
ALEA, Lat. Am. J. Probab. Math. Stat. 11 (2), 737–780 (2014)

Uniform spanning trees on Sierpiński graphs
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Abstract. We study spanning trees on Sierpiński graphs (i.e., finite approxima-
tions to the Sierpiński gasket) that are chosen uniformly at random. We construct
a joint probability space for uniform spanning trees on every finite Sierpiński graph
and show that this construction gives rise to a multi-type Galton-Watson tree. We
derive a number of structural results, for instance on the degree distribution. The
connection between uniform spanning trees and loop-erased random walk is then
exploited to prove convergence of the latter to a continuous stochastic process.
Some geometric properties of this limit process, such as the Hausdorff dimension,
are investigated as well. The method is also applicable to other self-similar graphs
with a sufficient degree of symmetry.

1. Introduction

The Sierpiński gasket is certainly one of the most famous fractals, and the
Sierpiński graphs, which can be seen as finite approximations of the Sierpiński
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gasket, are among the most thoroughly studied self-similar graphs. The number of
spanning trees in the n-th Sierpiński graph Gn (starting with a single triangle G0,
see Figure 1.1) turns out to be given by the remarkable explicit formula

τ(Gn) =

(
3

20

)1/4

·
(
3

5

)n/2

· 5403
n/4,

which was obtained by different methods in several recent works: by setting up
and solving a system of recursions (Teufl and Wagner, 2006, 2011a, Chang et al.,
2007), or by electrical network theory (Teufl and Wagner, 2011b). In the book of
Lawler and Limic (2010), a proof using probabilistic results is sketched. Moreover,
the Laplacian spectrum of Gn can be described rather explicitly by means of a
technique known as “spectral decimation” (Shima, 1991, Fukushima and Shima,
1992), from which another proof can be derived, see Anema (2012).
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Figure 1.1. Sierpiński graphs G0, G1, G2, and the Sierpiński gasket K.

Once the counting problem is solved, it is natural to consider uniformly random
spanning trees of Gn and to study their structure. Uniform spanning trees are
known to have strong connections to other probabilistic models, such as loop-erased
random walk (Wilson’s celebrated algorithm to construct uniform spanning trees
being a particular application, see Wilson, 1996, Lawler and Limic, 2010), and
they are also of interest in mathematical physics. For this reason, the structure
of uniformly random spanning trees in other important families of graphs such as
square grids has been studied thoroughly, see Burton and Pemantle (1993).

The recursive nature of Sierpiński graphs and the strong symmetry enables us
to derive a number of results on uniform spanning trees, as will be shown in this
paper. After some preliminaries, we construct a joint probability space for uniform
spanning trees on every finite Sierpiński graph. An important tool in this context
is the theory of (a rather general kind of) Galton-Watson processes. Making use
of this tool, we also prove some structural results on uniform spanning trees of
Gn, for instance a strong law of large numbers for the degree distribution of a
uniform spanning tree. This extends the work of Chang and Chen (2010), who
prove convergence of expected values (for which they also give explicit formulae).
Similar results for the two-dimensional square lattice were obtained by Manna et al.
(1992).

Loop-erased random walk on the Sierpiński gasket was studied in the paper of
Hattori and Mizuno (2014); our results on uniform spanning trees provide an al-
ternative approach to this topic and were obtained independently of Hattori and
Mizuno and approximately at the same time (see for instance Teufl, 2011). The
expected length of such a walk from one corner to another was studied earlier
in the physics literature by Dhar and Dhar (1997); it grows asymptotically like(
4
3 + 1

15

√
205

)n
. As it was also shown by Hattori and Mizuno, we find that, upon
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renormalization, loop-erased random walk converges to a limit process. The ana-
logue of this process for the square lattice is the celebrated Schramm-Loewner
evolution (see Schramm, 2000, Lawler et al., 2004), whose analysis is notoriously
complicated. However, the different geometry of the Sierpiński graphs makes it
possible to prove rather strong theorems on the shape of this limiting process com-
paratively easily, including parameters such as the Hausdorff dimension. Similar
results on the limit process of the self-avoiding walk were obtained by Hattori et al.
(1990, 1993), Hattori and Hattori (1991), Hattori and Kusuoka (1992) and by Ham-
bly et al. (2002) for the self-repelling walk.

In Section 8, we study the metric induced by a random spanning tree on the
Sierpiński graph Gn. We prove almost sure convergence to a limit metric, and show
that the resulting metric space is a so-called R-tree. We also study the interface,
which is, loosely speaking, the set where different branches of a spanning tree
embedded in the plane “touch”, and estimate its Hausdorff dimension.

In the following list, the main results of this paper are summarised. For the sake
of simplicity, all results and their derivation are only given for the Sierpiński gasket,
but there are other fractals to which the same approach applies, see Section 9.

• We construct a joint probability space for uniform spanning trees on every
finite Sierpiński graph using a projective limit. As part of the construction,
we also have to consider spanning forests with the property that each of
the components contains one of the three corner vertices. We show that
the distribution of the component sizes in random spanning forests of this
type converges (upon renormalization) to a limiting distribution—see Sec-
tion 5.1.
• We prove almost sure convergence of the degree distribution (see
Section 5.2): the proportion of vertices of degree i (i ∈ {1, 2, 3, 4} fixed) in
a random spanning tree of Gn converges almost surely to a limit constant
w(i).
• Section 6 is concerned with loop-erased random walk on Sierpiński graphs
Gn: using the connection between spanning trees and loop-erased ran-
dom walk, we recover the aforementioned result that the length of such a
walk from one corner to another grows asymptotically like

(
4
3 +

1
15

√
205

)n
,

and that the renormalized length has a limit distribution (cf. Hattori and
Mizuno, 2014, Theorem 5). We also provide tail estimates for this limit
distribution, see Lemma 6.5.
• In Section 7, we study the limit process and prove some geometric proper-
ties: specifically, we show that the limit curve is almost surely self-avoiding
(Theorem 7.6), and has Hausdorff dimension log2

(
4
3 +

1
15

√
205

)
≈ 1.193995

(Theorem 7.10, (5)). These results were also obtained in the aforemen-
tioned paper of Hattori and Mizuno (2014, Theorems 9 and 10). Moreover,
we prove Hölder continuity with an explicit exponent (Theorem 7.10, (4)).
• The limit of the tree metric is the main topic of Section 8. It is shown (The-
orem 8.1) that we almost surely obtain a random metric on the “rational
points” (i.e., all points which are vertices in some finite approximation) of
the Sierpinski gasket whose Cauchy completion is an R-tree, i.e., a metric
space in which there is a unique arc between any two points and this arc is
geodesic (that is an isometric embedding of a real interval).
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2. Notation and Preliminaries

A graph G is a pair (V G,EG), where V G is the vertex set and

EG ⊆
{
{x, y} : x, y ∈ V G, x 6= y

}
is the edge set. Two vertices x, y are adjacent if {x, y} ∈ EG. The degree deg x
of a vertex x is the number of adjacent vertices. A walk in G is a finite or infinite
sequence (x0, x1, . . . ) of vertices in G, such that consecutive entries are adjacent.
A walk is called self-avoiding if its entries are mutually distinct. The edge set E(x)
of a walk x = (x0, x1, . . . ) is the set

E(x) =
{
{x0, x1}, {x1, x2}, . . .

}
.

Equipped with the edge set E(x) a walk x gives rise to a subgraph of G. The length
of the walk (x0, . . . , xn) is equal to n, the number of edges. The distance dG(v, w)
of two vertices v, w is the least integer n such that there is a walk of length n in G
connecting v and w.

A tree is a connected graph without cycles. A spanning tree of a graph G is a
subgraph of G which is a tree and contains all vertices of G. Similarly, a forest is a
graph without cycles and a spanning forest of a graph G is a subgraph of G which
is a forest and contains all vertices of G. Let F be a forest and v, w be two vertices
in F . If v, w are in the same component of F , then we write vFw to denote the
unique self-avoiding walk in F connecting v and w.

Next we need some ingredients from probability theory. We use multi-index
notation: If r ∈ N, z = (z1, . . . , zr), and k = (k1, . . . , kr), then zk = zk1

1 · · · zkr
r . If

X = (X1, . . . , Xr) is a random vector in Nr
0, then

PGF(X,z) = E
(
zX
)
=
∑
k∈Nr

0

P(X = k)zk

is the (multivariate) probability generating function of X.
An r-type Galton-Watson process (Xn)n≥0 = (X1,n, . . . , Xr,n)n≥0 is a stochastic

process that starts with one or more individuals, each of which has a type associated
to it. Each individual gives birth to zero or more children according to the offspring
probabilities

p(k) =
(
p1(k), . . . , pr(k)

)
for k = (k1, . . . , kr) ∈ Nr

0. Here pi(k) is the probability that an individual of type
i has kj children of type j for j ∈ {1, . . . , r}. The vector Xn represents the num-
ber of individuals in the n-th generation by their type (i.e., Xi,n is the number of
individuals of type i in the n-th generation). It is convenient to describe the off-
spring distributions by their multidimensional multivariate probability generating
function f = (f1, . . . , fr), which is called offspring generating function and given
by

f(z) =
∑
k∈Nr

0

p(k)zk

for z = (z1, . . . , zr). Then

PGF(Xn, z) = PGF(Xn−1,f(z)) = · · · = PGF(X0,f
n(z)),

where fn is the n-fold iteration of f . The mean matrix M = (mij)1≤i,j≤r is given
by mij = (∂fi/∂zj)(1). The process is called
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• positively regular if M is primitive (i.e., all entries of Mk are positive for
some k),
• singular if f(z) = Mz,
• subcritical, critical or supercritical depending on whether the largest eigen-
value of the mean matrix is less than, equal to, or greater than 1.

see for instance Mode (1971) for these notions and the theory of multi-type Galton-
Watson processes.

Let W be a subset of N (in the following W will always be {1, 2, 3}); elements of
Wn are written as words over the alphabet W, e.g. 12133 means (1, 2, 1, 3, 3). Let
W0 = {∅} consist of the empty word ∅ only and set

W∗ =
⊎
n≥0

Wn.

Concatenation of two words v, w ∈W∗ is written by juxtaposition vw. The set W∗

carries a graph structure in a canonical way: two words v, w ∈ W∗ are adjacent
if w = vι or v = wι for some ι ∈ W. This turns W∗ into a tree with root ∅. If
w = vι, then w is called child or offspring of v and ι is the suffix of w.

Let R be a finite set and fix some W ⊆ N. Consider the set of all subtrees with
an element of R associated to each vertex, i.e.,

WR =
{
(W,f) : W ⊆W∗ induces a subtree,∅ ∈W, f = (fw)w∈W ∈ RW

}
.

If (W,f) ∈ WR and w ∈ W , then we say that the word w is the label and fw is
the type of the pair (w, fw). A labelled multi-type Galton-Watson tree with labels
in W∗ and types in R is a random element of the set WR, whose distribution is
uniquely determined by the following:

• The type of the root (or ancestor) ∅ is given by a fixed distribution on R.
• The random offspring generation of a vertex (or individual) w only depends
on the type of w. It is given by a probability distribution (depending on
the type of w) on the set{

(S, g) : S ⊆W, g = (gι)ι∈S ∈ RS
}
.

The interpretation is that once a pair (S, g) is chosen, the individual w
gives birth to |S| children with labels wι for ι ∈ S, and type gι is assigned
to child wι.

A labelled multi-type Galton-Watson tree is denoted by (Fw)w∈W ∈ WR. Notice
that in this notationW ⊆W∗ is the random set of individuals and Fw is the random
type of an individual w ∈W .

To every labelled multi-type Galton-Watson tree (Fw)w∈W with labels in W∗

and types in R, the (random) number of individuals of a certain type in the n-th
generation yields a multi-type Galton-Watson process with r = |R| types. To this
end, let a1, . . . , ar be the elements of R and set

Xi,n = |{w ∈W ∩Wn : Fw = ai}|, Xn = (X1,n, . . . , Xr,n)

for n ≥ 0 and i ∈ {1, . . . , r}. Then (Xn)n≥0 is an r-type Galton-Watson process.
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3. Construction of Sierpiński graphs

The Sierpiński gasket K (see Sierpiński (1915) for its origin in mathematical
literature) can be defined formally by means of the following three similitudes:

ψi(x) =
1
2 (x− ui) + ui

for i ∈ {1, 2, 3}, where u1 = (0, 0), u2 = (1, 0), and u3 = 1
2 (1,
√
3). Then K is the

unique non-empty compact set such that

K = ψ1(K) ∪ ψ2(K) ∪ ψ3(K).

Its Hausdorff dimension is given by

dimH K =
log 3

log 2
= 1.5849625 . . .

The Sierpiński graphs G0, G1, . . . are discrete approximations to K and are con-
structed inductively: The vertex set V G0 and edge set EG0 of G0 are given by

V G0 = {u1, u2, u3} and EG0 = {{u1, u2}, {u2, u3}, {u3, u1}},

respectively. Then, for any n ≥ 0, the sets V Gn+1 and EGn+1 are defined as
follows:

V Gn+1 = ψ1(V Gn) ∪ ψ2(V Gn) ∪ ψ3(V Gn),

EGn+1 = ψ1(EGn) ∪ ψ2(EGn) ∪ ψ3(EGn).

Notice that Gn+1 is an amalgam of three scaled images of Gn, which we denote by
ψ1(Gn), ψ2(Gn), and ψ3(Gn), i.e.,

Gn+1 = ψ1(Gn) ∪ ψ2(Gn) ∪ ψ3(Gn).

The vertices in V G0 ⊂ V Gn are often called corner vertices or boundary vertices of
the graph Gn. The vertex sets are nested, i.e., V G0 ⊂ V G1 ⊂ V G2 ⊂ · · · , and the
Sierpiński gasket K is the closure of the union V G0 ∪ V G1 ∪ V G2 · · · . Figure 1.1
shows the graphs G0, G1, G2 and the Sierpiński gasket K. The self-similar nature
and the fact that the three scaled images only intersect in the three points

1
2 (u2 + u3),

1
2 (u3 + u1),

1
2 (u1 + u2),

allows to solve many problems concerning the Sierpiński gasket and Sierpiński
graphs exactly.

As explained above, we may view Gn as an amalgam of three copies of Gn−1.
More generally, we may consider Gn as an amalgam of 3n−k copies of Gk (0 ≤ k ≤
n). For any word w = w1 · · ·wn ∈ Wn (n ≥ 1), set ψw = ψw1 ◦ · · · ◦ ψwn , and let
ψ∅ be the identity map. Then, for 0 ≤ k ≤ n,

Gn =
∪

w∈Wk

ψw(Gn−k).

If w ∈ Wk, we call ψw(Gn−k) (respectively ψw(K)) a k-part of Gn (respectively
K). Note that the k-parts are in one-to-one correspondence with the words in Wk.
For any word w ∈ Wk and any subgraph H ⊆ Gn the restriction πw(H) is the
subgraph of Gn−k given by

πw(H) = ψ−1
w (H ∩ ψw(Gn−k)).
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4. Spanning trees on Sierpiński graphs

For the sake of completeness we reproduce the computation of the number of
spanning trees of the Sierpiński graphs following the approach given by Teufl and
Wagner (2006, 2011a), Chang et al. (2007). Using a decomposition of certain span-
ning forests a recursion for the number of spanning trees and two other quantities is
derived. In the physics literature this approach is often called the renormalization
group. We write

• Tn to denote the set of spanning trees of Gn,
• Sin (i ∈ {1, 2, 3}) to denote the set of spanning forests in Gn with two
connected components, so that one component contains ui and the other
contains V G0 \ {ui}, and
• Rn to denote the set of spanning forests of Gn with three connected com-
ponents, each of which contains exactly one vertex from the set V G0.

By symmetry, the sets S1n, S2n, and S3n all have the same cardinality. For notational
convenience, we set

Qn = Tn ] S1n ] S2n ] S3n ]Rn.

The crucial observation is that the restriction of a spanning forest in Qn+1 to one
of ψ1(Gn), ψ2(Gn), or ψ3(Gn) can be identified with a spanning forest in Qn. If
f ∈ Qn+1, then π1(f), π2(f), π3(f) ∈ Qn and

f = ψ1(π1(f)) ∪ ψ2(π2(f)) ∪ ψ3(π3(f)). (4.1)

Here and in the following we use lowercase letters for elements of Qn and capital
letters for random elements of Qn. Since T0 consists of the three elements .... ,
.... , .... , whereas |Si0| = |R0| = 1 for i ∈ {1, 2, 3}, the subdivision of Tn into three
families of equal size turns out to be advantageous. In the following we describe
one subdivision which is convenient and induced by symmetry. Set

T 1
0 = { .... }, T 2

0 = { .... }, T 3
0 = { .... },

and in general, for n ≥ 1 and i ∈ {1, 2, 3},

T i
n =

{
t ∈ Tn : uituj ⊆ ψi(Gn−1) ∪ ψj(Gn−1) for all j ∈ {1, 2, 3} \ {i}

}
.

Here we consider the self-avoiding walk uituj as the subgraph consisting of the
vertices and the edges connecting consecutive vertices. In words, T i

n is the set of
spanning trees with the property that the unique paths from ui to the other corner
vertices uj , j 6= i, only pass through ψi(Gn−1) and ψj(Gn−1) and do not “make a
detour”. Then

Tn = T 1
n ] T 2

n ] T 3
n

and |Tn| = 3 |T i
n | for i ∈ {1, 2, 3}. Define

τn = |T 1
n | = |T 2

n | = |T 3
n |, σn = |S1n| = |S2n| = |S3n|, ρn = |Rn|.

Lemma 4.1. If n ≥ 0, then

τn+1 = 18τ2nσn,

σn+1 = 21τnσ
2
n + 9τ2nρn,

ρn+1 = 14σ3
n + 36τnσnρn,
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and

τn =
(
5
3

)−n/2
540(3

n−1)/4,

σn =
(
5
3

)n/2
540(3

n−1)/4,

ρn =
(
5
3

)3n/2
540(3

n−1)/4.

Proof : The recursion satisfied by τn, σn, ρn follows from the decomposition (4.1).
For a graphical explanation of the specific terms, see Figure 4.2. The initial values
are (τ0, σ0, ρ0) = (1, 1, 1), and using induction, it is easy to verify that the formulae
stated in the lemma are indeed the explicit solution to the recursion. �

...........

×2

. ︸ ︷︷ ︸.

2 · (3τn)2σn

.

τn+1 =

..........

×2

..........

×2

..........

×2

..........

×1

.

︸ ︷︷ ︸

.

7 · (3τn)σ2
n

.

+

..........

×1

.

︸ ︷︷ ︸

.

(3τn)
2ρn

.

σn+1 =

..........

×6

..........

×6

..........

×2

.

︸ ︷︷ ︸

.

14 · σ3
n

.

+

..........

×6

..........

×6

.

︸ ︷︷ ︸

.

12 · (3τn)σnρn

.

ρn+1 =

Figure 4.2. All arrangements (up to symmetry) for the construc-
tion of spanning trees and spanning forests used in the recursion
for τn, σn, and ρn. Shaded area indicates connected parts.

We define the trace Tr f ∈ Qn of a spanning forest f ∈ Qn+1 as follows: For
f ∈ Q1, the trace is given in Table 4.1.

Table 4.1. Traces of spanning forests in Q1.

M T 1
1 T 2

1 T 3
1 S11 S21 S31 R1

Tr f for f ∈M .... .... .... .... .... .... ....

If n > 0 and f ∈ Qn+1, then consider the 3n n-parts of Gn+1, which are iso-
morphic to G1. On each of these parts f induces (up to scaling and translation) a
forest in Q1. In order to obtain the trace Tr f , replace each of these small forests
by their respective trace:

Tr f =
∪

w∈Wn

ψw(Tr πw(f)).
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Note that Tr maps T i
n+1 onto T i

n , Sin+1 onto Sin (i ∈ {1, 2, 3}), and Rn+1 onto

Rn. In order to emphasize the dependence on n, we write Trn+1
n t instead of Tr f if

f ∈ Qn+1. For m ≥ n define Trmn = Trn+1
n ◦ · · · ◦ Trmm−1. Then

T 1
n =

{
t ∈ Tn : Trn0 t = ....

}
,

T 2
n =

{
t ∈ Tn : Trn0 t = ....

}
,

T 3
n =

{
t ∈ Tn : Trn0 t = ....

}
.

........................................................................

Tr7−→

.

Tr7−→

Figure 4.3. A spanning tree t on G2 and the traces Tr t = Tr21 t
and Tr20 t.

Figure 4.3 shows a spanning tree on G2 and its traces on G1 and G0. The
importance of the trace stems from the fact that (Qn,Tr

m
n ) is a projective system.

Hence we can define Q∞ = lim←−Qn and write Tr∞n to denote the canonical projection
from Q∞ to Qn. Similarly, set

T i
∞ = lim←−T

i
n , Si∞ = lim←−S

i
n, R∞ = lim←−Rn

for i ∈ {1, 2, 3}. Then
T∞ = lim←−Tn = T 1

∞ ] T 2
∞ ] T 3

∞

and
Q∞ = T∞ ] S1∞ ] S2∞ ] S3∞ ]R∞.

Let w ∈W∗ be a word of length n ≥ 0 and let f ∈ Q∞. Then

πw(f) = (πw(Tr
∞
n f), πw(Tr

∞
n+1 f), . . . ) ∈ Q∞

extends the definition of the restriction operator πw to πw : Q∞ → Q∞.
Next we define the type of an element of Q∞ (or a part of it). Set

C = {. , . , . , . , . , . , . }.
For f ∈ Q∞ let χ∅(f) ∈ C be given by Table 4.2. The symbol χ∅(f) gives a crude
indication of the shape of f .

Table 4.2. The definition of χ∅(f) for f ∈ Q∞.

M T 1
∞ T 2

∞ T 3
∞ S1∞ S2∞ S3∞ R∞

χ∅(f) for f ∈M . . . . . . .

For any non-empty word w ∈ W∗ define χw(f) by χw(f) = χ∅(πw(f)). This
yields a map χ : Q∞ → CW

∗
given by χ(f) = (χw(f))w∈W∗ : χ(f) encodes the

shape of f at every level. In order to reconstruct Tr∞n f from χ(f), let η be the
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map from C to the set of subgraphs of G0 defined in the obvious way, see Table 4.3.
Then

Tr∞n f =
∪

w∈Wn

ψw(η(χw(f))).

Hence χ is one-to-one.

Table 4.3. The mappings η and ν.

x . . . . . . .

η(x) .... .... .... .... .... .... ....
ν(x) 1 2 3 4 5 6 7

Let ν be the bijection from C to {1, . . . , 7} given in Table 4.3. Define the functions
χ#

i,n(f) = |{w ∈ Wn : ν(χw(f)) = i}|, which count the number of n-parts of type

i ∈ {1, 2, . . . , 7}, and set

χ#

n(f) =
(
χ#

1,n(f), . . . , χ
#

7,n(f)
)

for n ≥ 0. Of course all these definitions also make sense for finite forests f ∈ Qm

(where m is some nonnegative integer). For w ∈ Wn, n ≤ m, define χw(f) and
χ#

n(f) in analogy to the definitions above.
Finally, we define the number of connected components c(x), where x is a symbol

in C, in the canonical way as follows:

c(x) =


1 if x ∈ {. , . , . },
2 if x ∈ {. , . , . },
3 if x = . .

For f ∈ Q∞, we set c(f) = c(χ∅(f)), which is also the number of components of
Tr∞n f for any n ≥ 0. The following simple lemma relates all our counting functions
(cf. Teufl and Wagner, 2011a, Lemma 5.1). We write vt to denote the transpose of
a vector v.

Lemma 4.2. For any f ∈ Q∞ and any n ≥ 0,

χ#

n(f) · (1, 1, 1, 1, 1, 1, 1)t = 3n,

χ#

n(f) · (2, 2, 2, 1, 1, 1, 0)t = 3
2 (3

n + 1)− c(f),
χ#

n(f) · (1, 1, 1,−1,−1,−1,−3)t = 3− 2c(f).

Proof : The first equation is immediate. In order to prove the second, notice that
χ#

n(f) · (2, 2, 2, 1, 1, 1, 0)t is the number of edges in the spanning forest Tr∞n f of
Gn. As this spanning forest has c(f) components, its number of edges is given by
|V Gn| − c(f) = 3

2 (3
n +1)− c(f). The third equation follows from the first and the

second by elimination of 3n. �

5. Uniform spanning trees

We now come to the core part of this paper: the discussion of the structure of
uniform spanning trees of Gn. Let us write Unif X to denote the uniform distribu-
tion on a finite, non-empty set X . For i ∈ {1, 2, 3} let T i

n be a uniformly random
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element in T i
n . If B ∼ Unif{1, 2, 3} is independent of T i

n, then T
B
n is clearly a uni-

form spanning tree of Gn, i.e., T
B
n ∼ Unif Tn. In the following lemma, we prove the

important fact that the trace preserves probabilities:

Lemma 5.1. Let i ∈ {1, 2, 3}. If T i
n is uniformly random on T i

n , S
i
n is uniformly

random on Sin, and Rn is uniformly random on Rn, then

P(Tr T i
n+1 ∈ A) = P(T i

n ∈ A),
P(TrSi

n+1 ∈ B) = P(Si
n ∈ B),

P(TrRn+1 ∈ C) = P(Rn ∈ C)

for any A ⊆ T i
n , B ⊆ Sin, C ⊆ Rn.

Proof : In order to prove the first identity, we have to show that

P(Tr T i
n+1 = t) = P(T i

n = t)

for any t ∈ T i
n . This is equivalent to

|Tr−1 t| = τn+1

τn

for any t ∈ T i
n . Since

|T k
1 | = τ1 = 18, |Sk1 | = σ1 = 30, |R1| = ρ1 = 50

for k ∈ {1, 2, 3}, Lemma 4.2 implies that

|Tr−1 t| = 18χ
#
n,1(t)+χ#

n,2(t)+χ#
n,3(t) ·30χ

#
n,4(t)+χ#

n,5(t)+χ#
n,6(t) ·50χ

#
n,7(t) = 18·540(3

n−1)/2.

Using Lemma 4.1, it is easy to see that

τn+1

τn
= 18 · 540(3

n−1)/2.

The same argument applies to the second and third identity, too. �

In light of Lemma 5.1 and Kolmogorov’s Extension Theorem there is a proba-
bility measure PT i on T i

∞ such that PT i({t ∈ T i
∞ : Tr∞n t ∈ ·}) = P(T i

n ∈ ·). Let
PSi and PR be the analogous measures on Si∞ and R∞, respectively. Set

Ω = {1, 2, 3} × T 1
∞ × T 2

∞ × T 3
∞ × S1∞ × S2∞ × S3∞ ×R∞,

P = Unif{1, 2, 3} × PT 1 × PT 2 × PT 3 × PS1 × PS2 × PS3 × PR .

Let B, T i
∞, Si

∞, R∞ be the canonical projections from Ω to {1, 2, 3}, T i
∞, Si∞, R∞,

respectively. Set T∞ = TB
∞ and, for n ≥ 0, Tn = Tr∞n T∞. Then Tn is a uniform

spanning tree on Gn and Tn = Trmn Tm = Tr∞n T∞ for m ≥ n ≥ 0. Analogous
statements hold for Si

n = Tr∞n Si
∞ and Rn = Tr∞n R∞.

In the following we write P instead of P and always use Ω equipped with P as
probability space, whenever the random elements Tn, T

i
n, S

i
n, etc. are considered.

Let [. , . , . ] (suppressing the dependence on n) be a shorthand for the set

{ψ1(f1) ∪ ψ2(f2) ∪ ψ3(f3) : f1 ∈ T 1
n−1, f2 ∈ T 1

n−1, f3 ∈ S2n−1},
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and analogously for other combinations. Using Lemma 4.1 it is easy to see that

P(T 3
n ∈ [. , . , . ]) = P(T 3

n ∈ [. , . , . ]) = · · · =
τ2n−1σn−1

τn
=

1

18
,

P(S3
n ∈ [. , . , . ]) = P(S3

n ∈ [. , . , . ]) = · · · =
τn−1σ

2
n−1

σn
=

1

30
,

P(S3
n ∈ [. , . , . ]) = P(S3

n ∈ [. , . , . ]) = · · · =
τ2n−1ρn−1

σn
=

1

30
,

P(Rn ∈ [. , . , . ]) = P(Rn ∈ [. , . , . ]) = · · · =
σ3
n−1

ρn
=

1

50
,

P(Rn ∈ [. , . , . ]) = P(Rn ∈ [. , . , . ]) = · · · = τn−1σn−1ρn−1

ρn
=

1

50
,

(5.1)

where dots indicate combinations in the same “group” (group sizes are 18, 21, 9,
14, and 36, see Figure 4.2). Of course, analogous results also hold for T 1

n , T
2
n , S

1
n,

S2
n. Furthermore, note that

P(π2(T 3
n) ∈ · | T 3

n ∈ [. , . , . ]) = Unif S1n−1,

and analogously for other combinations and restrictions. Using this fact we obtain
the following result, which relates uniform spanning trees on Sierpiński graphs to a
multi-type Galton-Watson process:

Proposition 5.2. Let U∞ be one of T∞, T i
∞, Si∞, R∞, and let U∞ be the corre-

sponding random object.

(1) The random tree

χ(U∞) = (χw(U∞))w∈W∗

is a labelled multi-type Galton-Watson tree with labels in W∗ and types in C.
The type distribution of the root depends on the specific choice for U∞ and is
given by Unif{χ∅(f) : f ∈ U∞}. The set of individuals is deterministic and
equal to W∗. Each individual has three children with suffixes 1, 2, 3. For x ∈ C
set

D(x) =
{
(χ1(f), χ2(f), χ3(f)) : f ∈ Q1, χ∅(f) = x

}
⊆ C3.

Then, by Equation (5.1), the offspring distribution of an individual of type x is
given by Unif D(x), that is,

P((χw1(U∞), χw2(U∞), χw3(U∞)) ∈ · | χw(U∞) = x) = Unif D(x). (5.2)

(2) (χ#
n(U∞))n≥0 is a multi-type Galton-Watson process with seven types, which

is non-singular, positively regular, and supercritical. The type distribution of
the root is given by the uniform distribution Unif{ν(χ∅(f)) : f ∈ U∞}. The
offspring generating function is easily computed by means of Equation (5.2):
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using the abbreviation s = 1
3 (z1 + z2 + z3), we have

f(z) =
(

1
2s

2(z5 + z6),
1
2s

2(z4 + z6),
1
2s

2(z4 + z5),

1
10s
(
3z24 + 2z4(z5 + z6) + 3sz7

)
,

1
10s
(
3z25 + 2z5(z4 + z6) + 3sz7

)
,

1
10s
(
3z26 + 2z6(z4 + z5) + 3sz7

)
,

1
25

(
z24z5 + z4z

2
5 + z24z6 + z4z

2
6 + z25z6 + z5z

2
6

+ z4z5z6 + 6s(z4 + z5 + z6)z7
))
.

Its mean matrix M is given by

M =
1

150



100 100 100 0 75 75 0
100 100 100 75 0 75 0
100 100 100 75 75 0 0
65 65 65 150 30 30 45
65 65 65 30 150 30 45
65 65 65 30 30 150 45
36 36 36 78 78 78 108


.

The dominating eigenvalue of M is equal to 3. The corresponding right and
left eigenvectors are

vR = (1, 1, 1, 1, 1, 1, 1)t and vL = 1
288 (53, 53, 53, 38, 38, 38, 15),

respectively. vR and vL are normalized so that vL · vR = 1 and ‖vL‖1 = 1.
(3) Since ‖χ#

n(U∞)‖1 = χ#
n(U∞) · vR = 3n, it follows that

lim
n→∞

3−nχ#

n(U∞) = vL

almost surely, see Mode (1971, Theorem 1.8.3).

Remark 5.3. In order to sample a uniform spanning tree on Gn, we may simulate
the n-th generation of a labelled multi-type Galton-Watson tree as described above.
In this process, we have to choose one of . , . , . with equal probability as the
type for the ancestor ∅ of the tree. It is possible to postpone this choice from the
beginning to the n-th generation. To this end, collapse the three types . , . , .
into one type . . This yields again a labelled multi-type Galton-Watson tree, but
now with five types {. , . , . , . , . }. In order to obtain a uniform spanning tree
on Gn, consider the n-th generation of this simplified labelled multi-type Galton-
Watson tree and replace each occurrence of . independently by one of . , . , .
with equal probability. This modified n-th generation describes a spanning tree
on Gn, whose distribution is uniform. Figure 5.4 shows an example of a randomly
generated spanning tree on G5.

Remark 5.4. Suppose λ is a parameter of spanning trees inGn, and we are interested
in the behaviour of λ(Tn) as n → ∞. When λ(Tn) is a functional of χ#

n(T∞), say
λ(Tn) = h(χ#

n(T∞)) for some linear function h, then 3−nλ(Tn) → h(vL) almost
surely. Of course, this generalizes to positive homogeneous functions h. As a
simple example consider the number of n-parts with i connected components. For
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Figure 5.4. A randomly generated spanning tree on G5.

f ∈ Q∞, i ∈ {1, 2, 3}, and n ≥ 0, let us denote this quantity by c#i,n(f) = |{w ∈
Wn : c(χw(f)) = i}|. Then

c#

n(f) =
(
c#1,n(f), c

#

2,n(f), c
#

3,n(f)
)
= χ#

n(f) ·

1 1 1 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 0 0 1

t

and therefore 3−nc#
n(U∞) → 1

96 (53, 38, 5) almost surely as n → ∞ if U∞ is one of

T∞, T i
∞, Si

∞, R∞ for i ∈ {1, 2, 3}. Note that, due to symmetry, (c#
n(U∞))n≥0 is a

multi-type Galton-Watson process in its own right.
A straightforward calculation shows that the variance of χ#

n and c#
n is of order

3n, so that Chebyshev’s inequality yields

P(‖χ#

n(U∞)− 3nvL‖1 ≥ αn)� 3nα−2n (5.3)

for any α ∈ (
√
3, 3), and an analogous inequality for c#

n .

In the following we study two quantities of a random spanning forest ofGn, which
need more work as the previous remark does not apply directly: The first quantity
are the component sizes in S1

n, S
2
n, S

3
n, Rn. In this case it turns out that components

can be described using an augmented labelled multi-type Galton-Watson tree. Sec-
ondly, we study the degree distribution in Tn. Here the recursive description of
uniform spanning trees in Gn (see Figure 4.2 and Proposition 5.2) and the rapid
decay of tail probabilities given by (5.3) is used.

5.1. Component sizes. Spanning trees only have one component, but for random
spanning forests Si

n or Rn, the sizes (number of vertices or edges) of the compo-
nents are interesting random variables. Let us briefly explain how their limiting
distribution can be obtained.

First, we need some notation. For a non-empty subset B of V G0, let f be an
element of Q∞, and assume that B is the vertex set of the union of some connected
components of Tr∞0 f . Write Cn(f,B) to denote the union of those components
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of Tr∞n f having non-empty intersection with B. For example, if f ∈ S1
∞, then

Cn(f, {u1}) is the component of Tr∞n f that contains u1, Cn(f, {u2, u3}) is the
component that contains u2 and u3, and Cn(f, {u1, u2, u3}) is the entire spanning
forest Tr∞n f .

We are interested in the size of Cn(f,B), which unfortunately is not a linear
functional of χ#

n(f). However, it is possible to define a subtree of the Galton-
Watson-tree χ(f) that encodes f and to add extra information to the types C that
records the evolution of the components in Cn(f,B). If f is randomly chosen,
the resulting subtree with augmented types describes another labelled multi-type
Galton-Watson tree, as will be shown in the following. For n ≥ 0, let

Ŵn(f,B) =
{
w ∈Wn : Cn(f,B) ∩ ψw(G0) 6= ∅

}
be the set of those words w ∈ Wn for which the corresponding n-part ψw(G0) of
the Sierpiński gasket has non-empty intersection with Cn(f,B). Their union

Ŵ (f,B) =
∪
n≥0

Ŵn(f,B)

induces a subtree of W∗, and each word in Ŵ (f,B) has one, two or three children.

For w ∈ Ŵ (f,B), write κ̂w(f,B) to denote the vertex set V (πw(ψw(G0)∩Cn(f,B)))
(in words: the vertices of the n-part ψw(G0) that are in common components with

vertices of B, projected back to G0). To each w ∈ Ŵn(f,B), we assign one of the
following nineteen types

Ĉ = {. , . , . , . , . , . , . , . , . , . , . , . , . , . , . , . , . , . , . }
encoding two pieces of information: χw(f) (structure of the restriction of f to the
respective n-part) and κ̂w(f,B) (black parts indicate which of the corner vertices
are in common components with elements of B). We denote this assignment by
χ̂w(f,B), see Table 5.4 for a precise definition of χ̂w(f,B) in terms of χw(f) and
κ̂w(f,B).

Table 5.4. The type χ̂w(f,B), given χw(f) and κ̂w(f,B).

χw(f)

κ̂w(f,B) . . . . . . .

{u1, u2, u3} . . . . . . .
{u2, u3} . .
{u1, u3} . .
{u1, u2} . .
{u1} . .
{u2} . .
{u3} . .

Finally set χ̂(f,B) = (χ̂w(f,B))w∈Ŵ (f,B). It is easy to see that it is possible to

reconstruct the graph Cn(f,B) from χ̂(f,B): formally,

Cn(f,B) =
∪

w∈Ŵn(f,B)

ψw(η̂(χ̂w(f,B))),

where η̂ is given in Table 5.5.
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Table 5.5. The mappings η̂ and ĉ.

x . . . . . . . . . . . .

η̂(x) .... .... .... .... .... .... .... .... .... .... .... ....
ĉ(x) 1 1 1 2 4 5 2 4 5 2 4 5

x . . . . . . .

η̂(x) .... .... .... .... .... .... ....
ĉ(x) 3 6 6 6 7 7 7

Now let us define ĉ(x) for x ∈ Ĉ as in Table 5.5. For i ∈ {1, . . . , 7} and n ≥ 0 set

ĉ#i,n(f,B) = |{w ∈ Ŵn(f,B) : ĉ(χ̂w(f,B)) = i}| and

ĉ#

n(f,B) =
(
ĉ#1,n(f,B), . . . , ĉ#7,n(f,B)

)
.

The vector ĉ#
n(f,B) counts the number of words in Ŵ (f,B) of given type up to

symmetry. Note that the number of edges in Cn(f,B) can be determined from
ĉ#
n(f,B): it is given by

|ECn(f,B)| = ĉ#

n(f,B) · (2, 1, 0, 1, 0, 0, 0)t,

and the number of vertices in Cn(f,B) satisfies

1 ≤ |V Cn(f,B)| − |ECn(f,B)| ≤ 3,

the precise value of the difference depending on the type of f and the set B. Now
let U∞ be one of T∞, T

i
∞, S

i
∞, R∞ (i ∈ {1, 2, 3}), and choose B ⊆ V G0 so that

B is the vertex set of the union of some components of Tr∞0 U∞. Then χ̂(U∞, B)

is a labelled multi-type Galton-Watson tree with types in Ĉ, and (ĉ#
n(U∞, B))n≥0

is a multi-type Galton-Watson process with seven types. The offspring generating

function f̂(z) of the process is given by

f̂(z) =
(
z21z2,

7
10z1z

2
2 + 3

10z
2
1z3,

7
25z

3
2 + 18

25z1z2z3,

2
10z1z4z5 +

4
10z1z2z4 +

1
10z

2
4 + 3

10z
2
1z6,

2
10z4z5 +

4
10z5 +

1
10z1z

2
5 + 3

10z7,

3
25z

2
2z4 +

2
25z2z4z5 +

1
25z4z

2
5 + 1

25z
2
5 + 6

25z1z2z6 +
3
25z5z7

+ 3
25z1z3z4 +

3
25z4z6 +

3
25z1z5z6,

6
25z5 +

1
25z2z

2
4 + 2

25z4z5 +
1
25z

2
4z5 +

6
25z7 +

3
25z1z4z6

+ 3
25z1z5z7 +

3
25z4z7

)
,

and the mean matrix is given by

M̂ =
1

50
·



100 50 0 0 0 0 0
65 70 15 0 0 0 0
36 78 36 0 0 0 0
60 20 0 40 10 15 0
5 0 0 10 40 0 15
24 28 6 24 24 24 6
12 2 0 24 24 6 24


.
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Hence the multi-type Galton-Watson process is non-singular, but not positively
regular, as the mean matrix is reducible. The dominating eigenvalue is 3, which
belongs to the 3× 3 block of M̂ in the upper left corner. It has multiplicity 1, and
the corresponding right and left eigenvectors are

v̂R =
(
1, 1, 1, 56 ,

1
6 ,

2
3 ,

1
3

)t
, v̂L = 1

96 · (53, 38, 5, 0, 0, 0, 0),

respectively. v̂R and v̂L are normalized so that v̂L · v̂R = 1 and ‖v̂L‖1 = 1.
Intuitively, the fact that only the first three entries in v̂L are nonzero (and that

M̂ is dominated by the upper left 3 × 3-block) can be explained by the fact that
n-parts of types such as . , . , etc. (some vertices belong to Cn(f,B), others do
not) can only occur at the “borders” between the components of the forest Tr∞n f ,
which only make up a very small part of the entire graph Gn.

For every choice of the boundary vertices B, there is a non-negative random

variable θ̂(U∞, B) such that

3−nĉ#

n(U∞, B)→ v̂Lθ̂(U∞, B)

holds almost surely as n → ∞, see Mode (1971, Theorem 2.4.1). By symmetry,
there are eight different limit distributions, one for each of the following groups:{

θ̂(T∞, {u1, u2, u3})
}
,{

θ̂(T 1
∞, {u1, u2, u3}), θ̂(T 2

∞, {u1, u2, u3}), θ̂(T 3
∞, {u1, u2, u3})

}
,{

θ̂(S1
∞, {u1, u2, u3}), θ̂(S2

∞, {u1, u2, u3}), θ̂(S3
∞, {u1, u2, u3})

}
,{

θ̂(R∞, {u1, u2, u3})
}
,{

θ̂(S1
∞, {u2, u3}), θ̂(S2

∞, {u1, u3}), θ̂(S3
∞, {u1, u2})

}
,{

θ̂(S1
∞, {u1}), θ̂(S2

∞, {u2}), θ̂(S3
∞, {u3})

}
,{

θ̂(R∞, {u2, u3}), θ̂(R∞, {u1, u3}), θ̂(R∞, {u1, u2})
}
,{

θ̂(R∞, {u1}), θ̂(R∞, {u2}), θ̂(R∞, {u3})
}
.

Let us write θ̂i (i ∈ {0, . . . , 7}) for a random variable having the same distribution

as a random variable of the respective group above. Of course, θ̂0, . . . , θ̂3 (the cases
when B = {u1, u2, u3}) are almost surely constant, i.e.

θ̂0 = θ̂1 = θ̂2 = θ̂3 = 1

almost surely. The remaining variables θ̂4, . . . , θ̂7 have continuous densities, and

E(θ̂i) = v̂i,R

for i ∈ {4, . . . , 7}, where v̂i,R is the i-coordinate of v̂R. Note also that 1− θ̂4 and θ̂5
have the same distribution, and the same holds for 1− θ̂6 and θ̂7. The limits of the
renormalized component sizes can be expressed in terms of these random variables.
To be precise,

lim
n→∞

3−n|V Cn(U∞, B)| = lim
n→∞

3−n|ECn(U∞, B)| = 3
2 θ̂(U∞, B)

almost surely. In particular, the component Cn(S
1
∞, {u2, u3}) is on average approx-

imately five times larger than the complementary component Cn(S
1
∞, {u1}), since

v̂4,R = 5
6 = 5v̂5,R.
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5.2. Degree distribution. The distribution of the vertex degrees in a random span-
ning tree of the Sierpiński graph Gn was studied at length in the recent paper by
Chang and Chen (2010). In particular, they determined the precise probability
distribution of the degree of a given vertex, and determined the average proportion
of the number of vertices of given degree as n→∞. Here we provide a somewhat
different approach to this problem with the advantage that it also allows us to prove
almost sure convergence of this proportion to a limit.

The number of vertices with a certain degree in a random spanning tree Tn is
again not a simple functional of the types. In fact, the degree distribution of a
vertex v ∈ V Gn depends not only on n, but also on the level of the vertex v itself:
by the level of a vertex, we mean the smallest k such that v ∈ V Gk. Let us first
consider the degree distribution of the corner vertices. By symmetry, it is obviously
sufficient to consider one of them. Let dn(h) be the vector of the probabilities that
the degree degUn

u1 of the lower-left corner vertex u1 in a random spanning forest

Un is equal to h ∈ {0, 1, 2} for Un ∈ {T 1
n , T

2
n , T

3
n , S

1
n, S

2
n, S

3
n, Rn}. The entries are

denoted by dn(. , h), dn(. , h), etc. Thus dn(. , h) = P(degT 1
n
u1 = h), and the

other entries are defined analogously. Then it is obvious that

d0(0) = (0, 0, 0, 1, 0, 0, 1)t,

d0(1) = (0, 1, 1, 0, 1, 1, 0)t,

d0(2) = (1, 0, 0, 0, 0, 0, 0)t.

Moreover, we deduce from the recursive structure (see Figure 4.2) that dn(h) =
Ddn−1(h), where D is the matrix

D =
1

150



50 50 50 0 0 0 0
25 25 25 0 0 75 0
25 25 25 0 75 0 0
5 5 5 60 15 15 45
30 30 30 0 45 15 0
30 30 30 0 15 45 0
12 12 12 36 21 21 36


.

This matrix has eigenvalues 1, 35 ,
1
5 ,

1
15 ,

1
25 , 0, 0, and we easily find that

dn(0) =
11
28 ·

(
3
5

)n · (0, 0, 0, 3, 0, 0, 2)t − 1
28 ·

(
1
25

)n · (0, 0, 0, 5, 0, 0,−6)t,
dn(1) =

11
14 · (1, 1, 1, 1, 1, 1, 1)

t − 2
7 ·
(
3
5

)n · (0, 0, 0, 3, 0, 0, 2)t
+ 1

14 ·
(

1
15

)n · (−25, 10, 10,−4, 3, 3, 3)t + 1
14 ·

(
1
25

)n · (0, 0, 0, 5, 0, 0,−6)t,
dn(2) =

3
14 · (1, 1, 1, 1, 1, 1, 1)

t − 3
28 ·

(
3
5

)n · (0, 0, 0, 3, 0, 0, 2)t
− 1

14 ·
(

1
15

)n · (−25, 10, 10,−4, 3, 3, 3)t − 1
28 ·

(
1
25

)n · (0, 0, 0, 5, 0, 0,−6)t
(5.4)

for n ≥ 1. In particular, we see that the degree of a corner vertex is 1 in a
random spanning tree of Gn with probability tending to 11

14 , and the degree is 2

with probability tending to 3
14 .

If now v ∈ V Gn is a vertex of level k > 0, then there is a unique copyH ofGn−k+1

in Gn such that v is the midpoint of one of its sides. The degree distribution of v in
a random spanning tree Tn now only depends on k and the type of the restriction
of Tn to H. For example, if v is the midpoint of the horizontal side of H, and the
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restriction is of type . , then the probability that v has degree h in Tn is

1

6

h∑
`=0

(
dn−k(. , `) + dn−k(. , `) + dn−k(. , `)

)
dn−k(. , h− `)

+
1

18

h∑
`=0

(
dn−k(. , `) + dn−k(. , `) + dn−k(. , `)

)
×
(
dn−k(. , h− `) + dn−k(. , h− `) + dn−k(. , h− `)

)
,

where we set dn(·, h) = 0 if h > 2. It follows immediately that for any fixed k > 0
(or even more generally, if n − k → ∞), the probabilities of the possible degrees
1, 2, 3, 4 of a level-k vertex converge to

0,
121

196
,

33

98
,

9

196
,

respectively. Intuitively, this means that leaves typically only occur at high levels.
Let now Wn(h) denote the number of vertices of degree h in a random spanning

tree Tn. We prove that 3−nWn(h)→ w(h) almost surely, where

w(1) =
10957

26976
, w(2) =

6626035

9090912
, w(3) =

2943139

9090912
, w(4) =

124895

3030304
.

Fix some α ∈ (
√
3, 3). For any r ≥ 0, the number of copies of Gr+1 occurring

in Gn is 3n−r−1. By (5.3), the number of such copies which have type . , . or
. is 53

96 · 3
n−r−1 + O(αn−r−1) with probability 1 − O((3/α2)n−r−1). The same is

true for the types . , . , . and type . , with the constant 53
96 replaced by 19

48 and
5
96 , respectively. Now the distribution of the degrees of the midpoints in each of
the copies of Gr+1 only depends on the type, and the different copies are pairwise
independent. Let mr(. , h) be the expectation of the random variable that counts
how many of the three “midpoints”

1
2 (u2 + u3),

1
2 (u3 + u1),

1
2 (u1 + u2)

have degree h in a random spanning forest of type . in Gr, and define mr(. , h),
etc. analogously. By symmetry,

mr(. , h) = mr(. , h) = mr(. , h),

mr(. , h) = mr(. , h) = mr(. , h).

By independence and another application of Chebyshev’s inequality, we find that
the total number of vertices of degree h among all level-(n−r) vertices in a random
spanning tree Tn is

3n−r−1
(
53
96mr+1(. , h) + 19

48mr+1(. , h) + 5
96mr+1(. , h)

)
+O(αn−r−1)

for any r ≥ 0 with probability 1 − O((3/α2)n−r−1). Since there are only O(3n/2)
vertices at levels ≤ n/2, we can safely ignore them, and we obtain that the total
number of vertices of degree h in a random spanning tree Tn is

Wn(h) =

bn/2c∑
r=0

3n−r−1
(
53
96mr+1(. , h) + 19

48mr+1(. , h) + 5
96mr+1(. , h)

)
+O(αn)

= 3n
∞∑
r=0

3−r−1
(
53
96mr+1(. , h) + 19

48mr+1(. , h) + 5
96mr+1(. , h)

)
+O(αn)
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with probability 1−O((3/α2)n/2), from which almost sure convergence of 3−nWn(h)
follows immediately. It remains to find the values of the constants. Let us for
instance determine mr+1(. , 1):

mr+1(. , 1) = 2
9

(
dr(. , 1) + dr(. , 1) + dr(. , 1)

)(
dr(. , 0) + dr(. , 0) + dr(. , 0)

)
+ 1

3

(
dr(. , 1) + dr(. , 1) + dr(. , 1)

)(
dr(. , 0) + dr(. , 0)

)
+ 1

3

(
dr(. , 0) + dr(. , 0) + dr(. , 0)

)(
dr(. , 1) + dr(. , 1)

)
by the same argument that was used earlier to determine the probabilities of the
different degrees. Using (5.4) we find

mr+1(. , 1) = 1
1176 · 375

−r · (33 · 15r − 5)2,

and thus
∞∑
r=0

3−r−1mr+1(. , 1) =
49595

166352
.

All other sums are obtained similarly. It follows that the proportion of vertices of
degree 1, 2, 3, 4 in a random spanning tree Tn converges almost surely to

10957

40464
≈ 0.270784,

6626035

13636368
≈ 0.485909,

2943139

13636368
≈ 0.215830,

124895

4545456
≈ 0.0274769,

respectively. These constants were already determined by Chang and Chen (2010)
as the limits of the mean values, but our arguments show that we even have almost
sure convergence.

6. Loop-erased random walk on Sierpiński graphs

This section is devoted to the analysis of loop-erased random walks on Sierpiński
graphs and their limit process. Let us first recall some definitions, see for instance
Lawler and Limic (2010). Let G be a finite and connected graph. The (chronolog-
ical) loop erasure of a walk x = (x0, . . . , xn) in G yields a new walk LE(x) which is
defined as follows:

• Set ι(0) = max{j ≤ n : xj = x0}.
• If ι(k) < n, then set ι(k + 1) = max{j ≤ n : xj = xι(k)+1}, otherwise set
ι(k + 1) = n.
• If K = min{k : ι(k) = n}, then LE(x) = (xι(0), . . . , xι(K)).

It is clear from the definition that LE(x) is self-avoiding.
Simple random walk (Xn)n≥0 on a finite and connected graph G is a Markov

chain with state space V G and transition probabilities p(x, y) from vertex x to
vertex y given by

p(x, y) =

{
1

deg x if x and y are adjacent,

0 otherwise.

For any B ⊆ V G, the hitting time h(B) is given by

h(B) = inf{n : Xn ∈ B}.
Since G is finite and connected, the hitting time h(B) is almost surely finite. Fix a
vertex x ∈ V G and some set B ⊆ V G with x /∈ B and consider simple random walk
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(Xn)n≥0 starting at x. The random self-avoiding walk LE((Xn)0≤n≤h(B)) is called
loop-erased random walk from x to B. Figure 6.5 shows instances of loop-erased
random walks from one corner vertex to another on G5 and G8, respectively. The
aim of this and the following section is to study some of the properties of loop-erased
walk on Gn and its limit process.

Figure 6.5. Instances of loop-erased random walk on G5 (left)
and G8 (right).

Uniform spanning trees and loop-erased random walk are strongly connected
concepts. A particular application of this connection is Wilson’s algorithm (see
Wilson, 1996), which is an efficient method for sampling uniform spanning trees of
a graph G. Fix some ordering of the vertex set V G, and let {(Xx

n)n≥0 : x ∈ V G}
be a family of independent simple random walks on G, where (Xx

n)n≥0 starts at x.
We define a sequence T0, T1, . . . of random subtrees of G as follows:

• T0 consists of the least vertex (according to the selected ordering) in G only.
• If Tk does not contain all vertices of G, let x be the least vertex in V G\V Tk
and define

Tk+1 = Tk ∪ LE
(
(Xx

n)0≤n≤h(V Tk)

)
.

If Tk is already spanning, then set Tk+1 = Tk.

By construction there is a minimal (random) index K (at most |V G|) such that
TK = TK+1. Then TK is a uniform spanning tree of G. This idea can be reversed:
suppose that T is a uniform spanning tree of G, and fix two vertices x, y ∈ V G. The
random self-avoiding walk xTy turns out to have precisely the same distribution as
a loop-erased random walk from x to y: this is easy to see from Wilson’s algorithm
if we assume that x and y are the least and second-least vertices in our ordering.

In the following we use this connection to study loop-erased random walk on
Sierpiński graphs Gn in more detail: For example, if T is a uniformly chosen span-
ning tree on Gn, then u1Tnu2 is a loop-erased random walk in Gn from u1 to u2.
The description of T∞ as a labelled multi-type Galton-Watson tree can be extended
to describe the evolution of loop-erased random walks u1T0u2, u1T1u2, . . . by a la-
belled multi-type Galton-Watson tree with twelve types, which capture not only
the structure of the spanning tree, but also the unique path between two corner
vertices.

The set C̄ = {. , . , . , . , . , . , . , . , . , . , . , . } encodes the twelve possible
types (in a rather obvious way). Fix k ∈ {1, 2, 3} and let v, v′ be the two vertices
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in V G0 different from uk. Let f be an element in Q∞, so that v, v′ are in the same
component of the spanning forest Tr∞0 f . Then v, v′ are in the same component of
Tr∞n f for any n ≥ 0. For n ≥ 0 consider those n-parts of Gn which contain at least
one edge of the self-avoiding walk v(Tr∞n f)v′, and let

Wn(f, k) =
{
w ∈Wn : E(v(Tr∞n f)v′) ∩ ψw(EG0) 6= ∅

}
be the addresses of these n-parts. Notice that Wn(f, k) is naturally ordered by the
fact that v(Tr∞n f)v′ walks along the n-parts ψw(G0) with w ∈ Wn(f, k). Further-
more,

W (f, k) =
∪
n≥0

Wn(f, k)

induces a subtree of W∗, where each word in W (f, k) has two or three children.
Of course, χw(f) ∈ {. , . , . , . , . , . } for any word w ∈ W (f, k) (the walk has
to enter and leave an n-part at a corner, which is only possible if at least two of
the corners are connected). Moreover, for any w ∈ Wn(f, k), the restriction of
E(v(Tr∞n f)v′) to ψw(EG0) consists of one edge e = {x, x′} or two incident edges
e = {x, y} and e′ = {y, x′} for some x, x′, y ∈ ψw(V G0). Define κ̄w(f, k) to be the
unique i ∈ {1, 2, 3} such that ψw(ui) 6= x, x′. We encode the two bits of information
given by χw(f) and κ̄w(f, k) by one of the twelve types in C̄ in a natural way. Write
χ̄w(f, k) to denote this type of the n-part ψw(G0) induced by f and k, and set

χ̄(f, k) = (χ̄w(f, k))w∈W (f,k).

For example, χ̄w(f, k) = . if χw(f) = . and κ̄w(f, k) = 1. Other types are
assigned accordingly, see Table 6.6.

Table 6.6. The type χ̄w(f, k), given χw(f) and κ̄w(f, k).

χw(f)

κ̄w(f, k) . . . . . .

1 . . . .
2 . . . .
3 . . . .

In order to reconstruct the self-avoiding walk v(Tr∞n f)v′ from χ̄(f, k), let η̄ be
the map from C̄ to the set of subgraphs of G0 defined in Table 6.7. Then

v(Tr∞n f)v′ =
∪

w∈Wn(f,k)

ψw(η̄(χ̄w(f, k))).

It is noteworthy that in general χ̄(f, k) contains more information than all the self-
avoiding walks v(Tr∞n f)v′ for n ≥ 0 (since it also contains additional structural
information on the underlying spanning tree).

Last but not least, let ν̄ be the bijection from C̄ to {1, . . . , 12} given by Ta-
ble 6.7. In analogy to the previous section, we define the type-counting functions
χ̄#

i,n(f, k) = |{w ∈Wn(f, k) : ν̄(χ̄w(f, k)) = i}| and

χ̄#

n(f, k) =
(
χ̄#

1,n(f, k), . . . , χ̄
#

12,n(f, k)
)

for i ∈ {1, . . . , 12} and n ≥ 0.
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Table 6.7. The mappings η̄ and ν̄.

x . . . . . . . . . . . .

η̄(x) .... .... .... .... .... .... .... .... .... .... .... ....
ν̄(x) 1 2 3 4 5 6 7 8 9 10 11 12

Proposition 6.1. Let U∞ be one of T∞, T i
∞, or Si∞ for i ∈ {1, 2, 3}, and let U∞

be the corresponding random object. Let k ∈ {1, 2, 3}, and assume that Tr∞0 U∞
connects the two vertices in V G0 \ {uk}.
(1) The random tree

χ̄(U∞, k) = (χ̄w(U∞, k))w∈W (U∞,k)

is a labelled multi-type Galton-Watson tree with labels in W∗ and types in C̄.
The type distribution of the root is given by Unif{χ̄∅(f, k) : f ∈ U∞}. Its
offspring generation is given in Table 6.8.

(2) (χ̄#
n(U∞, k))n≥0 is a multi-type Galton-Watson process with twelve types, which

is non-singular, positively regular, and supercritical. Using the abbreviations
s1 = 1

3 (z1 + z2 + z7), s2 = 1
3 (z3 + z4 + z8), and s3 = 1

3 (z5 + z6 + z9), the
offspring generating function is given by

f̄(z) =
(

1
2s1(s1 + z10),

1
2s1(s1 + z10),

1
2s2(s2 + z11),

1
2s2(s2 + z11),

1
2s3(s3 + z12),

1
2s3(s3 + z12),

1
2s1(s3z11 + s2z12),

1
2s2(s3z10 + s1z12),

1
2s3(s2z10 + s1z11),

1
10

(
3s21 + 4s1z10 + z10(z10 + s3z11 + s2z12)

)
,

1
10

(
3s22 + 4s2z11 + z11(s3z10 + z11 + s1z12)

)
,

1
10

(
3s23 + 4s3z12 + z12(s2z10 + s1z11 + z12)

))
.

Its mean matrix M̄ is

M̄ =
1

30



15 15 0 0 0 0 15 0 0 15 0 0
15 15 0 0 0 0 15 0 0 15 0 0
0 0 15 15 0 0 0 15 0 0 15 0
0 0 15 15 0 0 0 15 0 0 15 0
0 0 0 0 15 15 0 0 15 0 0 15
0 0 0 0 15 15 0 0 15 0 0 15
10 10 5 5 5 5 10 5 5 0 15 15
5 5 10 10 5 5 5 10 5 15 0 15
5 5 5 5 10 10 5 5 10 15 15 0
10 10 1 1 1 1 10 1 1 24 3 3
1 1 10 10 1 1 1 10 1 3 24 3
1 1 1 1 10 10 1 1 10 3 3 24



,
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whose dominating eigenvalue ᾱ is 4
3 + 1

15

√
205 ≈ 2.287855. The corresponding

right and left eigenvectors are

v̄R = (a1, a1, a1, a1, a1, a1, a2, a2, a2, a3, a3, a3)
t,

v̄L = (a4, a4, a4, a4, a4, a4, a4, a4, a4, a5, a5, a5),

where

a1 = 11
26 + 17

533

√
205, a2 = 17

26 + 49
1066

√
205, a3 = 1

2 + 13
410

√
205,

a4 = 1
18

√
205− 13

18 , a5 = 5
2 −

1
6

√
205.

The vectors v̄R and v̄L are normalized so that v̄L · v̄R = 1 and ‖v̄L‖1 = 1.
(3) There is a non-negative random variable θ̄(U∞, k) such that

ᾱ−nχ̄#

n(U∞, k)→ v̄Lθ̄(U∞, k)

almost surely. The distribution of θ̄(U∞, k) has a continuous density function,
which is strictly positive on the set of positive reals and zero elsewhere. In
particular, θ̄(U∞, k) is almost surely positive. By symmetry, there are four
different limit distributions, one for each of the following groups:

{θ̄(T∞, 1), θ̄(T∞, 2), θ̄(T∞, 3)},
{θ̄(T 1

∞, 2), θ̄(T
1
∞, 3), θ̄(T

2
∞, 1), θ̄(T

2
∞, 3), θ̄(T

3
∞, 1), θ̄(T

3
∞, 2)},

{θ̄(T 1
∞, 1), θ̄(T

2
∞, 2), θ̄(T

3
∞, 3)},

{θ̄(S1
∞, 1), θ̄(S

2
∞, 2), θ̄(S

3
∞, 3)}.

We write θ̄0, θ̄1, θ̄2, θ̄3 for random variables having the same distribution as a
random variable in the respective group (ordered as above). Their expected
values are E(θ̄0) = 2

3a1 + 1
3a2, E(θ̄1) = a1, E(θ̄2) = a2 and E(θ̄3) = a3,

respectively. Moreover, Pθ̄0 = 2
3 Pθ̄1 +

1
3 Pθ̄2 .

Proof : The first part of this result follows from Proposition 5.2. The second is a
consequence of the first: the details are not difficult to verify. For the last part, see
Mode (1971, Theorem 1.8.2 and Theorem 1.9.1). �
Remark 6.2. Similar to Remark 5.3, we can collapse three groups of types into new
types:

• . , . , . become . ,
• . , . , . become . ,
• . , . , . become . .

Fix again some k ∈ {1, 2, 3}, and let f ∈ Q∞ be such that the vertices in V G0\{uk}
are in the same component of f . Now for w ∈W (f, k), set

χ̃w(f, k) =


. if χ̄w(f, k) ∈ {. , . , . },
. if χ̄w(f, k) ∈ {. , . , . },
. if χ̄w(f, k) ∈ {. , . , . },
χ̄w(f, k) otherwise,

and χ̃(f, k) = (χ̃w(f, k))w∈W (f,k). If U∞ is now one of T∞, T i
∞, Si

∞ for i ∈ {1, 2, 3},
so that the vertices in V G0 \ {uk} are in the same component of Tr∞0 U∞, then the
random tree χ̃(U∞, k) is a labelled multi-type Galton-Watson tree with types in
{. , . , . , . , . , . }.
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Table 6.8. Offspring generation of χ̄(U∞, k) for three types. The
remaining types are obtained by symmetry taking suffixes into ac-
count.

Type Offspring types Probability
with suffixes (1, 2) or (1, 2, 3)

.

(. , . ), (. , . ), (. , . ) 1
6

(. , . ), (. , . ), (. , . ),
1
18(. , . ), (. , . ), (. , . ),

(. , . ), (. , . ), (. , . )

.

(. , . , . ), (. , . , . ), (. , . , . ),

1
18

(. , . , . ), (. , . , . ), (. , . , . ),
(. , . , . ), (. , . , . ), (. , . , . ),
(. , . , . ), (. , . , . ), (. , . , . ),
(. , . , . ), (. , . , . ), (. , . , . ),
(. , . , . ), (. , . , . ), (. , . , . )

.

(. , . , . ), (. , . , . ), (. , . , . ),

1
30

(. , . , . ), (. , . , . ), (. , . , . ),
(. , . ), (. , . ), (. , . ),
(. , . ), (. , . ), (. , . ),
(. , . ), (. , . ), (. , . )

(. , . ), (. , . ), (. , . ), 1
15(. , . ), (. , . ), (. , . )

(. , . ) 1
10

In order to sample a loop-erased random walk in Gn from u1 to u2, we can
simulate the n-th generation of χ̄(T∞, 3). At first we have to choose one of . , . ,
. with equal probability as the type of the ancestor ∅. As in Remark 5.3 we may
postpone this choice to the n-th generation. To do so, consider the n-th generation
of the simplified tree χ̃(T∞, 3). Independently replace each occurrence of

• . by one of . , . , . ,
• . by one of . , . , . ,
• . by one of . , . , . ,

always with equal probabilities. Then the modified n-th generation of χ̃(T∞, 3)
describes a loop-erased random walk in Gn from u1 to u2.

Remark 6.3. We set

c̄(x) =


1 if x ∈ {. , . , . , . , . , . },
2 if x ∈ {. , . , . },
3 if x ∈ {. , . , . },
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and once again, we introduce type counters: for i ∈ {1, 2, 3} and n ≥ 0, define
c̄#i,n(f, k) = |{w ∈Wn(f, k) : c̄(χ̄w(f)) = i}| and

c̄#

n(f, k) =
(
c̄#1,n(f, k), c̄

#

2,n(f, k), c̄
#

3,n(f, k)
)
,

c̃#

n(f, k) =
(
c̄#1,n(f, k) + c̄#2,n(f, k), c̄

#

3,n(f, k)
)
.

Then c̄#
n(f, k) and c̃#

n(f, k) count the occurrences of types up to symmetry in the
n-th generation of χ̄(f, k) and χ̃(f, k), respectively.

For a random object U∞ (one of T∞, T i
∞, Si

∞) and suitable k, (c̄#
n(U∞, k))n≥0

and (c̃#
n(U∞, k))n≥0 are multi-type Galton-Watson processes with offspring gener-

ating functions

ḡ(z1, z2, z3) =
(
1
2s(s+ z3), s

2z3,
3
10s

2 + 1
5sz3(2 + z3) +

1
10z

2
3

)
, (6.1)

where s = 2
3z1 +

1
3z2, and

g̃(z1, z2) =
(
1
3z1(z1 + z2 + z1z2),

3
10z

2
1 + 1

5z1z2(2 + z2) +
1
10z

2
2

)
, (6.2)

respectively. If we set

Σ(z1, z2, z3) =
(
PGF(χ̄#

0 (T∞, k), z),PGF(χ̄
#

0 (S
k
∞, k), z)

)
=
(
2
3z1 +

1
3z2, z3

)
, (6.3)

then Σ ◦ ḡ = g̃ ◦Σ. Note also that c̄#
n(U∞, k) and c̃#

n(U∞, k) depend linearly on
χ̄#

n(U∞, k), hence Proposition 6.1 implies

ᾱ−nc̄#

n(T∞, k)→ (6a4, 3a4, 3a5)θ̄(T∞, k), ᾱ−nc̃#

n(T∞, k)→ (9a4, 3a5)θ̄(T∞, k),

ᾱ−nc̄#

n(S
k
∞, k)→ (6a4, 3a4, 3a5)θ̄(S

k
∞, k), ᾱ−nc̃#

n(S
k
∞, k)→ (9a4, 3a5)θ̄(S

k
∞, k)

almost surely.

Remark 6.4. Using the previous remark, it is possible to describe the distribution
of θ̄0, θ̄1, θ̄2, θ̄3. Let

ϕ̄(z) = (E(ezθ̄1),E(ezθ̄2),E(ezθ̄3)) and ϕ̃(z) = (E(ezθ̄0),E(ezθ̄3))
be the moment generating functions of (θ̄1, θ̄2, θ̄3) and (θ̄0, θ̄3), respectively. These
two functions exist at least for z ∈ C with Re(z) ≤ 0. Furthermore, it is well known
that

ϕ̄(ᾱz) = ḡ(ϕ̄(z)) and ϕ̃(ᾱz) = g̃(ϕ̃(z)).

holds whenever both sides are finite, see for instance Mode (1971, Theorem 1.8.1).
Since ḡ and g̃ are both polynomials, the moment generating functions ϕ̄ and ϕ̃
exist for all z ∈ C and are entire functions, see Poincaré (1890). Furthermore, by
iterating the offspring generating function it is possible to approximate the densities
of θ̄0, θ̄1, θ̄2, θ̄3, see Figure 6.6.

In the following lemma, we prove some estimates for the moment generating
functions of θ̄0, . . . , θ̄3, which lead to estimates for the tails of the distributions.
Let us remark that there exist general results concerning tail probabilities (see for
instance Jones, 2004), but our situation does not satisfy the necessary conditions of
these results. Thus we follow the arguments of Barlow and Perkins (1988, Propo-
sition 3.1) and Kumagai (1993, Proposition 4.2). Let the constants γ̄` and γ̄r be
defined by

γ̄` =
log 2

log ᾱ
≈ 0.837524 and γ̄r =

log 3

log ᾱ
≈ 1.32744.

Thus γ̄`/(1− γ̄`) ≈ 5.154759 and γ̄r/(γ̄r − 1) ≈ 4.053954. These constants play an
important role in the following lemma:
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(b) density of θ̄1
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(c) density of θ̄2
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(d) density of θ̄3

Figure 6.6. A plot of the densities of θ̄i for i ∈ {0, 1, 2, 3}. The
densities are approximated by n = 7 iterations of the offspring
generating function ḡ.

Lemma 6.5. There are constants C1,`, C2,` > 0 such that

e−C1,`|z|γ̄` ≤ E(ezθ̄i) ≤ e−C2,`|z|γ̄` (i ∈ {0, 1, 2, 3})
for all z ≤ −1. The upper bounds also hold for z ∈ C with Re z ≤ 0 and |z| ≥ 1
(after taking absolute values). Analogously, there are constants C1,r, C2,r > 0 such
that

eC1,rz
γ̄r ≤ E(ezθ̄i) ≤ eC2,rz

γ̄r
(i ∈ {0, 1, 2, 3})

for all sufficiently large z ≥ 0 (for instance if E(ezθ̄i) ≥ 4 for i ∈ {1, 2, 3, 4}). As a
consequence the following statements hold:

• There are constants C3,`, C4,`, C5,`, C6,` > 0 such that

C3,` exp(−C4,`s
−γ̄`/(1−γ̄`)) ≤ P(θ̄i ≤ s) ≤ C5,` exp(−C6,`s

−γ̄`/(1−γ̄`))

for all s ≥ 0 and all i ∈ {0, 1, 2, 3}.
• There are constants C3,r, C4,r, C5,r, C6,r > 0 such that

C3,r exp(−C4,rs
γ̄r/(γ̄r−1)) ≤ P(θ̄i ≥ s) ≤ C5,r exp(−C6,rs

γ̄r/(γ̄r−1))

for all s ≥ 0 and all i ∈ {0, 1, 2, 3}.
• The random variables θ̄0, θ̄1, θ̄2, θ̄3 have densities in C∞.

Proof : Set C− = {z ∈ C : Re z ≤ 0}. The random variables θ̄0, θ̄1, θ̄2, θ̄3 ≥ 0 have

positive densities on (0,∞). Thus 0 < |E(ezθ̄i)| < 1 for all z ∈ C− \ {0} and for all
i ∈ {0, 1, 2, 3}.
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We start with the upper bounds of the left tail. Set M(z) = max{|E(ezθ̄i)| : i ∈
{0, 1, 2, 3}}. Then M(ᾱz) ≤M(z)2 for all z ∈ C− using the functions ḡ and g̃. Set
H(z) = −|z|−γ̄` logM(z), so that H(ᾱz) ≥ H(z) for all z ∈ C−. Due to continuity
there is a constant C2,` > 0 such that H(z) ≥ C2,` for all z ∈ C− with 1 ≤ |z| ≤ ᾱ.
This implies H(z) ≥ C2,` for all z ∈ C− with |z| ≥ 1 and thus |E(ezθ̄i)| ≤ e−C2,`|z|γ̄`

for all z ∈ C− with |z| ≥ 1 and i ∈ {0, 1, 2, 3}.
For the lower bounds of the left tail set m(z) = min{E(ezθ̄i) : i ∈ {0, 1, 3}}, so

that m(ᾱz) ≥ 1
10m(z)2 for all z ≤ 0. If we set h(z) = −|z|−γ̄` logm(z), then

h(ᾱz) ≤ 1
2 |z|

−γ̄` log 10 + h(z)

for all z ≤ 0. For n ≥ 0 this implies

h(ᾱnz) ≤
(
( 12 )

1 + · · ·+ ( 12 )
n
)
|z|−γ̄` log 10 + h(z) ≤ |z|−γ̄` log 10 + h(z).

As before, there is a constant C1,` > 0 such that |z|−γ̄` log 10 + h(z) ≤ C1,` for all

−ᾱ ≤ z ≤ −1. This implies h(z) ≤ C1,` for all z ≤ −1 and so E(ezθ̄i) ≥ e−C1,`|z|γ̄`

for all z ≤ 0 and i ∈ {0, 1, 3}. If i = 2, notice that

ḡ2(z1, z2, z3) ≥ 4
9z

2
1z3

for all z1, z2, z3 ≥ 0. Hence, using the lower bounds above,

E(eᾱzθ̄2) ≥ 4
9e

−3C1,`|z|γ̄`

for all z ≤ −1. By a suitable modification of C1,` we get the lower bound for the
case i = 2.

The proof of the bounds for the right tail is very similar to the proof for the left
tail, hence we omit the details.

For the remaining statements, see Barlow and Perkins (1988, Proposition 3.2,
Lemma 3.4) and Bingham et al. (1987, Corollary 4.12.8). �

Analogous to Remark 5.4 it is easy to describe the limit behaviour of any param-
eter of loop-erased random walk in Gn from u1 to u2 that is a functional of χ̄#

n(T∞).
As a simple example we consider the length of loop-erased random walk in Gn from
u1 to u2, which is given by the distance dTn(u1, u2), where dTn is the graph metric
of the tree Tn. We remark that a similar derivation of the expectations below is
given by Dhar and Dhar (1997), Hattori and Mizuno (2014).

Corollary 6.6. If n ≥ 0, then the probability generating functions of dTn
(u1, u2)

and dS3
n
(u1, u2) are given by, with g̃, ḡ and Σ as defined in (6.1), (6.2), (6.3),(

PGF(dTn
(u1, u2), z),PGF(dS3

n
(u1, u2), z)

)
= Σ(ḡn(z, z2, z)) = g̃n

(
2
3z +

1
3z

2, z
)

and the expectations are(
E(dTn

(u1, u2))
E(dS3

n
(u1, u2))

)
=

(
2
3 + 5

123

√
205 2

3 −
5

123

√
205

1
2 + 19

410

√
205 1

2 −
19
410

√
205

)
·

((
4
3 + 1

15

√
205

)n(
4
3 −

1
15

√
205

)n
)
.

Furthermore,

ᾱ−ndTn
(u1, u2)→ 1

6 (
√
205− 7)θ̄(T∞, 3), ᾱ−ndS3

n
(u1, u2)→ 1

6 (
√
205− 7)θ̄(S∞, 3)

almost surely as n→∞.
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Proof : By the description using Galton-Watson trees, see Proposition 6.1 and Re-
mark 6.3, we infer that

dTn
(u1, u2) = c̄#

n(T∞, 3) · (1, 2, 1)t,
dS3

n
(u1, u2) = c̄#

n(S
3
∞, 3) · (1, 2, 1)t.

This implies the statement, since (6a4, 3a4, 3a5) · (1, 2, 1)t = 1
6 (
√
205− 7). �

7. Convergence of loop-erased random walk

Let C be the set of continuous curves γ : [0,∞] → K with γ(0) = u1 and
γ(∞) = u2 and set dC(γ, δ) = sup{‖γ(t) − δ(t)‖2 : t ∈ [0,∞]} for γ, δ ∈ C.
Then (C, dC) is a complete separable metric space. For γ ∈ C set

h(γ) = inf{t : γ(s) = u2 for all s ≥ t} ∈ (0,∞].

A curve γ ∈ C is called self-avoiding if γ(s) 6= γ(t) for 0 ≤ s < t ≤ h(γ). Fix some
curve γ in C and some integer n ≥ 0. Then there is a unique integer m ≥ 1 and
two unique sequences

0 = t0 < · · · < tm = h(γ)

and w1, . . . , wm ∈Wn with the following properties:

• The curve γ walks along the n-parts ψwj (K): γ([tj−1, tj ]) ⊆ ψwj (K) and
γ([tj−1, tj ]) ∩ ψwj (K \ V G0) 6= ∅ for all 1 ≤ j ≤ m.
• The quantity tj is the exit time of γ from ψwj (K): tj = inf{s > tj−1 :
γ(s) /∈ ψwj (K)} for all 1 ≤ j ≤ m− 1.

As a consequence, the intersection of ψwj−1(K) and ψwj (K) consists of one point
only, which is equal to γ(tj−1) ∈ V Gn. We write ∆n(γ) to denote the number m
of n-parts traversed, tj,n(γ) to denote the time tj , and we set

Wn(γ) = (w1, . . . , wm).

Last but not least set sj,n(γ) = tj,n(γ) − tj−1,n(γ), which is the time spent in the
n-part ψwj (K). It should be stressed, that

(
tj,n(γ)

)
j=0,...,∆n(γ)

are in general not

equal to the consecutive hitting times on the set V Gn, as it might happen, that the
curve γ enters the part ψwj (K) at ψwj (u1), visits ψwj (u3) without leaving ψwj (K),
and leaves at ψwj (u2).

By linear interpolation and constant extension we can associate to any walk
x = (x0, . . . , xr) in Gn a curve LI(x) : [0,∞]→ K as follows:

• Linear interpolation: set LI(x)(t) = (k + 1 − t)xk + (t − k)xk+1 if k ∈
{0, . . . , r − 1} and k ≤ t < k + 1.
• Constant extension: set LI(x)(t) = xr for t ≥ r.

If λ > 0, write LI(x, λ) for the curve with rescaled time, i.e., LI(x, λ)(t) = LI(x)(λt).
Note that LI(x, λ) ∈ C if x0 = u1 and xr = u2.

Remark 7.1. Let t ∈ T∞ and set γn = LI(u1(Tr
∞
n t)u2) ∈ C for n ≥ 0. If m ≥ n,

then the number ∆n(γm) of n-parts visited by γm is given by

∆n(γm) = c̄#

n(t, 3) · (1, 1, 1)t,

since c̄#
n(t, 3) counts the n-parts on the unique path from u1 to u2 by their type.

Moreover, the words in Wn(γm) associated to the n-parts visited by γm and the
labels Wn(t, 3) of the n-th generation of the tree χ̄(t, 3) are equal, if the natural
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ordering ofWn(t, 3) is used. Finally, the length of the self-avoiding walk u1(Tr
∞
n t)u2

is given by
h(γn) = dTr∞n t(u1, u2) = c̄#

n(t, 3) · (1, 2, 1)t,
since types . , . , . contribute 2 to the length while all other types contribute 1.
If m ≥ n and 0 ≤ j ≤ ∆n(γn), then

γm(tj,n(γm)) = γn(tj,n(γn)) ∈ V Gn.

Let xj,n = γn(tj,n(γn)) ∈ V Gn and Wn(γn) = (w1, . . . , w∆n(γn)). It follows that,
for any 0 ≤ i < j ≤ ∆n(γn),

• the vertices xi,n and xj,n are not the same,
• at xj−1,n the self-avoiding walk u1(Tr

∞
m t)u2 enters the n-part ψwj (K) and

at xj,n it leaves this n-part,
• the quantity sj,n(γm) is the length of the self-avoiding walk u1(Tr

∞
m t)u2

restricted to the segment from xj−1,n to xj,n, i.e., it is equal to the number
of edges of this walk inside the n-part ψwj (K):

sj,n(γm) = dTr∞m t(xj−1,n, xj,n) = c̄#

m−n(πwj (t), κ̄wj (t, 3)) · (1, 2, 1)t.

The results of Section 6 indicate that LI(u1Tnu2, ᾱ
n) converges almost surely

for n → ∞. The proof of this fact closely follows the arguments of Barlow and
Perkins (1988), Hattori and Hattori (1991) and Kumagai (1993). In the first two
references uni-type Galton-Watson processes are used, whereas in the last reference
a Galton-Watson process with four types is used.

A pair (W, (bw)w∈W ) with W ⊆ Wn and bw ∈ C̄ is called admissible of length
n if there is an element t ∈ T∞ such that W = Wn(t, 3) and bw = χ̄w(t) for
w ∈W . Notice that W inherits the natural ordering from Wn(t, 3). An admissible
pair (W, (bw)w∈W ) completely describes the self-avoiding walk connecting u1 and
u2 in the spanning tree Tr∞n t for some t ∈ T∞. Loosely speaking, the following
lemma states that conditioning on the n-th level, i.e. conditioning on Wn(T∞, 3) =
W and (χ̄w(T∞, 3))w∈W = (bw)w∈W for some admissible pair (W, (bw)w∈W ), the
refinements in different n-parts are conditionally independent and for each n-part
the refinement yields again a multi-type Galton-Watson tree.

Lemma 7.2. Let (W, (bw)w∈W ) be an admissible pair of length n. Then, under
P( · |Wn(T∞, 3) =W, (χ̄w(T∞, 3))w∈W = (bw)w∈W ), the following holds:

• The random trees χ̄(πw(T∞), κ̄w(T∞, 3)) for w ∈ W are independent la-
belled multi-type Galton-Watson trees with labels in W∗ and types in C̄ as
described in Proposition 6.1.
• For w ∈W , ᾱ−nχ̄#

n(πw(T∞), κ̄w(T∞, 3)) converges almost surely to v̄Lθ̄(w)
for some non-negative random variable θ̄(w), which has the same distribu-
tion as θ̄c̄(bw). In particular, θ̄(w) is almost surely positive. The random

variables θ̄(w) for w ∈W are independent.
• We have ∆n(LI(u1Tnu2)) = |W | almost surely. Let (w1, w2, . . . ) be the
natural ordering of W and let m ≥ n. Then the random variables

sj,n(LI(u1Tmu2, ᾱ
m)) = ᾱ−mc̄#

m−n(πwj (T∞), κ̄wj (T∞, 3)) · (1, 2, 1)t

for 1 ≤ j ≤ |W | are independent and

sj,n(LI(u1Tmu2, ᾱ
m))→ 1

6 (
√
205− 7)ᾱ−nθ̄(wj)

almost surely as m→∞.
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Proof : The first two parts are consequences of Proposition 6.1. The third part
follows from the first and the second and from Remark 7.1. �

In the following we set Xn = LI(u1Tnu2, ᾱ
n), so that Xn : Ω → C is a random

element in C and
Xn(tj,n(Xn)) = Xm(tj,n(Xm))

for all m ≥ n. Define

Ω′ =
{
ω ∈ Ω : lim

m→∞
sj,n(Xm) ∈ (0,∞) for n ≥ 0, 1 ≤ j ≤ ∆n(Xn)

}
.

Then using Lemma 7.2 we conclude that P(Ω′) = 1. Fix some ω ∈ Ω′. For n ≥ 0
and 1 ≤ j ≤ ∆n(Xn) set

Sj,n = lim
m→∞

sj,n(Xm).

It follows that

lim
m→∞

tj,n(Xm) = lim
m→∞

∑
1≤k≤j

sk,n(Xm) =
∑

1≤k≤j

Sk,n ∈ (0,∞).

We write Tj,n to denote this limit. Lastly, note that

h(Xm) = t1,0(Xm) = t∆n(Xn),n(Xm) and thus T1,0 = T∆n(Xn),n.

Theorem 7.3. On Ω′ the curve Xn converges uniformly as n → ∞ to a limit
curve X in C, which satisfies the following properties:

• X(Tj,n) = Xn(tj,n(Xn)) ∈ V Gn for all n ≥ 0 and 0 ≤ j ≤ ∆n(Xn).
• If Wn(Xn) = {w1, . . . , w∆n(Xn)}, then

X(Ti,n) 6= X(Tj,n), X(Tj−1,n), X(Tj,n) ∈ ψwj (V G0),

X([Tj−1,n,Tj,n]) ⊆ ψwj (K), X([Tj−1,n,Tj,n]) ∩ ψwj (K \ V G0) 6= ∅

for all 0 ≤ i < j ≤ ∆n(Xn). Hence ∆n(X) = ∆n(Xn) and Wn(X) =
Wn(Xn) for all n ≥ 0.

Proof : We closely follow the arguments of Hattori and Hattori (1991). Fix ω ∈ Ω′.
We will show that Xn converges uniformly in [0,∞].

Let n ≥ 1 be a non-negative integer. Then ∆n(Xn) ≥ 2. By Definition of Ω′ we
have

a = min{Sj,n : 1 ≤ j ≤ ∆n(Xn)} > 0.

Hence there is a positive integer M =M(n, ω) with M ≥ n such that

max{|tj,n(Xm)− Tj,n| : 0 ≤ j ≤ ∆n(Xn)} ≤ a
for all m ≥ M . For convenience set T∆n(Xn)+1,n = t∆n(Xn)+1,n(Xm) = ∞ for all
0 ≤ n ≤ m. Now consider t ∈ [0,∞]. There is an integer j with 1 ≤ j ≤ ∆n(Xn)+1
such that Tj−1,n ≤ t ≤ Tj,n. Let m ≥M and distinguish the following cases:

• 1 < j < ∆n(Xn): We infer that

tj−2,n(Xm) ≤ Tj−2,n + a ≤ Tj−2,n + Sj−1,n = Tj−1,n ≤ t,
t ≤ Tj,n = Tj+1,n − Sj+1,n ≤ Tj+1,n − a ≤ tj+1,n(Xm).

Since Xm([tj−2,n(Xm), tj+1,n(Xm)]) ⊆ ψw1
(K) ∪ ψw2

(K) ∪ ψw3
(K) for

some w1, w2, w3 ∈ Wn with ψw1(K) ∩ ψw2(K) = {Xm(tj−1,n(Xm))} and
ψw2(K) ∩ ψw3(K) = {Xm(tj,n(Xm))}, we obtain

‖Xm(t)−Xm(tj−1,n(Xm))‖2 ≤ 21−n.
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• j = 1: It follows as before that 0 ≤ t ≤ t2,n(Xm) for all m ≥M . Hence

‖Xm(t)−Xm(t0,n(Xm))‖2 ≤ 21−n.

• j = ∆n(Xn): Again, t∆n(Xn)−2,n(Xm) ≤ t ≤ t∆n(Xn)+1,n and therefore

‖Xm(t)−Xm(t∆n(Xn)−1,n(Xm))‖2 ≤ 2−n.

• j = ∆n(Xn) + 1: Then t∆n(Xn)−1,n(Xm) ≤ t ≤ t∆n(Xn)+1,n and

‖Xm(t)−Xm(t∆n(Xn),n(Xm))‖2 ≤ 2−n.

In any case we have

‖Xm(t)−Xm(tj−1,n(Xm))‖2 ≤ 21−n

for m ≥ M . Now let m1,m2 ≥ M . Since Xm1(tj−1,n(Xm1)) = Xm2(tj−1,n(Xm2)),
the estimate above implies

‖Xm1(t)−Xm2(t)‖2
≤ ‖Xm1(t)−Xm1(tj−1,n(Xm1))‖2 + ‖Xm2(t)−Xm2(tj−1,n(Xm2))‖2 ≤ 22−n.

As Xm(0) = u1 and Xm(∞) = u2, we have proved that Xn converges uniformly to
a limit curve X in C.

The first property listed in Theorem 7.3 follows from the fact that, for all m ≥
n, Xm(tj,n(Xm)) = Xn(tj,n(Xn)) and tj,n(Xm) → Tj,n, Xm → X uniformly as
m→∞.

In order to show the second property let t be in (Tj−1,n,Tj,n). Then, for
sufficiently large m, t ∈ (tj−1,n(Xm), tj,n(Xm)). Due to Remark 7.1 we have
Xm(t) ∈ ψwj (K) for all sufficiently large m. As Xm(t) → X(t) it follows that
X(t) ∈ ψwj (K). Thus Remark 7.1 and the first property imply the second. �

Let γ be a curve in C, w be a word in W∗, and ι be a letter in W. We say that
γ has a peak of type ι in the n-part ψw(K) if there are t1 < t2 such that

• γ([t1, t2]) ⊆ ψw(K),
• γ(t1) 6= γ(t2) and γ(t1), γ(t2) ∈ ψw(V G0 \ {uι}),
• γ((t1, t2)) ∩ ψw(V G0) = {ψw(uι)}.

Intuitively speaking, this means that the curve passes through one of the corners
of the n-part ψw(K) without moving on to the adjacent part.

Lemma 7.4. Almost surely, the limit curve X has no peaks. In particular,

X([0,∞]) ∩ V Gn = {u1 = X(T0,n), X(T1,n), . . . , X(T∆n(Xn),n) = u2}

almost surely for all n ≥ 0. If i, j ∈ {1, . . . ,∆n(Xn)} with i < j − 1, then

X([Ti−1,n,Ti,n]) ∩X([Tj−1,n,Tj,n]) = ∅

almost surely. Finally, |X([0,∞]) ∩ ψw(V G0)| ≤ 2 for all w ∈W∗ almost surely.

Proof : If ι ∈W and n ≥ 0, we write ιn ∈Wn for the n-fold repetition of the letter
ι and define x(ι) ∈ C̄ by

x(ι) =


. if ι = 1,

. if ι = 2,

. if ι = 3.
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Let w be a word in Wn for some n ≥ 0. For m ≥ n write Am = Am(w, ι) to denote
the event

Am = {wιm−n ∈Wm(T∞, 3), χ̄wιm−n(T∞, 3) = x(ι)}.
Then, for any m ≥ n, Am ⊇ Am+1 and

P(Am+1 | Am) = 6
18 = 1

3

as one can see easily by inspection of Table 6.8. Hence

P(Am) =
(
1
3

)m−n P(An).

Since

{X has a peak of type ι in ψw(K)} =
∩

m≥n

Am,

we infer that

P(X has a peak of type ι in ψw(K)) = 0.

This yields

P(X has a peak) ≤
∑

w∈W∗

∑
ι∈W

P(X has a peak of type ι in ψw(K)) = 0.

In order to show the last assertion of the lemma, let w be a word in Wn. For
i ∈ {1, 2, 3} let wi be the word in Wn (if it exists) for which wi 6= w and ψw(K) ∩
ψwi(K) = {ψw(ui)}. If |X([0,∞]) ∩ ψw(V G0)| = 3 for some w ∈ W∗, then X has
a peak in one of the parts ψw(K), ψw1(K), ψw2(K), ψw3(K). Thus

P(|X([0,∞]) ∩ ψw(V G0)| = 3 for some w ∈W∗) ≤ P(X has a peak) = 0.

Consider two indices i, j ∈ {1, . . . ,∆n(Xn)} with i < j − 1. Then X([Ti−1,n,Ti,n])
and X([Tj−1,n,Tj,n]) are contained in distinct n-parts of K and, furthermore,

{X(Ti−1,n), X(Ti,n)} ∩ {X(Tj−1,n), X(Tj,n)} = ∅.

Hence peaks in both n-parts are the only possibility for a non-empty intersection.
However, this has probability 0. �

On Ω′ define S∗,n for n ≥ 0 by

S∗,n = max{Sj,n : 1 ≤ j ≤ ∆n(Xn)}.
Then S∗,0 = S1,0 = h(X) and S∗,n+1 ≤ S∗,n for all n ≥ 0. Therefore the limit
limn→∞ S∗,n exists and is finite on Ω′.

Lemma 7.5. S∗,n → 0 almost surely as n→∞.

Proof : If (W, (bw)w∈W ) is admissible, then write A(W, (bw)w∈W ) to denote the
event

A(W, (bw)w∈W ) = {Wn(T∞, 3) =W, (χ̄w(T∞, 3))w∈W = (bw)w∈W }.
Let ε > 0, then

P(S∗,n ≥ ε) = P(Sj,n ≥ ε for some 1 ≤ j ≤ ∆n(Xn))

≤
∑

1≤j≤∆n(Xn)

P(Sj,n ≥ ε)

=
∑

(W,(bw)w∈W )

P(A(W, (bw)w∈W ))
∑

1≤j≤|W |

P(Sj,n ≥ ε | A(W, (bw)w∈W )),
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where the sum is taken over all admissible pairs. For sake of notation set c =
1
6 (
√
205−7). If (W, (bw)w∈W ) is admissible, then, under P( · | A(W, (bw)w∈W )), the

random variable Sj,n has the same distribution as cᾱ−nθ̄i for some i ∈ {1, 2, 3}, see
Lemma 7.2. For s ∈ R set

M(s) = max{E(esθ̄1),E(esθ̄2),E(esθ̄3)}.

Fix some s > 0; then M(cs) is finite due to Remark 6.4. Applying Markov’s
inequality yields

P(cᾱ−nθ̄i ≥ ε) = P(ecsθ̄i ≥ esεᾱ
n

) ≤ e−sεᾱn

M(cs)

for all i ∈ {1, 2, 3}. Hence we obtain

P(S∗,n ≥ ε) ≤
∑

(W,(bw)w∈W )

P(A(W, (bw)w∈W ))|W |e−sεᾱn

M(cs)

= e−sεᾱn

M(cs)
∑

(W,(bw)w∈W )

P(A(W, (bw)w∈W ))|W |

= e−sεᾱn

M(cs)E(∆n(Xn))

using Lemma 7.2 once again. Since ∆n(Xn) = c̄#
n(T∞, 3) · (1, 1, 1)t, a short compu-

tation shows that

E(∆n(Xn)) =
(
1
2+

3
82

√
205

)
·
(
4
3+

1
15

√
205

)n
+
(
1
2−

3
82

√
205

)
·
(
4
3−

1
15

√
205

)n ≤ 3ᾱn

for all n ≥ 0. Therefore

P(S∗,n ≥ ε) ≤ 3ᾱne−sεᾱn

M(cs)

for all n ≥ 0. By monotonicity

P
(
lim

n→∞
S∗,n ≥ ε

)
= 0

and, as ε > 0 is arbitrary, S∗,n → 0 almost surely. �

LetΩ′′ be the set of all ω ∈ Ω′ with the property that the assertions of Lemma 7.4
and Lemma 7.5 hold. Then P(Ω′′) = 1. Using the previous preparations we are now
able to prove that the curve X is almost surely self-avoiding and that the random
times Tj,n are almost surely equal to the consecutive hitting times on the set V Gn.

Theorem 7.6. On Ω′′ the following holds:

• The limit curve X is self-avoiding.
• For any 1 ≤ j ≤ ∆n(Xn),

Tj,n = tj,n(X) = inf{t > tj−1,n(X) : X(t) ∈ V Gn}.

Proof : Fix ω ∈ Ω′′ and consider times 0 ≤ t1 < t2 ≤ h(X). By Lemma 7.5
there is an integer n ≥ 0 such that S∗,n < 1

3 (t2 − t1). Thus there are indices
i, j ∈ {1, . . . , ∆n(Xn) − 1} with i < j − 1 such that t1 ∈ [Ti−1,n,Ti,n] and t2 ∈
[Tj−1,n,Tj,n]. Since i < j−1, Lemma 7.4 implies that X(t1) 6= X(t2), which proves
that X is self-avoiding.

The second statement follows immediately using the first statement, Lemma 7.4,
and Theorem 7.3. �
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Remark 7.7. For ω ∈ Ω′′, the topological closure of the discrete set

T = {Tj,n : n ≥ 0, 0 ≤ j ≤ ∆n(Xn)}

contains the interval [0, h(X)]. Hence X is the continuous extension of

T→ K, Tj,n 7→ Xn(tj,n(Xn)).

Remark 7.8. The map

Tn → C, t 7→ LI(u1tu2)

is not one-to-one. However, it is possible to use this map and the law of the labelled
multi-type Galton-Watson tree of Proposition 6.1 to describe the law of the process
X.

We use the following lemma as a partial substitute for the missing Markov prop-
erty in order to prove some properties of the process (X(t))t≥0.

Lemma 7.9. For any n ∈ N0, the following holds:

• If t ≥ s and ‖X(s)‖2 ≥ 2−n, then ‖X(t)‖2 ≥ 2−n.
• If t ≥ s, then ‖X(t)‖2 ≥ 1

2‖X(s)‖2.
• On Ω′′ we have

{‖X(t)‖2 ≥ 2−n} = {sup{‖X(s)‖2 : s ≤ t} ≥ 2−n} = {T1,n ≤ t} = {S1,n ≤ t}.

Proof : The first statement is a simple consequence of the geometry ofK and implies
the second. For the third one note that on Ω′′ the curve X is self-avoiding, has
no peaks and T1,n = S1,n is the hitting time of {2−nu2, 2

−nu3} = ψ11···1({u2, u3}),
where 11 · · · 1 is the word of length n whose letters are all equal to 1. For n ≥ 1,
this implies that the first hitting time of {2−nu2, 2

−nu3} = ψ11···1({u2, u3}) is equal
to the last exit time of the set 2−nK = ψ11···1(K). This implies the statement. �

Theorem 7.10. The following holds:

(1) There are C7,`, C8,` > 0 such that for all s, t ∈ [0,∞) and all δ ∈ [0, 1],

C3,` exp(−C7,`(δt
−γ̄`)1/(1−γ̄`)) ≤ P(‖X(t)‖2 ≥ δ)

and

P(‖X(s+ t)−X(s)‖2 ≥ δ) ≤ P(sup{‖X(s+ u)−X(s)‖2 : 0 ≤ u ≤ t} ≥ δ)

≤ C5,` exp(−C8,`(δt
−γ̄`)1/(1−γ̄`)).

(2) There are C7,r, C8,r > 0 such that for all t ∈ [0,∞) and all δ ∈ [0, 1],

C3,r exp(−C7,r(δ
−1/γ̄`t)γ̄r/(γ̄r−1)) ≤ P(sup{‖X(u)‖2 : 0 ≤ u ≤ t} ≤ δ)

≤ P(‖X(t)‖2 ≤ δ)

and

P(‖X(t)‖2 ≤ δ) ≤ C5,r exp(−C8,r(δ
−1/γ̄`t)γ̄r/(γ̄r−1)).

(3) For any p > 0, there exist constants C9(p), C10(p) > 0 such that for all s ∈
[0,∞) and all t ∈ [0, 1],

C9(p) t
pγ̄` ≤ E(‖X(t)‖p2) and E(‖X(s+ t)−X(s)‖p2) ≤ C10(p) t

pγ̄` .
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(4) There are constants C11, C12 > 0 such that for all s ∈ [0,∞)

lim sup
t↘0

‖X(s+ t)−X(s)‖2
tγ̄`(log log(1/t))1−γ̄`

≤ C11 and

lim inf
t↘0

‖X(t)‖2
tγ̄`(log log(1/t))−γ̄`(1−1/γ̄r)

≥ C12

hold almost surely. Note that 1 − γ̄` ≈ 0.162475 > 0 and −γ̄`(1 − 1/γ̄r) ≈
−0.206594 < 0.

(5) The Hausdorff dimension dimH X([0,∞]) of the path X([0,∞]) almost surely
satisfies

dimH X([0,∞]) =
1

γ̄`
=

log ᾱ

log 2
≈ 1.193995.

Proof : In order to prove the first statement choose n ∈ N such that 2−n ≤ δ ≤
2−(n−1). Then, using Lemma 7.9,

P(S1,n−1 ≤ t) ≤ P(‖X(t)‖2 ≥ δ)
and

P(sup{‖X(s+ u)−X(s)‖2 : 0 ≤ u ≤ t} ≥ δ)
≤ P(Tj−1,n+1 ≥ s, Sj,n+1 ≤ t for some j ≥ 1).

By conditioning as in Lemma 7.2, the distribution of Sj,m is equal to the distribution

of 1
6 (
√
205 − 7)ᾱ−mθ̄i for some i ∈ {1, 2, 3} and Sj,m is independent of Tj−1,m.

Hence the bounds on the tail probability follow from Lemma 6.5. More or less
the same arguments yield the second statement. By integrating the bounds of
the first statement we get the bounds on E(‖X(t)‖p2) and E(‖X(s + t) −X(s)‖p2),
respectively. The fourth statement follows by the usual Borel-Cantelli argument.
The path X([0,∞]) is the limit set of a random recursive construction with multiple
types. Thus the formula for the Hausdorff dimension follows from Hattori (2000,
Theorem 3.8), where such random sets are studied in general. �
Remark 7.11. The properties (1), (3), (4) proved above are slightly weaker forms
of analogous results of Barlow and Perkins (1988, Theorem 4.3, Corollary 4.4,
Theorem 4.7) for Brownian motion and Kumagai (1993, Theorem 4.5, Corollary 4.6,
Theorem 4.8) for more general diffusion processes that contain Brownian motion as
a special case, respectively. In several cases the statements of the previous theorem
are formulated for the special increment X(t) = X(t)−X(0) and not for a general
increment X(s + t) − X(s), which is, we only consider the starting time s = 0.
One reason for the weaker statements is the lack of the Markov property. Another
difficulty in the general case lies in the fact that parts of the curve that lie in
different k-parts of the Sierpiński gasket K can still be close to each other near the
vertices where these k-parts are connected. At the corner (time s = 0), this cannot
happen. It seems plausible, however, that the strong forms of the cited statements
also hold in our case. Fortunately, the formula for the Hausdorff dimension does
not rely on the first four properties, but only on the fact that the path X([0,∞])
is the limit set of a specific random recursive construction with multiple types.

Remark 7.12. We note that all we have proved in this section remains true if we
replace Tn by S3

n. In particular, LI(u1S
3
nu2, ᾱ

n) converges almost surely in (C, dC)
to a limit curve and the results of 7.3–7.10 hold with S3

n in place of Tn.
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8. Limit of the tree metric

Consider a generic ω ∈ Ω. Then Tn(ω) is a spanning tree on Gn and it is the
trace Trmn Tm(ω) for all m ≥ n. Let u, v be two vertices in V Gn for some n ≥ 0.
Their distance dTm(ω)(u, v) with respect to the spanning tree Tm(ω) is well-defined

and Corollary 6.6 indicates that ᾱ−mdTm(ω)(u, v) converges for m → ∞, where

ᾱ = 4
3 +

1
15

√
205 is the dominating eigenvalue of Proposition 6.1. If this limit exists

for all u, v in the countable set

V∗ =
∪
n≥0

V Gn =
∪

w∈W∗

ψw(V G0),

and it is positive whenever u 6= v, then the limit defines a metric d∗,ω on V∗:

d∗,ω(u, v) = lim
m→∞

ᾱ−mdTm(ω)(u, v)

for all u, v ∈ V∗. In the following we show that d∗,ω exists for almost all ω ∈ Ω and
yields a random metric d∗ on V∗. Let M(V∗) be the set of all metrics on V∗. We
equip M(V∗) with the σ-algebraM(V∗) which is induced by the mappings

M(V∗)→ R, d 7→ d(u, v)

for u, v ∈ V∗. We recall some notions from metric theory, see for instance Chiswell
(2001). A metric space (X, d) is 0-hyperbolic if

d(u, v) + d(x, y) ≤ max{d(u, x) + d(v, y), d(u, y) + d(v, x)}

holds for all u, v, x, y ∈ X (four point condition). A metric segment in (X, d) is the
image of an isometric embedding [a, b] → X for some a, b ∈ R. Finally, (X, d) is
called an R-tree if, for any x, y ∈ X, there is a unique arc connecting x, y and this
arc is a metric segment. We note that (X, d) is an R-tree if and only if (X, d) is
connected and 0-hyperbolic, see Chiswell (2001, Lemma 2.4.13).

Theorem 8.1. For almost all ω ∈ Ω the limit

d∗,ω(u, v) = lim
m→∞

ᾱ−mdTm(ω)(u, v)

exists for all u, v ∈ V∗ and yields a metric d∗,ω on the set V∗, such that (V∗, d∗,ω) is a
0-hyperbolic and totally bounded metric space. Thus, for a suitable subset Ω′′′ ⊆ Ω
of probability 1,

Ω′′′ →M(V∗), ω 7→ d∗,ω

is a random metric in (M(V∗),M(V∗)). Furthermore, for ω ∈ Ω′′′ the Cauchy
completion of (V∗, d∗,ω) is a compact R-tree.

Proof : For x, y ∈ V G0 and w ∈ Wn, define Ω(w, x, y) to be the set of all ω ∈ Ω
such that, whenever x, y are connected in the restriction πw(Tn(ω)), the curve
LI(xπw(Tm(ω))y, ᾱm) converges in (C, dC) as m → ∞, m ≥ n, and the asser-
tions of Theorems 7.3–7.6 hold. The usual conditioning argument shows that
P(Ω(w, x, y)) = 1 for all w ∈W∗ and all x, y ∈ V G0. Thus

Ω′′′ =
∩

w∈W∗

∩
x,y∈V G0

Ω(w, x, y)

has probability 1. Fix an element ω ∈ Ω′′′. Then for all u, v ∈ V∗ the limit

d∗,ω(u, v) = lim
m→∞

ᾱ−mdTm(ω)(u, v)
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exists and is an element of [0,∞). By construction of Ω′′′, we have d∗,ω(u, v) > 0 for
all u, v ∈ V∗, u 6= v, which are neighbours in Gn for some n. Hence d∗,ω(u, v) > 0 for
all u, v ∈ V∗, u 6= v. Furthermore, as dTm(ω) is the graph metric of the tree Tm(ω),
it satisfies the triangle inequality and the four point condition. Thus the limit d∗,ω
also satisfies the triangle inequality and the four point condition. Altogether we
have proved that (V∗, d∗,ω) is a 0-hyperbolic metric space if ω ∈ Ω′′′. For x, y ∈ V G0

and w ∈Wn define A(w, x, y) to be the set of all ω ∈ Ω′′′, such that, whenever x, y
are connected in the restriction πw(Tn(ω)), then d∗,ω(ψw(x), ψw(y)) ≤ 2−n. Using
the Borel-Cantelli lemma together with the bounds of Lemma 6.5, we see that

An =
∩

w∈Wn

∩
x,y∈V G0

A(w, x, y)

holds eventually with probability 1. Hence, for ω ∈ Ω′′′, there is an N = N(ω)
such that ω ∈ An for all n ≥ N . Fix some n ≥ N . For x ∈ V Gn let Cx = Cx(ω)
be the set of all y ∈ V Gm (m ≥ n), such that all vertices v on the path xTm(ω)y
satisfy ‖v − x‖2 ≤ 2−n. If y ∈ Cx ∩ V Gn, then d∗,ω(x, y) ≤ 2−n. If y ∈ Cx \ V Gn,
then we can find x = xn, xn+1, . . . , xm = y, such that xk ∈ V Gk and xk−1, xk are
either identical or neighbours in Tk(ω). Thus

d∗,ω(x, y) ≤
m∑

k=n+1

d∗,ω(xk−1, xk) ≤
m∑

k=n+1

2−k ≤ 2−n.

Thus, if B∗,ω(x, 2
−n) denotes the ball of radius 2−n centered at x with respect to

d∗,ω, then Cx ⊆ B∗,ω(x, 2
−n). Hence

V∗ =
∪

x∈V Gn

Cx =
∪

x∈V Gn

B∗,ω(x, 2
−n),

which means that (V∗, d∗,ω) is totally bounded. To check measurability we note
that ω 7→ dTm(ω)(u, v) is measurable for fixed u, v ∈ V∗ (if m is sufficiently large).
Thus the limit ω 7→ d∗,ω(u, v) is measurable, too. By definition of M(V∗), this
implies measurability of ω 7→ d∗,ω.

In order to prove that the Cauchy completion (V̌∗,ω, ď∗,ω) of (V∗, d∗,ω) for ω ∈ Ω′′′

is an R-tree, it is sufficient to show that the completion is connected, as 0-hy-
perbolicity is preserved by completion, see Chiswell (2001, Lemma 2.2.11). We
show that the completion contains a path from u1 to any x. Let x1, x2, . . . be a
Cauchy sequence in V∗ with xn → x. Denote by αn : [0,∞]→ K the limit curve of
LI(u1Tm(ω)xn, ᾱ

m) as m → ∞, which exists by construction of Ω′′′. Then Dn =
α−1
n (V∗) is a dense subset of [0,∞] by Lemma 7.5. Note that t = d∗,ω(u1, αn(t))

for all t ∈ Dn such that t ≤ min{s : αn(s) = xn}. Therefore the restriction
αn : Dn → V∗ is continuous with respect to d∗,ω and thus has a continuous exten-

sion βn : [0,∞]→ V̌∗,ω. Set s0 = 0 and

sn = max{t ∈ [0,∞] : βk = βn on [0, t] for all k ≥ n}.

Then we have s0 ≤ s1 ≤ · · · and βn(sn)→ x, and

β : [0,∞]→ V̌∗,ω, β(t) =


u1 if t = 0,

βn(t) if sn−1 < t ≤ sn,
x otherwise,
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is a continuous curve connecting u1 and x (whose image is a metric segment).
Finally, (V̌∗,ω, ď∗,ω) is compact for ω ∈ Ω′′′, since it is the completion of the totally
bounded metric space (V∗, d∗,ω). �

Let ω be an element of the setΩ′′′ defined in the previous proof and let (V̌∗,ω, ď∗,ω)

be the Cauchy completion of (V∗, d∗,ω). Consider an element x ∈ V̌∗,ω. Suppose
that x1, x2, . . . is a Cauchy sequence in (V∗, d∗,ω), such that xn → x with respect to

ď∗,ω. Then it is easy to see that x1, x2, . . . is also a Cauchy sequence in (V∗, ‖ · ‖2)
and thus has a limit in (K, ‖ · ‖2), which does not depend on the specific Cauchy
sequence but only on x ∈ V̌∗,ω. We write ξω(x) to denote this limit in (K, ‖ · ‖2).
Then ξω : V̌∗,ω → K is a well-defined, continuous map, such that the restriction
ξω|V∗ to V∗ is the identity.

Lemma 8.2. Let ω be in Ω′′′. Then 1 ≤ |ξ−1
ω (x)| ≤ 4 for all x ∈ V∗ and 1 ≤

|ξ−1
ω (x)| ≤ 3 for all x ∈ K \ V∗.

Proof : For every point x ∈ K we can find a sequence in V∗ that converges to this
point in (K, ‖ · ‖2) and which is Cauchy in (V∗, d∗,ω). Thus the map ξω is surjective,
whence |ξ−1

ω (x)| ≥ 1. As in the previous proof every sequence x1, x2, . . . ∈ V∗
converging to a point in ξ−1

ω (x) in (V∗, d∗,ω) yields a metric segment connecting u1
and that point. Using the geometry of the Sierpiński gasket it is easy to see that
there are at most four (respectively three if x /∈ V∗) distinct metric segments joining
u1 and a point in ξ−1

ω (x). This proves the claim. �

Theorem 8.3. Let ω be an element of Ω′′′. Then the hitting time h(X(ω)) of
the limit curve X(ω) in u2 is equal to the distance d∗,ω(u1, u2). Furthermore, if

γω : [0, d∗,ω(u1, u2)]→ V̌∗,ω is the unique isometric embedding with γω(0) = u1 and
γω(d∗,ω(u1, u2)) = u2, then

X(t, ω) = ξω(γω(t))

for all t ∈ [0, d∗,ω(u1, u2)].

Proof : The statement is a consequence of the definition of the limit curve X(ω)
and the limit metric d∗,ω, see Theorem 7.3 and Theorem 8.1. �

For ω ∈ Ω′′′ define A(ω) to be the set {x ∈ K : |ξ−1
ω (x)| > 1}. These are points

that “can be reached from two (or more) different directions”. To understand how
this happens, it is useful to consider spanning forests with two components: given
for instance some f ∈ S1∞, every element v of V∗ can be associated uniquely to
one of the components: v ∈ V (Gn) for some n, and v either belongs to the same
component as u1 in Tr∞m f for all m ≥ n or to the same component as u2 and u3,
again for all m ≥ n. There are, however, some points in the completion K that
can be reached as limits from both sides; they form the so-called “interface”. In a
spanning tree, there is only one component, but the same phenomenon can occur at
higher levels, within certain n-parts on which the spanning tree induces a spanning
forest with more than one component.

In the following we give a description of A(ω) in terms of Galton-Watson trees
and show that the Hausdorff dimension dimH A(ω) is strictly less than 1 for almost
all ω. For f ∈ Q∞ and n ≥ 0 let W̌n(f) be the set of all w ∈ Wn, such that



776 Shinoda et al.

ψw(V G0) contains vertices of two distinct components of Tr∞n f . The union

W̌ (f) =
∪
n≥0

W̌n(f)

induces a subtree of W∗. On a single n-part ψw(V G0) with w ∈ W̌n(f) we always
observe one of the following possibilities:

• The restriction πw(Tr
∞
n f) has two components and these two components

belong to two distinct components of Tr∞n f . In this case we set χ̌w(f) =
χw(f) ∈ {. , . , . }.
• The restriction πw(Tr

∞
n f) has three components and two of them belong to

the same component of Tr∞n f . In this case we define χ̌w(f) ∈ {. , . , . }
depending on which two of the three components in πw(Tr

∞
n f) belong to

the same component of Tr∞n f .
• The restriction πw(Tr

∞
n f) has three components and these three compo-

nents belong to three distinct components of Tr∞n f . In this case we set
χ̌w(f) = χw(f) = . .

Let Č = {. , . , . , . , . , . , . } and set

χ̌(f) = (χ̌w(f))w∈W̌ (f).

As in Section 5.1 it is easy to see that χ̌(U∞) is a labelled multi-type Galton-
Watson tree with types in Č, where U∞ is one of S1

∞, S
2
∞, S

3
∞, R∞. The associated

counting process (č#(U∞))n≥0, which counts type occurrences in one generation
up to symmetry, is a multi-type Galton-Watson process with three types, offspring
generating function

ǧ(z) =
(

1
10 (4z1 + 3z21 + 3z2),

1
25 (6z1 + 3z21 + z31 + 6z2 + 9z1z2),

1
25z1(3z1 + 4z21 + 9z2 + 9z3)

)
and mean matrix

M̌ =
1

50
·

50 15 0
48 30 0
72 18 18

 .

This mean matrix has the dominating eigenvalue α̌ = 3
5 ᾱ = 4

5+
1
25

√
205 ≈ 1.372712.

Define

I(f) =
∩
n≥0

∪
w∈W̌n(f)

ψw(K).

Then I(f) is the limit set of the component boundaries and

dimH I(U∞) ≤ log α̌

log 2
=

log ᾱ

log 2
−

log 5
3

log 2
≈ 0.457029

holds almost surely using a result by Tsujii (1991, Proposition 3.9). It seems
that other results on the Hausdorff dimension do not apply to this specific random
recursive construction, so that we only obtain an upper bound. Of course, I(T∞) =
∅ and so dimH I(T∞) = 0.
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Proposition 8.4. For ω ∈ Ω′′′ we have

A(ω) =
∪

w∈W∗

ψw(I(πw(T∞(ω))))

and thus

dimH A(ω) ≤ log α̌

log 2
=

log ᾱ

log 2
−

log 5
3

log 2
≈ 0.457029

for almost all ω.

Proof : Note that A(ω) contains ψw(I(πw(T∞(ω)))) for all w ∈ W∗. On the other
hand, if x ∈ A(ω), then ξ−1

ω (x) contains at least two distinct points in V̌∗,ω, say x1
and x2. Denote by u1x1 (respectively u1x2) the metric segment connecting u1 and
x1 (respectively x2). Then there is a word w ∈W∗ such that x ∈ ψw(K) and

u1x1 ∩ u1x2 ∩ ξ−1
ω (ψw(K)) = ∅.

This implies that x ∈ ψw(I(πw(T∞(ω)))). The usual conditioning argument shows
that

dimH ψw(I(πw(T∞(ω)))) ≤ log α̌

log 2
for almost all ω. As W∗ is a countable set and the Hausdorff dimension behaves
nicely under countable unions the claim follows. �

Remark 8.5. Note the occurrence of the constant 5
3 , which is the resistance scaling

factor of the Sierpiński gasket. It also occurs prominently in the formula for the
number of spanning trees (see Teufl and Wagner (2011b) for the connection between
resistance scaling and the number of spanning trees): if we regardGn as an electrical
network, where each edge represents a unit resistor, then the effective resistance
between two of the boundary vertices u1, u2, u3 is

2
3 ·(

5
3 )

n. There is a simple heuristic
explanation why the identity

log α̌ = log ᾱ− log 5
3

must hold: it is well known (cf. Bollobás, 1998, p. 44, Theorem 1) that the effective
resistance between two vertices equals the number of thickets, i.e., spanning forests
with two components each containing one of the two vertices, divided by the number
of spanning trees. For every spanning tree of Gn, one can obtain a thicket by
removing an edge from the unique path between u1 and u2; conversely, we can
turn a thicket into a spanning tree by inserting an edge that connects the two
components at the interface. The identity now follows (at least heuristically) from
a simple double-counting argument.

9. Other self-similar graphs

The same ideas apply to other self-similar graphs as well: it was shown by Teufl
and Wagner (2011a) that the recursions for counting spanning trees and forests in
self-similar sequences of graphs have simple explicit solutions as for the Sierpiński
graphs if the number of “boundary” vertices is two (as for example in the case of
the graphs associated with the modified Koch curve, see Figure 9.7) or three (as
for the Sierpiński graphs), provided that the automorphism group acts with either
full symmetry or like the alternating group on the set of boundary vertices. For
two boundary vertices, this technical condition is always satisfied. The explicit
counting formulae guarantee that the projections will still be measure-preserving,
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and all other arguments can be carried out in the same way as in the previous
sections.

....

G0

.............

G1

.........................................................................

G2

.

K

Figure 9.7. The modified Koch curve.

For two boundary vertices, the rescaling factor is precisely the average length of
loop-erased random walk from one boundary vertex to the other in G1 (the initial
graph G0 being a single edge), which is always a rational number. For example, for
the sequence of graphs in Figure 9.7, the rescaling constant is 10

3 (in other words,
the length of loop-erased random walk from one boundary vertex of Gn to the
other grows like ( 103 )n). It follows that the Hausdorff dimension of the limit curve

is almost surely log(103 )/ log 3 ≈ 1.095903274 in this example. As a second example,
consider the Sierpiński graphs with two subdivisions on each edge in Figure 9.8: in
this case, we find that the rescaling factor is 1

735 (1431 +
√
1669656 ) (it is a priori

clear that it has to be algebraic of degree ≤ 2, being an eigenvalue of a 2×2-matrix
with rational entries), giving us a Hausdorff dimension of ≈ 1.192117286 for the
limit curve of loop-erased random walk.

.....

G0

...................

G1

.............................................................................................................

G2

.

K

Figure 9.8. Sierpiński graphs with two subdivisions.

If the number of boundary vertices is four or more (which happens, for instance,
for the higher-dimensional analogues of the Sierpiński graphs), then more different
types of spanning forests have to be considered, and there are generally no exact
counting formulae. However, asymptotic formulae should hold in such cases, making
the projections “asymptotically measure-preserving”, so that analogous results hold
in such cases. The details might be quite intricate though, and new geometric
phenomena arise as well: for instance, with four boundary vertices, it becomes
possible that a loop-erased random walk on Gn enters and leaves some of the copies
of Gk (k < n) more than once, which is not possible in the case of Sierpiński graphs
that we considered.
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