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Abstract. This paper studies Lévy mixing of multivariate infinitely divisible dis-
tributions µ, where the parametrisation is in the form of a rescaling of the Lévy
measure and of the cumulant transform of µ by a matrix mapping. Particular
examples appear in the study of multivariate operator self-decomposable distribu-
tions and the construction of multivariate superpositions of Ornstein-Uhlenbeck
processes. Under mild conditions the associated transformations preserve infinite
divisibility and have smoothening effects, such as guarantying absolute continuity
of the resulting Lévy measures and a decreasing effect on the Blumenthal–Getoor
index. Their domains, behavior under convolution and composition, continuity
with respect to weak convergence and other basic properties are systematically
considered. Moreover, a representation of these transformations as distributions of
integrals of a deterministic function with respect to a Lévy basis is established. We
present a review and a self-contained treatment of the relevant random integrals
with respect to Lévy bases in a unified approach closely connected to Lévy mixing.

1. Introduction

In order to introduce the concept of Lévy mixing we note initially that probabil-
ity mixing, i.e. the generation of a new probability law by randomising a parameter,
does not generally preserve infinite divisibility. Thus, if (Pθ)θ∈Θ is a parametrised
family of infinitely divisible probability measures, and if Θ is endowed with a prob-
ability law Q, the resulting measure R (dx) =

∫
Pθ (dx)Q (dθ) does as a rule not
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determine an infinitely divisible distribution, even if also Q is infinitely divisible.
This aspect of probability mixing has motivated a major amount of research in the
theory of infinite divisibility for several decades; see for example Steutel and van
Harn (2004), Chapter VI.

On the other hand, if νθ is the parametrised class of Lévy measures corresponding
to the class Pθ, then a measure of the form $ (dx) =

∫
Θ
νθ (dx) γ (dθ), for some

σ-finite measure γ, will, under mild conditions, again be a Lévy measure, hence
determining an infinitely divisible law. We illustrate this by a simple example.

Example 1.1 (supOU processes). Let X be a non-Gaussian OU process

Xt =

∫ t

−∞
e−β(t−s)dLs, (1.1)

where L is an increasing Lévy process on R (with no drift), such that the Lévy
measure ν of L1 (necessarily concentrated on (0,∞)) satisfies the conditions∫ 1

0

x ν(dx) < ∞, and

∫ ∞

1

ln(x) ν(dx) < ∞. (1.2)

The second condition ensures that the integral in (1.1) exists (as a limit in proba-
bility). Now the cumulant transform1 of Xt may be calculated as

C{ζ ‡Xt} =

∫ t

−∞
C{ζe−β(t−s) ‡ L1} ds =

∫ ∞

0

C{ζe−βu ‡ L1}du

=

∫ ∞

0

∫ ∞

0

(
eiζe

−βux − 1
)
ν(dx) du =

∫ ∞

0

∫ ∞

0

(
eiζy − 1

)
ν(eβudy) du

=

∫ ∞

0

(
eiζy − 1

)
$(dy;β)

for all ζ in R, and where

$ (dy;β) =

∫ ∞

0

ν(eβudy) du, (β > 0); (1.3)

that is, $(dy;β) is a mixture of scalings of the Lévy measure ν, where the mixing
measure is Lebesgue measure. The condition (1.2) then means exactly that∫ ∞

0

min{1, y}$(dy, β) < ∞,

so that $ is again the Lévy measure of an increasing Lévy process.
We may proceed to mix $ (dy;β) with respect to the parameter β, devising a

new measure ω on (0,∞) by letting

ω (dy) =

∫ ∞

0

$ (dy;β)χ (dβ) (1.4)

for some measure χ on (0,∞). Assuming that
∫∞
0

β−1 χ(dβ) < ∞, one may check

that
∫∞
0

min{1, y}ω(dy) < ∞, so that ω is again the Lévy measure of an increasing
Lévy process.

In continuation of the above considerations, we now introduce a Lévy basis L̃

on R× R+ with characteristic quadruplet (
∫ 1

0
x ν(dx), 0, ν, λ ⊗ χ), and where λ

1the log of the Fourier transform of Xt.
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denotes Lebesgue measure on R.2 For any bounded subset F of R×R+, it follows,

in particular, that L̃(F ) is an infinitely divisible random variable with characteristic

triplet λ⊗χ(F )(
∫ 1

0
x ν(dx), 0, ν). The conditions imposed on ν and χ above ensure

the existence of the stochastic integral

X̃t =

∫ ∞

0

∫ t

−∞
e−β(t−s)L̃ (ds, dβ) (1.5)

(see e.g. Barndorff-Nielsen and Stelzer (2011)). The process X̃ is a supOU process,
i.e. a superposition of OU processes, and its cumulant transform may be calculated
as (see e.g. Barndorff-Nielsen and Stelzer (2011))

C{ζ ‡ X̃t} =

∫ ∞

0

∫ t

−∞
C{ζe−β(t−s) ‡ L1}ds χ(dβ)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
eiζe

−βux − 1
)
ν1(dx) duχ(dβ)

=

∫ ∞

0

(
eiζy − 1

)
ω(dy).

In particular, taking χ (dβ) = βπ (dβ) where π is the gamma law Γ (κ, 1), the

process X̃t will exhibit long range dependence provided κ ∈ (0, 1); see Barndorff-
Nielsen (2001).

The above example illustrates both how Lévy mixing occurs naturally from sto-
chastic integral representations of random variables or processes (cf. formulae (1.3)
and (1.1)), and the construction of a new infinitely divisible process - the supOU
process (1.5) - by Lévy mixing of a given infinitely divisible process, the OU process
(1.1). The constructions and assertions made in the example will appear as special
cases of the theory developed in the following sections. In addition we shall return to
this example when multivariate situations are considered (see Examples 3.8 and 6.10
below).

The present paper discusses in a systematic way various types of Lévy mixing,
focussing on cases where the parametrisation is in the form of rescaling of a given
Lévy measure ν. More specifically, we consider mixtures

[Υ0
T (ν)](B) =

∫
S

∫
Rd

1B\{0}(T (s)y) ν(dy) γ(ds) (1.6)

for a given Lévy measure ν on Rd, and where T (s) is a d × d matrix with real
entries, while s varies in a measure space (S, S, γ). In case T (s) is invertible for all
s, formula (1.6) may be written as:

[Υ0
T (ν)](dx) =

∫
S

ν(T (s)−1dx) γ(ds).

The specific mixtures (1.6) are referred to as (matrix) Upsilon transformations of
type Υ0 := Υ0

T , and they map Lévy measures on Rd into - typically more regular -
Lévy measures. Associated to these mappings are another type of transformations

2See Section 5.1 for background on Lévy bases (also known as infinitely divisible independently

scattered random measures).
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denoted by Υ := ΥT . These map multivariate infinitely divisible d-dimensional
laws µ into infinitely divisible d-dimensional laws Υ(µ) via the formula

CΥ(µ)(u) =

∫
S

Cµ(T (s)u) γ(ds), (u ∈ Rd) (1.7)

where the letter C stands for the cumulant transform. In the case S = R and
T = sId (with Id the d × d unit matrix) Upsilon transformations of these types
have from different points of view and levels of generality been the subject of in-
vestigation in numerous papers over the last couple of decades; see Section 2 for a
brief summary of some of the previously established results in this direction. The
present paper provides a unified and generalized approach to much of the theory
developed in those papers. Specifically we study transformations of the types Υ0

T

and ΥT corresponding to general classes of d × d matrices T (s). Our framework
and results are relevant in several situations and directions. Indeed, as the intro-
ductory example shows, there is a need for considering a more general space S than
R. Secondly, matrix Upsilon mappings appear naturally in studies of multidimen-
sional operator-selfdecomposable distributions and multivariate superpositions of
Ornstein-Uhlenbeck-type processes, where T (Q, r) = erQ with Q in an appropriate
space of matrices and r ∈ R; see Jurek and Mason (1993) and Barndorff-Nielsen
and Stelzer (2011), respectively. Thirdly, in our set-up the transformation T is also
a variable in the sense that the Upsilon transformations Υ0

T and ΥT are functions
of T in addition to being functions of a Lévy measure, respectively an infinitely
divisible law on Rd. Accordingly, we investigate interesting properties for ΥT (µ)
for a given T while µ varies, and reciprocally. Finally, the associated random inte-
gral representations are with respect to a general Lévy basis in S rather than to a
Lévy process, the relevance of which is also illustrated by Example 1.1. Recently,
Lévy bases have been extensively used in Lévy type modelling and several aspects
of the theory and applications of Ambit processes; see Barndorff-Nielsen (2011);
Barndorff-Nielsen et al. (2011); Jonsdottir et al. (2011) and references therein.

The main results and organization of this paper are as follows. Section 2 pro-
vides a brief account on previously established results on transformations of upsilon
type. Section 3 starts by introducing the notation used in the paper and proceeds
with the definitions of the mappings Υ0

T and ΥT . A number of basic properties
of these mappings are subsequently established. This includes the study of their
domains as well as their behavior under basic probabilistic operations. In case γ is a
probability measure, T may be thought of as a random matrix, and a number of ex-
amples of Upsilon transformations corresponding to fundamental classes of random
matrices (diagonal exponentials, symmetric Gaussians and Wishart matrices) are
specifically considered. Section 4 considers continuity with respect to weak conver-
gence of ΥT (·) for fixed T and of Υ·(µ) for fixed µ. Section 5 deals with regularising
properties of Υ0

T and ΥT . Conditions on γ ◦ T−1 ensuring absolute continuity of
Υ0

T (ν) with respect to Lebesgue measure on Rd are given. It is also shown that ΥT

has, in general, a decreasing effect on the Blumenthal-Getoor index of an infinitely
divisible distribution on Rd, but in the case of the stable distributions the index is
preserved. Section 6 deals with the representation of ΥT as a random integral with
respect to a Lévy basis L. Specifically, it is shown that given a measurable family
of linear mappings T (s) : Rd → Rd, s ∈ S, there exists (under suitable conditions)
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for any µ in the domain of ΥT , an Rd -valued Lévy basis L on (S, S, γ), such that

L
{∫

S

T (s)L(ds)
}
= ΥT (µ).

Furthermore, there exists a Lévy basis L̃ on the product space

(S × [0,∞), S⊗B([0,∞)), γ ⊗ λ),

(where λ denotes Lebesgue measure) such that the process (Zt)t≥0 defined by

Zt =

∫
S×[0,∞)

T (s)1(0,t](u) L̃(ds,du), (t ≥ 0),

realizes the Lévy process (in law) associated to the infinitely divisible measure
ΥT (µ).

We present a review of the relevant random integrals with respect to Lévy bases,
giving a self-contained treatment. This is in line with the study of random integrals
with respect to Lévy bases initiated by Urbanik and Woyczyński (1967) and further
developed by Rajput and Rosiński (1989) and by Sato in Sato (2004). Our pre-
sentation, however, provides a unified approach to random integrals closely related
to the properties of Upsilon transformations established in the earlier sections (in
particular the continuity results of Section 4).

Acknowledgements. OEBN and ST were partially supported by the Thiele Centre
for Applied Mathematics in Natural Science at the University of Aarhus.
While conducting the research presented in this paper, VPA was partially supported
by a grant from the Aarhus University Research Foundation, and ST was supported
by Centro de Investigación en Matemáticas in Guanajuato, Mexico, during a visit
there in 2012.

2. Previously established results

Over the last decade or so much attention has been given to Upsilon transfor-
mations of the types Υ0 and Υ in the case S = R and T (s) = sId in (1.6) and
(1.7), where Id is the d× d unit matrix. The measure γ may then be an arbitrary
σ-finite measure on R. This case was methodically considered recently in Maejima
et al. (2013), where it is shown in particular that not all mixtures of Lévy mea-
sures correspond to such Upsilon transformations. Cases where γ is concentrated on
(0,∞) were previously studied in Barndorff-Nielsen and Thorbjørnsen (2004, 2006);
Barndorff-Nielsen et al. (2006b, 2008); Barndorff-Nielsen and Maejima (2008), and
related questions regarding stochastic integral representations of infinitely divisible
distributions with respect to Lévy processes are investigated in Jurek (1985, 1990);
Jurek and Mason (1993); Barndorff-Nielsen et al. (2006b); Maejima et al. (2012);
Rosiński (1984); Sato (2006a,b, 2007), among others.

Some important subclasses of the class ID(Rd) of infinitely divisible distributions
on Rd are describable as the range of a one-dimensional Upsilon transformation of
type Υ. This is the case, for example, for the class of self-decomposable distributions
L(Rd), the Goldie-Steutel-Bondesson class B(Rd), the Thorin class T(Rd), the class
G(Rd) of generalized type G distributions, the Jurek class U(Rd), and the class
A(Rd) obtained by Lévy mixing with arcsine Lévy measure, among others; see
for example Barndorff-Nielsen and Thorbjørnsen (2006); Barndorff-Nielsen et al.
(2006b, 2008); Maejima et al. (2012, 2013).
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Some further interesting applications of one-dimensional Upsilon transformations
were highlighted in the lecture Rosiński (2007) at the Conference on Lévy Processes
in Copenhagen in 2007; see also Rosiński (1990, 2007).

Assuming that γ is a probability measure on R (and still that T (s) = sId for all
s), the formulae (1.6)-(1.7) may be written conveniently as

Υ0
T (ν)(B) = E

{∫
Rd

1B\{0}(Xy) ν(dy)
}
, (B ∈ B(Rd)) (2.1)

and

CΥT (µ)(u) = E {Cµ(Xu) } , (u ∈ Rd) (2.2)

where X is a one-dimensional random variable carrying the distribution γ. Two
important one-dimensional Upsilon transformations correspond to the cases when
X has the standard Gaussian distribution or the exponential distribution.

The Gaussian case corresponds to the Lévy measures of the type G distributions
introduced in Marcus (1987) and systematically studied in Rosiński (1991). These
are the infinitely divisible variance mixtures (considered in Kelker (1971)) of the
form V Z, where Z is Gaussian and V 2 is infinitely divisible. When T = ZId and
Z is a one-dimensional random variable with standard Gaussian distribution, the
measure Υ0

T (ν) is, for any Lévy measure ν, the Lévy measure of a type G distribu-
tion on Rd as considered in Maejima and Rosiński (2002). Integral representations
of type G distributions were established in Aoyama and Maejima (2007). Moreover,
the class G(Rd) of generalized type G distributions considered in Maejima and Sato
(2009) correspond to the image of ΥT . In addition, it was shown in Maejima et al.
(2012) that the class G(Rd) is the image of the class of distributions A(Rd) under
an Upsilon transformation where γ is the arcsine measure.

The exponential case, i.e. where γ(dx) = e−x1(0,∞) dx, was studied extensively
in Barndorff-Nielsen and Thorbjørnsen (2004, 2006). In this case the formula (1.7)
is related to the relationship between classical and free probability theory embodied
in the formula (see Barndorff-Nielsen and Thorbjørnsen (2004))

CΛ(µ)(iz) =

∫ ∞

0

Cµ(zx)e
−x dx, (z ∈ (−∞, 0)). (2.3)

Here Λ is the Bercovici-Pata bijection between the classes of one-dimensional infin-
itely divisible probability distributions in classical and free probability, respectively
(see Bercovici and Pata (1999) or Barndorff-Nielsen et al. (2006a)). Moreover, Cρ

denotes the free cumulant transform of a probability measure ρ on R.
We mention finally that a class of matrix Upsilon transformations has been

briefly considered in Barndorff-Nielsen and Pérez-Abreu (2007) in the case of linear
transformations T : S+d → S+d , where S+d is the open cone of positive definite
matrices.

3. Upsilon transformations associated to matrix valued mappings

3.1. Notation. In the following we denote by ‖u‖ the Euclidean norm of a vector
u = (u1, ..., ud)

∗ in Rd, i.e.

‖u‖ = (u2
1 + · · ·+ u2

d)
1/2. (3.1)

By B1 we denote the corresponding closed unit ball in Rd:

B1 =
{
(u1, . . . , ud)

∗ ∈ Rd | ‖u‖ ≤ 1
}
. (3.2)
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We denote byMd,m(R) the linear space of d×mmatrices with real entries, byMd(R)
the space Md,d(R) and by Sd the subspace of symmetric matrices in Md(R). Fur-

thermore we let S+d denote the closed cone of d× d nonnegative definite symmetric
matrices in Md(R) while S+d is the open cone of d×d positive definite matrices. For
T1 and T2 in Md,m(R) we denote by 〈T1, T2〉 the inner product 〈T1, T2〉 = tr(T1T

∗
2 )

where T ∗ denotes the transpose of T , and tr is the (un-normalized) trace on Md(R).
For a matrix T in Md(R) we denote by ‖T‖ the operator norm of T , i.e.

‖T‖ = sup{‖Tu‖ | u ∈ Rd, ‖u‖ ≤ 1}. (3.3)

Recall then that

‖T ∗T‖ = ‖T‖2, ‖Tu‖ ≤ ‖T‖‖u‖, and ‖TV ‖ ≤ ‖T‖‖V ‖ (3.4)

for any d × d matrix V and any u in Rd. We shall also consider another norm
on Md(R): For any T in Md(R) the Hilbert-Schmidt norm ‖T‖HS is the euclidean

norm of T considered as a vector in Rd2

. In other words:

‖T‖2HS =
d∑

j=1

‖Tej‖2 =
d∑

j=1

〈T ∗Tej , ej〉 = tr(T ∗T ) = 〈T, T 〉, (3.5)

where {e1, . . . , ed} is the standard orthonormal basis for Rd.
Since all norms on Md(R) are equivalent, it follows that there exist strictly

positive constants cd, Cd (depending only on d), such that

cd‖T‖ ≤ ‖T‖HS ≤ Cd‖T‖ for all T in Md(R). (3.6)

By M(Rd) we denote the class of all Borel measures on Rd and by P(Rd) the
subclass of Borel probability measures. By ID(Rd) we denote the class of infinitely
divisible measures in P(Rd) and by ML(Rd) the class of Lévy measures on Rd. That
is, ν ∈ ML(Rd) if and only if ν ∈ M(Rd), such that ν({0}) = 0 and∫

Rd

min{1, ‖y‖2} ν(dy) < ∞.

For µ in ID(Rd) we denote by Cµ the cumulant transform of µ (i.e. the logarithm
of the characteristic function of µ). We recall that Cµ has the Lévy-Khintchine
representation:

Cµ(u) = i 〈η, u〉 − 1
2 〈Au, u〉+

∫
Rd

(
ei〈y,u〉 − 1− i 〈y, u〉 1B1(y)

)
ν(dy), (u ∈ Rd),

where η is a d-dimensional vector, A is a non-negative definite d × d matrix and
ν is in ML(Rd). The triplet (η,A, ν) is uniquely determined and is termed the
characteristic triplet for µ.

3.2. Definitions of Υ0
T and ΥT . Let (S, S, γ) be a σ-finite measure space, and for

each s in S let T (s) : Rd → Rd be a linear transformation depending on s in a mea-
surable way. In other words we consider a Borel-measurable mapping T : S →
Md(R). In this subsection we define the rescaling mappings Υ0

T : ML(Rd) →
ML(Rd) and ΥT : ID(Rd) → ID(Rd), such that the following formulae hold:

[Υ0
T (ν)](B) =

∫
S

∫
Rd

1B\{0}(T (s)y) ν(dy) γ(ds) (3.7)
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for any ν in ML(Rd) and any Borel set B in Rd, and

CΥT (µ)(y) =

∫
S

Cµ(T (s)
∗y) γ(ds) (3.8)

for any µ in ID(Rd) and any y in Rd. In order to ensure that Υ0
T maps any Lévy

measure into a new Lévy measure, it is, as we shall see in Theorem 3.3 below,
necessary and sufficient that

γ({s ∈ S | T (s) 6= 0}) < ∞, and

∫
S

‖T (s)‖2 γ(ds) < ∞. (3.9)

In this case the right hand side of (3.8) is, for any µ in ID(Rd), the cumulant
transform for an infinitely divisible probability measure (cf. Corollary 3.6). If (3.9)
is not satisfied, then one needs to restrict the domains of Υ0

T and ΥT (see Defini-
tions 3.2 and 3.4 below).

Proposition 3.1. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R)
be a (Borel-) measurable mapping.

Then for any σ-finite measure ν on Rd the formula:

ν̃(B) =

∫
S

∫
Rd

1B\{0}(T (s)y) ν(dy) γ(ds), (B ∈ B(Rd)), (3.10)

defines a new measure ν̃ on Rd such that ν̃({0}) = 0. In addition∫
Rd

f(y) ν̃(dy) =

∫
S

∫
Rd

f(T (s)y)1Rd\{0}(T (s)y) ν(dy) γ(ds). (3.11)

for any positive measurable or ν̃-integrable function f .

Proof : We note first that the function (s, u) 7→ 1B\{0}(T (s)u) is measurable with

respect to the product σ-algebra S⊗B(Rd), and therefore the double integral on the
right hand side of (3.10) is well-defined. Subsequently it is straightforward to check
that ν̃ defined by (3.10) is indeed a measure on B(Rd), and clearly ν̃({0}) = 0.
Formula (3.10) shows that (3.11) holds for indicator functions for Borel subsets of
Rd and a standard extension argument then establishes (3.11) for general f (either
positive measurable or in L1(ν̃)). �
Definition 3.2. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R)
be a measurable mapping. Then the associated Upsilon transform of ML(Rd) is
the mapping Υ0

T : ML(Rd) → M(Rd) defined by

Υ0
T (ν) = ν̃, (ν ∈ ML(Rd)),

where, for any ν in ML(Rd), ν̃ is the measure described in Proposition 3.1.
In addition we define the Lévy domain domL(Υ

0
T ) of Υ

0
T by the formula

domL(Υ
0
T ) = {ν ∈ ML(Rd) | Υ0

T (ν) ∈ ML(Rd)}.
That is, ν ∈ domL(Υ

0
T ) if and only if∫
S

∫
Rd

min{1, ‖T (s)y‖2} ν(dy) γ(ds) < ∞. (3.12)

Theorem 3.3. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R) be
a (Borel-) measurable mapping. Then domL(Υ

0
T ) = ML(Rd), if and only if

γ({s ∈ S | T (s) 6= 0}) < ∞, and

∫
S

‖T (s)‖2 γ(ds) < ∞. (3.13)
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Proof : Assume first that (3.13) is satisfied, and put

ST = {s ∈ S | T (s) 6= 0}.

Consider further a Lévy measure ν on Rd. On account of Proposition 3.1, it suffices
to show that

∫
Rd min{1, ‖u‖2} ν̃(du) < ∞. Using (3.11) we find that∫

Rd

min{1, ‖u‖2} ν̃(du) =
∫
ST

(∫
Rd

min{1, ‖T (s)u‖2}1Rd\{0}(T (s)u) ν(du)
)
γ(ds)

≤
∫
ST

(∫
Rd

min{1, ‖T (s)‖2‖u‖2} ν(du)
)
γ(ds)

≤
∫
ST

(∫
Rd

min{1, ‖u‖2}max{1, ‖T (s)‖2} ν(du)
)
γ(ds)

=

∫
ST

max{1, ‖T (s)‖2} γ(ds)
∫
Rd

min{1, ‖u‖2} ν(du),

(3.14)

and by the assumptions the resulting expression is finite.
Assume conversely that domL(Υ

0
T ) = ML(Rd). We establish first that

∃R ∈ (0,∞) ∀y ∈ Rd :

∫
S

min{1, ‖T (s)y‖2} γ(ds) ≤ Rmin{1, ‖y‖2}. (3.15)

Indeed, if (3.15) is not satisfied, then for any positive integer n we may choose a
(non-zero) vector yn in Rd, such that

Rn :=

∫
S

min{1, ‖T (s)yn‖2} γ(dt) > nmin{1, ‖yn‖2}.

We consider then the measure ν on Rd given by

ν =
∞∑

n=1

1

nRn
δyn ,

and we note that ν({0}) = 0, and that∫
Rd

min{1, ‖x‖2} ν(dx) =
∞∑

n=1

min{1, ‖yn‖2}
nRn

≤
∞∑

n=1

n−1Rn

nRn
=

∞∑
n=1

1

n2
< ∞.

Thus, by assumption, ν ∈ ML(Rd) = domL(Υ
0
T ), and therefore by Proposition 3.1

∞ >

∫
Rd

min{1, ‖x‖2} [Υ0
T (ν)](dx) =

∫
S

(∫
Rd

min{1, ‖T (s)x‖2} ν(dx)
)
γ(ds)

=

∫
S

( ∞∑
n=1

min{1, ‖T (s)yn‖2}
nRn

)
γ(ds) =

∞∑
n=1

1

nRn

∫
S

min{1, ‖T (s)yn‖2} γ(ds)

=
∞∑

n=1

1

n
,

and thus we obtain the desired contradiction.
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Assume in the following that R is a positive constant satisfying (3.15). Then for
any unit vector u in Rd and any number a in (0,∞), we have that∫

S

min{1, a2‖T (s)u‖2} γ(ds) ≤ Rmin{1, a2}, (3.16)

and letting then a ↑ ∞, it follows by Monotone Convergence that

R ≥
∫
S

1{Tu 6=0}(s) γ(ds) = γ({s ∈ S | T (s)u 6= 0}).

Considering then e.g. the standard basis {ej | j = 1, . . . , d} for Rd, we conclude
that

γ
(
{s ∈ S | T (s) 6= 0}

)
≤

d∑
j=1

γ
(
{s ∈ S | T (s)ej 6= 0}

)
≤ dR < ∞,

which proves the first statement in (3.13). Regarding the second statement, division
with a2 in (3.16) leads to the estimate∫

S

min{a−2, ‖T (s)u‖2} γ(ds) ≤ Rmin{a−2, 1},

for any unit vector u in Rd and any a in (0,∞). Letting then a ↓ 0, it follows by
Monotone Convergence that ∫

S

‖T (s)u‖2 γ(ds) ≤ R.

Considering again the standard basis for Rd, we find by application of (3.5) that

∞ > dR ≥
d∑

j=1

∫
S

‖T (s)ej‖2 γ(ds) =
∫
S

( d∑
j=1

‖T (s)ej‖2
)
γ(ds)

=

∫
S

‖T (s)‖2HS γ(ds) ≥ c2d

∫
S

‖T (s)‖2 γ(ds),

where cd is the (strictly positive) constant from (3.6). Thus, the second condition
in (3.15) is also satisfied, and this completes the proof. �

We proceed to “extend” the mapping Υ0
T to a mapping ΥT of infinitely divisi-

ble laws, essentially by applying Υ0
T to the Lévy measure of an infinitely divisible

distribution followed by some adjustments of the remaining parameters in the char-
acteristic triplet. We note initially (see Proposition 11.10 in Sato (1999)) that for
any measure µ in ID(Rd) with characteristic triplet (η,A, ν) and any fixed d × d
matrix R, the transformation µ ◦ R−1 of µ by the linear mapping associated to R
has characteristic triplet (ηR, AR, νR), where

AR = RAR∗,

νR(B) =

∫
Rd

1B\{0}(Ry) ν(dy), (B ∈ B(Rd)),

ηR = Rη +

∫
Rd

[
1B1

(Ry)− 1B1
(y)

]
Ry ν(dy).

(3.17)
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In particular the latter integral (taken coordinate-wise) is well-defined for any Lévy
measure ν and any d× d matrix R. This may be seen e.g. as a consequence of the
following useful estimate:∣∣1B1(Ry)− 1B1(y)

∣∣∥∥Ry
∥∥ ≤ min{1, ‖y‖2}max{1, ‖R‖2}, (y ∈ Rd, R ∈ Md(R)).

(3.18)
The passage from µ to µ ◦R−1 corresponds to the definition of ΥT given below in
the case where γ is a one-point measure.

Definition 3.4. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R)
be a measurable mapping. We then define a mapping ΥT : domID(ΥT ) → ID(Rd)
in the following way:

(a) The domain domID(ΥT ) of ΥT consists of those measures µ in ID(Rd) for
which the characteristic triplet (η,A, ν) satisfies the following three condi-
tions:

ν ∈ domL(Υ
0
T ),∫

S

‖T (s)AT (s)∗‖ γ(ds) < ∞,

∫
S

∥∥∥T (s)η +

∫
Rd

[
1B1(T (s)y)− 1B1(y)

]
T (s)y ν(dy)

∥∥∥ γ(ds) < ∞. (3.19)

In (3.19) the “inner” integral in (3.19) is taken coordinatewise.3

(b) For any measure µ in domID(ΥT ) we define ΥT (µ) as the measure in ID(Rd)

with characteristic triplet (η̃, Ã, ν̃), where

Ã =

∫
S

T (s)AT (s)∗ γ(ds),

ν̃ = Υ0
T (ν),

η̃ =

∫
S

[
T (s)η +

(∫
Rd

[
1B1(T (s)y)− 1B1(y)

]
T (s)y ν(dy)

)]
γ(ds),

(3.20)

and where the integrals of vectors and matrices are taken coordinate-wise.

Regarding condition (a) of the definition above, we note that if A is posi-
tive definite (in particular invertible), then

∫
S
‖TAT ∗‖ γ(ds) < ∞, if and only

if
∫
S
‖T (s)‖2 γ(ds) < ∞.

Proposition 3.5. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R)
be a measurable mapping. Consider further a measure µ in ID(Rd) with character-
istic triplet (η,A, ν). Then µ ∈ domID(ΥT ), if and only if

ν ∈ domL(Υ
0
T ), and

∫
S

|Cµ(T (s)
∗u)| γ(ds) < ∞ for all u in Rd.

In that case it holds furthermore that

CΥT (µ)(u) =

∫
S

Cµ(T (s)
∗u) γ(ds), (u ∈ Rd).

3It follows by from (3.18) and standard arguments that the inner integral in (3.19) is a mea-

surable Rd-valued function of s.
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Proof : For any fixed s in S the function u 7→ exp(Cµ(T
∗(s)u)) is the characteristic

function for µ ◦ T (s)−1, so according to (3.17) we have, writing T for T (s), that

Cµ(T
∗u) = i

〈
Tη +

∫
Rd

Ty
[
1B1(Ty)− 1B1(y)

]
ν(dy), u

〉
− 1

2 〈TAT ∗u, u〉

+

∫
Rd

(
e i〈Ty,u〉 − 1− i 〈Ty, u〉 1B1(Ty)

)
1Rd\{0}(Ty) ν(dy)

(3.21)

for any u in Rd. Now, if µ ∈ domID(ΥT ), then by the Cauchy-Schwarz inequality
the first two terms on the right hand side of (3.21) are in L1(γ), and regarding the
last term we find by application of Proposition 3.1 that∫

S

∣∣∣ ∫
Rd

(
e i〈Ty,u〉 − 1− i 〈Ty, u〉 1B1(Ty)

)
1Rd\{0}(Ty) ν(dy)

∣∣∣dγ
≤

∫
S

(∫
Rd

∣∣e i〈Ty,u〉 − 1− i 〈Ty, u〉 1B1
(Ty)

∣∣1Rd\{0}(Ty) ν(dy)
)
dγ

=

∫
Rd

∣∣ei〈z,u〉 − 1− i 〈z, u〉 1B1(z)
∣∣ [Υ0

T (ν)](dz) < ∞,

where the strict inequality is due to the fact that Υ0
T (ν) is a Lévy measure. Thus,

also the last term on the right hand side of (3.21) is in L1(γ) and hence so is
Cµ(T

∗u).
Conversely, if ν ∈ domL(Υ

0
T ), and

∫
S
|Cµ(T (s)

∗u)| γ(ds) < ∞ for all u, then, as

we just saw, the last term on the right hand side of (3.21) is in L1(γ), and hence
the sum

i
〈
Tη +

∫
Rd

Ty
[
1B1(Ty)− 1B1(y)

]
ν(dy), u

〉
− 1

2 〈TAT ∗u, u〉 (3.22)

must also be in L1(γ). Since one term is positive (real) and the other purely
imaginary, both terms in (3.22) must themselves be in L1(γ). Letting u vary
throughout the standard basis {e1, . . . , ed} for Rd, it follows that each coordinate
in the vector

Tη +

∫
Rd

Ty
[
1B1(Ty)− 1B1(y)

]
ν(dy)

belongs to L1(γ), and hence so does its norm. Regarding 〈TAT ∗u, u〉, we find by
application of (3.5) that

∞ >

∫
S

( d∑
j=1

〈TAT ∗ej , ej〉
)
dγ =

∫
S

‖A1/2T ∗‖2HS dγ

≥ c2d

∫
S

‖A1/2T ∗‖2 dγ = c2d

∫
S

‖TAT ∗‖dγ,

where cd is the strictly positive constant appearing in (3.6), and where the last
equality is due to (3.4). Altogether, µ ∈ domID(ΥT ).

Assuming now that µ ∈ domID(ΥT ), it follows from the above considerations
that we may integrate term by term on the right hand side of (3.21). Together with
linearity of the integral (with respect to γ) and Proposition 3.1 this yields for any
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u in Rd that∫
S

Cµ(T
∗u) dγ = i

〈∫
S

(
Tη +

∫
Rd

Ty
[
1B1

(Ty)− 1B1
(y)

]
ν(dy)

)
dγ, u

〉
− 1

2

〈(∫
S

TAT ∗ dγ
)
u, u

〉
+

∫
Rd

(
ei〈z,u〉 − 1− i 〈z, u〉 1B1(z)

)
[Υ0

T (ν)](dz),

and by definition of ΥT (µ), the right hand side equals CΥT (µ)(u). This completes
the proof. �

Corollary 3.6. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R)
be a measurable mapping. Then domID(ΥT ) = ID(Rd), if and only if

γ({s ∈ S | T (s) 6= 0}) < ∞, and

∫
S

‖T (s)‖2 γ(ds) < ∞. (3.23)

Proof : If domID(ΥT ) = ID(Rd), then in particular (cf. Definition 3.4) domL(Υ
0
T ) =

ML(Rd), which according to Theorem 3.3 means that (3.23) is satisfied.
Assume conversely that (3.23) is satisfied. According to Proposition 3.5 and

Theorem 3.3 it suffices to verify that∫
S

|Cµ(T
∗(s)z)| γ(ds) < ∞ for all µ in ID(Rd) and z in Rd. (3.24)

So let z in Rd and µ in ID(Rd) be given, and let (η,A, ν) be the characteristic
triplet for µ. Recall then (see e.g. Lemma 7.2 in Barndorff-Nielsen et al. (2008))
that∫

Rd

∣∣ei〈y,x〉 − 1− i〈y, x〉1[0,1](‖x‖)
∣∣ ν(dx) ≤ (

2 + 1
2‖y‖

2
) ∫

Rd

min{1, ‖x‖2} ν(dx)

(3.25)
for any y in Rd. It follows from this and the Cauchy-Schwarz inequality, that

|Cµ(y)| ≤ ‖η‖‖y‖+ 1
2‖A‖‖y‖

2 +
(
2 + 1

2‖y‖
2
) ∫

Rd

min{1, ‖x‖2} ν(dx)

for all y in Rd, and hence that

|Cµ(T
∗z)| ≤ ‖η‖‖T‖‖z‖+ 1

2‖A‖‖T‖
2‖z‖2+

(
2+ 1

2‖T‖
2‖z‖2

) ∫
Rd

min{1, ‖x‖2} ν(dx).

(3.26)
Since

∫
S
|Cµ(T

∗(s)z)| γ(ds) =
∫
{T 6=0} |Cµ(T

∗(s)z)| γ(ds), the assumption (3.23) in

conjunction with (3.26) imply that (3.24) is satisfied, which completes the proof. �

In order to calculate (the cumulant transform of) ΥT (µ) for concrete examples
of T , the following result proves very useful (see Subsection 3.4).

Proposition 3.7. Let (S, S, γ) be a probability space and let T : S → Md(R) be a
measurable mapping such that∫

S

‖T (s)‖2 γ(ds) < ∞.
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Let further µ be an infinitely divisible probability measure on Rd with characteristic
triplet (η,A, ν). Denoting by Eγ expectation with respect to γ, it follows that the
cumulant transform of ΥT (µ) is given by

CΥT (µ)(u) = i
〈
Eγ{T}η, u

〉
− 1

2

〈
Eγ{TAT ∗}u, u

〉
+

∫
Rd

(
Eγ

{
ei〈y,T

∗u〉}− 1−i 〈y,Eγ{T ∗}u〉 1B1(y)
)
ν(dy),

(3.27)

for all u in Rd.

Proof : Consider the characteristic triplet (η̃, Ã, ν̃) for ΥT (µ) described in Defini-
tion 3.4. Using Proposition 3.1, formula (3.18) and Fubini’s Theorem, we find that∫

Rd

(
ei〈y,u〉 − 1− i 〈y, u〉 1B1

(y)
)
ν̃(dy)

= Eγ

{∫
Rd

(
ei〈Ty,u〉 − 1− i 〈Ty, u〉 1B1(Ty)

)
ν(dy)

}
=

∫
Rd

(
Eγ

{
ei〈Ty,u〉}− 1− i 〈Eγ{T}y, u〉 1B1(y)

)
ν(dy)

+ i

∫
Rd

Eγ

{
〈Ty, u〉(1B1(y)− 1B1(Ty))

}
ν(dy)

=

∫
Rd

(
Eγ

{
ei〈y,T

∗u〉}− 1− i 〈y,Eγ{T ∗}u〉 1B1(y)
)
ν(dy) + i

〈
Eγ{T}η − η̃, u

〉
,

where the last equality uses the expression for η̃ in (3.20). Since Ã = Eγ{TAT ∗},
the above calculation combined with Definition 3.4 proves (3.27). �

The following is a multivariate generalization of the illustrative example in the
Introduction.

Examples 3.8 (Distributions of multivariate supOU processes). (a) LetM−
d be

the cone of matrices in Md(R) with eigenvalues having negative real part,
S = M−

d × R and S = B(M−
d × R). Let π be a probability measure on

B(M−
d ), λ be the Lebesgue measure on R and γ = π⊗ λ the corresponding

product measure on S. For each s = (Q, r) ∈ S, consider the d× d matrix
T (s) := T (Q, r) = erQ. In this case, if µ with characteristic triplet (η,A, ν)
belongs to the domain of ΥT , we obtain from (3.10) and (3.20) that the

characteristic triplet (η̃, Ã, ν̃) of ΥT (µ) is given by

Ã =

∫
M−

d

∫
R
erQAerQ

∗
dr π(dQ),

ν̃(B) =

∫
M−

d

∫
R

∫
Rd

1B\{0}(e
rQy) ν(dy) dr π(dQ), (B ∈ B(Rd)),

η̃ =

∫
M−

d

∫
R

[
erQη +

(∫
Rd

[
1B1(e

rQy)− 1B1(y)
]
erQy ν(dy)

)]
dr π(dQ).

(3.28)
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This is also the characteristic triplet of the distribution of a stationary d-
dimensional supOU process; see (3.5)-(3.7) in Barndorff-Nielsen and Stelzer
(2011).

(b) A particular case of this example, where π is degenerate at a matrix Q
appears in the theory of multidimensional operator-selfdecomposable dis-
tributions; see the book Jurek and Mason (1993).

(c) The measure γ = π ⊗ λ does not in general satisfy the first condition in
(3.23). Hence domID(ΥT ) is not the whole class ID(Rd). A sufficient con-
dition is presented in Barndorff-Nielsen and Stelzer (2011) in connection to
the existence of superpositions of Ornstein-Uhlenbeck processes as random
integrals with respect to Lévy bases. Let us further assume that there exist
measurable functions ρ : M−

d → (0,∞) and κ : M−
d → [1,∞) such that∥∥erQ∥∥ ≤ κ(Q)e−rρ(Q) for all r in R+ and π-almost all Q. (3.29)

and ∫
M−

d

κ(Q)2

ρ(Q)
π(dQ) < ∞. (3.30)

Let µ ∈ ID(Rd) with characteristic triplet (η,A, ν) be such that∫
{‖x‖≥1}

ln(‖x‖) ν(dx) < ∞. (3.31)

It is shown in Barndorff-Nielsen and Stelzer (2011) - in the context of
existence of random integrals with respect to Lévy bases - that conditions
(3.29) - (3.31) imply (3.19) and hence we have µ ∈ domID(ΥT ) (see also
Example 6.10 below).

Remark 3.9. One-dimensional Upsilon transformations Υ0 and Υ for infinitely di-
visible distributions on Banach spaces have been considered in Jurek (1985, 1990).
Our set-up for the multivariate mixing transformations Υ0

T and ΥT could also be
extended to Banach spaces. More specifically, let X be a Banach space and denote
by B(X) the Banach algebra of all bounded (or continuous) linear operators on X.
Equipping B(X) with its Borel-σ-algebra, we may consider a measurable family of
operators with values in B(X), i.e. a measurable mapping

T : S → B(X),

where (S, S, γ) is a σ-finite measure space. Assuming (3.23), one next considers the
formula

Υ0
T (ν) =

∫
S

∫
X

1B\{0}(T (s)y) ν(dy) γ(ds), (B ∈ B(B(X)), (3.32)

for ν in ML(X), the set of Lévy measures on B(X). Recall here that for general
infinite dimensional Banach spaces, Levy measures are not determined by an in-
tegrability condition like:

∫
X
min{1, ‖x‖2} ν(dx) < ∞. In fact, a σ-finite measure

ν on X is said to be a Lévy measure if there exists a probability measure µ on X
such that

µ̂(f) = exp
(∫

X

(
eif(y) − 1− if(y)1B1(y)

)
ν(dy)

)
, (f ∈ X∗),

where µ̂(f) =
∫
X
eif(y)µ(dy), f ∈ X∗, is the characteristic functional of µ; see

Araujo and Giné (1980).
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However, if we specialize to the case of a Hilbert space H (with inner product
〈·, ·〉H and norm ‖ · ‖H), then the Lévy measures ν on H are indeed characterized
by the condition: ∫

H

min{1, ‖h‖2H} ν(dh) < ∞ (3.33)

(see Araujo and Giné (1980)). Moreover, the class ID(H) of infinitely divisible
probability measures on H may be characterized as consisting of those measures µ
on H for which the characteristic functional has the Lévy-Khintchine representa-
tion:

log

∫
H

ei〈h,x〉µ(dx) = i 〈η, h〉H − 1
2 〈Ah, h〉H +

∫
H

(
ei〈y,h〉H − 1− i

〈y, h〉H
1 + ‖y‖H

)
ν(dy)

for all h in H. Here η ∈ H, A is a trace class positive operator in H and ν is
Lévy measure on H (see e.g. Laha and Rohatgi (1979); Samorodnitsky and Taqqu
(1994)).

For a family of linear operators T : S → B(H), such that (3.23) is satisfied, the
mapping Υ0

T (defined as in (3.32)) can then be extended to a mapping ΥT : ID(H) →
ID(H) by copying the corresponding arguments for matrix mappings given in the
proof of Proposition 3.5.

3.3. Basic properties. Since the mapping ΥT (µ) is a function of two variables, the
linear mapping T and the infinitely distribution µ, there are a number of useful
properties that can be established keeping one variable fixed while varying the
other. In this section we establish a number of basic properties in this respect. We
start by considering a fixed T and study the behavior of ΥT under convolution of
probability measures and composition.

Proposition 3.10. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R)
be a measurable mapping.

(i) For any vector c in Rd, we have that

δc ∈ domID(ΥT ) ⇐⇒
∫
S

‖T (s)c‖ γ(ds) < ∞, (3.34)

and in that case ΥT (δc) = δ∫
S
Tc dγ .

(ii) If µ1, µ2 ∈ domID(ΥT ), then also µ1 ∗µ2 ∈ domID(ΥT ), and ΥT (µ1 ∗µ2) =
ΥT (µ1) ∗ΥT (µ2).

(iii) If V ∈ Md(R) and µ ∈ domID(ΥT ), we have that

µ ◦ V −1 ∈ domID(ΥT ) ⇐⇒ µ ∈ domID(ΥTV ), (3.35)

and in that case ΥT (µ ◦ V −1) = ΥTV (µ).
(iv) If V ∈ Md(R) and µ ∈ domID(ΥT ), then also µ ∈ domID(ΥV T ) and

ΥV T (µ) = ΥT (µ) ◦ V −1.
(v) If V ∈ Md(R), V T = TV and µ ∈ domID(ΥT ), then also µ ◦ V −1 ∈

domID(ΥT ), and

ΥT (µ ◦ V −1) = ΥT (µ) ◦ V −1.

(vi) If µ ∈ domID(ΥT ) and c ∈ R, then also Dcµ ∈ domID(ΥT ), and ΥT (Dcµ)=
DcΥT (µ). Here Dcµ denotes the transformation of µ by the mapping
u 7→ cu : Rd → Rd.
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Proof : (i) Let c be a vector in Rd, and note then that∫
S

|Cδc(T (s)
∗z)| γ(ds) =

∫
S

|〈c, T (s)∗z〉| γ(ds) =
∫
S

|〈T (s)c, z〉| γ(ds)

for any z in Rd. Now, if δc ∈ domID(ΥT ), it follows that

∞ >

∫
S

( d∑
j=1

|〈T (s)c, ej〉|
)
γ(ds) ≥

∫
S

‖T (s)c‖ γ(ds),

where {e1, . . . , ed} denotes the standard basis for Rd.
If, conversely,

∫
S
‖Tc‖dγ < ∞, then by the Cauchy-Schwarz Inequality∫

S

|Cδc(T (s)
∗z)| γ(ds) ≤ ‖z‖

∫
S

‖T (s)c‖ γ(ds) < ∞,

and since the Lévy measure for δc is 0, it follows from Proposition 3.5, that δc ∈
domID(ΥT ).

Having established (3.34) we note finally, that if
∫
S
‖Tc‖ dγ < ∞, then for any

z in Rd

CΥT (δc)(z) =

∫
S

Cδc(T
∗(s)z) γ(ds) = i

∫
S

〈T (s)c, z〉 γ(ds) = i
〈∫

S
T (s)c γ(ds), z

〉
,

and the resulting expression is exactly the cumulant transform for δ∫
S
Tc dγ at z.

(ii) Assume that µ1, µ2 ∈ domID(ΥT ) with Lévy measures ν1 and ν2, respec-
tively. For any z in Rd we note then that∫

S

|Cµ1∗µ2(Tu)| dγ =

∫
S

∣∣Cµ1(Tu) + Cµ2(Tu)
∣∣dγ

≤
∫
S

∣∣Cµ1(Tu)
∣∣ dγ +

∫
S

∣∣Cµ2(Tu)
∣∣dγ < ∞.

In addition,∫
Rd

min{1, ‖x‖2} [Υ0
T (ν1 + ν2)](dx)

=

∫
S

∫
Rd

min{1, ‖T (s)x‖2} ν1(dx) γ(ds) +
∫
S

∫
Rd

min{1, ‖T (s)x‖2} ν2(dx) γ(ds)

< ∞,

and since ν1 + ν2 is the Lévy measure for µ1 ∗ µ2, it follows from Proposition 3.5
that µ1 ∗ µ2 ∈ domID(ΥT ). For any z in Rd we note subsequently that

CΥT (µ1∗µ2)(z) =

∫
S

Cµ1∗µ2(Tz) dγ =

∫
S

(
Cµ(Tz) + Cµ(Tz)

)
dγ

= CΥT (µ1)(z) + CΥT (µ2)(z) = CΥT (µ1)∗ΥT (µ2)(z),

and this completes the proof of (ii).
(iii) Recall first that Cµ◦V −1(z) = Cµ(V

∗z), and therefore∫
S

∣∣Cµ◦V −1(T ∗z)
∣∣dγ =

∫
S

∣∣Cµ(V
∗T ∗z)

∣∣dγ =

∫
S

∣∣Cµ((TV )∗z)
∣∣ dγ
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for all z in Rd. Note next that the Lévy measure ν# for µ ◦ V −1 is given by:

ν#(B) =

∫
Rd

1B\{0}(V x) ν(dx)

(cf. Sato (1999, Proposition 11.10)), and hence∫
Rd

min{1, ‖x‖2} [Υ0
T (ν

#)](dx) =

∫
S

∫
Rd

min{1, ‖T (s)x‖2} ν#(dx) γ(ds)

=

∫
S

∫
Rd

min{1, ‖T (s)V x‖2} ν(dx) γ(ds)

=

∫
S

∫
Rd

min{1, ‖x‖2} [Υ0
TV (ν)](dx).

The above considerations together with Proposition 3.5 establish (3.35). Assuming
now that µ ◦ V −1 ∈ domID(ΥT ), we find for any z in Rd that

CΥT (µ◦V −1)(z) =

∫
S

Cµ◦V −1(T ∗z) dγ =

∫
S

Cµ(V
∗T ∗z) dγ = CΥTV (µ)(z),

which completes the proof of (iii).
(iv) Assume that µ ∈ domID(ΥT ). For any z in Rd we note then that∫

S

|Cµ((V T )∗z)| dγ =

∫
S

|Cµ(T
∗(V ∗z))| dγ < ∞.

Letting ν denote the Lévy measure for µ we note next that∫
Rd

min{1,‖x‖2} [Υ0
V T (ν)](dx) =

∫
S

∫
Rd

min{1, ‖V T (s)x‖2} ν(dx) γ(ds)

≤ max{1, ‖V ‖2}
∫
S

∫
Rd

min{1, ‖T (s)x‖2} ν(dx) γ(ds) < ∞,

and it follows from Proposition 3.5 that µ ∈ domID(ΥV T ). For any z in Rd we find
finally that

CΥV T (µ)(z) =

∫
S

Cµ(T
∗V ∗z) dγ = CΥT (µ)(V

∗z) = CΥT (µ)◦V −1(z),

and this completes the proof of (iv).
(v) This follows immediately by combining (iii) and (iv).
(vi) This follows immediately by applying (v) in the case V = cId. �

The following result complements Proposition 3.10(ii) and is important in con-
nection with the study of the action of Upsilon transformations on stable and
selfdecomposable measures (cf. Corollary 3.12 below).

Lemma 3.11. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R) be
a measurable mapping. Suppose further that µ1, µ2 are measures from ID(Rd) such
that µ1, µ1 ∗ µ2 ∈ domID(ΥT ). Then also µ2 ∈ domID(ΥT ).

Proof : Let (η1, A1, ν1) and (η2, A2, ν2) denote, respectively, the characteristic
triplets for µ1 and µ2, so that (η1 + η2, A1 + A2, ν1 + ν2) is the characteristic
triplet for µ1 ∗ µ2.
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We note first that by Proposition 3.1∫
Rd

min{1, ‖x‖2} [Υ0
T (ν2)] =

∫
S

(∫
Rd

min{1, ‖Tx‖2} ν2(dx)
)
dγ

≤
∫
S

(∫
Rd

min{1, ‖Tx‖2} [ν1 + ν2](dx)
)
dγ < ∞,

so that ν2 ∈ domL(Υ
0
T ). Since 0 ≤ TA2T

∗ ≤ T (A1 + A2)T
∗, we also have that

‖TA2T
∗‖ ≤ ‖T (A1 +A2)T

∗‖, and hence∫
S

‖TA2T
∗‖dγ ≤

∫
S

‖T (A1 +A2)T
∗‖dγ < ∞.

Note finally that∫
S

∥∥∥Tη2 + ∫
Rd

[
1B1(Ty)− 1B1(y)

]
Ty ν2(dy)

∥∥∥ dγ
≤

∫
S

∥∥∥T (η1 + η2) +

∫
Rd

[
1B1

(Ty)− 1B1
(y)

]
Ty [ν1 + ν2](dy)

∥∥∥ dγ
+

∫
S

∥∥∥Tη1 + ∫
Rd

[
1B1(Ty)− 1B1(y)

]
Ty ν1(dy)

∥∥∥ dγ < ∞,

and this completes the proof. �

As a consequence of this lemma we have that ΥT preserves the classes of Gauss-
ian, stable and selfdecomposable distributions (within its domain).

Corollary 3.12. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R)
be a measurable mapping. Let further G(Rd), S(Rd) and L(Rd) denote, respectively,
the classes of d-dimensional Gaussian, stable and selfdecomposable laws. We then
have that

(i) ΥT

(
domID(ΥT ) ∩ G(Rd)

)
⊆ G(Rd).

(ii) ΥT

(
domID(ΥT ) ∩ S(Rd)

)
⊆ S(Rd).

(iii) ΥT

(
domID(ΥT ) ∩ L(Rd)

)
⊆ L(Rd).

Proof : (i) A measure µ from G(Rd) has characteristic triplet in the form (η,A, 0),
and hence, if additionally µ ∈ domID(ΥT ), the measure ΥT (µ) has characteristic
triplet (

∫
S
Tη dγ,

∫
S
TAT ∗ dγ, 0). Thus, ΥT (µ) is again a measure from G(Rd).

(ii) Recall that S(Rd) is the class of probability measures µ on Rd satisfying
that (cf. Samorodnitsky and Taqqu (1994, Definition 2.1.1))

∀α, α′ > 0 ∃α′′ > 0 ∃b ∈ Rd : Dαµ ∗Dα′µ = Dα′′µ ∗ δb.

Assume then that µ ∈ S(Rd) ∩ domID(ΥT ) and that α, α′ ∈ (0,∞). Then we may
choose α′′ in (0,∞) and b in Rd, such thatDαµ∗Dα′µ = Dα′′µ∗δb. According to (ii)
and (vi) of Proposition 3.10 we have here that Dαµ ∗Dα′µ ∈ domID(ΥT ) and that
Dα′′µ ∈ domID(ΥT ), and hence Lemma 3.11 ensures that also δb ∈ domID(ΥT ). It
follows then by application of (i),(ii) and (vi) in Proposition 3.10 that

DαΥT (µ) ∗Dα′ΥT (µ) = ΥT

(
(Dαµ) ∗ (Dα′µ)

)
= ΥT

(
Dα′′µ ∗ δb

)
= Dα′′ΥT (µ) ∗ δ∫

S
Tb dγ ,

and this shows that ΥT (µ) ∈ S(Rd) too.
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(iii) Recall that L(Rd) may be characterised as the class of probability measures
in ID(Rd) satisfying that

∀c ∈ (0, 1) ∃µc ∈ P(Rd) : µ = Dcµ ∗ µc. (3.36)

In that case µc is necessarily in ID(Rd) (cf. e.g. Sato (1999, Proposition 15.5)).
Assume then that µ ∈ domID(ΥT ) ∩L(Rd) and choose for c in (0, 1) a measure µc

in ID(Rd) such that (3.36) is satisfied. Since µ,Dcµ ∈ domID(ΥT ), Lemma 3.11
ensures that µc ∈ domID(ΥT ), and applications of (ii) and (vi) in Proposition 3.10
then yield that

ΥT (µ) = ΥT (Dcµ ∗ µc) = DcΥT (µ) ∗ΥT (µc).

This shows that ΥT (µ) ∈ L(∗). �

Proposition 3.13. Let (S, S, γ) be a probability space, and let T, V : S → Md(R)
be measurable mappings such that

∫
S
‖T‖2 dγ < ∞. Assume further that T and V

are independent with respect to γ. We then have that

(i) domID(ΥV ) ⊆ domID(ΥTV ).
(ii) ΥTV (µ) = ΥT (ΥV (µ)) for all µ in domID(ΥV ).

Proof : We note first that the independence assumption implies that∫
S

f(T )g(V ) dγ =

∫
S

f(T ) dγ

∫
S

g(V ) dγ (3.37)

for any measurable functions f, g : Md(R) → [0,∞).
(i) Assume that µ ∈ domID(ΥV ). We show directly that the three conditions

in Definition 3.4(b) are satisfied (with T replaced by TV ). So let (η,A, ν) be the
characteristic triplet for µ, and note then that∫

S

min{1,‖x‖2} [Υ0
TV (ν)](dx) =

∫
S

(∫
Rd

min{1, ‖TV x‖2} ν(dx)
)
dγ

≤
∫
S

max{1, ‖T‖2}
(∫

Rd

min{1, ‖V x‖2} ν(dx)
)
dγ

=

∫
S

max{1, ‖T‖2}dγ
∫
S

∫
Rd

min{1, ‖V x‖2} ν(dx)
)
dγ < ∞,

which verifies that ν ∈ domL(Υ
0
TV ). Note next that by (3.4) we have that∫

S

‖TV AV ∗T ∗‖dγ =

∫
S

‖TV A1/2‖2 dγ ≤
∫
S

‖T‖2‖V A1/2‖2 dγ

=

∫
S

‖T‖2 dγ
∫
S

‖V AV ∗‖dγ < ∞.
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Note finally that for fixed s in S (suppressed in the notation) we have that

∥∥∥TV η +

∫
Rd

[
1B1(TV y)− 1B1(y)

]
TV y ν(dy)

∥∥∥
=

∥∥∥ ∫
Rd

[
1B1(TV y)− 1B1(V y)

]
TV y ν(dy) + TV η

+ T

∫
Rd

[
1B1(V y)− 1B1(y)

]
V y ν(dy)

∥∥∥
≤

√
d

∫
Rd

∣∣1B1(TV y)− 1B1(V y)
∣∣‖TV y‖ ν(dy)

+ ‖T‖
∥∥∥V η +

∫
Rd

[
1B1(V y)− 1B1(y)

]
V y ν(dy)

∥∥∥,
where we have used linearity of the integral as well as the fact that ‖

∫
Rd f dν‖ ≤√

d
∫
Rd ‖f‖ dν for any ν-integrable function f : Rd → Rd. Applying now (3.18) and

(3.37), it follows that

∫
S

(∫
Rd

∣∣1B1(TV y)− 1B1(V y)
∣∣‖TV y‖ ν(dy)

)
dγ

≤
∫
S

(∫
Rd

min{1, ‖V y‖2}max{1, ‖T‖2} ν(dy)
)
dγ

=

∫
Rd

(∫
S

min{1, ‖V y‖2}dγ
)(∫

S

max{1, ‖T‖2}dγ
)
ν(dy)

=

∫
S

max{1, ‖T‖2}dγ
∫
S

(∫
Rd

min{1, ‖V y‖2} ν(dy)
)
dγ < ∞.

In addition,

∫
S

‖T‖
∥∥∥V η +

∫
Rd

[
1B1(V y)− 1B1(y)

]
V y ν(dy)

∥∥∥ dγ
=

∫
S

‖T‖dγ
∫
S

∥∥∥V η +

∫
Rd

[
1B1(V y)− 1B1(y)

]
V y ν(dy)

∥∥∥ dγ < ∞.

Combining the preceding three calculations, we conclude that

∫
S

∥∥∥TV η +

∫
Rd

[
1B1(TV y)− 1B1(y)

]
TV y ν(dy)

∥∥∥dγ < ∞,

and this completes the proof of (i).
(ii) Assume that µ ∈ domID(ΥV ), and let γT and γV denote, respectively, the

distributions of T and V with respect to γ. For any z in Rd we find then by
application of Proposition 3.5, the independence assumption and Fubini’s theorem
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that

CΥTV (µ)(z) =

∫
S

Cµ

(
(TV )∗z

)
dγ =

∫
S

Cµ

(
V ∗T ∗z

)
dγ

=

∫
Md(R)×Md(R)

Cµ

(
B∗A∗z

)
(γT ⊗ γV )(dA,dB)

=

∫
Md(R)

(∫
Md(R)

Cµ

(
B∗A∗z

)
γV (dB)

)
γT (dA)

=

∫
Md(R)

CΥV (µ)

(
A∗z

)
γT (dA) = CΥT (ΥV (µ))(z),

and this verifies (ii). �

3.4. Examples. Throughout this subsection we specialize to the case where (S, S, γ)
is a probability space. In this set-up we consider concrete examples of Upsilon trans-
formations corresponding to three naturally considered classes of random matrices;
namely a) diagonal matrices with i.i.d. exponentially distributed diagonal elements,
b) selfadjoint Gaussian random matrices, and c) Wishart matrices. In each case we
calculate the cumulant transform of ΥT (µ).

Example 3.14 (Diagonal matrices with exponentially distributed diagonals). The
one-dimensional Upsilon transform corresponding to the exponential distribution
e−x1(0,∞)(x) dx was studied intensively in e.g. Barndorff-Nielsen and Thorbjørnsen
(2004, 2006); Barndorff-Nielsen et al. (2006b). A natural way to generalize this
particular transform to higher dimensions is to consider a random matrix T : S →
Md(R) in the form

T =


T1 0

T2

. . .

0 Td

 , (3.38)

where T1, . . . , Td are i.i.d. random variables on S with distribution e−x1(0,∞)(x) dx.

Since
∫
S
‖T‖2 dγ < ∞, we may, for any measure µ in ID(Rd), calculate the cumu-

lant transform of ΥT (µ) conveniently using Proposition 3.7.
Denoting by (η,A, ν) the characteristic triplet for µ, we note first that E{T} = Id,

and secondly that the entry at position (j, k) in E{TAT} is given by

E{〈ATek, T ej〉} = E{〈ATkek, Tjej〉} = 〈Aek, ej〉E{TkTj} =

{
2ajk, if j = k

ajk, if j 6= k,

where ajk is the corresponding entry of A, and {e1, . . . , ed} is the standard basis for
Rd. It follows that E{TAT} = A+∆A, where ∆A is the diagonal matrix with the
same diagonal entries as A. Note finally for y = (y1, . . . , yd) and u = (u1, . . . , ud)
in Rd that

E
{
ei〈y,Tu〉

}
=

d∏
j=1

E
{
eiTjyjuj

}
=

d∏
j=1

(1− iyjuj)
−1,



Lévy Mixing 1035

and therefore ∫
Rd

(
E{ei〈y,Tu〉} − 1− i 〈y,E{T}u〉 1B1(y)

)
ν(dy)

=

∫
Rd

( d∏
j=1

1

1− iyjuj
− 1− i 〈y, u〉 1B1(y)

)
ν(dy).

Combining the calculations above with Proposition 3.7 we conclude that

CΥT (µ)(u) = i 〈η, u〉 − 1
2 〈(A+∆A)u, u〉

+

∫
Rd

 d∏
j=1

1

1− iyjuj
− 1− i 〈y, u〉 1B1(y)

 ν(dy),
(3.39)

for all u in Rd.

Example 3.15 (Gaussian random matrices). Let T be a d × d Gaussian random
matrix with mean M ∈ Md(R) and covariance Σ ∈ Sd. That is,

E(eitr(TΘ∗)) = eitr(MΘ∗)− 1
2 tr(ΘΣΘ∗) (Θ ∈ Md(R)). (3.40)

Then it is well-known (see Gupta and Nagar (2000); Muirhead (1982)) that

E{T} = M, and cov(T ) = Id ⊗ Σ, (3.41)

and we say that T has the matrix Gaussian distribution Nd(M, Id⊗Σ). In this case
ΥT (ID(Rd)) forms a new class of multivariate type G distributions (cf. Marcus

(1987) and Rosiński (1991)). Since E{‖T‖2} < ∞ (see Gupta and Nagar (2000);
Muirhead (1982)), we may apply Proposition 3.7 to calculate CΥT (µ) for any µ in
ID(Rd).

Denoting by (η,A, ν) the characteristic triplet of µ, we note first that E{TAT} =
E{ZZ∗}, where Z = TA1/2. Using the characteristic function (3.40), one may
show that Z has the Gaussian matrix distribution Nd(MA1/2, Id ⊗ (A1/2ΣA1/2))
(see e.g. Gupta and Nagar (2000)). Assuming that A is invertible, this implies that
ZZ∗ has the matrix noncentral Wishart distribution Wd(d,A

1/2ΣA1/2,Ω), where
Ω = A−1/2Σ−1M∗MA1/2. Therefore

E{TAT} = E{ZZ∗} = dA1/2ΣA1/2 +A1/2M∗MA1/2

(see e.g. Muirhead (1982, 441-442)). Finally, for any u, z in Rd note that uz∗ is a
d× d matrix of rank 1, and 〈z, Tu〉 = tr(Tuz∗). Using (3.40) we find thus that

E{ei〈z,Tu〉} = E{eitr(Tuz∗)} = eitr(Mzu∗)− 1
2 tr(uz

∗Σzu∗), (3.42)

and therefore∫
Rd

(
E{ei〈z,Tu〉} − 1− i 〈z,E{T}u〉 1B1

(z)
)
ν(dz)

=

∫
Rd

(
eitr(Mzu∗)− 1

2 tr(uz
∗Σzu∗) − 1− i 〈z,Mu〉 1B1(z)

)
ν(dz) (3.43)

=

∫
Rd

(
ei〈z,Mu〉− 1

2‖u‖
2〈z,Σz〉 − 1− i 〈z,Mu〉 1B1(z)

)
ν(dz) (3.44)
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where, to obtain (3.44) from (3.43), we have used the fact that uz∗Σzu∗ = z∗Σzuu∗,
since z∗Σz is a real number. Combining the calculations above with Proposition 3.7
we conclude that

CΥT (µ)(u) = i 〈Mη, u〉 − 1

2

〈[
dA1/2ΣA1/2 +A1/2M∗MA1/2

]
u, u

〉
+

∫
Rd

(
ei〈z,Mu〉− 1

2‖u‖
2〈z,Σz〉 − 1− i 〈z,Mu〉 1B1(z)

)
ν(dz)

(3.45)

for all u in Rd. In the case M = 0, we have in particular that

CΥT (µ)(u) = −d

2

〈
ΣA1/2u,A1/2u

〉
+

∫
Rd

(
e−

1
2‖u‖

2〈z,Σz〉 − 1
)
ν(dz),

(
u ∈ Rd

)
.

If additionally Σ = Id, then the distribution of T is invariant under orthogonal
transformations, and we have that

CΥT (µ)(u) = −d

2
〈Au, u〉+

∫
Rd

(
e−

1
2‖u‖

2‖z‖2

− 1
)
ν(dz)

for all u in Rd.

Example 3.16 (Wishart matrices I). In Example 3.14 we considered one possible
d-dimensional generalization of the one-dimensional exponential case. Another pos-
sibility is to consider the case when T is a d × d symmetric random matrix with
the matrix exponential distribution, i.e. T has the following density with respect to
Lebesgue measure on Sd:

fT (X) = cde
−tr(X)1S+d

(X), (X ∈ Sd). (3.46)

Here cd = 1/Γd((d + 1)/2), where Γd is the multivariate Gamma function defined
by

Γd(α) =

∫
S+d

e−tr(X) det(X)α−(d+1)/2dX (3.47)

for all complex numbers α, such that Re(α) > (d−1)/2. The matrix exponential
distribution is equal to the Wishart distribution Wd(d+ 1, 1

2 Id). For any α > 0 we
consider more generally a symmetric, positive semi-definite d×d random matrix Tα

carrying the Wishart distribution Wd(α,
1
2 Id). We refer to the books Eaton (1983),

Gupta and Nagar (2000) or Muirhead (1982) for an introduction to the Wishart
distribution. Here we will use the following three properties:

(i) Let Gd = {0, 1, . . . , d − 1} ∪ (d − 1,∞) be the Gindikin set. For α ∈ Gd,
the Fourier transform of Tα is given by

E(eitr(TαΘ)) = det(Id − iΘ)−α/2, (Θ ∈ Md(R)). (3.48)

(ii) The mean and covariance of Tα are given by

E{Tα} =
α

2
Id, and cov(Tα) =

α

2
Id ⊗ Id. (3.49)

(iii) The matrix Tα is nonsingular with probability one, if and only if α ≥ d. In
this case it has a density with respect to Lebesgue measure on Sd given by

fTα
(X) = cd,α det(X)(α−d−1)/2e−tr(X)1S+d

(X), (X ∈ Sd), (3.50)

where cd,α = 1/Γd(
α
2 ).
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Since E{‖Tα‖2} < ∞ (see Muirhead (1982, 87-90)), we may once again apply
Proposition 3.7 to calculate the cumulant transform of ΥTα(µ) for any µ in ID(Rd).

According to (ii) we have that E{Tα} = α
2 Id. Denoting as usual the characteristic

triplet for µ by (η,A, ν), we put Ãα = E{TαATα} and we consider the matrix Wα =
A1/2TαA

1/2. Then Wα has the Wishart distribution Wd(α,A/2), and furthermore

E{W 2
α} = E{A1/2TαATαA

1/2} = A1/2E{TαATα}A1/2 = A1/2ÃαA
1/2.

From Gupta and Nagar (2000, pp 120) we have

Ã =
α

4
(2tr(A)Id + (α+ 1)A)

and hence

E{W 2
α} =

α

4

(
2tr(A)A+ (α+ 1)A2

)
.

Finally, for any u, z in Rd we recall that uz∗ is a d × d matrix of rank 1 and
that 〈z, Tαu〉 = tr(Tαuz

∗). Using (3.48) and that the eigenvalues for Id − iuz∗ are
1− i 〈z, u〉 and 1 (with multiplicity d− 1) we find that Gupta and Nagar (2000, pp
120)

E{ei〈z,Tαu〉} = det(Id − iuz∗)−α/2 = (1− i 〈z, u〉)−α/2, (u ∈ Rd).

Therefore ∫
Rd

(
E{ei〈z,Tαu〉} − 1− i 〈z,E{Tα}u〉 1B1

(z)
)
ν(dz)

=

∫
Rd

(
(1− i 〈z, u〉)−α/2 − 1− α

2
i 〈z, u〉 1B1(z)

)
ν(dz)

for any u in Rd. Combining the calculations above with Proposition 3.7 we conclude
that

CΥTα(µ)(u) = i
α

2
〈η, u〉 − 1

2

〈
Ãαu, u

〉
+

∫
Rd

( 1

(1− i 〈y, u〉)α/2
− 1− i

α

2
〈y, u〉 1B1(y)

)
ν(dy),

(
u ∈ Rd

)
,

where Ãα satisfies that

A1/2ÃαA
1/2 = E{W 2

α}, with Wα ∼ Wd(α,A/2). (3.51)

If A = 0, then Ãα = E{TαATα} = 0 too, while for A non-singular we have that

Ãα = A−1/2E{W 2
α}A−1/2.

4. Continuity

In this section we study continuity of ΥT (µ) in µ (for fixed T ) and in T (for
fixed µ). We start by phrasing the following well-known lemma (see e.g. the proof
of Barndorff-Nielsen et al. (2006b, Proposition 2.4(v))).

Lemma 4.1. Let (µn) be a sequence of measures from ID(Rd), and for each n let
(ηn, An, νn) be the characteristic triplet for µn. Then (µn) is precompact, if and
only if the following four conditions are satisfied:

(a) supn∈N ‖An‖ < ∞.
(b) supn∈N

∫
Rd min{1, ‖x‖2}νn(dx) < ∞.
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(c) ∀ε > 0 ∃K > 0: supn∈N νn
(
{‖x‖ > K}

)
< ε.

(d) supn∈N ‖ηn‖ < ∞.

Proposition 4.2. Let (S, S, γ) be a σ-finite measure space, and let T : S → Md(R)
be a measurable mapping, such that

γ({T 6= 0}) < ∞, and

∫
S

‖T‖2 dγ < ∞. (4.1)

Then the mapping ΥT : ID(Rd) → ID(Rd) is continuous with respect to weak con-
vergence: If (µn) is a sequence of measures from ID(Rd) converging weakly to some
measure µ (necessarily) from ID(Rd), then ΥT (µn) converges weakly to ΥT (µ).

Proof : Consider a sequence (µn) of measures from ID(Rd) converging weakly to a
measure µ from ID(Rd), and for each n in N let (ηn, An, νn) be the characteristic
triplet for µn. According to Lemma 4.1 we then have that

H := sup
n∈N

‖ηn‖ < ∞, A := sup
n∈N

‖An‖ < ∞, R := sup
n∈N

∫
Rd

min{1, ‖x‖2} νn(dx) < ∞,

and by Lemma 7.7 in Sato (1999) also that

lim
n→∞

Cµn(y) = Cµ(y) for all y in Rd. (4.2)

Using now formula (3.26) (on µn rather than µ), it follows that

|Cµn(T
∗z)|

≤ ‖ηn‖‖T‖‖z‖+ 1
2‖An‖‖T‖2‖z‖2 +

(
2 + 1

2‖T‖
2‖z‖2

) ∫
Rd

min{1, ‖x‖2} νn(dx)

≤ H‖T‖‖z‖+ 1
2A‖T‖2‖z‖2 +

(
2 + 1

2‖T‖
2‖z‖2

)
R

(4.3)

for all z in Rd. Fixing z in Rd and denoting by Gz the resulting expression in (4.3),
it follows for all n in N that

|Cµn(T
∗z)| = |Cµn(T

∗z)|1{T 6=0} ≤ Gz1{T 6=0},

and the assumptions (4.1) imply that
∫
{T 6=0} Gz dγ < ∞. Hence by (4.2) and

dominated convergence, we may conclude that

lim
n→∞

CΥT (µn)(z) = lim
n→∞

∫
S

Cµn(T
∗z) dγ =

∫
S

Cµ(T
∗z) dγ = CΥT (µ)(z).

Clearly this implies that the characteristic function of ΥT (µn) converges pointwise,
as n → ∞, to that of ΥT (µ), which yields the desired conclusion. �
Proposition 4.3. Let (S, S, γ) be a finite measure space, and let T, T1, T2, T3, . . .
be measurable mappings from (S, S) into Md(R) such that

(a) limn→∞ ‖Tn(s)− T (s)‖ = 0 for γ-almost all s in S.
(b) There exists a measurable function g : S → [0,∞) such that∫

S

g(s) γ(ds) < ∞, and ‖Tn‖2 ≤ g almost everywhere for all n.

Then
∫
S
‖T (s)‖2 γ(ds) < ∞,

∫
S
‖Tn(s)‖2 γ(ds) < ∞ for all n and

(i) ΥTn(µ)
w−→ ΥT (µ) as n → ∞ for all µ in ID(Rd).

(ii) ΥTn−Tm(µ)
w−→ δ0 as n,m → ∞ for all µ in ID(Rd).
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Proof : The assumptions (a) and (b) clearly imply that the integrals
∫
S
‖T (s)‖2γ(ds)

and
∫
S
‖Tn(s)‖2 γ(ds) are finite.

(i) Let µ be a measure in ID(Rd) with characteristic triplet (η,A, ν). It follows
from (a) and the continuity of Cµ that for all s outside a γ null-set we have that
Cµ(Tn(s)

∗z) → Cµ(T (s)
∗z) as n → ∞ for all z in Rd. Moreover, we find by

application of (3.26) that

|Cµ(Tn(s)
∗z)| ≤

‖η‖‖Tn(s)‖‖z‖+ 1
2‖A‖‖Tn(s)‖2‖z‖2 + (2 + 1

2‖Tn(s)‖2‖z‖2)
∫
Rd

min{1, ‖x‖2} ν(dx)

≤ ‖η‖‖z‖g(s)1/2 + 1
2‖A‖‖z‖

2g(s) + (2 + 1
2‖z‖

2g(s))

∫
Rd

min{1, ‖x‖2} ν(dx)

for almost all s and for all z in Rd. Since γ is a finite measure, it follows thus by
dominated convergence that

CΥTn (µ)(z) =

∫
S

Cµ(Tn(s)
∗z) γ(ds) −→

n→∞

∫
S

Cµ(T (s)
∗z) γ(ds) = CΥT (µ)(z)

for all z in Rd, and this implies (i).
(ii) Using again (3.26) we find for any n,m in N (suppressing s in the notation)

that

|Cµ((Tn − Tm)∗z)|

≤ ‖η‖‖Tn − Tm‖‖z‖+ 1
2‖A‖‖Tn − Tm‖2‖z‖2

+ (2 + 1
2‖Tn − Tm‖2‖z‖2)

∫
Rd

min{1, ‖x‖2} ν(dx)

≤ 2‖η‖‖z‖g1/2 + 2‖A‖‖z‖2g + 2(1 + g‖z‖2)
∫
Rd

min{1, ‖x‖2} ν(dx).

(4.4)

If we assume that CΥTn−Tm (µ)(z) does not converge to 0 as n,m → ∞ for some z

in Rd, then we may choose a positive number ε and a sequence n1 < n2 < n3 < · · ·
of positive integers, such that∣∣CΥTn2k

−Tn2k−1
(µ)(z)

∣∣ ≥ ε for all k in N. (4.5)

However, (a) implies that (T ∗
n2k

−T ∗
n2k−1

)z → 0 almost everywhere, as k → ∞, and

together with (4.4) and dominated convergence this implies that

CΥTn2k
−Tn2k−1

(µ)(z) =

∫
S

Cµ((Tn2k
− Tn2k−1

)∗z) dγ −→
k→∞

0,

which contradicts (4.5). Thus, CΥTn−Tm (µ)(z) → 0 as n,m → ∞ for all z in Rd,
and this implies (ii). �

5. Regularisation

Consider a finite measure space (S, S, γ). In this section we establish that many
of the measurable mappings T : S → Md(R) considered in the foregoing give rise
to Upsilon transforms which have a regularising effect. Thus, if e.g. the measure
γ ◦ T−1 on Md(R) is absolutely continuous with respect to Lebesgue measure on
Md(R), then all Lévy measures in the range of Υ0

T are absolutely continuous with
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respect to Lebesgue measure on Rd. This is a special case of the results estab-
lished in Subsection 5.2 (see Corollary 5.8). We start however in Subsection 5.1 by
considering the simple but instructive situation, where S = Rd, and T has the form

T (s1, . . . , sd) =


s1 0

s2
. . .

0 sn

 , ((s1, . . . , sd) ∈ Rd). (5.1)

In this case we obtain rather specific expressions for the achieved densities. The
considerations in Subsection 5.1-5.2 are as such unrelated to the question of whether
Υ0

T (ν) is a Lévy measure or not. The results in these subsections are thus generally
freed from the assumption that ν ∈ domL(Υ

0
T ). In Subsection 5.3 we establish

another regularising feature of many Upsilon transformations, namely that ΥT

has a decreasing effect on the Blumenthal-Getoor index of an infinitely divisible
distribution on Rd. For stable distributions, however, the index is preserved.

5.1. The case of Diagonal Matrices. Throughout this subsection we consider a finite
measure γ on (Rd,B(Rd)) and the mapping T : Rd → Md(R) given by (5.1).

Proposition 5.1. Let (S, S, γ) and T be as described above, and assume that γ has
a density gγ : Rd → [0,∞) with respect to Lebesgue measure on Rd. Then for any
Lévy measure ν on Rd, satisfying the condition:

ν
(
Rd \ (R \ {0} × · · · × R \ {0})

)
= 0, (5.2)

the measure ν̃ = Υ0
γ(ν) is absolutely continuous with respect to Lebesgue measure

on Rd with a density given by

rν̃(y1, . . . , yd) =

∫
(R\{0})d

|u1 · · ·ud|−1gγ(y1/u1, . . . , yd/ud) ν(du1, . . . , dud) (5.3)

for any (y1, . . . , yd) in Rd.

Proof : Let ν be a Lévy measure on Rd satisfying condition (5.2), and put ν̃ =
Υ0

T (ν). For any s = (s1, . . . , sd) in Rd, we identify T (s) with the linear mapping
T (s) : Rd → Rd defined by

T (s)(y1, . . . , yd) = (s1y1, . . . , sdyd), ((y1, . . . , yd) ∈ Rd).

Note then that T (s)u = T (u)s for any s, u in Rd, and also that det(T (s)−1) =
|s1 · · · sd|−1 for any s in (R \ {0})d.

Now, let B be an arbitrary Borel set in Rd. Using Tonelli’s Theorem, we then
find that

ν̃(B)

=

∫
Rd

(∫
Rd

1B\{0}(T (s)u) ν(du)
)
γ(ds) =

∫
Rd

(∫
Rd

1B\{0}(T (u)s) γ(ds)
)
ν(du)

=

∫
Rd

(∫
Rd

1B\{0}(T (u)s)gγ(s) ds1 · · · dsd
)
ν(du).

Note here that for u in (R \ {0})d we have that T (u)s 6= 0, whenever s 6= 0. Hence
by the assumption (5.2), and the transformation theorem for Lebesgue measure, it
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follows that

ν̃(B) =

∫
(R\{0})d

(∫
Rd

1B(T (u)s)gγ(s) ds1 · · · dsd
)
ν(du)

=

∫
(R\{0})d

(∫
Rd

1B(y)gγ(T (u)
−1(y))|det(T (u)−1)| dy1 · · · dyd

)
ν(du)

=

∫
Rd

1B(y)
(∫

(R\{0})d
gγ(y1/u1, . . . , yd/ud)|u1 · · ·ud|−1 ν(du)

)
dy1 · · · dyd,

and the proposition follows. �

Remarks 5.2. Consider the setting of Proposition 5.1.

(1) The conclusion of Proposition 5.1 does not hold without the assumption
(5.2). Indeed, assume that γ is a non-zero, finite measure on (R2,B(R2))
which is absolutely continuous with respect to two-dimensional Lebesgue
measure, and consider further a Lévy measure ν on R2, such that e.g.
ν({0}×R) > 0. Note then that for any s in (R \ {0})2 and u in R2 we have
that

T (s)u ∈ {0} × (R \ {0}) ⇐⇒ u ∈ {0} × (R \ {0}),

and therefore

ν̃({0} × R) =
∫
R2

(∫
R2

1{0}×(R\{0})(T (s)u) ν(du)
)
γ(ds)

≥
∫
(R\{0})2

(∫
R2

1{0}×(R\{0})(u) ν(du)
)
γ(ds)

= ν({0} × R)γ((R \ {0})2) = ν({0} × R)γ(R2),

where the last equality uses the absolute continuity of γ. Since γ 6= 0, we
conclude that ν̃({0}×R) > 0, which clearly implies that ν̃ is not absolutely
continuous with respect to 2-dimensional Lebesgue measure.

(2) Maintaining assumption (5.2), we may consider the transformation β of ν
under the mapping

ϕ(u1, . . . , ud) = (u−1
1 , . . . , u−1

d ), ((u1, . . . , ud) ∈ (R \ {0})d). (5.4)

Then formula (5.3) may be re-written to the form:

rν̃(y1, . . . , yd) =

∫
(R\{0})d

|v1 · · · vd|gγ(y1v1, . . . , ydvd)β(dv1, . . . , dvd). (5.5)

In particular, if ν has a density rν with respect to d-dimensional Lebesgue
measure, then, by the transformation theorem for Lebesgue measure, β has
density

(v1, . . . , vd) 7→ rν(v
−1
1 , . . . , v−1

d )v−2
1 · · · v−2

d , ((v1, . . . , vd) ∈ (R \ {0})d),

with respect to d-dimensional Lebesgue measure. Hence (5.3) becomes

rν̃(y1, . . . , yd) =

∫
(R\{0})d

|v1 · · · vd|−1rν(v
−1
1 , . . . , v−1

d )gγ(y1v1, . . . , ydvd) dv1 · · · dvd.



1042 Barndorff-Nielsen et al.

(3) From the key formula (5.5) we have that the integral of rν̃ (y) equals ν(Rd)
in the case where γ is a probability measure. It follows that if ν is a
probability measure too, then the Lévy process generated by rν̃ is a com-
pound Poisson process. In particular, if β is the delta measure at a point
λ = (λ1, . . . , λd) ∈ Rd

+ then the innovations of the compound Poisson are
distributed according to the probability density λ1 · · ·λdg (λ1y1, . . . , λdyd).

Proposition 5.3. Let T1, . . . , Td be i.i.d. random variables with common distribu-
tion e−x1[0,∞)(x) dx, and let T denote the corresponding random d × d diagonal

matrix. Then for any Lévy measure ν on Rd, satisfying condition (5.2), the Lévy
measure ν̃ = Υ0

T (ν) is absolutely continuous with respect to Lebesgue measure, and
the density rν̃ is given by

rν̃(y1, . . . , yd) =

∫
(R\{0})d

|v1 · · · vd|e−(y1v1+···+ydvd)
d∏

j=1

1[0,∞)(vjyj)β(dv1, . . . ,dvd),

(5.6)
for any (y1, . . . , yd) in Rd, and where β is the transformation of ν under the map-
ping ϕ given in (5.4). In particular Υ0

T is injective on the class of Lévy measures
satisfying (5.2).

Proof : Formula (5.6) follows immediately from the general formula (5.5). To estab-
lish the injectivity statement we consider, for any tuple ` = (`1, . . . , `d) in {1, 2}d
the set

V` := {(v1, . . . , vd) ∈ (R \ {0})d | sign(vj) = (−1)`j , j = 1, . . . , d}.

Then let T` : Rd → Rd be the unique orthogonal linear transformation that maps
V` onto (0,∞)d (and vice versa). For any z = (z1, . . . , zd) in (0,∞)d, it follows then
from (5.6) that

rν̃(T`(z)) =

∫
(R\{0})d

|v1 · · · vd|e−〈z,T`(v)〉1V`
(v)β(dv) =

∫
(0,∞)d

e−〈z,w〉$`(dw)

where$` is the transformation by T` of the measure ω`(dv) = |v1 · · · vd|1V`
(v)β(dv).

In particular $` is concentrated on (0,∞)d, and the above calculation identifies
rν̃ ◦ T` with the Laplace transform of $`. Since ν is a Lévy measure, this Laplace
transform is finite for all z in (0,∞)d, and hence it determines $` uniquely. Thus,
rν̃ determines uniquely ωl for all `; whence β and therefore also ν (recall that β
and ν have no mass outside

∪
`∈{1,2}d V` by assumption). �

5.2. General random matrices. Throughout this subsection we consider a finite
measure space (S, S, γ), and for convenience (and without loss of generality) we
shall assume that γ is a probability measure. Then T : S → Md(R) may be referred
to as a random matrix, and we can freely apply the usual convenient probability
terminology.

Proposition 5.4. Let T be a random d×d-matrix on the probability space (S, S, γ),
and let U be a k-dimensional subspace of Md(R) such that γ(T ∈ U) = 1. Assume
in addition that the distribution of T has a density with respect to Lebesgue measure
on U.

Consider further a non-zero Lévy measure ν on Rd such that

ν
(
{y ∈ Rd | dim(Uy) < d}

)
= 0, (5.7)
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where, for any y in Rd, we use the notation: Uy = {Uy | U ∈ U} ⊆ Rd.
Then the measure Υ0

T (ν) is absolutely continuous with respect to Lebesgue mea-
sure on Rd with a density given by

r̃(z) =

∫
G

gy(z) ν(dy), (z ∈ Rd),

where G = {y ∈ Rd | dim(Uy) = d}, and, for each y in G, gy is a density of the
d-dimensional random vector Ty with respect to d-dimensional Lebesgue measure
(cf. Lemmas 5.5-5.6 below).

To prove Proposition 5.4 we need a few preliminary results.

Lemma 5.5. Let k and m be positive integers, and let L : Rk+m → Rk be a surjec-
tive linear transformation. Let further Y be a (k+m)-dimensional random vector,
and assume that the distribution of Y has a density fY : Rk+m → [0,∞) with respect
to Lebesgue measure on Rk+m.

Then the k-dimensional random vector LY is again absolutely continuous with
respect to k-dimensional Lebesgue measure with density

fLY (z) =

∫
Rm

1

|det(A)|
fY

(
A−1

[
z
y

])
dy1 · · · dym, (z ∈ Rk), (5.8)

where y = (y1, . . . , ym), and A is an invertible (k+m)× (k+m)-matrix whose first
k rows equal the rows of the k × (k +m) matrix corresponding to L.

Proof : This is well-known, but we include a proof for convenience: We identify L
with the corresponding k × (k + m)-matrix. Since L is assumed surjective, the k
rows of L are linearly independent, so we may extend them to a basis for Rk+m by
adding suitable vectors h1, . . . , hm from Rk+m. Then let A be the (k+m)×(k+m)-
matrix whose first k rows are those of L, and whose last m rows are h1, . . . , hm.
Then A is invertible, so by the usual (linear) transformation theorem for Lebesgue
measure, the random vector AY has the density

fAY (y) =
1

| det(A)|
fY (A

−1y), (y ∈ Rk+m),

with respect to Lebesgue measure on Rk+m. As the first k-rows of AY form the
random vector LY , it follows that LY has the density (5.8). �

Lemma 5.6. Let (W,E) be a measurable space, let k,m be positive integers, and let
Φ: W → Mk,k+m(R) be an E-B(Mk,k+m(R))-measurable mapping such that Φ(w)
has rank k for all w. Let further Y be a (k +m)-dimensional random vector, and
assume that the distribution of Y has a density fY : Rk+m → [0,∞) with respect to
Lebesgue measure on Rk+m. For each w in W , let gw denote the density of the k
-dimensional random vector Φ(w)Y given in Lemma 5.5.

Then gw may be chosen such that the mapping (w, z) 7→ gw(z) : W×Rk → [0,∞)
is measurable with respect to the product σ-algebra E⊗B(Rk).

Proof : For each w in W we have that

gw(z) =

∫
Rm

1

| det(Aw)|
fY

(
A−1

w

[
z
y

])
dy1 · · ·dym, (z ∈ Rk), (5.9)

where Aw is obtained by extending Φ(w) to an invertible (k+m)× (k+m)-matrix
by adding suitable rows. According to Lemma 5.7 below (applied to Φ(w)∗) the
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mapping w 7→ Aw can be chosen E-measurable on W . Since the mapping A 7→ A−1

is a homeomorphism on the group of invertible (k + m) × (k + m)-matrices, this
implies that the mapping

(w, z, y) 7→ 1

| det(Aw)|
fY

(
A−1

w

[
z
y

])
: W × Rk+m → [0,∞)

is measurable with respect to the product σ-algebra E⊗B(Rk+m). It follows sub-
sequently from Tonelli’s Theorem that the right hand side of (5.9) is an E⊗B(Rk)-
measurable function of (w, z). �

Lemma 5.7. Let (W,E) be a measurable space, let k,m be positive integers, and let
Φ: W → Mk+m,k(R) be an E-B(Mk+m,k(R))-measurable mapping such that Φ(w)
has rank k for all w in W . Then there exists an E-B(Mk+m,m(R)) -measurable
mapping Ψ: W → Mk+m,m(R) such that the (k+m)×(k+m)-matrix [Φ(w) | Ψ(w)]
is invertible for all w.

Proof : For each w in W , let Uw denote the k-dimensional subspace of Rk+m

spanned by the columns of Φ(w). The orthogonal projection onto Uw is then given
by

E(w) = Φ(w)[Φ(w)∗Φ(w)]−1Φ(w)∗,

which is E-measurable in w. The columns of F (w) := In − E(w) will then span
U⊥

w . Let F1(w), . . . , Fk+m(w) denote the columns of F (w), which are clearly E-
measurable in w.

Consider next the function r : Rd → Rd given by

r(x) =

{
‖x‖−2x, if x 6= 0,

0, if x = 0,

and note that r is a Borel-function. Then define column-vectors Q1(w),. . ., Qk+m(w)
recursively as follows:

Q1(w) = F1(w), and Qj(w) = Fj(w)−
j−1∑
k=1

〈Fj(w), Qk(w)〉r(Qk(w)), (j ≥ 2),

and note that these vectors are orthogonal and that they span U⊥
w (in particular

k of them must equal 0). Moreover it follows by induction that Q1, . . . , Qk+m

are E-measurable functions of w. Next define τ1, . . . , τm : W → {1, 2, . . . , k + m}
recursively as follows:

τ1(w) = min{j ∈ {1, . . . , k +m} | Qj(w) 6= 0},

and

τj(w) = min{τj−1 < j ≤ k +m | Qj(w) 6= 0}, (j ≥ 2).

It follows then by standard “stopping-time arguments” that τ1, . . . , τm are E-meas-
urable functions of w. We finally define

Rj(w) = Qτj(w)(w), (w ∈ Rd),

for any j in {1, . . . ,m}, and we note that each Rj is an E-measurable function of
w, since

{Rj ∈ B} =
k+m∪
k=1

{τj = k} ∩ {Qk ∈ B}
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for any Borel-set B in Rk+m. In addition R1(w), . . . , Rm(w) span U⊥
w , so it follows

that if we define Ψ: W → Mk+m,m(R) by

Ψ(w) =
[
R1(w) | · · · | Rm(w)

]
, (w ∈ W ),

then Ψ has the desired properties. �

Proof of Proposition 5.4. Choose an orthonormal basis B = {h1, . . . , hk} for U,
and let Y be the random k-dimensional coordinate vector for T with respect to B.
Then, since the distribution of T has a density with respect to Lebesgue measure
on U, the distribution of Y has a density with respect to Lebesgue measure on Rk.

For each y in Rd, let Φ0(y) : U → Rd be the linear mapping defined by

[Φ0(y)](U) = Uy, (U ∈ U).

From the assumption (5.7) it follows that Φ0(y) is surjective for ν-almost all y in
Rd, and in particular we must have that k ≥ d. For each y in Rd, we let Φ(y)
denote the d× k matrix for Φ0(y) with respect to B and the standard basis for Rd.
Then for any y in Rd we have that

Ty = Φ(y)Y.

Note also that Φ: Rd → Md,k(R) is clearly a continuous mapping, and in particular
the set

G := {y ∈ Rd | dim(Uy) = d} = {y ∈ Rd | Φ0(y) is surjective}

= {y ∈ Rd | det(Φ(y)Φ∗(y)) > 0}

is an open subset of Rd.
For each y in G it follows from Lemma 5.5 that the distribution of Ty (= Φ(y)Y )

is absolutely continuous with respect to k-dimensional Lebesgue measure, and by
Lemma 5.6 we may choose a Lebesgue density gy for Ty in such a way that the
mapping

(y, z) 7→ gy(z) : G× Rd → [0,∞)

is Borel-measurable on G× Rd.
Now, for any Borel-set B in Rd we find by application of Tonelli’s Theorem and

the fact that ν(Gc) = 0 that

[Υ0
T (ν)](B) =

∫
S

(∫
Rd

1B\{0}(T (s)y) ν(dy)
)
γ(ds)

=

∫
Rd

(∫
S

1B\{0}(T (s)y) γ(ds)
)
ν(dy)

=

∫
G

(∫
S

1B\{0}(T (s)y) γ(ds)
)
ν(dy)

=

∫
G

(∫
Rd

1B\{0}(z)gy(z) dz1 · · ·dzd
)
ν(dy)

=

∫
Rd

1B(z)
(∫

G

gy(z) ν(dy)
)
dz1 · · · dzd,

which completes the proof. �
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Corollary 5.8. Let T be a random d× d-matrix on the probability space (S, S, γ),
and assume that one of the following two conditions is satisfied:

(a) The distribution of T is absolutely continuous with respect to Lebesgue mea-
sure on Md(R).

(b) T = T ∗, and the distribution of T is absolutely continuous with respect to
Lebesgue measure on the space Sd of symmetric d× d-matrices.

Then for any non-zero Lévy measure ν on Rd the measure Υ0
T (ν) is absolutely

continuous with respect to Lebesgue measure on Rd, and the density is given by

r̃(z) =

∫
Rd\{0}

gy(z) ν(dy), (z ∈ Rd),

where, for each non-zero vector y in Rd, gy is a density of the d-dimensional random
vector Ty with respect to d-dimensional Lebesgue measure (cf. Lemma 5.6).

Proof : The corollary follows by application of Proposition 5.4 in the cases (a)
U = Md(R), and (b) U = Sd. Condition (5.7) is then satisfied for any Lévy measure
ν on Rd, since

Md(R)y = Rd, and Sdy = Rd for any y in Rd \ {0}. (5.10)

To see this, it clearly suffices to establish the second equation in (5.10) for any unit
vector y in Rd. If y = e1 (the first vector in the standard basis for Rd), then this
equality follows from the fact that any vector in Rd can obviously be placed as the
first column of a symmetric d×d matrix. For a general unit vector y in Rd, we may
choose an orthogonal d × d-matrix U , such that Uy = e1. Then, for any vector z
in Rd, it follows from the previous argument that we may choose a matrix A in Sd,
such that Ae1 = Uz. Now U∗AU ∈ Sd, and U∗AUy = U∗Ae1 = U∗Uz = z. This
completes the proof of (5.10) and hence that of the corollary. �

Example 5.9 (Wishart matrices II). Let d be a positive integer and let α be a
positive number, such that α ≥ d. Consider further as in Example 3.16 a symmetric,
positive semi-definite d × d random matrix Tα carrying the Wishart distribution

Wd(α,
1
2 Id). Since α ≥ d, P (Tα ∈ S+d ) = 1, and the distribution of Tα has the

density (3.50) with respect to Lebesgue measure on Sd. Moreover, E{‖Tα‖2} <
∞, so that domL(Υ

0
Tα

) = ML(Rd). For any non-zero Lévy measure ν on Rd it

follows thus from Corollary 5.8 that the Lévy measure ν̃α := Υ0
Tα

(ν) is absolutely

continuous with respect to Lebesgue measure on Rd. The density is given by

r̃α(z) =

∫
Rd\{0}

gαy (z) ν(dy), (z ∈ Rd),

where, for each y in Rd \ {0}, gαy is a density of the d-dimensional random vector
Tαy with respect to d-dimensional Lebesgue measure. To identify the distribution
of Tαy we consider for any u ∈ Rd the matrix Θ = yu∗ of rank one. Using (3.48)
we then find that

E{ei〈u,Tαy〉} = E{eitr(Tαyu∗)} = det(Id − iyu∗)−α/2 = (1− i 〈y, u〉)−α/2
,

which determines the characteristic function for Tαu.



Lévy Mixing 1047

5.3. The Blumenthal-Getoor index. Let µ be an infinitely divisible distribution on
Rd. The Blumenthal-Getoor index α = αµ for µ (or the corresponding Lévy process
(X(t))t≥0) is then defined by:

α = inf
{
δ > 0

∣∣ ∫
B1

‖x‖δ ν(dx) < ∞},

where ν is the Lévy measure for µ and B1 denotes the unit disk of Rd with respect
to the Euclidean norm ‖ · ‖ on Rd (cf. (3.1)-(3.2)). Clearly α ∈ [0, 2]. If d = 1 and
(X(t))t≥0 is a pure jump process, it is well-known (see e.g. Todorov and Tauchen
(2011)) that

α = inf
{
r > 0

∣∣ ∑
0≤s≤1 |∆X(s)|r < ∞

}
where ∆X(s) is the jump at time s. Thus, the Blumenthal-Getoor index αmeasures
the jump activity of X(t) (the larger the index the larger and the more jumps).

For the non-Gaussian stable distributions without drift the Blumenthal-Getoor
index equals the index of stability (cf. Sato (1999, p. 362)). We show next (refining
Proposition 3.12) that the Upsilon transforms preserve the index of stability for the
stable distributions.

Proposition 5.10. Let (S, S, γ) be a σ-finite measure space, and consider a mea-
surable mapping T : S → Md(R). Let further α be a number in (0, 2), and let µ be an
α-stable distribution in domID(ΥT ). Then ΥT (µ) is again an α-stable distribution.

Proof : Let (η,A, ν) denote the characteristic triplet for µ. According to Sato (1999,
Theorem 14.3) the fact that µ is α-stable means exactly that A = 0 and

Drν = rαν for all r in (0,∞), (5.11)

where, as previously, Drν is the transformation of ν by the mapping x 7→ rx.
Since obviously

∫
S
TAT ∗ dγ = 0, it suffices thus to show that property (5.11) is

transferred to the Lévy measure Υ0
T (ν) of ΥT (µ). Given a positive number r and

a Borel set B in Rd we find that

[DrΥ
0
T (ν)](B) = [Υ0

T (ν)](r
−1B) =

∫
S

∫
Rd

1r−1B\{0}(Ty) ν(dy) dγ

=

∫
S

∫
Rd

1B\{0}(T (ry)) ν(dy) dγ =

∫
S

∫
Rd

1B\{0}(Tz)Drν(dz) dγ

= rα
∫
S

∫
Rd

1B\{0}(Tz) ν(dz) dγ = rα[Υ0
T (ν)](B),

as desired. �

For general infinitely divisible laws, the everywhere defined Upsilon transforms
(cf. Proposition 3.6) decrease the Blumenthal-Getoor index, as the following propo-
sition shows.

Proposition 5.11. Let (S, S, γ) be a σ-finite measure space, and consider a mea-
surable mapping T : S → Md(R) such that

∫
S
‖T‖2 dγ < ∞, and γ({T 6= 0}) < ∞.

Let further µ be an infinitely divisible distribution on Rd, and let α and α̃ denote,
respectively, the Blumenthal-Getoor index for µ and ΥT (µ). Then α̃ ≤ α.
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Proof : Let ν denote the Lévy measure for µ, and put ν̃ = Υ0
T (ν). It suffices then

to show that
∫
B1

‖u‖δ ν̃(du) < ∞ for any δ in (α, 2]. Given such a δ we find, as in
the proof of Proposition 3.1, that∫

B1

‖u‖δ ν̃(du) ≤
∫
Rd

min{1, ‖u‖δ} ν̃(du)

=

∫
S

(∫
Rd

min{1, ‖T (s)u‖δ} ν(du)
)
γ(ds)

≤
∫
{T 6=0}

(∫
Rd

min{1, ‖T (s)‖δ‖u‖δ} ν(du)
)
γ(ds)

≤
∫
{T 6=0}

(∫
Rd

min{1, ‖u‖δ}max{1, ‖T (s)‖δ} ν(du)
)
γ(ds)

=

∫
{T 6=0}

max{1, ‖T (s)‖δ} γ(ds)
∫
Rd

min{1, ‖u‖δ} ν(du)

≤
∫
{T 6=0}

max{1, ‖T (s)‖2} γ(ds)
∫
Rd

min{1, ‖u‖δ} ν(du),

and the assumptions imply that the resulting expression is finite. �

6. Random integral representation

In this section we derive a representation of the Upsilon mapping ΥT as a random
integral with respect to an Rd-valued Lévy basis L on a general space S. These are
Wiener type integrals of deterministic measurable functions T : S → Md(R) with
respect to L.

Integration of non-random functions with respect to a Lévy basis (also known as
infinitely divisible, independently scattered, random measures (i.d.i.s.r.m.)) goes
back to Urbanik and Woyczyński (1967) and Rosiński (1984). It was systematically
studied by Rajput and Rosiński (1989) when L is R-valued and S is general, and
by Sato (2004) when L is Rd-valued, S = [0,∞). See also the related construction
of improper integrals with respect to additive processes in Sato (2006a,b, 2007).

We present here a review and a self-contained treatment of the constructions
of the relevant integrals which builds on the connection to the Upsilon mappings
studied in the foregoing sections

We start with a brief overview of notation and basics for Lévy bases and the
particular case of factorisable Lévy bases.

6.1. Background on Lévy bases. Let (S, S) be a measurable space such that S =
σ(S0), where S0 is a δ-ring of subsets of S such that there exists a sequence {Fn} ⊆
S0 with Fn ⊆ Fn+1 and ∪nFn = S. A recurrent example in this theory is when
S is a Borel subset of Rm, S = B(S) and S0 = Bb(S), the class of bounded Borel
subsets of S.

Definition 6.1. A family L =
{
L(F ) : F ∈ S0

}
of Rd-valued random variables

(defined on some probability space (Ω,F, P )) is called an Rd-valued Lévy basis on
S if the following three conditions are satisfied:
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(a) the distribution of L(F ) is in ID(Rd) for all F ∈ S0,
(b) for any n ∈ N and pairwise disjoint sets E1, . . . , En ∈ S0 the random

elements L(E1), ..., L(En) are independent,
(c) for any pairwise disjoints sets En ∈ S0, n ∈ N, satisfying ∪n∈NEn ∈ S0 the

series
∑∞

n=1 L(En) converges almost surely, and it holds that

L (∪n∈NEn) =
∞∑

n=1

L(En) a.s.

For each F in S0, we denote by C{u ‡ L(F )} the cumulant transform of L(F ),
i.e. C{u ‡ L(F )} = logE (exp (i 〈L(F ), u〉)) for any u ∈ Rd. The Lévy-Khintchine
representation of C{u ‡ L(F )} is for each F in S0 given by

C{u ‡ L(F )} = i 〈ηηη(F ), u〉 − 1

2
〈A(F )u, u〉 (6.1)

+

∫
Rd

(
ei〈y,u〉 − 1− i 〈y, u〉 1B1(y)

)
n(dy, F ), (u ∈ Rd),

where

(i) ηηη(·) = (ηηη1(·), ..., ηηηd(·)) is an Rd-valued measure on S0,

(ii) A(·) = (Aij(·)) is a S+d -valued measure on S0,
(iii) n is a bimeasure such that for fixed F ∈ S0, n(dy, F ) is a Lévy measure on

Rd, and for fixed dy a measure on S0.

For F ∈ S0 let

c(F ) = |ηηη| (F ) + tr(A)(F ) +

∫
Rd

min{1, |x|2}n(dy, F ), (6.2)

with |ηηη| denoting the variation measure of ηηη. (Recall that the variation |b| of a
vector valued measure b is defined as

|b| (F ) = sup
∑
n

‖b(En)‖ (F ∈ S0),

where the supremum is taken over all the partitions F = ∪nEn of F into a finite

number of disjoint sets En in S0). It can be shown that L(En)
Pr→ 0 when En ↓ ∅,

En ∈ S0. Hence c is continuous at the empty set, and since c(Fn) < ∞, for n ≥ 1,
we can extend c to a σ-finite measure on (S, S). This extension is called the control
measure of L and it is also denoted by c.

The measures ηηη,A and n(dy, ·) are absolutely continuous with respect to c. We
define the functions η(s) = (η1(s), ..., ηd(s)), A(s) = (aij(s)) and ν(dy, s), s ∈ S,
using Radon-Nikodym derivatives as follow:

ηi(s) =
dηηηi
dc

(s), i = 1, . . . , d, (6.3)

aij(s) =
dAij(·)

dc
(s), i, j = 1, . . . , d, (6.4)

ν(dy, s) =
n(dy, ·)

dc
(s), (6.5)

n(dy,ds) = ν(dy, s) c(ds) (6.6)
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There is then no loss of generality in assuming that ν(dy, s) is a Lévy measure for
each fixed s ∈ S and that

ν̃(F ) =

∫
F

ν(dy, s) c(ds),
(
F ∈ B(Rd)

)
(6.7)

is a Lévy measure on Rd. Moreover, the quadruplet (η(·), A(·), ν(dy, ·), c((d·))
determines uniquely the Lévy basis L.

When ν(dx, s), η(s) and A(s) do not depend on s, the Lévy basis is said to be fac-
torisable. In this case there exists a characteristic triplet (η,A, ν) such that L(F ) has
an infinitely divisible distribution on Rd with characteristic triplet c(F )(η,A, ν) :=
(c(F )η, c(F )A, c(F )ν) for each F ∈ S0. In this case we also say that (η,A, ν, c) is the
generating quadruplet of the factorisable Lévy basis L. If, in addition, S = Rd and c
is proportional to the Lebesgue measure, the Lévy basis is said to be homogeneous.

Remark 6.2. Suppose γ is a σ-finite measure on S = σ(S0), such that γ(F ) < ∞
for all F in S0. Then for any characteristic triplet (η,A, ν) on Rd we can construct
a factorisable Lévy basis L = {L(F ) | F ∈ S0}, such that L(F ) has generating
triplet γ(F )(η,A, ν) for any F in S0. We note that L has generating quadruplet
(η,A, ν, c), where the control measure c is equal to kLγ, with the constant kL given
by

kL = ‖η‖+ tr(A) +

∫
Rd

min{1, ‖y‖2} ν(dy). (6.8)

6.2. Integral representation when γ is finite. Throughout this subsection we con-
sider a fixed finite measure space (S, S, γ). Let further η be a vector in Rd, let A
be a symmetric non-negative definite d× d matrix and let ν be a Lévy measure on
Rd. Then, there exists a factorisable Lévy basis L = {L(F ) | F ∈ S} in Rd (defined
on some probability space (Ω,F, P )) with generating quadruplet (η,A, ν, kLγ) (cf.
Remark 6.2).

A simple measurable mapping T : S → Md(R) may be written in the form:

T (x) =

n∑
j=1

αj1Fj (x) (6.9)

where n ∈ N, αj ∈ Md(R) and F1, . . . , Fn are disjoint sets from S. In this case we
define the Wiener integral of T with respect to the Lévy basis L introduced above
as the Rd-valued random vector

IL(T ) =

∫
S

T (s)L(ds) =
n∑

j=1

αjL(Fj). (6.10)

It follows by standard arguments that IL(T ) does not depend on the specific rep-
resentation (6.9) and that

IL(αT + T ′) = αIL(T ) + IL(T
′) (6.11)

for any simple measurable mappings T, T ′ : S → Md(R) and any constant matrix α
in Md(R).

We note next the connection to Upsilon transforms for simple measurable map-
pings T : S → Md(R).
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Lemma 6.3. Let µ be a measure in ID(Rd) with characteristic triplet (η,A, ν) and
consider the Lévy basis L = {L(F ) | F ∈ S} introduced above. For any simple
measurable mapping T : S → Md(R) we then have that

L
{∫

S

T dL
}
= ΥT (µ) ∈ ID(Rd), (6.12)

where L{X} denotes the law of a random vector X.

Proof : Consider first T in the form: T = α1F , where α ∈ Md(R) and F ∈ S.
Then

∫
S
T dL = αL(F ), where L(F ) has characteristic triplet γ(F )(η,A, ν). It

follows then from Sato (1999, Proposition 11.10) that αL(F ) has characteristic

triplet (η̃, Ã, ν̃), where

Ã = γ(F )αAα∗ =

∫
S

T (s)AT (s)∗ γ(ds),

η̃ = γ(F )αη + γ(F )

∫
Rd

αx(1B1(αx)− 1B1(x)) ν(dx)

=

∫
S

T (s)η γ(ds) +

∫
S

(∫
Rd

T (s)x(1B1(T (s)x)− 1B1(x)) ν(dx)
)
γ(ds),

and for any Borel set B in Rd

ν̃(B) = γ(F )

∫
Rd

1B\{0}(αx) ν(dx) =

∫
S

(∫
Rd

1B\{0}(T (s)x) ν(dx)
)
γ(ds).

Hence it follows from Definition 3.4 that (6.12) holds in this case. Proposition 3.5
(and Theorem 3.3) further implies that

C
{
z ‡ αL(F )

}
=

∫
S

Cµ(T (s)
∗z) γ(ds) = γ(F )Cµ(α

∗z), (z ∈ Rd). (6.13)

Consider now a general simple measurable mapping T : S → Md(R) written in the
form (6.9) with disjoint F1, . . . , Fn. Then IL(T ) =

∑n
j=1 αjL(Fj), where the terms

on the right hand side are independent random vectors. It follows thus for any z
in Rd that

C
{
z ‡ IL(T )

}
=

n∑
j=1

C
{
z ‡ αjL(Fj)

}
=

n∑
j=1

γ(Fj)Cµ(α
∗
jz)

=

∫
S

Cµ(T (s)
∗z) γ(ds) = CΥT (µ)(z),

where we have used (6.13) and Proposition 3.5 �
Proposition 6.4. Assume that T : S → Md(R) is a measurable mapping satisfying
that

∫
S
‖T‖2 dγ < ∞. Then

(i) There exists a sequence (Tn) of simple measurable mappings Tn : S →
Md(R) such that conditions (a) and (b) of Proposition 4.3 are satisfied.

(ii) For any sequence (Tn) of simple measurable mappings Tn : S → Md(R)
satisfying conditions (a) and (b) of Proposition 4.3, the sequence (IL(Tn))
converges in probability, as n → ∞, to a measurable mapping Y : Ω → Rd.

(iii) The limit Y described in (ii) is, up to P -nullsets, the same for any se-
quence (Tn) of simple measurable mappings satisfying (a) and (b) of Propo-
sition 4.3.
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Proof : (i) For any i, j in {1, 2, . . . , d} we let tij : S → R denote the entry at position

(i, j) of T . Then by standard methods we can choose a sequence (t
(n)
ij )n∈N of simple

measurable functions t
(n)
ij : S → R such that

sup
n∈N

|t(n)ij (s)| ≤ |tij(s)|, and lim
n→∞

t
(n)
ij (s) = tij(s) for all s in S.

For each n we let Tn : S → Md(R) denote the simple measurable mapping with

entries t
(n)
ij , 1 ≤ i, j ≤ d. Since all norms on Md(R) are equivalent, it follows then

that
lim

n→∞
‖Tn(s)− T (s)‖ = 0 for all s in S,

and that

‖Tn(s)‖ ≤ Kd max
1≤i,j≤d

|t(n)ij (s)| ≤ Kd max
1≤i,j≤d

|tij(s)| ≤ K ′
d‖T (s)‖

for all s in S and n in N, and where Kd and K ′
d are positive constants (depending

only on d). Thus conditions (a) and (b) of Proposition 4.3 are satisfied if we put
g = K ′2

d ‖T‖2.
(ii) Assume that (Tn) is an arbitrary sequence of simple measurable mappings

Tn : S → Md(R) satisfying conditions (a) and (b) of Proposition 4.3. Then for any
n,m in N the mapping Tn − Tm is again simple and measurable, and it follows by
(6.11) and Lemma 6.3 that

C{z ‡ IL(Tn)− IL(Tm)} = C{z ‡ IL(Tn − Tm)} = CΥTn−Tm (µ)(z), (z ∈ Rd).

Hence, Proposition 4.3(ii) implies that

L{IL(Tn)− IL(Tm)} = ΥTn−Tm(µ)
w−→ δ0, as n,m → ∞,

so that (IL(Tn))n∈N is a Cauchy sequence and hence convergent in probability (see
e.g. Lemma 1.2.4 in Barndorff-Nielsen et al. (2006a)).

(iii) Assume that (Tn) and (T ′
n) are two sequences of simple measurable map-

pings both satisfying conditions (a) and (b) of Proposition 4.3. Then by (ii) there
exist random vectors Y, Y ′ : Ω → Rd such that IL(Tn) → Y and IL(T

′
n) → Y ′ in

probability as n → ∞. Now the mixed sequence T1, T
′
1, T2, T

′
2, . . . also satisfies (a)

and (b) in Proposition 4.3, so there exists a random vector Y ′′ : Ω → Rd such that
IL(T1), IL(T

′
1), IL(T2), IL(T

′
2), . . . converges to Y ′′ in probability. Thus, by subse-

quence considerations, Y = Y ′′ = Y ′ P -almost everywhere, and this completes the
proof. �
Definition 6.5. Assume that T : S → Md(R) is a measurable mapping satisfying
that

∫
S
‖T‖2 dγ < ∞. Then we denote by

IL(T ) =

∫
S

T (s)L(ds)

the random vector Y described in Proposition 6.4(ii)-(iii).

As an immediate consequence of Definition 6.5 and (6.11) we note that the
integral just introduced is linear in the sense that∫

S

(αT1(s) + T2(s))L(ds) = α

∫
S

T1(s)L(ds) +

∫
S

T2(s)L(ds), (6.14)

whenever α ∈ Md(R) and T1, T2 : S → Md(R) are measurable functions satisfying
that

∫
S
‖Tj‖2 dγ < ∞, j = 1, 2.



Lévy Mixing 1053

Theorem 6.6. Let (S, S, γ) be a finite measure space, and assume that T : S →
Md(R) is a measurable mapping satisfying that

∫
S
‖T‖2 dγ < ∞. Let further µ be

a measure in ID(Rd) with characteristic triplet (η,A, ν). Then

L
{∫

S

T (s)L(ds)
}
= ΥT (µ)

where L = {L(F ) | F ∈ S} is an Rd-valued factorisable Lévy basis with generating
quadruplet (η,A, ν, kLγ) (cf. Remark 6.2).

Proof : By Proposition 6.4(i) we may choose a sequence (Tn) of simple measurable
mappings Tn : S → Md(R) satisfying conditions (a) and (b) of Proposition 4.3.
Then by definition IL(T ) is the limit in probability of the sequence IL(Tn), so in
particular (cf. Lemma 6.3) L{IL(T )} ∈ ID(Rd), and C{z ‡ IL(T )} = limn→∞ C{z ‡
IL(Tn)} for all z in Rd (cf. Lemma 7.7 in Sato (1999)). Combining this with
Lemma 6.3 and Proposition 4.3(i) we find thus that

C{z ‡ IL(T )} = lim
n→∞

C{z ‡ IL(Tn)} = lim
n→∞

CΥTn (µ)(z) = CΥT (µ)(z)

for all z in Rd, and this completes the proof. �

6.3. Integral representation when γ is σ-finite. Let (S, S, γ) be a σ-finite measure
space and consider the δ-ring

S0 = {F ∈ S | γ(F ) < ∞}.
Then choose a sequence (Fn)n∈N of sets from S0, such that

F1 ⊆ F2 ⊆ F3 ⊆ · · · , and
∪

n∈N
Fn = S. (6.15)

Let further µ be a measure in ID(Rd) with characteristic triplet (η,A, ν). Then
on some probability space (Ω,F, P ) there exists (see Subsection 6.1) a Lévy basis
L = {L(F ) | F ∈ S0} such that for all F in S0

L(F ) has characteristic triplet γ(F )(η,A, ν). (6.16)

For any F in S0 we may then further consider the Lévy basis LF = {LF (G) | G ∈ S}
given by

LF (G) = {L(F ∩G) | G ∈ S}. (6.17)

We note that LF has quadruplet (η,A, ν, kLF
γF ), where γF is the finite measure

given by
γF (G) = γ(F ∩G), (G ∈ S).

Consider now additionally a measurable mapping T : S → Md(R), and then put

Gn = Fn ∩ {‖T‖ ≤ n}, and Tn = T1Gn , (n ∈ N). (6.18)

We note that
lim

n→∞
‖Tn(s)− T (s)‖ = 0, (s ∈ S),

and that ∫
S

‖Tn‖2 dγGn =

∫
S

‖T‖21Gn dγ < ∞

for all n. Hence the integral
∫
S
Tn dLGn is well-defined (cf. Definition 6.5) and we

have that

C
{
z ‡

∫
Tn dLGn

}
=

∫
S

Cµ(Tn(s)
∗z) γGn(ds) =

∫
Gn

Cµ(T (s)
∗z) γ(ds) (6.19)
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(cf. Theorem 6.6).

Proposition 6.7. Let (S, S, γ) be a σ-finite measure space, let T : S → Md(R) be
a measurable mapping and consider sequences (Fn) and (Gn) of sets from S0 as in
(6.15) and (6.18). Let further µ be a measure in domID(ΥT ), and consider for each
n in N the Lévy basis LGn given by (6.17).

Then with Tn = T1Gn the integral
∫
S
Tn dLGn converges in probability, as n →

∞, to a random vector Y , and (up to a null-set) Y does not depend on the choice
of the sequence (Fn) satisfying condition (6.15).

Proof : To prove the existence of the Rd-valued random vector Y it suffices to show
that (

∫
S
Tn dLGn)n≥1 is a Cauchy sequence in probability. Given n,m in N such

that n ≤ m, note that
∫
S
‖Tn‖2 dγGm

≤
∫
S
‖Tm‖2 dγGm

< ∞ so that the integral∫
S
Tn dLGm is well-defined, and moreover∫

S

Tn dLGm =

∫
S

Tn dLGn , (6.20)

which follows easily by approximation of Tn with simple functions as in Proposi-
tion 6.4. Now by (6.14)∫

S

Tm dLGm −
∫
S

Tn dLGn =

∫
S

(Tm − Tn) dLGm

so that (cf. Theorem 6.6)

C
{
z‡
∫
S
Tm dLGm −

∫
S
Tn dLGn

}
=

∫
S

Cµ((Tm−Tn)
∗z) dγm =

∫
Gm\Gn

Cµ(T
∗z) dγ,

and hence ∣∣C{
z ‡

∫
S
Tm dLGm −

∫
S
Tn dLGn

}∣∣ ≤ ∫
Gc

n

|Cµ(T
∗z)| dγ (6.21)

for all z in R. Since µ ∈ domID(ΥT ) we know that
∫
S
|Cµ(T

∗z)| dγ < ∞, and
hence the right hand side of (6.21) tends to 0 as n → ∞. This implies (see e.g.
Lemma 1.2.4 in Barndorff-Nielsen et al. (2006a)) that (

∫
S
Tn dLGn)n∈N is a Cauchy

sequence in probability, as desired.
It remains to show that the limit Y = limn→∞

∫
S
Tn dLGn does not depend on

the sequence (Fn) satisfying (6.15). Assume thus that (F ′
n) is another sequence

from S0 satisfying (6.15) and then put

G′
n = F ′

n ∩ {‖T‖ ≤ n}, and T ′
n = T1G′

n
, (n ∈ N).

Then since
∫
S
‖Tn‖2 dγGn∪G′

n
,
∫
S
‖T ′

n‖2 dγGn∪G′
n
< ∞, it follows in analogy with

(6.20) that∫
S

Tn dLGn =

∫
S

Tn dLGn∪G′
n
, and

∫
S

T ′
n dLG′

n
=

∫
S

T ′
n dLGn∪G′

n
,

so that by (6.14)∫
S

Tn dLGn
−
∫
S

T ′
n dLG′

n
=

∫
S

(Tn − T ′
n) dLGn∪G′

n
.
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Using then Theorem 6.6 it follows that∣∣C{
z ‡

∫
S
Tn dLGn −

∫
S
T ′
n dLG′

n

}∣∣ = ∣∣∣ ∫
S

Cµ((Tn − T ′
n)

∗z)) dγGn∪G′
n

∣∣∣
≤

∫
Gn∆G′

n

|Cµ(T
∗z)| dγ,

(6.22)

where Gn∆G′
n = (Gn \G′

n) ∪ (G′
n \Gn). Since both (Gn) and (G′

n) are increasing
sequences with union S, it follows that 1Gn∆G′

n
(s) → 0 as n → ∞ for any s in

S, since s is in Gn ∩ G′
n for all sufficiently large n. Thus it follows from (6.22)

and dominated convergence that
∫
S
Tn dLGn −

∫
S
T ′
n dLG′

n
→ 0 in probability as

n → ∞, and this yields the desired conclusion. �

Definition 6.8. Let (S, S, γ) be a σ-finite measure space, let T : S → Md(R) be
a measurable mapping and let µ be a measure in domID(ΥT ) with characteristic
triplet (η,A, ν). Consider further the Lévy basis L = {L(F ) | F ∈ S0} given by
(6.16). Then we denote by

IL(T ) =

∫
S

T (s)L(ds)

the random vector Y described in Proposition 6.7.

Theorem 6.9. Let (S, S, γ) be a σ-finite measure space, let T : S → Md(R) be
a measurable mapping and let µ be a measure in domID(ΥT ) with characteristic
triplet (η,A, ν). Consider further the factorisable Lévy basis L = {L(F ) | F ∈ S0}
given by (6.16) with generating quadruplet (η,A, ν, kLγ) (cf. Remark 6.2). We then
have

L
{∫

S

T (s)L(ds)
}
= ΥT (µ).

Proof : Choose a sequence (Fn) of sets from S0 satisfying (6.15) and define (Gn)
and Tn as in (6.18). It follows then from Definition 6.8 and (6.19) that

C
{
z ‡

∫
S
T dL

}
= lim

n→∞
C
{
z ‡

∫
S
Tn dLGn

}
= lim

n→∞

∫
Gn

Cµ(T
∗z) dγ

=

∫
S

Cµ(T
∗z) dγ = CΥT (µ)(z),

where the third equality follows by dominated convergence, since 1Gn(s) → 1 as
n → ∞ for any s in S (cf. Proposition 3.5). This completes the proof. �

Example 6.10 (Construction of multivariate supOU processes). Let us consider
again Example 3.8, where S = M−

d × R, S = B(M−
d × R), γ = π ⊗ λ with π a

probability measure on B(M−
d ), and λ is the Lebesgue measure on R. In addition

T (Q, r) = erQ for any Q ∈ M−
d and r ∈ R. Assume that (3.29)-(3.30) are satisfied.

In addition consider the δ-ring S0= B(M−
d )×Bb(R) where Bb(R) are the bounded

Borel subsets of R. Let further µ be a measure in ID(Rd) with characteristic
triplet (η,A, ν) and L be a factorizable Lévy basis on S0 with generating quadruplet
(η,A, ν, kL(π⊗λ)). Assuming that ν satisfies (3.31) we have that µ is domID(ΥT ).
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From Theorem 3.1 in Barndorff-Nielsen and Stelzer (2011), the Rd-valued stochastic
process (Xt)t∈R given by

Xt =

∫
M−

d

∫ t

−∞
e(t−r)Q L(dQ, dr)

is such that for all t ∈ R the distribution of Xt is infinitely divisible with charac-
teristic triplet (η̃, Ã, ν̃) given by (3.28). Hence, Xt has distribution ΥT (µ).

6.4. Integral representation when γ is Lebesgue measure on R+. In this subsection
we consider exclusively the case (S, S, γ) = ([0,∞),B([0,∞)), λ), where B([0,∞)) is
the Borel σ-algebra on [0,∞) and λ denotes Lebesgue measure on [0,∞). Given any
measure µ from ID(Rd) with characteristic triplet (η,A, ν) we may then consider
a Lévy basis L = {L(F ) | F ∈ B([0,∞))0}, where B([0,∞))0 is the family of Borel
subsets of [0,∞) with finite Lebesgue measure, and where

L(F ) has characteristic triplet λ(F )(η,A, ν) (6.23)

for any F in B([0,∞))0 (cf. Subsection 6.1). In this case it follows easily (and is
well-known) that the formula

Zt = L((0, t]), (t ∈ [0,∞)) (6.24)

defines an Rd-valued Lévy process (in law), and the random integral
∫
[0,∞)

T (s)L(ds)

studied in the previous subsections coincides furthermore with the well-known in-
tegral

∫
[0,∞)

T (s) dZs with respect to (Zs).

Consider now further a measure ρ on (0,∞) such that
∫∞
0

max{1, t2} ρ(dt) < ∞.
Then define T : (0,∞) → [0,∞) by

T (s) = inf{t ≥ 0 | ρ([t,∞)) ≤ s}, (s ∈ (0,∞)),

and note that T is non-increasing and hence Borel-measurable. In the following
we identify T with the matrix-valued mapping T In : (0,∞) → Md(R). Note that
T (s) = 0 whenever s ≥ M := ρ((0,∞)). It is well-known that ρ may be recovered
as the transformation of λ by T , i.e.,

ρ(B) = λ(T−1(B)) for any Borel subset B of (0,∞).

Indeed, this follows by noting e.g. that

(0, ρ([α,∞))) ⊆ T−1([α,∞)) ⊆ (0, ρ([α,∞))]

for any number α in (0,∞). Note now that∫ ∞

0

T (s)2 λ(ds) =

∫ ∞

0

t2 λ ◦ T−1(dt) =

∫ ∞

0

t2 ρ(dt) < ∞,

and since T (s) = 0 whenever s ≥ M , we also have that λ({T 6= 0}) ≤ M < ∞.
It follows thus from Corollary 3.6 that domID(ΥT ) = ID(Rd), and for any µ from
ID(Rd) that

CΥT (µ)(z) =

∫ M

0

Cµ(T (s)z)λ(ds) =

∫ M

0

Cµ(tz) ρ(dt),

which shows that ΥT coincides with the mapping Υρ studied in Barndorff-Nielsen
et al. (2008). Moreover, if we consider the characteristic triplet (A, ν, η) for µ



Lévy Mixing 1057

and the Lévy basis L given by (6.23), then the integral
∫
(0,∞)

T (s)L(ds) is well-

defined, and with (Zt) the Lévy process given by (6.24) we have by application of
Theorem 6.9 that

L
{∫

(0,∞)

T (s) dZs

}
= L

{∫
(0,∞)

T (s)L(ds)
}
= ΥT (µ) = Υρ(µ), (6.25)

thus recovering the random integral representation of Υρ established in Barndorff-
Nielsen et al. (2008).

In the particular case where ρ(dt) = e−t dt, we find that

T (s) =

{
ln(s−1), if s ∈ (0, 1),

0, if s ∈ [1,∞),

and hence that

Υρ(µ) = L
{∫ 1

0

ln(s−1) dZs

}
for any measure µ in ID(Rd). In the case d = 1 this provides a random integral rep-
resentation of the measures in the so-called Goldie-Steutel-Bondesson class, which
was obtained in Barndorff-Nielsen et al. (2006b).

6.5. Random integral representation of Lévy Processes. In this subsection we ex-
tend the random integral representation of ΥT (µ) established in Subsection 6.3 to
a representation of the entire Lévy process associated to ΥT (µ).

Throughout the subsection we let (S, S, γ) be a σ-finite measure space, and we
denote by λ the Lebesgue measure on [0,∞). We consider further a fixed measurable
mapping T : S → Md(R). For any t, t′ in [0,∞) such that t < t′ we then define the

mapping T̃t,t′ : S × [0,∞) → Md(R) by

T̃t,t′(s, u) = T (s)1(t,t′](u), ((s, u) ∈ S × [0,∞)).

Lemma 6.11. Let f : Md(R) → C be a Borel function such that f(0) = 0. Then
for any t, t′ in [0,∞), such that t < t′, we have that

f ◦ T̃t,t′ ∈ L1(γ ⊗ λ) ⇐⇒ f ◦ T ∈ L1(γ).

If f ≥ 0 or f ◦ T ∈ L1(γ), we have furthermore that∫
S×[0,∞)

f ◦ T̃t,t′(s, u) γ ⊗ λ(ds, du) = (t′ − t)

∫
S

f ◦ T (s) γ(ds).

Proof : For any Borel set B in Md(R) we note first that

(γ ⊗ λ)
(
T̃−1
t,t′ (B \ {0})

)
= (t′ − t)γ

(
T−1(B \ {0})

)
.

Hence, if f ≥ 0, we find by transformation that∫
S×[0,∞)

f ◦ T̃t,t′(s, u) γ ⊗ λ(ds, du) =

∫
Md(R)

f(w) (γ ⊗ λ) ◦ T̃−1
t,t′ (dw)

=

∫
Md(R)\{0}

f(w) (γ ⊗ λ) ◦ T̃−1
t,t′ (dw) = (t′ − t)

∫
Md(R)\{0}

f(w) γ ◦ T−1(dw)

= (t′ − t)

∫
Md(R)

f(w) γ ◦ T−1(dw) = (t′ − t)

∫
S

f ◦ T (s) γ(ds).
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The remaining statements in the lemma now follow by splitting a real-valued f in
its positive and negative parts and subsequently a complex valued f in its real- and
imaginary parts. �

Lemma 6.12. Let t, t′ be non-negative numbers such that t < t′, and consider as
above the matrix-valued mappings T and T̃t,t′ defined on the σ-finite measure spaces
(S, S, γ) and respectively (S × [0,∞), S⊗B([0,∞)), γ ⊗ λ). We then have that

domL(Υ
0
T ) = domL(Υ

0
T̃t,t′

), and domID(ΥT ) = domID(ΥT̃t,t′
).

For µ in domID(ΥT ) it holds furthermore that

ΥT̃t,t′
(µ) = ΥT (µ)

t′−t,

where (ΥT (µ)
u)u≥0 is the convolution semi-group associated to the infinitely divis-

ible measure ΥT (µ).

Proof : For any z in Rd we consider the function gz : Md(R) → [0,∞) given by

gz(w) = min{1, ‖wz‖2}, (w ∈ Md(R)),

and we note that gz(0) = 0. For any Lev́y measure ν on Rd it follows then by
application of Tonellis theorem and Lemma 6.11 that∫

S×[0,∞)

(∫
Rd

gz(T̃t,t′(s, u)) ν(dz)
)
γ ⊗ λ(ds, du)

=

∫
Rd

(∫
S×[0,∞)

gz(T̃t,t′(s, u)) γ ⊗ λ(ds,du)
)
ν(dz)

= (t′ − t)

∫
S

(∫
Rd

gz(T (s)) ν(dz)
)
γ(ds).

Hence it follows from (3.12) that

ν ∈ domL(Υ
0
T̃t,t′

) ⇐⇒ ν ∈ domL(Υ
0
T ). (6.26)

Consider next a measure µ in ID(Rd) with characteristic triplet (η,A, ν). For any
z in Rd we introduce then the function fz : Md(R) → C given by

fz(w) = Cµ(w
∗z), (w ∈ Md(R)),

and we note that fz(0) = 0. It follows thus from Lemma 6.11 that fz◦T̃t,t′ ∈ L1(γ⊗
λ), if and only if f ◦ T ∈ L1(γ). In combination with (6.26) and Proposition 3.5
this shows that

µ ∈ domID(ΥT ) ⇐⇒ µ ∈ domID(ΥT̃t,t′
).

In the affirmative case Lemma 6.11 yields further in combination with Proposi-
tion 3.5 that

CΥT̃
t,t′

(µ)(z) =

∫
S×[0,∞)

Cµ(T̃t,t′(s, u)
∗z) γ ⊗ λ(ds, du) = (t′ − t)

∫
S

Cµ(T (s)
∗z) γ(ds)

= (t′ − t)CΥT (µ)(z) = CΥT (µ)t′−t(z),

(6.27)

which completes the proof. �
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Theorem 6.13. Let µ be a probability measure in ID(Rd) with characteristic triplet
(η,A, ν), and assume that µ ∈ domID(ΥT ). Consider further the σ-finite measure
space (S × [0,∞), S⊗B([0,∞)), γ ⊗ λ) and a factorizable Lévy basis4

L = {L(F ) | F ∈ (S⊗B([0,∞)))0}
with generating quadruplet (η,A, ν, kL(γ⊗λ)) (cf. Remark 6.2). For each t in [0,∞)
we may then define

Zt =

∫
S×[0,∞)

T (s)1(0,t](u)L(ds, du),

and it follows that (Zt)t≥0 is a Lévy process in law with marginals given by

L{Zt} = ΥT (µ)
t, (t ∈ [0,∞)),

where (ΥT (µ)
t)t≥0 is the convolution semi-group associated to the infinitely divisible

measure ΥT (µ).

Proof : Since µ ∈ domID(ΥT ), it follows from Lemma 6.12 that µ ∈ domID(ΥT̃t,t′
)

for all positive numbers t, t′ such that t < t′. Hence Proposition 6.7 ensures that
the integral∫

S×[0,∞)

T (s)1(t,t′](u)L(ds,du) =

∫
S×[0,∞)

T̃t,t′(s, u)L(ds, du)

is well-defined, and in particular Zt is well-defined for all t. Lemma 6.12 yields
further in combination with Theorem 6.9 that

L{Zt} = ΥT (µ)
t for all t in [0,∞), (6.28)

and it remains to show that (Zt)t≥0 is a Lévy process in law. Clearly (6.28) implies
that Z0 = 0 almost surely, and that Zt → 0 in distribution as t ↘ 0. With t, t′ as
above we note further that

Zt′ − Zt =

∫
S×[0,∞)

T (s)1(t,t′](u)L(ds, du) =

∫
S×[0,∞)

T̃t,t′(s, u)L(ds, du),

and hence Theorem 6.9 and Lemma 6.12 yield that

L{Zt′ − Zt} = ΥT̃t,t′
(µ) = ΥT (µ)

t′−t,

so that (Zt)t≥0 has stationary increments. For positive numbers t1, t2, . . . , tn such
that 0 < t1 < t2 < · · · < tn, we consider finally the corresponding increments of
(Zt):

Zt1 =

∫
S×[0,∞)

T (s)1(0,t1](u)L(ds, du),

Zt2 − Zt1 =

∫
S×[0,∞)

T (s)1(t1,t2](u)L(ds, du), . . .

. . . , Ztn − Ztn−1 =

∫
S×[0,∞)

T (s)1(tn−1,tn](u)L(ds, du).

In case T is a simple function (cf. (6.9)) and γ is finite, it follows immediately from
(6.10) and the definition of a Lévy basis that these increments are independent.
For general T and σ-finite γ the same conclusion follows subsequently from the fact

4Here (S⊗B([0,∞)))0 denotes the class of sets F from S⊗B([0,∞)) such that γ⊗λ(F ) < ∞.
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that independence is preserved under limits in probability (cf. Propositions 6.4 and
6.7). This completes the proof. �

Summary.

This paper investigates an alternative to probability mixing, termed Lévy Mix-
ing, which ensures infinite divisibility of the resulting distribution. The Lévy Mix-
ing is defined in terms of Upsilon transformations Υ0

T : ML(Rd) → ML(Rd) and
ΥT : ID(Rd) → ID(Rd) associated to a measurable mapping T : S → Md(R) de-
fined on a measure space (S, S, γ). Basic properties of the Upsilon transformations
are established, including continuity of the mapping (T, µ) 7→ ΥT (µ) in both vari-
ables (separately). It is further established that the mapping Υ0

T –and hence the
process of Lévy Mixing– has regularising effects, such as ensuring absolute conti-
nuity of the resulting Lévy measure. Finally the measure ΥT (µ) is realized as the
distribution of the stochastic integral of T with respect to a Lévy basis (depending
on µ). The existence of the stochastic integral in question is derived simultane-
ously. The results mentioned above are all proved under rather mild conditions on
the mapping T and the measure γ. The type of Levy mixing considered here is
a special case of a general concept of Levy mixing that we hope to discuss, in a
separate note, in relation to probability mixing and a third kind of mixing termed
random object mixing.
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A. Araujo and E. Giné. The central limit theorem for real and Banach valued
random variables. John Wiley & Sons, New York-Chichester-Brisbane (1980).
ISBN 0-471-05304-X. Wiley Series in Probability and Mathematical Statistics.
MR576407.

O.E. Barndorff-Nielsen. Superposition of Ornstein-Uhlenbeck type processes. The-
ory Probab. Appl. 46, 175–194 (2001). DOI: 10.1137/S0040585X97978166.

O.E. Barndorff-Nielsen. Stationary infinitely divisible processes. Braz. J. Probab.
Stat. 25 (3), 294–322 (2011). MR2832888.

O.E. Barndorff-Nielsen, F.E. Benth and A.E.D. Veraart. Ambit processes and
stochastic partial differential equations. In Advanced mathematical methods for
finance, pages 35–74. Springer, Heidelberg (2011). MR2752540.

O.E. Barndorff-Nielsen, U. Franz, R. Gohm, B. Kümmerer and S. Thorbjørnsen.
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form of fractional integrals. Preprint (2013).
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