
ALEA, Lat. Am. J. Probab. Math. Stat. 11 (2), 445–458 (2014)

Bounds for left and right window cutoffs

Javiera Barrera and Bernard Ycart
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Abstract. The location and width of the time window in which a sequence of
processes converges to equilibrum are given under conditions of exponential con-
vergence. The location depends on the side: the left-window and right-window
cutoffs may have different locations. Bounds on the distance to equilibrium are
given for both sides. Examples prove that the bounds are tight.

1. Introduction

The term “cutoff” was introduced by Aldous and Diaconis (1986), to describe
the phenomenon of abrupt convergence of shuffling Markov chains. Many families
of stochastic processes have since been shown to have similar properties: see Levin
et al. (2009, Chap. 8) for an introduction to the subject, Saloff-Coste (2004) for
a review of random walk models in which the phenomenon occurs, and Chen and
Saloff-Coste (2008) for an overview of the theory. Consider a sequence of stochastic
processes in continuous time, each converging to a stationary distribution. Denote
by dn(t) the distance between the distribution at time t of the n-th process and
its stationary distribution, the ‘distance’ having one of the usual definitions (total
variation, separation, Hellinger, relative entropy, Lp, etc.). The phenomenon can be

Received by the editors December 27, 2013; accepted August 3, 2014.

1991 Mathematics Subject Classification. 60J25.
Key words and phrases. cutoff; exponential ergodicity.
J. Barrera was partially supported by grants Anillo ACT88, Fondecyt no1100618, and Basal

project CMM (Universidad de Chile). B. Ycart was supported by Laboratoire d’Excellence TOU-

CAN (Toulouse Cancer).

445

http://alea.impa.br/english/index_v11.htm
http://jbarrera.uai.cl/
http://ljk.imag.fr/membres/Bernard.Ycart


446 Barrera and Ycart

expressed at three increasingly sharp levels (more precise definitions will be given
in section 2).

(1) The sequence has a cutoff at (tn) if dn(ctn) tends to the maximum M of
the distance if c < 1, to 0 if c > 1.

(2) The sequence has a window cutoff at (tn, wn) if lim inf dn(tn + cwn) tends
to M as c tends to −∞, and lim sup dn(tn + cwn) tends to 0 as c tends to
+∞.

(3) The sequence has a profile cutoff at (tn, wn) with profile F if F (c) =
lim dn(tn + cwn) exists for all c, and F tends to M at −∞, to 0 at +∞.

There are essentially two ways to interpret the cutoff time tn: as a mixing time
Levin et al. (2009, Chap. 18), or as a hitting time Mart́ınez and Ycart (2001). These
two interpretations are equivalent for the total variation and separation distances
where couplings times can characterize both distances. Also the cutoff definition
can be applied directly to hitting times, see Connor (2010). For samples of Markov
chains, the latter interpretation can be used to determine explicit online stopping
times for MCMC algorithms Ycart (2000); Lachaud (2005); Lachaud and Ycart
(2006); Diédhiou and Ngom (2009).

Sequences of processes for which an explicit profile can be determined are scarce.
The first example of a window cutoff concerned the random walk on the hypercube
for the total variation distance; it was treated by Diaconis and Shahshahani shortly
after the introduction of the notion in 1987. The profile cutoff result was proved
by Diaconis et al. (1990). Cutoffs for random walks on more general products or
sums of graphs have been investigated in Ycart (2007), and more recently by Miller
and Peres (2012). Random walks on the hypercube can be interpreted as samples
of binary Markov chains. Diaconis et al.’s results were generalized to samples of
continuous and discrete time finite state Markov chains for the chi-squared and
total variation distance in Ycart (1999), then to samples of more general processes,
for four different distances in Barrera et al. (2006, section 5) and for separation
distance in Connor (2010) (see also Levin et al. (2009, Chap. 20)). Other examples
of profile cutoffs include the riffle shuffle for the total variation distance by Bayer
and Diaconis (1992), and birth and death chains for the separation distance by
Diaconis and Saloff-Coste (2006) or the total variation distance by Ding et al.
(2010). When the maximum M of the distance is 1 (total variation, separation),
the profile F decreases from 1 to 0. Thus it can be seen as the survival function
of some probability distribution on the real line. A Gaussian distribution has been
found for the riffle shuffle with the total variation distance in Bayer and Diaconis
(1992, Theorem 2) or for some birth and death chain with the separation distance
in Diaconis and Saloff-Coste (2006, Theorem 6.1). A Gumbel distribution has
been found for samples of finite Markov chains and the total variation distance
in Diaconis et al. (1990); Ycart (1999). For the Hellinger, chi-squared, or relative
entropy distances, other profiles were obtained in Barrera et al. (2006).

Explicit profiles are usually out of reach, in particular for the total variation
distance: only a window cutoff can be hoped for. However the definition above,
which is usually agreed upon (Chen and Saloff-Coste (2008, Definition 2.1) or Levin
et al. (2009, p. 218)), may not capture the variety of all possible situations. As will
be shown here, the location of a left-window cutoff should be distinguished from
that of a right-window cutoff: see Figure 18.2, p. 256 of Levin et al. (2009). The
main result of this note, Theorem 2.2, expresses the characteristics of the left and
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right windows in terms of a decomposition into exponentials of the distances dn(t).
It refines some of the results in Chen and Saloff-Coste (2010), in particular Theorem
3.8. Explicit bounds on the distance to equilibrium are given. They are proved to
be tight, using examples of cutoffs for Ornstein-Uhlenbeck processes (see Lachaud
(2005)).

The paper is organized as follows. Section 2 contains formal definitions and
statements. Examples are given in section 3. Theorem 2.2 is proved in section 4.

2. Definitions and statements

For each positive integer n a stochastic process Xn = {Xn(t) ; t > 0} is given.
We assume that Xn(t) converges in distribution to νn as t tends to infinity. The
convergence is measured by one of the usual distances (total variation, separation,
Hellinger, relative entropy, Lp, etc.), the maximum of which is denoted by M
(M = 1 for total variation and separation, M = +∞ for relative entropy, chi-
squared. . . ). The distance between the distribution of Xn(t) and νn is denoted by
dn(t).

Definition 2.1. Denote by (tn) and (wn) two sequences of positive reals, such
that wn = o(tn). They will be referred to respectively as location and width. The
sequence (Xn) has:

(1) a left-window cutoff at (tn, wn) if:

lim
c→−∞

lim inf
n→∞

inf
t<tn+cwn

dn(t) = M ;

(2) a right-window cutoff at (tn, wn) if:

lim
c→+∞

lim sup
n→∞

sup
t>tn+cwn

dn(t) = 0 ;

(3) a profile cutoff at (tn, wn) with profile F if:

∀c ∈ R , F (c) = lim
n→∞

dn(tn + cwn)

exists and satisfies:

∀c ∈ R , 0 < F (c) < M and lim
c→−∞

F (c) = M , lim
c→+∞

F (c) = 0 .

If both left- and right-window cutoffs hold for the same location tn and width wn,
then a (tn, wn)-cutoff holds in the sense of Definition 2.1 in Chen and Saloff-Coste
(2008). The location and width are not uniquely determined. If a left-window
cutoff holds at location tn, it also holds at any location t′n such that t′n 6 tn.
Symmetrically, if a right-window cutoff holds at location tn, it also holds at any
location t′n such that t′n > tn. Moreover, if a cutoff holds for width wn, it also holds
for any width w′

n such that w′
n > wn. The location and width of a left-window

cutoff will be said to be optimal if for any c < 0:

lim inf
n→∞

inf
t<tn+cwn

dn(t) < M .

Those of a right-window cutoff are optimal if for any c > 0:

lim sup
n→∞

sup
t>tn+cwn

dn(t) > 0 .

This corresponds to strong optimality in the sense of Chen and Saloff-Coste (2008,
Definition 2.2). Of course, if a profile cutoff holds, then the left- and right-window
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cutoffs hold at the same location and width, which are optimal for both. Examples
will be given in section 3.

Our definition can be useful to describe the convergence of chains that do not
show a cutoff but instead have a multiple step convergence. An example due to D.
Aldous, is illustrated on Figure 18.2, p. 256 of Levin et al. (2009). For that example,
one can check that there is a ((15 + 5/3)n,

√
n) left-window cutoff and a ((15 +

6)n,
√
n) right-window cutoff. So our definition can be seen as a refined version

of pre-cutoff (compare with Section 18.1 of that same book). Furthermore, when
there is a cutoff, definition 2.1 can capture different asymptotic behaviors to the
left and right of the cutoff instant. More importantly, distinguishing locations and
widths on both sides may permit to capture the exact profile of convergence. This
will be illustrated by the following example (Figure 2.1), which is a modification
of the one studied by Lacoin (2014). Consider a continuous Markov chain (Xn)

Figure 2.1. The Markov chain is composed of three birth and
death chains and an extra node as in the figure. The first birth
and death chain goes from node A to node B: it has n+ 1 nodes,
it has birth rates 1 and death rates 2−n. From B to C, two birth
and death chains are considered, each starting from B, and leading
to C. The upper branch has n nodes (including B) with birth rate
1 except for node B which has birth rate 1/2 and with death rate

2−n−dnβe. The lower branch (nodes in red) has n′ = n+dnβe nodes
and also has birth rate 1 except for node B which has birth rate
1/2 and death rate 2−n. Finally, at the right of the chain there is
node D and there we have birth rate 1 from C to D and death rate
2−n3

from D to C.

the transitions of which are those of Figure 2.1. The chain is reversible and the

equilibrium measure is easily calculated: it gives weight 1 − O(2−n3

) to state D.
When the chain starts from state A, hitting D is almost equivalent to reaching
stationarity in total variation distance. More precisely if Tn is the hitting time of
D starting from A, then dn(t) = P(Tn > t) + o(1). Arguing as Lacoin (2014), as
death rates are small, with probability tending to one, (Xn) does not backtrack
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before t = 4n. So (Xn) reaches D for the first time using either the upper branch
or the lower branch, each with probability 1/2. In the first case Tn is the sum of
2n exponential random variables and in the second case Tn is the sum of 2n+ dnβe
exponential random variables. From Chebychev’s inequality, it can be concluded
that there is cutoff at time (Tn) = 2n+nβ . Yet more precise estimates are obtained
using the central limit theorem:

limn→∞ P(Tn > 2n+ nβ + c(2n+ nβ)1/2) = 1
2 (1− Φ(c)) for c > 0,

limn→∞ P(Tn > 2n− c(2n)1/2) = 1
2 (1− Φ(c)) + 1

2 for c > 0.

where Φ is the cumulative distribution of the standard normal distribution. For
1/2 < β < 1, and using the total variation distance, the right-window cutoff is at
(t+n , w

+
n ) = (2n + nβ , (n + nβ/2)1/2) and the left-window cutoff is at (t−n , w

−
n ) =

(2n, n1/2). For 0 < β 6 1/2, left and right window are the same, but for β > 1/2,
they are different.

Our main result relates the location and width of the left- and right-window
cutoffs to the terms of a decomposition into exponentials of the functions dn(t).
From now on, we assume M = +∞: the distance is relative entropy, Lp for p > 1,
etc. The result is expressed for a sequence of continuous time processes, it could
be written in discrete time, at the expense of heavier notations.

Theorem 2.2. Assume that for each n, there exist an increasing sequence of pos-
itive reals (ρi,n), and a sequence of non negative reals (ai,n) with a1,n > 0, such
that:

dn(t) =

+∞∑
i=1

ai,n e
−ρi,nt . (2.1)

Denote by Ai,n the cumulated sums of (ai,n), truncated to values no smaller than
1.

Ai,n = max{1, a1,n + · · ·+ ai,n} .

For each n, define:

tn = sup
i

log(Ai,n)

ρi,n
, (2.2)

wn =
1

ρ1,n
, (2.3)

rn = wn (log(ρ1,ntn)− log(log(ρ1,ntn))) . (2.4)

Assume that:

(1) for n large enough,
0 < tn < +∞ , (2.5)

(2)
lim

n→∞
ρ1,ntn = +∞ , (2.6)

(3) there exists a positive real α such that for n large enough, and for all i > 2,

ai,n 6 αAi−1,n . (2.7)

Then (Xn) has a left-window cutoff at (tn, wn), a right-window cutoff at (tn +
rn, wn). More precisely:

∀c < 0 , lim inf
n→∞

dn(tn + cwn) > e−c , (2.8)

∀c > 0 , lim sup
n→∞

dn(tn + rn + cwn) 6 e−c . (2.9)
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Conditions (2.5) and (2.7) are technical. Condition (2.6) is known as Peres
criterion: Chen and Saloff-Coste (2008) have proved that it implies cutoff for Lp

distances with p > 1, and given a counterexample for the L1 distance. A conse-
quence is that wn = o(tn) as requested by Definition 2.1, and more precisely that
wn = o(rn) and rn = o(tn).

A decomposition into exponentials of the distance to equilibrium such as (2.1)
holds for many processes: functions of finite state space Markov chains, functions
of exponentially ergodic Markov processes, etc. Assuming that the decomposition
only has non-negative terms is a stronger requirement: see Chen and Saloff-Coste
(2010, section 4). It implies that dn(t) is a decreasing function of t. We do not
view it as a limitation. Indeed, if (2.1) has negative terms, it can be decomposed
as dn(t) = d+n (t)− d−n (t), with:

d+n (t) =
+∞∑
i=1

max{ai,n, 0} e−ρi,nt and d−n (t) = −
+∞∑
i=1

min{ai,n, 0} e−ρi,nt . (2.10)

and apply our main result to each term to obtain the behavior of dn as in the
following corollary:

Corollary 2.3. If dn(t) has negative terms, let d+n (t) and d−n (t) be as in (2.10).
Assume that Theorem 2.2 applies to both d+n (t) and d−n (t), leading to left-window
cutoffs at (t+n , w

+
n ) and (t−n , w

−
n ), right-window cutoffs at (t+n + r+n , w

+
n ) and (t−n +

r−n , w
−
n ). Then for all n, w−

n < w+
n , and

lim sup
n→∞

t−n
t+n

6 1 .

Moreover if lim supn→∞ t−n /t
+
n < 1 then equations (2.8) and (2.9) remain valid

for dn(t) with (tn, rn, wn) = (t+n , r
+
n , w

+
n ).

Proof : The fact that dn(t) is nonnegative implies that the leading term of d+n (t)
is larger than the leading term of d−n (t). Therefore for all n, ρ+1,n < ρ−1,n, hence

w+
n > w−

n . For the same reason, (2.8) and (2.9) imply:

∀c > 0 lim
n→∞

d+n (ct
+
n ) = 0 =⇒ lim

n→∞
d−n (ct

+
n ) = 0 ,

hence lim supn→∞ t−n /t
+
n 6 1.

If lim supn→∞ t−n /t
+
n < 1 then for n large enough, t−n < t+n , and t−n +r−n < t+n+r+n .

Hence,

lim
n→∞

d−n (t
+
n + cw+

n ) = lim
n→∞

d−n (t
+
n + r+n + cw+

n ) = 0.

As a consequence,

lim inf
n→∞

dn(t
+
n + cw+

n ) = lim inf
n→∞

d+n (t
+
n + cw+

n ) ,

lim sup
n→∞

dn(t
+
n + r+n + cw+

n ) = lim sup
n→∞

d+n (t
+
n + r+n + cw+

n ) .

�

Theorem 3.8 of Chen and Saloff-Coste (2010) is related to Theorem 2.2 above: it
describes a (tn, rn)-cutoff but, as we shall see in the following result, rn should be
seen as a correction on the location of the window. A combination of the hypotheses
of the two theorems leads to the next result where a more detailed description of
the convergence is obtained:
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Corollary 2.4. Consider dn(t) as defined in equation 2.1. For C > 0 let jCn :=
inf{i : Ai,n > C},and let dCn (t) be defined by

dCn (t) := Ajn,ne
−tρjn,n +

mn∑
i=jn+1

ai,ne
−tρi,n .

Assume Theorem 2.2 applies to dCn (t), and denote by tn(C), rn(C), and wn(C) the
corresponding times. Assume moreover that there exist C > 0 and ε > 0 such that:

lim
n→∞

jCn −1∑
i=1

e−εtnρi,nai,n = 0 (2.11)

Then dn also satisfies inequalities (2.9) and (2.8) for tn(C), rn(C) and wn(C).

Proof : Let S1(t) =
∑jCn −1

i=1 e−tρi,nai,n. It is easy to see that for any C > 0

dCn (t) ≤ dn(t) ≤ S1(t) + dCn (t).

The left-window inequality (2.8) is straightforward. To obtain the right-window
inequality (2.8) we need to prove that

lim
n→∞

S1(tn(C) + rn(C) + cwn(C)) = 0.

Corollary 3.3 in Chen and Saloff-Coste (2010) says that if there exists ε > 0 for
which equation (2.11) is valid, then it is valid for any ε > 0, in particular for ε = 1.
Therefore

lim
n→∞

S1(tn(C) + rn(C) + cwn(C)) ≤ lim
n→∞

jCn −1∑
i=1

e−tn(C)ρi,nai,n = 0.

�
Equation 2.11 is the same as equation (b) in Theorem 3.8 of Chen and Saloff-

Coste (2010); equation (a) in Theorem 3.8 is the same as condition (2) in Theorem
2.2 when we apply it to dCn . Finally the existence of α stated in condition (3)
in Theorem 2.2 is not requested in Theorem 3.8 of Chen and Saloff-Coste (2010).
Therefore, as already said, this Corollary can be viewed as a combination of both re-
sults. Theorem 3.8 states that there is (tn(C), rn(C))-cutoff. Here, a (tn(C), wn(C))
left-cutoff is obtained, which is more precise because wn(C) = o(rn(C)). For the
other side, we obtain a (tn(C)+rn(C), wn(C)) right-cutoff. This result gives a more
precise description of the profile of convergence than our Theorem 2.2, because if
jCn > 1 and the location of the cutoff does not change, that is tn(C) = tn, the width
of the windows will be improved from 1/ρ1,n to 1/ρjCn ,n.

In the next section, sequences of processes having a profile cutoff at (tn, wn) or
(tn + rn, wn), with profile F (c) = e−c will be constructed, thus proving that (2.8)
and (2.9) are tight.

3. Examples

Several examples from the existing literature could be written as particular cases
of Theorem 2.2: reversible Markov chains for the L2 distance Ycart (1999); Chen
and Saloff-Coste (2010), n-tuples of independent processes for the relative entropy
distance Barrera et al. (2006), random walks on sums or products of graphs Ycart
(2007), samples of Ornstein-Uhlenbeck processes Lachaud (2005). The objective
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of this section is not an extensive review of possible applications, but rather the
explicit construction of some sequences illustrating the tightness of (2.8) and (2.9),
and the possible locations of window cutoffs. We shall use here the relative entropy
distance, also called Kullback-Leibler divergence: if µ and ν are two probability
measures with densities f and g with respect to λ, then:

d(µ, ν) =

∫
Sµ

f log(f/g) dλ ,

where Sµ denotes the support of µ. The main advantage of choosing that distance
is its simplicity for dealing with tensor products:

d(µ1 ⊗ µ2, ν1 ⊗ ν2) = d(µ1, ν1) + d(µ2, ν2) .

Let a and ρ be two positive reals. Our building block will be a one-dimensional
Ornstein-Uhlenbeck process, denoted by Xa,ρ (see Lachaud (2005) on cutoff for
samples of Ornstein-Uhlenbeck processes). The process Xa,ρ is a solution of the
equation:

dX(t) = −ρ

2
X(t) dt+

√
ρdW (t) ,

where W is the standard Brownian motion. The distribution of Xa,ρ(0) is normal

with expectation
√
2a and variance 1. It can be easily checked that the distribution

of Xa,ρ(t) is normal with expectation
√
2a e−ρt/2 and variance 1. Therefore the

(relative entropy) distance to equilibrium is:

d(t) = a e−ρt .

Consider now two sequences (an) and (ρn) of positive reals, and assume that (an)
tends to infinity. Theorem 2.2 applies to the sequence of processes (Xan,ρn) with
a1,n = an, ρ1,n = ρn, and ai,n = 0 for i > 1. The location and width are:

tn =
log(an)

ρn
and wn =

1

ρn
.

The sequence has a profile cutoff at (tn, wn) with profile F (c) = e−c. Indeed:

dn(tn + cwn) = ane
−(ρntn+c) = e−c .

Hence (2.8) is tight. For ρn ≡ ρ, Xan,ρ is a Markov process with a fixed semigroup,
and an increasingly remote starting point: cutoff for such sequences were studied
in Mart́ınez and Ycart (2001).

Using tuples of independent Ornstein-Uhlenbeck processes, one can construct
sequencesXn for which the distance to equilibrium is any finite sum of exponentials.
Let mn be an integer. For i = 1, . . . ,mn, let ai,n and ρi,n be two positive reals.
Define the process Xn as:

Xn =
(
Xa1,n,ρ1,n , . . . , Xamn,n,ρmn,n

)
,

where the coordinates are independent, each being an Ornstein-Uhlenbeck process
as defined above. The distance to equilibrium of Xn is:

dn(t) =

mn∑
i=1

ai,n e
−ρi,nt . (3.1)

Let n be an integer larger than 1. Let βn be a real such that 0 6 βn 6 1. Define:

a1,n = en , ρ1,n =
n

1 + βn

n log
(

n
log(n)

) , (3.2)
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and for i = 2, . . . ,mn = 9n,

ai,n = e−n , ρi,n = log(en + (i− 1)e−n) . (3.3)

The following notation is introduced for clarity:

`n = log

(
n

log(n)

)
.

Using (2.2), (2.3), and (2.4), one gets:

tn = 1 +
`nβn

n
=

n

ρ1,n
, wn =

tn
n

, rn =
tn`n
n

= `nwn . (3.4)

Lemma 3.1. Let dn be defined by (3.1), with ai,n and ρi,n given by (3.2) and (3.3).
Assume the following limit (possibly equal to +∞) exists:

γ = lim
n→∞

(1− βn)`n . (3.5)

Then:

∀c ∈ R , lim
n→∞

dn (tn + (1− βn)rn + cwn) = e−c(1 + e−γ) . (3.6)

A few cases that are obtained applying Lemma 3.1 are listed below. They illus-
trate the variety of possible behaviors.

• βn ≡ 1: a cutoff with profile 2e−c occurs at (tn, wn).
• βn ≡ β ∈ [0, 1): a cutoff with profile e−c occurs at (tn+(1−β)rn, wn). For
β = 0, this proves that (2.9) is tight.

• βn = (1+(−1)n)/2: a left-window cutoff occurs at (tn, wn), a right-window
cutoff at (tn + rn, wn). The locations and width are optimal.

• βn = 1 − γ/`n, with γ > 0: a cutoff with profile e−c(1 + eγ) occurs at
(tn, wn).

• βn = 1 − (2 + (−1)n)/`n: a (tn, wn)-cutoff occurs, tn and wn are optimal.
Yet no value of c is such that dn(tn + cwn) converges: there is no profile.

Proof : The main step is the following limit.

lim
n→∞

dn

(
1 +

`n
n

+
c

n

)
= e−c(1 + e−γ) . (3.7)

In the sum defining dn, let us isolate the first term: dn
(
1 + `n

n + c
n

)
= D1 +D2 ,

with

D1 = a1,n exp

(
−ρ1,n

(
1 +

`n
n

+
c

n

))
and

D2 =

mn∑
i=2

ai,n exp

(
−ρi,n

(
1 +

`n
n

+
c

n

))
.

The first term is:

D1 = exp

(
− (1− βn)`n + c

tn

)
.

Its limit is e−(γ+c) because (1 − βn)`n tends to γ and tn tends to 1. The second
term is:

D2 =
+∞∑
i=2

e−n
(
en + (i− 1)e−n

)−(1+ `n
n + c

n ) .
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ThusD2 is a Riemann sum for the decreasing function x 7→ x−(1+ `n
n + c

n ). Therefore,∫ en+mne
−n

en+e−n

x−(1+ `n
n + c

n ) dx < D2 <

∫ en+(mn−1)e−n

en
x−(1+ `n

n + c
n ) dx . (3.8)

Now:

(en)−(
`n
n + c

n )

`n
n + c

n

= e−c log(n)

`n + c
,

which tends to e−c. Moreover,

(en + (mn − 1)e−n)−(
`n
n + c

n )

`n
n + c

n

6 n

`n + c

(
m

1/n
n

e

)−(`n+c)

,

which tends to 0 for mn = 9n > e2n. So the upper bound in (3.8) tends to e−c.
There remains to prove that the difference between the two integrals tends to 0.
That difference is smaller than:∫ en+e−n

en
x−(1+ `n

n + c
n ) dx =

(
(en)−(

`n
n + c

n )

`n
n + c

n

)(
1− (1 + e−2n)−(

`n
n + c

n )
)

.

We have seen that the first factor tends to e−c. The second factor tends to 0, hence
the result.

Let us now deduce (3.6) from (3.7). Using (3.4),

1 +
`n
n

+
c

n
= tn + (1− βn)

rn
tn

+ c
wn

tn
.

Hence:

lim
n→∞

dn

(
tn + (1− βn)

rn
tn

+ c
wn

tn

)
= e−c(1 + e−γ) . (3.9)

Let us write:

tn + (1− βn)
rn
tn

+ c
wn

tn
= tn + (1− βn)rn + cwn − ((1− βn)rn + cwn)

(
`nβn

ntn

)
.

For βn = 1 and c < 0 we have:

0 6 dn (tn + cwn)− dn

(
tn + c

wn

tn

)
6

(
exp

(
ρmn,n(−c)wn

`n
n

)
− 1

)
dn

(
tn + c

wn

tn

)
6

(
exp

(
(−c)c′

`n
n

)
− 1

)
dn

(
tn + c

wn

tn

)
.

where the last inequality is obtained from 1 6 ρmn,n

ρ1,n
6 c′ with c′ = 2(1 + 6/e). On

the other case:

0 6 dn

(
tn + (1− βn)

rn
tn

+ c
wn

tn

)
− dn (tn + (1− βn)rn + cwn)

6
(
exp

(
ρ1,n

(
((1− βn)rn + cwn)

`nβn

n

))
− 1

)
dn (tn + (1− βn)rn + cwn)

=

(
exp

(
`2n(1− βn)βn + c`nβn

n

)
− 1

)
dn (tn + (1− βn)rn + cwn) .



Bounds for left and right window cutoffs 455

Therefore if Mn = max
{
exp

(
(−c)c′ `nn

)
, exp

(
`2n(1−βn)βn+c`nβn

n

)}
then :

|dn
(
tn + (1− βn)

rn
tn

+ c
wn

tn

)
− dn (tn + (1− βn)rn + cwn) |

≤ dn

(
tn + (1− βn)

rn
tn

+ c
wn

tn

)
(Mn − 1)

Hence the difference tends to 0 because Mn − 1 tends to 0, since
`2n
n tends to

0. �

4. Proof of Theorem 2.2

Proofs of inequalities (2.8) and (2.9) are given below.

Proof of (2.8): Let c be a negative real. Fix ε such that 0 < ε < −c. Using (2.2),
define i∗n as:

i∗n = min

{
i , tn − εwn 6 log(Ai,n)

ρi,n
6 tn

}
. (4.1)

From (2.6), tn + cwn is positive for n large enough. Then:

dn(tn + cwn) =
+∞∑
i=1

ai,n exp(−ρi,n(tn + cwn))

>
i∗n∑
i=1

ai,n exp(−ρi,n(tn + cwn))

> Ai∗n,n
exp(−ρi∗n,n(tn + cwn))

> exp((−εwn − cwn)ρi∗n)

> exp((−εwn − cwn)ρ1,n)

= e−c−ε .

Since the inequality holds for all ε > 0, the result follows. �

Proof of (2.9): Let c be a positive real. Our goal is to prove the following inequal-
ity.

dn(tn + rn + cwn) 6 e−(rn+cwn)ρ1,n
tn

rn + cwn

(
rn + cwn

tn
+ eCn

)
, (4.2)

where Cn tends to 0 as n tends to infinity. Let us first check that (4.2) implies
(2.9). Observe that rn+cwn

tn
tends to 0. Using (2.3) and (2.4):

e−(rn+cwn)ρ1,n
tn

rn + cwn
= e−c 1

1− log(log(tnρ1,n))−c
log(tnρ1,n)

.

By (2.6) the right-hand side tends to e−c, hence the result.
To prove (4.2), split the sum defining dn(tn + rn + cwn) into two parts S1 and

S2, with:

S1 =
l∑

i=1

ai,n exp(−ρi,n(tn + rn + cwn))
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and

S2 =
+∞∑

i=l+1

ai,n exp(−ρi,n(tn + rn + cwn)) .

Using the fact that the ρi,n are increasing,

S1 6 Al,n exp(−ρ1,n(tn + rn + cwn)) . (4.3)

To bound S2, the idea is the same as in the proof of (3.6). From (2.2), we obtain
exp(−ρi,ntn) 6 A−1

i,n. Therefore:

S2 6
+∞∑

i=l+1

ai,nA
−(1+(rn+cwn)/tn)
i,n . (4.4)

The function x 7→ x−(1+(rn+cwn))/tn is decreasing, and its integral from l to +∞
converges. The right-hand side of (4.4) is a Riemann sum for that integral. There-
fore:

S2 6 tn
rn + cwn

A
−(rn+cwn)/tn
l,n . (4.5)

If tn =
log(A1,n)

ρ1,n
, or equivalently A1,n = exp(tnρ1,n), the application of (4.3) and

(4.5) for l = 1 yields:

dn(tn + rn + cwn) 6 e−(rn+cwn)ρ1,n
tn

rn + cwn

(
rn + cwn

tn
+ 1

)
, (4.6)

which is (4.2) for Cn = 0. If tn 6= log(A1,n)
ρ1,n

, then A1,n < exp(tnρ1,n). Moreover

tn ≤ 1

ρ1,n
sup
i

log(Ai,n).

Then there are two cases, tn = 1
ρ1,n

supi log(Ai,n) and tn < 1
ρ1,n

supi log(Ai,n). We

can prove that the first one lead to a contradiction, from equation (2.5) we have
that tn < ∞ and therefore supi logAi,n < ∞. Let

εn =
1

2
tn

(
1− ρ1,n

ρ2,n

)
.

Let ı̂n > 1 be such that εn ≥ tn − logAı̂n,n

ρı̂n,n
then the contradiction follows from

εn ≥ 1

ρ1,n
sup
i

log(Ai,n)−
logAı̂n,n

ρı̂n,n
≥ sup

i
log(Ai,n)

(
1

ρ1,n
− 1

ρı̂n,n

)
≥ 2εn.

In the second case it is clear that there exist ln such that

Aln−1,n < eρ1,ntn 6 Aln,n . (4.7)

Applying (4.3) and (4.5) to l = ln − 1 yields:

dn(tn + rn + cwn) (4.8)

6 e−(rn+cwn)ρ1,n +
tn

rn + cwn
exp

(
−rn + cwn

tn
logAln−1,n

)
= e−(rn+cwn)ρ1,n +

tn
rn + cwn

exp

(
−(rn + cwn)ρ1,n

logAln−1,n

ρ1,ntn

)
= e−(rn+cwn)ρ1,n

tn
rn + cwn

(
rn + cwn

tn
+ eCn

)
. (4.9)
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with

Cn = (rn + cwn)ρ1,n

(
1− logAln−1,n

ρ1,ntn

)
. (4.10)

We must prove that Cn tends to 0. By (2.3) and (2.4):

(rn + cwn)ρ1,n = log(ρ1,ntn)− log log(ρ1,ntn) + c . (4.11)

From (4.7):

0 < 1− log(Aln−1,n)

ρ1,ntn
6 1

ρ1,ntn
log

(
1 +

aln,n
Aln−1,n

)
. (4.12)

Plugging (4.11) and (4.12) into (4.10), for n large enough:

0 < Cn 6
(
log(ρ1,ntn)− log log(ρ1,ntn) + c

ρ1,ntn

)
log

(
1 +

aln,n
Aln−1,n

)
.

By (2.6), the first factor of the right-hand side tends to 0. Moreover, condition
(2.7) entails that for n large enough:

log

(
1 +

aln,n
Aln−1,n

)
< log(1 + α) .

Hence the result. �
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