres et al.

number of nodes of the Poisson process and show that a.s.∪
n0

∩
n≥n0

{∀` ∈ Dn, ∃i ≤ k : Xi + ξi(`) ∈ B(0, r̃`,n)} (4.7)

⊆ {∀s ≤ t, ∃i ≤ k : Xi + ξi(s) ∈ Bs}. (4.8)

In order to establish (4.7), notice first that the events Ωn,i are increasing in n and
thus, almost surely, there exists n0 large enough so that Ωn,i holds for all n ≥ n0

and all i = 1, . . . , k. If ` is such that ` ≤ s < `+ t/2n, then there exists i = 1, . . . , k
such that Xi + ξi(`) ∈ B(0, r̃`,n), and hence using (4.5) we get

d(Xi + ξi(`), Bs) = (‖Xi + ξi(`)‖2 − rs)
+ ≤ rs,n

(
1 +

1

rds,nc(d)n

)1/d

− rs.

Therefore, for all n ≥ n0, by the triangle inequality again we have

min
i=1,...,k

d(Xi + ξi(s), Bs) ≤ min
i=1,...,k

(d(ξi(s), ξi(`)) + d(Xi + ξi(`), Bs))

≤ 1

2
(t/2n)1/3 + rs,n

(
1 +

1

rds,nc(d)n

)1/d

− rs → 0

as n → ∞, since rs,n → rs as n → ∞. Hence, this gives that there exists i ∈
{1, . . . , k} such that Xi + ξi(s) ∈ Bs, since Bs is a closed set and this finishes the
proof of (4.7) and concludes the proof of the theorem. �

We now explain the measurability issue raised at the beginning of the section.

Lemma 4.3. Let (Ds)s be a collection of closed sets in Rd that are uniformly
bounded; i.e., there exists Lt > 0 such that ∪s≤tDs ⊆ B(0, Lt). Then, for all t ≥ 0,
the event {TD

isol > t} is measurable.

Proof: By the assumption on the sets being uniformly bounded, as in (4.3) we can
write

{∀s ≤ t, ∃i : Xi+ξi(s) ∈ Ds} = ∪R{∀s ≤ t, ∃Xi ∈ Π0∩B(0, R) : Xi+ξi(s) ∈ Ds}.

In order to show the measurability, it suffices to show that, for all k, the event

{∀s ≤ t, ∃i = 1, . . . , k : Xi + ξi(s) ∈ Ds}

is measurable. But the event above can be alternatively written as

{∀s ≤ t, (X1 + ξ1(s), . . . , Xk + ξk(s)) ∈ D⊗k
s },

where D⊗k
s = {x = (x1, . . . , xk) ∈ Rdk : ∃i s.t. xi ∈ Ds} is clearly a closed set. So

the initial question of measurability reduces to the question of measurability of the
event

{∀s ≤ t, ξ(s) ∈ Us},
where ξ is a Brownian motion in dk dimensions and (Us) is a collection of closed
sets. In order to show this, we use the same notation as in (4.1) and define Ωn as
in (4.2) but only for one Brownian motion and Z` =

∩
`≤s<`+t/2n Ds,n, which is

again closed as an intersection of closed sets. Then using similar ideas as in the
proof of (4.4) and (4.7) we get that on ∪nΩn

{∀s ≤ t, ξ(s) ∈ Ds} =
∪
n0

∩
n≥n0

{∀` ∈ Dn, ξ(`) ∈ Z`}.
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Hence the measurability follows, since by Lévy’s modulus of continuity theorem (see
for instance Mörters and Peres (2010, Theorem 1.14)) we have that P (∪mΩm) =
1. �

5. Concluding remarks and questions

A related quantity that has been studied for Poisson Brownian motions is the
detection time, Tdet. Consider a target particle u and define Tdet as the first time
at which a node of the Poisson point process is within distance r of u. Kesidis et al.
(2003) and Konstantopoulos (2009) used a result from stochastic geometry (Stoyan
et al. (1995)) to show that, when u stays fixed at the origin,

P (Tdet > t) = exp (−λE [vol (W0(t))]) = exp

(
−cd

t

Ψd(t)
(1 + o(1))

)
, (5.1)

where W0(t) is the Wiener sausage as defined in (2.2) and cd is an explicit constant.
Even though the isolation time seems to be similar to the detection time, we are

not aware of any reduction that allows us to use ideas from stochastic geometry to
characterize Tisol.

Question. Does the tail of Tisol behave similarly to the tail of Tdet? Namely, is
it true that for all dimensions d ≥ 1, there exists a constant c̃d such that

P (Tisol > t) = exp

(
−c̃d

t

Ψd(t)
(1 + o(1))

)
? (5.2)

Peres et al. (2011) and Peres and Sousi (2011) studied the detection time for
the case when u also moves. Among other things, they established that, when the
target is allowed to move independently of the nodes of Π0, then the best strategy
for u to avoid detection is to stay fixed and not to move. Similar results were
obtained for random walks in the lattice Zd by Moreau et al. (2004) and Drewitz
et al. (2010). It is interesting that staying fixed is also the best strategy to avoid
isolation, cf. Corollary 1.4.

We now discuss some additional motivation and conclude with another open
problem. For each s ≥ 0, let Gs denote the graph with vertex set Πs and an
edge between any two nodes of Πs that are within distance r of each other. As
in Peres et al. (2011), we call this stationary sequence of graphs themobile geometric
graph. This and other variants have been considered as models for mobile wireless
networks, which motivated the study of some properties of this types of graphs, such
as broadcast (Clementi et al. (2009); Pettarin et al. (2010); Peres et al. (2011); Lam
et al. (2012)), spread of infection (Kesten and Sidoravicius (2005, 2006)), detection
of targets (Kesidis et al. (2003); Konstantopoulos (2009); Peres et al. (2011); Peres
and Sousi (2011); Stauffer (2011)) and percolation (Sinclair and Stauffer (2010);
Peres et al. (2011)). We refer the reader to the discussion in Sinclair and Stauffer
(2010) for additional motivation and related work in the engineering literature.

Regarding percolation properties of Gs, it is known (van den Berg et al. (1997))
that, for d ≥ 2, there exists a constant λc = λc(d) such that, if λ > λc, then Gs

contains an infinite connected component at all times. Peres et al. (2011) considered
the regime λ > λc and derived lower and upper bounds for the so-called percolation
time, which is the first time Tperc at which a non-mobile target u belongs to the
infinite connected component. A quantity related to the isolation time is the non-
percolation time Tnonperc, which is the first time at which u does not belong to



828 Peres et al.

the infinite connected component. Clearly Tnonperc ≤ Tisol. We conclude with the
question below.

Question. Do the tail probabilities of Tperc and Tnonperc satisfy (5.2)?
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