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Abstract. In order to analyse universal patterns in the large space-time behaviour
of interacting multi-type stochastic populations on countable geographic spaces, a
key approach has been to carry out a renormalisation analysis in thehierarchi-
cal mean-�eld limit. This has provided considerable insight into the structure
of interacting systems of �nite-dimensional di�usions , such as Fisher-Wright or
Feller di�usions, and their in�nite-dimensional analogues, such as Fleming-Viot or
Dawson-Watanabe superdi�usions.

The present paper brings a new class of interactingjump processesinto focus. We
start from a single-colony C � -process, which arises as the continuum-mass limit of
a �-Cannings individual-based population model, where � is a �nite non- negative
measure that describes the o�spring mechanism, i.e., how individuals ina single
colony are replaced via resampling. The key feature of the �-Cannings individual-
based population model is that the o�spring of a single individual can be a positive
fraction of the total population. After that we introduce a syste m of hierarchi-
cally interacting C � -processes, where the interaction comes from migration and
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reshu�ing-resampling on all hierarchical space-time scalessimultaneously. More
precisely, individuals live in colonies labelled by the hierarchical group 
N of or-
der N , and are subject to migration based on a sequence of migration coe�cients
c = ( ck )k2 N0 and to reshu�ing-resampling based on a sequence of resampling mea-
sures � = (� k )k2 N0 , both acting in k-macro-colonies, for all k 2 N0. The reshu�ing
is linked to the resampling: before resampling in a macro-colony takesplace all in-
dividuals in that macro-colony are relocated uniformly, i.e., resamplingis done in
a locally \panmictic" manner. We refer to this system as the Cc;�

N -process. The
dual process of theC � -process is the �-coalescent, whereas the dual process of the
Cc;�

N -process is a spatial coalescent with multi-scale non-local coalescence.

For the above system, we carry out afull renormalisation analysis in the hierarchical
mean-�eld limit N ! 1 . Our main result is that, in the limit as N ! 1 , on
each hierarchical scalek 2 N0, the k-macro-colony averages of theCc;�

N -process at
the macroscopic time scaleN k (= the volume of the k-macrocolony) converge to a
random process that is a superposition of aC � k -process and a Fleming-Viot process,
the latter with a volatility dk and with a drift of strength ck towards the limiting
(k + 1)-macro-colony average. It turns out that dk is a function of cl and � l for all
0 � l < k . Thus, it is through the volatility that the renormalisation manifests itself.
We investigate howdk scales ask ! 1 , which requires an analysis of compositions
of certain M•obius-transformations, and leads to four di�erent regimes.

We discuss the implications of the scaling ofdk for the behaviour on large space-
time scales of theCc;�

N -process. We compare the outcome with what is known from
the renormalisation analysis of hierarchically interacting Fleming-Viot di�usions,
pointing out several new features. In particular, we obtain a new classi�cation
for when the process exhibitsclustering (= develops spatially expanding mono-
type regions), respectively, exhibits local coexistence(= allows for di�erent types
to live next to each other with positive probability). Here, the simple d ichotomy
of recurrent versus transient migration for hierarchically interacting Fleming-Viot
di�usions, namely,

∑
k2 N0

(1=ck ) = 1 versus < 1 , is replaced by a dichotomy
that expresses a trade-o� between migration and reshu�ing-resampling, namely,∑

k2 N0
(1=ck )

∑k
l =0 � l ([0; 1]) = 1 versus < 1 . Thus, while recurrent migrations

still only give rise to clustering, there now are transient migrations that do the same
when the non-local resampling is strong enough, namely,

∑
l 2 N0

� l ([0; 1]) = 1 .
Moreover, in the clustering regime we �nd a richer scenario for thecluster formation
than for Fleming-Viot di�usions. In the local-coexistence regime, onthe other hand,
we �nd that the types initially present only survive with a positive prob ability, not
with probability one as for Fleming-Viot di�usions. Finally, we show that for
�nite N the same dichotomy between clustering and local coexistence holdsas for
N ! 1 , even though we lack proper control on the cluster formation, respectively,
on the distribution of the types that survive.
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1. Introduction and main results

1.1. Outline. Section 1.2 provides the background for the paper. Section1.3 de-
�nes the single-colony and the multi-colony C � -process, as well as the so-called
McKean-Vlasov C � -process, a single-colonyC � -process with immigration and em-
igration from and to a cemetery state arising in the context of the scaling limit
of the multi-colony C � -process with mean-�eld interaction. Section 1.4 de�nes
a new process, theCc;�

N -process, where the countably many colonies are labelled
by the hierarchical group 
 N of order N , and the migration and the reshu�ing-
resampling on successive hierarchical space-time scales are governed by a sequence
c = ( ck )k2 N0 of migration coe�cients and a sequence � = (� k )k2 N0 of resampling
measures. Section1.5 introduces multiple space-time scalesand a collection of
renormalised systems. It is shown that, in the hierarchical mean-�eld limit N ! 1 ,
the block averages of theCc;�

N -process on hierarchical space-time scalek converge
to a McKean-Vlasov process that is a superposition of a single-colony C � k -process
and a single-colony Fleming-Viot process with a volatility dk that is a function of
cl and � l for all 0 � l < k , and a drift of strength ck towards the limiting ( k + 1)-st
block average. The scaling ofdk as k ! 1 turns out to have severaluniversality
classes. The implications of this scaling for the behaviour of the Cc;�

N -process on
large space-time scales is discussed in detail, and the outcome is compared with
what is known for hierarchically interacting Fleming-Viot di�usions.

A key feature of the Cc;�
N -process is that it has a spatial � -coalescent with block

migration and multi-scale non-local coalescence as a dual process.This duality,
which is of intrinsic interest, and the properties of the dual process are worked out
in Section 2. The proofs of the main theorems are given in Sections3{ 11. To help
the reader, a list of the main symbols used in the paper is added in Section 12.

1.2. Background.

1.2.1. Population dynamics. For the description of spatial populations subject to
migration and to neutral stochastic evolution (i.e., resampling without selection,
mutation or recombination), it is common to use variants of interacting Fleming-
Viot di�usions( Dawson(1993); Donnelly and Kurtz (1999); Etheridge (2000, 2011)).
These are processes taking values inP(E)I , where I is a countable Abelian group
playing the role of a geographic spacelabelling the colonies of the population (e.g.
Zd, the d-dimensional integer lattice, or 
 N , the hierarchical group of order N ),
E is a compact Polish space playing the role of atype spaceencoding the possible
types of the individuals living in these colonies (e.g., [0; 1]), and P(E) is the set of
probability measures onE. An element in P(E)I speci�es the frequencies of the
types in each of the colonies inI .

Let us �rst consider the (locally �nite) populations of individuals from which
the above processes arise as continuum-mass limits. Assume that the individuals
migrate between the colonies according to independent continuous-time random
walks on I . Inside each colony, the evolution is driven by a change of generation
called resampling. Resampling, in its simplest form (Moran model), means that
after exponential waiting times a pair of individuals (\the parents") is replaced
by a new pair of individuals (\the children"), who randomly and indepen dently
adopt the type of one of the parents. The process of typefrequenciesin each of the
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colonies as a result of the migration and the resampling is a jump process taking
values in P(E)I .

If we pass to thecontinuum-mass limit of the frequencies by letting the number
of individuals per colony tend to in�nity, then we obtain a system of interacting
Fleming-Viot di�usions (Dawson et al. (1995)). By picking di�erent resampling
mechanisms, occurring at a rate that depends on the state of thecolony, we obtain
variants of interacting Fleming-Viot di�usions with a state-depende nt resampling
rate Dawson and March(1995). In this context, key questions are: To what extent
does the behaviour on large space-time scales depend on the precise form of the
resampling mechanism? In particular, to what extent is this behaviour universal?
For Fleming-Viot models and a small class of state- and type-dependent Fleming-
Viot models, this question has been answered inDawson et al. (1995).

If we consider resampling mechanisms where, instead of a pair of individuals, a
positive fraction of the local population is replaced (an idea due toCannings(1974,
1975)), then we enter the world of jump processes. In this paper, we will focus
on jump processes that are parametrised by a measure � on [0; 1] that models the
random proportion of o�spring in the population generated by a single individual in
a resampling event. It has been argued by many authors that suchjump processes
are suitable for describing situations with little biodiversity . For instance, the jumps
may account for selective sweeps, or for extreme reproduction events (occurring on
smaller time scales and in a random manner, so that an e�ectively neutral evolution
results), such as those observed in certain marine organisms, e.g.,Atlantic cod
or Paci�c oyster (Eldon and Wakeley (2006)). It is argued in Der et al. (2011)
that mixtures of di�usive dynamics and Cannings dynamics provide a better �t
to generation-by-generation empirical data from Drosophila populations. Birkner
and Blath (2008, 2009) treat the issue of statistical inference on the genealogies
corresponding to a one-parameter family of Cannings dynamics. None of these
models includes the e�ect of geography.

Our goal is to describe the e�ect of jumps in a spatial setting with a volatile
reproduction. To that end, we add two ingredients: (1) a geographic space with
a migration mechanism; (2) a spatially structured reproduction mechanism. As a
result, we obtain a system ofinteracting Cannings processes.

As geographic space, we choose a hierarchically structured lattice: the hierar-
chical group, i.e., we study a system of hierarchically interacting Cannings pro-
cesses. The interaction is chosen in such a way that the geographicspace mimics
the two-dimensional Euclidean space, with the migration of individuals given by
independent random walks.

On top of migration and single-colony resampling, we addmulti-colony resam-
pling by carrying out a Cannings-type resampling in all blocks simultaneously,
combined with a reshu�ing of the individuals inside the block before the resam-
pling is done. This is a �rst attempt to account for the fact that the volatility
the Cannings model tries to capture results fromcatastrophic eventson a smaller
time scale (with a geographic structure). In this view, the reshu�in g mimics the
fact that in reproduction the local geographic interaction typically takes place on a
smaller time scale, in a random manner, and e�ectively results in a Cannings jump
and in a complete geographic redistribution of individuals during a singleobserva-
tion time. To carry out this idea fully, the mechanism should actually be modelled
by specifying a random environment. In this work, however, we concentrate on the
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case of spatially homogeneous parameters. The case of spatially inhomogeneous
parameters (modelled via a random environment) is left for future work. On a
technical level, we will see that in our model the reshu�ing substantially simpli�es
the analysis.

The idea to give reproduction a non-local geographic structure, inparticular, in
two dimensions, was exploited byBarton et al. (2010) and by Berestycki et al. (2013)
also1. There, the process lives on the torus of sidelengthL and is constructed via
its dual, and it is shown that a limiting process on R2 exists asL ! 1 . In Barton
et al. (2010); Berestycki et al. (2013), it is assumed that the individual lineages
are compound Poisson processes.Freeman(2013) considers a particular case of the
spatially structured Cannings model with a continuum self-similar geographic space,
where all individuals in a block are updated upon resampling. The latter set-up
does not require compensation for small jumps and allows for their accumulation.

1.2.2. Renormalisation. A key approach to understand universality in the behav-
iour of interacting systems has been arenormalisation analysis of block averages
on successive space-time scalescombined with a hierarchical mean-�eld limit . In
this setting, one replacesI by the hierarchical group 
 N of order N and passes to
the limit N ! 1 (\the hierarchical mean-�eld limit") 2. With the limiting dynam-
ics obtained through the hierarchical mean-�eld limit one associatesa (nonlinear)
renormalisation transformation F c (which depends on the migration rate c), act-
ing on the resampling rate function g driving the di�usion in single colonies. One
studies the orbit (F [k ](g)) k2 N, with F [k ] = F ck−1 � � � � � F c0 , characterising the be-
haviour of the system on an increasing sequence of space-time scales, where (ck )k2 N

represents the sequence of migration coe�cients, with the indexk labelling the hi-
erarchical distance. Theuniversality classesof the system are associated with the
�xed points (or the �xed shapes) of F c, i.e., g with F c(g) = ag with a = 1 (or
a = a(c) 2 (0; 1 )).

The above renormalisation program was developed for various choices of the
single-colony state space. Each such choice gives rise to a di�erentuniversality
class with speci�c features for the large space-time behaviour. For the stochastic
part of the renormalisation program (i.e., the derivation of the limiting renormalised
dynamics), seeDawson and Greven(1993c,a,b, 1996, 1999, 2003); Dawson et al.
(1995), and Cox et al. (2004). For the analytic part (i.e., the study of the renormal-
isation map F ), seeBaillon et al. (1995, 1997); den Hollander and Swart (1998),
and Dawson et al. (2008).

So far, two important classes of single-colony processes could notbe treated:
Anderson di�usions Greven and den Hollander(2007) and jump processes. In the
present paper, we focus on the second class, in particular, on so-calledC � -processes.
In all previously treated models, the renormalisation transformation was a mapF c

acting on the set M (E) of measurable functions onE, the single-component state
space, while the functiong was a branching rate, a resampling rate or other, de�ning

1In the literature, there is an alternative terminology – “generalised Λ-Fleming-Viot process”
or “jump-type Fleming-Viot process” – which refers to the continuum-mass limit of the original
discrete individual-based Cannings model. In this paper, we stick to the name “Cannings process”
also for the continuum-mass limit.

2Actually, this set-up provides an approximation for the geographic space I = Z2 , on which
simple random walk migration is critically recurrent (Dawson et al. (2004)). We will comment on
this issue in Section 1.4.2.
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a di�usion function x 7! xg(x) on [0; 1 ) or x 7! x(1 � x)g(x) on [0; 1], etc. In the
present paper, however, we deal with jump processes that are characterised by a
sequence of �nite measures �= (� k )k2 N0 on [0; 1], and we obtain a renormalisation
map F c acting on a pair (g;� ), where g 2 M (E) characterises di�usive behaviour
and � characterises resampling behaviour. It turns out that the orbit of this map
is of the form

(dk g� ; (� l ) l � k )k2 N0 ; (1.1)

where g� � 1 and dk depends ondk � 1, ck � 1 and the total mass of � k � 1. Here, as
before, c = ( ck )k2 N0 is the sequence of migration coe�cients. The reason behind
this reduction is that our single-colony process is a superposition ofa C � -process
and a Fleming-Viot process with state-independentresampling rates and that both
these processes renormalise to a multiple of the latter. It turns out that dk can be
expressed in terms of compositions of certainM•obius-transformations with param-
eters changing from composition to composition. It is through these compositions
that the renormalisation manifests itself.

If the single-colony process would be a superposition of aC � -process and a
Fleming-Viot process with state-dependentresampling rate, i.e., g would not be a
constant but a function of the state, then the renormalisation transformation would
be much more complicated. It remains a challenge to deal with this generalisation.

1.3. The Cannings model. The �-Cannings model involves a �nite non-negative
measure � 2 M f ([0; 1]). Below, we often assume that

�( f 0g) = 0 (1.2)

and � satisfying the so-called dust-free condition
∫

(0 ;1]

�(d r )
r

= 1 : (1.3)

Condition ( 1.2) excludes the well-studied case ofFleming-Viot di�usions . In this
paper, we are primarily interested in the new e�ects brought by the pure jump case
in the �-Cannings model. These e�ects were not studied using renormalisation tech-
niques previously. Besides the pure jump case, later on, we allow forsuperpositions
of Fleming-Viot di�usion and pure-jump �-Cannings models (cf. Sect ions 1.3.3and
1.4.4). Condition ( 1.3) excludes cases where the jump sizes do not accumulate.
Moreover, this condition is needed to have well-de�ned proportionsof the di�erent
types in the population in the in�nite-population limit ( Pitman (1999, Theorem 8)),
and also to be able to de�ne a genealogical tree for the population (Greven et al.
(2009))3.

In Sections 1.3.1{ 1.3.3, we build up the Cannings model in three steps: single-
colony C � -process, multi-colony C � -process, andC � -process with immigration-
emigration (McKean-Vlasov limit).

3Condition (1.3) is relevant for some of the questions addressed in this paper, though not for
all. We comment on this issue we go along. Another line of research would be to work with the
most general Cannings models that allow for simultaneous multiple resampling events. We do not
pursue such a generalisation here.
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1.3.1. Single-colonyC � -process. We recall the de�nition of the �-Cannings model
in its simplest form. This model describes the evolution of allelic types of �nitely
many individuals living in a single colony. Let M 2 N be the number of individuals,
and let E be a compact Polish space encoding the types (a typical choice isE =
[0; 1]). The evolution of the population, whose state space isE M , is as follows.

� The number of individuals stays �xed at M during the evolution.
� Initially, i.i.d. types are assigned to the individuals according to a given

distribution
� 2 P (E): (1.4)

� Let � � 2 M ([0; 1]) be the � -�nite non-negative measure de�ned as

� � (f 0g) = 0 ; � � (dr ) =
�(d r )

r 2 ; r 2 (0; 1]: (1.5)

Consider an inhomogeneous Poisson point process on [0; 1 ) � [0; 1] with
intensity measure

dt 
 � � (dr ): (1.6)

For each point (t; r ) in this process, we carry out the following transition
at time t. Mark each of the M individuals independently with a 1 or 0
with probability r , respectively, 1� r . All individuals marked by a 1 are
killed and are replaced by copies of asingle individual (= \parent") that is
uniformly chosen at random among all the individuals marked by a 1 (see
Fig. 1.1).

In this way, we obtain a pure-jump Markov process, which is called the � -Cannings
model with measure � and population size M .

Figure 1.1. Cannings resampling event in a colony ofM = 8 indi-
viduals of two types. Arrows indicate type inheritance, X indicates
death.

Note that, for a jump to occur, at least two individuals marked by a 1 are needed.
Hence, for �nite M , the rate at which some pair of individuals is marked is

∫

(0 ;1]

�(d r )
r 2

1
2 M (M � 1) r 2 = 1

2 M (M � 1) �((0 ; 1]) < 1 ; (1.7)

and so only �nitely many jumps occur in any �nite time interval.
By observing the frequencies of the types, i.e., the number of individuals with a

given type divided by M , we obtain a measure-valued pure-jump Markov process on
P(E). Equip P(E) with the topology of weak convergence of probability measures.
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Letting M ! 1 , we obtain a limiting process X = ( X (t)) t � 0, called the C � -
process, which is a strong Markov jump process with paths inD([0; 1 ); P(E)) (the
set of c�adl�ag paths in P(E) endowed with the Skorokhod J1-topology) and can
be characterised as the solution of a well-posed martingale problem (Donnelly and
Kurtz (1999)). This process has countably many jumps in any �nite time interval
when �((0 ; 1]) > 0.

Note that the limiting case � = � 0 is the Fleming-Viot di�usion (cf. Sec-
tion 1.3.3). It is well known that this limiting case is obtained as a scaling limit of
the Moran model.

1.3.2. Multi-colony C � -process: mean-�eld version. Next, we consider thespatial
�-Cannings model in its standard mean-�eld version. Consider as geographic space
a block of sites f 0; : : : ; N � 1g and assignM individuals to each site (= colony).
The evolution of the population, whose state space is (E M )N , is de�ned as the
following pure-jump Markov process.

� The total number of individuals stays �xed at NM during the evolution.
� At the start, each individual is assigned a type that is drawn from E ac-

cording to some prescribed exchangeable law.
� Individuals migrate between colonies at ratec > 0, jumping according to

the uniform distribution on f 0; : : : ; N � 1g (see Fig.1.2).
� Individuals resamplewithin each colony according to the �-Cannings model

with population size corresponding to the current size of the colony.

By considering the frequencies of the types in each of the colonies,we obtain a
pure-jump Markov process taking values inP(E)N .

Figure 1.2. Possible one-step migration paths between N = 4
colonies with M = 3 individuals of two types in the mean-field version.

Letting M ! 1 , we pass to the continuum-mass limit and we obtain a system
of N interacting C � -processes, denoted by

X (N ) =
(
X (N ) (t)

)
t � 0 with X (N ) (t) =

{
X (N )

i (t)
}N � 1

i =0 2 P (E)N : (1.8)

The processX (N ) can be characterised as the solution of a well-posed martingale
problem on D([0; 1 ); P(E)N ) with the product topology on P(E)N . To this end,
we have to consider an algebraF � Cb (P(E)N ; R) of test functions, and a linear
operator L (N ) on Cb (P(E)N ; R) with domain F , playing the role of the generator
in the martingale problem. Here, we let F be the algebra of functionsF of the
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form

F (x) =
∫

E n

(
n⊗

m =1

x i m (dum )

)

'
(
u1; : : : ; un )

; x = ( x0; : : : ; xN � 1) 2 P (E)N ;

n 2 N; ' 2 Cb (E n ; R); i 1; : : : ; i n 2 f 0; : : : ; N � 1g:
(1.9)

The generator
L (N ) : F ! Cb

(
P(E)N ; R

)
(1.10)

has two parts,
L (N ) = L (N )

mig + L (N )
res : (1.11)

The migration operator is given by

(L (N )
mig F )(x) =

c
N

N � 1∑

i;j =0

∫

E
(x j � x i )(da)

@F(x)
@xi

[� a ]; (1.12)

where
@F(x)

@xi
[� a ] = lim

h#0

1
h

[
F (x0; : : : ; x i � 1; x i + h� a ; x i +1 ; : : : ; xN � 1) � F (x)

]
(1.13)

is the Gâteaux-derivative of F with respect to x i in the direction � a (this de�nition
requires that in (1.9) we extend P(E) to the set of �nite signed measure onE).
Note that the total derivative in the direction � 2 P (E) is the integral over � of
the expression in (1.13), since P(E) is a Choquet simplex andF is continuously
di�erentiable.

The resampling operator is given by (cf. the verbal description of the single-
colony C � -process in Section1.3.1)

(L (N )
res F )(x) =

N � 1∑

i =0

∫

(0 ;1]
� � (dr )

∫

E
x i (da)

�
[
F

(
x0; : : : ; x i � 1; (1 � r )x i + r� a ; x i +1 ; : : : ; xN � 1

)
� F (x)

]
:

(1.14)
Note that, by the law of large numbers, in the limit M ! 1 the evolution in (1.4{
1.6) results in the transition x ! (1� r )x + r� a with type a drawn from distribution
x. This gives rise to (1.14).

Proposition 1.1. [Multi-colony martingale problem]
Without assumption (1.3), for every x 2 P (E)N , the martingale problem for
(L (N ) ; F ; � x ) is well-posed. The unique solution is a strong Markov process with
the Feller property.

The proof of Proposition 1.1 is given in Section3.2.

1.3.3. C � -process with immigration-emigration: McKean-Vlasov limit. The N !
1 limit of the N -colony model de�ned in Section1.3.2can be described in terms of
an independent and identically distributed family of P(E)-valued processes indexed
by N. Let us describe the distribution of a single member of this family, which
can be viewed as a spatial variant of the model in Section1.3.1 when we add
immigration-emigration to/from a cemetery state, with the immigrat ion given by
a source that is constant in time. Such processes are of interest intheir own right.
They are referred to as McKean-Vlasov processesfor (c; d;� ; � ), c; d 2 (0; 1 ),
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� 2 M f ([0; 1]), � 2 P (E), or C � -processes with immigration-emigration at ratec
with source � and volatility constant d.

Let F � Cb (P(E); R) be the algebra of functionsF of the form

F (x) =
∫

E n
x 
 n (du) ' (u); x 2 P (E); n 2 N; ' 2 Cb (E n ; R): (1.15)

De�ne the second Gâteaux-derivative ofF with respect to x as

@2F (x)
@x2

[� u ; � v ] =
@

@x

(
@F(x)

@x
[� u ]

)
[� v ]; u; v 2 E: (1.16)

For c; d 2 [0; 1 ), � 2 M f ([0; 1]) subject to (1.2{ 1.3) and � 2 P (E), let L c;d; �
� : F !

Cb (P(E); R) be the linear operator

L c;d; �
� = L c

� + L d + L � (1.17)

acting on F 2 F as

(L c
� F )(x) = c

∫

E
(� � x) (da)

@F(x)
@x

[� a ];

(L dF )(x) = d
∫

E

∫

E
Qx (du; dv)

@2F (x)
@x2

[� u ; � v ];

(L � F )(x) =
∫

(0 ;1]
� � (dr )

∫

E
x(da)

[
F

(
(1 � r )x + r� a

)
� F (x)

]
;

(1.18)

where
Qx (du; dv) = x(du) � u (dv) � x(du) x(dv) (1.19)

is the Fleming-Viot di�usion coe�cient. The three parts of L c;d; �
� correspond to:

a drift towards � of strength c (immigration-emigration), a Fleming-Viot di�usion
with volatility d (Moran resampling), and a C � -process with resampling measure
� (Cannings resampling). This model arises as theM ! 1 limit of an individual-
based model withM individuals at a single site with immigration from a constant
source with type distribution � 2 P (E) and emigration to a cemetery state, both
at rate c, in addition to the �-resampling.

Proposition 1.2. [McKean-Vlasov martingale problem]
Without assumption (1.3), for every x 2 P (E), the martingale problem for
(L c;d; �

� ; F ; � x ) is well-posed. The unique solution is a strong Markov process with
the Feller property.

The proof of Proposition 1.2 is given in Section3.2.
Denote by

Z c;d; �
� =

(
Z c;d; �

� (t)
)

t � 0; Z c;d; �
� (0) = �; (1.20)

the solution of the martingale problem in Proposition 1.2 for the special choice
x = � . This is called the McKean-Vlasov process4 with parameters c; d;� and
initial state � .

4The terminology stems from the fact that this process describes the limiting behaviour of
an interacting particle system for which propagation of chaos holds. The physics terminology is
related to the fact that the system of independent components is more random (= more chaotic)
than the one with dependent components. In our context, in the mean-field limit (N ! 1 ), the
components of the system become independent of each other. Therefore, “chaos propagates”.
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1.4. The hierarchical Cannings process.The model described in Section1.3.2 has
a �nite geographical space, an interaction that is mean-�eld, and a resampling of
individuals at the same site. In this section, we introduce two new features into the
model:

(1) We consider a countably in�nite geographic space, namely, the hierarchi-
cal group 
 N of order N , with a migration mechanism that is block-wise
exchangeable.

(2) We allow resampling between individuals not only at the same site butalso
in blocks around a site, which we view asmacro-colonies.

Both the migration rates and the resampling rates for macro-colonies decay as
the distance between the macro-colonies grows. Feature (1) is introduced in Sec-
tions 1.4.1{ 1.4.2, feature (2) in Section 1.4.3. The hierarchical model is de�ned in
Section 1.4.4.

1.4.1. Hierarchical group of order N . The hierarchical group 
 N of order N is the
set


 N =
{

� = ( � l ) l 2 N0 2 f 0; 1; : : : ; N � 1gN0 :
∑

l 2 N0

� l < 1
}

; N 2 Nnf 1g; (1.21)

endowed with the addition operation + de�ned by ( � + � ) l = � l + � l (mod N ),
l 2 N0 (see Fig.1.3 for the caseN = 3). In other words, 
 N is the direct sum of
the cyclical group of orderN , a fact that is important for the application of Fourier
analysis. The group 
 N is equipped with the ultrametric distance d(�; �) de�ned by

d(�; � ) = d(0; � � � ) = min f k 2 N0 : � l = � l ; for all l � kg; �; � 2 
 N : (1.22)

Let
Bk (� ) = f � 2 
 N : d(�; � ) � kg; � 2 
 N ; k 2 N0; (1.23)

denote the k-block around � , which we think of as a macro-colony. The geometry
of 
 N is explained in Fig. 1.3).

Figure 1.3. Close-ups of a 1-block, a 2-block and a 3-block in the
hierarchical group of order N = 3. The elements of the group are the
leaves of the tree (2 ). The hierarchical distance between two elements
is the graph distance to the most recent common ancestor: d(�; � ) = 2
for � and � in the picture.

We construct a process

X (
 N ) =
(
X (
 N ) (t)

)
t � 0

with X (
 N ) (t) =
{

X (
 N )
� (t)

}
� 2 
 N

2 P (E)
 N ;
(1.24)
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by using the same evolution mechanism as for the multi-colony systemin Sec-
tion 1.3.2, except that we replace the migration onf 0; : : : ; N � 1g by a migration
on 
 N , and the resampling acting in each colony by a resampling in each of the
macro-colonies. OnP(E)
 N , we again choose the product of the weak topology on
P(E) as the basic topology.

1.4.2. Block migration. We introduce migration on 
 N through a random walk
kernel. For that purpose, we introduce a sequence of migration rates

c = ( ck )k2 N0 2 (0; 1 )N0 ; (1.25)

and we let the individuals migrate as follows:
� Each individual, for every k 2 N, chooses at rateck � 1=N k � 1 the block

of radius k around its present location and jumps to a location uniformly
chosen at random in that block.

The transition kernel of the random walk that is thus performed by each individual
are

a(N ) (�; � ) =
∑

k � d( �;� )

ck � 1

N 2k � 1 ; �; � 2 
 N ; � 6= �; a (N ) (�; � ) = 0 : (1.26)

As shown in Dawson et al. (2005), this random walk is recurrent if and only if∑
k2 N0

(1=ck ) = 1 . For the special case whereck = ck , it is strongly recurrent for
c < 1, critically recurrent for c = 1, and transient for c > 15.

Throughout the paper, we assume that6

lim sup
k !1

1
k logck < 1 : (1.27)

This guarantees that the total migration rate per individual is boun ded (at least
for su�ciently large N ).

1.4.3. Block reshu�ing-resampling. As we saw in Section1.3, the idea of the Can-
nings model is to allow reproduction with an o�spring that is of a size comparable
to the whole population. Since we have introduced a spatial structure, we now
allow, on all hierarchical levelsk simultaneously, a reproduction event where each
individual treats the k-block around its present location as amacro-colony and uses
it for its resampling. More precisely, we choose a sequence of �nite non-negative
resampling measures

� =
(
� k )k2 N0 2 M f ([0; 1])N0 ; (1.28)

each subject to (1.2). Assume in addition that
∫

(0 ;1]
� �

k (dr ) < 1 ; k 2 N; (1.29)

and that � 0 satis�es (1.3). The condition in ( 1.29) is needed to guarantee that
in �nite time a colony is a�ected by �nitely many reshu�ing-resampling e vents

5Loosely speaking, the behaviour is like that of simple random walk on Zd with d < 2, d = 2
and d > 2, respectively. More precisely, with the help of potential theory it is possible to associate
with the random walk a dimension as a function of c and N that for N ! 1 converges to 2. This
shows that, in the limit as N ! 1 , the potential theory of the hierarchical random walk given by
(1.26) with c = 1 is similar to that of simple random walk on Z2 .

6In Section 1.5.3, we will analyse the case N < 1 , where (1.27) must be replaced by
lim supk !1

1
k log ck < log N .
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only, since otherwise this transition cannot be de�ned (see Remark1.3 at the end
of Section 1.4). The condition in ( 1.3) guarantees that the population has a well-
de�ned genealogy and most of the population at a site goes back to a�nite number
of ancestors after a positive �nite time.

Set
� k = � k ([0; 1]); � �

k = � �
k ([0; 1]); k 2 N0: (1.30)

We let individuals reshu�e-resample by carrying out the following two steps at
once (the formal de�nition requires the use of a suitable Poisson point process:
cf. (1.5{ 1.6) and (2.28)):

� For every � 2 
 N and k 2 N0, choose the blockBk (� ) at rate 1=N2k .
� Each individual in Bk (� ) is �rst moved to a uniformly chosen random lo-

cation in Bk (� ), i.e., a reshu�ing takes place (see Fig. 1.4). After that,
r is drawn according to the intensity measure � �

k (recall (1.5)), and with
probability r each of the individuals in Bk (� ) is replaced by an individual
of type a, with a drawn according to the type distribution in Bk (� ), i.e.,

y�;k � N � k
∑

� 2 B k( � )

x � : (1.31)

Note that the reshu�ing-resampling a�ects all the individuals in a mac ro-colony
simultaneously and in the same manner. The reshu�ing-resampling occurs at all
levelsk 2 N0, at a rate that is fastest in single colonies and gets slower as the level
k of the macro-colony increases.7

Figure 1.4. Random reshuffling in a 1-block on the hierarchical lattice
of order N = 3 with M = 3 individuals of two types per colony.

Throughout the paper, we assume that� � = ( � �
k )k2 N0 (recall the de�nition of

� �
k from (1.30)) satis�es8

lim sup
k !1

1
k log � �

k < 1 : (1.32)

Note that each of the N k colonies in ak-block can trigger reshu�ing-resampling in
that block, and for each colony the block is chosen at rateN � 2k . Therefore (1.32)
guarantees that the total resampling rate per individual is bounded.

In the continuum-mass limit, the reshu�ing-resampling operation, w hen it acts
on the states in the colonies, takes the form

x � is replaced by (1� r )y�;k + r� a for all � 2 Bk (� ) (1.33)

7Because the reshuffling is done first, the resampling always acts on a uniformly distributed
state (“panmictic resampling”).

8In Section 1.5.3, we will analyse the case N < 1 , where (1.32) must be replaced by
lim supk !1

1
k log � �

k < log N .
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with a 2 E drawn from y�;k (the type distribution in Bk (� ) (cf. ( 1.31)). Note that
in the mean-�eld case and in the single-colony case of Section1.3.1, a 2 E is drawn
from x � (cf. (1.14) and the comment following it) 9.

1.4.4. Hierarchical Cannings process. We are now ready to formally de�ne our sys-
tem of hierarchically interacting C � -processesin terms of a martingale problem.
This is the continuum-mass limit (M ! 1 ) of the individual-based model that
we described in Sections1.4.1{ 1.4.3. Recall that so far we have considered block
migration and non-local reshu�ing-resampling on the hierarchical group of �xed
order N , starting with M individuals at each site.

We equip the setP(E)
 N with the product topology to get a state space that is
Polish. Let F � Cb

(
P(E)
 N ; R

)
be the algebra of functions of the form

F (x) =
∫

E n

(
n⊗

m =1

x � m

(
dum )

)

'
(
u1; : : : ; un )

; x = ( x � )� 2 
 N 2 P (E)
 N ;

n 2 N; ' 2 Cb (E n ; R); � 1; : : : ; � n 2 
 N :

(1.34)

The linear operator for the martingale problem

L (
 N ) : F ! Cb
(
P(E)
 N ; R

)
(1.35)

again has two parts,
L (
 N ) = L (
 N )

mig + L (
 N )
res : (1.36)

The migration operator is given by

(L (
 N )
mig F )(x) =

∑

�;� 2 
 N

a(N ) (�; � )
∫

E
(x � � x � )(da)

@F(x)
@x�

[� a ] (1.37)

and the reshu�ing-resampling operator by

(L (
 N )
res F )(x) =

∑

� 2 
 N

(

(L d0
� F )(x) +

∫

(0 ;1]
� �

0(dr )
∫

E
x � (da)

�
[
F

(
� r;a; f � g(x)

)
� F (x)

]

+
∑

k2 N

N � 2k
∫

(0 ;1]
� �

k (dr )
∫

E
y�;k (da)

�
[
F

(
� r;a;B k( � ) (x)

)
� F (x)

]
)

;

(1.38)

where � r;a;B k( � ) : P(E)
 N ! P (E)
 N is the reshu�ing-resampling map acting as

[(
� r;a;B k( � )

)
(x)

]

�
=

{
(1 � r )y�;k + r� a ; � 2 Bk (� );

x � ; � =2 Bk (� );
(1.39)

where r 2 [0; 1], a 2 E, k 2 N0, � 2 
 N , and L d0
� is the Fleming-Viot di�usion

operator with volatility d0 (see (1.18)) acting on the colony x � with

d0 � 0: (1.40)

9Reshuffling is a parallel update affecting all individuals in a macro-colony simultaneously.
Therefore it cannot be seen as a migration of individuals equipped with independent clocks.
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Remark 1.3. (1) If d0 = 0, then the operator in ( 1.38) is pure-jump.
(2) The right-hand side of (1.38) is well-de�ned because of (1.29). Indeed, by
Taylor-expanding the inner integral in ( 1.38) in powers of r , we get

∫

E
y�;k (da)

[
F

(
� r;a;B k( � ) (x)

)
� F (x)

]
= F (y�;k ) � F (x) + O(r 2); as r # 0:

(1.41)

To have a well-de�ned resampling operator (1.38), the expression in (1.41) must be
integrable with respect to � �

k (dr ), which is equivalent to assumption (1.29).

Proposition 1.4. [Hierarchical martingale problem] Without assumption
(1.3), for every � 2 P (E)
 N , the martingale problem for (L (
 N ) ; F ; � � ) is well-
posed10. The unique solution is a strong Markov process with the Feller property.

The proof of Proposition 1.4 is given in Section3.2.
The Markov process arising as the solution of the above martingale problem is

denoted by X (
 N ) = ( X (
 N ) (t)) t � 0, and is referred to as theCc;�
N -process on 
N .

Remark: For the analysis of the Cc;�
N -process, the following auxiliary models will

be important later on. Given K 2 N0, consider the �nite geographical space

GN;K = f 0; : : : ; N � 1gK ; (1.42)

which is a truncation of the hierarchical group 
 N after K levels. EquipGN;K with
coordinate-wise addition moduloN , which turns it into a �nite Abelian group. By
restricting the migration and the resampling to GN;K (i.e., by setting ck = 0 and
� k = 0 for k � K ), we obtain a Markov process with geographic spaceGN;K that
can be characterised by a martingale problem as well. In the limit asK ! 1 , this
Markov process can be used to approximate theCc;�

N -process. This approximation
of X (
 N ) by X (GN,K) is made rigorous in Proposition8.1

Remark: Similarly to the mean-�eld Cannings processX (N ) from Section 1.3.2,
the hierarchical Cannings processX (
 N ) can be obtained as aM ! 1 limit of the
�nite M individual-based models.

1.5. Main results. Our main results concern a multiscale analysis of theCc;�
N -

process on 
N , X (
 N ) (cf. below Proposition 1.4) in the limit as N ! 1 . To
that end, we introduce renormalised systems with the proper space-timescaling.

For each k 2 N0, we look at the k-block averagesde�ned by

Y (
 N )
�;k (t) =

1
N k

∑

� 2 B k( � )

X (
 N )
� (t); � 2 
 N ; (1.43)

which constitute a renormalisation of spacewhere the component� is replaced by
the average in Bk (� ). The corresponding renormalisation of time is to replace t
by tN k , i.e., t is the associated macroscopic time variable. For eachk 2 N0 and
� 2 
 N , we can thus introduce arenormalised interacting system

((
Y (
 N )

�;k (tN k )
)

� 2 
 N

)

t � 0
; (1.44)

10As a part of the definition of the martingale problem, we always require that the solution
has càdlàg paths and is adapted to a natural filtration.
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which is constant in Bk (� ) and can be viewed as an interacting system indexed
by the set 
 (k )

N that is obtained from 
 N by dropping the �rst k-entries of � 2

 N (recall (1.21)). This provides us with a sequence of renormalised interacting
systems, which for �xed N are howevernot Markov.

Our main results are stated in Sections1.5.1{ 1.5.2. In Section 1.5.1, we state
the scaling behaviour of the renormalised interacting system in (1.44) as N ! 1
for �xed k 2 N0. In Section 1.5.2, we look at the interaction chain that captures
the scaling behaviour on all scales simultaneously. In Section1.5.3, we take a look
at our system X (
 N ) for �nite N . In Section 1.5.4, we compare the result with the
hierarchical Fleming-Viot process. In Sections1.5.5{ 1.5.6, we identify the di�erent
regimes fork ! 1 and in Section 1.5.7 we investigate cluster formation.

1.5.1. The hierarchical mean-�eld limit. Our �rst main theorem identi�es the scal-
ing behaviour of X (
 N ) as N ! 1 (the so-called hierarchical mean-�eld limit) for
every �xed block scale k 2 N0. We assume that, for eachN , the law of X (
 N ) (0)
is the restriction to 
 N of a random �eld X indexed by 
 1 =

⊕
N N that is taken

to be i.i.d. with a single-site mean� for some� 2 P (E).
Recall (1.30) and (1.40). Let d = ( dk )k2 N0 be the sequence ofvolatility constants

de�ned recursively as

dk+1 =
ck ( 1

2 � k + dk )

ck + ( 1
2 � k + dk )

; k 2 N0: (1.45)

Let L denote law, let =) denote weak convergence on path space, and recall (1.20).

Theorem 1.5. [Hierarchical mean-�eld limit and renormalis ation]
For every k 2 N, uniformly in � 2 
 1 ,

L
[(

Y (
 N )
�;k (tN k )

)

t � 0

]
=)

N→∞
L

[(
Z ck;dk;� k

� (t)
)

t � 0

]
: (1.46)

For k = 0 , (1.46) is still true, but the McKean-Vlasov process must be startedfrom
Z (0) = X (
 N )

� (0) instead of Z (0) = � (cf. (1.20)).

The proof of Theorem 1.5 is given in Section 8. The limiting process in (1.46)
is a McKean-Vlasov processwith drift constant c = ck and resampling measure
dk � 0 + � k (cf. (1.18)). This shows that the class of Cannings models with block
resampling is preserved under the renormalisation.

Heuristics. In order to understand the origin of the recursion relation in (1.45),
let us start by explaining where d1 = c0� 0=(2c0 + � 0) comes from. Consider two
lineages11 drawn at random from a macro-colony of order 1, sayB1(� ) for some
� 2 
 N . Due to migration, both lineages are uniformly distributed over the macro-
colony after the �rst migration step. For each lineage, marking the migration steps
that result in being in the same colony, we get a Poisson process with rate 2c0

on timescaleNt . For every such mark, the rate to coalesce is� 0N (on time scale
Nt ), while the rate to migration away is 2c0N . Hence, the probability that the two
lineages coalesce before they migrate away is� 0=(2c0 + � 0). Therefore, thinning
the Poisson process with rate 2c0, we see that the two lineages coalesce at rate

11The fact that we consider coalescing lineages as opposed to type distributions is actually the
essence of the duality approach to the study of the dynamics of interacting particle systems. In
the present context, duality is developed in Section 2.
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2c0� 0=(2c0 + � 0). Since the coalescence rate is twice the di�usion coe�cient (cf.,
Section 4.4), this gives a heuristic explanation for d1. Note that three lineages are
within the same colony only after a time of order N 2, so three lineages do not
coalesce on time scaleNt .

To understand the generic step of the recursion relation, i.e.,dk+1 , consider a
macro-colony of orderk+1, say Bk+1 (� ) for some� 2 
 N , and two lineages drawn at
random from this macro-colony. Consider only migration on levelk, i.e., migration
events between the macro-colonies of orderk, which occur at rate 2ck N � k . For
every such event, the rate of coalescence is 2dk + � k , while migration of one of them
occurs at rate 2ck . Hence, the probability that the two lineages coalesce before one
of them migrates is (2dk + � k )=(2ck +2 dk + � k ). After speeding up time by a factor
N , we see that the coalescence rate is 2ck (2dk + � k )=(2ck + 2 dk + � k ). Since the
coalescence rate is twice the di�usion coe�cient, this gives a heuristic explanation
for dk . Again, three or more lineages do not coalesce on the same time scale.

1.5.2. Multi-scale analysis: the interaction chain. Multi-scale behaviour. Our
second main theorem looks at the implications of the scaling behaviourof dk as
k ! 1 , to be described in Theorems1.11{ 1.12in Section 1.5.4{ 1.5.5, for which we
must extend Theorem 1.5 to include multi-scale renormalisation. This is done by
considering two indices (j; k ) and introducing an appropriate multi-scale limiting
process, called theinteraction chain

M ( j ) = ( M ( j )
k )k= � ( j +1) ;:::; 0; j 2 N0; (1.47)

which describes all the block averages of sizeN j k j indexed by k = � (j + 1) ; : : : ; 0
simultaneously at time N j t with j 2 N0 �xed. Formally, the interaction chain is
de�ned as the time-inhomogeneous Markov chain with a prescribed initial state at
time � (j + 1),

M ( j )
� ( j +1) = � 2 P (E); (1.48)

and with transition kernel

K k (x; �) = � ck;dk;� k
x (�); x 2 P (E); k 2 N0; (1.49)

for the transition from time � (k + 1) to time � k (for k = j; : : : ; 0). Here, � c;d; �
x

is the unique equilibrium of the McKean-Vlasov processZ c;d; �
x de�ned in ( 1.18) of

Section 1.3.3 (see Section4 for details).

Theorem 1.6. [Multi-scale behaviour]
Let (tN )N 2 N be such that

lim
N !1

tN = 1 and lim
N !1

tN =N = 0 : (1.50)

Then, for every j 2 N0, uniformly in � 2 
 1 and uk 2 (0; 1 ),

L
[(

Y (
 N )
�;k (N j tN + N k uk )

)

k= j;:::; 0

]
=)

N→∞
L

[(
M ( j )

� k

)

k= j;:::; 0

]
;

L
[
Y (
 N )

�;j +1 (N j tN )
]

=)
N→∞

� � ;
(1.51)

where � 2 P (E) is the single-site mean of the initial distribution X (
 N ) (0), cf. Sec-
tion 1.5.1.
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The proof of Theorem 1.6 is given in Section9.
Theorem 1.6 says that, asN ! 1 , the system is in aquasi-equilibrium � ck;dk;� k

x
on time scaleN j tN + N k u, with u 2 (0; 1 ) the macroscopic time parameter on
level k, when x is the average on levelk + 1.

Heuristics. The e�ect described in Theorem1.6 results from the fact that on the
smaller time scaleuN k a k-block average evolves e�ectively like a single compo-
nent of the N � 1 other k-block averages with a mean-�eld migration mechanism.
This leads to propagation of chaos, i.e., convergence to a system of independently
evolving components that interact only because they feel the overall type density
in the (k + 1)-block. Since we look at the system at a late timeN j tN , we see that
the dynamics at scaleN k u, which is o(N j tN ), has already reached equilibrium, as
is clear from a restart argument that absorbs an order-N k term into N j tN .

The basic dichotomy. We next let the index in the multi-scale renormalisation
scheme tend to in�nity and identify how the limit depends on the parameters (c; � ).
Indeed, Theorem1.6, in combination with Theorems 1.11{ 1.12 in Sections 1.5.4{
1.5.5, allows us to study the universality properties on large space-time scales when
we �rst let N ! 1 and then j ! 1 12.

The interaction chain exhibits a dichotomy, as will be seen in Theorem1.7below,
in the sense that

L
[
M ( j )

0

]
=)
j→∞

� � 2 P (P(E)) ; (1.52)

with � � either (I) of the form of a random single-atom measure, i.e.,

� � = L [� U ]; for some randomU 2 E with L [U] = �; (1.53)

or (II) � � spread out. To be more speci�c, de�ne

Varx ( ) =
∫

E � E
[x(du)� u (dv) � x(du)x(dv)]  (u) (v): (1.54)

Then, � � is spread out i�
sup

 2 B 1

E� θ [Var � ( )] > 0; (1.55)

where B1 � Cb (E; R) \ f  : j j � 1g and the expectation is taken with respect to
the parameter x in (1.54), i.e.,

E� θ [Var � ( )] =
∫

P (E )
� � (dx) Var x ( ): (1.56)

Case (I) is called the clustering regime, since it indicates the formation of large
mono-type regions, while case (II) is called thelocal coexistence regime, since it
indicates the formation of multi-type local equilibria under which di�er ent types
can live next to each other with a positive probability. In the local coexistence
regime, a remarkable di�erence occurs comparing with the hierarchical Fleming-
Viot process: mono-type regions forM ( j )

0 as j ! 1 have a probability in the open
interval (0 ; 1) rather than probability 0 (see Proposition 4.2(b) below). The latter is
referred to in Dawson et al. (1995) by saying that the system is in the stable regime
(which is stronger than local coexistence). In the present paper, we do not identify
the conditions on c and � that correspond to the stable regime. The dichotomy

12For several previously investigated systems, the limit as j ! 1 was shown to be interchange-
able (Dawson et al. (1995); Fleischmann and Greven (1994))
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can be conveniently rephrased as follows: There is either a trivial ora non-trivial
entrance law for the interaction chain with initial state � 2 P (E) at time �1 13.

Explicit dichotomy criterion. The large-scale behaviour ofX (
 N ) is determined
by the sequencem = ( mk )k2 N0 with

mk =
� k + dk

ck
; where � k = 1

2 � k (1.57)

(recall ck from (1.25), � k from (1.30) and dk from (1.45)). We will argue that the
dichotomy ∑

k2 N0

mk = 1 vs.
∑

k2 N0

mk < 1 (1.58)

represents qualitatively di�erent situations for the interacting sy stem X (
 N ) corre-
sponding to, respectively,

� clustering (= formation of large mono-type regions),
� local coexistence(= convergence to multi-type equilibria).

In the clustering regime, the scaling behaviour ofdk is independent ofd0, while in
the local coexistence regime it depends ond0. In (4.26) of Section4.4, we will show
that

EL [M ( j)
0 ] [Var � ( )] =

[
j∏

k=0

1
1 + mk

]

Var � ( ); j 2 N0;  2 Cb (E; R); � 2 P (E):

(1.59)
This implies that the entrance law is trivial when

∑
k2 N0

mk = 1 and non-trivial
when

∑
k2 N0

mk < 1 . Our third main theorem identi�es the dichotomy.

Theorem 1.7. [Dichotomy of the entrance law]

(a) The interaction chain converges to an entrance law:




L

[(
M ( j )

k

)

k= � ( j +1) ;:::; 0

]
=)
j→∞

L
[(

M (1 )
k

)

k= �1 ;:::; 0

]
;

M (1 )
�1 = �:

(1.60)

(b) [Clustering] If
∑

k2 N0
mk = 1 , then L [M ( j )

0 ] =)
j→∞

L [� U ] with L [U] = � .

(c) [Local coexistence] If
∑

k2 N0
mk < 1 , then

sup
 2 Cb (E; R)

EL [M ( ∞)
0 ][Var � ( )] > 0: (1.61)

The proof of Theorem 1.7 is given in Section9.2.
Theorem 1.7, in combination with Theorem 1.11(c) in Section 1.5.4, says that,

like for Fleming-Viot di�usions, we have a clear-cut criterion for the t wo regimes
in terms of the migration coe�cients and the resampling coe�cients.

Heuristics. If the resampling happens only locally, i.e., � k = 0, for k 2 N, we
simply obtain the two regimes depending on whether two ancestral lines coalesce
with probability 1 or < 1, giving after a long time monotype or coexistence, if and
only if they meet with probability 1 or < 1. Now, the ancestral lines can coalesce

13Recall that an entrance law for a sequence of transition kernels (K k )0
k = �1 and an en-

trance state � is any law of a Markov chain (Yk )0
k = �1 with these transition kernels such that

limk !�1 Yk = � .
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due to the reshu�ing-resampling in a k-ball and hence the occupation time of two
ancestral lines in the distancesk weighted by the � k is the relevant quantity.

1.5.3. Main results for �nite N . In this section, we take a look at our systemX (
 N )

(Cc;�
N -process on 
N , cf. below Proposition1.4) for �nite N , i.e., without taking the

hierarchical mean-�eld limit. We ask whether this system also exhibitsa dichotomy
of clustering versus local coexistence, i.e., for �xedN and t ! 1 , doesL [X (
 N ) (t)]
converge to a mono-type state, where the type is distributed according to � , or to
an equilibrium state, where di�erent types live next to each other?

As it will turn out below, in the �nite- N case there is the dichotomy and, more-
over, the quantitative criterion is the same as in theN ! 1 limit.

Concretely, let Pt (�; �) denote the transition kernel of the random walk on 
 N

with migration coe�cients

�ck (N ) = ck + N � 1� k+1 ; k 2 N0 (1.62)

starting at 0 (cf. Section 1.4.2). Let

�HN =
∑

k2 N0

� k N � k
∫ 1

0
P2s(0; Bk (0)) ds; (1.63)

where Bk (0) is the k-block in 
 N around 0 (recall (1.23)) and Pt (0; Bk (0)) �∑
� 2 B k(0) Pt (0; � ). We will see in Section2.4.2 that �HN in (1.63) is the expected

hazard for two partition elements in the spatial � -coalescent with non-local coales-
cence to coalesce. Note in particular that the second summand in (1.62) is induced
by the reshu�ing in the spatial � -coalescent with non-local coalescence.

Our next three main theorems identify the ergodic behaviour for �nite N .

Theorem 1.8. [Dichotomy for �nite N ]
The following dichotomy holds for everyN 2 Nnf 1g �xed:

(a) [Local coexistence] If �HN < 1 , then

lim inf
t !1

sup
 2 B 1

E
X

(
 N )
η ( t )

[Var � ( )] > 0; for all � 2 
 N : (1.64)

(b) [Clustering] If �HN = 1 , then

lim
t !1

sup
 2 B 1

E
X

(
 N )
η ( t )

[Var � ( )] = 0 ; for all � 2 
 N : (1.65)

The proof of Theorem 1.8 is given in Section10.
The dichotomy can be sharpened by using duality theory and the complete

longtime behaviour of X (
 N ) can be identi�ed.

Theorem 1.9. [Ergodic behaviour for �nite N ]
The following dichotomy holds:

(a) [Local coexistence] If �HN < 1 , then for every � 2 P (E) and every
X (
 N ) (0) whose law is stationary and ergodic w.r.t. translations in
 N and
has a single-site mean� ,

L
[
X (
 N ) (t)

]
=)
t→∞

� (
 N ) ;c;�
� 2 P (P(E)
 N ) (1.66)

for some unique law� (
 N ) ;c;�
� that is stationary and ergodic w.r.t. transla-

tions in 
 N and has single-site mean� .
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(b) [Clustering] If �HN = 1 , then, for every � 2 P (E),

L
[
X (
 N ) (t)

]
=)
t→∞

∫ 1

0
� (du)� ( � u) 
 N 2 P (P(E)
 N ): (1.67)

The proof of Theorem 1.9 is given in Section10.

Theorem 1.10. [Agreement of dichotomy for N < 1 and N = 1 ]
Under the weak regularity condition

either lim sup
k !1

� k+1

ck
< 1 or lim inf

k !1

(
� k+1

ck
^

� k

� k+1

)
> 0; (1.68)

the dichotomies in Theorems1.7 and 1.9 coincide i.e.,
∑

k2 N0
mk = 1 if and only

if �HN = 1 .

The proof of Theorem 1.10 is given in Section11.1.

1.5.4. Comparison with the dichotomy for the hierarchical Fleming-Viot process.
We return to the case N = 1 . For the classical case of hierarchically interacting
Fleming-Viot di�usions (i.e., in the absence of non-local reshu�ing-re sampling),
the dichotomy was analysed inDawson et al. (1995). It was shown there that the
dichotomy in (1.58) reduces to

∑

k2 N0

(1=ck ) = 1 vs.
∑

k2 N0

(1=ck ) < 1 ; (1.69)

corresponding to the random walk with migration coe�cients c = ( ck )k2 N0 being
recurrent, respectively, transient. Moreover, it is known that in the clustering
regime limk !1 � k dk = 1 with � k =

∑k � 1
l =0 (1=cl ) for all d0.

Our next main theorem provides a comparison of the clustering vs. coexistence
dichotomy with the one for the hierarchical Fleming-Viot process. Let

d� = ( d�
k )k2 N0 (1.70)

be the sequence of volatility constants when� 0 > 0 and � k = 0 for all k 2 N
(� k = 1

2 � k , see (1.57)), i.e., there is resampling in single colonies but not in macro-
colonies. By (1.45), this sequence has initial valued�

0 = 0 and satis�es the recursion
relation

d�
1 = d1 =

c0� 0

c0 + � 0
;

1
d�

k+1
=

1
ck

+
1
d�

k
; k 2 N; (1.71)

whose solution is

d�
k =

� 0

1 + � 0� k
; k 2 N; with � k =

k � 1∑

l =0

1
cl

: (1.72)

Theorem 1.11. [Comparison with hierarchical Fleming-Viot ]
The following hold for (dk )k2 N0 as in (1.45) (also recall (1.57)):

(a) The mapsc 7! d and � 7! d are component-wise non-decreasing.
(b) dk � d�

k for all k 2 N.
(c)

∑
k2 N0

mk = 1 if and only if
∑

k2 N0
(1=ck )

∑k
l =0 � l = 1 .

(d) If lim k !1 � k = 1 and
∑

k2 N � k � k < 1 , then lim k !1 � k dk = 1 .
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The proof of Theorem 1.11 is given in Section11.1.
In words, (a) and (b) say that both migration and reshu�ing-resa mpling in-

crease volatility (recall ((1.57){ 1.58)), (c) says that the dichotomy in ( 1.69) due
to migration is a�ected by reshu�ing-resampling only when the latter is strong
enough, i.e., when

∑
k2 N0

� k = 1 , while (d) says that the scaling behaviour ofdk

in the clustering regime is una�ected by the reshu�ing-resampling wh en the latter
is weak enough, i.e., when

∑
k2 N � k � k < 1 . Note that the criterion in (c) shows

say that migration tends to inhibit clustering while reshu�ing-resamp ling tends to
enhance clustering.

We will see in the last paragraph of Section11.1 that in the local coexistence
regime dk �

∑k
l =0 � l as k ! 1 when this sum diverges and dk !∑

l 2 N0
� l =

∏1
j = l (1 + mj ) 2 (0; 1 ) when it converges. Thus, in the local coexis-

tence regime the scaling ofdk is determined the resampling-reshu�ing.
In the regime, where the systemclusters, i.e.,

∑
k2 N0

mk = 1 , it is important to
be able to say more about the behaviour ofmk as k ! 1 in order to understand
the patterns of cluster formation. For this the key is the behaviour of dk ask ! 1 ,
which we study in Sections 1.5.5{ 1.5.6 for polynomial, respectively, exponential
growth of the coe�cients ck and � k .

Heuristics. The recursion relation in (1.45) has the shapedk+1 = f k (dk ) with
f k : R ! R a M•obius-transformation (see Section 11.2). Thus, to obtain the
asymptotics of dk as k ! 1 we must study inhomogeneous iterates of M•obius-
transformations. For eachk 2 N, f k is hyperbolic with two �xed points: a repulsive
�xed point x �

k < 0 and an attractive �xed point x+
k > 0. Depending on the scaling

of the coe�cients ck and � k , the scaling of x+
k exhibits four regimes. For three of

the regimes, it turns out that dk � x+
k as k ! 1 , i.e., the iterates of the M•obius-

transformations attract towards the �xed point of the last one. The fourth regime
is di�erent. In Section 1.5.5 we deal with polynomial coe�cients, in Section 1.5.6
with exponential coe�cients. In order to obtains sharp results, t he coe�cients ck

and � k must satisfy certain regularity conditions.

1.5.5. Scaling in the clustering regime: polynomial coe�cients. The following main
theorem identi�es the scaling behaviour of dk as k ! 1 in four di�erent regimes,
de�ned by the relative size of the migration coe�cient ck versus the block resam-
pling coe�cient � k . The necessaryregularity conditions are stated in (1.78{ 1.81)
below.

De�ne

lim
k !1

� k

ck
= K 2 [0; 1 ] and, if K = 0 ; also lim

k !1
k2 � k

ck
= L 2 [0; 1 ]: (1.73)

Theorem 1.12. [Scaling of the volatility in the clustering r egime: poly-
nomial coe�cients]
Assume that the regularity conditions(1.78{ 1.81) hold.

(a) If K = 1 , then

lim
k !1

dk

ck
= 1 : (1.74)

(b) If K 2 (0; 1 ), then

lim
k !1

dk

ck
= M with M = 1

2 K
[
� 1 +

√
1 + (4 =K )

]
2 (0; 1): (1.75)
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(c) If K = 0 and L = 1 , then

lim
k !1

dk
p

ck � k
= 1 : (1.76)

(d) If K = 0 , L < 1 and a 2 (�1 ; 1), then

lim
k !1

� k dk = M � with M � = 1
2

[
1 +

√
1 + 4L=(1 � a)2

]
2 [1; 1 ): (1.77)

The proof of Theorem1.12 in given Section11.3. The meaning of the four regimes
for the evolution of the population will be explained in Corollary 1.13. Case (a)
can be termed \reshu�ing-resampling dominated", cases (c) and (d) \migration
dominated", and case (b) \balanced".

Regularity conditions. In Theorem 1.12, we need to impose some mild regularity
conditions on c and � , which we collect in (1.78{ 1.81) below. We require that both
ck and � k are regularly varying at in�nity , i.e., there exist a; b2 R such that

ck � L c(k)ka ; � k � L � (k)kb; k ! 1 ; (1.78)

with L c; L � slowly varying at in�nity ( Bingham et al. (1987, Section 1.9)). The
numbersa; bare referred to as theindices of c and � 14. Note that ( 1.68) is satis�ed.

To handle the boundary cases, whereck , � k , � k =ck and/or k2� k =ck are slowly
varying, we additionally require that for speci�c choices of the indices the following
functions are asymptotically monotone:

a = 0 : k 7! � L c(k)=Lc(k); k 7! k� L c(k)=Lc(k);

b = 0 : k 7! � L � (k)=L� (k); k 7! k� L � (k)=L� (k);
(1.79)

and the following functions are bounded:

a = 0 : k 7! k� L c(k)=Lc(k);

b = 0 : k 7! k� L � (k)=L� (k);
(1.80)

where � L (k) = L (k + 1) � L (k). To ensure the existenceof the limits in ( 1.73), we
also need the following functions to beasymptotically monotone:

a = b : k 7! L � (k)=Lc(k);

a = b� 2 : k 7! k2L � (k)=Lc(k):
(1.81)

Scaling of the variance. The next corollary shows what the scaling ofdk in
Theorem 1.12 implies for the scaling ofmk and hence of the variance in (1.59) (we
will see in Section11.3that the conditions for Case (d) imply that lim k !1 � k � k = 0
and limk !1 ck � k = 1 ).

Corollary 1.13. [Scaling behaviour of mk ] The following asymptotics ofmk

for k ! 1 holds in the four cases ofTheorem 1.12:

(a) mk �
� k

ck
! 1 ; (b) mk ! K + M;

(c) mk �
√

� k

ck
! 0; (d) mk �

M �

ck � k
! 0:

(1.82)

14Regular variation is typically defined with respect to a continuous instead of a discrete
variable. However, every regularly varying sequence can be embedded into a regularly varying
function.
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All four cases fall in the clustering regime. For the variance in (1.59) they imply:
(a) superexponential decay; (b) exponential decay, (c{d) subexponential decay.

Note that Case (d) also falls in the clustering regime because it assumes that
a 2 (�1 ; 1), which implies that lim k !1 � k = 1 . Indeed, 1=ck � k = ( � k+1 � � k )=� k ,
and in Section 11.1 we will see that

lim
k !1

� k = 1 ()
∑

k2 N

1
ck � k

= 1 : (1.83)

Combining Cases (a{d), we conclude the following:
� The regime ofweak block resampling(for which the scaling behaviour ofdk

is the same as if there were no block resampling) coincides with the choice
K = 0 and L < 1 .

� The regime of strong block resampling(for which the scaling behaviour of
dk is di�erent) coincides with K = 0 and L = 1 or K > 0.

Note that M " 1 as K ! 1 , so that Case (b) connects up with Case (a).
Further note that M �

p
K as K # 0, so that Case (b) also connects up with Case

(c). Finally, note that
p

ck � k �
p

Lck =k as k ! 1 for Case (d) by (1.73), while
ck � k � k=(1 � a) as k ! 1 when a 2 (�1 ; 1) by (1.78). Hence, Case (d) connects
up with Case (c) as well.

1.5.6. Scaling in the clustering regime: exponential coe�cients. We brie
y indicate
how Theorem 1.12 extends whenck and � k satisfy

ck = ck �ck ; � k = � k �� k with c; � 2 (0; 1 ) and

(�ck ); (�� k ) regularly varying at in�nity ;

�K = lim
k !1

�� k

�ck
2 [0; 1 ];

(1.84)

and the analogues of (1.79{ 1.81) apply to the regularly varying parts. Again, note
that ( 1.68) is satis�ed.

Theorem 1.14. [Scaling of the volatility in the clustering r egime: expo-
nential coe�cients]
Assume that (1.84) holds. Recall the cases(a{d) from Theorem 1.12. Then:

(A) [scaling like Case (a)] c < � or c = � , �K = 1 : lim k !1 dk =ck = 1 =c.
(B) [scaling like Case (b)] c = � , �K 2 (0; 1 ): lim k !1 dk =ck = �M with

�M =
1
2c

[
� (c( �K + 1) � 1) +

√
(c( �K + 1) � 1)2 + 4 c �K

]
: (1.85)

(C) The remainder c > � or c = � , �K = 0 splits into three cases:
(C1) [scaling like Case (d)] 1 > c > � or 1 = c > � , lim k !1 � k = 1 :

lim k !1 � k dk = 1 .
(C2) [scaling like Case (b)] c = � < 1, �K = 0 : lim k !1 dk =ck = (1 � c)=c.
(C3) [scaling like Case (c)] c = � > 1, �K = 0 : lim k !1 dk =� k = 1 =(� � 1).

Remark 1.15. The analogue ofL (cf., (1.73) and Theorem 1.12) no longer plays a
role for exponential coe�cients (cf., Theorem 1.14).

The proof of Theorem 1.14 is given in Section 11.4. The choices 1 = c > � ,
lim k !1 � k < 1 and c > 1, c > � correspond to local coexistence (and so does
c = � > 1, �K = 0,

∑
k2 N0

�� k =�ck < 1 ).
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1.5.7. Cluster formation. In the clustering regime, it is of interest to study the size
of the mono-type regions as a function of time, i.e., how fast do the clusters grow?
To that end, we look at the interaction chain M ( j )

� k ( j ) for j ! 1 , where the level
scaling function k : N ! N with lim j !1 k(j ) = 1 is suitably chosen such that we
obtain a nontrivial clustering limiting law , i.e.,

lim
j !1

L
[
M ( j )

� k ( j )

]
= L

[
�̂
]

; (1.86)

where the limiting random measure�̂ satis�es

Pf �̂ = � U ; for someU 2 Eg < 1: (1.87)

For example, in Dawson and Greven(1993a) such a question was answered in the
case of the interacting Fleming-Viot processes with critically recurrent migration
c. There, di�erent types of limit laws and di�erent types of scaling can occur,
corresponding to di�erent clustering regimes. Following Dawson et al. (1995) and
Dawson and Greven(1996), it is natural to consider a whole family of scalings
k� : N ! N, � 2 [0; 1) satisfying (1.86). We single out fast, di�usive and slow
clustering regimes:

(i) Fast clustering: lim j !1 k� (j )=j = 1 for all � .
(ii) Di�usive clustering: In this regime, lim j !1 k� (j )=j = � (� ) for all � ,

where� 7! � (� ) is continuous and non-increasing with� (0) = 1 and � (1) =
0.

(iii) Slow clustering: lim j !1 k� (j )=j = 0 for all � . This regime borders with
the regime of local coexistence.

Remark: Di�usive clustering similar to (ii) was previously found for the voter
model onZ2 by Cox and Gri�eath (1986), where the radii of the clusters of opinion
\all 1" or \all 0" scale as t �= 2 with � 2 [0; 1), i.e., clusters occur on all scales
� 2 [0; 1). This is di�erent from what happens on Z1, where the clusters occur
only on scales� � t1=2, where � is random, seeArratia (1979). For the model of
hierarchically interacting Fleming-Viot di�usions with ck � 1 (= critically recurrent
migration), Fleischmann and Greven(1994) showed that, for all N 2 N n f 1g and
all � 2 
 N ,

L
[(

Y (
 N )
�; b(1 � � ) t c(N t )

)

� 2 [0;1)

]
f :d:d:=)
t !1

L

[(
Y

(
log

(
1

1 � �

)))

� 2 [0;1)

]

; (1.88)

where (Y (t)) t 2 [0;1 ) is the standard Fleming-Viot di�usion on P(E). A similar
behaviour occurs for other models, e.g., for branching models (Dawson and Greven
(1996)).

Our last two main theorems show which type of clustering occurs forthe various
scaling regimes of the coe�cientsc and � identi�ed in Theorems 1.12{ 1.14. Polyno-
mial coe�cients allow for fast and di�usive clustering only. Exponent ial coe�cients
allow for fast, di�usive and slow clustering, with the latter only in a nar row regime.

Theorem 1.16. [Clustering regimes for polynomial coe�cien ts]
Recall the scaling regimes of Theorem1.12.

(i) [Fast clustering] In cases (a-c), the system exhibits fast clustering.
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(ii) [Di�usive clustering] In case (d) , the system exhibits di�usive clustering,
i.e.,

L
[(

M ( j )
�b (1 � � ) j c

)

� 2 [0;1)

]
=)
j→∞

L

[(
Z 0;1;0

�

(
log

(
1

1 � � R

)))

� 2 [0;1)

]

; (1.89)

where R = M � (1 � a) with M � de�ned in (1.77) and a the exponent in
(1.78).

Theorem 1.17. [Clustering regimes for exponential coe�cie nts]
Recall the scaling regimes of Theorem1.14.

(i) [Fast clustering] In cases (A, B, C1, C2) , and case(C3) with

lim
k !1

k �� k =�ck = 1 ; (1.90)

the system exhibits fast clustering.
(ii) [Di�usive clustering] In case (C3) with lim k !1 k �� k =�ck = C, the system

exhibits di�usive clustering, i.e., (1.89) holds with R = C=(� � 1).
(iii) [Slow clustering] In case (C3) with k �� k =�ck � 1=(log k) 
 , 
 2 (0; 1), the

system exhibits slow clustering.

The proofs of Theorems1.16{ 1.17 are given in Section9.3. Note that ( 1.88) is a
statement valid for all N 2 N n f 1g. In contrast, Theorems 1.16{ 1.17 are valid in
the hierarchical mean-�eld limit N ! 1 only.

1.6. Discussion. Summary. We have constructed the Cc;�
N -process in Section

1.4.4, describing hierarchically interacting Cannings processes, and have identi-
�ed its space-time scaling behaviour in the hierarchical mean �eld limit N ! 1
(interaction chain, cf. Theorem 1.6). We have fully classi�ed the clustering vs.
local coexistence dichotomy in terms of the parametersc; � of the model (cf. Theo-
rem 1.7), and found di�erent regimes of cluster formation (cf. Theorems1.16, 1.17).
Moreover, we have veri�ed the dichotomy also for �nite N (cf. Theorems1.8{ 1.10).
Our results provide a full generalisation of what was known for hierarchically in-
teracting di�usions, and show that Cannings resampling leads to newphenomena
(cf. Theorem 1.11 and comment following it).

Diverging volatility of the Fleming-Viot part and local coe xistence. The
growth of the block resampling rates (� k )k2 N can lead to a situation, where, as
we pass to larger block averages, the volatility of the Fleming-Viot part of the
asymptotic limit dynamics diverges, even though on the level of a single component
the system exhibits local coexistence (recall Theorem1.7(c)). This requires that
the migration rates are (barely) transient and the block resamplingrate decays very
slowly. An example of such a situation is the choiceck = k(log k)3 and � k = 1 =k
which leads to dk � logk and mk � 1=k(log k)2 as k ! 1 . Thus, the system
may be in the local coexistence regime and yet have a diverging volatility on large
space-time scales.

Open problems. The results of Section1.5 and suggest that a dichotomy between
clustering and local coexistence also holds for a suitably de�ned Cannings model
with non-local resampling on Zd, d � 3. In addition, a continuum limit to the
geographic spaceR2 ought to arise as well, cf.Barton et al. (2010). The latter may
be easier to investigate in the limit N ! 1 , following the approach outlined in
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Greven (2005). Another open problem concerns the di�erent ways in which cluster
formation can occur. Here, the limit N ! 1 could already give a good picture of
what is to be expected for �nite N . A further task is to investigate the genealogical
structure of the model, based on the work in Greven,Greven et al. (2014) for the
model without multi-colony Cannings resampling (i.e., � k = � 0 for k 2 N).

Outline of the remainder of the paper. Section 2 introduces the spatial � -
coalescent with block coalescence and derives some of its key properties. Sections3{
11 use the results in Section2 to prove the propositions and the theorems stated
in Sections1.3{ 1.5. Here is aroadmap:

� Section 3 handles all issues related to the well-posedness of martingale
problems. The proofs of Propositions1.1{ 1.4 are in Section3.2.

� Section4 deals with the properties of the McKean-Vlasov process, including
its equilibrium distribution.

� Section 5 outlines the strategy behind the proofs of the scaling results for
the hierarchical Cannings process, which are worked out in Sections 6{ 9 as
follows: Theorem 1.5 is proved in Section 8 with preparatory work being
done in Sections6{ 7, Theorem 1.6 is proved in Section9.1, Theorem 1.7 in
Section 9.2, and Theorems1.16{ 1.17 in Section 9.3.

� Section 10 proves the scaling results for the interaction chain stated in
Theorems1.8 and 1.9.

� Section 11 derives the scaling results for the volatility constant: Theo-
rems 1.10and 1.11are proved in Section11.1, M•obius-transformations are
introduced in Section 11.2, Theorem 1.12 is proved in Section 11.3, and
Theorem 1.14 in Section 11.4.

� Section 12 collects the notation.

2. Spatial � -coalescent with non-local coalescence

In this section, we introduce a new class of spatial �-coalescent processes, namely,
processes where coalescence of partition elements at distances larger than or equal
to zero can occur. This is a generalisation of the spatial coalescentintroduced by
Limic and Sturm (2006), which allows for the coalescence of the partition elements
(= families = lineages) residing at the same location only. Informally, the spa-
tial � -coalescent with non-local coalescence is the process that encodes the family
structure of a sample from the currently alive population in the Cc;�

N -process, i.e.,
it is the process ofcoalescing lineagesthat occur when the evolution of the spatial
Cc;�

N -Cannings process is traced backwards in time up to a common ancestor. In
what follows, we denote this backwards-in-time process byCc;�

N .
Recall that two Markov processesX and Y with Polish state spacesE and E0

are calleddual w.r.t. the duality function H : E � E 0 ! R if

EX 0 [H (X t ; Y0)] = EY0 [H (X 0; Yt )]; for all (X 0; Y0) 2 E � E 0; (2.1)

and if the family f H (�; Y0) : Y0 2 E0g uniquely determines a law onE. Typically,
the key point of a duality relation is to translate questions about a complicated
process into questions about a simpler process. This translation often allows for an
analysis of the long-time behaviour of the process, as well as a proof of existence
and uniqueness for associated martingale problems. IfH (�; �) 2 Cb (E � E 0), and
if H (�; Y0) and H (X 0; �) are in the domain of the generator ofX , respectively, Y
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for all (X 0; Y0) 2 E � E 0, then it is possible to establish duality by just checking a
generator relation (see Remark2.9 below and alsoLiggett (1985, Section II.3)).

The analysis of the processes on their relevant time scales will lead usto study a
number of auxiliary processes on geographic spaces di�erent from
 N . The duality
will be crucial for the proof of Propositions 1.1{ 1.4 (martingale well-posedness) in
Section 3, and also for statements about the long-time behaviour of the processes
and the qualitative properties of their equilibria. In Section 2.1, we de�ne the spatial
�-coalescent with local coalescence. In Section2.2, we add non-local coalescence.
In Section 2.3, we formulate and prove the duality relation between theCc;�

N -process
and the spatial �-coalescent with non-local coalescence. In Section 2.4, we look at
the long-time behaviour of the spatial �-coalescent with non-local coalescence.

2.1. Spatial � -coalescent with local coalescence.In this section, we brie
y recall
the de�nition of the spatial �-coalescent on a countable geographic spaceG as
introduced by Limic and Sturm (2006). (For a general discussion of exchangeable
coalescents, seeBerestycki (2009).) Here, we do not need assumption (1.2) on
measure �. In Section 2.2, we will add non-local coalescence, i.e., coalescence of
individuals not necessarily located at the same site.

The following choices of the geographic spaceG will be needed later on:

GN;K = f 0; : : : ; N � 1gK ; K; N 2 N; G = 
 N ; N 2 N; G = f 0; �g : (2.2)

The choices in (2.2) correspond to geographic spaces that are needed, respectively,
for �nite approximations of the hierarchical group, for the hierar chical group, for a
single-colony with immigration-emigration, and for the McKean-Vlasov limit. We
de�ne the basic transition mechanisms and characterise the process by a martingale
problem in order to be able to verify duality and to prove convergence properties.
In Section 2.1.1we de�ne the state space and the evolution rules, in Section2.1.2we
formulate the martingale problem, while in Section 2.1.3 we introduce coalescents
with immigration-emigration.

2.1.1. State space, evolution rules, graphical construction and entrance law. State
space. As with non-spatial exchangeable coalescents, it is convenient to start with
�nite state spaces and subsequently extend to in�nite state spaces via exchange-
ability. Given n 2 N, consider the set

[n] = f 1; : : : ; ng (2.3)

and the set � n of its partitions into families:

� n = set of all partitions � = f � i � [n]gb
i =1

of set [n] into disjoint families � i , i 2 [b].
(2.4)

That is, for any � = f � i gb
i =1 2 � n , we have [n] =

⋃b
i =1 � i and � i \ � j = ; for

i; j 2 [b] with i 6= j . In what follows, we denote by

b = b(� ) 2 [n] (2.5)

the number of families in � 2 � n .

Remark 2.1 (Notation) . By a slight abuse of notation, we can associate with� 2 � n

the mapping � : [n] ! [b] de�ned as � (i ) = k, where k 2 [b] is such that i 2 � k . In
words, k is the label of the unique family containing i .
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Abbreviate
� � 1(k) = min f i 2 [n] : � (i ) = kg; k 2 [b]: (2.6)

The state space of the spatial coalescent is the set ofG-labelled partitions de�ned
as

� G;n =
{

� G = f (� 1; g1); (� 2; g2); : : : ; (� b; gb)g

: f � 1; : : : ; � bg 2 � n ; g1; : : : ; gb 2 G; b 2 [n]
}

:
(2.7)

For de�niteness, we assume that the families of� G 2 � G;n are indexed in the
increasing order of each family's smallest element, i.e., the enumeration is such
that min � i < min � j for all i; j 2 [b] with i 6= j .

Let SG;n 2 � G;n denote the labelled partition of [n] into singletons, i.e.,

SG;n =
{

(f 1g; g1); (f 2g; g2); : : : ; (f ng; gn ) : gi 2 G; i 2 [n]
}

: (2.8)

With each � G 2 � G;n we can naturally associate the partition � 2 � n by removing
the labels, i.e., with

� G = f (� 1; g1); (� 2; g2); : : : ; (� b; gb)g (2.9)

we associate� = f � 1; : : : ; � bg 2 � n . With each � G 2 � G;n we also associate the
set of its labels

L (� G ) = f g1; : : : ; gbg � G: (2.10)

In addition to the �nite- n sets � n and � G;n considered above, consider their
in�nite versions

� = f partitions of Ng; � G = f G-labelled partitions of Ng; (2.11)

and introduce the set of standard initial states

SG =
{

f (f i g; gi )gi 2 N : gi 2 G; i 2 N
}

: (2.12)

Equip � G with the following topology. First, equip the set � G;n with the discrete
topology. In particular, this implies that � G;n is a Polish space. We say that the
sequence of labelled partitionsf � (k )

G 2 � G gk2 N converges to the labelled partition
� G 2 � G if the sequencef � (k )

G jn 2 � G;n gk2 N converges to� G jn 2 � G;n for all
n 2 N. This topology makes the space �G Polish, too.

Evolution rules. Assume that we are given transition rates (= \migration rates")
on G

a� : G2 ! R; a� (g; f ) = a(f; g ); (2.13)

wherea(�; �) is the migration kernel of the correspondingC � -process with geographic
spaceG as in (2.2). The spatial n-� -coalescent is the continuous-time Markov
processC(G) ;loc

n = ( C(G) ;loc
n (t) = � G (t) 2 � G;n )t � 0 with the following dynamics.

Given the current state � G = C(G) ;loc
n (t � ) 2 � G;n , the processC(G) ;loc

n evolves via:
� Coalescence. Independently, at each siteg 2 G, the families of � G with label

g coalesceaccording to the mechanism of the non-spatialn-�-coalescent.
In other words, given that in the current state of the spatial �-c oalescent
there areb = b(� G ; g) 2 [n] families with label g, among thesei 2 [2; b] \ N
�xed families coalesce into one family with labelg at rate � (�)

b;i , where

� (�)
b;i =

∫

[0;1]
� � (dr )r i (1 � r )b� i ; i 2 [2; b] \ N; (2.14)
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with � � given by (1.5).
� Migration . Families migrate independently at rate a� , i.e., for any ordered

pair of labels (g; g0) 2 G2, a family of � G with label g 2 G changes its label
(= \migrates") to g0 2 G at rate a� (g; g0).

Graphical construction. Next, we recall the explicit construction of the above
described spatial n-�-coalescent via Poisson point processes (see alsoLimic and
Sturm (2006)).

Consider the family P = f P ggg2 G of i.i.d. Poisson point processes on [0; 1 ) �
[0; 1] � f 0; 1gN de�ned on the �ltered probability space (
 ; F ; (F t )t � 0; P) with in-
tensity measure

dt 

[
� � (dr )( r� 1 + (1 � r )� 0)
 N]

(d! ); (2.15)

where ! = ( ! i ) i 2 N � f 0; 1gN. We assume that point processesP are adapted to
�ltration ( F t )t � 0.

Note that the second factor of the intensity measure in (2.15) is not a product
measure on [0; 1] � f 0; 1gN, in particular, it is not the same as

[
� � (dr )( r� 1 + (1 � r )� 0)

]
 N
(d! ): (2.16)

Given J � [n] and g 2 G, de�ne the labelled coalescence mapcoalJ;g : � G;n !
� G;n , which coalesces the blocks with indices speci�ed byJ and locates the new-
formed block at g, as follows:

coalJ;g (� G;n ) =




⋃

i 2 J \ [b( � )]

� i ; g



 [



� G;n n
⋃

i 2 J \ [b( � )]

(� i ; gi )



 ; � G;n 2 � G;n :

(2.17)
Using P , we construct the standard spatialn-�-coalescent C(G) ;loc

n = ( C(G) ;loc
n (t)) t � 0

as a Markov � G;n -valued process with the following properties:

� Initial state. AssumeC(G) ;loc
n (0) 2 SG;n .

� Coalescence.For each g 2 G and each point (t; r; ! ) of the Poisson point
processP g satisfying

∑
i 2 N ! i � 2, all families (� i (t � ); gi (t � )) 2 C(G) ;loc

n (t � )
such that gi (t � ) = g and ! i = 1 coalesce into a new family labelled byg,
i.e.,

C(G) ;loc
n (t) = coal f i 2 [n ] : ! i=1 ;gi( t � )= gg;g (C(G) ;loc

n (t � )) : (2.18)

� Migration. Between the coalescence events, the labels of all partition el-
ements of C(G) ;loc

n (t) perform independent random walks with transition
rates a� 15.

In what follows, we denote by �jn : � G;m ! � G;n , for m � n, (respectively,
�jn : � G ! � G;n ) the operation of projection of all families in [m] (respectively, N)
onto [n].

Entrance law. Note that, by construction, the spatial n-�-coalescent satis�es the
following consistency property:

L
[
C(G) ;loc

m jn
]

= L
[
C(G) ;loc

n

]
; n; m 2 N; n � m: (2.19)

15The adjective “between” is well defined because the set of points (t; r; ! ) of P g satisfying
the condition

P
i 2 N ! i � 2 is topologically discrete, and hence can be ordered w.r.t. the first

coordinate (= time).
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Therefore, by the Kolmogorov extension theorem, there exists aprocess

C(G) ;loc = ( C(G) ;loc (t) 2 � G )t � 0 (2.20)

such that C(G) ;loc jn = C(G) ;loc
n .

De�nition 2.2 (Limic and Sturm (2006)) . Call the processC(G) ;loc the spatial
�-coalescent corresponding to the migration rates a� and the coalescence measure
�.

2.1.2. Martingale problem. In this section, we characterise the spatial �-coalescent
as the unique solution of the corresponding well-posed martingale problem.

Let CG be the algebra of bounded continuous functionsF : � G ! R such that
for all F 2 CG there exists ann 2 N and a bounded function

Fn : � G;n ! R (2.21)

with the property that F (�) = Fn (�jn ). In words, F only depends on the fam-
ily structure of a �nite number of individuals. It is easy to check that CG sep-
arates points on � G . Given f; g 2 G and i 2 [n], de�ne the migration map
migf ! g;i : � G;n ! � G;n as

migf ! g;i (� G;n ) =

{
(� i ; g) [ (� G;n n (� i ; f )) ; (� i ; f ) 2 � G;n ;

� G;n ; (� i ; f ) =2 � G;n ;
� G;n 2 � G;n ;

(2.22)
describing the jump in which the family labelled i migrates from colonyf to colony
g.

Consider the linear operatorL (G) � de�ned as

L (G) � = L (G) �
mig + L (G) �

coal ; (2.23)

where the operatorsL (G) �
mig ; L (G) �

coal : CG ! C G are de�ned for � G 2 � G and F 2 CG

as

(L (G) �
mig F )( � G ) =

b( � Gj n)∑

i =1

∑

g;f 2 G

a� (g; f )
[
Fn (migg! f;i (� G jn )) � F (� G )

]
; (2.24)

(L (G) �
coal F )( � G ) =

∑

g2 G

∑

J �f i 2 [n ]: gi= gg;
jJ j� 2

� (�)
b( � G j n;g) ;j J j

[
Fn (coalJ;g (� G jn )) � F (� G )

]

(2.25)
(recall de�nitions ( 2.5), (2.13), (2.14) and (2.17)).

Proposition 2.3. [Martingale problem for the spatial � -coalescent with
local coalescence] The spatial � -coalescent with local coalescence de�ned in Sec-
tion 2.1.1 solves the well-posed martingale problem for(L (G) � ; Cb (� G ); � SG ) with
SG as in (2.12).

Proof : A straightforward inspection of the graphical construction yields the exis-
tence. The uniqueness is immediate because we have a duality relation, as we will
see in Section2.3. �

Remark 2.4. Note that, instead of the singleton initial condition in Proposition 2.3
(and in the graphical construction of Section 2.1.1), we can use any other initial
condition in � G .
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2.1.3. Mean-�eld and immigration-emigration � -coalescents.Some special spatial
�-coalescents will be needed in the course of our analysis of the hierarchically
interacting Cannings process. We de�ne themean-�eld � -coalescent as the spa-
tial �-coalescent with geographic space G = f 0; : : : ; N � 1g and migration ker-
nel a(i; j ) = c=N for all i; j 2 G with i 6= j . Furthermore, we de�ne the � -
coalescent with immigration-emigration as the spatial �-coalescent with geographic
spaceG = f 0; �g and migration kernel a(0; � ) = c, a(� ; 0) = 0. In other words, � is
a cemetery migration state.

2.2. Spatial � -coalescent with non-local coalescence.In this section, we construct
a new type of spatial coalescent process based on a sequence �= (� k )k2 N0 of
�nite measures on [0; 1] as in (1.28), namely, the spatial � -coalescenton G = 
 N

with non-local coalescence. For each k 2 N, we introduce two additional transition
mechanisms: (1) ablock reshu�ing of all partition elements in a ball of radius k;
(2) a non-local � -coalescenceof partition elements in a ball of radius k.

In this section, we assume that, for allk 2 N, measure � k satisfy (1.2). But we
do not assume that measure �0 satis�es (1.2). Denote

d0 = � 0f 0g: (2.26)

In Section 2.2.1, we give de�nitions, in Section 2.2.2we formulate the martingale
problem.

2.2.1. The evolution rules and the Poissonian construction.In what follows, we
consider G = 
 N . We start by extending the graphical construction from Sec-
tion 2.1.1 to incorporate the additional transition mechanisms of non-local reshuf-

ing and coalescence.

Given the �ltered probability space (
 ; F ; (F t )t � 0; P), consider Poisson point
processesP (
 N ) on

[0; 1 ) � 
 N � N0 � [0; 1] � f 0; 1gN (2.27)

having intensity measure

dt 
 d� 

(

N � 2k dk
[
� �

k (dr )
(
r� 1 + (1 � r )� 0

)
 N
]

(d! )
)

; (2.28)

where ! = ( ! i ) i 2 N � f 0; 1gN, (t; �; k; r; ! ) 2 [0; 1 ) � 
 N � N0 � [0; 1] � f 0; 1gN, dk
is counting measure onN and d� is counting measure on 
N . Again, note that the
third factor in ( 2.28) is not a product measure (compare (2.16)).

Given � ⋐ 
 N (i.e., � is a �nite subset of 
 N ) and � = f � i g
j � j
i =1 ; � i 2 �, let

resh� ;� : � 
 N ! � 
 N be the reshu�ing map that for all i moves families from
� i 2 � to � i 2 �:

resh� ;� (� 
 N ) i =

{
(� i ; � i ); � i =2 � ;

(� i ; � i ); � i 2 � ;
� 
 N 2 � 
 N ; i 2 [b(� 
 N )]: (2.29)

Let
U� = f U� (� )g� 2 � (2.30)

be a collection of independent �-valued random variables uniformly distributed
on �. We construct the standard spatial n-� -coalescent with non-local coalescence
C(
 N )

n = ( C(
 N )
n (t) 2 � 
 N ;n )t � 0 as the � 
 N ;n -valued Markov process with the

following properties:
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� Initial state. AssumeC(
 N )
n (0) 2 S
 N ;n (recall (2.8)).

� Coalescence with reshu�ing. For each point (t; �; k; r; ! ) of the Poisson
point process P (
 N ) (cf. (2.27){( 2.28)), all families ( � i ; � i ) 2 C(
 N )

n (t � )
such that ! i = 1 and � i 2 Bk (� ) coalesce into a new family with label� .
Subsequently, all families with labels � 2 Bk (� ) obtain a new label that
is drawn independently and uniformly from Bk (� ). In a formula (recall
(2.17), (2.29){( 2.30)):

C(
 N )
n (t) = reshB k( � ) ;UBk ( η)

� coalf i 2 [n ] : ! i=1 ;� i( t � )2 B k( � )g;� (C(
 N )
n (t � )) : (2.31)

Note that, in contrast with the spatial coalescent with local coalescence
from Section 2.1, the coalescence mechanism in (2.31) is no longer local: all
families whose labels are inBk (� ), k 2 N, are involved in the coalescence
event at site � 2 
 N .

� Migration. Independently of the coalescence events, the labels of all parti-
tion elements of C(
 N )

n (t) perform independent random walks with transi-
tion rates a(N ) (�; �) (recall (1.26) and (2.13)).

As in Section 2.1, the consistency-between-restrictions property allows us to
apply the Kolmogorov extension theorem to the family f C(
 N )

n gn 2 N to construct
the Markov process

C(
 N ) (2.32)
taking values in � 
 N .

De�nition 2.5. The processC(
 N ) is called the spatial � -coalescent with non-local
coalescence corresponding to the resampling measures (�k )k2 N0 (recall (1.28)) and
the migration coe�cients ( ck )k2 N0 (recall (1.25)).

Proposition 2.6. [Feller property] The processC(
 N ) is a c�adl�ag strong Markov
process with the Feller property.

Proof : This is an immediate consequence of the Poissonian construction. �

2.2.2. Martingale problem. In this section, we characterise the spatial �-coalescent
with non-local coalescence as the solution of the corresponding martingale problem.

Given � 
 N ;n 2 � 
 N ;n and � 2 
 N , denote the number of families of� 
 N ;n with
labels in Bk (� ) (recall (1.23)) by

b(� ) = b(� 
 N ;n ; Bk (� )) = jf (� i ; � i ) 2 � 
 N ;n : � i 2 Bk (� )gj 2 N: (2.33)

Recall the de�nition of the algebra of test functions CG from Section 2.1.2. Let
� 
 N = f (� i ; � i )gi 2 N 2 � 
 N , F 2 C
 N and F (�) = Fn (�jn ) (recall (2.21)). Consider
the linear operator L (
 N ) � de�ned as

L (
 N ) � = L (
 N ) �
mig + L (
 N ) �

coal ; (2.34)

where the linear operatorsL (
 N ) �
mig and L (
 N ) �

coal are de�ned as follows (recall (2.21)).
The migration operator is16

(
L (
 N ) �

mig F
)

(� 
 N ) =
b( � 
 N j n)∑

i =1

∑

�;� 2 
 N

a(N ) � (�; � )
[
Fn (mig � ! �;i (� 
 N jn )) � F (� 
 N )

]
;

(2.35)

16Note that a( N ) = a( N ) � for the hierarchical random walk (cf. (2.24)).
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and the block-coalescence-reshu�ing operator is (recall (2.14), (2.17), (2.29) and
(2.33))

(
L (
 N ) �

coal F
)

(� 
 N ) =
∑

� 2 
 N

∑

k2 N0

N � 2k
∑

� 1 2 B k( � )

N � k
∑

� 2 2 B k( � )

N � k � � �
∑

� |Bk ( η) |2 B k( � )

N � k

�
∑

J � [b( � )] ;
j J j� 2

� (� k)
b( � ) ;j J j

[
Fn (reshB k( � ) ;� � coalf i 2 J : � i2 B k( � )g;� (� 
 N jn )) � F (� 
 N )

]
:

(2.36)

Proposition 2.7. [Martingale problem: Spatial � -coalescent with non-
local coalescence] The spatial � -coalescent with non-local coalescenceC(
 N ) de-
�ned in Section 2.2.1 solves the well-posed martingale problem(L (
 N ) � ; C
 N ; � S
 N

)
with S
 N as in (2.12).

Proof : A straightforward inspection of the graphical construction in Section 2.2.1
yields the existence of a solution. Uniqueness on �nite geographic spaces is clear:
this follows in the same way as for the single-site case. Once we have well-posedness
for �nite geographic spaces, we can show uniqueness forG = 
 N via approxima-
tion. The approximation via �nite geographic spaces follows from thefact that the
occupation numbers of the sites are stochastically smaller than in the case of pure
random walks (seeLiggett and Spitzer (1981)). �

Remark 2.8. Note that, instead of the singleton initial condition in Proposition 2.7
(and in the graphical construction of Section 2.2.1), we can use any other initial
condition in � 
 N .

2.3. Duality relations. We next formulate and prove the duality relation between
the Cc;�

N -process from Section1.4.4 and the spatial � -coalescent with non-local
coalescenceC(
 N ) described so far. This follows a general pattern for all choices of
the geographic spaceG in (2.2). We only give the proof for the caseG = 
 N .

Recall (2.1). The construction of the duality function H (�; �) requires some
new ingredients. For n 2 N and ' 2 Cb (E n ; R), consider the bivariate function
H (n )

' : P(E)G � � G;n ! R of the form

H (n )
' (x; � G;n ) =

∫

E b

(
b⊗

i =1

x � π−1 ( i)

(
dui

)
)

'
(
u� (1) ; u� (2) ; : : : ; u� (n )

)
; (2.37)

where x = ( x � )� 2 G 2 P (E)G , � G;n 2 � G;n , b = b(� G;n ) = j� G;n j (cf. (2.5)),
(� i ) i 2 [b] = L(� G;n ) (cf. ( 2.10)) are the labels of the partition � G;n , and (with a
slight abuse of notation) � : [n] ! [b] is the map from Remark 2.1. In words, the
functions in (2.37) assign the same type to individuals that belong to the same
family. Note that these functions form a family of functions on P(E)G ,

{
H (n )

' (�; � G;n ) : P(E)G ! R j � G;n 2 � G;n ; n 2 N; ' 2 Cb (E n ; R)
}

; (2.38)

that separates points. The C � -process with block resampling and the spatial �-
coalescent with non-local coalescence are mutuallydual w.r.t. the duality function
H (�; �) given by

H (x; ('; � G;n )) = H (n )
' (x; � G;n ); x 2 E = P(E)G ; ('; � G;n ) 2 E0; (2.39)
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with E0 = [ n 2 N0 (Cb (E n ; R) � � G;n ).
We proceed with the following observation. Recall the de�nition of duality in

the paragraph including (2.1).

Remark 2.9. (a) Let X and Y be two processes that are dual w.r.t. a continuous
and bounded duality function H (�; �). Assume that X and Y are solutions
to martingale problems corresponding to operatorsL X , respectively, L Y .
Then the generator relation

[L X (H (�; Y0))]( X 0) = [ L Y (H (X 0; �))]( Y0); for all (X 0; Y0) 2 E � E 0; (2.40)

is equivalent to the duality relation ( 2.1) (see, e.g.,Ethier and Kurtz (1986,
Section 4.4)).

(b) Item (a) gives the duality function H (�; �) for all t � 0 and n 2 N, as is
proved in Proposition 2.10 below. In particular, the following holds

E
[
H (n )

' (X (G) (t); C(G) (0)jn )
]

= E
[
H (n )

' (X (G) (0); C(G) (t)jn )
]

; (2.41)

with X (G) as below Proposition1.4 and C(G) as in De�nition 2.5.

In our context, we have to verify the following relation for the linear operators
in the martingale problem.

Proposition 2.10. [Operator level duality] For any of the geographic spaces
G = 
 N , G = f 0; : : : ; N � 1gK ; K 2 N and G = f 0; �g the following holds. For all
n 2 N, for all H (n )

' as in (2.37), all x 2 P (E)G , and all � G 2 � G ,

(
L (G)H (n )

' (�; � G jn )
)

(x) =
(

L (G) � H (n )
' (x; �jn )

)
(� G ): (2.42)

Proof : We check the statement forG = 
 N . In this case, L (G) is as in (1.35) and
L (G) � is as in (2.34). The proof for the other choices ofG is left to the reader.

The claim follows from a straightforward inspection of (1.37{ 1.38) and (2.35{
2.36), respectively. Indeed, duality of the migration operators in (1.37) and (2.35)
is evident:

(
L (G)

mig H (n )
' (�; � G jn )

)
(x) =

(
L (G) �

mig H (n )
' (x; �jn )

)
(� G ): (2.43)

Let us check the duality of the resampling and coalescence operators in (1.38)
and (2.36). It is enough to assume thatd0 = 0, since it is well-known that Fleming-
Viot operator L d (cf. (1.18)) is dual with the generator of the Kingman coalescent
which is the special case ofL (G) �

coal (cf. (2.25)) with � 0 = d0� 0.
By a standard approximation argument, it is enough to consider the duality

test functions in (2.37) of the product form, i.e., with ' (u) =
∏n

i =1 ' i (ui ), where
u = ( ui )n

i =1 2 E n and ' i 2 Cb (E ). Using (1.38){( 1.39), (2.14), (2.33) and simple
algebra, for x 2 P (E)G and � G 2 � G we can rewrite the action of the resampling
operator on the duality test function as follows (where for ease ofnotation we
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assume that � G 2 SG (cf. (2.12)), i.e., � G has the singleton family structure)
(

L (
 N )
res H (n )

' (�; � G jn )
)

(x)

=
∑

� 2 G

∑

k2 N0

N � 2k
∫

[0;1]
� �

k (dr )N � k
∑

� 2 B k( � )

∫

E
x � (da)

�




b( � )∏

i =1

〈(
� r;a;B k( � ) (x)

)

� π−1 ( i)

;
∏

j : � ( j )= i

' j

〉

�
b( � )∏

i =1

〈

x � π−1 ( i)
;

∏

j : � ( j )= i

' j

〉



=
∑

� 2 G

∑

k2 N0

N � 2k
∫

[0;1]
� �

k (dr )N � k
∑

� 2 B k( � )

∫

E
x � (da)

�






∑

J � [b( � )]
j J j� 0

∏

i 2 [b( � )] nJ

〈

(1 � r )y� π−1 ( i) ;k ;
∏

j : � ( j )= i

' j

〉
∏

i 2 J

〈

r� a ;
∏

j : � ( j )= i

' j

〉

�
b( � )∏

i =1

〈

x � π−1 ( i)
;

∏

j : � ( j )= i

' j

〉



=
∑

� 2 G

∑

k2 N0

N � 2k
∑

J � [b( � )] ;
j J j� 2

� (� k)
b( � ) ;j J j

�



N � k
∑

� 2 B k( � )

∏

i 2 [b( � )] nJ

〈

N � k
∑

� 2 B k( � )

x � ;
∏

j :� ( j )= i

' j

〉
∏

i 2 J

〈

x � ;
∏

j : � ( j )= i

' j

〉

�
b( � )∏

i =1

〈

xgπ−1 ( i)
;

∏

j : � ( j )= i

' j

〉

 : (2.44)

On the other hand, according to (2.36) (also recall (2.17), (2.29)), we have
(

L (
 N ) �
coal H (n )

' (x; �jn )
)

(� G ) =
∑

� 2 
 N

∑

k2 N0

N � 2k
∑

J � [b( � )] ;
j J j� 2

� (� k)
b( � ) ;j J j

�




∑

� 1 2 B k( � )

N � k
∑

� 2 2 B k( � )

N � k : : :
∑

� b( η) 2 B k( � )

N � k

�




∏

i 2 [b( � )] nJ

〈

x � i ;
∏

j : � ( j )= i

' j

〉 〈

x � min {l : l∈J} ;
∏

j : � ( j )2 J

' j

〉

�
b( � )∏

i =1

〈

xgπ−1 ( i)
;

∏

j : � ( j )= i

' j

〉





 : (2.45)

Comparing (2.45) with ( 2.44), we get the claim. �
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2.4. The long-time behaviour of the spatial� -coalescent with non-local coalescence.
We next investigate the long-time behaviour of the spatial � -coalescent with non-
local coalescence. Subsequently, the duality relation allows us to translate results
on the long-time behaviour of the spatial � -coalescent with non-local coalescence
into results on the long-time behaviour of the Cc;�

N -process.

2.4.1. The behaviour ast ! 1 . In this section, we prove the existence and unique-
ness of a limiting state for the spatial � -coalescent with non-local coalescence as
t ! 1 .

Proposition 2.11. [Limiting state] Start the C(
 N ) -process from (2.32) in a
labelled partition f (� i ; � i )gn

i =1 , where f � i gn
i =1 form a partition of N and f � i gn

i =1 are
the corresponding labels. Ifx is a translation-invariant shift-ergodic random state
with mean � 2 P (E), then

L
[
H (n )

' (x; C(
 N )
n (t))

]
=)
t !1

L
[
H (n )

' (� ; C(
 N )
n (1 ))

]
8 n 2 N; (2.46)

where C(
 N )
n is as in Section 2.2.1 and H (n )

' as in (2.37).

Proof : We �rst observe that jC(
 N )
n (t)j is monotone non-increasing, so that there

exists a limit for the number of partition elements. This implies that the partition
structure converges a.s. to a limit partition, which we call C(
 N ;n ) (1 ) 2 � 
 N ;n

(cf. (2.7)). We must prove that the locations result in an e�ective averaging of the
con�guration x, so that we can replace thejC(
 N )

n (t)j-locations by any tuple for the
(constant) con�guration � . This is a standard argument (see, e.g., the proof of the
ergodic theorem for the voter model inLiggett (1985)). �

Recall the de�nition of the spatial �-coalescent with immigration-em igration
introduced in Section 2.1.3.

Corollary 2.12. [Limiting state of the � -coalescent with immigration-
emigration] The analogous to(2.46) statement holds if we substituteC(
 N )

n with
the the � -coalescent with immigration-emigration (see Section2.1.3), i.e., the spa-
tial � -coalescentC(G) ;loc

n with geographic spaceG = f 0; �g and migration kernel
a(0; � ) = c, a(� ; 0) = 0 .

L
[
H (n )

' (x; C( f 0;�g ) ;loc
n (t))

]
=)
t !1

L
[
H (n )

' ((y; x � ); C( f 0;�g ) ;loc
n (1 ))

]
8y 2 P (E); n 2 N;

(2.47)
where H (n )

' as in (2.37) and x = ( x0; x � ) 2 P (E)2. Note that the right hand side
of (2.47) does not depend ony.

2.4.2. The dichotomy: single ancestor versus multiple ancestors.A key question
is whether the C(
 N ) -process from (2.32) converges to a single labelled partition
element as t ! 1 with probability one. To answer this question, we have to
investigate whether two tagged partition elements coalesce with probability one or
not. Recall that, by the projective property of the coalescent, we may focus on
the subsystem of just two dual individuals, because this translates into the same
dichotomy for any C(
 N )

n -coalescent and hence for the entrance law starting from
countably many individuals. However, there is additional reshu�ing a t all higher
levels, which is triggered by a corresponding block-coalescence event. Therefore, we
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consider two coalescing random walks (Z 1
t ; Z 2

t )t � 0 on 
 N with migration coe�cients
(�ck (N )) k2 N0 (cf. (1.62)) and coalescence at rates (� k )k2 N0 . Consider the time-t
accumulated hazard for coalescenceof this pair:

HN (t) =
∑

k2 N0

� k N � k
∫ t

0
1

{
d(Z 1

s ; Z 2
s ) � k

}
ds: (2.48)

Here, the rate N � 2k to choose ak-block is multiplied by N k because all partition
elements in that block can trigger a coalescence event. This explainsthe factor
N � k in (2.48). Let

HN � lim
t !1

HN (t): (2.49)

We have coalescence of the random walks (= common ancestor) withprobability
one, whenHN = 1 a.s., but separation of the random walks (= di�erent ancestors)
with positive probability, when HN < 1 a.s.

Lemma 2.13. [Zero-one law] HN = 1 a.s. if and only if �HN = E[HN ] = 1 .
Moreover, under the weak regularity condition in (1.68) the latter is equivalent to

∑

k2 N0

1
ck

k∑

l =0

� l = 1 : (2.50)

Proof : Write HN =
∑

k2 N0
wk L(k) with

wk (N ) =
∑

j � k

� j N � j ; L (k) =
∫ 1

0
1f d(Z 1

s ; Z 2
s ) = kgds: (2.51)

Note that wk (N ) < 1 because of condition (1.32). We want to show that �HN = 1
implies HN = 1 (the reverse is immediate). Recall from Section1.5.3 that Pt (�; �)
denotes the time-t transition kernel of the hierarchical random walk on 
 N with
migration coe�cients (� ck (N )) k2 N0 given by (1.62). In the computations below, we
pretend that the coe�cients are ( ck )k2 N0 . Afterwards, we can replaceck by �ck (N ).

Note that ( Z 1
s � Z 2

s )s� 0 has the same law as a single copy (Zs)s� 0 of the hierar-
chical random walk but moving at twice the speed. Thus, in law, we mayreplace
L(k) by L (k) =

∫ 1
0 1fj Z2sj = kgds.

Step 1. As shown in Dawson et al. (2005, Eq. (3.1.5)), for the hierarchical random
walk with jump rate 1,

Pt (0; � ) =
∑

j � k

K jk (N )
exp [� hj (N )t]

N j ; t � 0; � 2 
 N : j� j = k 2 N0; (2.52)

where

K jk (N ) =






0; j = k = 0 ;

� 1; j = k > 0; j; k 2 N0;
N � 1; otherwise,

(2.53)

and

hj (N ) =
N

N � 1
r j (N ) +

1∑

i>j

r i (N ); j 2 N; (2.54)

where, for the hierarchical random walk de�ned in Section1.4.2,

r j (N ) =
1

D(N )

∑

i � j

ci � 1

N 2i � j � 1 ; j 2 N; (2.55)
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with D(N ) the normalising constant such that
∑

j 2 N r j (N ) = 1.
The random walk in Dawson et al.(2005) has jump rate 1, while our hierarchical

random walk has jump rate

D � (N ) =
∑

� 2 
 N

a(N ) (0; � ) =
∑

k2 N

(N k � N k � 1)
∑

j � k

cj � 1

N 2j � 1

=
∑

m 2 N0

cm

N m

(
1 �

1
N m +1

)
:

(2.56)

Therefore, after computing HN with the help of the above formulas, we must divide
HN by D � (N ) to get the correct expression.

Note that ( 2.54{ 2.55) simplify considerably when N ! 1 , namely,

hj (N ) � r j (N ) �
cj � 1

D(N )N j � 1 ; D (N ) � c0; (2.57)

while also (2.51) and (2.56) simplify to

wk (N ) �
� k

N k ; D � (N ) � c0: (2.58)

Moreover, because lim supk !1
1
k logck < logN and lim supk !1

1
k log � k < logN

(see the footnotes in Sections1.4.2{ 1.4.3), the following holds:

For every N 2 Nnf 1g the quantities hj (N ), r j (N ), D (N ), wk (N ) and D � (N )
are bounded from above and below by positive �nite constants timestheir
N ! 1 asymptotics uniformly in the indices j; k:

(2.59)

Step 2. For M 2 N0, de�ne the truncated hazard

H (M )
N =

M∑

k=0

wk (N )L (k): (2.60)

For a non-negative random variable V with a �nite second moment, Cauchy-
Schwarz gives

Pf V > 0g � (E[V ])2=E[V 2]: (2.61)

Therefore,

P
{

H (M )
N

/
E

[
H (M )

N

]
> 0

}
�

(
E

[
H (M )

N

])2
/

E
[
(H (M )

N )2
]

: (2.62)

To compute the quotient in the right-hand side of (2.62), we write

E
[
H (M )

N

]
=

M∑

k=0

wk (N )
∫ 1

0
ds Pfj Z2sj = kg

= 1
2

M∑

k=0

wk (N )
∑

� 2 @Bk(0)

G(0; � )

(2.63)
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and

E
[(

H (M )
N

)2
]

=
M∑

k;l =0

wk (N )wl (N )
∫ 1

0
ds

∫ 1

0
dt P fj Z2s j = kgPfj Z2t j = lg

= 1
2

M∑

k;l =0

wk (N )wl (N )
∑

� 2 @Bk(0)
� ′2 @Bl(0)

G(0; � )G(0; � 0 � � ):

(2.64)
Here, G is the Green function of the hierarchical random walk, which by (2.52)
equals

G(0; � ) = Gk (N ); � 2 
 N : j� j = k 2 N0; Gk (N ) =
∑

j � k

K jk (N )
1

hj (N )N j :

(2.65)
Let

N [k] =
{

1; k = 0 ;
N k � N k � 1; k > 0;

�N [k] =
{

1; k = 0 ;
N k � 2N k � 1; k > 0;

(2.66)

denote the number of sites at distancek from the origin, respectively, at distance
k from both the origin and a given site itself at distance k from the origin. A
straightforward counting argument shows that

r.h.s.(2.63) = 1
2

M∑

k=0

wk (N ) N [k] Gk (N );

r.h.s.(2.64) = 1
2

M∑

k;l =0

wk (N ) wl (N ) N [k] N [l ] G2
k_ l (N )

+ 1
2

M∑

k=0

w2
k (N ) N [k] Gk (N )

{( �N [k] � N [k]
)

Gk (N )

+
k � 1∑

m =0

N [m] Gm (N )
}

:

(2.67)

For N ! 1 , substituting ( 2.53) and (2.57) into ( 2.65) and the resulting expression
into ( 2.67), we get

E
[
H (M )

N

]
�

M∑

k=0

� k

∑

m � k

1
cm

(2.68)

and

E
[(

H (M )
N

)2
]

� 2
M∑

k;l =0

� k � l




∑

m � k_ l

1
cm




2

; (2.69)

where we use that the dominant term in the sum de�ning Gk (N ) in ( 2.65) is the
one with j = k + 1, and we also use that � k = 1

2 � k as in (1.57). Thus, for every
M , the right-hand side of (2.62) is bounded from below by a number that tends to
1
2 as N ! 1 . Together with the observation made below (2.57{ 2.58), it therefore
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follows that there exists a � > 0 independent ofM and N such that

P
{

H (M )
N

/
E

[
H (M )

N

]
> 0

}
� �: (2.70)

Step 3.
SinceH (M )

N � HN and HN = lim M !1 H (M )
N , it follows from ( 2.70) that

P
{

HN
/

E[HN ] > 0
}

� �: (2.71)

Thus, E[HN ] = 1 implies Pf HN = 1g � � . But the event f HN = 1g lies in the
tail-sigma-algebra of the hierarchical random walk, which is trivial, and therefore
this event has probability 0 or 1. Consequently,Pf HN = 1g = 1.

Step 4. Finally, replacing ck by �ck (N ) = ck + N � 1� k+1 (recall (1.62)), noting that
(2.59) continues to apply, and using (2.68) with M = 1 , we get that Pf HN =
1g = 1 if and only if

∑

k2 N0

� k

∑

m � k

1
cm + N � 1� m +1

= 1 ; (2.72)

which is the same as
∑

k2 N0

1
ck + N � 1� k+1

k∑

l =0

� l = 1 : (2.73)

Under the weak regularity condition in (1.68) the latter is equivalent to ( 2.50). �

3. Well-posedness of martingale problems

Our task in this section is to prove Propositions1.1{ 1.4, i.e., we have to show that
the martingale problem for the single-colony process, the McKean-Vlasov process,
the multi-colony process and the hierarchically interacting Canningsprocess are all
well-posed (= have a unique solution). The line of argument is the samefor all. In
Section 3.1, we make some preparatory observations. In Section3.2, we give the
proofs.

3.1. Preparation. We �rst show that the duality relation and the characterisation
of the dual process via a martingale problem allow us to prove theexistenceof a
solution to the martingale problem that is strong Markov and has c�adl�ag paths. To
this end, observe that via the dual process we can specify a distribution for every
time t and every initial state, since the dual is a unique solution of its martingale
problem (being a projective limit of a Markov jump process de�ned for all times
t � 0). Since the family f H (�; Y0) : Y0 2 E0g (cf. (2.39)) separates points, this
uniquely de�nes a family of transition kernels (Pt;s )t � s� 0 satisfying the Kolmogorov
equations, and hence de�nes uniquely a Markov process. By construction, this
Markov process solves the martingale problem, provided we can verify the necessary
path regularity.

We need to have c�adl�ag paths to obtain an admissible solution to the martin-
gale problem. For �nite geographic space this follows from the theory of Feller
semigroups (seeEthier and Kurtz (1986, Chapter 4)). For 
 N , we consider the
exhausting sequence (B j (0)) j 2 N0 and use the standard tightness criteria for jump
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processes to obtain a weak limit point solving the martingale problem. The essen-
tial step is to control the e�ect on a single component of the 
ow of individuals in
and out of B j (0) in �nite time as j ! 1 .

It is standard to get uniquenessof the solution from the existence of the dual
process (see, e.g.,Etheridge (2000, Section 1.6) orEthier and Kurtz (1986, Propo-
sition 4.4.7 and Theorem 4.4.11)). Again, this works for all the choicesof G in
(2.2), with a little extra e�ort when G = 
 N .

3.2. Proofs of well-posedness.In this section, we prove Propositions1.1{ 1.4. We
follow the line of argument of Evans (1997, Theorem 4.1) and derive existence and
uniqueness of the spatial Cannings process from the existence ofthe corresponding
spatial Cannings-coalescent established in Section2. The main tool is duality (cf.
Proposition 2.10respectively (2.41)). The proofs of Propositions1.1{ 1.4 follow the
same pattern for G = f 0; : : : ; N � 1g, G = f 0; �g and G = 
 N .

Proof of Propositions 1.1{ 1.4:
� Well-posedness.First we show that there exists a Markov transition kernel Qt

on P(E)G such that, for all ' 2 Cb (E n ; R), � 2 � G;n (cf. (2.7)), X 2 P (E)G and
t � 0,

∫
Qt (X; dX 0)H (n )

' (X 0; � ) = E
[
H (n )

' (X; C(G)
n (t)) j C(G)

n (0) = �
]

; (3.1)

where H (n )
' as in (2.37) and C(G)

n as in (2.20) resp. (2.32) depending on the choice
of G. Once (3.1) is established, the general theory of Markov processes implies the
existence of aHunt-processwith the transition kernel Qt (see, e.g.,Blumenthal and
Getoor (1968, Theorem I.9.4)). This c�adl�ag process is unique and coincides with
the processX (G) from (1.8) resp. (1.20) resp. from below Proposition 1.4, since
(3.1) implies (2.41). There can be at most one process satisfying (2.41), since the
family of duality functions H (n )

' (�; � ) separates points onP(E)G .
Finally, the transition kernel Qt satisfying (3.1) exists as a solution of the Haus-

dor� moment problem ( 3.1) and is Markov due to the Markov property of the
spatial coalescent on the right-hand side of (3.1) (see Evans (1997, Theorem 4.1)
for details).

� Feller property. To show that X (G) is a Feller process we use duality. It is enough
to show that, for any F 2 F an appropriate test-function and any t � 0, the map

P(E)G 3 x 7! E
[
F (X (G) (t)) j X (G) (0) = x

]
2 R (3.2)

is continuous. In (3.2), instead of the test functions F (�) 2 F , it is enough to take
the duality test functions H (n )

' (�; � G;n ) from (2.37). The duality in ( 2.41) implies
that

E
[
H (n )

' (X (G) (t); � G;n jn ) j X (G) (0) = x
]

= E
[
H (n )

' (x; C(G) (t)jn )
]

; t � 0: (3.3)

Recall that we equip P(E)G with the topology of weak convergence. De�nition
(2.37) readily implies that the right-hand side of ( 3.3) is continuous in x. �
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4. Properties of the McKean-Vlasov process
with immigration-emigration

The purpose of this section is to show that theZ c;d; �
� -process with immigration-

emigration (cf. Section 1.3.3) is ergodic (Section 4.1), to identify its equilibrium
distribution in terms of the dual (Section 4.3), and to calculate its �rst and second
moment measure (Section4.4). The characterisation via the dual will allow us to
also show that the equilibrium depends continuously on the migration parameter
� (Section 4.2), a key property that will be needed later on and for which we need
that the �-coalescent is dust-free (recall (1.3)).

4.1. Equilibrium and ergodic theorem. The equilibrium � = � c;d; �
� 2 P (P(E)) is

the solution of the equation
〈

�; L c;d; �
� F'

〉
= 0 ; ' 2 Cb (E n ); n 2 N; (4.1)

where we recall (1.15{ 1.18) for the form of F' and L c;d; �
� .

Proposition 4.1. [Ergodicity] For every initial state Z c;d; �
� (0) 2 P (E),

L
[
Z c;d; �

� (t)
]

=)
t !1

� c;d; �
� (4.2)

and the right-hand side is the unique equilibrium of the process. The convergence
holds uniformly in the initial state.

Proof : We use the dual process, namely, the �-coalescent with immigration-emi-
gration (see Section2.1.3), to show that the expectation in the right-hand side of the
duality relation ( 2.41) converges. Indeed, we showed in (2.46) in Proposition 2.11
and its Corollary 2.12 that the state of the duality function H (X 0; �), cf., (2.37),
applied to the dual process converges in law to a limiting random variable ast ! 1 .
The duality function viewed as a function of the �rst argument generates a law-
determining family f H (�; C0) : C0 2 E0g (E0 as below (2.39)) and hence (2.46) proves
convergence.

It remains to show that the limit is independent of the initial state. In deed,
this is implied by the fact that if we start with �nitely many partition elements,
then all partition elements eventually jump to the cemetery location f�g where
all transition rates are zero and the state is� . The latter implies that the limit
is unique. SinceP(E) is compact and the process is Feller, there must exist an
equilibrium, and this equilibrium must be equal to the t ! 1 limit. �

4.2. Continuity in the centre of the drift. We want to prove that

P(E) 3 � 7! � c;d; �
� 2 P (P(E)) (4.3)

is uniformly continuous for suitably chosen metrics (in the weak topology on the
respective metrisable spaces). We will choose the metrics in (4.7{ 4.8) below. Re-
call the de�nition of the duality functions H from (2.38{ 2.39). Since the family
f H ( � ; C0) : C0 2 E0g is dense inCb (P(E); R), we can approximate any function in
Cb (P(E); R) by duality functions in the supremum norm. In fact, even the smaller
family f H ' ( � ; ff 1g; : : : ; f ngg) : n 2 N; ' 2 Cb (E )g is dense inCb (P(E); R). It is
enough to prove uniform continuity for the duality function uniform ly in the family,
even with the additional restriction k' k1 < 1. For this purpose, we analyse the
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limiting random variable for the corresponding dual as a function of � in the limit
as t ! 1 .

If ( Cc;�
t )t � 0 denotes the spatial �-coalescent with immigration-emigration star t-

ing from f (f 1g; 0); : : : ; (f ng; 0)g and jumping to the cemetery state f�g at rate c,
then H (�; C c;�

1 ) uniquely determines the McKean-Vlasov limit law � c;d; �
� for t ! 1 .

Recall that we associate the distribution of types� with the cemetery state. It is
clear that Cc;�

1 = lim t !1 Cc;�
t exists. The random variable Cc;�

1 has partition
elements that are all located at the cemetery state.

Let
Pn;k = P

{
jCc;�

1 j = k j Cc;�
0 = ff 1g; : : : ; f ngg

}
: (4.4)

For all � 2 P (E) and all ' 2 Cb (E ) with k' k1 < 1, taking H ' (� ; (f 1g; : : : ; f ngg) =
h�; ' i n we have

E
[
H (� ; Cc;�

1 ) j Cc;�
0 = ff 1g; : : : ; f ngg

]
=

n∑

k=1

Pn;k h�; ' i k : (4.5)

From the right-hand side of (4.5), we read o� that the family of functions
{

E
[
H ' (� ; Cc;�

1 ) j Cc;�
0 = ff 1g; : : : ; f ngg

]
: n 2 N

}
is uniformly continuous in � .

(4.6)
On P(E) we choose the metric

� P (E ) (�; � 0) �
∑

k2 N

2� k jh� � � 0; ' k ij ; �; � 0 2 P (E); (4.7)

where f ' k 2 C(E): k 2 Ng with supk2 N k' k k1 < 1 separates points and therefore
generates the topology. OnP(P(E)), we choose the metric

� P (P (E )) (X; X 0) �
∑

n 2 N

∑

k2 N

2� k � n E [jH ' k (X � X 0; ff 1g; : : : ; f ngg)j] ;

X; X 0 2 P (P(E)) :
(4.8)

Combining (4.6{ 4.8), we get the uniform continuity of ( 4.3).

4.3. Structure of the McKean-Vlasov equilibrium. In the case of the McKean-Vlasov
Fleming-Viot processes, the equilibrium� c;d; 0

� can be identi�ed as an atomic mea-
sure of the form

∑

i 2 N

[
Wi

i � 1∏

j =1

(1 � Wj )
]

� Ui (4.9)

with ( Ui ) i 2 N i.i.d. � -distributed and ( Wi ) i 2 N i.i.d. BETA(1 ; c
d )-distributed, inde-

pendently of each other (cf. Dawson et al. (1995)). What we can say about the
equilibrium � c;d; �

� ?

Proposition 4.2. [Towards a representation for McKean-Vla sov equilib-
rium] Let � c;d; �

� be the equilibrium of the processZ c;d; �
� = ( Z c;d; �

� (t)) t � 0 with re-
sampling constantd and resampling measure� 2 M f ([0; 1]). Assume that � has
the dust-free property (recall (1.3)).

(a) The following decomposition holds:

� c;d; �
� = L

[
∑

i 2 N

Vi � Ui

]

: (4.10)
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Here, (Vi ) i 2 N and (Ui ) i 2 N are independent sequences of random variables
taking values in [0; 1], respectively, P(E). Moreover, (Ui ) i 2 N is i.i.d. with
distribution � ,

∑
i 2 N Vi = 1 a.s., and

Vi = Wi

i � 1∏

j =1

(1 � Wj ); (4.11)

where
(Wj ) j 2 N (4.12)

is a sequence of[0; 1]-valued random variables whose joint distribution is
uniquely determined by the moment measures of� c;d; �

� (which can be ex-
pressed in terms of the dual coalescent process) and dependson c; d and � .
(See Remark 4.3 below.)

(b) If � =2 M = f � u : u 2 Eg and c; d > 0, then

0 � � c;d; �
� (M ) < 1: (4.13)

Proof :

(a) The distribution and the independence of (Ui ) i 2 N follow from the representa-
tion of the state at time t 2 [0; 1 ] in terms of the entrance law of the �-coalescent
starting from the partition into singletons: ff 1g; f 2g; : : :g. This representation is
a consequence of the duality relation in (2.41) and de Finetti's theorem, together
with the dust-free condition on � in ( 1.3), which guarantees the existence of the
frequencies of the partition elements at timet. Indeed, every state, including the
equilibrium state, can be written as the limit of the empirical distributio n of the
coalescent entrance law starting from the partition ff 1g; f 2g; : : :g at site 1, where
we assign to each dual individual the type of its partition element at time 1 , drawn
independently from � , the cemetery state. Here, we use the fact that if we condi-
tion individuals not to coalesce with a given individual, respectively, its subsequent
partition element, then the process is again a coalescent for the smaller (random)
subpopulation without that individual, respectively, its subsequent partition ele-
ment.

The (Vj ) j 2 N are the relative frequencies of the partition elements ordered accord-
ing to their smallest element. By construction, (Vi ) i 2 N and (Ui ) i 2 N are independent.

In principle, via the duality we can express the moments in equilibrium

E� c,d,�
θ

[hX; f i n ] (4.14)

in terms of h�; f i k , k = 1 ; : : : ; n, and the coalescence probabilities before the migra-
tion jumps into the cemetery state. The latter in turn can be calculated in terms
of

c; d; rk (1 � r )n � k �(d r ): (4.15)

These relations uniquely determine the distribution of the atom sizes, which in turn
uniquely determines the marginal distribution of the Wi 's via (4.11).

(b) First consider the case � = � 0. Let us verify that, for c > 0 and � =2 M ,
there can be no mass inM . Indeed, if there would be an atom somewhere inM ,
then there would also be an atom inM after we merge types into a �nite type set.
However, in the latter situation the Wi 's are BETA-distributed, hence do not have
an atom at 0 or 1, and so also the law of theVi 's has no atom at 0 or 1. This
immediately gives the claim, because it means that� c;d; �

� (M ) = 0.
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Next, consider the case � 6= � 0. Then new types keep on coming in. We need to
prove that the event that C( f 0;�g )

1 (the limit of the dual coalescent) contains more
than one partition element has a positive probability. But this is obviously true
when c; d > 0. �

Remark 4.3. It is well known (cf. Dawson et al.(1995)) that if � = � 0 (the McKean-
Vlasov Fleming-Viot process), then theWi 's are i.i.d. with distribution BETA(1 ; c

d ).
It remains an open problem to identify the law of the Wi 's for the general Cannings
resampling as function of the ingredients in (4.15). We note that if the Wi 's happen
to be independent, thenWi has distribution BETA(1 � �; i� + � ) for some� 2 [0; 1]
and � 2 [0; 1 ) (seePitman (2006, Theorem 3.4)).

4.4. First and second moment measure.We can identify the �rst and second mo-
ments of the equilibrium explicitly, and we can use the outcome to calculate the
variance of M ( j )

k for k = 0 ; : : : ; j , the interaction chain de�ned in Section 1.5.2.
Recall the de�nition of E� θ [Var � ( )] from (1.56) and of Varx ( ) from (1.54). Recall
� = �([0; 1]).

Proposition 4.4. [Variance] For every  2 Cb(E ),

E� c,d,�
θ

[Var � ( )] =
∫

P (E )
� c;d; �

� (dx)
(〈

 2; x
〉

� h  ; x i 2
)

=
2c

2c + � + 2 d
Var � ( ) :

(4.16)

Proof : We calculate the expectation ofh'; x i , ' 2 Cb(E ), and h'; x 
 2 i , ' 2 Cb(E 2),
in equilibrium.

It follows from ( 4.1) with � = � c;d; �
� that

n = 1 ; ' 2 Cb(E ) : 0 = c
∫

P (E )
� (dx) h'; (� � x)i ; (4.17)

i.e.,
∫

P (E ) � (dx) h'; x i = h'; � i . It further follows that, for n = 2 ; ' 2 Cb (E 2),

0 = � 2c
∫

P (E )
� (dx)

〈
'; x 
 2〉

+ c
∫

P (E )
� (dx) [h'; � 
 xi + h'; x 
 � i ]

+ 2 d
∫

P (E )
� (dx)

(∫

E
x(da)

〈
'; � 
 2

a

〉
�

〈
'; x 
 2〉)

+ �
∫

P (E )
� (dx)

∫

E
x(da)

〈
'; (� a � x) 
 2

〉
:

(4.18)

We can rewrite (4.18) as
∫

P (E )
� (dx)

∫

E
x(da)

〈
'; (� a � x) 
 2

〉

=
∫

P (E )
� (dx)

(∫

E
x(da)

〈
'; � 
 2

a

〉
�

〈
'; x 
 2〉)

=
c

� + 2 d

(

2
∫

P (E )
� (dx)

〈
'; x 
 2〉

�
∫

P (E )
� (dx) [h'; � 
 xi + h'; x 
 � i ]

)

:

(4.19)
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From this, we see that
∫

P (E )
� (dx)

〈
'; x 
 2〉

=
� + 2 d

2c + � + 2 d

(
c

� + 2 d

∫

P (E )
� (dx) [h'; � 
 xi

+ h'; x 
 � i ] +
∫

P (E )
� (dx)

∫

E
x(da)

〈
'; � 
 2

a

〉
)

=
� + 2 d

2c + � + 2 d

(
2c

� + 2 d

〈
'; � 
 2〉

+
∫

E
� (da)

〈
'; � 
 2

a

〉)
;

(4.20)
where we use (4.17) in the last line. Substituting this back into ( 4.19) and using
(4.17) once more, we get

∫

P (E )
� (dx)

∫

E

∫

E
Qx (du; dv) ' (u; v)

=
∫

P (E )
� (dx)

(∫

E
x(da)

〈
'; � 
 2

a

〉
�

〈
'; x 
 2〉)

=
2c

� + 2 d

(∫

P (E )
� (dx)

〈
'; x 
 2〉

�
〈
'; � 
 2〉

)

=
2c

2c + � + 2 d

(∫

E
� (da)

〈
'; � 
 2

a

〉
�

〈
'; � 
 2〉)

=
2c

2c + � + 2 d

∫

E

∫

E
Q� (du; dv) ' (u; v):

(4.21)

Pick ' =  �  in (4.21) to get the claim. �

For � = �([0 ; 1]) = 0, ( 4.16) is the same asDawson et al. (1995, Eq. (2.5)).

Corollary 4.5. [Asymptotic variance of entrance law] For ' 2 Cb (E; R), the
interaction chain (cf., Section 1.5.2) satis�es

lim
j !1

EL (M ( j)
0 ) [Var � (' )] = 0 ( respectively, > 0); (4.22)

if
∑

k2 N mk = 1 (respectively,
∑

k2 N mk < 1 ) with mk de�ned in (1.57) and dk

in (1.45).

Proof : From (4.16), we have the formula

E� c,d,�
θ

[Var � (' )] =
2c

2c+ � + 2 d
Var � (' ): (4.23)

Hence, we have the relation (recall (1.49) for the de�nition of K k (�; dx))
∫

P (E )
K k (�; dx) Var x (' ) =

2ck

2ck + � k + 2 dk
Var � (' ); (4.24)

which says that in one step of the interaction chain the variance is modi�ed by the
factor

nk �
2ck

2ck + � k + 2 dk
=

1
1 + mk

: (4.25)
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Iteration gives

EL (M ( j)
0 ) [Var � (' )] =

(
j∏

k=0

nk

)

Var � (' ) =

(
j∏

k=0

(
1

1 + mk

))

Var � (' ): (4.26)

Therefore, taking logarithms, we see that (4.22) is equivalent to
∑

k2 N0

mk = 1 (respectively, < 1 ): (4.27)

�

We next prove a result that is similar to, but more involved than, Dawson et al.
(1995), Eq. (6.12). This result is necessary for the proof of Theorem1.16on di�usive
clustering.

Proposition 4.6. [Variance of the integral against a test fu nction] For
every  2 Cb(E ), j 2 N and 0 � k � j + 1 ,

VarL (M ( j)
−k) (h�;  i ) = EL (M ( j)

−k ) [h�;  i 2] �
(

EL (M ( j)
−k ) [h�;  i ]

)2

=

(
j∑

i = k

(
di +1

ci

j∏

l = i +1

1
1 + ml

))

Var � ( ) :
(4.28)

Proof : The proof uses the following two ingredients. Combining (4.16) and (4.25),
we have

E
�

ck,dk,� k
θ

[Var � ( )] =
1

1 + mk
Var � ( ): (4.29)

The �rst and the third line of ( 4.21) yield

Var
�

ck,dk,� k
θ

(h�;  i ) =
� + 2 d

2c
E

�
ck,dk,� k
θ

[Var � ( )]: (4.30)

Together with ( 4.16) and (1.45), we therefore obtain

Var
�

ck,dk,� k
θ

(h�;  i ) =
� k + 2 dk

2ck + � k + 2 dk
Var � ( ) =

dk+1

ck
Var � ( ): (4.31)

Fix j 2 N. The proof follows by downward induction over 0 � k � j + 1. The
initial case k = j + 1 is obvious becauseM ( j )

� ( j +1) = � by (1.48). Let us therefore
assume that the claim holds fork + 1. By ( 1.48{ 1.49),

VarL (M ( j)
−k ) (h�;  i ) = EL (M ( j)

−k ) [h�;  i 2] �
(

EL (M ( j)
−k ) [h�;  i ]

)2

=
∫

P (E )
� cj ;dj ;� j

� (d� j )
∫

P (E )
� cj−1 ;dj−1 ;� j−1

� j
(d� j � 1)

: : :
∫

P (E )
� ck;dk;� k

� k+1
(d� k )h� k ;  i 2 � h �;  i 2:

(4.32)

Next, use (4.31) to rewrite the inside integral as
∫

P (E )
� ck;dk;� k

� k+1
(d� k )h� k ;  i 2 = E

�
ck,dk,� k
θk+1

(h�;  i 2) = h� k+1 ;  i 2 +
dk+1

ck
Var � k+1 ( ):

(4.33)



92 Greven et al.

Substitute this back into ( 4.32), to obtain

VarL (M ( j)
−k) (h�;  i ) = Var L (M ( j)

−( k+1) ) (h�;  i )

+
dk+1

ck

∫

P (E )
� cj ;dj ;� j

� (d� j )
∫

P (E )
� cj−1 ;dj−1 ;� j−1

� j
(d� j � 1)

� � �
∫

P (E )
� ck+1 ;dk+1 ;� k+1

� k+2
(d� k+1 ) Var � k+1 ( ):

(4.34)

The �rst term is given by the induction hypothesis. For the second term we use
(4.29), to see that the inside integral equals

∫

P (E )
� ck+1 ;dk+1 ;� k+1

� k+2
(d� k+1 ) Var � k+1 ( ) = E

�
ck+1 ,dk+1 ,� k+1
θk+2

(Var � ( ))

=
1

1 + mk+1
Var � k+2 ( ):

(4.35)

Iteration of this reasoning for the second term in (4.34) leads to

VarL (M ( j)
−k) (h�;  i ) = Var L (M ( j)

−( k+1) ) (h�;  i ) +
dk+1

ck

j∏

l = k+1

1
1 + ml

Var � ( )

=

(
j∑

i = k+1

(
di +1

ci

j∏

l = i +1

1
1 + ml

))

Var � ( )

+
dk+1

ck

j∏

l = k+1

1
1 + ml

Var � ( );

(4.36)

which proves the claim. �

If � k = � k ([0; 1]) = 0, k 2 N0, then (4.28) reduces to Dawson et al. (1995, Eq.
(6.12)). Indeed, in that casedi +1

∏j
l = i +1

1
1+ m l

is equal to di +1 . (Note the typo in
Dawson et al. (1995, Eq. (6.12)): dk should be replaced bydk+1 .)

Remark 4.7. The results in this section can alternatively be inferred from the long-
time behaviour of the spatial �-coalescent with G = f 0; �g .

5. Strategy of the proof of the main scaling theorem

The proof of Theorem 1.5 will be carried out in Sections 6{ 8. In this section we
explain the main line of the argument.

5.1. General scheme and three main steps.In Dawson et al. (1995), a general
scheme was developed to derive the scaling behaviour of space-timeblock averages
as in (1.44) for hierarchically interacting Fleming-Viot processes, with the interac-
tion coming from migration, i.e., a system similar to ours but without �-Cannings
block resampling (so for � = � 0, which results in di�usion processes rather than
jump processes). Nevertheless, this scheme is widely applicable andindicates what
estimates have to be established in a concrete model (with methodsthat may be
speci�c to that model).

For our model, the di�culty sits in the fact that di�usions are replaced byjump
processes, even in the many-individuals-per-site limit. Below we explain how we
can use the special properties of the dual process derived in Section 2 to deal with
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this di�culty. In Sections 6{ 8 the various steps will be carried out in detail to prove
our scaling result in Theorem1.5. In these sections, we focus on the new features
coming from the �-Cannings block resampling. The re�ned multi-scale result in
Theorem 1.6 will be proved in Section9. The line of argument can be largely based
on the work in Dawson et al. (1995, Section 4), where it was developed in detail
for Fleming-Viot. No new ideas are needed for the Cannings process: only a new
moment calculation is required.

The analysis in Sections6-8 proceeds in three main steps:

� Show that for the mean-�eld system from Section 1.3.2, i.e., G = GN; 1 =
f 0; 1; : : : ; N � 1g, in the limit as N ! 1 we obtain for single sites on
time scale t independent McKean-Vlasov processes (recall Section1.3.3),
and for block averages on time scaleNt Fleming-Viot processes with a
resampling constant d1 corresponding to � 0 and c0. With an additional
� 1-block resampling at rate N � 2 there is no e�ect on time scalet, and so
on time scaleNt we obtain a C �̃ -process with �̃ = d1� 0 + � 1. This is done
in Section 6.

� Consider theCc;�
N -process from Section1.4.4restricted to GN;K as in (1.42).

More precisely, study its components and itsk-block averages (1.43) for
1 � k � j < K on time scalesN j + tN k . This is done in Section7.

� Treat the ( j; k ) renormalised systems for 1� k � j < K via an approxima-
tion of the Cc;�

N -process on 
N by the process onGN;K from the previous
step, in the limit as N ! 1 and on time scales at mostN K t for a �xed
but otherwise arbitrary K 2 N. This is done in Section8.

The three steps above are carried out following the scheme of proof developed
in Dawson et al. (1995). What is new for jump processes? We are dealing with
sequences of measure-valued processesX = ( X t )t � 0, and the key di�erence is that
now semi-martingales arising from functionals of the process of theform hX t ; f i n

with f 2 Cb (E ) are no longer controlled just by the compensator and the in-
creasing processof the linear functional hX t ; f i . This is di�erent from the case of
di�usions, where linear and quadratic functions hX t ; f i and hX t ; f i 2 in a set F of
test-functions su�ce to establish both tightness in path spaceand convergence of
�nite-dimensional distributions (f.d.d.s) .

The new ingredients are the analysis of the linear operators of the martingale
problem acting on all of F , and the extension of the tightness arguments necessary
to handle the jumps. We explain the basic structure of the argument in the next
section.

5.2. Convergence criteria. In the proofs, we view the process withG = f 0; 1;
: : : ; N � 1g, G = GN;K = f 0; 1; : : : ; N � 1gK and G = 
 N (cf. (1.21)) as em-
bedded in the process withG = N, G = NK and G = 
 1 , where


 1 =
⋃

M 2 N


 M � NN: (5.1)

Note that 
 1 is countable, but that the 
 M 's are not subgroups of 
 1 . The
embedding requires us to embed the test functions and the generators on 
 M into
those on 
 1 . In the calculations in Sections6{ 8, we use this embedding without
writing it out formally.
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The claims we have to prove require us to show that certain sequences of proba-
bility measures (Pn )n 2 N on D([0; 1 ); E ) converge to a speci�ed limit P. Therefore
we have to show

� tightness on D([0; 1 ); E ),
� convergence of the f.d.d.'s to the ones of the claimed limit.

What we will use to establish tightness (and later also f.d.d.-convergence) is that
the Pn 's and P are solutions to martingale problems for measure-valued processes.
We write X (N ) ; X to denote realisations of these processes.

The states of our processes areprobability measures on the type space (recall
(1.43) and (1.46)). We use Jakubowski's criterion for measure-valued processes
(see Dawson (1993, Theorem 3.6.4)). This requires us to prove: (1) a compact
containment condition for the path, i.e., for all �; T > 0 there exists aK T;� compact
such that

P(f X (N ) (t) 2 K T;� for all t 2 [0; T ]g) � 1 � " ; (5.2)

(2) tightness of evaluation processes (F (X (N ) (t))) t � 0 in path space for all F 2 D ,
with D a dense subspace of continuous functions on type space. We will use for D
the set

D = fhX; f i n jf 2 Cb(E; R); n 2 Ng � Cb(P(E); R): (5.3)
In our setting, the compact containment condition in (1) is immediate, because

we have a compact type space and the probability measures on it form a compact set
in the weak topology. Condition (2) can be veri�ed by using a criterion for tightness
by Kurtz (see Dawson (1993, Corollary 3.6.3)). (Alternatively, we could use a
tightness criterion by Jo�e-M�etivier Dawson (1993, Theorem 3.6.6 and Corollary
3.6.7).) In particular, we get that (2) follows from

sup
N 2 N

kL (N )F k1 < 1 ; 8 F 2 D : (5.4)

Thus, to conclude tightness, we have to calculateL (N ) F , for F 2 D , and bound it
in the supremum norm.

In order to show f.d.d.-convergence ofX (N ) to the claimed limit X , we use
that these measure-valued processes arise as the solution to the(L (N ) ; D; � X N

0
)-

martingale problem, respectively, the (L; D; � X 0 )-martingale problem, where the
latter is well-posed. It then su�ces to show that, for a dense subset A of
Cb ((P(E))N; R) and all all F 2 A , the compensator terms satisfy:

L

[(∫ t

0
L (GN ) F ((X N

s ))ds
)

t � 0

]

=)
N !1

L

[(∫ t

0
(L (G)F )(X s)ds

)

t � 0

]

(5.5)

and the initial laws satisfy

L [X (N )
0 ] =)

N !1
L [X 0]: (5.6)

This allows us to conclude that X (N ) converges in f.d.d. toX , so that we get (2).
Thus, to prove the convergence as claimed, we have to verify (5.4) and (5.5) for

each of the three processes mentioned in Section5.1. For the proof of (5.5), it is
necessary to use theduality relation , in order to establish certain properties of the
processX (N ) in the limit as N ! 1 that allow us to draw more information from
the generator calculation. This includes a proof that certain higher-order terms can
be discounted, or an argument that establishes independence over su�ciently large
distances.
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The averaging arguments we will use in the following sections are closein spirit
to those in Kurtz (1992). In our case, however, the latter work does not apply
immediately, in particular, because we deal withN -dependent state space.

In summary, the role of Sections6{ 8 is to �rst carry out some generator calcu-
lations, leading to the bound in (5.4), and then an asymptotic evaluation of the
resulting generator expressions, leading to a limiting form that uniquely determines
the limiting process in (5.5). The latter will be based on a direct calculation. In
view of the large time scales involved, we can use anaveraging principle for local
variables, based on thelocal equilibria dictated by the macroscopic slowly changing
variables. The properties of the limiting process are established in Section 4.

6. The mean-�eld limit of C � -processes

This section deals with the caseG = f 0; 1; : : : ; N � 1g for a model that includes
mean-�eld migration and Cannings reproduction at rate 1 with resampling measure
� 0 in single colonies (cf. Section1.3.2). We analyse the single components and the
block averages on time scalest, Nt and Nt + u with u 2 R. The key results
are formulated in Propositions 6.1 and 6.3 below. We will see that we can also
incorporate block resampling at rateN � 2� 1 and still get the same results.

The analysis for mean-�eld interacting Fleming-Viot processes with drift is given
in detail in Dawson et al. (1995, Section 4). The reader unfamiliar with the ar-
guments involved is referred to this paper (see, in particular, the outline of the
abstract scheme inDawson et al. (1995, Section 4(b)(i), pp. 2314{2315)). In what
follows, we provide the main ideas again, and focus on the changes arising from the
replacement of the Fleming-Viot process by the �-Cannings resampling process,
i.e., the change from continuous to c�adl�ag semi-martingales.

We always start the process in a product state with law� 
 N with � 2 P (P(E))
satisfying ∫

P (E )
x� (dx) = � 2 P (E): (6.1)

The system will be analysed in the limit asN ! 1 in two steps: (1) component-
wise on time scalet (Section 6.1); (2) block-wise on time scaleNt and component-
wise on time scaleNt + u with u 2 R (Section 6.2).

6.1. Propagation of chaos: Single colonies and the McKean-Vlasov process. In
this section, we consider theC � -mean-�eld model from Section 1.3.2 with G =
f 0; 1; : : : ; N � 1g. We prove propagation of chaos for the collection

(f X (N )
0 (t); : : : ; X (N )

N � 1(t)g)t � 0 (6.2)

in the limit as N ! 1 , i.e., we prove asymptotic independence of the components
via duality as well as component-wise convergence to the McKean-Vlasov process
with parameters d0 = 0 ; c0; � 0; � (cf. (1.18)).

Proposition 6.1. [McKean-Vlasov limit, propagation of cha os] Under as-
sumption (6.1), for any L 2 N �xed,

L
[
(X (N )

0 (t); : : : ; X (N )
L (t)) t � 0

]
=)

N !1

L⊗

i =0

L
[
Z c0 ;d0 ;� 0

i;�

]
; (6.3)

where Z c0 ;d0 ;� 0
i;� solves the martingale problem for(L c0 ;d0 ;� 0

� ; F ; � ).
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Corollary 6.2. [McKean-Vlasov limit with block resampling ] Consider the
system above with an additional rateN � 2� 1 of block resampling per site. Then
(6.3) continues to hold.

In order to prove (6.3), we will argue that the laws L [(f X (N )
� (t);� =0 ; : : : ; Lg)t � 0],

N 2 N, are tight. We show this �rst for components (Section 6.1.1). Then, we ver-
ify asymptotic independence (Section6.1.2), calculate explicitly the action of the
generator on the test functions in the martingale problem ofX (N ) (Section 6.1.3),
and show, for functions depending on one component, uniform convergence to the
generator of the McKean-Vlasov operator with parameter � = E[X (N )

0 (0)] (Sec-
tion 6.1.4).

6.1.1. Tightness on path space inN . Since we have a state in (P(E))N equipped
with the product topology, it su�ces to establish tightness for L -tuples of compo-
nents. We focus �rst on one component (X � (t)) t � 0 and conclude later the result
for tuples of L -components.

Here, we use test functions as in (1.9) that only depend on the �rst L coordinates.
We further make use of the boundedness of the characteristics of the generator as
a function of N when acting on a test function (recall (1.7), (1.12) and (1.14)).
Namely, we will see in Section6.1.3 (in ( 6.6), (6.16) and (6.17) below) that the
generator L (N )F satis�es

sup
N 2 N

kL (N )F k1 < 1 ; for all F 2 C2
b (P(E); R): (6.4)

As we outlined in Section5.2, this guarantees tightness.

6.1.2. Asymptotic independence.In this section, we use duality to prove the fac-
torisation of spatial mixed moments (including the case with non-local coalescence
at rate N � 2� 1). Namely, we show that for any L 2 N, any k� 2 N, � 2 [L ],

lim sup
N !1

∣∣∣∣∣∣
E




L∏

� =0

(
hX (N )

� (t); f � i
)kξ



 �
L∏

� =0

E
[(

hX (N )
� (t); f � i

)kξ
]∣∣∣∣∣∣

= 0 ; for all t � 0:

(6.5)
Similar to ( 6.5) decorrelation holds also for mixed moments at di�erent time points.

Proof of (6.5): Obviously, no non-local coalescence takes place in the time interval
[0; T ] in the limit as N ! 1 . We verify the remaining claim by showing that
any two partition elements of the dual process starting at di�erent sites never
meet, so that for n partition elements none of the possible pairs will ever meet.
Indeed, the probability for two random walks to meet is the waiting tim e for the
rate-2c0 random walk to hit 2 starting from 1. This waiting time is the sum of
a geometrically distributed number of jumps with parameter N � 1, each occurring
after an exp(2c0)-distributed waiting time. By explicit calculation, the probability
for this event to occur before time t is O(N � 1), which gives the claim. �

6.1.3. Generator convergence.In order to show the convergence ofL (N )F , we in-
vestigate the migration and the resampling part separately.
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� Migration part. Recall from (1.12) that the migration operator for the geo-
graphic spaceG = GN; 1 = f 0; 1; : : : ; N � 1g is

(L (N )
mig F )(x) =

c0

N

∑

�;� 2 GN,1

∫

E
(x � � x � )(da)

@F(x)
@x�

[� a ]; (6.6)

where F 2 F � Cb (P(E)N ; R), with F the algebra of functions of the form (1.9).
We rewrite (6.6) as

(L (N )
mig F )(x) = c0

∑

� 2 GN,1

∫

E

1
N

∑

� 2 GN,1

(x � � x � ) (da)
@F(x)

@x�
[� a ]

= c0

∑

� 2 GN,1

∫

E
(y � x � ) (da)

@F(x)
@x�

[� a ];
(6.7)

where y = N � 1 ∑N � 1
� =0 x � = N � 1 ∑

� 2 GN,1
x � denotes the block average. We will

show that, in the limit N ! 1 , (L (N )
mig F )(x) only depends on the mean type measure

� of the initial state, i.e., it converges to

(L c0
� F )(x) � c0

∑

� 2 N0

∫
(� � x � )(da)

@F(x)
@x�

[� a ]; (6.8)

where we use for this generator acting onCb (P(E))N; R) the same notation we used
for the McKean-Vlasov process with immigration-emigration on P(E) (cf. ( 1.17)).
Furthermore, we show that

� 7! L c0
� F 2 Cb (P(E); R) is continuous for all � 2 P (E): (6.9)

To show the convergence, de�ne

B� =
{

x 2 (P(E))N0 : N � 1
∑

� 2 GN,1

x � �!
N !1

�
}

� (P(E))N; (6.10)

and
B =

⋃

� 2P (E )

B� : (6.11)

For x 2 P (E)N0 and n 2 N, denote xjn = ( x0; x1; : : : ; xn � 1).
If we have an i.i.d. initial law (respectively, an exchangeable law) with mean

measure� , then the processX (N ) satis�es

L [X (N ) (t)](BjN ) = 1 (respectively, L [X (N ) (t)(B� jN )] = 1) : (6.12)

Indeed, as we will see in Section6.2, the 1-block averageY (N )
�; 1 (recall (1.43)) evolves

on time scaleNt . More precisely, (Y (N )
�; 1 (tN )) t � 0 is tight in path space and therefore

converges over a �nite time horizon to the mean type measure� of the initial state.
In a formula (the right-hand side means a constant path):

L [(Y (N )
�; 1 (t)) t 2 [0;T ] ] =)

N→∞
L [(� )t 2 [0;T ]]: (6.13)

Therefore, we have

j(L (N )
mig F )(xjN ) � (L c0

� F )(x)j �!
N !1

0; for all x 2 B� ; (6.14)
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Hence, on the path space, by dominated convergence, we have

L









∣∣∣∣∣∣

t∫

0

(L (N )
mig F )(X (N ) (s))ds �

t∫

0

(L c0

Y ( N )
ξ,1 (s)

F )(X (N ) (s))ds

∣∣∣∣∣∣





t � 0



 =)
N !1

� 0: (6.15)

� Resampling part. The action of the resampling term on each component (recall
(1.14)) does not depend onN and hence we obtain, by the law of large numbers
for the marking operation (recall that F as in (1.9) depends on �nitely many coor-
dinates only)

j(L (N )
res F )(xjN ) � (L � 0 F )(x)j �!

N !1
0; for all x 2 (P(E)N); (6.16)

where

(L � 0 F )(x) �
∑

� 2 N0

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

[
F

(
x0; : : : ; x � � 1; (1 � r )x � + r� a ;

x � +1 ; : : : ; xN � 1
)

� F (x)
]
:

(6.17)

Again, we use for this generator acting onCb (P(E))N; R) the same notation we used
for the McKean-Vlasov process with immigration-emigration on P(E) (cf. ( 1.17)).

6.1.4. Convergence to the McKean-Vlasov process.In this section, we �nally show
the convergence of the mean-�eld C� -process (see Section1.3.2) to the McKean-
Vlasov process (see Section1.3.3) which was claimed in Proposition 6.1.

In what follows, we �x � 2 N0 and let

G(x � ) =
∫

E n
x 
 n

� (du) ' (u) =
〈

'; x 
 n
�

〉
; n 2 N; ' 2 Cb (E n ; R): (6.18)

We know that ( X (N )
� (t)) � 2 N0 is tight and that all weak limit points are systems of

independent random processes (i.e, that propagation of chaos holds). It remains to
identify the unique marginal law.

Let the initial condition ( X (1 )
� (0)) � 2 N0 be i.i.d. P(E)-valued random variables

with mean � . Then each single component converges and the limiting coordinate
process has generator (recall (1.17))

(L c0 ;0;� 0
� G)(x � ) = c0

∫

E
(� � x � )(da)

@G(x � )
@x�

[� a ]

+
∫

[0;1]
� �

0(dr )
∫

E
x � (da)

[
G

(
(1 � r )x � + r� a

)
� G(x � )

]
;

(6.19)

where � 2 P (E) is the initial mean measure. Indeed, we may now reason as in
Dawson(1993, second part of Section 2.9). Tightness of the processes (X (N ) (t)) t � 0

was shown in Section6.1.1. Fix � 2 N0 and consider a convergent subsequence
(X (N k)

� (t)) t � 0, k 2 N. We claim that the limiting process is the unique solution

to the well-posed martingale problem with corresponding generatorL c0 ;0;� 0
� and
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initial distribution L [X � (0)]. Recall from Section 6.1.3 that, for all test functions
F 2 F ,

L









t∫

0

(L (N )
mig + L (N )

res )(F )(X N (s))ds





t � 0




 =)

N→∞
L









t∫

0

L c0 ;d0 ;� 0
� (X 1 (s))ds





t � 0






(6.20)
Hence, all weak limit points of X (N ) solve the L c0 ;d0 ;� 0

� -martingale problem of
Section 1.3.3. The right-hand side of (6.20) is the compensator of a well-posed
martingale problem (recall Proposition 1.2), and hence we have convergence (6.3).

6.2. The mean-�eld �nite-system scheme. In this section, we verify the mean-�eld
\�nite system scheme" for the C � -process, i.e., we considerL + 1 tagged sites
f X (N )

0 (t); : : : ; X (N )
L (t)g evolving as in Section1.3.2 and the corresponding block

averageY (N ) (t) = N � 1 ∑
� 2 GN,1

X (N )
� (t). We prove:

� convergence of (Y (N ) (Nt )) t � 0 to the Fleming-Viot di�usion
Y (t) = Z 0;d1 ;0

� (t) with parameter d1 = c0 � 0
2c0 + � 0

and initial state � (cf. Sec-
tion 1.3.3 and recall (1.45) with d0 = 0);

� convergence of the components (f X (N )
� (Nt + u); � = 0 ; : : : ; Lg)u� 0 to the

equilibrium McKean-Vlasov process with immigration-emigration
(Z c0 ;d0 ;� 0

� ( t ) (u))u� 0 starting from distribution � c0 ;d0 ;� 0

� ( t ) (recall (4.1)) with
� (t) = Y (t) (recall that d0 = 0).

Proposition 6.3. [Mean-�eld �nite system scheme] For initial laws with i.i.d.
initial con�guration and mean measure � ,

L [(Y (N ) (Nt )) t � 0] =)
N !1

L [(Z 0;d1 ;0
� (t)) t � 0] (6.21)

with d1 = c0 � 0
2c0 + � 0

. Moreover, for every u 2 R and L 2 N,

L [(X (N )
� (Nt + u)) � =0 ;:::;L ] =)

N !1

∫

P (E )

Pt (d� 0)
(

� c0 ;d0 ;� 0
� ′

)
 (L +1)

with Pt = L [Z 0;d1 ;0
� (t)]:

(6.22)

Corollary 6.4. [Mean-�eld �nite system scheme with � 1-block resam-
pling] Consider the model above with additional block resampling at rate N � 2� 1.
Then, in the right-hand side of (6.21), Z 0;d1 ;0

� must be replaced byZ 0;d1 ;� 1
� , and

similarly in the de�nition of Pt in (6.22).

The proof of the mean-�eld �nite system scheme follows the abstract argument
developed in Dawson et al. (1995). Namely, we �rst establish tightness of the
sequence of processes (Y (N ) (Nt )) t � 0, N 2 N, which can be done as in Section6.1.1
for (X (N )

0 (t); : : : ; X (N )
L (t)) t � 0, N 2 N, once we have calculated the generators.

A representation for the generator of the process is found in Sections 6.2.1{ 6.2.2
below. With the help of the idea of local equilibria based on the ergodic theorems
of Section4, we obtain �rst ( 6.22) and then (6.21) in Section 6.2.4.

In Sections6.2.1-6.2.2, we calculate the action of the generator of the martingale
problem on the test functions induced by the functions necessaryto arrive at the
action of the generator of the limiting process. In Section6.2.4, we pass to the limit
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N ! 1 , where as in Section6.1, we have to use an averaging principle. However,
instead of a simple law of large numbers, this now is adynamical averaging principle
with local equilibria for the single components necessary to obtain the expression
for the limiting block-average process.

By the de�nition of the generator of a process,M x;F = ( M x;F
t )t � 0,

M x;F
t = F (x t ) � F (x0) �

∫ t

0
ds

(
L (N )

mig F + L (N )
res F

)
(xs) (6.23)

is a martingale for all F , as in (6.18). The same holds withx replaced by the block
averagesy (by the de�nition of y). Once again, we will investigate the migration
and the resampling operator separately, this time for the block average.

6.2.1. Migration. In this section, we consider functionsF � y with F as in (6.18)
and

y = N � 1
∑

� 2 GN,1

x � (6.24)

a block average (withGN; 1 = f 0; 1; : : : ; N � 1g). We will show below that L (N )
mig (F �

y) = 0, so that migration has no e�ect.
Recall (L (N )

mig F )(x) as rewritten in ( 6.7). For the block averagesy, the migration
operator can be calculated as follows. Sincey = y(x) and F (y) = ( F � y)(x) can
be seen as functions ofx in the algebra F of functions in x of the form (6.18), we
have

(L (N )
mig F )(y) =

(
L (N )

mig (F � y)
)

(x) =
∑

� 2 GN,1

c0

∫

E
(y � x � )(da)

@(F � y)(x)
@x�

[� a ]:

(6.25)
For y = N � 1 ∑

� 2 GN,1
x � this yields

@(F � y)(x)
@x�

[� a ] =
@F(y)

@y

[
� a

N

]
(6.26)

and hence

(L (N )
mig F )(y) =

∑

� 2 GN,1

c0

∫

E
(y � x � )(da)

@F(y)
@y

[
� a

N

]
= 0 : (6.27)

6.2.2. From � -Cannings to Fleming-Viot. Next, we evaluate the moment measures
of the average (6.24) in the limit as N ! 1 and show convergence of the terms to
the Fleming-Viot second order term.

Remark 6.5 (Notation for the rescaled generators). Given a generatorL of a Markov
process, we denote byL [k ] (for k 2 N) the generator of the Markov process on time
scaleN k t. Evidently, this time speed-up simply amounts to multiplication of the
original generator L by N k .

We are interested in the action of the rescaled generatorL (N )[1]
res on the functions

of the corresponding 1-block averages (6.24).
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Lemma 6.6. [Generator convergence: resampling]
On time scale Nt , in the limit as N ! 1 ,

(L (N )[1]
res F )(y) =

1
N

∑

� 2 GN,1

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

1
2

@2F (y)
@y2

[r (� x � + � a); r (� x � + � a)] + O
(
N � 1)

:

(6.28)

Proof of Lemma 6.6: We �rst rewrite F (yt ) in terms of x t :

F (yt ) =
〈
'; y 
 n

t

〉
=

〈

';



 1
N

∑

� 2 GN,1

x � (t)





 n 〉

=
1

N n

∑

� 1 2 GN,1

: : :
∑

� n2 GN,1

h'; x � 1 (t) 
 : : : 
 x � n (t)i

=
1

N n




n⊗

i =1

∑

� i2 GN,1



 h'; x � 1 (t) 
 � � � 
 x � n (t)i :

(6.29)

Abbreviate

F ( � 1 ;:::;� n) (x) =
∫

E n

(
n⊗

i =1

x � i

(
du( i )

))

'
(

u(1) ; : : : ; u(n )
)

=

〈

';
n⊗

i =1

x � i

〉

: (6.30)

Note that, in this notation, � i = � j for i 6= j is possible. Recall that (x t )t � 0 has
generator L (N ) and is the unique solution of the martingale problem (6.23). If we
use (6.29) in ( 6.23) with x replaced by y, then we obtain that ( yt )t � 0 solves the
martingale problem with generator

(L (N )
res F )(y) =

1
N n




n⊗

i =1

∑

� i2 GN,1



 L (N )
res

(
F ( � 1 ;:::;� n)

)
(x) (6.31)

for the resampling part. Together with (1.14) this yields the expression

(L (N )
res F )(y) =

1
N n




n⊗

i =1

∑

� i2 GN,1




∑

� 2 GN,1

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

�
[
F ( � 1 ;:::;� n)(x0; : : : ; x � � 1; (1 � r )x � + r� a ; x � +1 ; : : : ; xN � 1

)

� F ( � 1 ;:::;� n) (x)
]

:

(6.32)

We must analyse this expression in the limit asN ! 1 . To do so, we collect the
leading order terms. The key quantity is the cardinality of the set f � 1; : : : ; � n g, for
which we distinguish three cases.

Case 1: jf � 1; : : : ; � n gj = n, i.e., all � i ; 1 � i � n are distinct.



102 Greven et al.

The contribution to ( 6.32) is zero. For � 62 f� 1; : : : ; � n g this is obvious by the
de�nition of F ( � 1 ;:::;� n) (x) in ( 6.30). Otherwise, we have

∫

E
x � (da)

[
F ( � 1 ;:::;� n)(x0; : : : ; x � � 1; (1 � r )x � + r� a ; x � +1 ; : : : ; xN � 1

)

� F ( � 1 ;:::;� n) (x)
]

=
∫

E
x � (da)

�
[ 〈

'; x � 1 
 � � � 
 ((1 � r )x � + r� a )
︸ ︷︷ ︸
only change (unique)

position with � i= �


 � � � 
 x � n

〉

� h '; x � 1 
 � � � 
 x � n i
]

= 0 ;
(6.33)

where in the last line we use thathx � ; 1i = 1.

Case 2: jf � 1; : : : ; � n gj � n � 2.

The contribution to ( 6.32) is of order N � 2. Indeed, the contribution is bounded
from above by

1
N n




n⊗

i =1

∑

� i2 GN,1



 1fjf � 1 ;:::;� ngj� n � 2g� 0CF = N � 2� 0CF ; (6.34)

where CF denotes a generic constant that depends onF (as in (6.18)) only, and
thereby on ' and n. Here we use (1.39) and the fact that the sum

∑
� 2 GN,1

yields

at most n non-zero summands by the de�nition of F ( � 1 ;:::;� n) (x) in ( 6.30).

Case 3: jf � 1; : : : ; � n gj = n � 1.

There exist 1 � m1 < m 2 � n such that � m 1 = � m 2 while all other � i ; 1 � i � n, are
di�erent. By the reasoning as in (6.33), we see that the only non-zero contribution
of the sum

∑
� 2 GN,1

to the generator in (6.32) comes from the case where� =
� m 1 = � m 2 . We therefore obtain

(L (N )
res F )(y) =

1
N n




n⊗

i =1

∑

� i2 GN,1



 1fjf � 1 ;:::;� ngj = n � 1g

�
∑

1� m 1 <m 2 � n

1f � m1 = � m2 = � g

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

�
[
F ( � 1 ;:::;� n)(x0; : : : ; x � � 1; (1 � r )x � + r� a ; x � +1 ; : : : ; xN � 1

)

� F ( � 1 ;:::;� n) (x)
]

+ O
(
N � 2)

:

(6.35)

Reasoning similarly to (6.34), we see that extending



n⊗

i =1

∑

� i2 GN,1



 1fjf � 1 ;:::;� ngj = n � 1g

∑

1� m 1 <m 2 � n

1f � m1 = � m2 g (6.36)
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in (6.35) to

∑

1� m 1 <m 2 � n

∑

� m1 2 GN,1

1f � m1 = � m2 g




⊗

i 2f 1;:::;n gnf m 1 ;m 2 g

∑

� i2 GN,1



 (6.37)

only produces an additional error of orderN � 2. Using this observation in (6.35),
we get

(L (N )
res F )(y)

=
1

N 2

∑

1� m 1 <m 2 � n

∑

� 2 GN,1

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

�





〈

'; y � 1 
 � � � 
 ((1 � r )x � + r� a )
︸ ︷︷ ︸

only change position � m1


 � � � 
 ((1 � r )x � + r� a )
︸ ︷︷ ︸

and position � m2


 � � � 
 y� n

〉

�

〈

'; y � 1 
 � � � 
 x �︸︷︷︸
only change position � m1


 � � � 
 x �︸︷︷︸
and position � m2


 � � � 
 y� n

〉



+ O
(
N � 2)

:
(6.38)

Now use that

∫

E
x � (da)

〈

'; y � 1 
 � � � 
 (x � )
︸︷︷︸

only change
position � m1


 � � � 
 (� rx � + r� a )
︸ ︷︷ ︸
and position � m2
for m 1 ;m 2 �xed


 � � � 
 y� n

〉

= 0

(6.39)
to obtain from ( 6.38), for F (y) = h'; y 
 n i , that

(L (N )
res F )(y)

=
1

N 2

∑

1� m 1 <m 2 � n

∑

� 2 GN,1

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

�

〈

'; y � 1 
 � � � 
 (r (� x � + � a))
︸ ︷︷ ︸

only change position � m1


 � � � 
 (r (� x � + � a))
︸ ︷︷ ︸
and position � m2


 � � � 
 y� n

〉

+ O
(
N � 2)

=
1

N 2

∑

� 2 GN,1

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

�
1
2

@2F (y)
@y2

[r (� x � + � a); r (� x � + � a)] + O
(
N � 2)

:

(6.40)
Comparing Cases 1{3, we see that only the latter contributes to the leading term.
Changing to time scaleNt in (6.40), i.e., multiplying L (N )

res by N , we complete the
proof. �
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6.2.3. A comment on coupling and duality. The techniques of coupling and duality
are of major importance. One application can be found inDawson et al.(1995, Sec-
tion 4), namely, to prove Equation (4.17) therein. The key point is to obtain control
on the di�erence betweenL [Z t ] and L [Z 0

t ] for two Markov processes withidentical
dynamics but di�erent initial states . Such estimates can be derived via coupling
of the two dynamics, or alternatively, via dual processes that arebased on �nite
particle systems with non-increasing particle numbers, allowing for an entrance law
starting from a countably in�nite number of particles. Both these p roperties hold
in our model. This fact is used to argue that the con�guration locally converges on
time scaleNt to an equilibrium by the following restart argument.

At times Nt and Nt � tN , with lim N !1 tN = 1 and limN !1 tN =N = 0,
the empirical mean remains constant. Hence, we can argue that, inthe limit as
N ! 1 , a system started at timeNt � tN converges over timetN to the equilibrium
dictated by the current mean. Two facts are needed to make this rigorous: (1) the
map � 7! � c;d; �

� must be continuous (recall Section4.2); (2) the ergodic theorem
must hold uniformly in the initial state. Both coupling and duality do the job,
which is why both work in Dawson et al. (1995).

6.2.4. McKean-Vlasov process of the1-block averages on time scaleNt . Recall the
de�nition of the Fleming-Viot di�usion operator Q in (1.19) and the equilibrium
� of the McKean-Vlasov process in the line preceding (4.1). Observe that the
compensators ofM x;F , see (6.23) are functionals of the empirical measure of the
con�guration. The set of con�gurations on which X (N ) concentrates in the limit
as N ! 1 turns out to be

B�
� = B� \





x 2 (P(E))N :

1
N

N∑

� =1

� (x ξ) =)
N→∞

� c0 ;0;� 0
�





; (6.41)

where � is called the intensity of the con�guration and

B� =
⋃

� 2P (E )

B�
� : (6.42)

Lemma 6.7. [Local equilibrium]

(a) The block resampling term satis�es, withy the intensity of the con�guration
x for x 2 B� ,

lim
N !1

(L (N )[1]
res F )(y) =

� 0

2

∫

P (E )
� c0 ;0;� 0

y (dx̃)
∫

E

∫

E
Qx̃ (du; dv)

@2F (y)
@y2

[� u ; � v ]

=
c0� 0

2c0 + � 0

∫

E

∫

E
Qy (du; dv)

@2F (y)
@y2

[� u ; � v ]:

(6.43)
(b) If the system starts i.i.d. with some �nite intensity measure, then every

weak limit point of L [(X (N ) (Nt + u))u2 R] as N ! 1 has paths that satisfy

P(X (1 ) (t; u) 2 B� ) = 1 ; for all t 2 [0; 1 ); u 2 R: (6.44)

Proof : (a) The proof uses the line of argument inDawson et al. (1995, Section
4(d)) (recall the comment in Section 6.2.3), together with ( 4.21) and the de�nition
of Q. In what follows, two observations are important:
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(i) We use the results on the existence and uniqueness of a stationary distribu-
tion to ( 6.19) on the time scale t with N ! 1 , including the convergence
to the stationary distribution uniformly in the initial state, combined with
the Feller property of the limiting dynamics (see Section4). Note, in par-
ticular, that with ( 4.21) we get the second assertion in (6.43) from the �rst
assertion.

(ii) We use the property that the laws of the processes (Y (N ) (Nt )) t � 0, N 2 N,
are tight in path space.

The combination of (i) and (ii) will allow us to derive the claim.
To verify (ii), use ( 6.40) together with ( 6.27) to establish that kL (N )[1]

res (F )k1 is
bounded in N , which gives the tightness (recall Section5.2). To verify (i), we want
to show that the weak limit points satisfy the ( � � ; L 0;d1 ;0

� )-martingale problem. For
that, we have to show that

L







F
(
Y (N ) (tN )

)
� F

(
Y (N ) (0)

)
�

t∫

0

(L (N ) ;[1]F )
(
Y (N ) (sN )

)
ds





t � 0





=)
N→∞

L








F
(
Z 0;d1 ;0) (t)

)
� F (� ) �

t∫

0

(L 0;d1 ;0F )
(
Z 0;d1 ;0(s)

)
ds





t � 0




 :

(6.45)
In order to do so, we �rst need some information onL (N ) ;[1] . Since we are on time
scaleNt with N ! 1 , we get

lim
N !1

(L (N )[1]
res F )(y)

=
∫

[0;1]
� �

0(dr )
∫

P (E )
� c0 ;0;� 0

y (dx)
∫

E
x(da)

1
2

@2F (y)
@y2

[r (� x + � a); r (� x + � a)]

=
� 0

2

∫

P (E )
� c0 ;d0 ;� 0

y (dx)
∫

E
x(da)

@2F (y)
@y2

[� x + � a ; � x + � a ]; 8 x 2 B�
y ; y 2 P (E):

(6.46)
Use the de�nition of the Fleming-Viot di�usion operator Q from (1.19) to obtain
the �rst line of the claim in ( 6.43). The second line follows with the help of (4.21)
(recall d0 = 0 in this section).

(b) To show that the relevant con�gurations (under the limiting laws ) are in B� , we
use a restart argument in combination with the ergodic theorem forthe McKean-
Vlasov process. Namely, to study the process at timeNt + u we consider the time
Nt + u � tN with lim N !1 tN = 1 and limN !1 tN =N = 0. We know that the
density processY (N ) at times Nt + u � tN and Nt + u is the same in the limit
N ! 1 , say equal to � , and so over the time stretchtN the process converges to
the equilibrium ( � c0 ;0;� 0

� )
 N. By the law of large numbers, this gives the claim.
Therefore, all possible limiting dynamics allow for an averaging principlewith the
local equilibrium. �

Conclusion of the proof of Proposition 6.3. Recall from (6.27) that migration has
no e�ect. Lemma 6.7 shows the e�ect of the block resampling term on time scale
Nt for N ! 1 . Adding both e�ects together, we have that all weak limit points
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of L [(Y (N ) (Nt )) t � 0], N 2 N, satisfy

the (� � ; L 0;d1 ;0
� )-martingale problem with d1 =

c0� 0

2c0 + � 0
: (6.47)

7. Hierarchical C � -process

The next step in our construction is to consider �nite spatial systems with a
hierarchical structure of K levels and to study the k-block averages with k =
0; 1; : : : ; K on their natural time scales N k t and N k t + u. This section therefore
deals with the geographic space

G = GN;K = f 0; 1; : : : ; N � 1gK ; N; K 2 N: (7.1)

De�ne the Cannings process onGN;K by restricting X (
 N ) from Section 1.4.4 to
BK (0) and putting

ck ; � k = 0 ; for all k � K: (7.2)

The corresponding process will be denoted byX (N;K ) and its generator by L (N;K ) ,
etc. It is straightforward to include also a block resampling at rate N � 2K with
resampling measure �K (compare Corollary 6.2).

In this section, our principal goal is to understand how we move up 0� k � K
levels when starting from level 0. However, in order to also understand a system
with k levels starting from level, say,L and moving up to level L + k, we will add
a Fleming-Viot term to the generator of X (N ) , i.e., we consider the cased0 > 0.
We do not need to add Fleming-Viot terms acting on higher blocks. As we saw
in Lemma 6.7, a resampling term can result, on a higher time scale and in the
limit as N ! 1 , in a Fleming-Viot term. For instance, if we choosed0 = 0 in the
beginning, then we obtaind1 = c0 � 0

2c0 + � 0
> 0 on time scaleNt for the 1-block average

(recall (6.47)).
We look at the block averages on space scalesN k and time scalesN k t with

k = 1 ; : : : ; K . In Section 7.1, we will focus on the caseK = 2, where most of
the di�culties for general K are already present. Many features from Section6.2
reappear here, but we have to be aware that level-one averages are forming only
asymptotically a mean-�eld system of the type we had in Section6 and we have
to prove that we can in fact ignore this perturbation. For K > 2, lower order
perturbations arise, which we will discuss only brie
y in Section 7.2 because they
can be treated similarly as in Dawson et al. (1995). In Section 8, we will take the
limit K ! 1 and show how this approximates the model withG = 
 N on all the
time scales we are interested in for our main theorem.

7.1. Two-level systems.The geographic space isGN; 2 = f 0; 1; : : : ; N � 1g2, we pick
d0; c0; c1; � 0; � 1 > 0 and put ck ; � k to zero for k � 2. We will prove the following: (1)
On time scalest and Nt we obtain the same limiting objects as described in Section
6, but with an additional Fleming-Viot term ( d0 > 0) and with block resampling
via � 1; (2) For 1-block averages (each belonging to an address� 2 f 0; 1; � � � ; N � 1g)
we introduce the notation

Y (N )
� (t) = N � 1

∑

� 2 GN,1

X (N )
�;� (t): (7.3)
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Next, we consider thetotal average

Z (N ) (t) = N � 2
∑

� 2 GN,2

X (N )
� (t): (7.4)

We get a similar structure to the one in Section 6. Namely, we can replace the
system (Y (N ) ; Z (N ) ) for N ! 1 by a system of the type in Section6, where the
role of components on time scalet is taken over by 1-block averages on time scale
Nt and the role of the total (1-block) average on time scaleNt taken over by the
2-block average on time scaleN 2t. Once again, we only focus on the new features
arising in our model. The general scheme of the proof for the two-level system can
be found in Dawson et al. (1995, Section 5(a), pp. 2328{2337). The calculations in
Sections7.1.1{ 7.1.3correspond to Steps 4{5 inDawson et al. (1995, Section 5(a)),
with the focus now shifted from the characteristics of di�usions to the full generator
because we are dealing with jump processes.

Proposition 7.1. [Two-level rescaling] Under the assumptions made above,

L [(X (N )
� (t)) t � 0] =)

N !1
L [(Z c0 ;d0 ;� 0

� (t)) t � 0] 8 � 2 GN; 2; (7.5)

and

L [(Y (N )
� (Nt )) t � 0] =)

N !1
L [(Z c1 ;d1 ;� 1

� (t)) t � 0] with d1 =
c0(� 0 + 2 d0)

2c0 + � 0 + 2 d0
; � 2 GN; 1

(7.6)
and

L [(Z (N ) (N 2t)) t � 0] =)
N !1

L [(Z 0;d2 ;0
� (t)) t � 0] with d2 =

c1(� 1 + 2 d1)
2c1 + � 1 + 2 d1

: (7.7)

The proof of (7.5{ 7.7) is carried out in Sections7.1.1{ 7.1.3.

7.1.1. The single components on time scalet. In this section, our main goal is to
argue that the components ofX (N ) change on time scalet as before, and that the
same holds on time scalesNt + u and N 2t + u with u 2 R, provided we use the
appropriate value for the 1-block average as the centre of drift.

We �rst look at the components on time scale t. Due to the Markov property
and the continuity in � of the law of the McKean-Vlasov process (cf., Section4.2),
the behaviour of the components on time scalesNt + u and N 2t + u with u 2 R
is immediate once we have the tightness ofY (N ) and Z (N ) on these scales. Again,
our convergence results are obtained by: (1) establishingtightness in path space;
(2) verifying convergence of the �nite-dimensional distributions by means of estab-
lishing asymptotic independence and thegenerator calculation for the martingale
problem. Since the latter is key also for the tightness arguments (recall (5.4)), we
give the analysis of the generator terms �rst. In fact, the rest of the argument is
the same as in Section6.1.

Migration part. Consider the migration operator in (1.37) with ( 1.26) applied to
functions F 2 F , the algebra of functions in (1.34). The migration operator can
be rewritten as (recall that the upper index 2 in L (N; 2) indicates that we consider
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K = 2 levels)

(L (N; 2)
mig F )(x) =

∑

�;� 2 GN,2

a(N )
�;�

∫

E
(x � � x � ) (da)

@F(x)
@x�

[� a ]

=
∑

�;� 2 GN,2

∑

d( �;� ) � k � 2

ck � 1N 1� 2k
∫

E
(x � � x � ) (da)

@F(x)
@x�

[� a ]

=
∑

� 2 GN,2

∑

k � 2

ck � 1N 1� 2k
∑

� 2 B k( � )

∫

E
(x � � x � ) (da)

@F(x)
@x�

[� a ]

=
∑

� 2 GN,2

∑

k � 2

ck � 1N 1� k
∫

E
(y�;k � x � ) (da)

@F(x)
@x�

[� a ];

(7.8)

where we use (1.31) in the last line. Thus, for F as in (1.34), we obtain

(L (N; 2)
mig F )(x) =

∑

� 2 GN,2

c0

∫

E
(y�; 1 � x � ) (da)

@F(x)
@x�

[� a ] + E (N ) ; (7.9)

where

jE (N ) j � N � 1c1CF = O
(
N � 1)

(7.10)

with CF a generic constant depending on the choice ofF only. Here we use that,
by the de�nition of F in (1.34), the sum over � 2 GN; 2 is a sum over �nitely many
coordinates only, with the number depending onF only.

Resampling part. Recall (1.34). For F 2 F , consider the resampling operator
(L (N; 2)

res F )(x) in ( 1.38){( 1.39). We have

(L (N; 2)
res F )(x) =

∑

� 2 GN,2

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

[
F

(
� r;a;B 0 ( � ) (x)

)
� F (x)

]
+ E (N )

(7.11)
with

jE (N ) j � N � 2
∫

[0;1]
� �

1(dr )CF r 2N = CF N � 1� 1 = O
(
N � 1)

: (7.12)

Here we use (1.39) in the �rst inequality, together with the fact that
F (� r;a;B 1 ( � ) (x)) � F (x) is non-zero for at most CF N di�erent values of � 2 GN; 2.

Additional Fleming-Viot part. Recall that in this section we consider the case
d0 > 0, i.e., we add the Fleming-Viot generator

(L (N; 2)
FV F )(x) = d0

∑

� 2 GN,2

∫

E

∫

E
Qx ξ (du; dv)

@2F (x)
@x2�

[� u ; � v ] (7.13)

with Qx ξ as in (1.19). Contrary to the migration and the resampling operator, the
Fleming-Viot operator does not act on higher block levels.
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The resulting generator. Combining the migration parts ( 7.9) and (7.10), the
resampling parts (7.11) and (7.12), and the Fleming-Viot part ( 7.13), we obtain

(L (N; 2) F )(x) =
∑

� 2 GN,2

c0

∫

E
(y�; 1 � x � ) (da)

@F(x)
@x�

[� a ]

+
∑

� 2 GN,2

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

[
F

(
� r;a;B 0 ( � ) (x)

)
� F (x)

]

+ d0

∑

� 2 GN,2

∫

E

∫

E
Qx ξ (du; dv)

@2F (x)
@x2�

[� u ; � v ] + O
(
N � 1)

;

(7.14)

where O
(
N � 1

)
is uniform in x.

Convergence to McKean-Vlasov process. We can use (7.14) to argue that

kL (N; 2)F � L c0 ;d0 ;� 0
yξ,1

F k1 � CF N � 1; kL c0 ;d0 ;� 0
yξ,1

F k � C(F ); n 2 N; F 2 F
(7.15)

with F as in (1.34). Next, following again the line of argument in Section5.2, we see
that L [X (N ) ] is tight in path space and, following the argument as in Section6.1,
we obtain that X (N ) converges as a process to the McKean-Vlasov limit, which is
an i.i.d. collection of single components indexed byN0 with generator

(L c0 ;d0 ;� 0
� G)(x � ) = c0

∫

E
(� � x � )(da)

@G(x � )
@x�

[� a ]

+
∫

[0;1]
� �

0(dr )
∫

E
x � (da)

[
G

(
(1 � r )x � + r� a

)
� G(x � )

]

+ d0

∫

E

∫

E
Qx ξ (du; dv)

@2G(x)
@x2�

[� u ; � v ];

(7.16)

where � 2 P (E) is the initial mean measure. This completes the proof of (7.5).

7.1.2. The 1-block averages on time scaleNt . Again, we need to prove: (1) uniform
boundedness (inN ) of the generator in the supremum norm for test-functions inF
to get tightness in path space of (Y (N )

� (Nt )) t � 0 (cf. (5.4)); (2) convergence of �nite-
dimensional distributions via asymptotic independence and generator convergence.
As we saw in Section6, the latter is also the key to tightness. Therefore, we
proceed by �rst calculating the generator of 1-block averages ontime scaleNt and
then using this generator to show convergence of the process. At that point we
need that the total average over the full space (cf. (7.4)) remains � on time scale
Nt , in the sense of a constant path on time scaleNt . The latter property will be
proved in Section7.1.3.

Basic generator formula. We proceed as in Section6.2. SinceG = GN; 2, the 1-
block averages are now indexed too. We use the following notation for the indexing
of 1-block averages. Recall the notationy�; 1 = N � 1 ∑

� 2 B 1 ( � ) x � from (1.31), which
is the 1-block around � . This 1-block coincides with the 1-block around� if and
only if d(�; � ) � 1. To endow every 1-block with a unique label, we proceed as
follows. Let � be the shift-operator

� : GN;K ! GN;K � 1; (�� ) i = � i +1 ; 0 � i � K � 1; K 2 N: (7.17)
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We consider the evolution in time of the 1-block averages indexed block-wise, i.e.,

y[1]
� � N � 1

∑

� 2 GN,2 ;�� = �

x � ; (7.18)

where we suppress the dependence ofy[1]
� on N . Note in particular that

y�; 1 = y[1]
� for all � such that �� = �: (7.19)

We will often drop the superscript [1] to lighten the notation.
This time, we consider functions F 2 F (see (1.34)) applied to y[1] � y[1] (x),

where y[1] = ( y[1]
� )� 2 GN,1 . Recall the [k ]-notation for the rescaled generators from

Section 6.2.2. By explicit calculation of the di�erent terms below, we will obtain
the following expression (recall � r;a;� from (1.39) and Qx ξ from (1.19)):

(L (N; 2)[1] F )(y) =
(

L (N; 2)[1]
mig + L (N; 2)[1]

res;0 + L (N; 2)[1]
res;1 + L (N; 2)[1]

FV

)
(F )(y)

=
∑

� 2 GN,1

c1

∫

E

(
y[1]

�� � y�

)
(da)

@F(y)
@y�

[� a ]

+
q∑

m =1

1
N

∑

� : �� = � ( m)

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

1
2

@2F (y)
@y2� ( m)

[r (� x � + � a); r (� x � + � a)]

+
∑

� 2 GN,1

∫

[0;1]
� �

1(dr )
∫

E
y� (da) [F (� r;a;� (y)) � F (y)]

+ d0

∑

� 2 GN,1

1
N

∑

� : �� = �

∫

E

∫

E
Qx ξ (du; dv)

@2F (y)
@y2�

[� u ; � v ] + O
(
N � 1)

:

(7.20)
Here, we assumed that F can be written as follows: F (yt ) = F (y[1]

t ) =
h';

⊗q
l =1 y
 n l

� ( l) i with y = y[1] = ( y[1]
� )� 2 GN,1 , � ( l ) 2 GN; 1, q 2 f 1; : : : ; N g and

nl 2 N; 1 � l � q. We give more detail in (7.28) below.

Convergence to McKean-Vlasov process. We �rst argue how to conclude the
argument, and then further below we carry out the necessary generator calculations.

We have to argue �rst that the N di�erent 1-blocks satisfy the propagation of
chaos property (recall (6.5), where we had this for components). The proof again
uses duality, namely, dual particles from di�erent 1-blocks need a time of order N 2

to meet and hence do not meet on time scaleNt . We do not repeat the details
here.

Once we have the propagation of chaos property, it su�ces to consider single
blocks, which we do next. We have to verify tightness in path space and convergence
of the �nite-dimensional distributions. As we saw before, this reduces to showing
that the action of the generators is uniformly bounded in N in the sup-norm on F ,
so that we have convergence of the generator onF by the same tightness argument
as used in Section6.2.4, but now based on (7.20). Consider the resampling and
Fleming-Viot parts of the generator in (7.20) separately.
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Reason as in the proof of Lemma6.7 to see that (recall the de�nition of � c0 ;d0 ;� 0
yη

from (4.1))

lim
N !1

(L (N; 2)[1]
res;0 F )(y)

= lim
N !1

q∑

m =1

1
N

∑

� : �� = � ( m)

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

�
1
2

@2F (y)
@y2� ( m)

[r (� x � + � a); r (� x � + � a)]

=
� 0

2

∑

� 2 N0

∫

P (E )
� c0 ;d0 ;� 0

yη
(dx)

∫

E

∫

E
Qx (du; dv)

@2F (y)
@y2�

[� u ; � v ]

=
c0� 0

2c0 + � 0 + 2 d0

∑

� 2 N0

∫

E

∫

E
Qyη (du; dv)

@2F (y)
@y2�

[� u ; � v ];

(7.21)

where by (4.21) the second assertion follows from the �rst. Recall (7.13). Similarly,
we have

lim
N !1

(L (N; 2)[1]
FV F )(y) = d0

∑

� 2 N0

∫

P (E )
� c0 ;d0 ;� 0

yη
(dx)

∫

E

∫

E
Qx (du; dv)

@2F (y)
@y2�

[� u ; � v ]:

(7.22)
Using (4.21) once more, we get

r.h.s. of (7.22) =
2c0d0

2c0 + � 0 + 2 d0

∑

� 2 N0

∫

E

∫

E
Qyη (du; dv)

@2F (y)
@y2�

[� u ; � v ]: (7.23)

Combine (7.21) with ( 7.23) and argue as in Section6.1.4, to see that each single
component of the 1-block averagesy = y[1] = ( y[1]

� )� 2 GN,1 converges and the limiting
coordinate process has generator

(L c1 ;d1 ;� 1
� G)(y� ) = c1

∫

E
(� � y� )(da)

@G(y� )
@y�

[� a ]

+ d1

∫

E

∫

E
Qyη (du; dv)

@2G(y)
@y2�

[� u ; � v ]

+
∫

[0;1]
� �

1(dr )
∫

E
y� (da)

[
G

(
(1 � r )y� + r� a

)
� G(y� )

]
;

(7.24)
for test-functions G of the form (6.18). Note that � 2 P (E) is the initial mean
measure of a component andd1 = c0 ( � 0 +2 d0 )

2c0 + � 0 +2 d0
. At this point we use that the

average over the complete population remains the path that stands still at � on
time scaleNt .

Generator calculation: proof of ( 7.20). We next verify the expression given
in (7.20). We calculate separately the action of the various terms in the generator
on the function F . In what follows a change to time scaleN k t is denoted by an
additional superscript [k].

Migration part. Recall (L (N; 2)
mig F )(x) from (7.8) and that the upper index 2 in

L (N; 2) indicates that we consider K = 2 levels. Let F be as in (1.34). Denote
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� k � � � � � : : : � �︸ ︷︷ ︸
k times

. Proceeding along the lines of (6.25{ 6.27), we get

(L (N; 2)
mig F )(y) =

∑

� 2 GN,2

∑

k � 2

ck � 1N 1� k
∫

E
(y�;k � x � )(da)

@(F � y)(x)
@x�

[� a ]

=
∑

� 2 GN,2

∑

k � 2

ck � 1N 1� k
∫

E

(
y[1]

� k � � x �

)
(da)

@F(y)
@y��

[
� a

N

]

= N
∑

� 2 GN,1

∑

k � 2

ck � 1N 1� k
∫

E

(
y[1]

� k−1 � � y�

)
(da)

@F(y)
@y�

[
� a

N

]

=
∑

� 2 GN,1

∑

k � 1

ck N 1� k
∫

E

(
y[1]

� k � � y�

)
(da)

@F(y)
@y�

[
� a

N

]
:

(7.25)

Next, for functions F that are linear combinations of functions in (1.34), we have

N
@F(y)
@y�

[
� a

N

]
=

@F(y)
@y�

[� a ]: (7.26)

On the time scaleNt , we have (recall that the upper index [1] indicates time scale
N 1t)

(L (N; 2)[1]
mig F )(y) =

∑

� 2 GN,1

c1

∫

E

(
y[1]

�� � y�

)
(da)

@F(y)
@y�

[� a ]: (7.27)

Resampling part. The calculations proceed along the same lines as in Sec-
tion 6.2.2. Apart from an additional higher-order term, the main extension is
that we consider F (yt ) = F (y[1]

t ) = h';
⊗q

l =1 y
 n l
� ( l) i with y = y[1] = ( y[1]

� )� 2 GN,1 ,

� ( l ) 2 GN; 1, q 2 f 1; : : : ; N g and nl 2 N; 1 � l � q, instead of restricting ourselves
to test-functions of the form (6.29) (which corresponds to the caseq = 1). We will
now use functionsF of the form

F (y) =
∫

E n1 + ...+ nq

(
q⊗

l =1

y
 n l
� ( l)

(
du( l ) )

)

'
(
u(1) ; : : : ; u(q) )

; y = ( y� )� 2 GN,1 2 P (E)N ;

q 2 f 1; : : : ; N g; nl 2 N; � ( l ) 2 GN; 1; l 2 f 1; : : : ; qg;

� ( l ) 6= � ( l ′) , for all l 6= l0; u( l ) 2 E n l ; ' 2 Cb (E n 1 + ::: + n q ; R):
(7.28)

The only di�erence with ( 1.34) is the restriction of the ordering of the entries.
This facilitates the notation in the computation below, but is no loss of generality
because the set of functions in (7.28) generates the same algebraF . We will now
show that

(L (N; 2)[1]
res F )(y)

=
q∑

m =1

1
N

∑

� : �� = � ( m)

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

1
2

@2F (y)
@y2� ( m)

[r (� x � + � a); r (� x � + � a)]

+
∑

� 2 GN,1

∫

[0;1]
� �

1(dr )
∫

E
y� (da) [F (� r;a;� (y)) � F (y)] + O

(
N � 1)

(7.29)
with � r;a;� as in (1.39).



Renormalisation of hierarchically interacting Cannings processes 113

Recall the notation in (7.28) and set

L =
q∑

l =1

nl : (7.30)

Proceeding as in (6.29-6.31), we obtain

(L (N; 2)
res F )(y) =

1
N L




q⊗

l =1

n l⊗

i =1

∑

� l
i : �� l

i= � ( l)



 L res

(
F

(
� 1

1 ;:::;� q
nq

))
(x) (7.31)

with F
(

� 1
1 ;:::;� q

nq

)

as in (6.30). As in Section 6.2.2, we distinguish between the
di�erent cases for the structure of the set f � 1

1 ; � � � ; � 1
n q

g and we obtain, using the
de�nition of the resampling operator in ( 1.38){( 1.39),

(L (N; 2)
res F )(y)

=
1

N L




q⊗

l =1

n l⊗

i =1

∑

� l
i : �� l

i= � ( l)




∑

� 2 GN,2

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

�
[
F

(
� 1

1 ;:::;� q
nq

)(
� r;a;B 0 ( � ) (x)

)
� F

(
� 1

1 ;:::;� q
nq

)

(x)
]

+
1

N L




q⊗

l =1

n l⊗

i =1

∑

� l
i : �� l

i= � ( l)




∑

� 2 GN,2

N � 2
∫

[0;1]
� �

1(dr )
∫

E
y�; 1(da)

�
[
F

(
� 1

1 ;:::;� q
nq

)(
� r;a;B 1 ( � ) (x)

)
� F

(
� 1

1 ;:::;� q
nq

)

(x)
]

= I 0 + I 1:

(7.32)

For the �rst term I 0 in (7.32) we proceed along the lines of (6.33{ 6.34) to conclude
that the only non-negligible contribution to the sum in I 0 comes from terms with
jf � l

i ; 1 � l � q;1 � i � nl gj = L � 1. It remains to investigate the terms with
jf � l

i ; 1 � l � q;1 � i � nl gj = L � 1. Since�� l
i = � ( l ) , this implies that there exist

1 � m � q and 1 � m1 < m 2 � nm such that � m
m 1

= � m
m 2

and all other � l
i di�erent.

By the same reasoning as in (6.33), we see that the only non-zero contribution of
the sum

∑
� 2 GN,2

comes from� = � m
m 1

= � m
m 2

. We therefore obtain

I 0 =
1

N L




q⊗

l =1

n l⊗

i =1

∑

� l
i : �� l

i= � ( l)



 1fjf � l
i ;1� l � q;1� i � n lgj= L � 1g

�
q∑

m =1

∑

1� m 1 <m 2 � n m

1f � m
m1

= � m
m2

= � g

�
∫

[0;1]
� �

0(dr )
∫

E
x � (da)

[
F

(
� 1

1 ;:::;� q
nq

)(
� r;a;B 0 ( � ) (x)

)
� F

(
� 1

1 ;:::;� q
nq

)

(x)
]

+ O
(
N � 2)

:
(7.33)
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Now follow the reasoning from (6.35) to ( 6.40), to get

I 0 =
1

N 2

q∑

m =1

∑

� : �� = � ( m)

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

1
2

@2F (y)
@y2� ( m)

[r (� x � + � a); r (� x � + � a )]

+ O
(
N � 2)

:
(7.34)

For the second termI 1 in (7.32), we obtain, by the de�nition of � r;a;B 1 ( � ) (x) in
(1.39) and using (7.19),

I 1 =
1

N L




q⊗

l =1

n l⊗

i =1

∑

� l
i : �� l

i= � ( l)




∑

� 2 GN,2

N � 2
∫

[0;1]
� �

1(dr )
∫

E
y�; 1(da)

�
[
F

(
� 1

1 ;:::;� q
nq

)(
� r;a;B 1 ( � ) (x)

)
� F

(
� 1

1 ;:::;� q
nq

)

(x)
]

=
1

N L




q⊗

l =1

n l⊗

i =1

∑

� l
i : �� l

i= � ( l)




∑

� 2 GN,1

N � 1
∫

[0;1]
� �

1(dr )
∫

E
y� (da)

�
[
F

(
� 1

1 ;:::;� q
nq

)(
� [1]

r;a;� (x)
)

� F
(

� 1
1 ;:::;� q

nq

)

(x)
]

(7.35)

with
[
� [1]

r;a;� (x)
]

�
=

{
(1 � r )y� + r� a ; �� = �;

x � ; otherwise:
(7.36)

Now observe that the sum
∑

� 2 GN,1
in (7.35) yields non-zero contributions only for

� 2
{

� (1) ; : : : ; � (q)
}

, and so we can rewriteI 1 as

I 1 =
1

N L




q⊗

l =1

n l⊗

i =1

∑

� l
i : �� l

i= � ( l)




q∑

l =1

N � 1
∫

[0;1]
� �

1(dr )
∫

E
y� ( l) (da)

�





〈

'; x � 1
1


 � � � 
 x � l−1
nl−1



(
(1 � r )y� ( l) + r� a

)
︸ ︷︷ ︸
change from position � l

1


 � � � 

(
(1 � r )y� ( l) + r� a

)
︸ ︷︷ ︸

to position � l
nl


 x � l+1
1


 � � � 
 x � q
nq

〉

�
〈

'; x � 1
1


 � � � 
 x � q
nq

〉]
(7.37)

=
q∑

l =1

N � 1
∫

[0;1]
� �

1(dr )
∫

E
y� ( l) (da)

�
[〈

'; y 
 n 1

� (1) 
 � � � 
 y
 n l−1

� ( l−1) 

(
(1 � r )y� ( l) + r� a

)
 n l 
 y
 n l+1

� ( l+1)


 � � � 
 y
 n q

� ( q)

〉
�

〈

';
q⊗

l =1

y
 n l
� ( l)

〉]
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=
∑

� 2 GN,1

N � 1
∫

[0;1]
� �

1(dr )
∫

E
y� (da) [F (� r;a;� (y)) � F (y)] :

Combining (7.32), (7.34) and (7.37), we obtain (7.29) on time scaleNt .

Additional Fleming-Viot part. We proceed as with the migration operator
(recall that in the present Section7 we added a Fleming-Viot term to the generator,
i.e., we consider the cased0 > 0) and write

(L (N; 2)
FV F )(y) =

(
L (N; 2)

FV (F � y)
)

(x)

= d0

∑

� 2 GN,2

∫

E

∫

E
Qx ξ (du; dv)

@2(F � y)(x)
@x2�

[� u ; � v ];
(7.38)

with Qx ξ as in (1.19) and where the de�nition of y = y[1] in (7.18) yields

@2 (F � y)(x)
@x2�

[� u ; � v ] =
@2F (y)

@y2��

[
� u

N
;

� v

N

]
: (7.39)

Hence, on time scaleNt ,

(L (N; 2)[1]
FV F )(y) = d0N

∑

� 2 GN,1

∑

� : �� = �

∫

E

∫

E
Qx ξ (du; dv)

@2F (y)
@y2�

[
� u

N
;

� v

N

]

= d0

∑

� 2 GN,1

1
N

∑

� : �� = �

∫

E

∫

E
Qx ξ (du; dv)

@2F (y)
@y2�

[� u ; � v ];

(7.40)

where in the last line we use that, forF a linear combination of the functions in
(1.34),

N 2 @2F (y)
@y2�

[
� u

N
;

� v

N

]
=

@2F (y)
@y2�

[� u ; � v ]: (7.41)

The resulting generator. Combining the migration ( 7.27), resampling (7.29)
and Fleming-Viot ( 7.40) parts for the 1-block averages on time scaleNt , we obtain
(7.20). This completes the proof of (7.6).

7.1.3. The total average on time scaleN 2t. Denote the total average by (recally[1]
�

from (7.18))

z = N � 1
∑

� 2 GN,1

y[1]
� = N � 2

∑

� 2 GN,2

x � : (7.42)

(This is a 2-block average because we are considering the caseK = 2.) Recall
notation ( 7.4). We must prove: (1) the sequence of lawsfL [(Z (N ) (tN 2)) t � 0; N 2
Ng is tight in path space; (2) the weak limit points of this sequence are solutionsof
the martingale problem for Z 0;d2 ;0

� (cf. (7.7)) by showing (5.5) (recall Section 5.2).
From the uniqueness of the solution to the martingale problem, we get the claim.

We now verify these points by calculating the generator. Recall the[k ]-notation
from Section 6.2.2 for the rescaled generators.

Migration part. For the total average, the migration operator can be obtained
from (7.27) by writing z = z(y) and using the analogue to (6.26), (cf., (7.17) for
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the de�nition of � )

(L (N; 2)[1]
mig F )(z) = ( L (N; 2)[1]

mig (F � z))( y) =
∑

� 2 GN,1

c1

∫

E

(
y[1]

�� � y�

)
(da)

@F(z)
@z

[
� a

N

]
:

(7.43)
Using that z = y[1]

�� = N � 1 ∑
� 2 GN,1

y[1]
� , for all � 2 GN; 1, we get

(L (N; 2)[1]
mig F )(z) = ( L (N; 2)[2]

mig F )(z) = 0 : (7.44)

Resampling part. Consider F (z) = h'; z 
 n i . Follow the derivation of (6.31) to
obtain

(L (N; 2)
res F )(z) =

1
N n




n⊗

i =1

∑

� i2 GN,1



 L (N )
res

(
F ( � 1 ;:::;� n)

)
(y) = I 0

0 + I 0
1 (7.45)

with F ( � 1 ;:::;� n) (y) = h';
⊗n

i =1 y� i i as in (6.30), where we recall from (7.32) that

(L (N; 2)
res F ( � 1 ;:::;� n) )(y)

=
1

N n




n⊗

l =1

∑

� l : �� l= � l




∑

� 2 GN,2

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

�
[
F ( � 1 ;:::;� n) (

� r;a;B 0 ( � ) (x)
)

� F ( � 1 ;:::;� n) (x)
]

+
1

N n




n⊗

l =1

∑

� l : �� l= � l




∑

� 2 GN,2

N � 2
∫

[0;1]
� �

1(dr )
∫

E
y�; 1(da)

�
[
F ( � 1 ;:::;� n) (

� r;a;B 1 ( � ) (x)
)

� F (� 1
1 ;:::;� n) (x)

]

= I 00
0 + I 00

1

(7.46)

with � r;a;B k( � ) as in (1.39).
Let us begin with the second termI 00

1 in (7.46), which corresponds toI 1 in (7.32)
and was rewritten in (7.35{ 7.37) as

I 00
1 =

∑

� 2 GN,1

N � 1
∫

[0;1]
� �

1(dr )
∫

E
y� (da)

[
F ( � 1 ;:::;� n) (� r;a;� (y)) � F ( � 1 ;:::;� n) (y)

]
:

(7.47)
Combine (7.45) and (7.47), change to timescaleNt and compare the result to (6.32).
We obtain that I 0

1 on time scaleNt behaves analogously to (6.32) on time scalet.
By moving one time scale upwards, we obtain as in (6.43) (respectively, (7.21) with
d1 = c0 ( � 0 +2 d0 )

2c0 + � 0 +2 d0
> 0) that

lim
N !1

(I 0
1)[2] =

c1� 1

2c1 + � 1 + 2 d1

∫

E

∫

E
Qz (du; dv)

@2F (z)
@z2

[� u ; � v ]: (7.48)

The term I 0
0 can be handled in the same spirit asI 0 in (7.32). To obtain non-

zero contributions in I 00
0 , we need to havejf � l ; �� l = � l ; 1 � l � ngj < n (recall

(6.33)). This is possible only if j� 1; : : : ; � n j < n . Reasoning similarly as in (6.34),
we obtain negligible terms if jf � l ; �� l = � l ; 1 � l � ngj < n � 1. Indeed, two sites
residing in a common 1-block already result in a factor ofO(N � 2) (on time scale
t): �rst a common block has to be chosen (j� 1; : : : ; � n j = n � 1), which contributes
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a factor N � 2 ∑
� 2 GN,1

, and subsequently a common site has to be chosen, which
contributes a factor N � 2 ∑

� :�� = � . Any additional choice results in terms that
vanish for N ! 1 on time scaleN 2t. Consequently, we can reason as in (6.35{
6.40) to obtain on time scale t

(I 0
0)[0] =

1
N 2

∑

� 2 GN,1

1
N 2

∑

� : �� = �

∫

[0;1]
� �

0(dr )

�
∫

E
x � (da)

1
2

@2F (z)
@z2

[r (� x � + � a); r (� x � + � a)] + O
(
N � 3)

:

(7.49)

Additional Fleming-Viot part. We proceed as for the migration operator. Re-
call (7.40), to get

(L (N; 2)[1]
FV F )(z) = d0

∑

� 2 GN,1

1
N

∑

� : �� = �

∫

E

∫

E
Qx ξ (du; dv)

@2(F � z)(y)
@y2�

[� u ; � v ]:

(7.50)
Now use the analogue to (7.39), to obtain

(L (N; 2)[1]
FV F )(z) = d0

∑

� 2 GN,1

1
N

∑

� : �� = �

∫

E

∫

E
Qx ξ (du; dv)

@2F (z)
@z2

[
� u

N
;
� v

N

]
:

(7.51)
After changing to time scale N 2t, we have

(L (N; 2)[2]
FV F )(z) = d0

1
N

∑

� 2 GN,1

1
N

∑

� : �� = �

∫

E

∫

E
Qx ξ (du; dv)

@2F (z)
@z2

[� u ; � v ]:

(7.52)

Tightness. We have to bound the generator, i.e., show that supN kL (N; 2)[1] (F )k <
1 , in order to apply the tightness criterion, as explained in Section5.2. (Recall that
the upper index [1] indicates time scaleN 1t and that the upper index 2 indicates
that we consider K = 2 levels.) This we read o� from ( 7.44), (7.46), (7.47), (7.49)
and (7.52).

Convergence to McKean-Vlasov process. We have to identify the limiting
generator. One approach would be to try and make the following heuristics rigorous.

Begin heuristics. On time scale N 2t, we obtain, by reasoning as in (7.21), us-
ing (7.49), now on time scaletN 2, together with ( 4.21) in the second and fourth
equation,



118 Greven et al.

lim
N !1

(I 0
0)[2] =

� 0

2
lim

N !1

1
N

�
∑

� 2 GN,1

∫

P (E )
� c0 ;d0 ;� 0

yη
(dx)

∫

E

∫

E
Qx (du; dv)

@2F (z)
@z2

[� u ; � v ]

=
c0� 0

2c0 + � 0 + 2 d0
lim

N !1

1
N

∑

� 2 GN,1

∫

E

∫

E
Qyη (du; dv)

@2F (z)
@z2

[� u ; � v ]

=
c0� 0

2c0 + � 0 + 2 d0

∫

P (E )
� c1 ;d1 ;� 1

z (dy)
∫

E

∫

E
Qy (du; dv)

@2F (z)
@z2

[� u ; � v ]

=
2c1

2c1 + � 1 + 2 d1

c0� 0

2c0 + � 0 + 2 d0

∫

E

∫

E
Qz (du; dv)

@2F (z)
@z2

[� u ; � v ]:

(7.53)
Combine (7.48) with ( 7.53), to get from (7.45)

lim
N !1

(L (N; 2)[2]
res F )(z)

=
2c1

2c1 + � 1 + 2 d1

(
� 1

2
+

c0� 0

2c0 + � 0 + 2 d0

) ∫

E

∫

E
Qz (du; dv)

@2F (z)
@z2

[� u ; � v ]:

(7.54)
For the Fleming-Viot part in ( 7.52), we obtain, by reasoning once more as in (7.21),
using (4.21),

lim
N !1

(L (N; 2)[2]
FV F )(z)

= d0 lim
N !1

1
N

∑

� 2 GN,1

∫

P (E )
� c0 ;d0 ;� 0

yη
(dx)

∫

E

∫

E
Qx (du; dv)

@2F (z)
@2

z
[� u ; � v ]

=
2c0d0

2c0 + � 0 + 2 d0
lim

N !1

1
N

∑

� 2 GN,1

∫

E

∫

E
Qyη (du; dv)

@2F (z)
@2

z
[� u ; � v ]

=
2c0d0

2c0 + � 0 + 2 d0

∫

P (E )
� c1 ;d1 ;� 1

z (dy)
∫

E

∫

E
Qy (du; dv)

@2F (z)
@2

z
[� u ; � v ]

=
2c1

2c1 + � 1 + 2 d1

2c0d0

2c0 + � 0 + 2 d0

∫

E

∫

E
Qz (du; dv)

@2F (z)
@2

z
[� u ; � v ]:

(7.55)

Collecting the limiting terms as N ! 1 on time scaleN 2t for migration ( 7.44),
resampling (7.54) and Fleming-Viot ( 7.55), we obtain

lim
N !1

(L (N; 2)[2] F )(z)

=
2c1

2c1 + � 1 + 2 d1

(
� 1

2
+

c0� 0 + 2 c0d0

2c0 + � 0 + 2 d0

) ∫

E

∫

E
Qz (du; dv)

@2F (z)
@2

z
[� u ; � v ]:

(7.56)
In order to obtain the convergence in (7.53{ 7.55), we would need to restrict the set of
con�gurations, argue that the law of the process lives on that setof con�gurations,
and show that therefore the compensators of the martingale problems converge to
the compensator of the limit process. However, it is technically easier to follow a
di�erent route, as we do below. End heuristics.
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We want to view the expression for the generator of the total average on time
scaletN 2 with K = 2 levels, (L (N; 2) ;[2]F )(z), as an average overN di�erent 1-block
averages. If we replace the

(
L (N; 2)[1]

res;0 + L (N; 2)[1]
FV

)
-part of the 1-block averages (cf.

(7.20)) by a system of N exchangeable Fleming-Viot di�usions with resampling
constant d1 (for which we have a formula in terms ofc0; d0 and � 0, cf. (7.6)), which
on time scaleNt lead to the generator

L (N; 2) ;[1]
mig (F )(y) +

c0(� 0 + 2 d0)
2c0 + � 0 + 2 d0

∫

E

∫

E

Qy (du; dv)
@2F (y)

@y2
[� u ; � v ] + ( L (N; 2) ;[1]

res;1 F )(y);

(7.57)
then we can apply the analysis of Section6 to this new collection of processes,
denoted by {

Ỹ (N )
i (tN ) : i = 1 ; : : : ; N

}
; (7.58)

to conclude that on time scaletN 2 the block averageZ̃ (N ) (tN ) = N � 1
N∑

i =1
Ỹ N

i (Nt )

satis�es,
L [(Z̃ (N ) (tN 2)) t � 0] =)

N !1
L [(Z̃ (t)) t � 0]; (7.59)

where Z̃ is a Fleming-Viot di�usion with resampling constant

c1

2c1 + � 1 + 2 d1
(� 1 + 2 d1); where d1 =

c0(� 0 + 2 d0)
2c0 + � 0 + 2 d0

: (7.60)

Hence, we obtain a limit process with a generator acting onF as

c1(� 1 + 2 d1)
2c1 + � 1 + 2 d1

∫

E

∫

E
Qz (du; dv)

@2F (z)
@2

z
[� u ; � v ]: (7.61)

Hence, the weak limit points of the lawsfL [(Z̃ (N ) (tN 2)) t � 0]; N 2 Ng satisfy the
martingale problem with generator (L 0;d2 ;0

� G)(z) with d2 = c1 ( � 1 +2 d1 )
2c1 + � 1 +2 d1

.
Since we know that the martingale problem for the generatorL 0;d2 ;0 and for the

test functions given in (1.34) is well-posed (recall Proposition 1.2), we have the
claimed convergence in (7.7) on path space ifZ (a weak limit point for the original
problem) and Z̃ agree. Thus, we have to argue that it is legitimate to

replacef ((Y (N )
i (Nt )) i =1 ;:::;N )t � 0g by f (Ỹ (N )

i (Nt ) i =1 ;:::;N )t � 0g: (7.62)

For that purpose, observe that we know from Section6 that, for a suitable
subsequence along whichL [(Z (N ) (sN 2)) s� 0] converges toZ (s),

L [((Y (N )
i (N 2s + Nt )) i =1 ;:::;N )t � 0] =)

N !1
L [((Y (1 )

i (s; t)) i 2 N)t � 0]; (7.63)

where the right-hand side is the McKean-Vlasov process with Fleming-Viot part at
rate d1, Cannings part � 1, and immigration-emigration at rate c1 from the random
sourceZ (s). We need to argue that the latter implies that Z and Z̃ agree.

For F 2 C2
b (P(E); R), de�ne GN 2 C2

b ((P(E))N ; R) and HN 2 C2
b ((P(E))N 2

; R)
by

F (z) = GN (y) = HN (x); x 2 (P(E))N 2
; y 2 (P(E))N ; z 2 P (E); (7.64)

with

z =
1
N

∑

i 2f 1;:::;N g

yi ; yi =
1
N

∑

j 2f 1;:::;N g

x j;i : (7.65)
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In order to verify that Z and Z̃ agree, it su�ces to show that the compensator
processes forZ̃ and Z agree for a measure-determining family of functionsF 2
C2

b (P(E); R), namely,

L
[( ∫ tN 2

0
ds

[ ∫

E � E
d1

N∑

i =1

Qyi(s) (du; dv)
@2GN (y(s))

@y2i
[� u ; � v ]

+ L (N; 2)[1]
res;1 GN (y(s))

])

t � 0

]

� L
[( ∫ tN 2

0
ds

[
L (N; 2)[1]

res;1 GN (yj (s))

+
1

N 2

N∑

i =1

N∑

j =1

(
L (N; 2)

res;0 + L (N; 2)
FV

)
HN (x j;i (s))

])

t � 0

]

=)
N !1

Zero measure:

(7.66)

To that end, �rst note that the two terms with L (N; 2) ;[1]
res;1 cancel each other out.

Regarding the remaining terms, after we transforms to sN 2, we must show that
for each s 2 [0; t] the term in the second line converges weakly to the term in the
�rst line (the joint law of the density and the empirical measure converges). When
worked out in detail, this requires a somewhat subtle argument. However, nothing
is speci�c to our model: a detailed argument along these lines can be found in
Dawson et al. (1995), pp. 2322-2339.

7.2. Finite-level systems. The next step is to consider generalK � 3 (recall the
beginning of Section7). We can copy the arguments used forK = 2, and then argue
recursively. Namely, we can view the (j � 1); j; (j + 1)-block averages as atwo-level
system on time scalestN j � 1; N (tN j � 1); N 2(tN j � 1). The limit as N ! 1 is a
two-level system with migration rates cj � 1; cj ; cj +1 instead of c0; c1; c2, resampling
measures �j � 1; � j ; � j +1 instead of � 0; � 1; � 2, and volatility d j � 1 instead of d0. If
we would have c0 = c1 = � � � = cj � 2 = 0 and � 0 = � � � = � j � 2 = 0, then this
would be literally the case. Hence, the key point is to show that the lower-order
perturbation terms play no role in the renormalised dynamics after they have played
their role in determining the coe�cients dj � 1; dj ; dj +1 .

The argument has again a tightness part, which is the same as before and which
we do not discuss, and a �nite-dimensional distributions part. Sincethe solution of
the martingale problem is uniquely determined by the marginal distributions (see
Ethier and Kurtz (1986, Theorem 4.4.2)), this part is best based on duality, which
determines the transition kernel of the process as follows.

We have to verify that the dual of the ( j + 1)-level system on the time scales
N j � 1t; N j t behaves like the dual process of a two-level system. This means that
the dual process can be replaced by the system where the locations up to level
j � 2 are uniformly distributed and all partition elements originally within th at
distance have coalesced. This can be obtained by showing that the dual system
with the lower-order terms is instantaneously uniformly distributed in small balls,
and that within that distance coalescence is instantaneous, since we are working
with times at least tN j � 1. Therefore, the dynamics asN ! 1 results e�ectively
in a coalescent corresponding to a two-level system.
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8. Proof of the hierarchical mean-�eld scaling limit

We are �nally ready to prove Theorem 1.5. Recall the Cc;�
N -process on 
N ,

denotedX (
 N ) from Section 1.4.4and (1.43). Also recall the discussion on conver-
gence criteria from Section5.2. We establish the tightness by checking the bound
on the generator action. Having Section7, all we need is to show that the higher-
order term action on monomials is bounded inN in the considered time scale. This
is readily checked from the explicit form of the terms. In order to show convergence
of the �nite dimensional distribution, we approximate our in�nite spa tial system
by �nite spatial systems of the type studied in Section 7. As before, we denote the
�nite system with geographic spaceGN;K by X (N;K ) and the one with G = 
 N by
X (
 N ) .

Proposition 8.1. [ K -level approximation] For t 2 (0; 1 ) and sN 2 (0; 1 ) with
limN !1 sN = 1 and limN !1 sN =N = 0 , consider thek-block averagesY (
 N )

�;k and

Y (N;K )
�;k on time scale tN j + sN N k for 0 � k � j < K . Then

dProkh

(
L

[(
Y (
 N )

�;k (tN j + sN N k )
)]

; L
[(

Y (N;K )
�;k (tN j + sN N k )

]))
=)

N !1
0; (8.1)

where dProkh is the Prokhorov metric.

Once we have proved this proposition, we obtain Theorem1.5 by observing that
(8.1) allows us to replace our system on 
N by the one on GN;K when we are
interested only in block averages of order� K on time scales of order< N K . In
that case, we can use the result of Section7 to obtain the claim of the theorem for
(j; k ) with k � j < K . Thus, it remains only to prove Proposition 8.1. We give the
proof for K = 2, and later indicate how to extend it to K 2 N.

The main idea is the following. We want to compare the laws of the solution
of two martingale problems at a �xed time and show that their di�eren ce goes to
zero in the weak topology. To this end, it su�ces to show that the di� erence of
the action of the two generators in the martingale problems on the functions in
the algebra F tends to zero. Indeed, we then easily get the claim with the help of
the formula of partial integration for two semigroups (Vt )t � 0 and (Ut )t � 0 (see, e.g.,
Ethier and Kurtz (1986, Section 1, (5.19))):

Vt = Ut +
∫ t

0
Ut � s(L V � L U )Vsds: (8.2)

In Sections 8.1{ 8.2, we calculate and asymptotically evaluate the di�erence of
the generator acting onF on the two spatial and temporal scales.

8.1. The single components on time scalet. For an F 2 F (cf. (1.34)) that depends
only on f x � , � 2 B1(0)g (cf., (1.23)), we have (as we will see below)

(L (
 N ) F )(x) = ( L (N; 2) F )(x) + ( L err F )(x); (8.3)

where kL err k = O(N � 1) (k � k is the operator norm generated by the sup-norm).
By the formula of partial integration for semigroups, it follows that

∣∣∣E
[
F (X (
 N ) (t))

]
� E

[
F (X (N; 2) (t))

]∣∣∣ � tO(N � 1): (8.4)
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Since our test functions are measure-determining, the claim followsfor any �nite
time horizon. To prove (8.3), we discuss the di�erent parts of the generators sepa-
rately.

Consider the migration operator in (1.37) applied to functions F 2 F . The
migration operator can be rewritten, similarly as in (7.8),

(L (
 N )
mig F )(x) =

∑

� 2 
 N

∑

k2 N

ck � 1N 1� k
∫

E
(y�;k � x � ) (da)

@F(x)
@x�

[� a ]: (8.5)

We obtain

(L (
 N )
mig F )(x) =

∑

� 2 
 N

c0

∫

E
(y�; 1 � x � ) (da)

@F(x)
@x�

[� a ] + E (N ) ; (8.6)

where
jE (N ) j � N � 1CF

∑

k2 Nnf 1g

ck � 1N 2� k ; (8.7)

with CF a generic constant depending on the choice ofF only. Here we use that,
by the de�nition of F in (1.34), the sum over � 2 
 N is a sum over �nitely many
coordinates only, with the number depending onF only. By ( 1.27) we get

jE (N ) j � O
(
N � 1)

: (8.8)

For the resampling operator in (1.38), applying �rst ( 1.39) and then (1.32), we
obtain,

(L (
 N )
res F )(x) =

∑

� 2 
 N

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

[
F

(
� r;a;B 0 ( � ) (x)

)
� F (x)

]
+ E (N )

(8.9)
with

jE (N ) j �
∑

k2 N

N � 2k
∫

[0;1]
� �

k (dr )CF N k r 2 = CF

∑

k2 N

N � k � k = O
(
N � 1)

: (8.10)

Finally, the Fleming-Viot operator reads as in (7.13):

(L (
 N )
FV F )(x) = d0

∑

� 2 
 N

∫

E

∫

E
Qx ξ (du; dv)

@2F (x)
@x2�

[� u ; � v ]: (8.11)

Combining the migration parts in ( 8.6) and (8.8), the resampling parts in (8.9)
and (8.10), and the Fleming-Viot part in ( 8.11), we obtain

(L (
 N ) F )(x) =
∑

� 2 
 N

c0

∫

E
(y�; 1 � x � ) (da)

@F(x)
@x�

[� a ] + O(N � 1)

+
∑

� 2 
 N

∫

[0;1]
� �

0(dr )
∫

E
x � (da)

[
F

(
� r;a;B 0 ( � ) (x)

)
� F (x)

]
+ O

(
N � 1)

+ d0

∑

� 2 
 N

∫

E

∫

E
Qx ξ (du; dv)

@2F (x)
@x2�

[� u ; � v ]:

(8.12)
Combining (8.12) with ( 8.5{ 8.11) and (7.14) (also recall the discussion on embed-
dings from Section5.2), we get (8.3).
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8.2. The 1-block averages on time scaleNt . As before, we prove, forF 2 F de-
pending on f x � , � 2 B1(0)g only (recall that the upper index [1] indicates time
scaleN 1t and that the upper index 2 indicates that we considerK = 2 levels),

(L (
 N )[1] )(y) = ( L (N; 2)[1] F )(y) + O(N � 1) (8.13)

after which the claim follows in the limit as N ! 1 by the same argument as in
Section 8.1. We prove (8.13) by considering separately the di�erent parts of the
generator.

For the 1-block averagesy = y[1] , the migration operator can be calculated as in
(7.25). Using (7.26), we get

(L (
 N )
mig F )(y) =

1
N

∑

� 2 
 N

∑

k2 N

ck N 1� k
∫

E

(
y[1]

� k � � y�

)
(da)

@F(y)
@y�

[� a ]: (8.14)

We obtain on the time scaleNt

(L (
 N )[1]
mig F )(y) =

∑

� 2 
 N

c1

∫

E

(
y[1]

�� � y�

)
(da)

@F(y)
@y�

[� a ] + E (N ) ; (8.15)

where ∣∣∣E (N )
∣∣∣ � CF

∑

k2 Nnf 1g

ck N 1� k = O
(
N � 1)

: (8.16)

Note that, by ( 7.27),

(L (
 N )[1]
mig F )(y) = ( L (N; 2)[1]

mig F )(y) + O
(
N � 1)

: (8.17)

For the resampling operator, the only change to (7.31) is that ( 7.32) gets replaced
by

(L (
 N )
res F )(y) = I 0 + I 1 + E (N ) (8.18)

with I 0; I 1 as in (7.32) (with GN; 2 replaced by 
 N ) and

∣∣∣E (N )
∣∣∣ �

1
N L




q⊗

l =1

n l⊗

i =1

∑

� l
i : �� l

i= � ( l)




∑

k2 Nnf 1g

N � 2k
∫

[0;1]
� �

k (dr )LN k CF r 2

= CF

∑

k2 Nnf 1g

N � k � k = O
(
N � 2)

:

(8.19)

After a change to time scaleNt , we therefore have

(L (
 N )[1]
res F )(y) = ( L (N; 2)[1]

res F )(y) + O
(
N � 1)

(8.20)

with ( L (N; 2)
res F )(y) as in (7.31).

The Fleming-Viot operator on time scale t reads as in (7.38), respectively, on
time scaleNt as in (7.40),

(L (
 N )[1]
FV F )(y) = ( L (N; 2)[1]

FV F )(y): (8.21)

8.3. Arbitrary truncation level. For every K 2 N, consider the block averages up to
level K � 1 on time scales up toN K t, estimate the generator di�erence, bound this
by an O(N � 1)-term and get the same conclusion as above. There are more indices
involved in the notation, but the argument is the same. The details are left to the
interested reader.
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9. Multiscale analysis

9.1. The interaction chain. In this section, we prove Theorem1.6. In addition to
Theorem 1.5, what is needed is the convergence of thejoint law of the collection
of k-level block averages fork = 0 ; : : : ; j + 1 on the corresponding time scales
N j tN + N k t, with lim N !1 tN = 1 and limN !1 tN =N = 0. We already know
that the `-block averages for` > k do not change on time scaletN k and that
this holds in path space as well. Hence, in particular, the (j + 1)-block average
converges to a constant path at timesN j tN + N k t for all 0 � k � j . We also have
the convergence of the marginal distributions for eachk = 0 ; : : : ; j + 1, namely, we
know that the process on levelk solves a martingale problem on time scaletN k ,
which we have identi�ed and where only the block average on the nextlevel appears
as a parameter. Therefore, arguing downward from levelj + 1 to level j , we see
that the Markov property holds for the limiting law. It therefore only remains to
identify the transition probability.

We saw in Section7 that when going from level k + 1 to level k, we get the
corresponding equilibrium law of the level-k limiting dynamics as a McKean-Vlasov
process with parameters (ck ; �; d k ; � k ) with � equal to the limiting state on level
k + 1. Note here that, instead of N k+1 s + N k t, we can write N k+1 s + N k tN with
limN !1 tN = 1 and limN !1 tN =N = 0, since an o(1) perturbation of s has no
e�ect as N ! 1 . For more details, consult Dawson et al. (1995, Section 5(f)).

In the remainder of this section, we prove the implications of the scaling results
of (dk )k2 N for the hierarchical multiscale analysis of the processX (
 N ) , involving
clustering versus coexistence (Section9.2), related phase transitions (Section9.3),
as well as a more detailed description of the properties of the di�erent regimes
(Section 10), as discussed in Section1.5.2.

9.2. Dichotomy for the interaction chain. In this section, we prove Theorem1.7.
Proof of Theorem 1.7. Fix j 2 N0. The �rst observation is that the interaction
chain (M ( j )

k )k= � ( j +1) ;:::; 0 from Section 1.5.2 is a P(E)-valued Markov chain such
that

(
hM ( j )

k ; ' i
)

k= � ( j +1) ;:::; 0 is a square-integrable martingale, for any ' 2 Cb (E )
(9.1)

(because it is bounded). For the analysis of the interaction chain for Fleming-Viot
di�usions, carried out in Dawson et al. (1995, Section 6), this fact was central in
combination with the formula for the variance of evaluations analogous to Propo-
sition 4.4. We argue as follows.

Since the map� 7! � c;d; �
� is continuous (cf. Section4.2), the convergence asj !

1 in the local coexistenceregime is a standard argument (seeDawson et al. (1995,
Section 6a)). In the clustering regime, the convergence to the mono-type state fol-
lows by showing, with the help of the variance formula (4.26), that
lim j !1 EL (M ( j)

0 ) [Var � (' )] = 0 for all ' 2 Cb (E ) (cf., Corollary 4.5), so that all

limit points of L [M ( j ) ] are concentrated on� -measures onE (recall that P(E) is
compact). This argument is identical to the one in Dawson et al. (1995, Section
6a). The mixing measure for the value of the mono-type state can be identi�ed via
the martingale property.

It remains to show that in the case whereEL (M ( j)
0 ) [Var � (' )] is bounded away

from zero, the limit points allow for the coexistence of types. The argument in



Renormalisation of hierarchically interacting Cannings processes 125

Dawson et al. (1995, Section 6a) shows that for � = 0,

� c;d; �
� (M ) = 0 if d > 0; M = f � u : u 2 Eg: (9.2)

This is no longer true for � 6= 0. Instead, we have � c;d; �
� (M ) 2 [0; 1), as proven in

Section 4.3 (see (4.13)), and hence the variance is> 0.

9.3. Scaling for the interaction chain. In this section, we prove Theorems1.16and
1.17

The proof of the scaling result in the regime of di�usive clustering in Dawson
et al. (1995, Section 6(b), Steps 1{3) uses two ingredients:

(I) Assertion ( 9.1).
(II) For ck ! c 2 (0; 1 ) as k ! 1 , by Dawson et al. (1995, Eq. (6.12)),

Var
(
hM ( j )

k2
; f i j M ( j )

k1
= �

)
=

(� k1) � (� k2) + 1
c + ( � k1)

Var � (f ); 8 f 2 Cb (E; R):

(9.3)

In Dawson et al. (1995, Section 6(b)), (I{II) led to the conclusion that if
lim j !1 (� kj )=j = �� i 2 [0; 1], i = 1 ; 2, with �� 1 > �� 2, then

lim
j !1

Var
(
hM ( j )

k2
; f i j M ( j )

k1
= �

)
=

�� 1 � �� 2
�� 1

Var � (f ): (9.4)

Thus, as soon as we have these formulae, we get the claim by repeating the argument
in Dawson et al. (1995, Section 6(b)), which includes the time transformation �� =
e� s in Step 3 to obtain a time-homogeneous expression from (9.4).

We know the necessary �rst and second moment formulae from Section 4.4.
ReplaceDawson et al. (1995, Eq. (6.12)) by (4.28), to see that we must make sure
that

lim
j !1

b �� 1 j c∑

i = b �� 2 j c



di +1

ci

b �� 1 j c∏

l = i +1

1
1 + ml



 = 1 �
( �� 2

�� 1

)R

(9.5)

(recall (1.45) and (1.57) for the de�nition of dk and mk ). Note that ( 9.5) remains
valid also for �� 2 = 0.

Moreover, by following the reasoning inDawson et al. (1995, Section 6(b), Step
4), we obtain by using (4.28) instead of Dawson et al. (1995, (6.34)) that

{
fast growing clusters

slowly growing clusters

}
if

m∑

i = n

(
di +1

ci

m∏

l = i +1

1
1 + ml

) {
! 0
! 1

}
(9.6)

when m; n ! 1 such that n=m ! � , for all � 2 (0; 1).

Proof of Theorem 1.16: The proof follows by inserting the asymptotics of ck , dk

and mk obtained in Theorem 1.12 and Corollary 1.13 into ( 9.5) or (9.6).

(i) In Cases (a) and (b), the asymptotics in (1.74{ 1.75) and (1.82) imply

m∑

i = b�m c

(
di +1

ci

m∏

l = i +1

1
1 + ml

)

= O
(
e� Cm )

; C > 0: (9.7)
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In Case (c), using the fact that di +1 =ci � mi ! 0 and
∑

l 2 N0
ml = 1 , we

obtain
m∑

i = b�m c

(
di +1

ci

m∏

l = i +1

1
1 + ml

)

! 0: (9.8)

(ii) In Case (d), for any " > 0 and l large enough we havejml � R=lj � "R=l .
This implies

b�� 2 j c∏

l = i +1

1
1 + ml

= exp



�

�� 1 j∑

l = i +1

(
R
l

+ O(m2
l )

)

 : (9.9)

Sincedi +1 =ci � R=i and ml = O(1=l), it follows that

b�� 1 j c∑

i = b �� 2 j c



di +1

ci

b �� 2 j c∏

l = i +1

1
1 + ml



 �
b�� 1 j c∑

i = b �� 2 j c

R
i

( �� 1j
i

)� R

! 1 �
( �� 2

�� 1

)R

: (9.10)

�

Proof of Theorem 1.17: In Case (A), mk ! 1 , which by (9.6) implies fast clus-
tering. In Case (B), mk ! �K + �M > 0, which also implies fast clustering. In
Case (C1), mk � (ck � k )� 1 ! C > 0, which implies fast clustering. In Case
(C2), dk =ck � mk � (1 � c)=c > 0, which implies fast clustering. In Case (C3),
dk =ck � mk � � k =(ck (� � 1)), which implies fast, di�usive and slow clustering
depending on the asymptotic behaviour ofk� k =ck . �

10. Dichotomy between clustering and coexistence for �nite N

In this section, we prove Theorems1.8{ 1.9.

Proof of Theorem 1.8: The key is the spatial version of the formulae for the �rst
and second moments in terms of the coalescent process. The variance tends to
zero for all evaluations if and only if the coalescent started from two individuals at
a single site coalesces into one partition element. Therefore, all we have to show
is that the hazard function for the time to coalesce isHN , and then show that
limN !1 HN = 1 a.s. if and only if limN !1 �HN = 1 . The latter was already
carried out in Section 2.4.2. �

Proof of Theorem 1.9: We �rst note that the set of functions
{

H (n )
' (�; � G;n ) : n 2 N; ' 2 Cb (E n ; R); � G;n 2 � G;n

}
; (10.1)

(recall the de�nition of H (n )
' from (2.37) and of � G;n from (2.7)) is a distribution-

determining subset of the set of bounded continuous functions onP(P(E))G . It
therefore su�ces to establish the following:

(1) For all initial laws L [X (
 N ) (0)], where X (
 N ) is the Cc;�
N -process on 
N

satisfying our assumptions for a given parameter� 2 P (E) (see below
Proposition 1.4), and all admissible n; '; � G;n , we have

E
[
H (n )

' (X (
 N ) (t); � G;n )
]

�!
t→∞

F (( '; n; � G;n ); � ); (10.2)

which implies that L [X (
 N ) (t)] converges to a limit law as t ! 1 that
depends on the initial law only through the parameter � .
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(2) Depending on whether �HN < 1 or �HN = 1 , with �HN as in Section2.4.2,
the quantity in the right-hand side of ( 10.2) corresponds to the form of the
limit claimed in ( 1.66{ 1.67).

Item (2) follows from Theorem 1.8 once we have proved the convergence result
in (10.2), since (1.65) implies that the marginal law of the limiting state is � � , and
we will see in (10.5) below that recurrence of the migration mechanisma (recall
(1.26)) implies that

E(
 N )
� θ ;c;�

[

h';
n⊗

i =1

x � i i

]

= hf n (u); � i ; for ' (u1; � � � ; un ) =
n∏

i =1

f (ui ); (10.3)

which in turn implies

� (
 N )
�;c ;� =

∫

K
(� u )
 
 N � (du): (10.4)

In order to prove item (1), we use duality and express the expectation in the
left-hand side of (10.2) as an expectation over a coalescentC(
 N )

t as in (2.32) start-
ing with n partition elements. We therefore know that the number of partitio n
elements, which is nonincreasing int, converges to a limit ast ! 1 , which is 1 for
�HN = 1 and a random number in f 1; : : : ; ng for �HN < 1 . This means that there
exists a �nite random time after which the partition elements never meet again, and
keep on moving by migration only. For such a scenario, it was proven inDawson
et al. (1995), Lemma 3.2, that the positions of the partition elements are given,
asymptotically, by k = 1 ; : : : ; n random walks, all starting at the origin. Using that
the initial state is ergodic, we can then calculate, for' (u1; � � � ; un ) = � n

k=1 f (uk ),

lim
t !1

E
[
H (n )

'

(
X (
 N ) (0); C(
 N )

t

)]
=

n∑

k=1

hf; � i k q( � G,n)
k ; (10.5)

with q( � G,n)
k the probability that the coalescent starting in � G;n in the limit has

k remaining partition elements. Furthermore, if the initial positions of a sequence
(� (m )

G;n )m 2 N of initial states satis�es lim m !1 d(� (m )
i ; � (m )

j ) = 1 for i 6= j , then for
transient a we know that

lim
m !1

q
( � ( m)

G,n)
k = 0 ; 8 k = 1 ; : : : ; n � 1 and lim

m !1
q

(� ( m)
G,n)

n = 1 : (10.6)

In view of (10.5), this proves that the law on (P(E))G de�ned by the right-hand
side of (10.2) is a translation-invariant and ergodic probability measure, with mean
measure� (seeDawson et al. (1995), p. 2310, for details). �

11. Scaling of the volatility in the clustering regime

In Section 11.1, we prove Theorems1.10 and 1.11, in Section 11.3 we prove
Theorem 1.12.

11.1. Comparison with the hierarchical Fleming-Viot process.

Proof of Theorem 1.11: (a) Rewrite the recursion relation in (1.45) as

d0 = 0 ;
1

dk+1
=

1
ck

+
1

� k + dk
; k 2 N0: (11.1)
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From (11.1), it is immediate that c 7! d and � 7! d are component-wise non-
decreasing.

(b) To compare d with d� , the solution of the recursion relation in (1.71) when
� 0 > 0 and � k = 0 for all k 2 N, simply note that d1 = d�

1 = c0� 0=(c0 + � 0). This
gives

dk � d�
k ; k 2 N; (11.2)

with d�
k given by (1.72).

(c) Inserting the de�nition mk = ( � k + dk )=ck into ( 11.1), we get the recursion
relation

c0m0 = � 0; ck+1 mk+1 = � k+1 +
ck mk

1 + mk
; k 2 N0: (11.3)

Iterating ( 11.3), we get

ck mk =
k∑

l =0

� l
∏k

j = l (1 + mj )
: (11.4)

Ignoring the terms in the denominator, we get

mk �
1
ck

k∑

l =0

� l ; (11.5)

which proves that
∑

k2 N0
(1=ck )

∑k
l =0 � l < 1 implies

∑
k2 N0

mk < 1 . To prove
the reverse, suppose that

∑
k2 N0

mk < 1 . Then
∏

j 2 N0
(1 + mj ) = C < 1 . Hence

(11.4) gives

mk �
1
C

1
ck

k∑

l =0

� l ; (11.6)

which after summation over k 2 N0 proves the claim.

(d) We know from (1.72) that dk � d�
k = � 0=(1 + � 0� k ) for k 2 N. Hence, if

lim k !1 � k = 1 , then lim inf k !1 � k dk � 1. To get the reverse, note that iteration
of (11.1) gives

1
dk

�
k � 1∑

l =0

1

cl
∏k � 1

j = l +1 (1 + � j
dj

)
�

k � 1∑

l =0

1

cl
∏k � 1

j = l +1 (1 + � j
d∗

j
)

�
k � 1∑

l =0

1
cl

∏1
j = l +1 (1 + � j

� 0
[1 + � 0� j ])

:

(11.7)

If
∑

j 2 N � j � j < 1 , then the product in the last line tends to 1 as l ! 1 . Hence,
if also limk !1 � k = 1 , then it follows that lim inf k !1 (1=� k dk ) � 1.

Note from the proof of (c) and (d) that in the local coexistence regimedk �∑k
l =0 � l as k ! 1 when this sum diverges anddk !

∑
l 2 N0

� l =
∏1

j = l (1 + mj ) 2
(0; 1 ) when it converges.

We close with the following observation. Since 1=ck � k = ( � k+1 � � k )=� k , k 2 N,
and

� k+1 � � k

� 1
�

� k+1 � � k

� k
�

∫ � k+1

� k

dx
x

; k 2 N; (11.8)
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we have
lim

k !1
� k = 1 ()

∑

k2 N

1
ck � k

= 1 : (11.9)

�

Proof of Theorem 1.10. Combining Lemma 2.13with Theorem 1.11(c), we get the
claim. �

11.2. Preparation: M•obius-transformations. To draw the scaling behaviour of dk

as k ! 1 from (11.1), we need to analyse the recursion relation

x0 = 0 ; xk+1 = f k (xk ); k 2 N0; (11.10)

where
f k (x) =

ck x + ck � k

x + ( ck + � k )
; x 6= � (ck + � k ): (11.11)

The map x 7! f k (x) is a M•obius-transformation on R� , the one-point compacti�ca-
tion of R. It has determinant ck (ck + � k ) � ck � k = c2

k > 0 and therefore is hyperbolic
(seeKooman (1998); a M•obius-transformation f on R� is called hyperbolic when it
has two distinct �xed points at which the derivatives are not equal t o � 1 or +1.)
Since

f 0
k (x) =

(
ck

x + ( ck + � k )

)2

; x 6= � (ck + � k ); (11.12)

it is strictly increasing except at x = � (ck + � k ), is strictly convex for x < � (ck + � k )
and strictly concave for x > � (ck + � k ), has horizontal asymptotes at heightck at
x = �1 and vertical asymptotes at x = � (ck + � k ), and has two �xed points

x+
k = 1

2 � k [� 1+
√

1 + 4ck =� k ] 2 (0; 1 ); x �
k = 1

2 � k [� 1�
√

1 + 4ck =� k ] 2 (�1 ; 0);
(11.13)

of which the �rst is attractive ( f 0
k (x+

k ) < 1) and the second is repulsive (f 0
k (x �

k ) > 1).
For us, only x+

k is relevant because, as is clear from (11.10), our iterations take place
on (0; 1 ). See Fig.11.5 for a picture of f k .

In what follows, we will use the following two theorems ofKooman (1998). We
state the version of these theorems forR, although they apply for C as well.

Theorem 11.1. [Kooman (1998), Corollary 6.5]
Given a sequence of M•obius-transformations(f k )k2 N0 on R� that converges point-
wise to a M•obius-transformation f that is hyperbolic. Then, for one choice of
x0 2 R� the solution of the recursion relation xk+1 = f k (xk ), k 2 N0, converges to
the repulsive �xed point x � of f , while for all other choices ofx0 it converges to
the attractive �xed point x+ of f .

Theorem 11.2. [Kooman (1998), Theorem 7.1]
Given a sequence of M•obius-transformations(f k )k2 N0 on R� whose �xed points are
of bounded variation and converge to (necessarily �nite) distinct limits, i.e.,

∑

k2 N0

jx+
k+1 � x+

k j < 1 ;
∑

k2 N0

jx �
k+1 � x �

k j < 1 ;

x+ = lim
k !1

x+
k 2 R� ; x � = lim

k !1
x �

k 2 R� ; x+ 6= x � :
(11.14)

If ∏

k2 N0

jf 0
k (x+

k )j = 0 ; (11.15)
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f k (x)

x
x+

k

x �
k

s

s

Figure 11.5. The Möbius-transformation x 7→ f k (x).

then, for one choice ofx0 2 R� , the solution of the recursion relation xk+1 = f k (xk ),
k 2 N0, converges tox � , while for all other choices ofx0 it converges tox+ . If, on
the other hand,

∏

k2 N0

jf 0
k (x+

k )j > 0; (11.16)

then all choices ofx0 2 R� lead to di�erent limits.

Theorem 11.1 deals with the situation in which there is a limiting hyperbolic
M•obius-transformation, while Theorem 11.2 deals with the more general situation
in which the limiting M•obius-transformation may not exist or may not b e hyper-
bolic, but the �xed points do converge to distinct �nite limits and they do so in a
summable manner. (In Theorem11.1, it is automatic that the �xed points of f k

converge to the �xed points of f .) The conditions in (11.14{ 11.15) are necessary
to ensure that the solutions of the recursion relation can reach the limits of the
�xed points. Indeed, condition ( 11.16) prevents precisely that. As is evident from
Fig. 11.5, the single value ofx0 for which the solution converges to the limit of the
repulsive �xed point must satisfy x0 < 0, which is excluded in our case because
x0 = 0. We therefore also do not need the bounded variation condition inthe
second part of the �rst line of (11.14).

11.3. Scaling of the volatility for polynomial coe�cients. Proof of Theorem 1.12.
Theorem 1.12 showsfour regimes. Our key assumptions are (1.78{ 1.81). For the
scaling behaviour ask ! 1 of the attractive �xed point x+

k given in (11.13), there
are three regimes depending on the value ofK :

x+
k �






ck ; if K = 1 ;
M + ck ; if K 2 (0; 1 ) with M + = 1

2 K [� 1 +
√

1 + (4 =K )];
p

ck � k ; if K = 0 :
(11.17)
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Our target will be to show that (recall xk from (11.10))

xk � x+
k as k ! 1 ; (11.18)

which is the scaling we are after in Theorems1.12(a{c). We will see that ( 11.18)
holds for K 2 (0; 1 ], and also forK = 0 when L = 1 . A di�erent situation arises
for K = 0 when L < 1 , namely, xk � 1=� k , which is the scaling we are after in
Theorem 1.12(d).

For the proofs given in Sections11.3.1{ 11.3.4, below we make use of Theo-
rems 11.1{ 11.2after doing the appropriate change of variables. Along the way, we
need the following elementary facts:

(I) If ( ak ) and (bk ) have bounded variation, then both (ak + bk ) and (ak bk )
have bounded variation.

(II) If ( ak ) has bounded variation and h : R ! R is globally Lipschitz on a
compact interval containing the tail of ( ak ), then (h(ak )) has bounded
variation.

(III) If ( ak ) is bounded and is asymptotically monotone, then it has bounded
variation.

Moreover, the following notion will turn out to be useful. According t o Bingham
et al. (1987, Section 1.8), a strictly positive sequence (ak ) is said to be smoothly
varying with index � 2 R if

lim
k !1

kn a[n ]
k =ak = � (� � 1) � � � � � (� � n + 1) ; n 2 N; (11.19)

where a[n ]
k is the n-th order discrete derivative, i.e., a[0]

k = ak and a[n +1]
k = a[n ]

k+1 �

a[n ]
k , k; n 2 N0.

(IV) If ( ak ) is smoothly varying with index � =2 N0, then (a[n ]
k ) is asymptotically

monotone for all n 2 N, while if � 2 N, then the same is true for all n 2 N
with n � � .

This observation will be useful in combination with (I{III).
According to Bingham et al. (1987, Theorem 1.8.2), if (ak ) is regularly varying

with index � 2 R, then there exist smoothly varying (a0
k ) and (a00

k ) with index �
such that a0

k � ak � a00
k and a0

k � a00
k . In words, any regularly varying function can

be sandwiched between two smoothly varying functions with the same asymptotic
behaviour. In view of the monotonicity property in Theorem 1.11(a), it therefore
su�ces to prove Theorem 1.12 under the following assumption, which is stronger
than (1.78):

(ck ); (� k ); (� k =ck ); (k2� k =ck ) are smoothly varying

(with index a, b, a � b, respectively, 2 + a � b):
(11.20)

11.3.1. Case (b). Let K 2 (0; 1 ). Put yk = xk =ck . Then the recursion relation in
(11.10) becomes

y0 = 0 ; yk+1 = gk (yk ); k 2 N0; (11.21)

where

gk (y) =
Ak y + Bk

Ck y + D k
; y 2 R� ; (11.22)
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with coe�cients

Ak =
c2

k

ck+1
; Bk =

ck � k

ck+1
; Ck = ck ; D k = ck + � k : (11.23)

By (1.78), we have ck =ck+1 � 1, and henceAk � Ck � ck , Bk � Kc k , D k �
(K + 1) ck . Therefore, (11.22) yields

lim
k !1

gk (y) = g(y) =
y + K

y + ( K + 1)
; y 2 R� : (11.24)

Sinceg is hyperbolic with �xed points y� = M � = 1
2 K [� 1 �

√
1 + (4 =K )], we can

apply Theorem 11.1 and conclude that

lim
k !1

yk = M + : (11.25)

11.3.2. Case (a). Let K = 1 . Again put yk = xk =ck . Then the same recursion
relation as in (11.21{ 11.22) holds with the same coe�cients as in (11.23), but this
time ck =ck+1 � 1 givesAk � Ck � ck , Bk � D k � � k , and

lim
k !1

gk (y) = g(y) = 1 ; y 2 R� : (11.26)

Since g is not hyperbolic, we cannot apply Theorem 11.1. To compute y� =
lim k !1 y�

k , we note that gk has �xed points

y�
k =

1
ak

h� (bk =a2
k ) with h� (x) =

1
2x

(
1 �

p
1 + 4x

)
; ak =

Ak � D k

Bk
; bk =

Ck

Bk
(11.27)

(use that ak < 0 for k large enough). Sinceck =� k ! 0, we haveak ! � 1 and
bk ! 0. It follows that y+

k ! y+ = 1 and y�
k ! y� = �1 , so that we can

apply Theorem 11.2. To prove that yk ! y+ = 1, we need to check that (recall
(11.14{ 11.15))

(1) (y+
k )k2 N0 has bounded variation.

(2)
∏

k2 N0
g0

k (y+
k ) = 0.

(What happens neary�
k is irrelevant becausexk > 0 for all k.)

To prove (1), note that h+ is globally Lipschitz near zero. Since, by (11.23) and
(11.27),

ak =
ck

� k

(
1 �

ck+1

ck

)
�

ck+1

ck
; bk =

ck

� k

ck+1

ck
; (11.28)

it follows from ( 1.79), (I), (III{IV) and ( 11.20) that ( ak ) and (bk ) have bounded
variation. Since ak ! � 1 and bk ! 0, it in turn follows from (I{II) that (1 =ak )
and (bk =a2

k ) have bounded variation. Via (I{II) this settles (1).
To prove (2), note that

g0
k (y+

k ) =
� k

(Ck y+
k + D k )2

with � k = Ak D k � Bk Ck : (11.29)

Sincey+
k > 0 and D k > � k , we have

∏

k2 N0

g0
k (y+

k ) �
∏

k2 N0

� k

� 2
k

: (11.30)

But � k = c3
k =ck+1 and so, becauseck =ck+1 � 1, we have � k =� 2

k = c3
k =ck+1 � 2

k �
(ck =� k )2 ! 0. Hence (2) indeed holds.
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11.3.3. Case (c). Let K = 0 and L = 1 . Put yk = xk =
p

ck � k . Then the same
recursion relation as in (11.21{ 11.22) holds with coe�cients

Ak = ck

√
ck � k

ck+1 � k+1
; Bk = ck � k

√
1

ck+1 � k+1
; Ck =

p
ck � k ; D k = ck + � k :

(11.31)
By (1.78), ck+1 =ck � 1 and � k+1 =� k � 1, and henceAk � D k � ck , Bk � Ck �
p

ck � k . Therefore (11.22) yields

lim
k !1

gk (y) = g(y) = y; y 2 R� : (11.32)

Since g is not hyperbolic, we cannot apply Theorem 11.1. To compute y� =
lim k !1 y�

k from (11.27), we abbreviate

� k =
ck+1

ck
� 1; � k =

� k+1

� k
� 1; 
 k =

� k

ck
; (11.33)

and write

ak =
1

p

 k

[
1 � (1 + 
 k )

√
(1 + � k )(1 + � k )

]
; bk =

√
(1 + � k )(1 + � k ): (11.34)

We have � k ! 0, � k ! 0, 
 k ! 0. Moreover, (1.79{ 1.81), (IV) and ( 11.20) imply
that ( k� k ) and (k� k ) are asymptotically monotone and bounded. Together with
lim k !1 k2
 k = 1 this in turn implies that � k =

p

 k ! 0 and � k =

p

 k ! 0. Hence

ak ! 0 and bk ! 1, and therefore (11.27) yields y� = � 1, so that we can apply
Theorem 11.2.

To prove (1), note that ( 1.79{ 1.81), (IV) and ( 11.20) also imply that (
p


 k ) and
(1=

√
k2
 k ), are asymptotically monotone and bounded. By (11.34) and (I{III),

this in turn implies that ( ak ) and (bk ) have bounded variation. Indeed, the �rst
equality in ( 11.34) can be rewritten as

ak =
1

p

 k

1 � (1 + 
 k )2(1 + � k )(1 + � k )

1 + (1 + 
 k )
√

(1 + � k )(1 + � k )
: (11.35)

The denominator tends to 2, is Lipschitz near 2, and has bounded variation because
(� k ), ( � k ), ( 
 k ) have bounded variation. The numerator equals� � k � � k � 2
 k

plus terms that are products of � k , � k and 
 k . Writing � k =
p


 k = k� k =
√

k2
 k and
� k =

p

 k = k� k =

√
k2
 k and using that

√
k2
 k ! 1 , we therefore easily get the

claim.
To prove (2), note that

� k = c2
k

√
ck � k

ck+1 � k+1
= c2

k =
√

(1 + � k )(1 + � k ); Ck y+
k + D k = ck (1 + y+

k
p


 k + 
 k );

(11.36)
and hence

∏

k2 N0

g0
k (y+

k ) �
∏

k2 N0

1
√

(1 + � k )(1 + � k )(1 + y+
k

p

 k )2

: (11.37)

The term under the product equals

1 � 2y+ p

 k [1 + o(1)]; (11.38)

which yields (2) because
√

k2
 k ! 1 .
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11.3.4. Case (d). Let K = 0 and L < 1 . Put yk = � k xk . Then the same recursion
relation as in (11.21{ 11.22) holds with coe�cients

Ak = ck
� k+1

� k
; Bk = ck � k � k+1 ; Ck =

1
� k

; D k = ck + � k : (11.39)

Abbreviate

� k =
� k+1

� k
� 1 =

1
ck � k

: (11.40)

We have k� k =ck ! 0 and, by (1.78), ck+1 =ck � 1, � k+1 =� k � 1 and k� k ! 1 � a
with a 2 (�1 ; 1) the exponent in (1.78). It therefore follows that

Ak

D k
! 1;

Bk

D k
� � k � k =

k� k

ck

1
k� k

! 0;
Ck

D k
�

1
ck � k

= � k ! 0: (11.41)

Hence, (11.22) yields

lim
k !1

gk (y) = g(y) = y; y 2 R� : (11.42)

Since g is not hyperbolic, we cannot apply Theorem 11.1. To compute y� =
lim k !1 y�

k , we rewrite (11.27) as

y�
k = 1

2

(
�ak �

√
�a2

k + 4�bk

)
with �ak =

Ak � D k

Ck
; �bk =

Bk

Ck
; (11.43)

and note that

�ak =
ck

ck+1
� � k � k =

ck

ck+1
�

k� k

ck

1
k� k

;

�bk = ck � k � k � k+1 =
k2� k

ck

� k+1

� k

1
(k� k )2 :

(11.44)

Since k2� k =ck ! L < 1 and k� k ! 1 � a with a 2 (�1 ; 1) the exponent in
(1.78), it follows that �ak ! 1 and �bk ! L=(1 � a)2. Hence y�

k ! y� = 1
2 (1 �√

1 + 4L=(1 � a)2), so that we can apply Theorem11.2.
To prove (1), note that ( 1.79{ 1.81), (I{IV) and ( 11.20) imply that (� ak ) and (�bk )

have bounded variation. This yields the claim via (11.43).
To prove (2), note that

� k = c2
k

� k+1

� k
= c2

k (1 + � k );

Ck y+
k + D k =

y+
k

� k
+ ck + � k = ck

(
1 + � k y+

k +
� k

ck

)
;

(11.45)

and, hence,
∏

k2 N0

g0
k (y+

k ) �
∏

k2 N0

1 + � k

(1 + � k y+
k )2

: (11.46)

The term under the product equals

1 � (2y+ � 1)� k [1 + o(1)]; (11.47)

Sincey+ � 1, it follows that (2) holds if and only if
∑

k2 N0
� k = 1 , which by (11.9)

and (11.40) holds if and only limk !1 � k = 1 . Theorem 11.2 shows that failure of
(2) implies that yk converges to a limit di�erent from 1.
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11.4. Scaling of the volatility for exponential coe�cients. Proo f of Theorem 1.14.
In this section, we brie
y comment on how to extend the proof of Theorem1.12 to
cover the case of Theorem1.14.

The claims made for Cases (A) and (B) follow from minor adaptations of the
arguments for Cases (a) and (b) in Sections11.3.2 and 11.3.1. The claim made
for Case (C1) follows from Theorem1.11(d). The claims made for Cases (C2)
and (C3) follow from minor adaptations of the arguments for Cases(b) and (c) in
Sections11.3.1and 11.3.3. The details are left to the reader.

12. Notation index

12.1. General notation.
� E ; compact Polish space of types.
� P (E) ; set of probability measures onE.
� M (E) ; set of measurable functions onE.
� M ([0; 1]) ; set of non-negative measures on [0; 1].
� M f ([0; 1]) ; set of �nite non-negative measures on [0; 1].
� L ; law.
� =) ; weak convergence on path space.
� � � 2 M ([0; 1]) ; (cf. (1.5)).
� � 2 M f ([0; 1]) ; (cf. Section 1.3).
� @F(x )

@xi
[� a ] ; Gâteaux-derivative of F with respect to x i in the direction � a

(cf. (1.13)).

� @2 F (x )
@x2 [� u ; � v ] ; second Gâteaux-derivative ofF with respect to x in the

directions � u , � v (cf. (1.16)).
� D (T; E) ; set of c�adl�ag paths in E indexed by the elements ofT � R and

equipped with the SkorokhodJ1-topology.
� Cb

(
E; E0) ; set of continuous bounded mappings fromE to E0.

12.2. Interacting � -Cannings processes.
� 
 N ; hierarchical group of orderN (cf. (1.21)).
� c = ( ck )k2 N0 2 (0; 1 )N0 ; migration coe�cients (cf. ( 1.25)).
� � =

(
� k )k2 N0 2 M f ([0; 1])N0 ; o�spring measures (cf. (1.28)).

� � k = � k ([0; 1]) ; resampling rates (cf. (1.30)).
� d = ( dk )k2 N0 ; volatility constants (cf. ( 1.45)).
� m = ( mk )k2 N0 ; (cf. (1.57)).
� � k = 1

2 � k ; (cf. (1.57)).
� � k ; (cf. (1.72)).
� Bk (� ) ; k-macro-colony around� (cf. (1.23)).
� y�;k ; type distribution in Bk (� ) (cf. ( 1.31)).
� C � -process; non-spatial continuum-mass �-Cannings process (cf. Sec-

tion 1.3.1).
� a(N ) (�; �) ; hierarchical random walk kernel on 
 N (cf. (1.26)).
� Cc;�

N -process; hierarchically interacting Cannings process on 
N (cf. Sec-
tion 1.4.4).

� F ; algebra of test functions onP(E)
 N (cf., (1.34)).
� L (N ) , L (N )

mig , L (N )
res ; generators of the mean-�eld Cannings process (cf.

(1.11)).
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� L (
 N ) , L (
 N )
mig , L (
 N )

res ; generators of the hierarchical Cannings process (cf.
(1.36)).

� � r;a;B k( � ) ; reshu�ing-resampling map (cf. ( 1.39)).

� X (
 N ) ; Cc;�
N -process (cf. Section1.4.4).

� Y (
 N )
�;k (�) ; macroscopic observables (= block averages) ofX (
 N ) (cf.

(1.43)).
� y[1]

� ; 1-block averages indexed block-wise (cf. (7.18)).
� L (N )[ k ]

res , L (N )[ k ]
mig ; generators of thek-block averaged hierarchically inter-

acting Cannings process at the time scaletk N (cf. 6.2.2).
� GN;K ; K -level truncation of 
 N (cf. (1.42)).
� X (N ) ; mean-�eld interacting Cannings process (cf. Section1.3.2).
� Qx (du; dv) ; Fleming-Viot di�usion function (cf. ( 1.19)).
� L c;d; �

� , L c
� , L d, L � ; generators of the McKean-Vlasov process (cf. (1.17)).

� Z c;d; �
� ; McKean-Vlasov process with immigration-emigration (cf. Sec-

tion 1.3.3).
� � c;d; �

� ; unique equilibrium of Z (cf. (4.1)).

� (M ( j )
k )k= � ( j +1) ;:::; 0 ; interaction chain (cf. Section 1.5.2).

12.3. Spatial � -coalescents.

� [n] = f 1; : : : ; ng.
� � n ; set of all partitions of [n] into disjoint families (cf. ( 2.4)).
� � G;n ; set of G-labelled partitions of [n] (cf. (2.7)).
� SG;n 2 � G;n ; G-labelled partition into singletons (cf. (2.8)).
� �, � G ; partitions of N, G-labelled partitions of N (cf. (2.11)).
� L (� G ) ; set of labels of partition � G (cf. (2.10)).
� � (�)

b;i ; coalescence-rates (cf. (2.14)).
� �j n ; operation of projection from [m] (respectively, N) onto [n].
� L (G) � ; L (G) �

mig ; L (G) �
coal generators of the spatial coalescent onG (cf., (2.23)).

� L (
 N ) � , L (
 N ) �
mig , L (
 N ) �

coal ; generators of the spatial �-coalescent with non-
local coalescence (cf. (2.34)).

� P ; �eld of Poisson point processes driving the spatial �-coalescent (cf.
(2.15)).

� P (
 N ) ; driving Poisson point process for the spatialn-�-coalescent with
non-local coalescence (cf. (2.28)).

� C(G)
n ; spatial �nite n-�-coalescent on G (cf. (2.18)).

� C(G) ; spatial �-coalescent on G (cf. (2.20)).
� C(
 N ) ; spatial � -coalescent with non-local coalescence (cf. (2.32)).
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