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Abstract. In order to analyse universal patterns in the large space-time bedviour
of interacting multi-type stochastic populations on countable geogaphic spaces, a
key approach has been to carry out a renormalisation analysis in thenierarchi-
cal mean- eld limit. This has provided considerable insight into the structure
of interacting systems of nite-dimensional di usions, such as Fisher-Wright or
Feller di usions, and their in nite-dimensional analogues, such as Flening-Viot or
Dawson-Watanabe superdi usions.

The present paper brings a new class of interactinqump processesinto focus. We
start from a single-colony C -process, which arises as the continuum-mass limit of
a -Cannings individual-based population model, where is a nite non- negative
measure that describes the o spring mechanism, i.e., how individuals ira single
colony are replaced via resampling. The key feature of the -Cannirgs individual-
based population model is that the o spring of a single individual can be a positive
fraction of the total population. After that we introduce a syste m of hierarchi-
cally interacting C -processes, where the interaction comes from migration and
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reshu ing-resampling on all hierarchical space-time scalesimultaneously More
precisely, individuals live in colonies labelled by the hierarchical group  of or-
der N, and are subject tomigration based on a sequence of migration coe cients
c=(c)k2n, and to reshu ing-resampling based on a sequence of resampling mea-
sures_ = ( k)kz2n,, both acting in k-macro-colonies for all k 2 No. The reshu ing

is linked to the resampling: before resampling in a macro-colony takeplace all in-
dividuals in that macro-colony are relocated uniformly, i.e., resamplingis done in

a locally \panmictic" manner. We refer to this system as the Cﬁ*-process. The
dual process of theC -process is the -coalescent, whereas the dual process of the
Cﬁ;—-process is a spatial coalescent with multi-scale non-local coalestz.

For the above system, we carry out &ull renormalisation analysis in the hierarchical
mean-eld limit N !'1 . Our main result is that, in the limitas N !'1 , on
each hierarchical scale&k 2 N, the k-macro-colony averages of thecﬁ;—-process at
the macroscopic time scaleN ¥ (= the volume of the k-macrocolony) converge to a
random process that is a superposition of &£ <-process and a Fleming-Viot process,
the latter with a volatility dy and with a drift of strength ¢, towards the limiting
(k + 1)-macro-colony average. It turns out that dy is a function of ¢, and | for all
0 |I<k. Thus, itisthrough the volatility that the renormalisation manifests itself.
We investigate howdy scalesak ! 1 , which requires an analysis of compositions
of certain Mebius-transformations, and leads to four di erent regimes

We discuss the implications of the scaling ofdk for the behaviour on large space-
time scales of theCf,‘——process. We compare the outcome with what is known from
the renormalisation analysis of hierarchically interacting Fleming-Viot di usions,
pointing out several new features. In particular, we obtain anew classi cation
for when the process exhibitsclustering (= develops spatially expanding mono-
type regions), respectively, exhibitslocal coexistence(= allows for di erent types
to live next to each other with positive probability). Here, the simple dichotomy
of recurrent versus tfaisipnt migration for hierarchically interacting Fleming-Viot
diusions, namely, ,,,(1=a) = 1 versus< 1, is replaced by a dichotomy
t@(presseﬁﬂade-o between migration and reshu ing-resampling, namely,

kan,(1=G) o 1([0;1]) = 1 versus< 1 . Thus, while recurrent migrations
still only give rise to clustering, there now are transient migra]ieislthat do the same
when the non-local resampling is strong enough, namely, |, ([0;1]) = 1 .
Moreover, in the clustering regime we nd a richer scenario for thecluster formation
than for Fleming-Viot di usions. In the local-coexistence regime, onthe other hand,
we nd that the types initially present only survive with a positive prob ability, not
with probability one as for Fleming-Viot diusions. Finally, we show that for
nite N the same dichotomy between clustering and local coexistence holds for
N 'l , even though we lack proper control on the cluster formation, repectively,
on the distribution of the types that survive.

Contents
1. Introduction and main results 46
1.1. Outline 46
1.2. Background 46

1.3. The Cannings model 49



Renormalisation of hierarchically interacting Cannings processes 45

1.4. The hierarchical Cannings process 54
1.5. Main results 58
1.6. Discussion 69
2. Spatial -coalescent with non-local coalescence 70
2.1. Spatial -coalescent with local coalescence 71
2.2. Spatial -coalescent with non-local coalescence 75
2.3. Duality relations 7
2.4. The long-time behaviour of the spatial -coalescent with non-local
coalescence 80
3. Well-posedness of martingale problems 84
3.1. Preparation 84
3.2. Proofs of well-posedness 85
4. Properties of the McKean-Vlasov process
with immigration-emigration 86
4.1. Equilibrium and ergodic theorem 86
4.2. Continuity in the centre of the drift 86
4.3. Structure of the McKean-Vlasov equilibrium 87
4.4, First and second moment measure 89
5. Strategy of the proof of the main scaling theorem 92
5.1. General scheme and three main steps 92
5.2. Convergence criteria 93
6. The mean- eld limit of C -processes 95
6.1. Propagation of chaos: Single colonies and the McKean-Vlasov pcess 95
6.2. The mean- eld nite-system scheme 99
7. Hierarchical C -process 106
7.1. Two-level systems 106
7.2. Finite-level systems 120
8. Proof of the hierarchical mean- eld scaling limit 121
8.1. The single components on time scale 121
8.2. The 1-block averages on time scalblt 123
8.3. Arbitrary truncation level 123
9. Multiscale analysis 124
9.1. The interaction chain 124
9.2. Dichotomy for the interaction chain 124
9.3. Scaling for the interaction chain 125
10. Dichotomy between clustering and coexistence for niteN 126
11. Scaling of the volatility in the clustering regime 127
11.1. Comparison with the hierarchical Fleming-Viot process 127
11.2. Preparation: Mebius-transformations 129
11.3. Scaling of the volatility for polynomial coe cients 130
11.4. Scaling of the volatility for exponential coe cients 135
12. Notation index 135
12.1. General notation 135
12.2. Interacting -Cannings processes 135
12.3. Spatial -coalescents 136
Acknowledgments 136

References 137



46 Greven et al.

1. Introduction and main results

1.1. Outline. Section 1.2 provides the background for the paper. Sectionl.3 de-
nes the single-colony and the multi-colony C -process, as well as the so-called
McKean-Vlasov C -process, a single-colon -process with immigration and em-
igration from and to a cemetery state arising in the context of the aling limit
of the multi-colony C -process with mean- eld interaction. Section 1.4 de nes
a new process, thecﬁ;*-process, where the countably many colonies are labelled
by the hierarchical group y of order N, and the migration and the reshu ing-
resampling on successive hierarchical space-time scales are gowat by a sequence
¢ = (&)kz2n, Of migration coe cients and a sequence_ = ( «)k2n, Of resampling
measures. Sectionl.5 introduces multiple space-time scalesand a collection of
renormalised systems It is shown that, in the hierarchical mean-eld limit N !'1
the block averages of thecﬁ;—-process on hierarchical space-time scale converge
to a McKean-Vlasov process that is a superposition of a single-colgnC -process
and a single-colony Fleming-Viot process with a volatility d¢ that is a function of
gand |forall0 |[|<k,and a drift of strength ¢, towards the limiting ( k +1)-st
block average. The scaling ofdy ask ! 1 turns out to have severaluniversality
classes The implications of this scaling for the behaviour of the Cﬁ‘——process on
large space-time scales is discussed in detail, and the outcome is caan@d with
what is known for hierarchically interacting Fleming-Viot di usions.

A key feature of the Cﬁ‘——process is that it has a spatial_-coalescent with block
migration and multi-scale non-local coalescence as a dual proces§his duality,
which is of intrinsic interest, and the properties of the dual proces are worked out
in Section 2. The proofs of the main theorems are given in Section8{11. To help
the reader, a list of the main symbols used in the paper is added in Seion 12.

1.2. Background.

1.2.1. Population dynamics. For the description of spatial populations subject to
migration and to neutral stochastic evolution (i.e., resampling without selection,
mutation or recombination), it is common to use variants of interacting Fleming-
Viot di usions( Dawson(1993; Donnelly and Kurtz (1999); Etheridge (2000 2011)).
These are processes taking values iR(E)', wherel is a countable Abelian group
playing the role of a geographic spacdabelling the colonies of the population (e.g.
Z9, the d-dimensional integer lattice, or , the hierarchical group of orderN),
E is a compact Polish space playing the role of daype spaceencoding the possible
types of the individuals living in these colonies (e.g., [01]), and P (E) is the set of
probability measures onE. An element in P(E)' species the frequencies of the
types in each of the colonies inl .

Let us rst consider the (locally nite) populations of individuals from which
the above processes arise as continuum-mass limits. Assume thate individuals
migrate between the colonies according to independent continuous-time ralom
walks on | . Inside each colony, the evolution is driven by a change of generatio
called resampling Resampling, in its simplest form (Moran model), means that
after exponential waiting times a pair of individuals (\the parents") is replaced
by a new pair of individuals (\the children"), who randomly and indepen dently
adopt the type of one of the parents. The process of typérequenciesin each of the
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colonies as a result of the migration and the resampling is a jump pros taking
values inP(E)'.

If we pass to the continuum-mass limit of the frequencies by letting the number
of individuals per colony tend to in nity, then we obtain a system of interacting
Fleming-Viot diusions (Dawson et al. (1995). By picking di erent resampling
mechanisms, occurring at a rate that depends on the state of theolony, we obtain
variants of interacting Fleming-Viot di usions with a state-depende nt resampling
rate Dawson and March(1999. In this context, key questions are: To what extent
does the behaviour on large space-time scales depend on the precform of the
resampling mechanism? In particular, to what extent is this behaviou universal?
For Fleming-Viot models and a small class of state- and type-deperght Fleming-
Viot models, this question has been answered iDawson et al. (1995.

If we consider resampling mechanisms where, instead of a pair of indduals, a
positive fraction of the local population is replaced (an idea due toCannings (1974
1975), then we enter the world of jump processes In this paper, we will focus
on jump processes that are parametrised by a measure on [Q] that models the
random proportion of o spring in the population generated by a single individual in
a resampling event. It has been argued by many authors that suclump processes
are suitable for describing situations withlittle biodiversity. For instance, the jumps
may account for selective sweeps, or for extreme reproductiorvents (occurring on
smaller time scales and in a random manner, so that an e ectively neutal evolution
results), such as those observed in certain marine organisms, e.gAtlantic cod
or Pacic oyster (Eldon and Wakeley (2006). It is argued in Der et al. (2017)
that mixtures of di usive dynamics and Cannings dynamics provide a better t
to generation-by-generation empirical data from Drosophila populations. Birkner
and Blath (2008 2009 treat the issue of statistical inference on the genealogies
corresponding to a one-parameter family of Cannings dynamics. N of these
models includes the e ect of geography.

Our goal is to describe the e ect of jumps in aspatial setting with a volatile
reproduction. To that end, we add two ingredients: (1) a geograpic space with
a migration mechanism; (2) a spatially structured reproduction metanism. As a
result, we obtain a system ofinteracting Cannings processes

As geographic space, we choose a hierarchically structured latticethe hierar-
chical group, i.e., we study a system of hierarchically interacting Camings pro-
cesses. The interaction is chosen in such a way that the geographépace mimics
the two-dimensional Euclidean space, with the migration of individuals given by
independent random walks.

On top of migration and single-colony resampling, we addmulti-colony resam-
pling by carrying out a Cannings-type resampling in all blocks simultaneouly,
combined with a reshuing of the individuals inside the block before the resam-
pling is done. This is a rst attempt to account for the fact that the volatility
the Cannings model tries to capture results fromcatastrophic eventson a smaller
time scale (with a geographic structure). In this view, the reshuin g mimics the
fact that in reproduction the local geographic interaction typically takes place on a
smaller time scale, in a random manner, and e ectively results in a Canings jump
and in a complete geographic redistribution of individuals during a singleobserva-
tion time. To carry out this idea fully, the mechanism should actually be modelled
by specifying a random environment. In this work, however, we conentrate on the
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case of spatially homogeneous parameters. The case of spatially immogeneous
parameters (modelled via a random environment) is left for future work. On a
technical level, we will see that in our model the reshu ing substantially simpli es
the analysis.

The idea to give reproduction a non-local geographic structure, inparticular, in
two dimensions, was exploited byBarton et al. (2010 and by Berestycki et al. (2013
also'. There, the process lives on the torus of sidelength and is constructed via
its dual, and it is shown that a limiting process onR? exists asL ! 1 . In Barton
et al. (2010; Berestycki et al. (2013, it is assumed that the individual lineages
are compound Poisson processesreeman (2013 considers a particular case of the
spatially structured Cannings model with a continuum self-similar ge@raphic space,
where all individuals in a block are updated upon resampling. The latter set-up
does not require compensation for small jumps and allows for their e@cumulation.

1.2.2. Renormalisation. A key approach to understand universality in the behav-
iour of interacting systems has been aenormalisation analysis of block averages
on successive space-time scalesombined with a hierarchical mean- eld limit . In
this setting, one replacesl by the hierarchical group y of order N and passes to
the limit N !'1  (\the hierarchical mean- eld limit") 2. With the limiting dynam-
ics obtained through the hierarchical mean- eld limit one associatesa (nonlinear)
renormalisation transformation F. (which depends on the migration ratec), act-
ing on the resampling rate function g driving the di usion in single colonies. One
studies the orbit (FI(g))kon, with FKI = F¢,_ | F ¢, Characterising the be-
haviour of the system on an increasing sequence of space-time ks where € )k2 N
represents the sequence of migration coe cients, with the indexk labelling the hi-
erarchical distance. Theuniversality classesof the system are associated with the
xed points (or the xed shapes) of F¢, i.e., g with F.(g) = ag with a = 1 (or
a=a(c) 2 (0;1)).

The above renormalisation program was developed for various choices of the
single-colony state space. Each such choice gives rise to a di ereniniversality
class with speci c features for the large space-time behaviour. Fothe stochastic
part of the renormalisation program (i.e., the derivation of the limiting renormalised
dynamics), seeDawson and Greven(1993¢Ga,b, 1996 1999 2003; Dawson et al.
(1995, and Cox et al. (2004). For the analytic part (i.e., the study of the renormal-
isation map F), seeBaillon et al. (1995 1997; den Hollander and Swart (1999,
and Dawson et al. (2009.

So far, two important classes of single-colony processes could nbe treated:
Anderson di usions Greven and den Hollander(2007) and jump processes In the
present paper, we focus on the second class, in particular, on $@lledC -processes.
In all previously treated models, the renormalisation transformation was a mapF.
acting on the setM (E) of measurable functions onE, the single-component state
space, while the functiong was a branching rate, a resampling rate or other, de ning

In the literature, there is an alternative terminology — “generalised A-Fleming-Viot process”
or “jump-type Fleming-Viot process” — which refers to the continuum-mass limit of the original
discrete individual-based Cannings model. In this paper, we stick to the name “Cannings process”
also for the continuum-mass limit.

2Actua||y, this set-up provides an approximation for the geographic space | = Z2, on which
simple random walk migration is critically recurrent (Dawson et al. (2004)). We will comment on
this issue in Section 1.4.2.
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a diusion function x 7! xg(x) on [0;1 ) or x 7! x(1  x)g(x) on [0; 1], etc. In the
present paper, however, we deal with jump processes that areharacterised by a
sequence of nite measures = ( «)k2n, ON [0; 1], and we obtain a renormalisation
map F. acting on a pair (g;_), where g 2 M (E) characterises di usive behaviour
and _ characterises resampling behaviour. It turns out that the orbit of this map
is of the form

(Ag ;1 Kk2Nos (1.1)

where g 1 and d¢x depends ondx 1, ¢k 1 and the total mass of ¢ 1. Here, as
before,c = (c)kzn, IS the sequence of migration coe cients. The reason behind
this reduction is that our single-colony process is a superposition oA C -process
and a Fleming-Viot process with state-independentresampling rates and that both
these processes renormalise to a multiple of the latter. It turns otithat dx can be
expressed in terms of compositions of certaiebius-transformations with param-
eters changing from composition to composition. It is through theg compositions
that the renormalisation manifests itself.

If the single-colony process would be a superposition of &€ -process and a
Fleming-Viot process with state-dependentresampling rate, i.e.,g would not be a
constant but a function of the state, then the renormalisation transformation would
be much more complicated. It remains a challenge to deal with this geeralisation.

1.3. The Cannings model. The -Cannings model involves a nite non-negative
measure 2 M ¢ ([0; 1]). Below, we often assume that

(f0g)=0 (1.2)
and satisfying the so-called dust-free condition

@dr)

o T

=1: (1.3)

Condition (1.2) excludes the well-studied case ofleming-Viot diusions . In this
paper, we are primarily interested in the new e ects brought by the pure jump case
in the -Cannings model. These e ects were not studied using renomalisation tech-
nigues previously. Besides the pure jump case, later on, we allow fauperpositions
of Fleming-Viot di usion and pure-jump -Cannings models (cf. Sect ions 1.3.3and
1.4.4). Condition (1.3) excludes cases where the jump sizes do not accumulate.
Moreover, this condition is needed to have well-de ned proportionsof the di erent
types in the population in the in nite-population limit ( Pitman (1999 Theorem 8)),
and also to be able to de ne a genealogical tree for the population@reven et al.
(2009)°.

In Sections 1.3.1{1.3.3 we build up the Cannings model in three steps: single-
colony C -process, multi-colony C -process, andC -process with immigration-
emigration (McKean-Vlasov limit).

3Condition (1.3) is relevant for some of the questions addressed in this paper, though not for
all. We comment on this issue we go along. Another line of research would be to work with the
most general Cannings models that allow for simultaneous multiple resampling events. We do not
pursue such a generalisation here.
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1.3.1. Single-colonyC -process. We recall the de nition of the -Cannings model

in its simplest form. This model describes the evolution of allelic types 6 nitely

many individuals living in a single colony. Let M 2 N be the number of individuals,
and let E be a compact Polish space encoding the types (a typical choice B =
[0; 1]). The evolution of the population, whose state space i€V , is as follows.

The number of individuals stays xed at M during the evolution.
Initially, i.i.d. types are assigned to the individuals according to a given

distribution
2P (E): (1.4)
Let 2 M ([0;1]) be the - nite non-negative measure de ned as
dr
(fOg) =0; (dr) = (r2 ); r 2 (0;1]: (1.5)

Consider an inhomogeneous Poisson point process on; {0) [0; 1] with
intensity measure

dt (dr): (1.6)

For each point (t;r) in this process, we carry out the following transition
at time t. Mark each of the M individuals independently with a 1 or O
with probability r, respectively, 1 r. All individuals marked by a 1 are
killed and are replaced by copies of aingle individual (= \parent") that is
uniformly chosen at random among all the individuals marked by a 1 (se
Fig. 1.1).

In this way, we obtain a pure-jump Markov process, which is called tle -Cannings

model with measure and population size M .

[ ¥ .
. parent «Bernoulli marks

1 0 0 1 ! 0 0O

. ® ® ¢ L L ® * <-—before resampling

| 1 [T TN 1 | I |

1 1 L- 1 h 1 | | 1

Y | g | N Y | !

X o | | . X I : type inheritance
e L 1 | N | |

o~ é . ® ‘e ® + ~-after resampling

E = {e,+}.

Figure 1.1. Cannings resampling event in a colony oM = 8 indi-

viduals of two types. Arrows indicate type inheritance, X indicates
death.

Note that, for a jump to occur, at least two individuals marked by a 1 are needed.
Hence, for nite M, the rate at which some pair of individuals is marked is

((:zr)%M(M Dre= MM 1) (0 ;1)< 1; (1.7)

0;1]
and so only nitely many jumps occur in any nite time interval.
By observing the frequencies of the types, i.e., the number of individals with a
given type divided by M , we obtain a measure-valued pure-jump Markov process on
P (E). Equip P (E) with the topology of weak convergence of probability measures.
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Letting M ! 1, we obtain a limiting process X = (X (t)); o, called the C -
process which is a strong Markov jump process with paths inD ([0; 1 ); P(E)) (the
set of adhg paths in P(E) endowed with the Skorokhod J;-topology) and can
be characterised as the solution of a well-posed martingale problenbDEnnelly and
Kurtz (1999). This process has countably many jumps in any nite time interval
when ((0 ;1]) > O.

Note that the limiting case = ¢ is the Fleming-Viot diusion (cf. Sec-
tion 1.3.39). It is well known that this limiting case is obtained as a scaling limit of
the Moran model.

1.3.2. Multi-colony C -process: mean- eld version. Next, we consider the spatial

-Cannings model in its standard mean- eld version. Consider as gegraphic space
a block of sitesf0;:::;N 1g and assignM individuals to each site (= colony).

The evolution of the population, whose state space isgEM )N, is de ned as the
following pure-jump Markov process.

The total number of individuals stays xed at NM during the evolution.
At the start, each individual is assigned a type that is drawn from E ac-
cording to some prescribed exchangeable law.

Individuals migrate between colonies at ratec > 0, jumping according to
the uniform distribution on f0;:::;N  1g (see Fig.1.2).

Individuals resamplewithin each colony according to the -Cannings model
with population size corresponding to the current size of the colony

By considering the frequencies of the types in each of the coloniesye obtain a
pure-jump Markov process taking values inP (E)N .

colony 2 E = {., .}‘
& + e

© o e - - -mgntin g g
A3 | L4

colony 1 ~ v P colony 3
L. . o

colony 4

Figure 1.2. Possible one-step migration paths between N = 4
colonies with M = 3 individuals of two types in the mean-field version.

Letting M !'1 , we pass to the continuum-mass limit and we obtain a system
of N interacting C -processes, denoted by

] | 1
(N) = ¢ (N) i (N) (1) = (N) 1
XM= XMy o with XM= X)L,

2P (E)N: (1.8)
The processX (N) can be characterised as the solution of a well-posed martingale
problem on D ([0;1 ); P(E)N) with the product topology on P(E)N. To this end,
we have to consider an algebr&&  Cp(P(E)N ;R) of test functions, and a linear
operator L) on C, (P (E)N; R) with domain F, playing the role of the generator
in the martingale problem. Here, we letF be the algebra of functionsF of the
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form
1
S E— m - .
F(x)= Xi(@du™) " utiinu" o x=(Xeriinxn 1) 2P (E)Y;
E™ m=1
N2N;' 2Cp(E";R);ig;::5in 2f0;2:;N 1g
(1.9)
The generator § o O
LN F1 ¢, P(E)V;R (1.10)
has two parts,
L) = L)+ LY (1.11)
The migration operator is given by
N
(N) _cC o @Kx) . ..
(Lnig F)(X) = ﬁi'j . E(X’ xi)(da) @—x[ al; (1.12)
where
@Fx) 15 -

ax [al=lim o Floiiiixi aixi+ haixiasiinxe 1) FO) o (113)
is the Gateaux-derivative of F with respect to x; in the direction , (this de nition
requires that in (1.9) we extend P(E) to the set of nite signed measure onE).
Note that the total derivative in the direction 2 P (E) is the integral over of
the expression in (L.13), since P(E) is a Choquet simplex andF is continuously
di erentiable.

The resampling operator is given by (cf. the verbal description of the single-
colony C -process in Sectionl.3.1)

NrEh L
(LIEF)x) = @) _xi(da)

izo (0L ]

F Xo;iiox ;1 )X+ 1 a;Xis1 5 XN 1 F(x) :
(1.14)
Note that, by the law of large numbers, in the limit M !'1  the evolution in (1.4{
1.6) results in the transition x ! (1 r)x+r 5 with type a drawn from distribution
X. This gives rise to (L.14).

Proposition 1.1. [Multi-colony martingale problem]

Without assumption (1.3), for every x 2 P (E)N, the martingale problem for
(LN, F; ) is well-posed. The unique solution is a strong Markov procsswith
the Feller property.

The proof of Proposition 1.1 is given in Section3.2.

1.3.3. C -process with immigration-emigration: McKean-Vlasov limit. The N !

1 limit of the N -colony model de ned in Section1.3.2can be described in terms of
an independent and identically distributed family of P (E)-valued processes indexed
by N. Let us describe the distribution of a single member of this family, whid
can be viewed as a spatial variant of the model in Section..3.1 when we add
immigration-emigration to/from a cemetery state, with the immigrat ion given by
a source that is constant in time. Such processes are of interest itheir own right.
They are referred to as McKean-Vlasov processesfor (c;d; ; ), ¢;d 2 (0;1),
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2M ¢ (0;1]), 2P(E), or C -processes with immigration-emigration at ratec
with source and volatility constant d.
Let F CbI(_EI(E); R) be the algebra of functionsF of the form

F(x) = x "(du)' (u); Xx2P(E);n2N;"' 2 Ch(E";R): (1.15)
En

De ne the second Gateaux-derivative of F with respect to x as

@F (x) @ IT_@IRX)

@3 [u; V]:@X @x

Forc;d2[0;1), 2M ¢([0;1]) subjectto (1.2{1.3)and 2P (E),let L% : F1
Cv(P(E);R) be the linear operator

1
[u] [V wv2E: (1.16)

LO% = Le+ L9+ L (1.17)
actingonF 2F as
CFM=c ( 0@a) S0,
S @F ()
(LIF)(x) = d Qx (du; dv) [ui vl (1.18)
E - @%
il ] 1
(L F)(x)= (dr) x(da) F @ r)x+ra, FX);
(0;1] E
where
Qx(du; dv) = x(du) ,(dv) x(du)x(dv) (1.19)

is the Fleming-Viot di usion coe cient. The three parts of Lo correspond to:
a drift towards of strength c (immigration-emigration), a Fleming-Viot di usion
with volatility d (Moran resampling), and a C -process with resampling measure

(Cannings resampling). This model arises as theM !'1  limit of an individual-
based model withM individuals at a single site with immigration from a constant
source with type distribution 2 P (E) and emigration to a cemetery state, both
at rate c, in addition to the -resampling.

Proposition 1.2. [McKean-Vlasov martingale problem]

Without assumption (1.3), for every x 2 P(E), the martingale problem for
(Lc;d; 7F; x) is well-posed. The unique solution is a strong Markov proceswith
the Feller property.

The proof of Proposition 1.2 is given in Section3.2.
Denote by

- . ] o
z°% = 7% (1) [, Z29% ()= ; (1.20)
the solution of the martingale problem in Proposition 1.2 for the special choice
x = . This is called the McKean-Vlasov proces$ with parameters c;d; and
initial state

4The terminology stems from the fact that this process describes the limiting behaviour of
an interacting particle system for which propagation of chaos holds. The physics terminology is
related to the fact that the system of independent components is more random (= more chaotic)
than the one with dependent components. In our context, in the mean-field limit (N !'1 ), the
components of the system become independent of each other. Therefore, “chaos propagates”.
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1.4. The hierarchical Cannings process.The model described in Sectionl.3.2 has
a nite geographical space, an interaction that is mean- eld, and a resapling of
individuals at the same site. In this section, we introduce two new fetures into the
model:

(1) We consider acountably in nite geographic space, namely, the hierarchi-
cal group  of order N, with a migration mechanism that is block-wise
exchangeable.

(2) We allow resampling between individuals not only at the same site butalso
in blocks around a site, which we view agnacro-colonies

Both the migration rates and the resampling rates for macro-coloiies decay as
the distance between the macro-colonies grows. Feature (1) is imtduced in Sec-

tions 1.4.1{1.4.2, feature (2) in Section 1.4.3 The hierarchical model is de ned in
Section1.4.4.

1.4.1. Hierarchical group of order N. The hierarchical group  of order N is the
set
1 |_—'_| 1
N= =( Din, 2F0;2;: N A <1 ; N 2 Nnflg; (1.21)
12 No
endowed with the addition operation + dened by ( + )' = '+ ! (mod N),
| 2 No (see Fig. 1.3 for the caseN = 3). In other words, |\ is the direct sum of

the cyclical group of orderN, a fact that is important for the application of Fourier
analysis. The group y is equipped with the ultrametric distance d( ; ) de ned by

d(; )= d(@; y=minfk2 No: '= '";foralll kg C 2 i (1.22)
Let
Bk()=1f 2 n:d(; ) kg 2 N k2 N; (1.23)
denote the k-block around , which we think of as a macro-colony. The geometry
of n is explained in Fig. 1.3).

T e T e T~ o T T T

2-block

3-block

Figure 1.3. Close-ups of a 1-block, a 2-block and a 3-block in the
hierarchical group of order N = 3. The elements of the group are the
leaves of the tree (2). The hierarchical distance between two elements
is the graph distance to the most recent common ancestor: d(; ) =2
for and in the picture.

We construct a process
L] ] , 1 (.
XEw = XOn@)y 7o with  xEN@)= XU, 2P (E) N
(1.24)



Renormalisation of hierarchically interacting Cannings processes 55

by using the same evolution mechanism as for the multi-colony systenin Sec-
tion 1.3.2, except that we replace the migration onf0;:::;N  1g by a migration
on y, and the resampling acting in each colony by a resampling in each of the
macro-colonies. OnP (E) N, we again choose the product of the weak topology on
P (E) as the basic topology.

1.4.2. Block migration. We introduce migration on |y through a random walk
kernel. For that purpose, we introduce a sequence of migration r&s

c=(kzn, 2 (0;1)™; (1.25)
and we let the individuals migrate as follows:

Each individual, for every k 2 N, chooses at ratec, 1=N¥ ! the block
of radius k around its present location and jumps to a location uniformly
chosen at random in that block.

The transition kernel of the random walk that is thus performed by each individual
are
L,

(N)( - - . .
a (1 )_ N2k 1! ’
kod(; )

2 N, 6 ; aM™M(; )=0: (1.26)

wn in Dawson et al. (2009, this random walk is recurrent if and only if
k2N, (1=&) = 1 . For the special case wherey = ck, it is strongly recurrent for
c < 1, critically recurrent for ¢=1, and transient for ¢ > 1°.
Throughout the paper, we assume that

limsup £ logc, < 1 : (1.27)
k!l

This guarantees that the total migration rate per individual is boun ded (at least
for su ciently large N).

1.4.3. Block reshu ing-resampling. As we saw in Sectionl.3, the idea of the Can-
nings model is to allow reproduction with an o spring that is of a size canparable
to the whole population. Since we have introduced a spatial structue, we now
allow, on all hierarchical levelsk simultaneously, a reproduction event where each
individual treats the k-block around its present location as amacro-colony and uses
it for its resampling. More precisely, we choose a sequence of niteam-negative
resampling measures ]

_= Wkane 2 M ¢ ([0; 1D); (1.28)
each subject to (1.2). Assul%(la in addition that

o dr)y<1; k2 N; (1.29)

and that o satises (1.3). The condition in (1.29) is needed to guarantee that
in nite time a colony is aected by nitely many reshu ing-resampling e vents

5Loosely speaking, the behaviour is like that of simple random walk on Z¢ withd< 2, d =2
and d > 2, respectively. More precisely, with the help of potential theory it is possible to associate
with the random walk a dimension as a function of cand N that for N ! 1 converges to 2. This
shows that, in the limitas N !'1 , the potential theory of the hierarchical random walk given by
(1.26) with ¢ = 1 is similar to that of simple random walk on Z2.

6In Section 1.5.3, we will analyse the case N < 1 , where (1.27) must be replaced by
limsup,;  #logck < logN.
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only, since otherwise this transition cannot be de ned (see Remarkl.3 at the end
of Section 1.4). The condition in ( 1.3) guarantees that the population has a well-
de ned genealogy and most of the population at a site goes back to anite number
of ancestors after a positive nite time.
Set
k = «([0;1]); k= «(0;1]); k 2 Np: (2.30)
We let individuals reshu e-resample by carrying out the following two steps at
once (the formal de nition requires the use of a suitable Poisson piot process:
cf. (1.5{1.6) and (2.29):
Forevery 2  andk 2 Ng, choose the blockB( ) at rate 1=N2K.
Each individual in By( ) is rst moved to a uniformly chosen random lo-
cation in Bg( ), i.e., a reshuing takes place (see Fig. 1.4). After that,
r is drawn according to the intensity measure | (recall (1.5)), and with
probability r each of the individuals in By ( ) is replaced by an individual
of type a, with a drawn according to the :[Eﬁ)e distribution in By( ), i.e.,

yx N K X : (1.31)
2Bk( )
Note that the reshu ing-resampling a ects all the individuals in a mac ro-colony
simultaneously and in the same manner. The reshu ing-resampling ocurs at all
levelsk 2 Np, at a rate that is fastest in single colonies and gets slower as the lelve
k of the macro-colony increases.

lony 1 lony 2 lony 3 i
. f(i ?1;}: 19 co 0127\ 1% co ;);}j S before reshuffling
R S N AN
re e P AN “1-block
——/’I’—A’7\ ,4’/\‘;;\ RN ,»“/.
. - 7 5 P ~ - - -, e \“ -~ ~
’ ] ] | | p '
v o o & e e = L) e after reshuffling
colony 1 colony 2 colony 3

Figure 1.4. Random reshu [ing in a 1-block on the hierarchical lattice
of order N = 3 with M = 3 individuals of two types per colony.

Throughout the paper, we assume that_ = ( ,)k2n, (recall the de nition of
« from (1.30) satis es®
limsup £ log , < 1: (1.32)
k!l

Note that each of the N colonies in ak-block can trigger reshu ing-resampling in
that block, and for each colony the block is chosen at rateN 2. Therefore (1.32)
guarantees that the total resampling rate per individual is bounded.

In the continuum-mass limit, the reshu ing-resampling operation, w hen it acts
on the states in the colonies, takes the form

X isreplacedby (1 r)yx +r gforall 2 Bg() (1.33)

"Because the reshu [ing is done first, the resampling always acts on a uniformly distributed
state (“panmictic resampling”).

8In Section 1.5.3, we will analyse the case N < 1, where (1.32) must be replaced by
limsupy; & log | < logN.
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with a2 E drawn from y  (the type distribution in By ( ) (cf. (1.31)). Note that
in the mean- eld case and in the single-colony case of Sectioh 3.1, a 2 E is drawn
from x (cf. (1.14) and the comment following it)°.

1.4.4. Hierarchical Cannings process. We are now ready to formally de ne our sys-
tem of hierarchically interacting C -processesin terms of a martingale problem.
This is the continuum-mass limit (M ! 1 ) of the individual-based model that
we described in Sectionsl.4.1{1.4.3 Recall that so far we have considered block
migration and non-local reshu ing-resampling on the hierarchical group of xed
order N, starting with M individuals at each site.

We equip the setP{E) ™ with-the product topology to get a state space that is
Polish. Let F C, P(E) N;R be the algebra of functions of the form

—1 1]

) 1
F(x)= X ,,odu™ ouhninu" ;o x=(x )2 2P(E) N
En oy (1.34)
n2N; ' 2Cy,(E";R); 1;::15 n NG
The linear operator for the martingale problem -
LON:F1 Cy P(E) MR (1.35)
again has two parts,
LOm = LUN) 4 () (1.36)
The migration operator is given by
— L] @)
Lhg!FX0 = a™G ) (x x)da) S5 ) (L.37)
20N E
and the reshu ing-resam;l)liﬂ operator by
— = =
(LiegF)(x) = (LeF)(x) + o(dr) x (da)
2 N (0;1] E
o d |
F ra; f g(x) F(X)
r—1 Y [ (1.38)
+ N k(dr)  yx (da)
K2 N 0:1] E —
(.

1] 1]
F rna;B k( )(X) F(X) ;

where a5 ). P(E) M !P (E) N is the reshuing-resampling map acting as
] —1
L @ oyerra 280
rnaB k() X 2 Bk( );
wherer 2 [0;1],a2 E, k2 N, 2 1, and L% is the Fleming-Viot di usion
operator with volatility do (see (L.18)) acting on the colony x with
d O (1.40)

(1.39)

9Reshu [ingd is a parallel update aledting all individuals in a macro-colony simultaneously.
Therefore it cannot be seen as a migration of individuals equipped with independent clocks.
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Remark 1.3. (1) If dp =0, then the operator in (1.38) is pure-jump.
(2) The right-hand side of (1.39 is well-de ned because of (.29. Indeed, by
Tay%—expanding the inner integral in (1.38) in powers of r, we get

OO I O
yx (da) F o ae () (X)  F(X) =F(yx) F()+ O(r?); asr#0:
- (1.41)

To have a well-de ned resampling operator (L.38), the expression in (L.41) must be
integrable with respect to |, (dr), which is equivalent to assumption (1.29).

Proposition 1.4. [Hierarchical martingale problem] Without assumption
(1.9), for every 2 P(E) N, the martingale problem for (L( N):F: ) is well-
posed’. The unique solution is a strong Markov process with the Fedr property.

The proof of Proposition 1.4 is given in Section3.2.
The Markov process arising as the solution of the above martingale noblem is
denoted by X ¢ ™) = (X ( nN)(t)),; o, and is referred to as theCy—-process on y .

Remark: For the analysis of the Cﬁ;—-process, the following auxiliary models will
be important later on. Given K 2 Ng, consider the nite geographical space

Gnk = fO;:ii;N - 1g¢; (1.42)
which is a truncation of the hierarchical group  after K levels. EquipGn.x with
coordinate-wise addition moduloN , which turns it into a nite Abelian group. By
restricting the migration and the resampling to Gn.x  (i.€., by setting ¢k = 0 and

k =0for k K), we obtain a Markov process with geographic spac&yx that
can be characterised by a martingale problem as well. In the limitak !'1 , this
Markov process can be used to approximate th@ﬁ;*-process. This approximation
of X ( ) py X (6n.K) is made rigorous in Proposition8.1

Remark: Similarly to the mean- eld Cannings processX (N) from Section 1.3.2,
the hierarchical Cannings procesX ( N can be obtained as aM !'1  limit of the
nite M individual-based models.

1.5. Main results. Our main results concern a multiscale analysis of theCg—-
process on y, X N) (cf. below Proposition 1.4) in the limitas N !'1 . To
that end, we introduce renormalised systems with the proper space-timescaling.
For eachk 2 Ng, we look at the k-block averagesde ned by
Y{ () = ik xg N () 2 N (1.43)
2Bk()

which constitute a renormalisation of spacewhere the component is replaced by

the average inBy( ). The corresponding renormalisation of time is to replacet

by tN ¥, i.e., t is the associated macroscopic time variable. For eack 2 Ny and
2 N, we can thus introduce arenormalised interlzaclzting system

Y M (N k) ; (1.44)
' 2 N o

10as a part of the definition of the martingale problem, we always require that the solution
has cadlag paths and is adapted to a natural filtration.
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which is constant in Bx( ) and can be viewed as an interacting system indexed
by the set (Nk) that is obtained from by dropping the rst k-entries of 2
n (recall (1.21). This provides us with a sequence of renormalised interacting
systems which for xed N are howevernot Markov.
Our main results are stated in Sections1.5.1{1.5.2. In Section 1.5.1, we state
the scaling behaviour of the renormalised interacting system in {.44 asN ! 1
for xed k 2 Ng. In Section 1.5.2, we look at the interaction chain that captures
the scaling behaviour on all scales simultaneously. In Sectiof.5.3 we take a look
at our system X ( ~) for nite N. In Section 1.5.4, we compare the result with the
hierarchical Fleming-Viot process. In Sectionsl.5.5 1.5.6, we identify the di erent
regimes fork ' 1 and in Section 1.5.7 we investigate cluster formation.

1.5.1. The hierarchical mean- eld limit. Our rst main theorem identi es the scal-
ing behaviour of X ( M) asN 11 (the so-called hierarchical mean- eld limit) for
every xed block scalek 2 No. We assume that, for eachN, the-tawj of X { ~)(0)
is the restriction to y of arandom eld X indexed by 1 = N thatis taken
to be i.i.d. with a single-site mean for some 2P (E).

Recall (1.30) and (1.40). Let d = (dk)k2n, be the sequence ofolatility constants
de ned recursively as

(3 K+ de)
Gt (3 K+ do)’
Let L denote law, let =) denote weak convergence on path space, and recall.20).

dk+1 = k 2 No: (145)

Theorem 1.5. [Hierarchical mean- eld limit and renormalis ation]
For every k 2 N, uniformly in 2
i S R W — O

L y{™aN® L DL Z o<k K (t) L (1.46)

For k =0, (1.46) is still true, but the McKean-Vlasov process must be startedfom
Z0)= X ™(0) instead of Z(0) = (cf. (1.20)).

The proof of Theorem 1.5 is given in Section8. The limiting process in (1.46)
is a McKean-Vlasov processwith drift constant ¢ = ¢« and resampling measure
di o+ « (cf. (1.18). This shows that the class of Cannings models with block
resampling is preserved under the renormalisation.

Heuristics. In order to understand the origin of the recursion relation in (1.45),
let us start by explaining where d; = ¢y ¢=(2co + o) comes from. Consider two
lineages drawn at random from a macro-colony of order 1, sayB( ) for some
2 . Due to migration, both lineages are uniformly distributed over the macro-
colony after the rst migration step. For each lineage, marking the migration steps
that result in being in the same colony, we get a Poisson process withate 2cq
on timescaleNt. For every such mark, the rate to coalesce is gN (on time scale
Nt), while the rate to migration away is 2coN . Hence, the probability that the two
lineages coalesce before they migrate away i=(2¢co + (). Therefore, thinning
the Poisson process with rate 2), we see that the two lineages coalesce at rate

11The fact that we consider coalescing lineages as opposed to type distributions is actually the
essence of the duality approach to the study of the dynamics of interacting particle systems. In
the present context, duality is developed in Section 2.



60 Greven et al.

2co 0=(2co + o). Since the coalescence rate is twice the di usion coe cient (cf.,
Section 4.4), this gives a heuristic explanation for d;. Note that three lineages are
within the same colony only after a time of order N2, so three lineages do not
coalesce on time scalélt.

To understand the generic step of the recursion relation, i.e.dx+1 , consider a
macro-colony of orderk+1, say Bx+1 ( ) forsome 2 y, and two lineages drawn at
random from this macro-colony. Consider only migration on levelk, i.e., migration
events between the macro-colonies of ordek, which occur at rate 2c,N *. For
every such event, the rate of coalescence iglig+ ¢, while migration of one of them
occurs at rate Xy . Hence, the probability that the two lineages coalesce before one
of them migrates is (2x + «)=(2ck +2dx + ). After speeding up time by a factor
N, we see that the coalescence rate isc(2dx + k)=(2c +2dx + ). Since the
coalescence rate is twice the di usion coe cient, this gives a heurisic explanation
for dx. Again, three or more lineages do not coalesce on the same time scale

1.5.2. Multi-scale analysis: the interaction chain. Multi-scale behaviour. Our
second main theorem looks at the implications of the scaling behaviouof dx as
k!l ,tobe describedin Theoremsl.11{1.12in Section 1.5.41.5.5 for which we
must extend Theorem 1.5 to include multi-scale renormalisation. This is done by
considering two indices (; k) and introducing an appropriate multi-scale limiting
process, called theinteraction chain

MO =M om0 § 2 No; (1.47)

which describes all the block averages of sizi X indexed byk = (j +1);:::;0
simultaneously at time NIt with j 2 Ng xed. Formally, the interaction chain is
de ned as the time-inhomogeneous Markov chain with a prescribed iitial state at
time (j +1),

MOy = 2P(E); (1.48)
and with transition kernel
Ki(x )= 9% (); x2P(E); k2 No; (1.49)
for the transition from time  (k + 1) to time  k (for k = j;:::; 0). Here, &¢

is the unique equilibrium of the McKean-Vlasov procesZ % de ned in (1.18) of
Section 1.3.3 (see Sectiord for details).

Theorem 1.6. [Multi-scale behaviour]
Let (tn)n2n be such that

nglm ty =1 and nglm tn=N =0: (1.50)

Then, for everyj 2 Ng, uniformlyin 2 ; andug 2 (0;1),
_ O S O I R
Lo YR Nty + N¥u) 5 L mY) ;

= - ] =iy N = oo k=j;:; 0 (1_51)
L Y§ YNt 5

where 2 P (E) is the single-site mean of the initial distribution X ( ~)(0), cf. Sec-
tion 1.5.1.
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The proof of Theorem 1.6 is given in Section9.

Theorem 1.6 says that, asN ! 1, the system is in aquasi-equilibrium gxdk: &
on time scaleNity + N¥u, with u 2 (0;1 ) the macroscopic time parameter on
level k, when x is the average on levek + 1.

Heuristics. The e ect described in Theorem 1.6 results from the fact that on the
smaller time scaleuN* a k-block average evolves e ectively like a single compo-
nent of the N 1 other k-block averages with a mean- eld migration mechanism.
This leads to propagation of chaos i.e., convergence to a system of independently
evolving components that interact only because they feel the owall type density
in the (k + 1)-block. Since we look at the system at a late timeN/ ty , we see that
the dynamics at scaleN “u, which is o(N!ty ), has already reached equilibrium, as
is clear from a restart argument that absorbs an orderN K term into Nity .

The basic dichotomy.  We next let the index in the multi-scale renormalisation
scheme tend to in nity and identify how the limit depends on the parameters (c;_).
Indeed, Theorem 1.6, in combination with Theorems 1.11{1.12in Sections 1.5.4
1.5.5 allows us to study the universality properties on large space-time cales when
we rstlet N 11 andthenj!1 2

The interaction chain exhibits a dichotomy, as will be seen in Theorenil.7 below,
in the sense that

[ R
L M¢’ =) 2P(P(E)); (1.52)
with  either (1) of the form of a ra;aom single-atom measure, i.e.,
= L[ y]; for some randomU 2 E with L[U]= ; (1.53)
or (1) spread out. To % more speci ¢, de ne

Vary( )= [x(du) y(dv) x(du)x(dv)] (u) (v): (1.54)
E E
Then, is spread out i
sup E [Var ( )] > O; (1.55)
2B1

whereB; Cu(E;R)\f :j j 1gand the expectation is taken with respect to

the parameter x in (1.54), i.e.,
P (1.59 -

E [Var ()] = . (dx) Vary( ): (1.56)

Case (l) is called the clustering regime since it indicates the formation of large
mono-type regions, while case (Il) is called thelocal coexistence regime since it
indicates the formation of multi-type local equilibria under which dier ent types
can live next to each other with a positive probability. In the local coexistence
regime, a remarkable di erence occurs comparing with the hierarcital Fleming-
Viot process: mono-type regions foM é‘) asj !'1 have a probability in the open
interval (0; 1) rather than probability O (see Proposition 4.2(b) below). The latter is

referred to in Dawson et al. (1995 by saying that the system is in the stable regime
(which is stronger than local coexistence). In the present paperwe do not identify

the conditions on ¢ and _ that correspond to the stable regime. The dichotomy

12For several previously investigated systems, the limitasj ! 1 was shown to be interchange-
able (Dawson et al. (1995); Fleischmann and Greven (1994))
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can be conveniently rephrased as follows: There is either a trivial oa non-trivial
entrance lawfor the interaction chain with initial state 2 P (E) attime 1 'S,

Explicit dichotomy criterion. The large-scale behaviour oK ( ~) is determined
by the sequencem = (My)k2n, With
+d
me = —<—X. where | = I (1.57)

(recall ¢« from (1.25, ¢ from (1.30) and di from (1.45). We will argue that the
dichotomy — —
mg=1 wvs. me < 1 (1.58)
k2 No k2 NO

represents qualitatively di erent situations for the interacting sy stem X ( ~) corre-
sponding to, respectively,

clustering (= formation of large mono-type regions),

local coexistence(= convergence to multi-type equilibria).
In the clustering regime, the scaling behaviour ofdy is independent ofdg, while in
the local coexistence regime it depends odp. In (4.26) of Section4.4, we will show

that
1 1

Var ( ); j2No; 2Cy(E;R); 2P(E):

ELm [Var ( )] = L Tem,
This implieq that the entrance law is trivial when ., m¢ = 1 and non-trivial

when ,, Mk < 1 . Our third main theorem identi es the dichotomy.

Theorem 1.7. [Dichotomy of the entrance law]
(a) The interaction chain converges to an entrance law:
1 L] 1 L]
. N _
L S oL om ,
= (j+1) ;50 dee k=1 o 0 (1.60)
1 .
1 )=
(b) [Clustering] If —,,y M«=1,thenL[Mg ]=) L[ y]with L[U]=
— FES.
(c) [Local coexistence] If |,y Mk <1, then
sup EL[M(m)][Var( )] > O (1.61)
2Cy(E;R) 0
The proof of Theorem 1.7 is given in Section9.2.
Theorem 1.7, in combination with Theorem 1.11(c) in Section 1.5.4, says that,
like for Fleming-Viot di usions, we have a clear-cut criterion for the t wo regimes
in terms of the migration coe cients and the resampling coe cients.

Heuristics.  If the resampling happens only locally, i.e., x = 0, for k 2 N, we

simply obtain the two regimes depending on whether two ancestral lies coalesce
with probability 1 or < 1, giving after a long time monotype or coexistence, if and
only if they meet with probability 1 or < 1. Now, the ancestral lines can coalesce

18Recall that an entrance law for a sequence of transition kernels (K k)(k’: ; and an en-
trance state is any law of a Markov chain (Y )E: 1 With these transition kernels such that
limy, 1 Y = .
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due to the reshu ing-resampling in a k-ball and hence the occupation time of two
ancestral lines in the distancesk weighted by the  is the relevant quantity.

1.5.3. Main results for nite N. In this section, we take a look at our systemx ( ~)
(Cﬁ;—-process on y, cf. below Proposition1.4) for nite N, i.e., without taking the
hierarchical mean- eld limit. We ask whether this system also exhibitsa dichotomy
of clustering versus local coexistence, i.e., for xedN andt!1 , doesL[X ( ~)(t)]
converge to a mono-type state, where the type is distributed acarding to , or to
an equilibrium state, where di erent types live next to each other?

As it will turn out below, in the nite- N case there is the dichotomy and, more-
over, the quantitative criterion is the same as intheN !'1  limit.

Concretely, let P¢( ; ) denote the transition kernel of the random walk on
with migration coe cients

a(N)=a+ N * s k2 No (1.62)
starting at O (cf. Section 1.4.2). Let
1
Hy = kN K P2s(0; Bk (0))ds; (1.63)
k2 No 0

Bk(0) is the k-block in § around 0 (recall (1.23) and P;(0; Bk (0))
280 Pt (0; ). We will see in Section2.4.2that Hy in (1.63 is the expected
hazard for two partition elements in the spatial _-coalescent with non-local coales-
cence to coalesce. Note in particular that the second summand inl(62) is induced
by the reshu ing in the spatial _ -coalescent with non-local coalescence.
Our next three main theorems identify the ergodic behaviour for nite N.

Theorem 1.8. [Dichotomy for nite N]
The following dichotomy holds for everyN 2 Nnflg xed:

(a) [Local coexistence] If Hy < 1, then

[Var ( )]> 0; forall 2 y: (1.64)

liminf sup E
ti ZBp1 x5 N (o)

(b) [Clustering] If Hy = 1, then

(t)[Var( )]=0; forall 2 y: (1.65)

ISP Eyy
The proof of Theorem 1.8 is given in Section10.
The dichotomy can be sharpened by using duality theory and the comlete
longtime behaviour of X ( N) can be identi ed.

Theorem 1.9. [Ergodic behaviour for nite N
The following dichotomy holds:
(a) [Local coexistence] If Hy < 1, then for every 2 P(E) and every
X ( ~)(0) whose law is stationary and ergodic w.r.t. translations in y and
has a single-sit&mean ,

-
L XEm@) =) (VE-2P(PE) V) (1.66)

for some unique law ( NG that is stationary and ergodic w.r.t. transla-
tions in \ and has single-site mean .
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(b) [Clustering] If Hy = 1, then, for every 2 P (E),

1 [
L XM =)

— oo

(du) () ~ 2P (P(E) M): (1.67)

The proof of Theorem 1.9 is given in Section10.

Theorem 1.10. [Agreement of dichotomy for N<1 and N =1]
Under the weak regularity condition
—1 —1
either limsup <t <1 or liminf —<tar_K 5o (1.68)
ki1 ki1 Cx K+1

—1
the dichotomies in Theorems1.7 and 1.9 coincide i.e., ,,, Mk = 1 if and only
if HN =1.

The proof of Theorem 1.10is given in Section11.1

1.5.4. Comparison with the dichotomy for the hierarchical FlemingViot process.
We return to the caseN = 1 . For the classical case of hierarchically interacting
Fleming-Viot di usions (i.e., in the absence of non-local reshu ing-re sampling),
the dichotomy was analysed inDawson et al. (1999. It was shown there that the
dichotomy in (1.58) reduces to
1 1
(1=¢)=1 vs. (1=q) < 1; (1.69)
k2 No k2 No

corresponding to the random walk with migration coe cients ¢ = (¢k)k2n, being
recurrent, respectively, transient. I\A_%ﬁ?ver, it is known that in the clustering
regime limg; kdk =1 with = ;7 (1=q) for all do.

Our next main theorem provides a comparison of the clustering vs. @existence
dichotomy with the one for the hierarchical Fleming-Viot process. Let

d = (dy)kzn (1.70)

be the sequence of volatility constants when ¢ > 0 and ¢ = 0 for all k 2 N

(k= % k, see (L.57)), i.e., there is resampling in single colonies but not in macro-
colonies. By (1.45), this sequence has initial valued, = 0 and satis es the recursion

relation

1 1 1
dy=d= 2O =2+ K2N; (1.71)
Q+ o Ao & G
whose solution is
K41
do= —2 —; k2N; with (= = (1.72)
1+ o« 1= @
Theorem 1.11. [Comparison with hierarchical Fleming-Viot ]

The following hold for (dk)k2n, @s in (1.45 (also recall (1.57)):
(@) The mapsc7! dand 7! d are component-wise non-decreasing.

(6) g for all k2 N. - (o
(©  kan, Mk =1 ifand OMI kan,(15%) o 1= 1.
(d) If limg k=1 and N k k<1, then limyi; kde = 1.
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The proof of Theorem 1.11is given in Section11.1

In words, (a) and (b) say that both migration and reshu ing-resa mpling in-
crease volatility (recall ((1.57{1.58), (c) says that the dichotomy in (1.69 due
to migration is aeﬂpy reshu ing-resampling only when the latter is strong
enough, i.e.,, when .,k = 1, while (d) says that the scaling behaviour ofd
in the clustering regime is u@ted by the reshu ing-resampling wh en the latter
is weak enough, i.e., when ,, « k < 1. Note that the criterion in (c) shows
say that migration tends to inhibit clustering while reshu ing-resamp ling tends to
enhance clustering.

We will see inﬁh&'ast paragraph of Section11.1 that in the local coexistence
r@ dy o | as k 11 when this sum diverges and dy !

2N, 1= j:,(1 + mj) 2 (0;1 ) when it converges. Thus, in the local coexis-
tence regime the scaling oflk is determined the [ﬂinpling-reshu ing.

In the regime, where the systenclusters i.e., .,y Mk = 1, itis important to
be able to say more about the behaviour oing ask !'1 in order to understand
the patterns of cluster formation. For this the key is the behaviour of dx ask ' 1
which we study in Sections1.5.51.5.6 for polynomial, respectively, exponential
growth of the coe cients ¢« and .

Heuristics.  The recursion relation in (1.45 has the shapedy+; = f(dk) with
fkx: R 1 R a Mebius-transformation (see Section11.2). Thus, to obtain the
asymptotics of dy ask ! 1 we must study inhomogeneous iterates of Mebius-
transformations. For eachk 2 N, f is hyperbolic with two xed points: a repulsive
xed point x, < 0 and an attractive xed point x; > 0. Depending on the scaling
of the coe cients ¢, and , the scaling ofx; exhibits four regimes. For three of
the regimes, it turns out that dy x; ask!1 |, i.e., the iterates of the Mebius-
transformations attract towards the xed point of the last one. The fourth regime
is di erent. In Section 1.5.5we deal with polynomial coe cients, in Section 1.5.6
with exponential coe cients. In order to obtains sharp results, t he coe cients cx
and  must satisfy certain regularity conditions.

1.5.5. Scaling in the clustering regime: polynomial coe cients. The following main
theorem identi es the scaling behaviour ofds ask ! 1  in four di erent regimes,
de ned by the relative size of the migration coe cient ¢ versus the block resam-
pling coe cient . The necessaryregularity conditions are stated in (1.78 1.81)
below.

De ne

im £ =K 2[0;1]and,ifK =0; also Imk?X=L2[0;1] (1.73)
kil Cx ki1 Cx

Theorem 1.12. [Scaling of the volatility in the clustering r egime: poly-
nomial coe cients]
Assume that the regularity conditions(1.7& 1.81) hold.

(@ If K =1, then
lim —=1: (1.74)

(b) If K 2(0;1), then
(| —1 (|

Cde . L, _ N
Jm =M owith M= 3K 1+ 1+ (4=K) 2 (0;1) (1.75)
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(c) f K=0andL =1, then

d ..
Jm po—= 1: (1.76)
(d) If K=0,L< 1 anda2 (1 :1),then
[ I | ]
k||i1m ke =M withM =1 1+ 1+4L=1 a)? 2[L1): (1.77)

The proof of Theorem1.12in given Section11.3 The meaning of the four regimes
for the evolution of the population will be explained in Corollary 1.13 Case (a)
can be termed \reshu ing-resampling dominated”, cases (c) and (d) \migration
dominated”, and case (b) \balanced".

Regularity conditions. In Theorem 1.12, we need to impose some mild regularity
conditions onc and , which we collect in (1.781.81) below. We require that both
ck and g areregularly varying at in nity , i.e., there exista;b2 R such that

o Le(K)k?: e LKk ki1l (1.78)
with L¢;L slowly varying at in nity ( Bingham et al. (1987 Section 1.9)). The

numbersa; bare referred to as theindices of c and _14. Note that (1.68) is satis ed.

To handle the boundary cases, wherex, «, k=G and/or k? =g are slowly
varying, we additionally require that for speci c choices of the indices the following
functions are asymptotically monotone

a=0: k7' Lo(K)=Le(k): k7! k Lo(K)=Lo(K):

(1.79)
b=0: k7' L (k=L (k); k7' k L (k)=L (k);
and the following functions are bounded
a=0: k7'k Lc(k)=Lc(k);
c(K)=Lc(k) (1.80)

b=0: k7'k L (k)=L (k);

where L(k)= L(k+1) L(k). To ensure the existenceof the limits in ( 1.73), we
also need the following functions to beasymptotically monotone

a=b: k7' L (k)=Lc(K);

(1.81)
a=b 2: k7KL (K)=L(k):

Scaling of the variance. The next corollary shows what the scaling ofdy in
Theorem 1.12 implies for the scaling ofmy and hence of the variance in {.59 (we
will see in Section11.3that the conditions for Case (d) imply that lim 3 Kk k=0
and limy;; o k=1).

Corollary 1.13. [Scaling behaviour of mg] The following asymptotics of my
for k!'1 holds in the four cases of Theorem 1.12

@ me 511 : () mg! K+ M;
f— (1.82)

k M
(c) myg — 10 @d mg —1! O
Ck «k
14Regular variation is typically defined with respect to a continuous instead of a discrete
variable. However, every regularly varying sequence can be embedded into a regularly varying
function.
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All four cases fall in the clustering regime. For the variance in (.59 they imply:
(a) superexponential decay; (b) exponential decay, (c{d) sulexponential decay.

Note that Case (d) also falls in the clustering regime because it assumes that
a2 (1 ;1),whichimplies thatlim g k=1 .Indeed, =& « =( k+1 k)= ks
and in Section11.1we will see that

s

lm =1 (1.83)

£

k2N
Combining Cases (a{d), we conclude the following:
The regime ofweak block resamplingfor which the scaling behaviour of dg
is the same as if there were no block resampling) coincides with the chue
K=0and L< 1.
The regime of strong block resampling(for which the scaling behaviour of
dk is di erent) coincides with K =0and L =1 orK> 0.

Note that M " 1 agK ! 1 , so that Case (b) connects up with Case (a).
Further note that M K asK p# 0, so that Case (b) also connects up with Case
(c). Finally, note that P C k Lek=k ask !' 1 for Case (d) by (1.73), while
ck k k=(1 a)ask!l whena2 (1 ;1)by(1.79. Hence, Case (d) connects
up with Case (c) as well.

1.5.6. Scaling in the clustering regime: exponential coe cients. We brie y indicate
how Theorem 1.12 extends whenck and ¢ satisfy
o= ca; k= K cwithc; 2(0;1)and
(ck); ( k) regularly varying at in nity ; (1.84)
im X 21[017;
K1

and the analogues of {.7H 1.81) apply to the regularly varying parts. Again, note
that (1.69) is satis ed.

Theorem 1.14. [Scaling of the volatility in the clustering r egime: expo-
nential coe cients]
Assume that (1.84) holds. Recall the casega{d) from Theorem 1.12. Then:
(A) [scaling like Case (8)] c< orc= ,K =1:limgn d=¢ =1=c
(B) [scaling like Case (b)] c= , K 2(0;1): limgz di=qc = M with
1] 1 1

M = zic (oK +1) DL+ (c(K +1) 12+4cK : (1.85)
(C) The remainderc> or c= , K =0 splits into three cases:
(C1) [scaling like Case (d)] 1>c> orl=c> ,limy ¢=1:

lim k1 kdk =1.
(C2) [scaling like Case (b)] c= < 1,K =0: limxn dk=a =(1 c)=c
(C3) [scalinglike Case(c)] c= > 1, K =0:Ilimygy d=¢=1= 1).
Remark 1.15 The analogue ofL (cf., (1.73 and Theorem 1.12) no longer plays a
role for exponential coe cients (cf., Theorem 1.14).

The proof of Theorem 1.14 is given in Section11.4. The choices 1 =¢ >
limyip k<1l a 1, c > correspond to local coexistence (and so does
c= > 1,K=0, ,,y k*&<1).
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1.5.7. Cluster formation. In the clustering regime, it is of interest to study the size
of the mono-type regions as a function of time, i.e., how fast do thelasters grow?
To that end, we look at the interaction chain M “2(;) forj 1'1 |, where the level
scaling function k: N! N with limj;; k(j)= 1 is suitably chosen such that we
obtain a nontrivial clustering limiting law , i.e.,

~ () - ;D
jl!l:l.m L M ki) = L ; (1.86)
where the limiting random measure” satis es
Pf"= y; for someU 2 Eg< L (1.87)

For example, in Dawson and Greven(19939 such a question was answered in the
case of the interacting Fleming-Viot processes with critically recurent migration
c. There, dierent types of limit laws and dierent types of scaling can occur,
corresponding to di erent clustering regimes. Following Dawson et al. (1995 and
Dawson and Greven(1996, it is natural to consider a whole family of scalings
k : NI N, 2 ][0;1) satisfying (1.86). We single out fast, diusive and slow
clustering regimes:

(i) Fast clustering: limji1  k (j)=j =1 for all

(i) Diusive clustering: In this regime, limju  k (j)=j = () forall
where 7! ()is continuous and non-increasing with (0) =1and (1) =
0.

(iii) Slow clustering: limji1  k (j)=j =0forall . This regime borders with

the regime of local coexistence.

Remark: Diusive clustering similar to (ii) was previously found for the voter
model onZ? by Cox and Gri eath (1986, where the radii of the clusters of opinion
\all 1" or \all 0" scale as t=2 with 2 [0;1), i.e., clusters occur on all scales

2 [0;1). This is dierent from what happens on Z!, where the clusters occur
only on scales t'72, where is random, seeArratia (1979. For the model of
hierarchically interacting Fleming-Viot di usions with ¢x 1 (= critically recurrent
migration), Fleischmann and Greven(1994) showed that, for all N 2 N nflg and
all 2 N

— Le—r ) oo L]

N YL v log —— . (1.88
(N ) 9 7 o (1.88)

[N
L Y;b(Nl )tc

where (Y (t))t210;1 ) is the standard Fleming-Viot diusion on P(E). A similar
behaviour occurs for other models, e.g., for branching model€@awson and Greven

(1996).

Our last two main theorems show which type of clustering occurs fothe various
scaling regimes of the coe cientsc and identi ed in Theorems 1.1 1.14. Polyno-
mial coe cients allow for fast and di usive clustering only. Exponent ial coe cients
allow for fast, di usive and slow clustering, with the latter only in a nar row regime.

Theorem 1.16. [Clustering regimes for polynomial coe cien ts]
Recall the scaling regimes of Theorenmi..12.

(i) [Fast clustering] In cases (a-c), the system exhibits fast clustering.
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(i) [Di usive clustering] In case (d), the system exhibits di usive clustering,
ie.,
o T L = N 1, oo L]
L M(j) ) — L ZO;l;O lo :
S0 e g e TR e
whereR = M (1 a) with M dened in (1.77) and a the exponent in
(1.79).
Theorem 1.17. [Clustering regimes for exponential coe cie nts]
Recall the scaling regimes of Theorem..14.

(i) [Fast clustering] In cases (A, B, C1, C2), and case(C3) with
kIlilm K k=cx, = 1; (1.90)

(1.89)

the system exhibits fast clustering.

(i) [Di usive clustering] In case (C3) with limy;;  k x=cx = C, the system
exhibits di usive clustering, i.e., (1.89 holds withR = C=( 1).

(iif) [Slow clustering] In case (C3) with k =c« 1=(logk) , 2 (0;1), the
system exhibits slow clustering.

The proofs of Theorems1.1§ 1.17 are given in Section9.3. Note that (1.89) is a
statement valid for all N 2 N nflg. In contrast, Theorems 1.1 1.17 are valid in
the hierarchical mean- eld limit N !'1  only.

1.6. Discussion. Summary. We have constructed the Cﬁ;—-process in Section
1.4.4, describing hierarchically interacting Cannings processes, and havidenti-
ed its space-time scaling behaviour in the hierarchical mean eld limit N ! 1
(interaction chain, cf. Theorem 1.6). We have fully classi ed the clustering vs.
local coexistence dichotomy in terms of the parameters; _ of the model (cf. Theo-
rem 1.7), and found di erent regimes of cluster formation (cf. Theorems1.16, 1.17).
Moreover, we have veri ed the dichotomy also for nite N (cf. Theorems1.8{1.10).
Our results provide a full generalisation of what was known for hierachically in-
teracting di usions, and show that Cannings resampling leads to newphenomena
(cf. Theorem 1.11 and comment following it).

Diverging volatility of the Fleming-Viot part and local coe xistence. The

growth of the block resampling rates ( «)kzn can lead to a situation, where, as
we pass to larger block averages, the volatility of the Fleming-Viot pat of the

asymptotic limit dynamics diverges, even though on the level of a sinlg component
the system exhibits local coexistence (recall Theorem..7(c)). This requires that

the migration rates are (barely) transient and the block resamplingrate decays very
slowly. An example of such a situation is the choiceg = k(logk)® and = 1=k

which leads to di logk and my 1=k(logk)? ask ! 1 . Thus, the system
may be in the local coexistence regime and yet have a diverging volatilton large
space-time scales.

Open problems.  The results of Section1.5 and suggest that a dichotomy between
clustering and local coexistence also holds for a suitably de ned Carings model
with non-local resampling onZ4, d 3. In addition, a continuum limit to the
geographic spacdR? ought to arise as well, cf.Barton et al. (2010. The latter may
be easier to investigate in the limit N ! 1, following the approach outlined in
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Greven (2009. Another open problem concerns the di erent ways in which cluste
formation can occur. Here, the limit N 1  could already give a good picture of
what is to be expected for nite N. A further task is to investigate the genealogical
structure of the model, based on the work in Greven,Greven et al. (2014 for the
model without multi-colony Cannings resampling (i.e., « = o for k 2 N).

Outline of the remainder of the paper. Section 2 introduces the spatial _ -
coalescent with block coalescence and derives some of its key profies. Sections3{
11 use the results in Section2 to prove the propositions and the theorems stated
in Sections1.3{1.5. Here is aroadmap:

Section 3 handles all issues related to the well-posedness of martingale
problems. The proofs of Propositions1.1{1.4 are in Section3.2.

Section4 deals with the properties of the McKean-Vlasov process, including
its equilibrium distribution.

Section 5 outlines the strategy behind the proofs of the scaling results for
the hierarchical Cannings process, which are worked out in Secti@®t{9 as
follows: Theorem 1.5 is proved in Section 8 with preparatory work being
done in Sections6{ 7, Theorem 1.6 is proved in Section9.1, Theorem 1.7 in
Section 9.2, and Theorems1.16{1.17in Section 9.3.

Section 10 proves the scaling results for the interaction chain stated in
Theorems1.8 and 1.9.

Section 11 derives the scaling results for the volatility constant: Theo-
rems1.10and 1.11are proved in Section11.1, Mebius-transformations are
introduced in Section 11.2, Theorem 1.12 is proved in Section11.3 and
Theorem 1.14in Section 11.4.

Section 12 collects the notation.

2. Spatial -coalescent with non-local coalescence

In this section, we introduce a new class of spatial -coalescent processes, hamely,
processes where coalescence of partition elements at distancesykr than or equal
to zero can occur. This is a generalisation of the spatial coalesceimtroduced by
Limic and Sturm (2006, which allows for the coalescence of the partition elements
(= families = lineages) residing at the same location only. Informally, the spa-
tial _-coalescent with non-local coalescence is the process that enesdthe family
structure of a sample from the currently alive population in the Cﬁ;*-process, ie.,
it is the process ofcoalescing lineageshat occur when the evolution of the spatial
C,%j—-Cannings process is traced backwards in time up to a common andes. In

what follows, we denote this backwards-in-time process byy,—.
Recall that two Markov processesX and Y with Polish state spacesE and E°
are calleddual w.r.t. the duality function H: E E°! Rif

Ex o [H (Xt; Yo)] = Ey,[H (Xo; Y1)]; for all(Xo;Yo) 2E E © (2.1)

and if the family fH(;Yo): Yo 2 E% uniquely determines a law onE. Typically,
the key point of a duality relation is to translate questions about a canplicated
process into questions about a simpler process. This translation t#n allows for an
analysis of the long-time behaviour of the process, as well as a prbof existence
and uniqueness for associated martingale problems. K (;) 2 Co(E E 9, and
if H(;Yp) and H(Xyp; ) are in the domain of the generator of X, respectively, Y
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for all (Xo;Yo) 2 E E © then it is possible to establish duality by just checking a
generator relation (see Remark2.9 below and alsoLiggett (1985 Section 11.3)).
The analysis of the processes on their relevant time scales will lead ts study a
number of auxiliary processes on geographic spaces di erent fromy . The duality
will be crucial for the proof of Propositions 1.1{ 1.4 (martingale well-posedness) in
Section 3, and also for statements about the long-time behaviour of the praesses
and the qualitative properties of their equilibria. In Section 2.1, we de ne the spatial
-coalescent with local coalescence. In Sectior?.2, we add non-local coalescence.
In Section 2.3, we formulate and prove the duality relation between theCﬁ*—process
and the spatial -coalescent with non-local coalescence. In Sean 2.4, we look at
the long-time behaviour of the spatial -coalescent with non-local coalescence.

2.1. Spatial -coalescent with local coalescenceln this section, we briey recall
the de nition of the spatial -coalescent on a countable geographic spaceG as
introduced by Limic and Sturm (2006. (For a general discussion of exchangeable
coalescents, seéerestycki (2009.) Here, we do not need assumption {.2) on
measure . In Section 2.2, we will add non-local coalescencgi.e., coalescence of
individuals not necessarily located at the same site.

The following choices of the geographic spac& will be needed later on:

Gnk = f0;::i;N 19K, K;N 2 N; G= N;N2N; G=1f0g: (2.2)
The choices in ¢.2) correspond to geographic spaces that are needed, respectiye
for nite approximations of the hierarchical group, for the hierar chical group, for a
single-colony with immigration-emigration, and for the McKean-Vlasov limit. We
de ne the basic transition mechanisms and characterise the pros by a martingale
problem in order to be able to verify duality and to prove convergene properties.
In Section 2.1.1we de ne the state space and the evolution rules, in Sectiog.1.2we

formulate the martingale problem, while in Section 2.1.3 we introduce coalescents
with immigration-emigration.

2.1.1. State space, evolution rules, graphical construction andrérance law. State
space. As with non-spatial exchangeable coalescents, it is convenient taart with
nite state spaces and subsequently extend to in nite state spaes via exchange-
ability. Given n 2 N, consider the set

[n]=f1;:::;ng (2.3)
and the set |, of its partitions into families:

o = set of all partitons =f ; [n]g’; (2.4)
of set |n] into disjoint families i, i 2 [b)]. '
That is, for any = f igibzl 2 ., we have p] = E‘ iand ;\ =, for
i;j 2 [b] with i 6 j. In what follows, we denote by
b=0b( )2[n] (2.5)

the number of familiesin 2 .

Remark 2.1 (Notation). By a slight abuse of notation, we can associate with 2
the mapping : [n]! [bldened as (i)= k, wherek 2 [b] is such thati 2 . In
words, k is the label of the unique family containingi.
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Abbreviate
Mky=minfi2[n]: (i)= kg, k2 Ib: (2.6)
The state space of the spatial coalescent is the set @&-labelled partitions de ned
as 1
en = o =f(10)( 25%) 5 ( biG)g
1 (2.7)

For de niteness, we assume that the families of ¢ 2 ., are indexed in the
increasing order of each family's smallest element, i.e., the enumeratiois such

that min ; < min ; forall i;j 2 [b] with i 6 j.
Let Se:n 2 @:n denote the labelled partition of [n] into singletons i.e.,
1 1
Sen = (f1g;01);(f29;02);:::;(fng;gn): 62 G;i 2 [n] : (2.8)

With each ¢ 2 &.n We can naturally associate the partition 2 , by removing
the labels i.e., with

6 =f( 101 ( 228250 ( b)Y (2.9)
we associate = f 1;::1; pg 2 . Witheach ¢ 2 ., we also associate the
set of its labels

L(g)="fo;::55009 G (2.10)

In addition to the nite- n sets , and ., considered above, consider their
in nite versions

= fpartitions of Ng; c = fG-labelled partitions of Ng; (2.12)
and introduce the set of standard initial states
C. . 1
Se = f(fig;g)dian: G 2G;i 2N : (2.12)
Equip ¢ with the following topology. First, equip the set ., with the discrete
topology. In particular, this implies that  g.n is a Polish space We say that the
sequence of labelled partitionsf g‘) 2  sOk2n converges to the labelled partition
c 2 ¢ If the sequencef (gk)jn 2  &nOk2n CONverges to gjn 2 @ for all
n 2 N. This topology makes the space ¢ Polish, too.
Evolution rules.  Assume that we are given transition rates (= \migration rates")
on G
a:G?! R, al(g:f)=afg); (2.13)
wherea( ; ) is the migration kernel of the correspondingC -process with geographic
spaceG as in (2.2). The spatial n- -coalescentis the continuous-time Markov
processC{) "¢ = (8 (ty = (1) 2 @n )i o With the following dynamics.
Given the current state g = C\2'°°(t )2 g, the processCy)"°¢ evolves via:

Coalescence Independently, at each siteg 2 G, the families of ¢ with label
g coalesceaccording to the mechanism of the non-spatialn- -coalescent.
In other words, given that in the current state of the spatial -c oalescent
there areb= b( ¢;g) 2 [n] families with label g, among thesei 2 [2;b]\ N
xed families coalesce into one family with labelg at rate E)')i , Where

] ;

O = @ri@ nP o oi22h\N; (2.14)
[0;1]
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with given by (1.5).

Migration . Families migrate independently at rate a , i.e., for any ordered
pair of labels (g;d") 2 G2, a family of ¢ with label g2 G changes its label
(= \migrates") to g2 G at rate a (g; ).

Graphical construction. Next, we recall the explicit construction of the above
described spatial n- -coalescent via Poisson point processes (see alsbimic and
Sturm (20089).

Consider the family P = fP 4gg2¢ of i.i.d. Poisson point processes on [ )
[0;1] f 0;1gN de ned on the ltered probability space ( ;F;(Ft)t o;P) with in-
tensity measure

| Nl
dt dr)(r 1 +(@ r)o) " d); (2.15)
where! = (!)i2n f 0;1gY. We assume that point processe® are adapted to

Itration ( F¢)t o.
Note that the second factor of the intensity measure in £.15) is not a product
measure on [01] f 0;1gN, in particular, it is not the same as

L
@dr)(r 1+(@ 1)o) (d): (2.16)

GivenJ [n] and g 2 G, de ne the labelled coalescence mapoalby: cn !
c:n, Which coalesces the blocks with indices speci ed by and locates the new-

formed block at g, as follows:
C1 I | 1

1 1
coalg ( Gin) = L1 i;g|$“——6‘,ln n (i;gi)I;ZI Gn 2 Gn-
23\ [b( )] 23\ [b( )]
(2.17)

Using P, we construct the standard spatialn- -coalescent C*)"°° = (c{®°¢ (1)), o
as a Markov -, -valued process with the following properties:
Initial state. AssumeC:)"°°(0) 2 Sg.n .
Coalescence. For eachlgi_is and each point ¢;r;! ) of the Poisson point
processP 4 satisfying ! 2, all families( ¢ );gi¢t )) 2 C"°°¢ )
such that gi(t )= gand!; =1 coalesce into a new family labelled byg,
ie.,

q]G);loc(t) = coalfig[n]; 1i=1;gi(t )= gg;g (q]G);loc(t )) (2.18)
Migration. Between the coalescence events, the labels of all partition el-
ements of CﬁG);'OC(t) perform independent random walks with transition

ratesa *°.
In what follows, we denote by j,: &m ! Gn, for m n, (respectively,
in: &! &n)the operation of projection of all families in [m] (respectively, N)
onto [n].

Entrance law. Note that, by construction, the spatial n- -coalescent satis es the
following consistency property:
g IZIy prop I%/ 1 (|

L c@locj = {Cilec . nm2N;n m (2.19)
5The adjegive “between” is well defined because the set of points (t;r;! ) of P4 satisfying

the condition ;! 2 is topologically discrete, and hence can be ordered w.r.t. the first
coordinate (= time).
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Therefore, by the Kolmogorov extension theorem, there exists grocess
cleliloe = (cf®e(t) 2 g)i o (2.20)
such that C(G);Iocj'n — dG);Ioc.

De nition 2.2  (Limic and Sturm (2006). Call the processC{®)!°¢ the spatial
-coalescent corresponding to the migration ratesa and the coalescence measure

2.1.2. Martingale problem. In this section, we characterise the spatial -coalescent
as the unique solution of the corresponding well-posed martingale pblem.

Let Gs be the algebra of bounded continuous functiond=: ¢ ! R such that
for all F 2 Cg there exists ann 2 N and a bounded function

Fn: en! R (2.22)

with the property that F() = Fn(jn). In words, F only depends on the fam-
ily structure of a nite number of individuals. It is easy to check that Cs sep-
arates points on . Given f;g 2 G and i 2 [n], dene the migration map

mig; , gii Gn! Gn as
1

([ Cenn(i:f); (:F)2 an; o
Gin » (i:f)2Z Gn; en en:

(2.22)
describing the jump in which the family labelled i migrates from colonyf to colony

g

migs, ¢i( cin)=

Consider the linear operatorL(®) de ned as
L©® = L&)+ 1O (2.23)

mig coal *

where the operatorstnGig ?L£S§| G !C garedenedfor g2 g andF 2 Cg
as

©) o vl m— T I . O
(Lmig F)( 6)= a (9;f) Fa(migg i ( cin)) F(e); (2.24)
izl gf2G

(©) _ 0 - - L
(Lcoal F)( G)_ b( cinig):jdi Fn(coal.];g( GJn)) F( G)
g2GJf i2[n]:gi=gg;
i 2
(2.25)
(recall de nitions ( 2.5), (2.13), (2.14) and (2.17)).

Proposition 2.3. [Martingale problem for the spatial -coalescent with
local coalescence] The spatial -coalescent with local coalescence de ned in Sec-
tion 2.1.1 solves the well-posed martingale problem foflL(®) ;Cu( ¢); s.) with
S asin (2.12).

Proof : A straightforward inspection of the graphical construction yields the exis-
tence. The unigueness is immediate because we have a duality relatipas we will
see in Section2.3. —1

Remark 2.4. Note that, instead of the singleton initial condition in Proposition 2.3
(and in the graphical construction of Section 2.1.1), we can use any other initial
condition in .
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2.1.3. Mean- eld and immigration-emigration  -coalescents. Some special spatial
-coalescents will be needed in the course of our analysis of the hiarchically
interacting Cannings process. We de ne themean- eld -coalescentas the spa-
tial -coalescent with geographic space G = f0;:::;N  1g and migration ker-
nel a(i;j) = c=N for all i;j 2 G with i 6 j. Furthermore, we de ne the -
coalescent with immigration-emigration as the spatial -coalescent with geographic
spaceG = f0; g and migration kernel a(0; ) = c, a( ;0) = 0. In other words, is
a cemetery migration state.

2.2. Spatial -coalescent with non-local coalescenceln this section, we construct
a new type of spatial coalescent process based on a sequence= ( k)kzn, Of
nite measures on [Q 1] as in (1.28), namely, the spatial _-coalescenton G =
with non-local coalescence For eachk 2 N, we introduce two additional transition
mechanisms: (1) ablock reshu ing of all partition elements in a ball of radius k;
(2) a non-local -coalescenceof partition elements in a ball of radius k.

In this section, we assume that, for allk 2 N, measure | satisfy (1.2). But we
do not assume that measure ¢ satis es (1.2). Denote

do = ()f Og (226)

In Section 2.2.1, we give de nitions, in Section 2.2.2we formulate the martingale
problem.

2.2.1. The evolution rules and the Poissonian construction.In what follows, we
considerG = . We start by extending the graphical construction from Sec-
tion 2.1.1to incorporate the additional transition mechanisms of non-local eshuf-
ing and coalescence.

Given the Itered probability space ( ;F;(Ft): o;P), consider Poisson point
processes ( N) on

0;1) w~n No [01] f 0;1g" (2.27)
having intensity measure
1 ] ] Ehl:l 1
dt d N Xdk ,@dr)ri+(1 1) @y ; (2.28)

where! =(1)ian f 0;20Y, (t; ;k;r;! )2[0;1) N No [0;1] f 0;1gN, dk
is counting measure onN and d is counting measure on y . Again, note that the
third factor in ( 2.28) is not a product measure (compare 2.16)).

Given [k (i.e., is a nite subset of y)and = f ig{:{; i 2, let

resh . : N ~ be the reshuing map that for all i moves families from
2 to 2 :
—1
_ Cis)y 2 . _
resh ; ( N)i - . . . N 2 TR 2 [b( N)] (229)
Civ iy 12
Let
U =fU ()g2 (2.30)

be a collection of independent -valued random variables uniformly distributed
on . We construct the standard spatial n- -coalescent with non-local coalescence

¢, ™ = (Q(1 N)(t) 2 win)t o as the | .n-valued Markov process with the
following properties:
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Initial state. AssumeC N)(O) 2 S n (recall (2.9)).

Coalescence with reshuing. For each point (t; ;k;r;! ) of the Poisson
point processP( N (cf. (2.27{( 2.29), all families ( i; ) 2 ¢ “(t )
suchthat!; =1 and ; 2 By( ) coalesce into a new family with label .
Subsequently, all families with labels 2 By( ) obtain a new label that
is drawn independently and uniformly from By( ). In a formula (recall

(2.17), (2.29{( 2.30):

G, N(t) = reshg,( YUs,m  CO8Kiz[n1: 1i=1; it )2Bw()o; (Ch ™t ): (2.31)
Note that, in contrast with the spatial coalescent with local coalesence
from Section 2.1, the coalescence mechanism ir2(31) is no longer local: all
families whose labels are iBx( ), k 2 N, are involved in the coalescence
event at site 2 .

Migration. Independently of the coalescence events, the labels of all parti-
tion elements of C, N)(t) perform independent random walks with transi-
tion rates aN)( ;) (recall (1.26) and (2.13).

As in Section 2.1, the consistency-between-restrictions property allows us to
apply the Kolmogorov extension theorem to the familyfd1 N)gnZN to construct
the Markov process

cl ~) (2.32)
taking values in .

De nition 2.5.  The processCt N) is called the spatial _-coalescent with non-local
coalescence corresponding to the resampling measuresc{k2n, (recall (1.28) and
the migration coe cients ( c)kzn, (recall (1.25).

Proposition 2.6. [Feller property] The processCt N) is a mdhg strong Markov
process with the Feller property.

Proof : This is an immediate consequence of the Poissonian construction. 1

2.2.2. Martingale problem. In this section, we characterise the spatial -coalescent
with non-local coalescence as the solution of the corresponding mtangale problem.

Given n2 nand 2 y, denote the number of families of ., with
labels in Bx( ) (recall (1.23) by

b()=0 wniBe()N=1if(i5 )2 n: 12Bk()gi2N: (2.33)

Recall the de nition of the algebra of test functions Gz from Section 2.1.2. Let

= FCis Dgizan2 W F2C andF()= Fn(jn) (recall (2.21)). Consider
the linear operator L{ N) de ned as

LO N = LSni;) + L( N) .

coal !

(2.34)

where the linear operatorsL( N and L{ ™ are de ned as follows (recall ¢.27)).

mig coal
The migration operator is'®
=, S Tl | — O O
Lmig' F (&)= a™ (5 ) Fa(mig , i ( Wdn) FC o)
i=1 ;2 N

(2.35)

16Note that a(N) = a(N)  for the hierarchical random walk (cf. (2.24)).
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and the block-coalescence-reshu ing operator is (recall 2.14), (2.17), (2.29 and
(2§))

I L1 1 I 1 I 1 L1

LSV F ()= N 2 N N K N K
2 N k2Ng 12Bk( ) 22Bk( ) IBk(n)IZBk( )
r J :
N sy Fa(reshe, () coaking: s )g ( win) F( o)
3 [b( )I;
I
(2.36)
Proposition 2.7. [Martingale problem: Spatial _ -coalescent with non-

local coalescence] The spatial _-coalescent with non-local coalescenc€l ~) de-
ned in Section 2.2.1 solves the well-posed martingale problerfL( ~) ;C ; s o)
with S |, as in (2.12).

Proof : A straightforward inspection of the graphical construction in Section 2.2.1
yields the existence of a solution. Uniqueness on nite geographic sgges is clear:
this follows in the same way as for the single-site case. Once we havelwposedness
for nite geographic spaces, we can show uniqueness f@ =  via approxima-
tion. The approximation via nite geographic spaces follows from thefact that the
occupation numbers of the sites are stochastically smaller than in te case of pure
random walks (seelLiggett and Spitzer (1981)). 1

Remark 2.8. Note that, instead of the singleton initial condition in Proposition 2.7
(and in the graphical construction of Section 2.2.1), we can use any other initial
condition in .
2.3. Duality relations. We next formulate and prove the duality relation between
the Cﬁ;*-process from Sectionl.4.4 and the spatial _-coalescent with non-local
coalescenc&! N) described so far. This follows a general pattern for all choices of
the geographic spaces in (2.2). We only give the proof for the caseG = .
Recall (2.1). The construction of the duality function H(; ) requires some
new ingredients. Forn 2 N and' 2 Cyp(E";R), consider the bivariate function

HM: P(E)C en ! R of the form
1
- IEI 0
X

(n) . ' Sy e El
H. (X, G;n): dUi u (1),U (2),...,U (n) » (237)

EP i=1 T
wherex = (x ) 26 2 P(E)®, Gn 2 en, b= 0cn) =] enj (cf. (2.9),
( )2y = L( en) (cf. (2.10) are the labels of the partition g, and (with a
slight abuse of notation) : [n]! [b] is the map from Remark 2.1. In words, the
functions in (2.37) assign the same type to individuals that belong to the same

famil)l/.:ll\lote that these functions form a family of functions on P (E)®,
HMW( en): P(E)®! Rj an 2 anin2N;' 2GC(E";R) ;  (2.38)

that separates points. The C—process with block resampling and the spatial -
coalescent with non-local coalescence are mutuallgual w.r.t. the duality function
H(; ) given by

HG (G en))= HMOG en); x2E=P(E)® (5 on)2E%  (2.39)
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with E°= [n2 No (Co(E™;R) Gin )-
We proceed with the following observation. Recall the de nition of duality in
the paragraph including (2.1).

Remark 2.9. () Let X andY be two processes that are dual w.r.t. a continuous
and bounded duality function H( ; ). Assume that X and Y are solutions
to martingale problems corresponding to operatorsL x , respectively, Ly .
Then the generator relation

[Lx (H(;Yo)l(Xo) =[Ly (H(Xo; NDI(Yo); forall (Xo;Yo) 2E E % (2.40)

is equivalent to the duality relation ( 2.1) (see, e.g.,Ethier and Kurtz (1986
Section 4.4)).

(b) Item (a) gives the duality function H(; ) forallt Oandn 2 N, as is
proved in Proposition 2.10 below. In particular, the following holds

O O L]
E HM(X @ (1);c®(0)jn) = E HM(X®(0);C® (t)jn) ; (2.41)

with X (®) as below Proposition1.4 and C{®) as in De nition 2.5.

In our context, we have to verify the following relation for the linear operators
in the martingale problem.

Proposition 2.10. [Operator level duality] For any of the geographic spaces
G= N,G=10::;;N 1gf:;K 2 N and G = f0; g the following holds. For all
n2 N, for all H" asin (2.37), all x 2P (E)®, and all ¢ 2 g,

1 1 1] 1
LOHOC i) (9= LO HM( ) (o) (242)

Proof : We check the statement forG = . In this case,L(®) is as in (1.35) and
L(®) is asin (2.34). The proof for the other choices ofG is left to the reader.

The claim follows from a straightforward inspection of (1.341.38 and (2.3
2.36), respectively. Indeed, duality of the migration operators in (1.37) and (2.35
is evident:

] 1 ] 1
LigH™M (G ein) (0= Ligg HM G jn) (o) (2.43)

Let us check the duality of the resampling and coalescence opera®in (1.39
and (2.36). Itis enough to assume thatdy = 0, since it is well-known that Fleming-
Viot operator LY (cf. (1.18)) is dual with the generator of the Kingman coalescent
which is the special case of_(cggl (cf. (2.29) with ¢ = do o.

By a standard approximation argument, it is enough to ccn_sidpr the duality
test functions in (2.37) of the product form, i.e., with ' (u) = 2, " i(u;), where
u=(u)L, 2E" and"'; 2 Cp(E). Using (1.38{( 1.39, (2.14), (2.33 and simple
algebra, forx 2 P(E)® and ¢ 2 ¢ we can rewrite the action of the resampling
operator on the duality test function as follows (where for ease ofnhotation we
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assume that ¢ 2 Sg (cf. (2.12), i.e., ¢ has the singleton family structure)

1 1
L HM (G Gin) (x)
1

11 1
= N (dr)N K x (da)
2G k2 No (0:1] 2Bk( )
L] [ — 51
b& 1 I 1 | 1
L na;B k( )(X) ; I ] X n*l(i); I ] L
i=1 O g ()= i=1 itoG)=i
.
= N 2 (@dr)N- K x (da)
26 kg [0:1] 2B () E
1 101 1
11 1 I 1 I 1 I 1
T Ny ks Y ra; Y
310N 218 )n3 itoG)=i 2 itoG)=i
JJ]
1 (=
oD 1
T[fl(i)’ ]
i=1 i (=i
o, o,
= N b( );id]
2G k2 Ng J
jiJj 2
L1 ™ 1 101 1
[ I—  — I 10 11 I 1
CN-IK N K X ; ' X ; '
2B )i2[b( )nJ 2B () i ()= i2 jto()=i
by 1 5
A ] 1
Xg o1y i L1 (2.44)
i=1 itoG)=i

On the other hand, according to (2.36) (also recall (2.17), (2.29), we have

S ] -t 4,
Lco::ll H'(n)(X; Jn) ( G): N b(k);jjj
2 N k2Ng J [b( )I;
iJj 2
—1
I 1 I 1 —1
L1 N K N ki N K
12B 22Bk( ) b 2B k()
I_iJI 1 111 1
I 1 I 1 —1
L1 LT j X i @1 1oy i
i2[b( )InJ joo()=i jio()23
1 511
o P 1
Xg, 1) L = (2.45)
i=1 joo()=i

Comparing (2.45 with ( 2.44), we get the claim. 1
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2.4. The long-time behaviour of the spatial -coalescent with non-local coalescence.
We next investigate the long-time behaviour of the spatial__-coalescent with non-
local coalescence. Subsequently, the duality relation allows us to énslate results
on the long-time behaviour of the spatial _-coalescent with non-local coalescence
into results on the long-time behaviour of the Cﬁ*-process.

2.4.1. The behaviour ast ! 1 . In this section, we prove the existence and unique-
ness of a limiting state for the spatial _-coalescent with non-local coalescence as
t!l

Proposition 2.11. [Limiting state] Start the C{ ™) -process from (2.32) in a
labelled partition f( i; i)g; , wheref ;gl,; form a partition of N andf ;gl, are
the corresponding labels. Ifx is a translation-invariant shift-ergodic random state

with mean 2 P (E), then
(| 1

1
L HMW(x; C M) 2L HM A ™M@ 8n 2 N; (2.46)
where G5 ™ is as in Section2.2.1and H" as in (2.37).

Proof : We rst observe that jd] N)(t)j is monotone non-increasing, so that there
exists a limit for the number of partition elements. This implies that the partition
structure converges a.s. to a limit partition, which we call C{ ~") (1) 2 N
(cf. (2.7)). We must prove that the locations result in an e ective averaging of the
con guration X, so that we can replace the;d1 N)(t)j-locations by any tuple for the
(constant) con guration _. This is a standard argument (see, e.g., the proof of the
ergodic theorem for the voter model inLiggett (19859). 1

Recall the de nition of the spatial -coalescent with immigration-em igration
introduced in Section 2.1.3

Corollary 2.12. [Limiting state of the -coalescent with immigration-

emigration] The analogous to(2.46) statement holds if we substitutec, ™ with
the the -coalescent with immigration-emigration (see Section2.1.3), i.e., the spa-
tial -coalescentC®)'°® with geographic spaceG = f0; g and migration kernel
a0; )=c a( ;0)=0.
1 1 (|
L HMWEGCi®ore) =) L HO((yix );GI%907¢(L)) 8y 2P (E)in2 N;
(2.47)
where H™ as in (2.37) and x = (x0;x ) 2 P (E)2. Note that the right hand side
of (2.47) does not depend ory.

2.4.2. The dichotomy: single ancestor versus multiple ancestorsA key question
is whether the C{ ~)-process from @.32) converges to a single labelled partition
element ast ! 1  with probability one. To answer this question, we have to
investigate whether two tagged partition elements coalesce with pwbability one or
not. Recall that, by the projective property of the coalescent, we may focus on
the subsystem of just two dual individuals, because this translate into the same
dichotomy for any ¢, ™ -coalescent and hence for the entrance law starting from
countably many individuals. However, there is additional reshu ing at all higher
levels, which is triggered by a corresponding block-coalescence eteTherefore, we
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consider two coalescing random walksZ}; Z2); oon  with migration coe cients
(ck(N))kz2n, (cf. (1.62) and coalescence at rates (k)k2n,- Consider the time-t
accumulated hazard for coalescencef this pair:
1 k L 1.2 I:I.
Hn (t) = kN 1 d(Z;;2%) k ds: (2.48)
k2 No 0
Here, the rate N 2k to choose ak-block is multiplied by N because all partition
elements in that block can trigger a coalescence event. This explainthe factor
N kin (2.49. Let
Hn t||i1m Hy (1): (2.49)

We have coalescence of the random walks (= common ancestor) witprobability
one, whenHy = 1 a.s., but separation of the random walks (= di erent ancestors)
with positive probability, when Hy < 1 a.s.

Lemma 2.13. [Zero-one law] Hy =1 as.ifand only if Hy = E[Hy] = 1.
Moreover, under the weak regularity condition in (1.68) the latter is equivalent to

= =1 (2.50)

k2 No C 1=0

, 1 ,
Proof : Write Hn =, , WkL (k) with

1
wi(N) = (NI L(k) = 1fd(z2;z22) = kgds: (2.51)
ik 0
Note that wg(N) < 1 because of condition {.32). We want to show that Hy = 1
implies Hy = 1 (the reverse is immediate). Recall from Sectionl.5.3that P;( ;)
denotes the timei transition kernel of the hierarchical random walk on | with
migration coe cients ( ¢k (N))kan, given by (1.62). In the computations below, we
pretend that the coe cients are ( c)k2n,- Afterwards, we can replacecg by ¢ (N).
Note that (2! Z2)s o has the same law as a single copyZ¢)s o of the hierar-
chical random V\@ﬂ( but moving at twice the speed. Thus, in law, we mayreplace
L(k) by L(k)= , 1fj Zasj = kgds.

Step 1. As shown inDawson et al. (2005 Eg. (3.1.5)), for the hierarchical random
walk with jump rate 1,

exp[ hj (N)t]

1
PO )= Ki(N) t 0 2 yijj=k2No (252

ik N
where 1
ES= j =k=0;
Kik (N) = % j=k>0; jk 2No; (2.53)
1; otherwise,
and
N — _
hj(N) = mr]‘ (N)+ ri(N); j2N; (2.54)
i>j
where, for the hierarchical random walk de ned in Section1.4.2,
1 Irei‘ll

ri(N)=

D(N)i | N2 T j 2N; (2.55)
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—1
with D(N) the normalising constant such that i2nTi (N)=1.
The random walk in Dawson et al.(2005 has jump rate 1, while our hierarchical
random walk has jump rate

1 1
N O E e T P (LU e =

N2 1
2 N k2N JS
(—— 1 1 1 (2.56)
= — 1 —
1
mzNon N

Therefore, after computing Hy with the help of the above formulas, we must divide
Hn by D (N) to get the correct expression.
Note that (2.542.55 simplify considerably whenN !'1 | namely,

NN N gaaRrT PN (2.57)

while also (2.51) and (2.56) simplify to

Wi (N) D(N) : (2.58)

k.
Nk’
Moreover, because limsup; %Iogck < logN and limsup,,; %Iog k < logN
(see the footnotes in Sections..4. 1.4.3), the following holds:

For every N 2 Nnf1g the quantities h; (N), r;(N), D(N), wg(N) and D (N)
are bounded from above and below by positive nite constants timesheir
N 'l asymptotics uniformly in the indices j; k:

(2.59)
Step 2. For M 2 Ny, de ne the truncated hazard
(M)
Hy' W = Wi (N)L(K): (2.60)

k=0

For a non-negative random variable V with a nite second moment, Cauchy-
Schwarz gives

PfV >0g (E[V])?=E[V?]: (2.61)
Therefore,
1 iy o T, - 1
P HM EHM >0 EHM EHM)? : (2.62)

To compute the quotient in the right-hand side of (2.62), we write

0O y— N
EHM = w(N) | UsPfiZxg = kg
k=0
(2.63)
=1 w(N) G(0; )

k=0 2@8(0)
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and

. L4 04
E HM = wi (N)w; (N) 0 ds 0 dtPfj Zosj = kgPfj Z2tj = g
k;l =0

N 1
=3 w(N)w(N) G(0; )G(0; ° )
kil =0 2 @B(0)
2 @&(0)
(2.64)
Here, G is the Green function of the hierarchical random walk, which by .52
equals

0 )= Gi(N) K (N) Ny —
G(0; )= Gk(N); 2 Nn:jj=k2Ng; Gk(N) = Kix (N) ———:
. ! h; (N)N
(2.65)
Let
— K=0: e K=0:
NKI= b ks hoo NK= S en poo (266)

denote the number of sites at distancek from the origin, respectively, at distance
k from both the origin and a given site itself at distance k from the origin. A
straightforward counting argument shows that

| E—
rhs.(263= 3  w(N)N[K]Gk(N);
k=0

N1
rhs.(2.64= 1 wi(N)wi (N)NKIN[ITGE |(N)
ki1 =0 (2.67)
J m— =) ]
+ 3 Wi(N)NK]Gk(N) Nkl N[k] Gk(N)
k=0
) Ea— L1
+ N[mIGm(N) :

m=0

For N '1 , substituting (2.53) and (2.57) into ( 2.65) and the resulting expression
into (2.67), we get

[ E— —
E HM K — (2.68)
k=0 m ka
d
an — -
" PR 1 41
E HM™ 2 R i R s (2.69)
k;l =0 m k ICm

where we use that the dominant term in the sum de ning Gx(N) in (2.65) is the
one with j = k+1, and we also use that | = % k asin (1.57). Thus, for every
M, the right-hand side of (2.62) is bounded from below by a number that tends to

% asN !'1 . Together with the observation made below ¢.5742.58), it therefore
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follows that there exists a > 0 independent ofM and N such that
—d .y o |3

PHM EHM >0 (2.70)
Step 3.
SinceH,ﬁ,M) Hy andHy =1limyng H,(JVI ), it follows from (2.70) that
C1 1
P Hy E[HN]> O : (2.71)
Thus, E[Hy]= 1 implies PfHy = 1g . But the event fHy = 1g lies in the

tail-sigma-algebra of the hierarchical random walk, which is trivial, and therefore
this event has probability O or 1. Consequently,PfHy = 1g =1.

Step 4. Finally, replacing ¢k by o(N) = o+ N ! 41 (recall (1.62), noting that
(2.59 continues to apply, and using (.68 with M = 1 , we get that PfHy =
1g =1 if and only if

C—w—1 4

K ——— =1} (2.72)
k2Ne m ok om Yt N % me
which is the same as
1 4 —
K2Ny K K+l 1o

Under the weak regularity condition in (1.68) the latter is equivalent to (2.50. [1

3. Well-posedness of martingale problems

Our task in this section is to prove Propositions1.1{ 1.4, i.e., we have to show that
the martingale problem for the single-colony process, the McKealasov process,
the multi-colony process and the hierarchically interacting Canningsprocess are all
well-posed (= have a unique solution). The line of argument is the saméor all. In
Section 3.1, we make some preparatory observations. In Sectio3.2, we give the
proofs.

3.1. Preparation. We rst show that the duality relation and the characterisation
of the dual process via a martingale problem allow us to prove theexistenceof a
solution to the martingale problem that is strong Markov and has @dhag paths. To
this end, observe that via the dual process we can specify a distriliion for every
time t and every initial state, since the dual is a unique solution of its martirgale
problem (being a projective limit of a Markov jump process de ned for all times
t  0). Since the family fH(;Yo): Yo 2 E% (cf. (2.39) separates points, this
uniquely de nes a family of transition kernels (P:s ): s o satisfying the Kolmogorov
equations, and hence de nes uniquely a Markov process. By consiction, this
Markov process solves the martingale problem, provided we can vidy the necessary
path regularity.

We need to have adhg paths to obtain an admissible solution to the martin-
gale problem. For nite geographic space this follows from the theoy of Feller
semigroups (seecthier and Kurtz (1986 Chapter 4)). For , we consider the
exhausting sequenceR; (0));2n, and use the standard tightness criteria for jump
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processes to obtain a weak limit point solving the martingale problem. he essen-
tial step is to control the e ect on a single component of the ow of individuals in
and out of B (0) in nite time as j !'1

It is standard to get uniquenessof the solution from the existence of the dual
process (see, e.gEtheridge (200G Section 1.6) orEthier and Kurtz (1986 Propo-
sition 4.4.7 and Theorem 4.4.11)). Again, this works for all the choicesof G in
(2.2), with a little extra e ort when G = .

3.2. Proofs of well-posednessin this section, we prove Propositions1.1{1.4. We
follow the line of argument of Evans (1997 Theorem 4.1) and derive existence and
uniqueness of the spatial Cannings process from the existence thie corresponding
spatial Cannings-coalescent established in Sectio. The main tool is duality (cf.
Proposition 2.10respectively (2.41)). The proofs of Propositions 1.1{ 1.4 follow the
same pattern forG = f0;:::;N 19, G=f0;gandG= .

Proof of Propositions 1.1{1.4:
Well-posedness. First we show that there exists a Markov transition kernel Q

on P(E)® such that, forall * 2 Co(E";R), 2 n (cf. (2.7), X 2P (E)® and
t 0,
1

] ]
Qu(X; dXOHM(X% )= E HM(X; @) j )= (3.1)

where H" as in (2.37) and c® asin (2.20) resp. (2.32) depending on the choice
of G. Once (3.1) is established, the general theory of Markov processes implies ¢h
existence of aHunt-processwith the transition kernel Q; (see, e.g.Blumenthal and

Getoor (1968 Theorem 1.9.4)). This @adhg process is unique and coincides with
the processX (¢) from (1.8) resp. (1.20) resp. from below Proposition 1.4, since
(3.1) implies (2.41). There can be at most one process satisfying2(41), since the
family of duality functions H'(”)( ;) separates points onP (E)®.

Finally, the transition kernel Q; satisfying (3.1) exists as a solution of the Haus-
dor moment problem (3.1) and is Markov due to the Markov property of the
spatial coalescent on the right-hand side of §.1) (see Evans (1997, Theorem 4.1)
for details).

Feller property. To show that X (®) is a Feller process we use duality. It is enough
to show that, for any F 2 F an appropriate test-function and anyt 0, the map
(| —
P(EY*3x7'E FX©® ) jXx©®0)=x 2R (3.2)

is continuous. In (3.2), instead of the test functions F() 2 F , it is enough to take

the duality test functions H'(n)( ; &n) from (2.37). The duality in ( 2.41) implies
that

- O O ]
E HOXO(1); 6njn) i X@0)=x = E HMW(xCD®jn) ; t 0 (33)

Recall that we equip P(E)® with the topology of weak convergence. De nition
(2.37) readily implies that the right-hand side of (3.3) is continuous in Xx. 1
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4. Properties of the McKean-Vlasov process
with immigration-emigration

The purpose of this section is to show that theZ% -process with immigration-
emigration (cf. Section 1.3.3) is ergodic (Section4.1), to identify its equilibrium
distribution in terms of the dual (Section 4.3), and to calculate its rst and second
moment measure (Section4.4). The characterisation via the dual will allow us to
also show that the equilibrium depends continuously on the migration @mrameter

(Section 4.2), a key property that will be needed later on and for which we need
that the -coalescent is dust-free (recall (1.3)).

4.1. Equilibrium and ergodic theorem. The equiliborium = %% 2 P(P(E)) is
the solution of the e%zi\tion
LS F =0; ' 2G(E"); n2N; (4.1)

where we recall (.15 1.18) for the form of F. and LS% .
Proposition 4.1. [Ergodicity] l:IFor eve%initial state Z%% (0) 2 P (E),
L z%% @) =) (4.2)

and the right-hand side is the unique equilibrium of the praess. The convergence
holds uniformly in the initial state.

Proof : We use the dual process, namely, the -coalescent with immigratism-emi-
gration (see Section?.1.3), to show that the expectation in the right-hand side of the
duality relation ( 2.41) converges. Indeed, we showed in2(46) in Proposition 2.11
and its Corollary 2.12 that the state of the duality function H(Xy; ), cf., (2.37),
applied to the dual process converges in law to a limiting random variake ast ! 1
The duality function viewed as a function of the rst argument generates a law-
determining family fH (; Co): Co 2 E% (E°as below ¢.39) and hence (.46) proves
convergence.

It remains to show that the limit is independent of the initial state. In deed,
this is implied by the fact that if we start with nitely many partition elements,
then all partition elements eventually jump to the cemetery location fg where
all transition rates are zero and the state is . The latter implies that the limit
is unique. SinceP(E) is compact and the process is Feller, there must exist an
equilibrium, and this equilibrium must be equal to the t I'1  limit. 1

4.2. Continuity in the centre of the drift. We want to prove that
P(E)3 7' % 2P (P(E)) (4.3)

is uniformly continuous for suitably chosen metrics (in the weak topdogy on the
respective metrisable spaces). We will choose the metrics int(7/{ 4.8) below. Re-
call the de nition of the duality functions H from (2.3&2.39). Since the family
fH( ;Co): Co2E%is dense inC,(P(E);R), we can approximate any function in
Cp(P(E); R) by duality functions in the supremum norm. In fact, even the smaller

enough to prove uniform continuity for the duality function uniform ly in the family,
even with the additional restriction k' k; < 1. For this purpose, we analyse the
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limiting random variable for the corresponding dual as a function of in the limit
ast!l
If (CS" )t o denotes the spatial -coalescent with immigration-emigration start-

then H(;C ¢ )uniquely determines the McKean-Vlasov limitlaw % fort!1
Recall that we associate the distribution of types with the cemetery state. It is

clear that C§ = limy; C{ exists. The random variable C$ has partition
elements that are all located at the cemetery state.
Let N -
Pk = P JCyY j=kjCy =fflg;:::;fngg : (4.4)

Forall 2P(E)andall' 2 C,(E)with k' k; < 1,taking H- (_;(f1g;:::;fngg) =
h;" i" we have

(| _ (B I |
E H(;CS )jCy =ffig:::;fngg = Paxh;' ik (4.5)
k=1
From the right-hand side of (4.5), we read o that the family of functions
I 1 1

E H (,Cy )jCy =fflg;:::;fngg : n2 N is uniformly continuous in
(4.6)
On P(E) we choose the metric
o 0
pey(5 9 2 Kh o Oy 22P(E); (4.7)
k2N
wheref' 2 C(E): k 2 Ng with sup,,\K' kki < 1 separates points and therefore
generates the topology. OnP (P (E)), we choose the metric
PR = N o N
ppE) (XX 9 2 K "EfH (X X%ff 1g;:::;fngg)jl;
n2Nk2N (4.8)
X;X %2 P (P(E)):

Combining (4.6{4.8), we get the uniform continuity of (4.3).

4.3. Structure of the McKean-Vlasov equilibrium. In the case of the McKean-Vlasov
Fleming-Viot processes, the equilibrium %0 can be identi ed as an atomic mea-

sure of the form ,
CaE— 1
Wi 1 wW) (4.9)
i2N j=1
with (U;)ion i.id.  -distributed and (W;)i>n i.i.d. BETA(1 ; $)-distributed, inde-
pendently of each other (cf. Dawson et al. (1995). What we can say about the
equilibrium % 2

Proposition 4.2. [Towards a representation for McKean-Via sov equilib-
rium] Let “% be the equilibrium of the procesZ “® = (Z%% (t)); o with re-
sampling constantd and resampling measure 2 M ¢ ([0; 1]). Assume that has
the dust-free property (recall (1.3)).
(a) The following decomposition holds:
1 1

1
=L Vi o (4.10)

i2N

cd;
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Here, (Vi)i2n and (U;)i2n are independent sequences of random variables
taking values |r|—[9_r]=i respectively, P(E). Moreover, (U;)iz2n is i.i.d. with

distribution , ,,Vi=1 as., and
) N
Vi=w @ W) (4.12)
j=1
where
(Wj)i2n (4.12)

is a sequence of0; 1]-valued random variables whose joint distribution is
uniquely determined by the moment measures of® (which can be ex-
pressed in terms of the dual coalescent process) and deperuis c; d and
(See Remark 4.3 below.)

(b) If 2M =f y: u2Egandc;d>0, then

0 % M)<u1 (4.13)
Proof :

(a) The distribution and the independence of (U;)i2n follow from the representa-
tion of the state at time t 2 [0;1 ] in terms of the entrance law of the -coalescent
starting from the partition into singletons: ff 1g;f2g;:::g. This representation is
a consequence of the duality relation in 2.41) and de Finetti's theorem, together
with the dust-free condition on in ( 1.3), which guarantees the existence of the
frequencies of the partition elements at timet. Indeed, every state, including the
equilibrium state, can be written as the limit of the empirical distributio n of the
coalescent entrance law starting from the partition ff 1g;f 2g;:::g at site 1, where
we assign to each dual individual the type of its partition element at time 1 , drawn
independently from , the cemetery state. Here, we use the fact that if we condi-
tion individuals not to coalesce with a given individual, respectively, its subsequent
partition element, then the process is again a coalescent for the safler (random)
subpopulation without that individual, respectively, its subsequent partition ele-
ment.

The (V) 2~ are the relative frequencies of the partition elements ordered acrd-
ing to their smallest element. By construction, (V;)i2n and (U;)i2 n are independent.

In principle, via the duality we can express the moments in equilibrium

E co [T 17] (4.14)

tion jumps into the cemetery state. The latter in turn can be calculated in terms
of

c;d; k@ )" xdr): (4.15)
These relations uniquely determine the distribution of the atom sizeswhich in turn
uniquely determines the marginal distribution of the W;'s via (4.11).

(b) First consider the case = . Let us verify that, for c > Oand 2 M,
there can be no mass ilM . Indeed, if there would be an atom somewhere iM ,
then there would also be an atom inM after we merge types into a nite type set.
However, in the latter situation the W,'s are BETA-distributed, hence do not have
an atom at 0 or 1, and so also the law of theV;'s has no atom at O or 1. This
immediately gives the claim, because it means that % (M) = 0.
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Next, consider the case 6 . Then new types keep on coming in. We need to
prove that the event that cif %9 (the limit of the dual coalescent) contains more
than one partition element has a positive probability. But this is obviously true
whenc;d > 0. —1

Remark 4.3. Itis well known (cf. Dawson et al.(1999) thatif = ¢ (the McKean-

Vlasov Fleming-Viot process), then theW;'s are i.i.d. with distribution BETA(1 ; ).

It remains an open problem to identify the law of the W;'s for the general Cannings
resampling as function of the ingredients in ¢.15). We note that if the W;'s happen
to be independent, thenW, has distribution BETA(1 ;i + )forsome 2 [0;1]

and 2 [0;1 ) (seePitman (2006 Theorem 3.4)).

4.4. First and second moment measure.We can identify the rst and second mo-
ments of the equilibrium explicitly, and we can use the outcome to calclate the

Recall the de nition of E ,[Var ( )] from (1.56) and of Vary( ) from (1.54). Recall
= ([0;1]).

Proposition 4.4. [Variance] For every 2 Cy(E),
E ca [Var ()] = o @) Zixh N S ():
6 S ’ ’ T 2c+ +2d '
(4.16)

Proof : We calculate the expectation ofi;x i,' 2 C,(E), andH;x 2i,' 2 Cy(E?),

in equilibrium.
c;d

It follows from (4.1) with = ©% that
n=1;" 2Cy(E): 0=c dx)h; ( x)i; (4.17)
] P(E)
ie., P(E) (dx)h;x i = H; i. Itfurther follows that, for n=2;"' 2 Cy(E?),
[
0= 2 dx) Gx 2
RE)
+cC (dx)[h; xi + H;x i
fhal Ll L1 (418)
1 11 :
+2d (dx) x(da) 5 ,? Tx 2
E E
&) . - .
* () x@a) 5 (a %) *
P(E) E

We can rewrite (4.18) as
@dx) x@da) 5 (a x) ?

P (E) E
- ===
= (dx) x(da) 5, X
P(E) E
= SRS =
= 2 dx) Tx 2 dx)[H; xi + H;x il
54 o) (dx) o) (dx)[ ]

(4.19)
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From this, we see that

, ]
(dx) "x
PE) i T

+2d c :

2c+ +2d  +2d pg (@)[H, X!
1
_ (| 1 o ,0
+ H;x il+ (dx) x(da) ; 4
P(E) E

1
: +2d 2c [J 2|:|+

T 2c+ +2d  +2d £

-
da) 5 L%
(4.20)

where we use 4.17) in the last line. Substituting this back into ( 4.19) and using
(4.17) once more, we get
1

-
(dx) Qx(du; dv) " (u;v)
P(E) E E
- R R e s B e
= (dx) x(da) ' 4 " X
P(E) E
= 1
(| [ - (|
= i (dx) "X 2 " 2 (421)
+2d P(E%
2c ([ s [ F
" 2c+ +2d : (da) % a ;
2c

T 26+ +2d ¢ . Q (du;dv)' (u;Vv):

Pick ' = in (4.21) to get the claim. 1

For = ([0 ;1])=0, (4.16) is the same asDawson et al. (1995 Eq. (2.5)).

Corollary 4.5. [Asymptotic variance of entrance law] For' 2 Cy(E; R), the
interaction chain (cf., Section 1.5.2) satis es

j|!ilm EL(MSJ))[Var (') =0 (respectively, > 0); (4.22)

if oMk = 1 (respectively, ., mk < 1) with mg denedin (1.57) and dg
in (1.49).

Proof : From (4.16), we have the formula

_— 2c 'y
Hence, we have&hle relation (recall {.49) for the de nition of Ky(; dx))
2«
Kk(;dx)Varg(' )= ——Var (' ); 4.24
e, KK BOVaN () = o S Var () (4.24)

which says that in one step of the interaction chain the variance is mdi ed by the
factor
2Ck 1

Mk 2c + k+2dk:1+mk:

(4.25)
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Iteration gives

1 [ 1
 — =,
EL(Méj))[Var( )] = ng Var (")= T m, Var (' ): (4.26)
k=0 k=0
Therefore, taking logarithms, we see that ¢.22) is equivalent to
1
my = 1 (respectively, < 1 ): (4.27)
k2 No

L1

We next prove a result that is similar to, but more involved than, Dawson et al.
(1995, Eq. (6.12). This resultis necessary for the proof of Theoreni..160on di usive
clustering.

Proposition 4.6. [Variance of the integral against a test fu nction] For
every 2Cp(E),j2Nand0 k j+1,
,, ]
Var . m, (h; )= E a,h; 7] E ,m,h; i]
LMYy L(MZ) LMy
“ Cit1 [
i 1,0 K (4.28)
= Vi .
¢ Tem ar ()
i=k I=i+1

Proof : The proof uses the following two ingredients. Combining ¢.16) and (4.25),
we have

E Sic i «[Var ()] = T m, Var (): (4.29)
The rst and the third line of ( 4.21) yield
: +2d
Var c.a.. «(h; i) = E o [Var ()] (4.30)
0 2c 0
Together with (4.16) and (1.45), we therefore obtain
Lo Kk + 20k _ Ok _
Val’ gk-dk- k(ha |)— m r ( )— G Val‘ ( ) (431)
Fix j 2 N. The proof follows by downward induction over 0 k j +1. The
initial case k = j + 1 is obvious becauseM (‘()j a = by (1.48). Let us therefore
assume that the claim holds fork + 1. By ( 1.481.49),
. Lo e
var, g, ()= ElﬂM(_j&)[h; ] EIZLI(MS&)[h; 1]
- S ) TR ) 432)
P(E)

: i k(d hyg B2 h ;P2
P(E)

Next, use (4.31) to rewrite the inside integral as
1
Ckdk; Kk L2 L2y — .2 di+1 .
d Whk; 1°=E qoae w(h; 19)= hysr 07+ Tvar wr ()

p (E ) k+1 Opr1
(4.33)
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Substitute this back into (4.32), to obtain

Var ) (h, i)—Var ) (h, I)
L(M L(M
(d_k) M By
k+1 ciidj; j Cij—1;d5—1; j—
+ jyjyjd_ {I’Jl’Jld'
C  P(E) . @) pE) ! @i 0 (4.34)

Ci1 0K+l ) ke .
o ) Var ., ()

P(E)
The rst term is given by the induction hypothesis. For the second term we use
(4.29)I:t|o see that the inside integral equals

Ci+l 3Ok 3 ke (d k+l)Var ot ( ): E Cre1 Oki1 + kel (Var ( ))

k+2

P(E) Ok+2
4.35
S Var ., (): ( )
- 1+ Myt K+2 .
Iteration of this reasoning for the second term in ¢.34) leads to
. S\ — . . dk+1 I:Il
VarL(M(_,-l)() (h; i)=Var L, (h; i)+ G . lrm Var ()
- %l ; y CCL]
= hE o Var () (4.36)
i=ke1 O =i m
d 1
4 Okl var ( ):
O ey 1T M
which proves the claim. 1
If = «k(0;1]) =0, k 2 Np, (4.28) reduces to Dawson et al. (1995 Egq.
(6.12)). Indeed, in that casedi+1 |-, 75 iS equal todix1 . (Note the typo in

Dawson et al. (1995 Eq. (6.12)): dx should be replaced bydy+1 .)

Remark 4.7. The results in this section can alternatively be inferred from the long
time behaviour of the spatial -coalescent with G = f0; g.

5. Strategy of the proof of the main scaling theorem

The proof of Theorem 1.5 will be carried out in Sections 6{ 8. In this section we
explain the main line of the argument.

5.1. General scheme and three main stepsin Dawson et al. (1999, a general
scheme was developed to derive the scaling behaviour of space-tirnkck averages
as in (1.44) for hierarchically interacting Fleming-Viot processes, with the interac-
tion coming from migration, i.e., a system similar to ours but without -Cannings
block resampling (so for = ¢, which results in di usion processes rather than
jump processes). Nevertheless, this scheme is widely applicable amdlicates what
estimates have to be established in a concrete model (with methodthat may be
speci ¢ to that model).

For our model, the di culty sits in the fact that di usions are replaced byjump
processes even in the many-individuals-per-site limit. Below we explain how we
can use the special properties of the dual process derived in Seat 2 to deal with
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this di culty. In Sections 6{8 the various steps will be carried out in detail to prove
our scaling result in Theorem1.5. In these sections, we focus on the new features
coming from the -Cannings block resampling. The re ned multi-scale result in
Theorem 1.6 will be proved in Section9. The line of argument can be largely based
on the work in Dawson et al. (1995 Section 4), where it was developed in detail
for Fleming-Viot. No new ideas are needed for the Cannings proces®nly a new
moment calculation is required.

The analysis in Sections6-8 proceeds in three main steps:

Show that for the mean- eld system from Section1.3.2, i.e., G = Gn:1 =
f0;1;:::;N  1g, in the limit as N ! 1 we obtain for single sites on
time scalet independent McKean-Vlasov processes (recall Sectioh.3.3),
and for block averages on time scaleNt Fleming-Viot processes with a
resampling constantd; corresponding to o and cy. With an additional
1-block resampling at rate N 2 there is no e ect on time scalet, and so
on time scaleNt we obtain aC %rocess with [=1 d; o+ ;. This is done
in Section 6.
Consider theCEj——process from Sectiorl.4 . 4restricted to Gn.x as in (1.42).
More precisely, study its components and itsk-block averages (.43 for
1 k j<K ontime scalesN! + tN K. This is done in Section?7.
Treat the (j; k) renormalised systems for1 k j<K via an approxima-
tion of the Cﬁ*—process on y by the process onGn.x from the previous
step, in the limitas N !'1  and on time scales at mostNK t for a xed
but otherwise arbitrary K 2 N. This is done in Section8.

The three steps above are carried out following the scheme of préaeveloped
in Dawson et al. (1999. What is new for jump processes? We are dealing with
sequences of measure-valued processés= ( Xt); o, and the key di erence is that
now semi-martingales arising from functionals of the process of théorm hX;fi"
with f 2 Cy(E) are no longer controlled just by the compensator and the in-
creasing processof the linear functional hX¢;fi. This is dierent from the case of
di usions, where linear and quadratic functions hX;fi and hX;fi? in a setF of
test-functions su ce to establish both tightness in path spaceand convergence of
nite-dimensional distributions (f.d.d.s) .

The new ingredients are the analysis of the linear operators of the artingale
problem acting on all of F, and the extension of the tightness arguments necessary
to handle the jumps. We explain the basic structure of the argumehin the next
section.

5.2. Convergence criteria. In the proofs, we view the process withG = f0;1;
N 19, G = Gk = fO;L;::;N 1g% and G = | (cf. (1.21)) as em-
bedded in the process withG = N, G= NX andG= ; , where
1
1 = m NN (5.1)
M 2N

Note that ; is countable but that the \'s are not subgroups of ; . The
embedding requires us to embed the test functions and the geneti@s on \ into
those on ; . In the calculations in Sections6{8, we use this embedding without
writing it out formally.



94 Greven et al.

The claims we have to prove require us to show that certain sequees of proba-
bility measures (Pn)n2n 0N D([0; 1 ); E) converge to a speci ed limit P. Therefore
we have to show

tightness onD([0; 1 ); E),

convergence of the f.d.d.'s to the ones of the claimed limit.
What we will use to establish tightness (and later also f.d.d.-convergece) is that
the P,'s and P are solutions to martingale problems for measure-valued processe
We write X (N); X to denote realisations of these processes.

The states of our processes argrobability measures on the type space (recall
(1.43 and (1.46)). We use Jakubowski's criterion for measure-valued processes
(see Dawson (1993 Theorem 3.6.4)). This requires us to prove: (1) a compact
containment condition for the path, i.e., for all ;T > 0 there exists aK 1. compact
such that

PEXMN)(t) 2 Ky, forallt2[0;Tlg) 1 *; (5.2)

(2) tightness of evaluation processesK (X (N)(t))); o in path space for allF 2 D,

with D a dense subspace of continuous functions on type space. We willaugor D
the set

D = thX;f i"jf 2 Co(E;R); n2Ng Cu(P(E);R): (5.3)

In our setting, the compact containment condition in (1) is immediate, because
we have a compact type space and the probability measures on it far a compact set
in the weak topology. Condition (2) can be veri ed by using a criterion for tightness
by Kurtz (see Dawson (1993 Corollary 3.6.3)). (Alternatively, we could use a
tightness criterion by Jo e-Metivier Dawson (1993 Theorem 3.6.6 and Corollary
3.6.7).) In particular, we get that (2) follows from

supkLMFk, <1; 8F 2D: (5.4)
N2N
Thus, to conclude tightness, we have to calculatd.(N)F, for F 2 D, and bound it
in the supremum norm.

In order to show f.d.d.-convergence ofX (N) to the claimed limit X, we use
that these measure-valued processes arise as the solution to tife(N); D; ng)-
martingale problem, respectively, the (; D; x,)-martingale problem, where the
latter is well-posed. It then suces to show that, for a dense sub®t A of
Co((P(E)N;R) and all all F 2 A, the compensator terms satisfy:

Egl:u ! Le !
L LENE((XNy))ds =) L (LO®F)(Xs)ds (5.5)
0 t o N! 0 t 0
and the initial laws satisfy

LIXg"] =) LIXol (5.6)

This allows us to conclude that X (N) converges in f.d.d. toX , so that we get (2).

Thus, to prove the convergence as claimed, we have to verify5(4) and (5.5) for
each of the three processes mentioned in Sectiohl. For the proof of (5.5), it is
necessary to use thaluality relation, in order to establish certain properties of the
processX (N) in the limitas N !'1  that allow us to draw more information from
the generator calculation. This includes a proof that certain higherorder terms can
be discounted, or an argument that establishes independence avsu ciently large
distances.
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The averaging arguments we will use in the following sections are close spirit
to those in Kurtz (1992. In our case, however, the latter work does not apply
immediately, in particular, because we deal withN -dependent state space.

In summary, the role of Sections6{8 is to rst carry out some generator calcu-
lations, leading to the bound in (5.4), and then an asymptotic evaluation of the
resulting generator expressions, leading to a limiting form that unigiely determines
the limiting process in (5.5). The latter will be based on a direct calculation. In
view of the large time scales involved, we can use aaveraging principle for local
variables, based on thdocal equilibria dictated by the macroscopic slowly changing
variables. The properties of the limiting process are established in $#ion 4.

6. The mean- eld limit of C -processes

This section deals with the caseG = f0;1;:::;N 1g for a model that includes
mean- eld migration and Cannings reproduction at rate 1 with resampling measure
o in single colonies (cf. Section..3.2). We analyse the single components and the
block averages on time scale$, Nt and Nt + u with u 2 R. The key results
are formulated in Propositions 6.1 and 6.3 below. We will see that we can also
incorporate block resampling at rateN 2 ; and still get the same results.

The analysis for mean- eld interacting Fleming-Viot processes with dift is given
in detail in Dawson et al. (1995 Section 4). The reader unfamiliar with the ar-
guments involved is referred to this paper (see, in particular, the atline of the
abstract scheme inDawson et al. (1995 Section 4(b)(i), pp. 2314{2315)). In what
follows, we provide the main ideas again, and focus on the changesigsing from the
replacement of the Fleming-Viot process by the -Cannings resamping process,
i.e., the change from continuous to adhg semi-martingales.

We always start the process in a product state with law N with 2 P (P(E))
satisfying 1

X (dx)= 2P(E): (6.1)
P(E)
The system will be analysed in the limitasN !'1 in two steps: (1) component-
wise on time scalet (Section 6.1); (2) block-wise on time scaleNt and component-
wise on time scaleNt + u with u 2 R (Section 6.2).

6.1. Propagation of chaos: Single colonies and the McKean-Vlasoprocess. In
this section, we consider theC -mean- eld model from Section 1.3.2 with G =

f0;1;:::;N 1g. We prove propagation of chaos for the collection
(XS0 x M) o 6.2)
inthe limitas N !'1 , i.e., we prove asymptotic independence of the components

via duality as well as component-wise convergence to the McKeandgsov process
with parameters dp = 0;¢cp; o; (cf. (1.19).

Proposition 6.1. [McKean-Vlasov limit, propagation of cha os] Under as-
sumption (6.1), forany L 2 N xed,
. | I S i R
L xgV @XMy o ) Loz (6:3)

i=0

whereZifO;d"; ° solves the martingale problem for(L % °:F; ).
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Corollary 6.2. [McKean-Vlasov limit with block resampling ] Consider the
system above with an additional rateN 2 ; of block resampling per site. Then
(6.3) continues to hold.

N 2 N, are tight. We show this rst for components (Section 6.1.1). Then, we ver-
ify asymptotic independence (Section6.1.2), calculate explicitly the action of the
generator on the test functions in the martingale problem ofX (N) (Section 6.1.3),
and show, for functions depending on one component, uniform caergence to the
generator of the McKean-Vlasov operator with parameter = E[X(()N)(O)] (Sec-
tion 6.1.4).

6.1.1. Tightness on path space inN. Since we have a state in P (E))N equipped
with the product topology, it su ces to establish tightness for L-tuples of compo-
nents. We focus rst on one component K (t)); o and conclude later the result
for tuples of L-components.

Here, we use test functions as in1.9) that only depend on the rst L coordinates.
We further make use of the boundedness of the characteristicsf the generator as
a function of N when acting on a test function (recall (1.7), (1.12) and (1.14)).
Namely, we will see in Section6.1.3 (in (6.6), (6.16) and (6.17) below) that the
generatorL(N)F satis es

supkLMMFk; < 1; forall F2 C3(P(E);R): (6.4)
N 2N

As we outlined in Section5.2, this guarantees tightness.

6.1.2. Asymptotic independence.In this section, we use duality to prove the fac-
torisation of spatial mixed moments (including the case with non-locd coalescence
atrate N 2 ;). Namely, we show that for anyL 2 N, anyk 2 N, 2 [L],

1 (-
[ i o N = L

imsupfE 1 m™M@:fi 1 E mM™M)fi O:forallt O

N1 =0 -0

(6.5)
Similar to (6.5) decorrelation holds also for mixed moments at di erent time points.

Proof of (6.5): Obviously, no non-local coalescence takes place in the time interval
[0;T] in the limit as N ! 1 . We verify the remaining claim by showing that
any two partition elements of the dual process starting at di erent sites never
meet, so that for n partition elements none of the possible pairs will ever meet.
Indeed, the probability for two random walks to meet is the waiting tim e for the
rate-2co random walk to hit 2 starting from 1. This waiting time is the sum of

a geometrically distributed number of jumps with parameter N !, each occurring
after an exp(2cy)-distributed waiting time. By explicit calculation, the probability

for this event to occur before timet is O(N 1), which gives the claim. 1

6.1.3. Generator convergence.In order to show the convergence of. (N)F, we in-
vestigate the migration and the resampling part separately.
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Migration part. Recall from (1.12) that the migration operator for the geo-
graphic spaceG = Gy.1 = f0;1;:::;N  1gis
(N) _ % @Rx), ..
(Limig F)(X) = N E(x X )(da) a@x [ al; (6.6)

7 26N,

whereF 2F  C,(P(E)V;R), with F the algebra of functions of the form (L.9).
We rewrite (6.6) as

I DI]_ I 1 @F(’X)
(N) —
(Lmig F)(X) = co e N . (x x)(da) @x [ a]
N,1 N,1 (6.7)
@KXx)
= d als
o U @Gl

O

—1
wherey = N 1 "_“x =N ! ,5 x denotes the block average. We will
N.1

show that, inthe limit N !'1 | (Lfn"i'g)F)(x) only depends on the mean type measure

of the initial state, i.e., it converges to
@Rx)
@x

—=h
(LF)(X) co ( x)da)
2No

[ al; (6.8)

where we use for this generator acting orC, (P (E))N; R) the same notation we used
for the McKean-Vlasov process with immigration-emigration onP (E) (cf. (1.17)).
Furthermore, we show that

7' L°F 2 C,(P(E);R) is continuous for all 2 P (E): (6.9)
To show the convergence, de ne
L1 1 L1
B = x2(P(E)N: N x ! (P(ENN: (6.10)
2Gn1 N1
and —
B= B : (6.11)
2P (E)

If we have an i.i.d. initial law (respectively, an exchangeable law) with men
measure , then the processX (N) satis es

LIX M (0)1(Bjn) =1 (respectively, L[X ™) (t)(B jn)] =1): (6.12)

Indeed, as we will see in Sectiofs.2, the 1-block averageY;(T) (recall (1.43) evolves

on time scaleNt. More precisely, (Y;(T)(tN )t o istightin path space and therefore
converges over a nite time horizon to the mean type measure of the initial state.
In a formula (the right-hand side means a constant path):

LICY Y O zorr] =) _LIOrzpm) (6.13)
Therefore, we have

JLOIFI(XiN)  (LEF)(X)] U0 forallx2B; (6.14)
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Hence, on the path space, by dominated convergence, we have

L1
ni (] —
LRI R pds 1, XM )dsEES) o 6.19)
&1 :
0 0 t 0

Resampling part.  The action of the resampling term on each component (recall
(1.14)) does not depend onN and hence we obtain, by the law of large numbers
for the marking operation (recall that F as in (1.9) depends on nitely many coor-
dinates only)

ILAOF)(Xin) (L °F)j 1, 0 forallx2 (P(E)Y);  (6.16)
where
1 I
(L °F)(x) odr)  x (da) F xp;::5;x 15(1 )X +7r g
2N, [0 E
[ (6.17)
X 415X 1 F(X) ¢

Again, we use for this generator acting orCy, (P (E))"; R) the same notation we used
for the McKean-Vlasov process with immigration-emigration onP (E) (cf. (1.17)).

6.1.4. Convergence to the McKean-Vlasov processin this section, we nally show
the convergence of the mean- eld C-process (see Sectiori.3.2) to the McKean-
Vlasov process (see Sectiofr.3.3) which was claimed in Proposition 6.1.
In what follows, we x 2 Ng and let
L] [ R
G(x )= X "du)' (= ux " ; n2N;'" 2 C,(E";R): (6.18)
Erl

We know that (X (N )(t)) 2N, IS tight and that all weak limit points are systems of
independent random processes (i.e, that propagation of chaos his). It remains to
identify the unique marginal law.

Let the initial condition ( x (¢ )(0)) 2N, be ii.d. P(E)-valued random variables
with mean . Then each single component converges and the limiting coordinate

process has generator (recall1(17))
1

L0 o) = (- x)da) SR
= ) - —(6.19)
+ odr) x(da) G r)x +r 4 G(x) ;
[0;1] E

where 2 P (E) is the initial mean measure. Indeed, we may now reason as in
Dawson (1993 second part of Section 2.9). Tightness of the processeX (N)(t)); o
was shown in Section6.1.1. Fix 2 Ng and consider a convergent subsequence
X MN(t)); o, k 2 N. We claim that the limiting process is the unique solution

to the well-posed martingale problem with corresponding generatorLC";O; ° and
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initial distribution L [X (0)]. Recall from Section 6.1.3 that, for all test functions

F2F,
- @E\ ]
L FEL )+ Loy E o nas TS LR o (xt (g)as ]
0 t 0 0 t 0
(6.20)

Hence, all weak limit points of X ) solve the L% °-martingale problem of
Section 1.3.3  The right-hand side of (6.20) is the compensator of a well-posed
martingale problem (recall Proposition 1.2), and hence we have convergence (3).

6.2. The mean- eld nite-system scheme. In this section, we verify the mean- eld
\ nite system scheme" for the C -process, i.e., we considet. + 1 tagged sites

fXéN)(t);:::;XEN)(t)g ing as in Section1.3.2 and the corresponding block
averageY M(t)= N * T, X N (t). We prove:

convergence of Y(N)(Nt)); o to the Fleming-Viot diusion

Y (t) = z%92%t) with parameter d; = se— and initial state  (cf. Sec-

tion 1.3.3and recall (1.45 with dy = 0);

equilibrium  McKean-Vlasov process with immigration-emigration
(ZC?Q?"; °(u))y o starting from distribution C?g;j"; ° (recall (4.1)) with
(t) = Y(t) (recall that dy = 0).

Proposition 6.3. [Mean- eld nite system scheme] For initial laws with i.i.d.
initial con guration and mean measure
LICYMI(ND)e o] 2)  LIZPO(t)e o] (6.21)
with d; = 2§§+°0. Moreover, for everyu2 R andL 2 N,
) - T e )
LIXT (Nt + u)) =00 ]Nzlz Pt (d O) cyfor o
P(E) (6.22)

with Py = L[Z%901)]:

Corollary 6.4. [Mean-eld nite system scheme with 1-block resam-
pling] Consider the model above with additional block resamplingtaate N 2 ;.
Then, in the right-hand side of (6.21), Z%9° must be replaced byz %* *, and
similarly in the de nition of Py in (6.22).

The proof of the mean- eld nite system scheme follows the abstrat argument
developed in Dawson et al. (1995. Namely, we rst establish tightness of the
sequence of processe¥ (N)(Nt)); o, N 2 N, which can be done as in Sectiori.1.1

A representation for the generator of the process is found in Séions 6.2.1{6.2.2
below. With the help of the idea of local equilibria based on the ergodicteorems
of Section4, we obtain rst ( 6.22) and then (6.21) in Section 6.2.4.

In Sections6.2.1-6.2.2, we calculate the action of the generator of the martingale
problem on the test functions induced by the functions necessaryo arrive at the
action of the generator of the limiting process. In Section5.2.4, we pass to the limit
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N 'l , where as in Section6.1, we have to use an averaging principle. However,
instead of a simple law of large numbers, this now is @ynamical averaging principle
with local equilibria for the single components necessary to obtain the expression
for the limiting block-average process.

By the de nition of the generator of a process,M *F = (M*F), o,

. N [
M = F(xt) F(xo) ds LOGF + LOVF (xs) (6.23)
0
is a martingale for all F, as in (6.18). The same holds withx replaced by the block
averagesy (by the de nition of y). Once again, we will investigate the migration
and the resampling operator separately, this time for the block aveage.

6.2.1. Migration. In this section, we consider functionsF y with F as in (6.19
and
y=N‘* X (6.24)
2GN,1

a block average (withGy.1 = f0;1;:::; N  1g). We will show below that Lfn"i'g)(F
y) = 0, so that migration has no e ect.
Recall (L(N)F)(x) as rewritten in (6.7). For the block averagesy, the migration

mig
operator can be calculated as follows. Sincg = y(x) and F(y) = (F y)(x) can
be seen as functions ok in the algebra F of functions in x of the form (6.18), we

have

(. — !
CRW= LWE » 0= o v xe)dE 20
PACINEY
— o (6.25)
Fory=N * ",5,, x thisyields
.
@r y)(x). ,_ @Ry) a
T[ al = @y N (6.26)
and hence -
(N) - @RYy) a _,.
(Lmig F)(Y) = 2Gmc@ E(y x )(da) @y N 0: (6.27)

6.2.2. From -Cannings to Fleming-Viot. Next, we evaluate the moment measures
of the average ¢.24) in the limitas N !'1  and show convergence of the terms to
the Fleming-Viot second order term.

Remark 6.5 (Notation for the rescaled generators) Given a generatorL of a Markov
process, we denote by.[K! (for k 2 N) the generator of the Markov process on time
scaleN*t. Evidently, this time speed-up simply amounts to multiplication of the
original generator L by NK.

We are interested in the action of the rescaled generato QUM on the functions
of the corresponding 1-block averagest(24).
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Lemma 6.6. [Generator convergence: resampling]
On time scale Nt, in the limitas N I'1

LPHm=

i
z @ x (a2 €FW)
; E

.
r( x + a);r( x + Q)]+ON 1

N Lo, o1 2 @y
(6.28)
Proof of Lemma 6.6: We rst rewrite F(y;) in terms of x;:
it -
Fiyo= Sy." = 'i'N x (t) 1
2GN,1
1 I | | 1 _
=N i Hx () o0 x ()i (6.29)
EZGﬁ’l ,,2(3E :
1 r 11 1 _
= _— L1 Lak (1) X, (t)i:
Nn
i=1 |ZGN1
Abbreviate
— 1 a8 I_;L_ﬁIZI . —1 L1
Flu n)(x) = x, du® v y@ymo= X, : (6.30)
EM iz i=1
Note that, in this notation, ; = ; fori 6 j is possible. Recall that &;): o has

generator L(N) and is the unique solution of the martingale problem 6.23. If we
use (6.29 in (6.23 with x replaced byy, then we obtain that (y;); ¢ solves the
martingale problem with generator

L1 1
1 | N I N [N S L1
(LEFY) = 7 L) RO (x) (6.31)
i=1 .2GN‘1

for the resampling part. Together with (1.14) this yields the expression

[ . .| L1
N) -1 1
(LEDF)(y) = NT o(dr) x (da)
i:l iZGN‘l ZGN,1 [0;1] E
..... [1(6.32)
FOI Wiorinx ai(L X + 1 aiX aiiiiiXn 1

We must analyse this expression in the limit asN !'1 . To do so, we collect the
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The contribution to (6.32) is zero. For 62 f1;:::; g this is obvious by the
de nition of F( 175 n)(x) in (6.30). Otherwise, we have
1 ] O
x (da) FO miypriinox (1 1)X 1 aiX 41010 0XN 1
]
(s n)(x)
1
= x (da)

X, ﬁ(l r)x +ra?:l X, hix | X

only change (unique)
position with i=

(6.33)

Case 2: jf 1;:::1; ngj n 2.

The contribution to ( 6.32) is of order N 2. Indeed, the contribution is bounded
from above by
—1 —1
1 r 1T 1 )
NN — Ll o ngiono2g 0CF = N 2 oCr; (6.34)
i=1 i2GN1

where Ce denotes a generic constant that depends of (as in (6.&?nly, and
thereby on' and n. Here we use (.39 and the fact that the sum 26, Yields

at most n non-zero summands by the de nition of F( :5 n)(x) in (6.30).
Case 3: jf 1;:::; ngj=n 1.

Thereexistl m;<m, nsuchthat n, = m, while allother ;1 i n,are
di erent. By t@asoning as in (6.33), we see that the only non-zero contribution
of the sum 2G6n, O the generator in (6.32) comes from the case where =
m, = m,. We therefore obtain

1 1
(N) L B
(Ltes’ F(Y) = NT L1 IIfoI 15 ngi=n 1g
i=1 iZGN‘l
n (dr) - (da)
1f m;= my*= 0 r X a
ey 1= m= g E (6.35)
..... ]
FOI Wioix (L X + 1 aiX aiiiiiXn 1
..... ]
FOi n)(x) +ON 2
Reasoning similarly to (6.34), we see that extending
1 1
C 11T 1 1
L Fagd i ngizn 19 Y = mg (6.36)
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in (6.35 to
1 1
I 1 1 1 I 1 I 1
1 s g L1 (6.37)
1 mi<mz n m;2GnN,1 i2f 1;:sngnfmy;mag i2GNt

only produces an additional error of orderN 2. Using this observation in (6.35),
we get

(LEF)Y)
1 [ —  —— -
= odr) X (da)
[0;1] E

1 mi<my n 2GNa

L1

= @ gt (@ Rty Y.
only change position my and position  m,

- —

o o frm v, H

] O only change position ~ m; and position  m,
+ON 2
(6.38)
Now use that
- - 1
da) rx + =0
X @) ny X Xl 2y Y
only change and position  m,
position  m, for my;m, xed
(6.39)
to obtain from (6.39), for F(y) = H;y "i, that
(LEF)(Y)
1 — Y —— -
= 55 o(dr)  x (da)
1 mi<m, n ZGN,l [0’1] E I:I
Y, (6 X 2 W X by Y
only change position my and positon  m,
L1 .0
+ON ?
1 1
= N2 o(dr) _x (da)
2Gn.1 [0;1] E
1 @F(y) 0
= r( x + r( x + + ON :
s @y X+ i x + o)

(6.40)
Comparing Cases 1{3, we see that only the latter contributes to tte leading term.

Changing to time scaleNt in (6.40), i.e., multiplying Y by N, we complete the
proof. 1
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6.2.3. A comment on coupling and duality. The techniques of coupling and duality
are of major importance. One application can be found inDawson et al.(1995 Sec-
tion 4), namely, to prove Equation (4.17) therein. The key point is to obtain control
on the di erence betweenL[Z,] and L[ZJ for two Markov processes withidentical
dynamics but di erent initial states . Such estimates can be derived via coupling
of the two dynamics, or alternatively, via dual processes that arebased on nite
particle systems with non-increasing particle numbers, allowing for a entrance law
starting from a countably in nite number of particles. Both these p roperties hold
in our model. This fact is used to argue that the con guration locally converges on
time scaleNt to an equilibrium by the following restart argument.

At times Nt and Nt tn, with imyin ty = 1 and limyp tyn=N = 0,
the empirical mean remains constant. Hence, we can argue that, ithe limit as
N 'l ,asystem started attimeNt ty converges over timety to the equilibrium
dictated by the current mean. Two facts are needed to make thisigorous: (1) the
map 7! ¢%  must be continuous (recall Section4.2); (2) the ergodic theorem
must hold uniformly in the initial state. Both coupling and duality do the job,
which is why both work in Dawson et al. (1995.

6.2.4. McKean-Vlasov process of thel-block averages on time scal&lt. Recall the
de nition of the Fleming-Viot di usion operator Q in (1.19) and the equilibrium
of the McKean-Vlasov process in the line preceding 4.1). Observe that the
compensators ofM *F | see 6.23 are functionals of the empirical measure of the
con guration. The set of con gurations on which X (N) concentrates in the limit

asN 'l turns out to be
I

1 1 1 o 1
B=B\ xX2CPEN T w0 " oy 64D
=1

where is called theintensity of the con guration and

ol

2P (E)

Lemma 6.7. [Local equilibrium]
(@) The block resampling term satis es, withy the intensity of the con guration

x forx 2 B,
1 I
im CUF)y) = 0 @%@l Quduay SEW
N1 2 pE) E E @y
Co o i @F(y)
= m . Qy (du; dv) @73’[ ui vl

(6.43)
(b) If the system starts i.i.d. with some nite intensity measure, then every
weak limit point of L[(X (N)(Nt + u))yor] @asN !'1  has paths that satisfy

PX®)(tu)y2B)=1; forall t2[0;1);u2R: (6.44)

Proof : (a) The proof uses the line of argument inDawson et al. (1995 Section
4(d)) (recall the comment in Section 6.2.3), together with (4.21) and the de nition
of Q. In what follows, two observations are important:
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(i) We use the results on the existence and uniqueness of a stationadistribu-
tion to (6.19 on the time scalet with N !'1 | including the convergence
to the stationary distribution uniformly in the initial state, combined with
the Feller property of the limiting dynamics (see Section4). Note, in par-
ticular, that with ( 4.21) we get the second assertion in§.43) from the rst
assertion.

(i) We use the property that the laws of the processes Y (N)(Nt)); o, N 2 N,
are tight in path space.
The combination of (i) and (ii) will allow us to derive the claim.

To verify (ii), use ( 6.40) together with (6.27) to establish that KL o™ (F)k, is
bounded in N, which gives the tightness (recall Sectiorb.2). To verify (i), we want
to show that the weak limit points satisfy the (; Lo;dl;o)-martingale problem. For
that, we have to show that

LE— - (- -

L EEEY oo Vg woomgy Yoo eny fas tEH

0 t 0

1| (-
:ZmL ﬁo;dl;o)(t)m F() (LO;dl;OF)%'O;dl;O(S) I%ISI:II£|
° t 0
(6.45)

In order to do so, we rst need some information onL (N)il!l Since we are on time
scaleNt with N 'l |, we get

Jim (LM E)(y)
.

- -
= e x@as EED (e i x )
[o;JIJ:I P(E) O E 2 @y
=20 coido; o @F (y) _ . . |
"2 e (dx) Ex(da) @3 [ X+ & X+ al;8x2B,;y2P(E):

(6.46)
Use the de nition of the Fleming-Viot di usion operator Q from (1.19 to obtain
the rst line of the claim in ( 6.43). The second line follows with the help of ¢.21)
(recall dy = 0 in this section).

(b) To show that the relevant con gurations (under the limiting laws ) are in B , we
use a restart argument in combination with the ergodic theorem forthe McKean-
Vlasov process. Namely, to study the process at timéNt + u we consider the time
Nt + u ty withlimynr ty = 1 andlimyiz  ty=N = 0. We know that the
density processY(N) at times Nt + u ty and Nt + u is the same in the limit

N !'1 |, say equal to , and so over the time stretchty the process converges to
the equilibrium ( % °) N By the law of large numbers, this gives the claim.
Therefore, all possible limiting dynamics allow for an averaging principlewith the
local equilibrium. 1

Conclusion of the proof of Proposition 6.3. Recall from (6.27) that migration has
no e ect. Lemma 6.7 shows the e ect of the block resampling term on time scale
Nt for N !'1 . Adding both e ects together, we have that all weak limit points
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of LIIY(N)(Nt)); o], N 2 N, satisfy

C o .

.1 0:d1;0y_ i ; -
the ( ;L )-martingale problem with d; 300 F

(6.47)

7. Hierarchical C -process

The next step in our construction is to consider nite spatial systems with a
hierarchical structure of K levels and to study the k-block averages withk =
0;1;:::;K on their natural time scales Nkt and Nt + u. This section therefore
deals with the geographic space

G=Gnk =f0;1;::;N Ag¥; N;K 2 N: (7.1)

De ne the Cannings process onGy:x by restricting X ( ~) from Section 1.4.4 to
Bk (0) and putting
c; k=0; forallk K: (7.2)

The corresponding process will be denoted byX (VK ) and its generator by L (N:K ),
etc. It is straightforward to include also a block resampling at rate N 2K with
resampling measure ¢ (compare Corollary 6.2).

In this section, our principal goal is to understand how we move up 0 k K
levels when starting from level 0. However, in order to also undersind a system
with k levels starting from level, say,L and moving up to level L + k, we will add
a Fleming-Viot term to the generator of X (N) j.e., we consider the casal, > 0.
We do not need to add Fleming-Viot terms acting on higher blocks. As we saw
in Lemma 6.7, a resampling term can result, on a higher time scale and in the
limitas N !'1 | in a Fleming-Viot term. For instance, if we choosedy = 0 in the
beginning, then we obtaind; = 2§§+°0 > 0 on time scaleNt for the 1-block average
(recall (6.47)).

We look at the block averages on space scalé$® and time scalesNkt with
k =1;:::;K. In Section 7.1, we will focus on the caseK = 2, where most of
the di culties for general K are already present. Many features from Sectiort.2
reappear here, but we have to be aware that level-one averageseaforming only
asymptotically a mean- eld system of the type we had in Section6 and we have
to prove that we can in fact ignore this perturbation. For K > 2, lower order
perturbations arise, which we will discuss only brie y in Section 7.2 because they
can be treated similarly as in Dawson et al. (1999. In Section 8, we will take the
limit K !'1 and show how this approximates the model withG =  on all the
time scales we are interested in for our main theorem.

7.1. Two-level systems.The geographic space i€y.» = f0;1;:::;N  1g?, we pick
do;Co;C1; o; 1> Oandputc; «tozerofork 2. We will prove the following: (1)
On time scalest and Nt we obtain the same limiting objects as described in Section
6, but with an additional Fleming-Viot term ( dy > 0) and with block resampling
via 1; (2) For 1-block averages (each belonging to an address2 f 0;1; ;N 1g)
we introduce the notation

YN ()= N ! Xél")(t): (7.3)

2GN,1
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Next, we consider thetotal average

zM()y= N 2 Xil\')(t): (7.4)

2GN,2

We get a similar structure to the one in Section6. Namely, we can replace the
system (Y(N):Z(N)y for N 11 by a system of the type in Section6, where the
role of components on time scald is taken over by 1-block averages on time scale
Nt and the role of the total (1-block) average on time scaleNt taken over by the
2-block average on time scaléN ?t. Once again, we only focus on the new features
arising in our model. The general scheme of the proof for the two-lesl system can
be found in Dawson et al. (1995 Section 5(a), pp. 2328{2337). The calculations in
Sections7.1.1{7.1.3correspond to Steps 4{5 inDawson et al. (1995 Section 5(a)),
with the focus now shifted from the characteristics of di usions to the full generator
because we are dealing with jump processes.

Proposition 7.1. [Two-level rescaling] Under the assumptions made above,
LIX™ @) o] 2) LIZ®® @) o] 8 206Gz (7.5)

and

(N) — Cl;dl; 1 H — CO( 0+2d0) .

LIV (ND)e o] 5) LIZ ()t o] with dy = 2+ gr2d 2 Gni1
(7.6)

and

(N) (N 2 _ 0:d2:0 - _ &(a1+2d) |

LIZMNZO) ol =) LIZOW) o] with dp = 5 S 220 (7.7)

The proof of (7.5{7.7) is carried out in Sections7.1.1{7.1.3

7.1.1. The single components on time scalé. In this section, our main goal is to
argue that the components ofX (N) change on time scald as before, and that the
same holds on time scale®Nt + u and N2t + u with u 2 R, provided we use the
appropriate value for the 1-block average as the centre of drift.

We rst look at the components on time scalet. Due to the Markov property
and the continuity in  of the law of the McKean-Vlasov process (cf., Sectiont.2),
the behaviour of the components on time scale®t + u and N2t + u with u 2 R
is immediate once we have the tightness of (N) and Z(N) on these scales. Again,
our convergence results are obtained by: (1) establishingjghtnessin path space;
(2) verifying convergence of the nite-dimensional distributions by means of estab-
lishing asymptotic independence and thegenerator calculation for the martingale
problem. Since the latter is key also for the tightness arguments @call (5.4)), we
give the analysis of the generator terms rst. In fact, the rest of the argument is
the same as in Sectiort. 1.

Migration part. Consider the migration operator in (1.37) with ( 1.26) applied to
functions F 2 F, the algebra of functions in (1.34). The migration operator can
be rewritten as (recall that the upper index 2 in L(N:2) indicates that we consider
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K =2 levels)
-
(LMD E)(x) = T x)a) SN
; 2GN,2 E
[ — ':'
= o 1Nt 2 (x  x )(da)@F(X)[a]
© 2Gn2d(; ) k 2 E
— — —= @RX) (7.8)
- o INE (< x)(da) 5 al
2Gn2k 2 2Bk() E
.

@F()

o iN* K E(y:k x )(da) —=——[ al;

2Gn2k 2
where we use {.3]) in the last line. Thus, for F as in (1.34), we obtain

@ R’X)

(LI F)(x) = o (y.1 x)da) XX g+ EM: (7.9)

2Gn.2 E

where

-
JEM)j N gCe=0ON *? (7.10)

with Cg a generic constant depending on the choice df only. Here we use that,
by the de nition of F in (1.34), the sum over 2 Gy:.2 is a sum over nitely many
coordinates only, with the number depending onF only.

Resampling part. Recall (1.34). For F 2 F, consider the resampling operator
(LEEPF)(x) in (1.38{( 1.39. We have
1

. OO ] O
(LES2F)(x) = o od) X (@) F a0 () F(X) +EM)

2Gn.2 ;

(7.11)

with
-
.,

JEMNMj N 2 1(dr)Cer N =CeN ' ;= ON ! (7.12)

[0;1]

Here we use (.39 in the rst inequality, together with the fact that
F( ras.()(X)) F(x)is non-zero for at mostCg N di erent values of 2 Gy;».

Additional Fleming-Viot part. Recall that in this section we consider the case
do > 0, i.e., we add the Fleming-Viot generator
1
@F X
LEDF)00 = do Quuid) S50 ] (1)
2Gn, E

with Qy. as in (1.19). Contrary to the migration and the resampling operator, the
Fleming-Viot operator does not act on higher block levels.
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The resulting generator. Combining the migration parts (7.9) and (7.10), the
resampling parts (7.11) and (7.12), and the Fleming-Viot part ( 7.13), we obtain

@F( )[a]

(LMAF)(x) = G (y;1 x)(da)
2Gn. E O
111 1 1
+ odr)  x (da) F rapo()(x)  F(X) (7.14)
2Gn, 01 E
' 1

+ dO QXz(d u; dv )

2Gn2 E

@F(X’[u, J+oN 1

[ I .
whereO N ! is uniform in x.
Convergence to McKean-Vlasov process. We can use {{.14) to argue that

KLMNNAE Lo oFky  CeN % kL%  °Fk  C(F); n2N;F 2F
(7.15)
with F asin (1.34). Next, following again the line of argument in Section5.2, we see
that L[X (N)] is tight in path space and, following the argument as in Section6.1,
we obtain that X (N) converges as a process to the McKean-Vlasov limit, which is
an i.i.d. collection of single components indexed byNy with generator

Lo oG ) =0 (- x)@a) EPI
1 0] ] O
+ odr) x(da) G r)x +ra  G(X) (7.16)
[0; E
the @G(x)

+ do Qx:(du; dv) [u; v];
E E

where 2 P (E) is the initial mean measure. This completes the proof of 7.5).

7.1.2. The 1-block averages on time scaldt. Again, we need to prove: (1) uniform
boundedness (inN ) of the generator in the supremum norm for test-functions inF
to get tightness in path space of V(N)(Nt))t o (cf. (5.4)); (2) convergence of nite-
dimensional distributions via asymptotic independence and generatr convergence.
As we saw in Section6, the latter is also the key to tightness. Therefore, we
proceed by rst calculating the generator of 1-block averages ortime scaleNt and
then using this generator to show convergence of the process.tAhat point we
need that the total average over the full space (cf. (.4)) remains on time scale
Nt, in the sense of a constant path on time scalé&t. The latter property will be
proved in Section7.1.3

Basic generator formula. We proceed as in Sectiorb.2. SinceG = Gy 2, the 1-
block averages are now indexed too. We use the foi%g notation fahe indexing
of 1-block averages. Recall the notatiory.; = N 28.( ) X from (1.31), which
is the 1-block around . This 1-block coincides with the 1-block around if and
only if d(; ) 1. To endow every 1-block with a unique label, we proceed as
follows. Let be the shift-operator

. GN;K ! GN;K 1;( )i = i+l 0 i K 1; K 2 N: (717)
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We consider the evolution in time of the 1-block averages indexed bldewise, i.e.,
1
yd N1 X ; (7.18)
2GN,2; =

where we suppress the dependence p[f“ on N. Note in particular that
y.1 =yt forall suchthat = : (7.19)

We will often drop the superscript [1] to lighten the notation.

This time, we consider functionsF 2 F (see (..34) applied to yiHl  y[(x),
wherey™ = (yM) ,5,,,. Recall the K-notation for the rescaled generators from
Section 6.2.2. By explicit calculation of the di erent terms below, we will obtain
the following expression (recall .o, from (1.39 and Q. from (1.19)):

. o L ceom | cvam | cvam
(LN Ey(yy = LM GO 4 QEOM 4 O (F)(y)

mig res;1

[ — . [
= o Py @@

[l

2Gn1 @y
[ e R — -
po o@) x @3 D v i x + )
m=1 N = m [0:1] E 2 @9(”‘)
+ 1dr) y ([da)[F( ra (V) F(Y
2Gn, 101 E
, I
41 =1 .
+ do — Qx.(du; dv) LEI:(y)[ u v]J+ON 1
26na N L = E @y
N,1 . -
(7.20)
Her assumed thatF can be written as follows: F(y;) = F(yt[”) =
oy otiowith y =y = (v b6, O 2 Gar, g 2 10 Ng and
n2N;1 | g We give more detail in (7.28) below.
Convergence to McKean-Vlasov process. We rst argue how to conclude the

argument, and then further below we carry out the necessary geerator calculations.

We have to argue rst that the N dierent 1-blocks satisfy the propagation of
chaos property (recall (6.5), where we had this for components). The proof again
uses duality, namely, dual particles from di erent 1-blocks need a tme of order N 2
to meet and hence do not meet on time scal&t. We do not repeat the details
here.

Once we have the propagation of chaos property, it su ces to comider single
blocks which we do next. We have to verify tightness in path space and corergence
of the nite-dimensional distributions. As we saw before, this reduces to showing
that the action of the generators is uniformly bounded inN in the sup-norm onF,
so that we have convergence of the generator oR by the same tightness argument
as used in Section6.2.4, but now based on (7.20). Consider the resampling and
Fleming-Viot parts of the generator in (7.20) separately.
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Reason as in the proof of Lemm&b.7 to see that (recall the de nition of ;g?do? 0
from (4.1))
; (N; 2)[1]
Jim- (L F)()

reSO
11 § L]
odr)  x (da)
E

1
ES

i

N1L maa N L O

1@F(y) .

. [r( x + a)r( x + )] (7.21)
1

coido; o (qx) Qx(du; dv )@F(y)

n

2Ny P(E) Y E E ’ @y

Qy, (du; dv )@F;y)[ !
E

[ui vl

N|o

_ Co
200+ o+2do

2No

where by (4.21) the second assertion follows from the rst. Recall (7.13). Similarly,
we have

[ |
lim (L2 F)(y) = do B o) Quduiay) & (y)[ wi vl
N ang PE) E E @y
(7.22)
Using (4.21) once more, we get
ths. of (7.2 = — 2% GFM - 1 (7.23)

P EEEE———— du; dv
200"‘ 0+2d0 2No EQYn( )

@y

Combine (7.21) with ( 7.23) and argue as in Section6.1.4, to see that each single

component of the 1-block averageg = y!! = (y[l]) 26,1 CONverges and the limiting
coordinate process has generator

o)z e (y)es) 92
[ | -
fd Qy(dudy) V)
—E E 1 @y
ol 1 7
+ 1dr) y(da) G@A ry +ra  G(y) ;
[0:1] E
(7.24)
for test-functions G of the form (6.18). Note that 2 P (E) is the initial mean
measure of a component andd; = Co 0*2do) At this point we use that the

2Cco+ o+2do "
average over the complete population remains the path that stand still at on

time scaleNt.

[ al

[u; v]

Generator calculation: proof of ( 7.20). We next verify the expression given
in (7.20). We calculate separately the action of the various terms in the gearator
on the function F. In what follows a change to time scaleN ¥t is denoted by an
additional superscript [K].

Migration part. Recall (Lfn“fgz)F)(x) from (7.8) and that the upper index 2 in
L(N:2 indicates that we considerK = 2 levels. Let F be as in (1.34). Denote
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Proceeding along the lines of §.256.27), we get

.
k times —
F X
(Ling F)(Y) = 6 N F O (yxo X )(dw%[ o]
2Gnp2k 2 5 —
(.
= G Nt Ryl (da)@F(y) 0
262k 2 E @y s
I — DI:Il - @F() ! (7.25)
=N a NT YLy (da) 2
2Gnak 2 - E
[ I— — [
= ER y”i y (da)@F(y)
E @y N

2Gnak 1
Next, for functions F that are linear combinations of functions in (1.34), we have

@F(y)lzI I:_I @Ry)

@yN'@y

On the time scaleNt, we have (recall that the upper index [1] indicates time scale
N 1t)

[ o] (7.26)

[ — .
(R STOE a Yoy (da)@F(y)

2Gn.1 E

[ al: (7.27)

Resampling part. The calculations proceed along the same lines as in Sec-
tion 6.2.2. Apart from an additional hiqih;frl)rder term, the main extension is

that we consider F(y;) = F(y!) = H; Ty M with y = yi = (yM) 6, .,
2 Gn1,g2fF1;:::;Ngandn 2 N;1 | g, instead of restricting ourselves
to test-functions of the form (6.29 (which corresponds to the caseg=1). We will
now use functionsF he form
- —
_ ng (|)|:|. I:ll) ..... (q) N.
F(y)_ y(l) u us oo u A (y)ZGlep(E)
EN1t .-t Ng 1=1
q2fL::;Ng;m 2N; W 2Gyq;12f1;:::;qg;
Mg (7 forall161%u® 2 EM; " 2 Cy(EM*#*Na;R):
(7.28)
The only dierence with ( 1.34) is the restriction of the ordering of the entries.
This facilitates the notation in the computation below, but is no loss of generality
because the set of functions in {.28) generates the same algebr& . We will now
show that
(LM F)Y)
' — L

. =+ 1@F (y) _
= N o o(dr) x (d )2 @ r( x + 2):ir( x + 2)
: (| o
’ 2dr) y [da)[F( e () FYI+ON ‘!
26N, [0 E

(7.29)
with 5. asin (1.39).
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Recall the notation in (7.28) and set

| I |
L= n: (7.30)
I=1
Proceeding as in 6.29-6.31), we obtain
1 1
1 ) (B S |ll| _____ . ch1
(L Py = g = Chds F om0 (7.3D)
=1 i=1 1. 1=
oo
with F *"" "a  as in (6.30. As in Section 6.2.2, we distinguish between the
di erent cases for the structure of the setf §; ; ,}qg and we obtain, using the
de nition of the resampling operator in (1.38{( 1.39),
L(N;Z)F
(Lies ") 1
PR S (i e — T —— ]
= NT 1 L1 o(dr)  x (da)
I=1 i=1 1. 1= 2Gn. U E
I:%I;:::; a I—_I:—I—I ] I:%I;:::; a o
F na ra;B of )(X) F na (X)
1 1 (7.32)
P ) e e T m— -
+ NT L1 N 2 1(dr) y;a(da)
I=1 i=1 . 1= ) 2Gn. [0;1] E
Lo o = — [
e @ o @
F: q rnaB 1( )(X) F q (X)
=g+ Iq:

For the rstterm 1 in (7.32) we proceed along the lines of§.33 6.34) to conclude
that the only non-negligible contribution to the sum in o comes from terms with

fl1 1 g1 i nmgj=L 1. It remains to investigate the terms with
iflh1 1 g1 i mgi=L 1. Since | = O thisimplies that there exist
1 m gandl my<m, nypsuchthat © = [T and all other ,' di erent.
By the safﬂ—ﬁeasoning as in .33, we see that the only non-zero contribution of
the sum  ,5 , comesfrom = 7 = [ . We therefore obtain
—1 —1
1 T 1T 1 1
lo= §T L IIfj* L1 gl i mgj=L 1g
=1 i=1 1. 1= ()
11
m=11 my<m , n 1fm1: e~ O
= 1 m
— ot o 9., =M
_ooldr)  x(da) BT e g () (X)) F MR (X)
[ ] E
+ON 2
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Now follow the reasoning from (.35) to (6.40), to get

1
lo = N 2 O(dr) X (da)zgﬁ(y))[r( X + a);r( X + a)]

|~
D &

(7.34)
For the second termly in (7.32), we obtain, by the de nition of .55 ,()(X) in
(1.39 and using (7.19),

1 1
TR e, i i — T — L]
= gp CI7N2 @)y
I=1 i=1 1: 1= 1 2Gn. [0:1] E
o o o 9., =M
F 77 na rnaB 1( )(X) F 27 na (X)
— 1 (7.35)
TR S (i e — N m— L]
= NLC L L1 N* 1(dr) y (da)
1=1 i=1 :: =: n 2GN1 [0’1] E
I ] 1 — [
PR 0 F R
with . . —
(1] @ ny +r g =
ra, (X)) = _ (7.36)
X ; otherwise

Nowlj_)(riserve thatg sum  ,g,, in(7.39 yields non-zero contributions only for
)2 (@ "and so we can rewritel ; as

|:| 1
PR S (e i — T — L]
|1 :N—L L1 L1 N 1 1(dr) Yy (.)(da)
=1 i=1 1. 1= ) =1 [0:1] E
1 ! '
1

= a -
X 1 X1 r(_ll f)yl_luh+ Ma

1

change from position !

' 1
C] 1
I_(_1I r)yrf"ﬁ+ r an 1 X a
to position 1,
[
X g X q (7.37)
— -
= N 1(dr) y w(da)
=1 [0;1] E
L] Lh
Yo yoyt @ nyw+ra oy oy
1 (I
L1 — 1
Nq " ny
Y (@ : Y

1=1
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— ]
= N o 1(dr) Y da)[F ( ra () FOI:

ZGN,l

Combining (7.32), (7.34) and (7.37), we obtain (7.29) on time scaleNt.

Additional Fleming-Viot part. We proceed as with the migration operator
(recall that in the present Section 7 we added a Fleming-Viot term to the generator,
i.e., we consider the casely > 0) and write

1]
LRy = LY2F y) )
1

d xe(du; d
’ 2GN,2 E EQE'( ) V) @@i

@(F Y)(X)[ L (7.38)

with Qy, as in (1.19 and where the de nition of y = y! in (7.18) yields

1
@F y)X), . _ @F) u. v
4@§ [ us v] - @9 W! ﬁ (7'39)
Hence, on time scale\t,
S9! -
(LOGPUIF)(y) = doN Qu ) EED
26ny @ = EE
I 1 =l GF W) (7.40)
= do v N o . Qx.(du; dv) @7§’[ ui vl

where in the last line we use that, forF a linear combination of the functions in

(1.39),
@F(y) D_u I:_I @F (y)

2 A
NTey NN T @y

[uw v (7.41)

The resulting generator. Combining the migration (7.27), resampling (7.29
and Fleming-Viot ( 7.40) parts for the 1-block averages on time scalé&t, we obtain
(7.20). This completes the proof of (7.6).

7.1.3. The total average on time scaleN ?t. Denote the total average by (recally[l]

from (7.19) 1 T
z=N 1 yH =N 2 X (7.42)
2Gna 2Gn.2

(This is a 2-block average because we are considering the cake = 2.) Recall
notation (7.4). We must prove: (1) the sequence of lawsL [(Z(N) (N 2)); o; N 2
Ng is tight in path space; (2) the weak limit points of this sequence are solutionsf
the martingale problem for Z 0420 (cf. (7.7)) by showing (5.5) (recall Section 5.2).
From the uniqueness of the solution to the martingale problem, we gethe claim.

We now verify these points by calculating the generator. Recall thel-notation
from Section 6.2.2 for the rescaled generators.

Migration part. For the total average, the migration operator can be obtained
from (7.27) by writing z = z(y) and using the analogue to ¢.26), (cf., (7.17) for
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the de nition of )

[ — ] - Ol @ry Y
. . Z)
LM R@ = (L™ E 2= a Wy @aTgy @
2Gn1 E z
— (7.43)
Using that z = y[” =N 1 2Gn1 y[”, forall 2 Gn:1, we get
(Ling M F) (@) = (LGP F)(2) = 0: (7.44)
Resampling part. ConsiderF(z) = hH;z "i. Follow the derivation of (6.31) to
obtain — P
, 1 r 1T 1 [ (.
(Lies PF)(@) = 7 = CLA) Floml ()= 18+17  (7.45)
i=1 j2GnN1
Iil.

with FC 15 n)(y) = H;
(Lies PR 2)(y)

1
T | — —— -
= N L1 L1 o(dr) x (da)
=1 @ = 2GN,2 [0:1] E
N O, . =
F( 15) ra;B O(Iéx)l FOu n)(x) (7.46)
1 r—w— r—— -
v 1 N 1(dr) y;a(da)
I=1 : 1= 1 ZGN,Z [O;l] E
R - T
Ftimn ra;B 1( )(X) FAoam "/ (x)
— |80+ I:(L)O

with a5 () asin (1.39).

Let us begin with the second terml °in (7.46), which corresponds tol ; in (7.32)

and was rewritten in (7.357.37) as
1 d ! E (] (]

| 10= N * (dr) y (da) FO (o (y)) RO n)(y)
26N [0:1] E

(7.47)
Combine (7.45 and (7.47), change to timescaleNt and compare the resultto ¢.32).
We obtain that 19 on time scaleNt behaves analogously to §.32) on time scalet.

By moving one time scale upwards, we obtain as inq.43) (respectively, (7.21) with
dp = 2lo*20d0) 5 ) that

2Co+ o+2dp

I

; 02 — C1 1 } @F (2)
Nllg‘n (Il) 2C1+ ]_+2d]_ E E QZ(du,dV) @%

The term 19 can be handled in the same spirit ad o in (7.32). To obtain non-
zero contributions in 139 we need to havejf ;; | = ;1 | ngj<n (recall

[uw; v (7.48)

we obtain negligible terms ifjf |; ;= ;1 | ngj<n 1. Indeed, two sites
residing in a common 1-block already result in a factor ofO(N ?2) (on time scale

t): rst a common block has to be chosen | 1;:::; ,j= n 1), which contributes
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—1 . .
a factor N 2 2Gna anqﬂblsequently a common site has to be chosen, which
contributes a factor N 2~ _ . Any additional choice results in terms that

vanish for N 11 on time scaleN 2t. Consequently, we can reason as in6(35
6.40) to obtain on time scale t

-
o\ [0] 1 I 1| I —
(I9)™ = N2 N2 01 o(dr)
— one ot (7.49)
x @ECED v i x + D+ 0N 2
£ 2 @2 '
Additional Fleming-Viot part. We proceed as for the migration operator. Re-
call (7.40), to get
K
) I 11 1 — FE z
MR =d = Que(du; ) EE_DDp .y
2ens N - E @y
N,1 . -
(7.50)
Now use the analogue to {.39), to obtain
B [ 1
| |
(N: 21 _ + oy @F @) u v
(LFV F)(Z) dO N . . E QXE(durdV) @% N ) N
2GN,1 D=
(7.51)
After changing to time scale N °t, we have
|
1 =1
(N;2)(2] _ a1 + LW GF@) .
(LFV F)(Z) dON e N . i . EQXg(duvdV) @2_[ us v]-
' (7.52)

Tightness. We have to bound the generator, i.e., show that sug kL N: 21 (F)k <
1 ,in order to apply the tightness criterion, as explained in Section5.2. (Recall that
the upper index [1] indicates time scaleN 't and that the upper index 2 indicates
that we considerK =2 levels.) This we read o from (7.44), (7.46), (7.47), (7.49
and (7.52).

Convergence to McKean-Vlasov process. We have to identify the limiting
generator. One approach would be to try and make the following heristics rigorous.

Begin heuristics. On time scale N?t, we obtain, by reasoning as in {.21), us-
ing (7.49, now on time scaletN 2, together with (4.21) in the second and fourth
equation,
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1
lim (1P = > lim —
N1 2 NI % e .
g0t o (dx) Qu(du;dv) == us ]
2Gns P(E) E E
=_ %0  im 1 I:IQ (du; dv )@F(Z)[ ]
200"‘ 0+2d0N!1 N 2G E E Yn ’ U!V
N,1
1 1
- G o ci;d1; 1 @F(Z)
2C0+ 0+2d0 P (E) z (Clié)”:EI Qy(du dV) [U! V]
= 2 % o Qz(du; dv )@F(Z)[ ur vl
201+ 1+2d12c0+ o+2do £ E (753)
Combine (7.48 with ( 7.53), to get from (7.45
Jim (LR (2)
i 1 11
SO S U N — Qz(dud)@F(z)[u, J
20+ 1+2d; 2 2c0+ o+2do E
(7.54)

For the Fleming-Viot part in ( 7.52), we obtain, by reasoning once more as inq.21),
using (4.21),

f N; 2)[2
Jm (L P F)(2)

—_ o0
— ; 1 Co;do; o . @F(Z)
_dOnglm N 260 P(E) yn (@) E EQX(du’dV) @
S R o duan FEQ
200+ o+2doNT N o g g Yni=E @ ’ (7.55)
T T (@) ':”:'Q du v FE@
200+ o+2dy pg) ° g E e @
2c, 2¢codp @F(Z)

T2+ 1+20 20+ o+2do . EQz(dU;dV) @ [u; v]:

[u; v]

[ui vl

Collecting the limiting terms as N ! 1 on time scaleN ?t for migration (7.44),
resampling (7.54) and Fleming-Viot ( 7.55), we obtain

i (N;2)[2]
Jim- (L F)(2)

[

2c Co +20()d

1 1 0 0

= = + Q .
2C1+ 1+2d1 2 200+ o+2do E E Z(du’dV)

@F (Z)[ L
@ us vli-

(7.56)
In order to obtain the convergence in (/.53 7.55), we would need to restrict the set of
con gurations, argue that the law of the process lives on that setof con gurations,
and show that therefore the compensators of the martingale prblems converge to
the compensator of the limit process. However, it is technically easteto follow a
di erent route, as we do below. End heuristics.
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We want to view the expression for the generator of the total aveage on time
scaletN 2 with K = 2 levels, &(‘N'Z)'[Z]F)(z) as ?ﬂaverage oveN di erent 1-block

averages. If we replace thelL ,g‘s (2)) L(N 2] -part of the 1-block averages (cf.
(7.20)) by a system of N exchangeable Flemlng -Viot di usions with resampling
constant d; (for which we have a formula in terms ofcy; dg and o, cf. (7.6)), which

on time scaleNt lead to the generator

(N; 2):[1] Co( o0 +2do) @F(y), . (N;2):[1] :
Lmig™ " (F)(y) + 200+ o+2do Qy(du; dv) @y [ui vl* (Lresy RV
E E
(7.57)
then we can apply the analysis of Sectiont to this new collection of processes,
denoted by 1
\m)(tN) ----- N (7.58)

to conclude that on time scaletN 2 the block averageZ™) (tN)= N 1 %(Nt)
i=1

satis es,

LA™ EN ) o] =) LI o) (7.59)
where Z-i$ a Fleming-Viot di usion with resampling constant
C1 CO( ot 2d0)
—————( 1+2d;); whered; = ———: 7.60
26+ 1+2d1(1 1); whered; 00+ o+ 20do (7.60)
Hence, we obtain a limit process with a generator acting or- as
ci( 1+2dy) oy @F(2)
2C1 + 1 +2d1 E e QZ(du!d ) @ [ U! V] (761)

Hence, the weak limit points of the lawsfL [(Z™) (tN 2)); o]; N 2 Ng satisfy the
martingale problem with generator (L%%2°G)(z) with d, = %

Since we know that the martingale problem for the generator.%92:% and for the
test functions given in (1.34) is well-posed (recall Proposition1.2), we have the
claimed convergence in {.7) on path space ifZ (a weak limit point for the original

problem) and Z-dgree. Thus, we have to argue that it is legitimate to
replacef (Y™ (N))izt;n )t 0g by F ORI (NOizon ) 08 (7.62)

For that purpose, observe that we know from Section6 that, for a suitable
subsequence along which.[(Z(N)(sN?))s o] converges toZ (s),

LI (NZs+ NO)izs om0l 2) - LICOY (sithizw)e o (7.63)

where the right-hand side is the McKean-Vlasov process with FlemingViot part at
rate di, Cannings part 1, and immigration-emigration at rate c¢; from the random
sourceZ (s). We need to argue that the latter implies that Z and Z-dgree.

For F 2 C2(P(E);R), de ne Gy 2 CA((P(E))N;R)and Hy 2 C2((P(E))N";R)
by

F(2)= Gn(y) = Hu(); x2 (PENY': y2 (PE)N: z2P(E); (7.64)
with
Xji - (7.65)
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In order to verify that Z and Z-dgree, it suces to show that the compensator
processes forA-adnd Z agree for a measure-determining family of functionsk 2
CZ(P(E);R), namely,

gk 2 ) E—

G S
L s d Q@ @O
0 EE g @y
(N: 2] M H
+ Lres’;l GN (y(s))
mad e
; (7.66)
L s L% 2™ G (v (9)
] (1 1
1 . _
*N? D:%i’;g)““ LEv ™ Hi (i () o
i=1 j=1

:2 Zero measure
N!

To that end, rst note that the two terms with LS":S;;E);[” cancel each other out.
Regarding the remaining terms, after we transforms to sN?, we must show that
for eachs 2 [0;t] the term in the second line converges weakly to the term in the
rst line (the joint law of the density and the empirical measure converges). When
worked out in detail, this requires a somewhat subtle argument. Howver, nothing
is specic to our model: a detailed argument along these lines can be @md in

Dawson et al. (1999, pp. 2322-2339.

7.2. Finite-level systems. The next step is to consider generaK 3 (recall the
beginning of Section7). We can copy the arguments used foK = 2, and then argue
recursively. Namely, we can view the [ 1);j; (j +1)-block averages as a@wo-level
systemon time scalestN1 ;N (tN1 1);:N2(tNJ ). Thelimitas N !'1 is a
two-level system with migration rates ¢ 1;¢;¢+1 instead of cp; C1; C2, resampling
measures j 1; j; j+1 instead of o; 1; 2, and volatility d; i instead of dy. If

we would havecy = ¢ = =¢g 2=0and o= = j 2 =0, then this

would be literally the case. Hence, the key point is to show that the lover-order
perturbation terms play no role in the renormalised dynamics after they have played
their role in determining the coe cients d; 1;d;;dj+1 .

The argument has again a tightness part, which is the same as beferand which
we do not discuss, and a nite-dimensional distributions part. Sincethe solution of
the martingale problem is uniquely determined by the marginal distributions (see
Ethier and Kurtz (1986 Theorem 4.4.2)), this part is best based on duality, which
determines the transition kernel of the process as follows.

We have to verify that the dual of the (j + 1)-level system on the time scales
NI t;NJt behaves like the dual process of a two-level system. This meansah
the dual process can be replaced by the system where the locatisrup to level
j 2 are uniformly distributed and all partition elements originally within th at
distance have coalesced. This can be obtained by showing that theudl system
with the lower-order terms is instantaneously uniformly distributed in small balls,
and that within that distance coalescence is instantaneous, since gvare working
with times at least tN1 . Therefore, the dynamics asN ! 1  results e ectively
in a coalescent corresponding to a two-level system.
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8. Proof of the hierarchical mean- eld scaling limit

We are nally ready to prove Theorem 1.5. Recall the Cﬁ;*-process on n,
denoted X ¢ N) from Section 1.4.4and (1.43). Also recall the discussion on conver-
gence criteria from Section5.2. We establish the tightness by checking the bound
on the generator action. Having Section7, all we need is to show that the higher-
order term action on monomials is bounded inN in the considered time scale. This
is readily checked from the explicit form of the terms. In order to stow convergence
of the nite dimensional distribution, we approximate our in nite spa tial system
by nite spatial systems of the type studied in Section 7. As before, we denote the
nite system with geographic spaceGy.x by X (NK) and the one with G = by
X n),

Proposition 8.1. [ K -level approximation] Fort2 (0;1 ) andsy 2 (0;1 ) with
limyin, sy =1 andlimyir sy =N =0, consider thek-block averagesY;(k N) and
Y;(li“:K ) on time scaletN’ + syN¥ for 0 k j<K . Then

] , (0 0] , (L]
dpokn L YR M(INT+ syNF) L YETONT + syNY) =) 0 (8.0)

where dprokh IS the Prokhorov metric.

Once we have proved this proposition, we obtain Theoremni .5 by observing that
(8.1) allows us to replace our system on y by the one on GNX when we are
interested only in block averages of order K on time scales of order< N X . In
that case, we can use the result of Sectiof to obtain the claim of the theorem for
(k) with k j <K . Thus, it remains only to prove Proposition 8.1. We give the
proof for K =2, and later indicate how to extend it to K 2 N.

The main idea is the following. We want to compare the laws of the solutio
of two martingale problems at a xed time and show that their di eren ce goes to
zero in the weak topology. To this end, it su ces to show that the di erence of
the action of the two generators in the martingale problems on the @inctions in
the algebraF tends to zero. Indeed, we then easily get the claim with the help of
the formula of partial integration for two semigroups (V;): o and (Ui); o (see, e.g.,
Ethier and Kurtz (1986 Section 1, (5.19))):

]
Vi = U + U s(Lyv Ly)Vsds: (8.2)
0
In Sections 8.1{8.2, we calculate and asymptotically evaluate the di erence of
the generator acting onF on the two spatial and temporal scales.

8.1. The single components on time scalé. ForanF 2 F (cf. (1.34)) that depends
onlyonfx , 2 B1(0)g(cf, (1.23), we have (as we will see below)

(LCNEYX) = (LNDEY(x) + (LETF)(X); (8.3)

where kL®"k = O(N 1) (k k is the operator norm generated by the sup-norm).
By the formula of partial integration for semigroups, it follows that

1 o Iﬂ
FXON(@)  E FXMNI) O tO(N 1): (8.4)
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Since our test functions are measure-determining, the claim follow$or any nite
time horizon. To prove (8.3), we discuss the di erent parts of the generators sepa-
rately.

Consider the migration operator in (1.37) applied to functions F 2 F. The
migration operator can be rewritten, similarly as in (7.8),

[ — - —
(LGMFI) = G N e 0@ S0 @)
2 N k2N E
We obtain
N _ @RXx) _
(g "FI00 = @ 0 0@ TGP EN @9)
where  —
JEM) N ce o 1N? K; (8.7)
k2 Nnf 1g

with Cg a generic constant depending on the choice df only. Here we use that,
by the de nition of F in (1.34), the sum over 2  is a sum over nitely many
coordinates only, with the number depending onF only. By (1.27) we get

) ) (I

JEM)j ON ' (8.8)

For the resampling operator in (1.38), applying rst ( 1.39 and then (1.32), we
obtain,

o = 0o N = I
(Lies" F)(X) = odr) x(da) F rapo()(X) F(x) +E
2 N [0 E
(8.9)
with
— — OO
JEMN; N LdNCeNKr2=Cce N ¥y =ON ' (810
k2N (0:1] k2N
Finally, the Fleming-Viot operator reads as in (7.13):
X
(LM F)X) = do _ Qudy; dv)@ ”[u Jdo (@11
2 n F

Combining the migration parts in (8.6) and (8.8), the resampling parts in (8.9)
and (8.10), and the Fleming-Viot part in ( 8.11), we obtain

@F(X)

(LEWF)(x) = C (v;1 x)(da)=="[al+ON %)

2 N E

Mo oo I R -
¥ odr) X ([da) F ' rasoy()  F(x) +ON

2 o 0] E
—=H! @F (x)
T Quldud) Sl
(8.12)

Combining (8.12) with (8.5 8.11) and (7.14) (also recall the discussion on embed-
dings from Section5.2), we get (8.3).
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8.2. The 1-block averages on time scalé&t. As before, we prove, forF 2 F de-
pending onfx , 2 B1(0)g only (recall that the upper index [1] indicates time
scaleN 't and that the upper index 2 indicates that we considerk = 2 levels),

(LC ™Y (yy = (LA EY(y)+ O(N 1) (8.13)

after which the claim follows in the limitas N !'1 by the same argument as in
Section 8.1. We prove (8.13) by considering separately the di erent parts of the
generator.

For the 1-block averagesy = y!!, the migration operator can be calculated as in
(7.25. Using (7.26), we get

LI
N @
Lo P = LR RV ) @19)
2 nk2N E
We obtain on the time scaleNt
( ~OI I:[i] @F(Y) (N).
(Lmig " F)Y) = G . y y (da) [a]+ E (8.15)
where
[
Q‘N@ Cr N1 k=ON ' (8.16)
k2 Nnf 1g
Note that, by (7.27),
LGEYy) = (LAPHE) )+ O'N 2 (8.17)
mig mig . .

For the resampling operator, the only change to {.31) is that ( 7.32) gets replaced
by

(LieMF)Y) = To+ 11+ EM) (8.18)
with 1o; 17 as in (7.32) (with Gy.» replaced by y) and
1 1
H P S o 10 T
2 (N) T (- 1 N W (dr)LN KCgr2
I=L i=1 1. = () k2Nnfig 1 (8.19)
 — mi . '
= Cr N Ky=0N 2
k2 Nnf 1g

After a change to time scaleNt, we therefore have
. 1.
(Ll MF)(y) = (L)) + ON * (8.20)

with (LSS 2 F)(y) as in (7.39).

The Fleming-Viot operator on time scalet reads as in {.39), respectively, on
time scaleNt as in (7.40),

(L( ~)[] F)(y) = ( L(N 20l F)(y) (821)

8.3. Arbitrary truncation level. For every K 2 N, consider the block averages up to
level K 1 on time scales up toN X t, estimate the generator di erence, bound this
by an O(N 1)-term and get the same conclusion as above. There are more indge
involved in the notation, but the argument is the same. The details ae left to the
interested reader.
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9. Multiscale analysis

9.1. The interaction chain. In this section, we prove Theorem1.6. In addition to
Theorem 1.5, what is needed is the convergence of th@int law of the collection

Nity + NKt, with limyn  ty = 1 and limys  ty=N = 0. We already know
that the -block averages for’ > k do not change on time scaletN ¥ and that
this holds in path space as well. Hence, in particular, the j + 1)-block average
converges to a constant path at timesN/ty + Nt forall0 k j. We also have

know that the process on levelk solves a martingale problem on time scaléN ¥,
which we have identi ed and where only the block average on the nextevel appears
as a parameter. Therefore, arguing downward from leve] + 1 to level j, we see
that the Markov property holds for the limiting law. It therefore only remains to
identify the transition probability.

We saw in Section7 that when going from level k + 1 to level k, we get the
corresponding equilibrium law of the levelk limiting dynamics as a McKean-Vlasov
process with parameters ¢; ;dk; «) with equal to the limiting state on level
k + 1. Note here that, instead of N¥*1 s+ N*t, we can write N¥*1 s+ Nkty with
limyi, ty =1 and limyyy  ty=N =0, since an o(1) perturbation of s has no
eectas N I'1 . For more details, consult Dawson et al. (1995 Section 5(f)).

In the remainder of this section, we prove the implications of the sching results
of (dy)k2n for the hierarchical multiscale analysis of the process ( )| involving
clustering versus coexistence (Sectiof.2), related phase transitions (Section9.3),
as well as a more detailed description of the properties of the dierat regimes
(Section 10), as discussed in Sectiori.5.2.

9.2. Dichotomy for the interaction chain. In this section, we prove Theorem1.7.
Proof of Theorem 1.7. Fix j 2 Ng. The rst observation is that the interaction
chain (M ,E”)k: (j+1) = o from Section 1.5.2is a P (E)-valued Markov chain such
that
H\/Ilf’);' [ . o IS asquare-integrable martingale for any * 2 Cy,(E)
(9.1

(because it is bounded). For the analysis of the interaction chain fo Fleming-Viot
di usions, carried out in Dawson et al. (1995 Section 6), this fact was central in
combination with the formula for the variance of evaluations analogas to Propo-
sition 4.4. We argue as follows.

Since the map 7! ¢4 js continuous (cf. Section4.2), the convergence ag !
1 in the local coexistenceregime is a standard argument (se@awson et al. (1995
Section 6a)). In the clustering regime, the convergence to the mono-type state fol-
lows by showing, with the help of the variance formula @.26), that
limj g EL(MSD)[Var (*)] =0 forall ' 2 Cy(E) (cf., Corollary 4.5), so that all

limit points of L[M ()] are concentrated on -measures onE (recall that P(E) is
compact). This argument is identical to the one in Dawson et al. (1995 Section
6a). The mixing measure for the value of the mono-type state can & identi ed via
the martingale property.

It remains to show that in the case WhereEL(Méj))[Var (" )] is bounded away

from zero, the limit points allow for the coexistence of types. The agument in
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Dawson et al. (1995 Section 6a) shows that for =0,
¢ (M)=0if d>0; M =1 y:u2Eg (9.2)

This is no longer true for 6 0. Instead, we have %% (M) 2 [0;1), as proven in
Section 4.3 (see ¢.13), and hence the variance is> 0.

9.3. Scaling for the interaction chain. In this section, we prove Theoremsl.16and
1.17
The proof of the scaling result in the regime of di usive clustering in Dawson
et al. (1995 Section 6(b), Steps 1{3) uses two ingredients:
() Assertion (9.1).
() For ¢! c2(0;1)ask!1 , by Dawson et al. (1995 Eq. (6.12)),

D:( ki) ( kp)+1

Ciei m®
Var M 7fij M7 = Var (f); 8f 2 Cy(E; R):

c+( ki)
(9.3)
In Dawson et al. (1995 Section 6(b)), ({ll) led to the conclusion that if
limjir ( k)=j= i2[0;1],i=1;2, with > »,then
1. . 1
lim Var MmOfijm = = 2 Zvar (f): (9.4)
j!

Thus, as soon as we have these formulae, we get the claim by repe®j the argument
in Dawson et al. (1995 Section 6(b)), which includes the time transformation =
e S in Step 3 to obtain a time-homogeneous expression fromB(4).

We know the necessary rst and second moment formulae from Séion 4.4.
ReplaceDawson et al. (1995 Eq. (6.12)) by (4.29), to see that we must make sure

that
1 1
lim 4 =1 2 (9.5)

My G sisp LT 1
(recall (1.45 and (1.57) for the de nition of dx and my). Note that ( 9.5) remains
valid also for 5, =0.
Moreover, by following the reasoning inDawson et al. (1995 Section 6(b), Step
4), we obtain by using (4.28) instead of Dawson et al. (1995 (6.34)) that

1 1 L Leb
fast growing clusters i T gl T h 0 ©.6)
slowly growing clusters on Gy 1M 1 '
= =]
whenm;n!1 suchthatn=m! | forall 2 (0;1).

Proof of Theorem 1.16: The proof follows by inserting the asymptotics of ¢, dy
and mg obtained in Theorem 1.12and Corollary 1.13into (9.5) or (9.6).

(i) In Cases (a) and (b), the asymptotics in (1.741.75 and (1.82) imply
——d —§ ..
1 =0e®™ 7 Cc>o0 (9.7)
G 1+m,

i=bm ¢ I=i+1
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1
In Case (c), using the fact thatdi«1=¢  m; ! 0 and 2N, M =1, we

obtain 1 1
T4, Tk
: i+ o (9.8)
i=bm c G I=i+1 m
(i) In Case (d), forany "> 0 and| large enough we havgm; R=lj "R=l.
This implies 1
b IT:|1 i I__I__I_l
=exp L1 —+0(m?) LA 9.9
=isg LT M i mier | i) &)

Sincedi+1 =¢  R=i and m; = O(1=l), it follows that
1 1

b g b g b i [ 1[4 11

i i — RIS 2, (9.10)
o G _...1l+m o [ 1
i=b 2jC I=i+1 i=b 2] C

L1

Proof of Theorem 1.17: In Case (A), mx ! 1, which by (9.6) implies fast clus-
tering. In Case (B), m¢ ! K + M > 0, which also implies fast clustering. In
Case (C1), mg (ck k) *'!' C > 0, which implies fast clustering. In Case
(C2), dk=a« mx (1 c©)=c > 0, which implies fast clustering. In Case (C3),

dk=a my k=(ck ( 1)), which implies fast, diusive and slow clustering
depending on the asymptotic behaviour ofk =c. 1
10. Dichotomy between clustering and coexistence for nite N

In this section, we prove TheoremsL.8{1.9.

Proof of Theorem 1.8: The key is the spatial version of the formulae for the rst
and second moments in terms of the coalescent process. The van@ tends to
zero for all evaluations if and only if the coalescent started from tvo individuals at
a single site coalesces into one partition element. Therefore, all weakie to show
is that the hazard function for the time to coalesce isHy, and then show that
limyi: Hy =1 as.ifand only if limyiy Hy = 1. The latter was already
carried out in Section 2.4.2. 1

Proof of TheortlagI 1.9: We rst note that the set of functions -
HM( gn): n2N;" 2Co(E™R); 6n 2 cn ; (10.1)

(recall the de nition of H™ from (2.37 and of @y from (2.7)) is a distribution-
determining subset of the set of bounded continuous functions o (P (E))©. It
therefore su ces to establish the following:

(1) For all initial laws L[X ¢ ~)(0)], where X ( ~) is the C5—-process on y
satisfying our assumptions for a given parameter 2 P (E) (see below
Proposition 1.4), and all admissibll%n;‘; cn, We have

E HMXON(1); 6n) I (G =D D E (10.2)

which implies that L[X ( ~N)(t)] converges to a limit law ast ! 1  that
depends on the initial law only through the parameter .
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(2) Depending on whetherHy <1 orHy = 1, with Hy as in Section2.4.2,
the quantity in the right-hand side of ( 10.2) corresponds to the form of the
limit claimed in ( 1.66{1.67).

Item (2) follows from Theorem 1.8 once we have proved the convergence result
in (10.2), since (1.65 implies that the marginal law of the limiting state is , and
we will see in (1L0.5 below that recurrence of the migration mechanisma (recall
(1.26)) implies that

1

]
() 1 . _ . 1
E,e X i =H"u); i; for'(ui; ;up)= f(up); (10.3)
i=1 i=1
which in turn implies .
M= (W) M (du (10.4)
K

In order to prove item (1), we use duality and express the expectdon in the
left-hand side of (10.2) as an expectation over a coalescerﬂ:[( ) asin (2.32) start-
ing with n partition elements. We therefore know that the number of partition
elements, which is nonincreasing irt, converges to a limit ast ! 1, which is 1 for

exists a nite random time after which the partition elements never meet again, and
keep on moving by migration only. For such a scenario, it was proven iDawson
et al. (1999, Lemma 3.2, that the positions of the partition elements are given,

asymptotically, by k =1;:::;n random walks, all starting at the origin. Using that
the initial state is ergodic, we can then calculate, for' (u1;  ;un) = g-; f(uk),
I L
Jim E HM X Ny, N =T kg e, (10.5)
' k=1

with q(( en) the probability that the coalescent starting in  g.n in the limit has
k remaining partition elements. Furthermore, if the initial positions of a sequence
( c(sTn))mZN of initial states satis es limy;;  d( i(m); (MYy=1 fori 6 j, then for
transient a we know that
S G . PR S G S

mI|!£n O, =0; 8k=1;:::;n 1andml!|fn Oh =1: (10.6)
In view of (10.5), this proves that the law on (P (E))© de ned by the right-hand
side of (10.2) is a translation-invariant and ergodic probability measure, with mean
measure (seeDawson et al. (19959, p. 2310, for details). 1

11. Scaling of the volatility in the clustering regime

In Section 11.1, we prove Theorems1.10 and 1.11, in Section 11.3 we prove
Theorem 1.12.

11.1. Comparison with the hierarchical Fleming-Viot process.

Proof of Theorem 1.11: (a) Rewrite the recursion relation in (1.45) as

o1, N (11.1)

do=0; - :
0 des1 G K+ de
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From (11.1), it is immediate that ¢ 7! d and 7! d are component-wise non-
decreasing.

(b) To compare d with d , the solution of the recursion relation in (1.71) when
o> 0and ¢ =0forall k2 N, simply note that d; = d; = co 0=(Co + o). This
gives
d¢ di; k2N; (11.2)
with d, given by (1.72).

(c) Inserting the de nition my = ( ¢ + dy)=q into (11.1), we get the recursion

relation
CcMmy |

CoMo = o; Cet Mis1 = ka1 + T+mp k 2 No: (11.3)
Iterating ( 11.3), we get
| (11.4)
CcMmy = Ha— 11.4
=0 j=1(1+ m;)
Ignoring the terms in the denominator, we get
1 £

M o I (11.5)

1=0

which proves that ., (=6 |- 1 < 1 im kan, Mk < 1. To prove
the reverse, suppose that ., M < 1. Then ;,, (1+ m;j)= C < 1. Hence
(11.4) gives

11 £

— = R (11.6)
C &,

which after summation overk 2 Ng proves the claim.

(d) We know from (1.72) that dg d. = o=(1+ o k) for k 2 N. Hence, if
limyip x = 1 ,then liminf ki1 kdx 1. To get the reverse, note that iteration
of (11.1) gives

My

(L Ea Bl | . ]
a G " G i
d G s A+ gh) o 6 o (O d_j:}' (11.7)
‘c—1 '
LA @ I o))
—
If 28 § § <1, then the product in the last line tends to 1 asl !1 . Hence,

if also limgip k = 1, then it follows that liminf ,; (1= «dk) 1.

e from the proof of (¢) and (d) that in the Iocall_uialqster]c_le__cfammedk
=0 1 ask!1 when this sum diverges anddy ! 2N, 1= 1+ my)
(0; 1 ) when it converges.
We close with the following observation. Since £6 = ( k+1 k)= k, K2 N,
and

j—l

kel K kel Kk ket dx K2 N: (11.8)
l k . X L 1 "
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we have

i

im «=1

i (11.9)

Fe)

L1

Proof of Theorem 1.10. Combining Lemma 2.13with Theorem 1.11(c), we get the
claim. —1

11.2. Preparation: Mebius-transformations. To draw the scaling behaviour of dy
ask!1l from (11.1), we need to analyse the recursion relation

Xo=0; Xk+1 = fr(Xk); k2 No; (11.10)
where «+
Ck Ck «k
= < = f + : )
fr(X) X+ (ot ) X6 (¢ k) (11.112)

The map x 7! f(x) is a Mebius-transformation on R , the one-point compacti ca-
tion of R. It has determinant cc(ck+ k) Ck k = cﬁ > 0 and therefore is hyperbolic
(seeKooman (1999; a Mebius-transformation f on R is called hyperbolic when it
has two distinct xed points at which the derivatives are not equal to 1 or +1.)

Since 1 |;|
Ck
fox)= ———— X6 + k) 11.12
k(X) X+ (Gt ) (C k) ( )
it is strictly increasing exceptat x = (ck+ ), is strictly convex for x < (c+ k)

and strictly concave forx > (¢ + ), has horizontal asymptotes at heightc, at
x = 1 and vertical asymptotes atx = (¢ + ), and has two xed points
—1

Xp = 3 k[ 1+ 1+40=]2(0;1); % =3 [ 1 1+4c=]2(1 ;0)
(11.13)
of which the rstis attractive ( f2(x; ) < 1) and the second is repulsivef(2(x, ) > 1).
For us, only x, is relevant because, as is clear fromi(l.10), our iterations take place
on (0;1 ). See Fig.11.5for a picture of fy.
In what follows, we will use the following two theorems ofKooman (1999. We
state the version of these theorems foR, although they apply for C as well.

Theorem 11.1. [Kooman (1999, Corollary 6.5]

Given a sequence of Mebius-transformations(f)x2n, ON R that converges point-
wise to a Mebius-transformation f that is hyperbolic. Then, for one choice of
Xo 2 R the solution of the recursion relation xx+1 = fx(xx), k 2 Np, converges to
the repulsive xed point x of f, while for all other choices ofxq it converges to
the attractive xed point x* of f.

Theorem 11.2. [Kooman (1999, Theorem 7.1]

Given a sequence of Mebius-transformationyfy)x2n, ON R whose xed points are

of bounded variation and converge to (necessarily nite) dstinct limits, i.e.,
1 g Il:I Y )

s Xj< 13 K X d <15
k2 No k2 No (11.14)
x"=1lim x, 2R; x =1lm x, 2R; x" 6 x :

ki1 ki1

—
it )i =0; (11.15)
k2 No
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fr(x)

Figure 11.5. The Mdbius-transformation x B f (x).

then, for one choice ofxy 2 R , the solution of the recursion relation Xx+1 = fg(Xk),
k 2 Np, converges tox , while for all other choices ofxg it converges tox™* . If, on
the other hand, R
if0)i > 0; (11.16)
k2 No
then all choices ofxg 2 R lead to di erent limits.

Theorem 11.1 deals with the situation in which there is a limiting hyperbolic
Mebius-transformation, while Theorem 11.2 deals with the more general situation
in which the limiting Mebius-transformation may not exist or may not b e hyper-
bolic, but the xed points do converge to distinct nite limits and they do soin a
summable manner. (In Theorem11.1, it is automatic that the xed points of fy
converge to the xed points of f.) The conditions in (11.1411.15 are necessary
to ensure that the solutions of the recursion relation can reach te limits of the
xed points. Indeed, condition (11.16 prevents precisely that. As is evident from
Fig. 11.5 the single value ofxg for which the solution converges to the limit of the
repulsive xed point must satisfy xo < 0, which is excluded in our case because
Xo = 0. We therefore also do not need the bounded variation condition inthe
second part of the rst line of (11.14).

11.3. Scaling of the volatility for polynomial coe cients. Proof of Theorem 1.12.
Theorem 1.12 showsfour regimes. Our key assumptions are (.78 1.81). For the
scaling behaviour ask ! 1 of the attractive xed point X, given in (11.13, there
are three regimes depending on the value df :

cd if K =1

; ifK=1; P

x;' E%Jik if K 2 (0;1 ) with M*:%K[ 1+ 1+(4=K)]; (11.17)
C k;, IfK =0:
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Our target will be to show that (recall xx from (11.10)
Xk Xy as k!1 ; (11.18)

which is the scaling we are after in Theoremsl.12a{c). We will see that (11.19
holds forK 2 (0;1 ], and also forK =0 when L = 1 . A di erent situation arises
for K =0 when L < 1, namely, xx 1= , which is the scaling we are after in
Theorem 1.12(d).

For the proofs given in Sections11.3.{11.3.4 below we make use of Theo-
rems 11.1{ 11.2 after doing the appropriate change of variables. Along the way, we
need the following elementary facts:

() If (ax) and (b¢) have bounded variation, then both (ax + b)) and (axh)
have bounded variation.

(I If ( ak) has bounded variation andh: R ! R is globally Lipschitz on a
compact interval containing the tail of (ax), then (h(ax)) has bounded
variation.

(1 If ( ax) is bounded and is asymptotically monotone, then it has bounded
variation.

Moreover, the following notion will turn out to be useful. According to Bingham
et al. (1987 Section 1.8), a strictly positive sequence &) is said to be smoothly
varying with index 2 R if

im kral=a = (1) ( n+1); n2N; (11.19)
where al™ is the n-th order discrete derivative, i.e., a” = a and """ = a["}
aLn], k:n 2 No.

(IV) If ( ak) is smoothly varying with index 2 N, then (aLn]) is asymptotically
monotone for alln 2 N, while if 2 N, then the same is true for alln 2 N
with n

This observation will be useful in combination with (K{11I).

According to Bingham et al. (1987, Theorem 1.8.2), if (ax) is regularly varying
with index 2 R, then there exist smoothly varying (a2) and (a?9 with index
suchthatal? a aXanda} a¥ In words, any regularly varying function can
be sandwiched between two smoothly varying functions with the sara asymptotic
behaviour. In view of the monotonicity property in Theorem 1.11(a), it therefore
su ces to prove Theorem 1.12 under the following assumption, which is stronger
than (1.79):

(c); ()i ( k=a); (K* k=qc) are smoothly varying (11.20)
(with index a, b, a b, respectively, 2+a b): '

11.3.1. Case (b). Let K 2 (0;1 ). Put yx = Xx=&. Then the recursion relation in
(11.10 becomes

Yo =0; Yi+1 = Oc(Yk); k2 No; (11.21)
where
Axy + By

e A TLE (11.22)

ok (y) =
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with coe cients

Ck k

Ay = ;. By = i Ck=c«; Dg= + i 11.23
k oot k oot k = Ck k = Ck k ( )
By (1.78), we have cx=G+1 1, and henceAy Ck Cx, Bk Kck, Dk
(K +1)c. Therefore, (11.22) yields

im g(y) = giy)= — 2K y2R: (11.24)

k1 y+(K +1) !

Sinceg is hyperbolic with xed points y =M = 1K[ 1 1+ (4=K)], we can
apply Theorem 11.1and conclude that

kIlilm yk=M*: (11.25)

11.3.2. Case (a). Let K = 1 . Again put yx = Xx=¢. Then the same recursion
relation as in (11.24{11.22 holds with the same coe cients as in (11.23, but this
time cc=qg+1 1 givesAy Cx ¢, Bk Dk k, and

Jmog(y)=9(y)=1; y2R: (11.26)
Since g is not hyperbolic, we cannot apply Theorem11.1. To compute y =
limg Y, , we note that g¢ has xed points

] 0
V= oh (=) wih h ()= = 1 PTEax fac= M D p= 2
(11.27)
(use that ax < O for k large enough). Sinceck= x ! 0, we haveay ! 1 and
be ! 0. It follows that y; ! y* =landy ! y = 1 , so thatwe can

apply Theorem 11.2. To prove that yx ! y* = 1, we need to check that (recall
(11.1411.19)

(1) (\ien, has bounded variation.
@ o, ROR) =0.
(What happens neary, is irrelevant becausexx > 0 for all k.)
To prove (1), note that h* is globally Lipschitz near zero. Since, by {1.23 and

(11.29, 1 1
Ck Ck+1 Ci+1 Ck Ck+1
ar= = 1 : = = ; 11.28
T O o T o (11.28)
it follows from (1.79), (1), (II{IV) and ( 11.20 that (ax) and (k) have bounded
variation. Since ax ! landb¢ ! O, itin turn follows from (I{ll) that (1 =&)

and (b=a) have bounded variation. Via (I{Il) this settles (1).
To prove (2), note that

O/ +\ — k . _ .
= —————— with k = AxDx BgCk: 11.29
9 (Vi) (Ceyr + D)2 (11.29)
Sinceyy > 0 andDy > , we have
—
o (vi) — (11.30)
k2 No k2No K

But = G=aw1 and so, becausex=g+; 1, we have = 2 = G=qu1 2
(ck= k)?! 0. Hence (2) indeed holds.
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11.3.3.Case (c). Let K =0 and L = 1. Put yx = xk=pck k. Then the same
recursion relation as in (L1.2411.22) holds with coe cients
I

—1

[} 1 _
Ac=c — XK o By=ox — C=Pa; Di= ot i
Ck+1  k+1 Ck+1  k+1
(11.31)

By (1.79), ck+1=6 land y+«1= 1, and henceAy Dy ¢, Bx Ck
P Ck k- Therefore (11.22 yields
Jmog(y)=g9ly)=y; y2R: (11.32)

Since g is not hyperbolic, we cannot apply Theorem11.1. To compute y =
limgy y, from (11.27), we abbreviate

Ci+1 k+1 k
= 1; = 1; = —; 11.33
K o K " iy ( )
and write
1 [ 1 [ 1

ak:p:k 1 (1+ k) (1+ k)(1+ k); b = (1+ k)(1+ k): (11.34)

We have ! 0, ¢! 0, ¢! 0. Moreover, (1.7%1.81), (IV) and ( 11.20 imply
that (k k) and (k k) are asymptotically monotone and bounded. Together with
limgs k% ¢ = 1 thisin turn implies that =" ! 0 and k:p_k! 0. Hence
ax! Oandb¢! 1, and therefore (L1.27) yieldsy = 1, so that we can apply
Theorem 11.2.

Tp-prque (1), note that (1.7 1.81), (IV) and ( 11.20 also imply that (p %) and
(1= k2 y), are asymptotically monotone and bounded. By (L1.34) and (I{llI),
this in turn implies that ( ax) and (bc) have bounded variation. Indeed, the rst
equality in (11.34 can be rewritten as

+ )2+ +
S B € MR (11.35)
kI+(@+ ) @+ A+ K

The denominator tends to 2, is Lipschitz near 2, and has bounded v@ation because
( k), ( ), ( k) have bounded variation. The numerator F§quals K k] 2«
plus terms that a ducts of ¢, K an Writing k=" k= k = k2 ¢ and

s et e by _ ﬁéL _

k= k = k x= k? ¢ and using that k? ¢ ' 1 , we therefore easily get the
claim.

To prove (2), note that
—1

Ck + +P—
k=G ———=c= (I+ W@+ k); Cuyg +De= a(l+yg «+ )
Ck+1  k+1
(11.36)
and hence
| O(I+) | 1 1 .
Gy =l o :
one T ane @ 0@F 0@+ v w2

The term under the product equals

1 2y P+ o (11.38)

C—1
which yields (2) because k2  !'1



134 Greven et al.

11.3.4.Case (d). LetK =0and L< 1. Put yx = «Xk. Then the same recursion
relation as in (11.21 11.22 holds with coe cients

1
Ak:ckkf; Bi= G k ki G =5 D=6t & (11.39)
Abbreviate
k+1 1
= 1= : 11.40
k k Ck k ( )

We havek ¢=q! 0Oand, by (1.78), cks1=&« 1, k1= landk ! 1 a
with a2 (1 ;1) the exponentin (1.78). It therefore follows that

Ak Bk k k 1 Ck 1
Ak B S = ! 0 11.41
Dk~ Dk “FT e kw7 “ (1141

D_k Ck «k
Hence, (L1.22 yields
Jmogy)=9(y)=y: y2R: (11.42)

Since g is not hyperbolic, we cannot apply Theorem11.1. To compute y =
limg Y, , we rewrite (11.27) as
L1 . 1]

_ . _ A¢ Dg, _ Bk,
Yo = % ak aﬁ+4h< with  ag = T, b = C_k, (11.43)
and note that
Ck Ck Kk 1
A = kK k = —
k
Ci+1 Zk+1 Ck k (11.44)
_ ok ok 1
D=0 k k ka1 = % . KoE

Sincek? y=a¢ ! L< 1 andky! 1 awith a2 (1 ;1) the exponent in
({78 it follows that a ! 1andbc ! L=(1 a)° Hencey, ! y = ¢!

1+4L=(1 a)2), so that we can apply Theorem11.2

To prove (1), note that (1.7 1.81), ({IV) and ( 11.20 imply that ( ax) and (b)
have bounded variation. This yields the claim via (11.43.

To prove (2), note that

c k;l = @+ w);
— = CERL)

k

+
Coyp + D= Lov gt (= a 1+ 4y + =
k Ck
and, hence,
C— %+
de(vic) PRt (11.46)
k2 No k2o ¢ Yic)
The term under the product equals
1 2y" 1) «[1+ o) (11.47)

—1
Sincey® 1, it follows that (2) holds if and only if .,  « =1, which by (11.9
and (11.40 holds if and only limy; x = 1 . Theorem 11.2 shows that failure of
(2) implies that yx converges to a limit di erent from 1.
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11.4. Scaling of the volatility for exponential coe cients. Proof of Theorem 1.14.
In this section, we brie y comment on how to extend the proof of Theorem1.12to
cover the case of Theorem..14.

The claims made for Cases (A) and (B) follow from minor adaptations d the
arguments for Cases (a) and (b) in Sectionsl1.3.2and 11.3.1. The claim made
for Case (C1) follows from Theorem1.11(d). The claims made for Cases (C2)
and (C3) follow from minor adaptations of the arguments for Casegb) and (c) in
Sections11.3.1and 11.3.2 The details are left to the reader.

12. Notation index

12.1. General notation.

E ; compact Polish space of types.
P (E) ; set of probability measures onE.
M (E) ; set of measurable functions orkE.
M ([0;1]); set of non-negative measures on [Q].
M ¢ ([0;1]) ; set of nite non-negative measures on [01].
L ; law.
=) ; weak convergence on path space.
2M ([0;1]); (cf. (1.5).
2M ¢ ([0;1]) ; (cf. Section 1.3).

@@’i‘:)[ al ; Gateaux-derivative of F with respect to x; in the direction 4

(cf. (1.13)).

%[ u; vl; second Gateaux-derivative ofF with respect to x in the
directions ,  (cf. (1.16).

D(T;E) ; setof adhg paths in E indexed by the elements ofT R and
eqyigped with the SkorokhodJ;-topology.

Cp E;EY ; set of continuous bounded mappings fronE to E°.

12.2. Interacting -Cannings processes.

n 5 hierarchical group of orderN (cf. (1.21)).
c=(fxjkzn, 2 (051 YNo - migration coe cients (cf. ( 1.25).
= k2N, 2M ¢ ([0;1)Ne ;o spring measures (cf. (1.29)).
k = «k([0;1]); resampling rates (cf. (L.30)).
d=(dk)k2n, ; Volatility constants (cf. ( 1.45)).

= (Mi)kan, 5 (cf. (1.57).
k=12 k; (cf. (1.57).
k;  (cf. (1.72).

Bk( ) ; k-macro-colony around (cf. (1.23)).

Yy« ; type distribution in By ( ) (cf. (1.31)).

C -process; non-spatial continuum-mass -Cannings process (cf. Sec-
tion 1.3.7).

alN)(; ) ; hierarchical random walk kernel on  (cf. (1.26)).
Cﬁ;*-process; hierarchically interacting Cannings process on y (cf. Sec-

tion 1.4.4).
F ; algebra of test functions onP(E) N (cf., (1.34).
LN, Lfn’\i'g), L&) generators of the mean- eld Cannings process (cf.

(1.11)).
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LO N, Lfmé\‘), L generators of the hierarchical Cannings process (cf.

(1.36)).
raB «( ) » reshuing-resampling map (cf. ( 1.39)).
X~ s CcE—-process (cf. Sectionl.4.4).
Y;(k N)() . macroscopic observables (= block averages) oK ( N (cf.
(1.49).
y[” ; 1-block averages indexed block-wise (cf.7(189)).

LSk, Lf:i'g)[k] ; generators of thek-block averaged hierarchically inter-
acting Cannings process at the time scalé“N (cf. 6.2.2).

Gnk 5 K-level truncation of  (cf. (1.42)).

X (N) - mean- eld interacting Cannings process (cf. Sectionl.3.2).

Qx (du; dv) ; Fleming-Viot di usion function (cf. ( 1.19).

LS% Le L9 L ; generators of the McKean-Viasov process (cf.1(17)).
Z%% ;' McKean-Vlasov process with immigration-emigration (cf. Sec-
tion 1.3.3).

cd;

~;unique equilibrium of Z (cf. (4.1)).
(M,E”)k: (i+1) =0 > interaction chain (cf. Section 1.5.2).

.....

12.3. Spatial -coalescents.

n ; set of all partitions of [n] into disjoint families (cf. ( 2.4)).
cn ; Setof G-labelled partitions of [n] (cf. (2.7)).
Sen 2 &n ; G-labelled partition into singletons (cf. (2.9)).
, &, partitions of N, G-labelled partitions of N (cf. (2.11)).
L( g); setoflabels of partition ¢ (cf. (2.10).
E)), ; coalescence-rates (cf.A.14)).
in; operation of projection from [m] (respectively, N) onto [n].
L©) ;L&) . generators of the spatial coalescent o5 (cf., (2.23).

' =mig * “coal
LC ) ,Lfm;) ,L(COE';,') ; generators of the spatial -coalescent with non-
local coalescence (cf.4.34)).
P ; eld of Poisson point processes driving the spatial -coalescent (d.
(2.19).
P( ~) ;. driving Poisson point process for the spatialn- -coalescent with
non-local coalescence (cf.A.29)).

c® ; spatial nite n--coalescent on G (cf. (2.19)).
C(®) ; spatial -coalescent on G (cf. (2.20)).
Cct ~N) : spatial _-coalescent with non-local coalescence (cf2(32).
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