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Abstract. We consider random walk among random conductances where the con-
ductance environment is shift invariant and ergodic. We study which moment
conditions of the conductances guarantee speed zero of the random walk. We show
that if there exists α > 1 such that E[logα ωe] < ∞, then the random walk has
speed zero. On the other hand, for each α < 1 we provide examples of random
walks with non-zero speed and random walks for which the limiting speed does not
exist that have E[logα ωe] < ∞.

1. Introduction

1.1 Definitions and notations We discuss the following two-dimensional model
of motion in random medium. Let E2 be the set of nearest neighbor edges in the
graph Z2. We may also write an edge as an unordered pair {x, y} of neighbors in

Z2. We consider the measure space Ω = (0,∞)E
2

. For ω ∈ Ω and an edge e, we
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call ωe the weight or conductance of the edge e. We let P be a measure on Ω which
satisfies the following two conditions:

• P is invariant and ergodic w.r.t. the group of spatial moves in Z2.
• The marginal distribution of ωe is the same for all choices of the edge e,
i.e. vertical and horizontal edges have the same distribution.

Note that this is weaker than invariance w.r.t. rotations. The second condition can
be weakened significantly, but for simplicity we keep it as is.

For a given ω ∈ Ω and z ∈ Z2 we define the law Pω
z as follows. Pω

z is the law of

a Markov chain on
(
Z2

)N
with Pω

z (X0 = z) = 1 and

Pω
z (Xn+1 = y|Xn = x) =

ω(x, y)∑
w∼x ω(x,w)

for any neighbouring points x, y ∈ Z2, and where the sum in the denominator is
carried over every neighbour w of x.

For any event A ⊆ (Z2)N, we define the annealed law to be

Pz(A) =

∫
Ω

Pω
z (A)P (dω).

If z is the origin, we may omit the subscript. We use Ez and Eω
z as the expec-

tations w.r.t. the distributions Pz and Pω
z .

This is a well-known process, called the random walk among random conduc-
tances (RWRC). The RWRC has been studied extensively in the past decades, see
e.g. Biskup (2011) and the references therein. It is related to many other important
models in Statistical physics, for example the gradient fields (see e.g. Biskup and
Spohn (2011)) and reinforced random walk (see e.g. Merkl and Rolles (2009); Angel
et al. (2012); Sabot and Tarres (2012)).

Traditionally, RWRC is studied in connection to problems such as recurrence and
transience Berger (2002); Angel et al. (2012); Sabot and Tarres (2012), central limit
theorems (see Biskup and Prescott (2007); Mathieu (2008); Andres et al. (2013) and
many more) and heat kernel estimates (see e.g. Delmotte (1997); Barlow and Bass
(2004); Berger et al. (2008)). However, in the present paper we ask a slightly
different question, that of the limiting velocity of the random walk.

1.2 Main question It is easy to prove and well known that if the conductances
are bounded then the speed is zero, i.e. P(lim(Xn/n) = 0) = 1. It is also well known
that if the conductances are i.i.d. the same is true, regardless of the distribution
of the single conductances. We thus wish to understand which conditions force
the speed of the RWRC to be zero. Based on the examples above, it seems that
two types of criteria are involved. The first is moment conditions that control the
size of the conductances, and the second is mixing conditions saying that if the
environment mixes fast enough then the speed is zero.

In this paper we only consider the first type, and show that the sharp condition
is that the logarithm of the conductances has high enough moments.

Our main result is as follows.

Theorem 1.1. Let e be an edge in E2.

(i) If there exists α > 1 such that

E[logα ωe] < ∞, (1.1)



On the speed of Random Walks among Random Conductances 1065

then

P
(

lim
n→∞

Xn

n
= 0

)
= 1.

(ii) For every α < 1 there exists a distribution P on environments such that
E[logα ωe] < ∞, but

P
(

lim
n→∞

Xn

n
= 0

)
= 0.

Furthermore, in this case it is possible to choose P so that either

P
(∥∥∥ lim

n→∞

Xn

n

∥∥∥
∞

> 0

)
= 1

or

P
(

lim
n→∞

Xn

n
does not exist

)
= 1.

Remark 1.2. Our proofs deal with conductances bounded away from zero, but
would work in the same way including the possibility of zero conductances. Note
also that the choice of dimension 2 has been made in order to have easier and more
intuitive proofs. We are confident that the same results can be proven with the
very same techniques in higher dimensions, with critical α equal to d− 1.

Remark 1.3. Our counter examples are not uniformly elliptic (i.e. the transition
probabilities are not bounded away from zero). A natural question is whether it
is possible to construct similar examples such that the transition probabilities are
uniformly elliptic (cf. Heil (2013)).

In Section 2 we show Part (i) of Theorem 1.1, which ends up being a simple
application of the Varopoulos-Carne Theorem. In Sections 3 and 4 we show Part
(ii) of Theorem 1.1. The construction builds upon the example constructed by
Bramson, Zeitouni and Zerner in Bramson et al. (2006).

2. Moment conditions for speed zero

In this section we prove Part (i) of Theorem 1.1.
In order to prove it, we will use the well known Varopoulos-Carne bound. For

proof see, e.g., Carne (1985).

Lemma 2.1 (Varopoulos-Carne). Let L be an irreducible Markov transition kernel
with reversible measure π. For states x and y, denote d(x, y) = min{n : Ln(x, y) >
0}. Then for every x, y and n,

Ln(x, y) ≤ 2
√

π(y)
π(x) · e

− d(x,y)2

2n . (2.1)

Proof of Part (i) of Theorem 1.1: The measure π on Z2, defined by π(x) =∑
y∼x ω{x,y} is a reversible measure for our random walk. As in (1.1), let

D = E [logα ωe] < ∞.

For n ∈ N, consider the points x ∈ Z2 such that ||x||∞ = n, and call En the set
of edges having at least one end in these points. Note that |En| = 24n.

Then by Markov’s inequality, for every n ∈ N and K > 0 we get

P
(
∃e ∈ En s.t. ωe >

K
4

)
≤ 24n

D

logα(K4 )
.
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In particular, if K = en
β

with 1/α < β < 1, then

P
(
∃e ∈ En s.t. ωe >

K
4

)
≤ Cn1−αβ ,

for some constant C > 0.
Observe that 1−αβ < 0. Therefore, by the Borel-Cantelli lemma, for an integer

κ > (αβ − 1)−1, a.s. for all n large enough and every edge e ∈ Enκ , we have

ωe ≤ 1
4e

nκβ

.

Therefore, for every x s.t. ‖x‖∞ = nκ, we have that π(x) ≤ en
κβ

.
Now fix M ∈ N and assume that M is large. For every n large enough,

Pω
(
‖XMnκ‖∞ > nκ

)
≤ Pω

(
∃k ≤ Mnκ : ‖XMnκ‖∞ = nκ

)
≤

Mnκ∑
k=1

∑
x: ‖x‖∞=nκ

Pω(Xk = x)

≤
Mnκ∑
k=1

∑
x: ‖x‖∞=nκ

2
√

π(x)
π(0) e

−n2κ

2k

≤ C ′π(0)−1/2 exp
{

nκβ

2 − nκ

2M

}
,

for some constant C ′ > 0.
Therefore, again by Borel-Cantelli, almost surely for all n large enough,

‖XMnκ‖∞ ≤ nκ.

From here we immediately get that almost surely

lim sup
n→∞

‖Xn‖∞
n

≤ 2

M

and in fact, since M is arbitrary,

P
(

lim
n→∞

Xn

n
= 0

)
= 1.

�

3. Trees

In this section and in the next one we prove Part (ii) of Theorem 1.1. The
section is divided into two different subsections. In Subsection 3.1 we create the
structure for the random environment where, with probability one, the sequence(
Xn

n

)
does not converge, and in Subsection 3.2 we create another example where

with probability one the sequence
(
Xn

n

)
converges to a speed which is not zero. In

both cases E[logα ωe] < ∞ for arbitrary α < 1. The example in Subsection 3.1
is a direct application of the tree construction of Bramson, Zeitouni and Zerner
Bramson et al. (2006). For the construction in Subsection 3.2, we need to modify
the tree of Bramson et al. (2006). The construction is inspired by the construction
in Bramson et al. (2006), but we need to change quite a few details in order for the
speed to converge.

In both cases, we adapt trees into environments for the random walk in the exact
same fashion. This is done in Section 4. Now, we give a short introduction with



On the speed of Random Walks among Random Conductances 1067

the necessary terms from Bramson et al. (2006), and then, in Subsection 3.1 and
3.2, we create the actual trees.

An ancestral function is a (in our case random) function a : x ∈ Z2 → a(x) ∈ Z2

with the following properties:

• x and a(x) are nearest neighbours;
• a(a(x)) 6= x;
• the set of edges Fa := {{x, a(x)} : x ∈ Z2} is a forest (i.e. the graph
(Z2, Fa) contains no cycles).

Every connected component of Fa is an infinite tree. a(x) can be seen as the parent
of x and we denote by an(x) the n-th generation ancestor of x, for n ≥ 0 (with the
convention a0(x) = x).

We also say that an ancestral function is directed if for some i, j ∈ {+1,−1} and
for every x ∈ Z2, a(x)− x ∈ {(0, i), (j, 0)}.

The length of the longest branch starting in x (or the distance from x of its
farthest descendant, if one prefers the genealogical metaphore) is

h(x) := sup{n ≥ 0 : ∃y ∈ Z2 such that an(y) = x}. (3.1)

We are interested in the distribution of h(0) in the case of a random translation
invariant ancestral function.

Theorem 1 in Bramson et al. (2006) says that for any stationary ancestral func-
tion there exists a constant c ≥ 0 such that

lim inf
n→∞

nP (h(0) ≥ n) ≥ c. (3.2)

In the same article the authors show that this is in fact the best lower bound
achievable. We give the 2-dimensional version of Theorem 2 in that paper:

Theorem 3.1 (Bramson et al. (2006), Theorem 2). There exists a stationary di-
rected ancestral function (a(x))x∈Z2 that is polynomially mixing of order 1 and for
which

lim sup
n→∞

nP (h(0) ≥ n) < ∞. (3.3)

We now describe the BZZ tree, as appearing in Bramson et al. (2006).

3.1 The BZZ tree
We provide now the construction of the ancestral function used in Bramson et al.

(2006), restricted to the 2 dimensional case. We will make use of the same notations
as Bramson et al. (2006) with an additional tilde.

Let {e1, e2} be the canonical basis of Z2, with e1 parallel to the x-axis. Fix two

constants θ̃ and ñ0 ∈ N such that 2
√
2 ≤ θ̃ ≤ ñ2

0. For every x ∈ Z2 let L̃(x) be
i.i.d. random variables with atomless distribution and satisfying

P̃ (L̃(x) > t) =
θ̃

t2
for t ≥ ñ0. (3.4)

We define an umbrella of intesity t to be

Ũt =
∪

i=1,2

Ũi,t (3.5)

where

Ũi,t =
{
y = (y1, y2) ∈ Z2 : yi = 0, yj ∈ (0, t], j 6= i

}
(3.6)
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Figure 3.1. Both in the straight umbrellas case of Section 3.1
and in the narrow umbrellas case of Section 3.2, the drop of water
follows the side of the biggest umbrella met. Note that in the second
case (right picture) the longest umbrellas are also the ones that are
the narrowest.

are the sides of the umbrella. The strength of the umbrella is also defined to be
equal to its intensity.

For every x ∈ Z2 we will open the umbrella x + ŨL̃(x). Informally, one can

think of the ancestral function as a drop of rain trying to fall towards the up-right
direction of the plane and sliding on the sides of the umbrellas. Whenever two
or more umbrellas overlap, the water will consider only the strongest of them and
penetrate the perpendicular ones.

Formally, one defines for every x ∈ Z2 the strongest umbrella passing through
that point perpendicular to direction ei, for i ∈ {1, 2}, as

λ̃i(x) = sup
y∈Z2: x∈y+Ũi,L̃(y)

L̃(y). (3.7)

Note that the sup is taken over a non-empty set and it is easy to show that λ̃i(x)
is also a.s. finite.

Since the distributions of the L̃(x)’s are atomless, the direction I(x) ∈ {1, 2}
such that

λ̃I(x)(x) = min{λ̃i(x), i = 1, 2}
is well defined. The ancestral function we are looking for is

ã(x) = x+ eI(x). (3.8)

The set of edges
{
{x, ã(x)}, x ∈ Z2

}
through which the drops of rain have flown

forms a random forest (which can be shown to be in fact a random tree spanning
the whole Z2). This is the ancestral function used to prove Theorem 3.1, and we
will call the graph obtained with it the BZZ tree.

3.2 The Diagonal tree
We will now slightly modify the example seen in the previous subsection. Our

aim is to build a new tree for which the behaviour of h(0) is essentially the same
as in the BZZ tree, but with a different shape of the graph. Roughly speaking,
it will not allow to have long strips that are ”too horizontal” or ”too vertical”.



On the speed of Random Walks among Random Conductances 1069

This feature and its importance will become more clear when we will describe the
dynamics on these trees.

Fix suitable constants θ and n0 ∈ N such that 10 ≤ θ ≤ n2
0 and so that following

equation (3.9) makes sense. For every x ∈ Z2 consider i.i.d. random variables
L(x) > 1 with atomless distributions fulfilling

P (L(0) > t) =
θ log t

t2
for all t ≥ n0. (3.9)

The new umbrellas we want to open are a bit different from the tilde-umbrellas
of the previous section.

Define an umbrella of intensity t as

Ut =
∪

i=1,2

Ui,t (3.10)

where U2,t is the best Z2-grid lower approximation of the open segment of length
t that makes an angle of π

4 − 1
log t with the x-axis, living in the first quadrant and

starting in the origin. U1,t is the reflection of U2,t with respect to the bisecting
line of the first quadrant. U1,t and U2,t are the sides of the umbrella. Note that
this time the intensity gives us the strength, the length but also the width of the
umbrella. In particular, the longer the umbrella, the more narrow it is.

We can think once more that drops of rain pouring from every point of the
lattice try to fall towards the up-right direction and that every time they reach a
new vertex, they are deflected by the strongest umbrella that passes through that
vertex (see Figure 3.1).

In analogy with the straight-umbrellas case we define the strongest umbrella
through x perpendicular to direction ei, for i, j ∈ {1, 2} and i 6= j, as

λi(x) = sup
y∈Z2: [x,x+ej ]∈ y+UL(y)

L(y). (3.11)

Note that since L(0) > 1 and since we are taking the lower (for the first compo-
nent) and upper (for the second) approximations of the segments described above,
[x, x + e1] ∈ U2,L(x−e1) and [x, x + e2] ∈ U1,L(x−e2), so that the sup on the right
hand side of (3.11) is taken over a non-empty set. It requires slightly more work
compared to the straight-umbrellas case to prove that it is also a.s. finite and
therefore well defined.

We need some more notations. Similarly to Bramson et al. (2006), for m,n ∈ Z
call Sn

m the slab

Sn
m =

{
x = (x1, x2) ∈ Z2 : m ≤ x1 + x2 ≤ n

}
.

The protecting area G (see Figure 3.2) is defined as

G :=
{
x = (x1, x2) ∈ −N2

∣∣∃n ∈ N :

x ∈ S−n
−n and − x1 ∈

[
yn · cos

(
π
4 − αn

)
, yn · cos

(
π
4 + αn

)]}
, (3.12)

where αn = arctan
√
2

3 logn and yn = n
3
√
2 logn

√
2 + 9 log2 n. These values guarantee

that every segment S−m
−m ∩G is 2m

3 logm long, and therefore contains
√
2m

3 logm points of

Z2 (up to one unit, at most).
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2n
3 logn

S−n0
−n

S−m
−m

x

O

G

Figure 3.2. The protecting area G is the region of the plane from
which we can have umbrellas that protect the origin. In particular,
having a suitably strong umbrella starting in the part of G delimited
by the slab S−n0

−n will ensure h(0) < n with high probability.

Note that every umbrella x + Us with x ∈ G, −(x1 + x2) = n and s ∈ [n, n2],
“protects” the origin 0, meaning that 0 lies inside the “Z2-triangle” generated by
the sides x+ U1,s and x+ U2,s.

Lemma 3.2. There is a constant c such that for i = 1, 2 and t > n0,

P (λi(0) > t) ≤ c
log t

t
. (3.13)

Proof : This is a straightforward calculation.

P (λi(0) > t) ≤ C

∫ ∞

t

[s]
log s

s3
ds

≤ C
∞∑
k=0

∫ 2k+1t

2kt

s
log s

s3
ds ≤ C

∞∑
k=0

log 2kt

2kt

= C
1

t

∞∑
k=0

1

2k
[log t+ log 2k] ≤ c

log t

t
.

�

Also in this case, the fact that the distributions of the L(x)’s are atomless guar-
antees the uniqueness of a direction I(x) ∈ {1, 2} such that

λI(x)(x) = min{λi(x), i = 1, 2}.
For example, if I(x) = 1, it means that the strongest vertical umbrella through x
is weaker than the strongest horizontal one. I(x) is the direction which the drop of
water will follow.
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We can therefore define the new ancestral function

a(x) = x+ eI(x). (3.14)

By its construction, it follows automatically that a : Z2 → Z2 is stationary and
directed.

Theorem 3.3. The random ancestral function described in (3.14) is such that

lim sup
n→∞

n

log2 n
P (h(0) > n) < ∞. (3.15)

Note that, even if (3.15) gives a slightly worse decay than (3.3), the logarithmic
correction will not affect the behaviour of the α-logmoments of the conductances
built on the different trees (cf. Proposition 4.1).

3.3 Proof of Theorem 3.3
We closely follow the proof of Theorem 2 in Bramson et al. (2006).
We say that an umbrella U penetrates a weaker umbrella V in point x ∈ Z2 if one

side of U intersects one side of V and x is the upper-right point of their intersection.
The following lemma bounds the probability that an umbrella of intensity t starting
in the origin gets penetrated by another stronger umbrella in a given point z.

Lemma 3.4. Fix any t > n0. Let z ∈ Z2 such that [z, z + ei] ∈ Uj,t, for some
i, j ∈ {1, 2}. Then there exists a constant c > 0 independent of t such that

P
(
I(z) 6= i|L(0) = t

)
≤ c

log t

t
. (3.16)

Proof : For convenience, we shift the umbrella so that z is translated to the origin.
We look first at the event Ek that the umbrella gets penetrated in the origin by
an umbrella of intensity s ∈ [k, k + 1], for k + 1 > t. Note that such a penetrating
umbrella can come only from S−1

−k−1. Furthermore, on every Sm
m , m ∈ {−k −

1, ...,−1}, there are almost surely at most four points that can generate it, since
for all the others the slope of the sides would prevent them from penetrating the
original umbrella in the origin. Hence

P (Ek) ≤
k+1∑
m=1

4

(
θ log k

k2
− θ log(k + 1)

(k + 1)2

)
≤ c′

log k

k2
,

for some constant c′. It is now easy to see that

P
(
I(0) 6= i|L(−z) = t

)
≤

∞∑
k=btc

P(Ek) ≤ c
log t

t
.

�

We now come to the proof of Theorem 3.3. For n ≥ n0, define now the random
variables Mn ∈ {n0 − 1, ..., n} as following:

Mn := max
{
m ∈ {n0, ..., n} : ∃x ∈ S−m

−m ∩G with m < L(x) < m2
}
, (3.17)

with the convention Mn = n0− 1 whenever the set on the right hand side is empty.
Proving that, for some constant c,

P (h(0) > m, Mn = m) ≤ c
log2 n

n2
∀m = n0, ..., n, (3.18)
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would imply

P (h(0) > n) ≤
n∑

m=n0−1

P (h(0) > m, Mn = m) ≤ c
log2 n

n
, (3.19)

that is the statement of the theorem.
We first prove (3.18) in the easy case m = n0 − 1.

P (h(0) > n0 − 1,Mn = n0 − 1) ≤ P (Mn = n0 − 1)

= P
(
for all m = n0, ..., n and x ∈ S−m

−m ∩G, L(x) 6∈ (m,m2)
)

=

n∏
m=n0

(
1− P (L(0) ≥ m) + P (L(0) > m2)

)#(S−m
−m∩G)

=
n∏

m=n0

(
1− θ logm

m2
+

θ log(m2)

m4

)√
2

3
m

log m

≤
n∏

m=n0

(
1− θ

(
1− 2

n2
0

) logm
m2

)√
2

3
m

log m

≤ e
−θ

(
1− 2

n2
0

)√
2

3

∑n
m=n0

1
m ≤ c n−2 (3.20)

by the choice of θ, for some c > 0.
For the more complex cases m = n0, ..., n we faithfully follow Bramson et al.

(2006) once again. For i, j, r ∈ Z, i ≤ j and x ∈ Z2, define the events

Aj
i (x, r) =

{
L(y) 6∈

(
− y ·~1 + r, (−y ·~1 + r)2

)
for all y ∈ Sj

i ∩ (x+G)
}
. (3.21)

Firstly note that

P
(
h(0) > m,Mn = m

)
≤

∑
x∈S−m

−m∩G

P
(
h(0) > m, L(x) ∈ (m,m2), A−m−1

−n (0, 0)
)

=
∑

x∈S−m
−m∩G

P
(
h(−x) > m, L(0) ∈ (m,m2), A−1

m−n(−x,m)
)

=
∑

x∈Sm
m∩−G

P
(
h(x) > m, L(0) ∈ (m,m2), A−1

m−n(x,m)
)
,

where we have used stationarity to obtain the second line and we write −G =
{
x =

(x1, x2) : (−x1,−x2) ∈ G
}
.

Consider now the segment joining the points in Sm
m ∩ −G, divide it in eight

parts of the same length (approximately 1
8

2m
3 logm long) and call them I1, ..., I8 (see

FIGURE 3.3 and 3.4). For every j ∈ {1, ..., 8}, consider x̂j and x̌j , the points with
respectively the highest and the lowest y-coordinate on Ij . Draw the infinite cones

Ĉj and Čj with angle β = arctan
(

2
3 logm

)
whose bisector makes an angle of 5

4π

with the x-axis and with vertices x̂j and x̌j respectively. Observe that the points
in the area Ĉj ∩ Čj ∩ S−1

−n+m are contained in S−1
−n+m ∩ (x + G) for every x ∈ Ij .

Therefore the event

Ej(m,n) :=
{
L(y) 6∈

(
− y ·~1 +m, (−y ·~1 +m)2

)
for all y ∈ Ĉj ∩ Čj ∩ S−1

−n+m

}
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S0
0

Sm
m

S−n+m
−n+m

x̂j

x̌jĈj

@
@R

Čj
@

@I

I1
��	

−G

Figure 3.3. The event Ej(m,n), involving only the points in

Ĉj ∩ Čj ∩ S−1
−n+m (the green area in the picture), is contained in

A−1
m−n(x,m) for all x ∈ Ij.

is contained in the event A−1
m−n(x,m) for all x ∈ Ij . Hence

∑
x∈Sm

m∩−G

P
(
h(x) > m, L(0) ∈ (m,m2), A−1

m−n(x,m)
)

≤
8∑

j=1

∑
x∈Ij

P (h(x) > m, L(0) ∈ (m,m2), A−1
m−n(x,m))

≤
8∑

j=1

∑
x∈Ij

P (h(x) > m, L(0) ∈ (m,m2), Ej(m,n))

=
8∑

j=1

E
[
#{x ∈ Ij : h(x) > m}; L(0) ∈ (m,m2); Ej(m,n)

]
. (3.22)

The interval (m,m2) can be divided in a finite number of disjoint subintervals
such that the Z2 approximation of every umbrella with intensity in a given subin-
terval looks the same at least up to the first m edges. More precisely, there exists
M ∈ N and there exist {m1 = m < m2 < ... < mM = m2} such that, for any
k ∈ {1, 2, ...,M}, ∀h, l ∈ (mk,mk+1), one has Uh|m = Ul|m, where Uh|m is the
umbrella of intensity h whose sides are restricted to the first m edges (going from
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S0
0

Sm
m

S−n+m
−n+m

x̂j x̌jx

1
12

m
logm

k√
2

|Ĥj
k| =

√
2
3

k
logm

β

Figure 3.4. The green area Ĉj ∩ Čj ∩ S−1
−n+m is contained in

S−1
−n+m ∩ (x+G) for all x ∈ Ij and it contains ’enough’ points.

bottom-left towards up-right). Therefore, we can rewrite (3.22) as

8∑
j=1

M−1∑
l=1

E
[
#{x ∈ Ij : h(x) > m}; L(0) ∈ (ml,ml+1); Ej(m,n)

]
. (3.23)

For any point x ∈ Sm
m ∩ −G to have h(x) > m, there must be a branch coming

out of x that perforates the protecting umbrella generated by the origin (since
L(0) ∈ (m,m2)). That is, at least one point z on UL(0)|m must be penetrated by
another umbrella. On the other hand, every penetrated z can give rise to at most
one of such x’s. Hence, for any l = 1, ...,M , given L(0) ∈ (ml,ml+1),

#{x ∈ Sm
m ∩ −G : h(x) > m} ≤

∑
i=1,2

∑
[z,z+ei]∈UL(0)|m

1l{I(z)6=i}. (3.24)

Plugging this in (3.23) gives

P
(
h(0) > m, Mn = m

)
≤

8∑
j=1

M∑
l=1

∑
i=1,2

∑
[z,z+ei]∈UL(0)|m

P
(
I(z) 6= i, L(0) ∈ (ml,ml+1), Ej(m,n)

)
.

The intersection of the first two events inside the last probability is not independent
of Ej(m,n), but there is a negative correlation between them. We obtain therefore
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the upper bound

P
(
h(0) > m, Mn = m

)
≤

8∑
j=1

M∑
l=1

∑
i=1,2

∑
[z,z+ei]∈UL(0)|m

P
(
I(z) 6= i, L(0) ∈ (ml,ml+1)

)
P
(
Ej(m,n)

)
.

We can now directly compute the right hand side of last expression. For [z, z+ei] ∈
UL(0)|m we have, by Lemma 3.4,

P
(
I(z) = i; L(0) ∈ (ml,ml+1)

)
=

∫ ml+1

ml

P
(
I(z) = i|L(0) = t

)( d

dt
P (L(0) ≤ t)

)
dt

≤
∫ ml+1

ml

c
log t

t

θ

t3
(2 log t− 1)dt

≤ K
log2 m

m4
(ml+1 −ml), (3.25)

for some constant K.
Summing over the directions i = 1, 2 and over all the z ∈ Z2 such that [z, z+ei] ∈

UL(0)|m and then summing over l = 1, ...,M , one is left with a factor of order log2 m
m2 .

In order to evaluate the probability of any Ej(m,n), note that, for k ≥ m,

every Ĉj ∩ Čj ∩ S−k+m
−k+m contains more than 1

5
k

log k points of the lattice. In fact

(see FIGURE 3.4), each cone Ĉj and Čj intersects S(k), the hyperplane containing

S−k+m
−k+m , on the segments Ĥj

k and Ȟj
k, each of length bigger than k√

2
· 2
3 logm (they are,

in fact, the double of the cathetus of a right triangle, whose opposite angle measures
β
2 radians and with the other cathetus k√

2
long). Since x̂j and x̌j are roughly 1

8
2m

3 logm

far apart, the intersection of Ĥj
k and Ȟj

k is longer than
√
2 k

3 logm − 1
8

2m
3 logm ≥ 1

3
k

log k .

Being the distance between close points on Ĉj ∩ Čj ∩ S−k
−k equivalent to

√
2, the

total number of points is bigger than 1√
2
1
3

k
log k ≥ 1

5
k

log k . By the independence of

the (L(x))x∈Z2

P
(
Ej(m,n)

)
=

n−m∏
k=1

(
1− P

(
L(0) 6∈ (m+ k, (m+ k)2)

))#(S−k
−k∩Ĉj∩Čj)

≤
n∏

k=m+1

(
1− θ log k

k2

) 1
5

k
log k

≤ exp
{
− θ

5

n∑
k=m+1

1

k

}
≤ exp

{
− θ

5

∫ n

m+1

1

s
ds

}
=

( n

m+ 1

)− θ
5

. (3.26)
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Putting all together and reminding that θ ≥ 10, we finally obtain, for some
constant c,

P
(
h(0) > m, Mn = m

)
≤ c

log2 m

m2

( n

m+ 1

)− θ
5

≤ c(m+ 1)
θ
5−2n− θ

5 log2 m

≤ c n−2 log2 n. (3.27)

4. The environment

The two random trees constructed in the previous sections will provide, in some
sense, the support for our random environments. In both cases, the ω’s are con-
structed in the following way.

Sample a realization of the tree as described above. For every z ∈ Z2, the edge

{z, a(z)} will have a conductance value of ω{z,a(z)} = e(h(z)+1)A , where a : Z2 → Z2

is the ancestral function used for constructing the sampled tree and A > 1 is a
constant. We set all the other conductances to be equal to one.

For both the BZZ and the Diagonal tree, the conductances have infinite α-
logmoments for any α > 1. On the other hand, choosing appropriately the constant
A > 1, we can obtain conductances with finite α-logmoments for α arbitrarily close
to 1 from below.

Proposition 4.1. Take ᾱ < 1. Then, the conductances of the random environ-
ments described above with 1 < A < 1

ᾱ are such that

E
[
logα ωe

]
< ∞ ∀α ≤ ᾱ (4.1)

and

E
[
logα ωe

]
= ∞ ∀α ≥ 1. (4.2)

Proof : We first prove it for the random environment built on the BZZ-tree support.

E
[
logα ωe

]
=

∫ ∞

0

P (logα ωe > t)dt

=
∞∑
k=0

∫ (k+1)αA

kαA

P (logα ωe > t)dt

≤
∞∑
k=0

P (logα ωe > kαA)((k + 1)αA − kαA)

=

∞∑
k=0

P (h(0) > k − 1)((k + 1)αA − kαA). (4.3)

By equations (3.2) and (3.3) we know that for all sufficiently large k ∈ N, say
k ≥ K,

c

k
≤ P (h(0) > k − 1) ≤ c′

k
,

while the mean value theorem guarantees that

αAkαA−1 ≤ (k + 1)αA − kαA ≤ αA(k + 1)
αA−1

.
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Therefore, on the one hand, taking α ≤ ᾱ,

E
[
logα ωe

]
≤ C +

∞∑
k=K

c′

k
αA(k + 1)αA−1 < ∞,

where C > 0 is the finite contribution of the first K terms of the sum. On the other
hand, when α ≥ 1, we obtain with a minor modification of (4.3)

E
[
logα ωe

]
>

∞∑
k=K

c

k
αAkαA−1 = ∞.

Note that the very same proof is valid for the random environment built over the
Diagonal tree structure, since the log2-correction in Theorem 3.3 doesn’t change
the behaviour of the series (4.3). �

Proposition 4.2. For almost every environment ω sampled from the constructions
of the previous section, the random walk among the conductances ω will eventually
follow the tree. This means that almost surely there exists n̄ < ∞ such that for all
n ≥ n̄, if Xn = x then Xn+1 = a(x), where a : Z2 → Z2 is the ancestral function
used to construct the tree underlying the environment.

Proof : The probability that, starting in a point x ∈ Z2, the random walk will follow
the tree forever is, by the independece of the jumps, bigger than

∞∏
k=1

ek
A

2e(k−1)A + ekA + 1
. (4.4)

It is easy, in fact, to get convinced that this is a very pessimistic estimate. It
represents the case in which we start from a leaf of the tree (that is, a vertex that is
ancestor of no other vertices) and where every time ω{Xn,a(Xn)} is of order k (that

is, equal to ek
A

), then the two edges under and at the left of Xn are of order k− 1.
Call T1, T2, ... the times in which the random walk doesn’t go in the direction

of the ancestral function. After each of these times, a new attempt to follow the
tree is performed. Therefore if we show that the product (4.4) is a constant strictly
bigger than zero, than the sum of the probabilities of succeeding in following the
tree in one of the attempts is infinite. By the Borel-Cantelli lemma, this means
that almost surely there will be a finite time from which we will always follow the
tree.

We are left to show that (4.4) is bigger than zero, or, equivalently, that its log
is bigger than −∞:

log
( ∞∏

k=1

ek
A

2e(k−1)A + ekA + 1

)
= −

∞∑
k=1

log
(
1 + 2

e(k−1)A

ekA +
1

ekA

)
> −

∞∑
k=1

(
2e(k−1)A−kA

+ e−kA)
> −

∞∑
k=1

(
2e−A(k−1)A−1

+ e−kA)
> −∞, (4.5)

where we have used the mean value theorem for the bound kA − (k− 1)A ≥ A(k−
1)A−1.

�
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Proposition 4.3. The random walk among random conductances with environment
built on the BZZ tree, as described above, has almost surely no limiting speed.

Proposition 4.4. The random walk among random conductances with environment
built on the diagonal tree, as described above, has almost surely a limiting speed
which is not zero.

Proof of Proposition 4.3: From Proposition 4.2 we know that with probability 1
there exists a finite time n̄ from which the random walk will use only edges pointing
the right or up direction with respect to its current position. Without loss of
generality we can think this time to be time 0. In order to study the limiting
speed of the process, we have to go back to the underlying structure of the tree on
which we have built the environment. Note that every time we move one step in
the direction of the ancestral function, we find several new umbrellas perpendicular
to the step we have taken and a new parallel one. If the strongest perpendicular
umbrella is stronger than any other umbrella on the direction of the previous step,
the branch of the tree changes orientation; otherwise, it will continue in the same
direction as before.

The distribution of the length L̄ of the strongest new perpendicular umbrella
met at each step in the direction of the ancestral function is easy to calculate:

P (L̄ > t) = P
(
∃j ∈ N such that L̃((0,−j)) > max{t, j}

)
= 1−

btc∏
j=1

P (L̃((0,−j)) ≤ t)

∞∏
j=btc+1

P (L̃((0,−j)) ≤ j)

= 1−
(
1− θ̃

t2

)btc ∞∏
j=btc+1

(
1− θ̃

j2

)
(4.6)

so that, by straightforward calculations, for t sufficiently large,

c′

t
≤ P (L̄ > t) ≤ c′′

t
, (4.7)

for some c′, c′′ > 0.
Following the tree in the direction of the ancestral function and considering only

the strongest umbrellas through each point, call rush a sequence of intersecting
umbrellas, each bigger of the previous one, that determines a part of the final tree
(note that a rush can well be formed by only one umbrella).

We will now proceed as follows: First of all we will prove that any rush is formed
only by a finite number of umbrellas. We will then divide the time into accurately
chosen intervals according to the rushes that the random walk will meet. Via
Borel-Cantelli kind of arguments, we will prove that the random walk will follow
very strong umbrellas for a sufficiently long time in infinitely many of these time-
intervals. This will give every time a positive contribution to the velocity up to
that point, showing that the velocity oscillates infinitely often and therefore cannot
have a limit.

We want to show now that any rush is formed only by a finite number of umbrellas
almost surely. In fact, any side of an umbrella of length k > 2n2

0 meets neither a
stronger perpendicular nor a stronger parallel umbrella with probability bigger than(

1− c′′

k

)k(
1− θ̃

k2

)k

> e−2c′′−1, (4.8)
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that is a constant strictly bigger than 0 and independent of k. Therefore, the
probability of Q := {a rush is formed by more than N umbrellas longer than 2n2

0}
is bounded by

P (Q) <
(
1− ce−2c′′

)N
, (4.9)

for some c > 0.
This means that, in almost every realization of the BZZ tree, each branch is

determined only by rushes of finitely many umbrellas. From the point of view of
the random walk that from time 0 on will deterministically follow the ancestral
function, this means that the walker will leave any underlying rush in finite time
for almost every tree. Given a realization of the walk, call τ(1) ∈ N the time in
which the random walk leaves the first rush, τ(2) the time in which it leaves the
second one and so on. τ(1) < τ(2) < ... is a sequence of (almost surely finite)
integer times that goes to infinity.

Fix T > 1 and define the times T1 = T , τ1 = mini=1,2,...{τ(i) : τ(i) > T1} and
recursively

Tk = τk−1 + τk−1T
k ∀k > 1,

τk = min
i=1,2,...

{τ(i) : τ(i) > Tk−1} ∀k > 1. (4.10)

Our aim is now to show that, in the intervals of the form (Tk−1, Tk), the longest
umbrella met is of length of the order τk−1T

k. We do not want the longest umbrella
to be much longer than this, otherwise it could “interfere” with the next intervals
(that is, in order to simplify the forthcoming calculations we want that from some
point on the longest umbrella met in an interval has not been already met in a
previous interval): Consider the event

Ek = {In the interval (Tk−1, Tk) the longest umbrella met

is stronger than τkT
k+1}.

Its probability can be bounded from above by

P(Ek) < 1−
(
1− c′′

τkT k+1

)Tk

< 1− e−
2c′′

Tk+1

<
c

T k+1
,

for some constant c > 0, since Tk ≤ τk. By the Borel-Cantelli lemma, P(Ek i.o.) =
0.

On the other hand, we don’t want the longest umbrella to be shorter than that.
This is because we want it to be long a positive fraction of the entire time interval
(Tk−1, Tk). In fact, the interval (Tk−1, Tk) is longer than τk−1T

k. Furthermore, we
want the random walk to follow this umbrella for a positive fraction (say an ε > 0
fraction) of its length before leaving the time interval. This two events guarantee a
relevant contribution to the speed up to time Tk. Therefore take, for a fixed ε > 0
small,

Fk =
{
In the interval (Tk−1, Tk(1− ε)) the strongest umbrella met is stronger

than τk−1T
k and is stronger than the strongest umbrella in (Tk(1− ε), Tk)

}
.
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By the independence of the new umbrellas discovered at each step, we have, for
all k ∈ N,

P(Fk) > (1− ε)P(one of the Tk − Tk−1 umbrellas is longer than τk−1T
k)

= (1− ε)
(
1−

(
1− c′

τk−1T k

)Tk−Tk−1
(
1− θ̃

τ2k−1T
2k

)Tk−Tk−1
)

> (1− ε)
(
1−

(
1− c′

τk−1T k

)Tk−Tk−1
)

> (1− ε)
(
1− e

− c′
2

1

τk−1Tk (τk−1+τk−1T
k)
)

= C (4.11)

where C > 0 is a constant not depending on k. By the second Borel-Cantelli lemma,
there are almost surely infinitely many intervals (Tk−1, Tk) for which Fk happens.

Hence, almost surely there exists a k̄ ∈ N (depending eventually on the realiza-
tion of the environment and of the random walk) such that Ek does not happen
for every k > k̄ while Fk holds infinitely many times. Take now the strongest
umbrella met up to time Tk̄. Its length L > 0 is almost surely finite, so that
κ := min{k : Tk > Tk̄ + L} is well defined. Note that ∀k > κ + 1, in the interval
(Tk, Tk+1) there is no umbrella longer than T k+1τk met in the past.

Take the infinite subsequence κ < k1 < k2 < ... such that Fki holds true for every
i ∈ N and such that the longest umbrella met in the ki’th interval (Tki−1, Tki) is
followed by the random walk at least for a positive fraction 0 < η < ε of its length.
Note that since there is no longer umbrella coming from a previous interval, once
the random walk meets this umbrella it follows it until its end or at least until the
end of the interval itself, and the probability of meeting the umbrella before the
last η fraction of its length is strictly positive. This implies that we have such a
sequence (ki)i=1,2,... almost surely.

Suppose now that a limiting speed v = (v[1], v[2]) existed. We want to show that

in each of those intervals there is at least one time t at which the ratio
∑t

j=1 Xj/t
is far from v, bringing to a contradiction. Call ti ∈ N the time at which the longest
umbrella of the interval (Tki−1, Tki) is met and ti = {“Time of the last point of
the umbrella”∧Tki

}. By definition, this umbrella is longer than τki−1T
ki , it is met

before time Tki(1− ε) and before the last η-fraction of its length. Call

1

ti

ti∑
j=1

Xj = (vi[1], vi[2]) =: vi

and

1

ti

ti∑
j=1

Xj = (vi[1], vi[2]) =: vi

the partial speeds up to time ti and ti respectively. Without loss of generality
suppose that we met the longest umbrella on its horizontal side. Note that

vi[1] =
1

ti

(
vi[1]ti − ti + ti

)
and that

ti

ti
> 1 +

ητki−1T
ki

(1− ε)τki−1(T ki + 1)
> 1 +

η

2(1 + ε)
=: β > 0.
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Further suppose v[1], v[2] 6∈ {0, 1}. Then if v[1] > vi[1]

|v[1]− vi[1]| = v[1]− vi[1] t
i

ti
+ ti

ti
− 1 > (β − 1)(1− v[1]) > 0, (4.12)

while if v[1] ≤ vi[1]

max
{
|v[1]− vi[1]|, |v[1]− vi[1]|

}
≥ 1

2 (v
i[1]− vi[1])

= 1
2

(
vi[1]− vi[1] t

i

ti
+ ti

ti
− 1

)
> 1

2 (β − 1)(1− v[1]). (4.13)

In both cases the distance from the limiting speed is bigger than a constant that is
independent of ki and strictly bigger than zero.

The cases v[1] = 1 and v[1] = 0 have probability 0. In fact, the probability of
meeting in any interval (Tki−1 , (1− ε)Tki) a vertical (respectively, horizontal) um-

brella of order τki−1T
ki that is stronger of any other horizontal (vertical) umbrellas

met before (and of following it for a time of O(t)) is strictly positive, for the reasons
mentioned above.

�

Proof of Proposition 4.4: Let v = (0.5, 0.5). We claim that, almost surely,

lim
n→∞

Xn

n
= v.

As in the previous proof, let n̄ be such that for every n > n̄, we have Xn+1 = a(Xn),
where a is the ancestral function. By Proposition 4.2, we know that n̄ is almost
surely finite also in the present case. We need to prove that for every ε > 0 there
exists a (random) finite M such that for every n > M , we have ‖Xn/n − v‖ < ε,
where we write ‖ · ‖ for, e.g., the usual 1-norm. To this end, we need to understand
the various umbrellas that the random walk traverses. So, let ε > 0. By the
construction of the diagonal tree, there exists K > 0 such that for every umbrella
which is stronger than K, for every two points x and y on the umbrella whose
distance is larger than some U = U(ε), we have∥∥∥∥ y − x

‖y − x‖
− v

∥∥∥∥ < ε. (4.14)

Let α(n) = 〈Xn, (−1, 1)〉 be the (signed) distance of Xn from the diagonal. We
will prove that almost surely,

lim sup
n→∞

α(n)

n
≤ ε, (4.15)

and similarly

lim inf
n→∞

α(n)

n
≥ −ε. (4.16)

To see (4.15), let n1 := inf{n : α(n) > εn} ≤ ∞, and let

nk+1 := inf{n > nk + U(ε) : α(n)− εn > α(nk)− εnk} ≤ ∞.

Next we prove that almost surely

lim
k→∞

nk

k
= ∞. (4.17)
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Indeed, fix L > K. Let Ek = {nk+1 − nk > L
2 }. We claim that

P (Ek|X1, ..., Xnk
) ≥ C logL

L
(4.18)

for some constant C > 0. In fact, Ek happens if the point Xnk
is on the first

half of the side of an umbrella of strength larger than L, and the walker follows
this umbrella to its end. Then, in order to justify (4.18), it is enough to observe
that Xnk

is exposed to the lower side of umbrellas that are independent from the
past of the walk (meaning that we do not have information on their distribution)
and to compute (4.7) and (4.8) exactly as before for the case of the diagonal tree.
Note that the sequence Yk = 1lEk

dominates a sequence of i.i.d. Bernoulli random

variables with mean C logL
L , and hence, almost surely,

lim inf
k→∞

1

k

k∑
j=1

Yk ≥ C logL

L
.

This, together with nk ≥ L
2

∑k
j=1 Yk and the arbitrariness of L gives (4.17).

(4.15) now follows easily: note that maxn≤nk
α(n) − εn ≤ kU(ε). Then, with

kn = max{k : nk ≤ n}, we have

lim sup
n→∞

α(n)− εn

n
≤ lim sup

n→∞

1

n

(
U(ε)(kn + 1)

)
= U(ε) lim sup

n→∞

kn
n

= 0

since nk

k → ∞ implies kn

n → 0. To see (4.16) note that the entire system is invariant
to reflection (x, y) → (y, x).

�
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