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Abstract. Given a sequence (C1, . . . , Cd, T1, T2, . . .) of real-valued random vari-
ables with N := #{j ≥ 1 : Tj 6= 0} < ∞ almost surely, there is an associated
smoothing transformation which maps a distribution P on Rd to the distribution
of

∑
j≥1 TjX

(j) +C where C = (C1, . . . , Cd) and (X(j))j≥1 is a sequence of inde-

pendent random vectors with distribution P independent of (C1, . . . , Cd, T1, T2, . . .).
We are interested in the fixed points of this mapping. By improving on the tech-
niques developed in Alsmeyer et al. (2012) and Alsmeyer and Meiners (2013), we de-
termine the set of all fixed points under weak assumptions on (C1, . . . , Cd, T1, T2, . . .).
In contrast to earlier studies, this includes the most intricate case when the Tj take
both positive and negative values with positive probability. In this case, in some
situations, the set of fixed points is a subset of the corresponding set when the Tj
are replaced by their absolute values, while in other situations, additional solutions
arise.

1. Introduction

For a given d ∈ N and a given sequence (C, T ) = ((C1, . . . , Cd), (Tj)j≥1) where
C1, . . . , Cd, T1, T2, . . . are real-valued random variables with N := #{j ≥ 1 : Tj 6=
0} <∞ almost surely, consider the mapping on the set of probability measures on
Rd that maps a distribution P to the law of the random variable

∑
j≥1 TjX

(j) +C
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where (X(j))j≥1 is a sequence of independent random vectors with distribution P
independent of (C, T ). P is a fixed point of this mapping iff, with X denoting a
random variable with distribution P ,

X
law
=

∑
j≥1

TjX
(j) +C. (1.1)

In this paper we identify all solutions to (1.1) under suitable assumptions.
Due to the appearance of the distributional fixed-point equation (1.1) in vari-

ous applications such as interacting particle systems Durrett and Liggett (1983),
branching random walks Biggins (1977); Biggins and Kyprianou (1997), analysis of
algorithms Neininger and Rüschendorf (2004); Rösler (1991); Volkovich and Litvak
(2010), and kinetic gas theory Bassetti et al. (2011), there is a large body of papers
dealing with it in different settings.

The articles Alsmeyer et al. (2012); Alsmeyer and Meiners (2012, 2013); Biggins
(1977); Biggins and Kyprianou (1997, 2005); Durrett and Liggett (1983); Iksanov
(2004); Liu (1998) treat the case d = 1 in which we rewrite (1.1) as

X
law
=

∑
j≥1

TjX
(j) + C. (1.2)

In all these references it is assumed that Tj ≥ 0 a.s. for all j ≥ 1. The most
comprehensive result is provided in Alsmeyer and Meiners (2013). There, under
mild assumptions on the sequence (C, T1, T2, . . .), which include the existence of an
α ∈ (0, 2] such that E[

∑
j≥1 T

α
j ] = 1, it is shown that there exists a pair (W ∗,W )

of random variables on a specified probability space such that W ∗ is a particular
(endogenous1) solution to (1.2) and W is a nonnegative solution to the tilted ho-

mogeneous equation W
law
=

∑
j≥1 T

α
j W

(j) where the W (j) are i.i.d. copies of W

independent of (C, T1, T2, . . .). Furthermore, a distribution P on R is a solution to
(1.2) if and only if it is the law of a random variable of the form

W ∗ +W 1/αYα (1.3)

where Yα is a strictly α-stable random variable independent of (W ∗,W ).2 This
result constitutes an almost complete solution of the fixed-point problem in di-
mension one leaving open only the case when the Tj take positive and negative
values with positive probability. In a setup including the latter case, which will
be called the case of weights with mixed signs hereafter, we derive the analogue
of (1.3) thereby completing the picture in dimension one under mild assumptions.
It is worth pointing out here that while one could guess at first glance that (1.3)
carries over to the case of weights with mixed signs with the additional restriction
that Yα should be symmetric α-stable rather than strictly α-stable, an earlier work
Alsmeyer (2006) dealing with (1.2) in the particular case of deterministic weights Tj ,
j ≥ 1 suggests that this is not always the case. Indeed, if, for instance, 1 < α < 2,
E[
∑
j≥1 |Tj |α] = 1 and

∑
j≥1 Tj = 1 a.s., it is readily checked that addition of a

constant to any solution again gives a solution which cannot be expressed as in
(1.3). In fact, this is not the only situation in which additional solutions arise and
these are typically not constants but limits of certain martingales not appearing in
the case of nonnegative weights Tj , j ≥ 1.

1See Section 3.5 for the definition of endogeny.
2 For convenience, random variables with degenerate laws are assumed strictly 1-stable.
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Our setup is a mixture of the one- and the multi-dimensional setting in the
sense that we consider probability distributions on Rd while the weights Tj , j ≥
1 are scalars. Among others, this allows us to deal with versions of (1.1) for
stochastic processes which can be understood as generalized equations of stability
for stochastic processes. Earlier papers that are concerned with finding all fixed
points of the smoothing transform in a multivariate setting are Bassetti and Matthes
(2014); Mentemeier (2015+). On the one hand, the setup in these references is more
general since there the Tj , j ≥ 1 are d × d matrices rather than scalars. On the
other hand, they are less general since they cover the case α = 2 only Bassetti and
Matthes (2014) (where the definition of α is a suitable extension of the definition
given above) or the case of matrices Tj with nonnegative entries and solutions X
with nonnegative components only Mentemeier (2015+).

We continue the introduction with a more detailed description of two applica-
tions, namely, kinetic models and stable distributions.

Kinetic models. Motivated by questions coming from kinetic gas theory and eco-
nomics, Bassetti et al. Bassetti and Ladelli (2012); Bassetti et al. (2011); Matthes
and Toscani (2008) consider a certain evolution equation for time-dependent prob-
ability distributions on R and investigate convergence of its solutions to stationary
distributions, i.e., distributions that are invariant under the dynamics of the evo-
lution equation. It turns out that the stationary distributions are fixed points of a
smoothing transform associated to a vector (C, T ), where C = 0 and N is a fixed
integer ≥ 2.

The classical Kac equation Kac (1956) is a particular case of the equation studied
in Bassetti and Ladelli (2012); Bassetti et al. (2011) and the corresponding station-
ary distributions are fixed points of the smoothing transform with d = 1, C = 0,
N = 2, T1 = sin(Θ), T2 = cos(Θ) where Θ is a random angle uniformly distributed
over [0, 2π]. The corresponding fixed-point equation is

X
law
= sin(Θ)X(1) + cos(Θ)X(2). (1.4)

Another particular case covered in Bassetti and Ladelli (2012); Bassetti et al. (2011)
are inelastic Kac models Pulvirenti and Toscani (2004). The stationary distribu-
tions which correspond to these equations satisfy the analogous fixed-point equation

X
law
= sin(Θ)| sin(Θ)|β−1X(1) + cos(Θ)| cos(Θ)|β−1X(2) (1.5)

where Θ is as above and β > 1 is a parameter.

Generalized equations of stability. A distribution P on Rd is called stable iff there
exists an α ∈ (0, 2] such that for every n ∈ N there is a cn ∈ Rd with

X
law
= n−1/α

n∑
j=1

X(j) + cn (1.6)

where X has distribution P and X(1),X(2), . . . is a sequence of i.i.d. copies of X, see
Samorodnitsky and Taqqu (1994, Corollary 2.1.3). α is called the index of stability
and P is called α-stable.

Clearly, stable distributions are fixed points of certain smoothing transforms. For
instance, given a random variable X satisfying (1.6) for all n ∈ N, one can choose
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a random variable N with support ⊆ N and then define T1 = . . . = Tn = n−1/α,
Tj = 0 for j > n and C = cn on {N = n}, n ∈ N. Then X satisfies (1.1).

Hence, fixed-point equations of smoothing transforms can be considered as gener-
alized equations of stability; some authors call fixed points of smoothing transforms
“stable by random weighted mean” Liu (2001). It is worth pointing out that the
form of (the characteristic functions of) strictly stable distributions can be deduced
from our main result, Theorem 2.4, the proof of which can be considered as a gen-
eralization of the classical derivation of the form of stable laws given by Gnedenko
and Kolmogorov (1968).

2. Main results

2.1. Assumptions. Without loss of generality for the results considered here, we
assume that

N = sup{j ≥ 1 : Tj 6= 0} =
∑
j≥1

1{Tj 6=0} ∈ N0. (2.1)

Also, we define the function

m : [0,∞) → [0,∞], γ 7→ E
[ N∑
j=1

|Tj |γ
]
. (2.2)

Naturally, assumptions on (C, T ) are needed in order to solve (1.1). Throughout
the paper, the following assumptions will be in force:

P(Tj ∈ {0} ∪ {±rn : n ∈ Z} for all j ≥ 1) < 1 for all r ≥ 1. (A1)

m(0) = E[N ] ∈ (1,∞]. (A2)

m(α) = 1 for some α > 0 and m(ϑ) > 1 for all ϑ ∈ [0, α). (A3)

We briefly discuss the assumptions (A1)-(A3)3 beginning with (A1). With R∗

denoting the multiplicative group (R \ {0},×), let

G(T ) :=
∩{

G : G is a closed multiplicative subgroup of R∗

satisfying P(Tj ∈ G for j = 1, . . . , N) = 1
}
.

G(T ) is the closed multiplicative subgroup ⊂ R∗ generated by the nonzero Tj .
There are seven possibilities: (C1) G(T ) = R∗, (C2) G(T ) = R> := (0,∞), (D1)
G(T ) = rZ ∪ −rZ for some r > 1, (D2) G(T ) = rZ for some r > 1, (D3) G(T ) =
(−r)Z for some r > 1, (S1) G(T ) = {1,−1}, and (S2) G(T ) = {1}. (A1) can be
reformulated as: Either (C1) or (C2) holds. For the results considered, the cases
(S1) and (S2) are simple and it is no restriction to rule them out (see Alsmeyer
(2006, Proposition 3.1) in case d = 1; the case d ≥ 2 can be treated by considering
marginals). Although the cases (D1)-(D3) in which the Tj generate a (non-trivial)
discrete group could have been treated along the lines of this paper, they are ruled
out for convenience since they create the need for extensive notation and case
distinction. Caliebe (2003, Lemma 2) showed that only simple cases are eliminated
when assuming (A2). (A3) is natural in view of earlier studies of fixed points of the
smoothing transform, see e.g. Alsmeyer (2006, Proposition 5.1) and Alsmeyer and

3 Although (A3) implies (A2), we use both to keep the presentation consistent with earlier

works.
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Meiners (2012, Theorem 6.1 and Example 6.4). We refer to α as the characteristic
index (of T ).

Define

p := E
[ N∑
j=1

|Tj |α1{Tj>0}

]
and q := E

[ N∑
j=1

|Tj |α1{Tj<0}

]
. (2.3)

(A3) implies that 0 ≤ p, q ≤ 1 and p + q = 1. At some places it will be necessary
to distinguish the following cases:

Case I: p = 1, q = 0. Case II: p = 0, q = 1. Case III: 0 < p, q < 1. (2.4)

Case I corresponds to G(T ) = R>. Cases II and III correspond to G(T ) = R∗. In
dimension d = 1, Case I is covered by the results in Alsmeyer and Meiners (2013)
while Case II can be lifted from these results. Case III is genuinely new.

In our main results, we additionally assume the following condition to be satis-
fied:

(A4a) or (A4b) holds, (A4)

where

E
[ N∑
j=1

|Tj |α log(|Tj |)
]
∈ (−∞, 0) and E

[( N∑
j=1

|Tj |α
)
log+

( N∑
j=1

|Tj |α
)]

<∞;

(A4a)

there exists some θ ∈ [0, α) satisfying m(θ) < ∞. (A4b)

Further, in Case III when α = 1, we need the assumption

E
[ N∑
j=1

|Tj |αδ− log(|Tj |)(·)
]
is spread-out, E

[ N∑
j=1

|Tj |α(log−(|Tj |))2
]
<∞,

E
[ N∑
j=1

|Tj |α log(|Tj |)
]
∈ (−∞, 0) and E

[
h3

( N∑
j=1

|Tj |α
)]

<∞ (A5)

for h3(x) := x(log+(x))3 log+(log+(x)). (A5) is stronger than (A4a). The last
assumption that will occasionally show up is

|Tj | < 1 a.s. for all j ≥ 1. (A6)

However, (A6) will not be assumed in the main theorems since by a stopping line
technique, the general case can be reduced to cases in which (A6) holds. It will
be stated explicitly whenever at least one of the conditions (A4a), (A4b), (A5) or
(A6) is assumed to hold.

2.2. Notation and background. In order to state our results, we introduce the un-
derlying probability space and some notation that comes with it.

Let V :=
∪
n≥0 Nn denote the infinite Ulam-Harris tree where N0 := {∅}. We

use the standard Ulam-Harris notation, which means that we abbreviate v =
(v1, . . . , vn) ∈ V by v1 . . . vn. vw is short for (v1, . . . , vn, w1, . . . , wm) when w =
(w1, . . . , wm) ∈ Nm. We make use of standard terminology from branching pro-
cesses and call the v ∈ V (potential) individuals and say that v is a member of
the nth generation if v ∈ Nn. We write |v| = n if v ∈ Nn and define v|k to be
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the restriction of v to its first k components if k ≤ |v| and v|k = v, otherwise. In
particular, v|0 = ∅. v|k will be called the ancestor of v in the kth generation.

Assume a family (C(v), T (v))v∈V = (C1(v), . . . , Cd(v), T1(v), T2(v), . . .)v∈V of
i.i.d. copies of the sequence (C, T ) = (C, T1, T2, . . .) is given on a fixed probability
space (Ω,A,P) that also carries all further random variables we will be working
with. For notational convenience, we assume that

(C1(∅), . . . , Cd(∅), T1(∅), T2(∅), . . .) = (C1, . . . , Cd, T1, T2, . . .).

Throughout the paper, we let

An := σ((C(v), T (v)) : |v| < n), n ≥ 0 (2.5)

be the σ-algebra of all family histories before the nth generation and define A∞ :=
σ(An : n ≥ 0).

Using the family (C(v), T (v))v∈V, we define a Galton-Watson branching process
as follows. Let N(v) := sup{j ≥ 1 : Tj(v) 6= 0} so that the N(v), v ∈ V are
i.i.d. copies of N . Put G0 := {∅} and, recursively,

Gn+1 := {vj ∈ Nn+1 : v ∈ Gn, 1 ≤ j ≤ N(v)}, n ∈ N0. (2.6)

Let G :=
∪
n≥0 Gn and Nn := |Gn|, n ≥ 0. Then (Nn)n≥0 is a Galton-Watson

process. E[N ] > 1 guarantees supercriticality and hence P(S) > 0 where

S := {Nn > 0 for all n ≥ 0}

is the survival set. Further, we define multiplicative weights L(v), v ∈ V as follows.
For v = v1 . . . vn ∈ V, let

L(v) :=
n∏
k=1

Tvk(v|k−1). (2.7)

Then the family L := (L(v))v∈V is called weighted branching process. It can be used
to iterate (1.1). Let (X(v))v∈V be a family of i.i.d. random variables defined on
(Ω,A,P) independent of the family (C(v), T (v))v∈V. For convenience, let X(∅) =:
X. If the distribution of X is a solution to (1.1), then, for n ∈ N0,

X
law
=

∑
|v|=n

L(v)X(v) +
∑
|v|<n

L(v)C(v). (2.8)

An important special case of (1.1) is the homogeneous equation

X
law
=

∑
j≥1

TjX
(j) (2.9)

in which C = 0 = (0, . . . , 0) ∈ Rd a.s. Iteration of (2.9) leads to

X
law
=

∑
|v|=n

L(v)X(v). (2.10)

Finally, for u ∈ V and a function Ψ = Ψ((C(v), T (v))v∈V) of the weighted
branching process, let [Ψ]u be defined as Ψ((C(uv), T (uv))v∈V), that is, the same
function but applied to the weighted branching process rooted in u. The [·]u, u ∈ V
are called shift operators.
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2.3. Existence of solutions to (1.1)nd related equations. Under certain assumptions
on (C, T ), a solution to (1.1) can be constructed as a function of the weighted
branching process (L(v))v∈V. Let W

∗
0 := 0 and

W∗
n :=

∑
|v|<n

L(v)C(v), n ∈ N. (2.11)

W∗
n is well-defined since a.s. {|v| < n} has only finitely many members v with

L(v) 6= 0. Whenever W∗
n converges in probability to a finite limit as n → ∞, we

set
W∗ := lim

n→∞
W∗

n (2.12)

and note that W∗ defines a solution to (1.1). Indeed, if W∗
n → W∗ in probability

as n → ∞, then also [W∗
n]j → [W∗]j in probability as n → ∞. By standard

arguments, there is a (deterministic) sequence nk ↑ ∞ such that [W∗
nk
]j → [W∗]j

a.s. for all j ≥ 1. Since N <∞ a.s., this yields

lim
k→∞

W∗
nk+1 = lim

k→∞

N∑
j=1

Tj [W
∗
nk
]j +C =

N∑
j=1

Tj [W
∗]j +C a.s.

and hence,

W∗ =
N∑
j=1

Tj [W
∗]j +C a.s. (2.13)

because W∗
nk+1 → W∗ in probability.

The following proposition provides sufficient conditions for W∗
n to converge in

probability.

Proposition 2.1. Assume that (A1)-(A3) hold. Each of the following conditions
is sufficient for W∗

n to converge in probability.

(i) For some 0 < β ≤ 1, m(β) < 1 and E[|Cj |β ] <∞ for all j = 1, . . . , d.
(ii) For some β > 1, supn≥0 E[|W∗

n|β ] <∞ and either Tj ≥ 0 a.s. for all j ∈ N
or E[C] = 0.

(iii) 0 < α < 1, E[
∑
j≥1 |Tj |α log(|Tj |)] exists and equals 0, and, for some δ > 0,

E[|Cj |α+δ] <∞ for j = 1, . . . , d.

For the most part, the proposition is known. Details along with the relevant
references are given at the end of Section 3.5.

Of major importance in this paper are the solutions to the one-dimensional tilted
homogeneous fixed-point equation

W
law
=

∑
j≥1

|Tj |αW (j) (2.14)

where W is a finite, nonnegative random variable and the W (j), j ≥ 1 are i.i.d.
copies of W independent of the sequence (T1, T2, . . .). Equation (2.14) (for nonneg-
ative random variables) is equivalent to the functional equation

f(t) = E
[∏
j≥1

f(|Tj |αt)
]

for all t ≥ 0 (2.15)

where f denotes the Laplace transform of W . (2.14) and (2.15) have been studied
extensively in the literature and the results that are important for the purposes of
this paper are summarized in the following proposition.
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Proposition 2.2. Assume that (A1)–(A4) hold. Then

(a) there is a Laplace transform ϕ of a probability distribution on [0,∞) such
that ϕ(1) < 1 and ϕ solves (2.15);

(b) every other Laplace transform ϕ̂ of a probability distribution on [0,∞) solv-
ing (2.15) is of the form ϕ̂(t) = ϕ(ct), t ≥ 0 for some c ≥ 0;

(c) 1− ϕ(t) is regularly varying of index 1 at 0;
(d) a (nonnegative, finite) random variableW solving (2.14) with Laplace trans-

form ϕ can be constructed explicitly on (Ω,A,P) via

W := lim
n→∞

∑
|v|=n

1− ϕ(|L(v)|α) a.s. (2.16)

Source: (a), (b) and (c) are known. A unified treatment and references are given
in Alsmeyer et al. (2012, Theorem 3.1). (d) is contained in Alsmeyer et al. (2012,
Theorem 6.2(a)). �

Throughout the paper, we denote by ϕ the Laplace transform introduced in
Proposition 2.2(a) and byW the random variable defined in (2.16). By Proposition
2.2(c), D(t) := t−1(1 − ϕ(t)) is slowly varying at 0. If D has a finite limit at 0,
then, by scaling, we assume this limit to be 1. Equivalently, if W is integrable,
we assume E[W ] = 1. In this case, W is the limit of the additive martingale
(sometimes called Biggins’ martingale) in the branching random walk based on the

point process
∑N
j=1 δ− log(|Tj |α), namely, W = limn→∞Wn a.s. where

Wn =
∑
|v|=n

|L(v)|α, n ∈ N0. (2.17)

As indicated in the introduction, for certain parameter constellations, another
random variable plays an important role here. Define

Zn :=
∑
|v|=n

L(v), n ∈ N0. (2.18)

Let Z := limn→∞ Zn if the limit exists in the a.s. sense and Z = 0, otherwise. The
question of when (Zn)n≥0 is a.s. convergent is nontrivial.

Theorem 2.3. Assume that (A1)-(A4) are true. Then the following assertions
hold.

(a) If 0 < α < 1, then Zn → 0 a.s. as n→ ∞.
(b) If α > 1, then Zn converges a.s. and P(limn→∞ Zn = 0) < 1 iff E[Z1] = 1

and Zn converges in Lβ for some/all 1 < β < α. Further, for these to be
true (Zn)n≥0 must be a martingale.

(c) If α = 2 and (A4a) holds or α > 2, then Zn converges a.s. iff Z1 = 1 a.s.

Here are simple sufficient conditions for part (b) of the theorem: if 1 < α < 2,
E[Z1] = 1, E[|Z1|β ] < ∞ and m(β) < 1 for some β > α, then (Zn)n≥0 is an
Lβ-bounded martingale which converges in Lβ and a.s. The assertion follows in
the, by now, standard way via an application of the Topchĭı-Vatutin inequality for
martingales. We omit further details which can be found on p. 182 in Alsmeyer
and Kuhlbusch (2010) and in Rosler et al. (2000).

If α = 1, the behaviour of (Zn)n≥0 is irrelevant for us. However, for completeness,
we mention that if E[Z1] = 1 or E[Z1] = −1, then (Zn)n≥0 = (Wn)n≥0 or (Zn)n≥0 =
((−1)nWn)n≥0, respectively. Criteria for (Wn)n≥0 to have a nontrivial limit can be
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found in Alsmeyer and Iksanov (2009); Biggins (1977); Lyons (1997). If E[Z1] ∈
(−1, 1), then, under suitable assumptions, Zn → 0 a.s. We refrain from providing
any details.

Theorem 2.3 will be proved in Section 4.4.

2.4. Multivariate fixed points. Most of the analysis concerning the equations (1.1)
and (2.9) will be carried out in terms of Fourier transforms of solutions. Indeed,
(1.1) and (2.9) are equivalent to

φ(t) = E
[
ei〈t,C〉

∏
j≥1

φ(Tjt)

]
for all t ∈ Rd, (2.19)

and

φ(t) = E
[∏
j≥1

φ(Tjt)

]
for all t ∈ Rd, (2.20)

respectively. Here, 〈·, ·〉 denotes the standard scalar product in Rd and i the imag-
inary unit. Let F denote the set of Fourier transforms of probability distributions
on Rd and

S(F)(C) := {φ ∈ F : φ solves (2.19)}. (2.21)

Further, let S(F) := S(F)(0), that is,

S(F) := {φ ∈ F : φ solves (2.20)}. (2.22)

The dependence of S(F)(C) on C is made explicit in the notation since at some
points we will compare S(F)(C) and S(F)(0). The dependence of S(F)(C) and
S(F) on T is not made explicit because T is kept fixed throughout.

Henceforth, let Sd−1 = {x ∈ Rd : |x| = 1} denote the unit sphere ⊆ Rd.

Theorem 2.4. Assume (A1)-(A4) and that W∗
n → W∗ in probability4 as n→ ∞.

Further, recall the definitions of W and Z from (2.16) and (2.18), respectively.

(a) Let 0 < α < 1.
(a1) Let G(T ) = R>. Then S(F) consists of the φ of the form

φ(t) = E
[
exp

(
i〈W∗, t〉

−W

∫
|〈t, s〉|α

[
1− i sign(〈t, s〉) tan

(πα
2

)]
σ(ds)

)]
(2.23)

where σ is a finite measure on the Borel σ-field of Sd−1 .
(a2) Let G(T ) = R∗. Then S(F) consists of the φ of the form

φ(t) = E
[
exp

(
i〈W∗, t〉 −W

∫
|〈t, s〉|α σ(ds)

)]
(2.24)

where σ is a symmetric finite measure on Sd−1 , i.e., σ(B) = σ(−B)
for Borel sets B ⊆ Sd−1 .

(b) Let α = 1.

4 When C = 0 a.s., then W∗
n → W∗ = 0 a.s. as n → ∞.
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(b1) Let G(T ) = R> and assume that E[
∑
j≥1 |Tj |(log

−(|Tj |))2] <∞. Then

S(F) consists of the φ of the form

φ(t) = E
[
exp

(
i〈W∗+Wa,t〉

−W

∫
|〈t, s〉|σ(ds)− iW

2

π

∫
〈t, s〉 log(|〈t, s〉|)σ(ds)

)]
(2.25)

where a ∈ Rd and σ is a finite measure on Sd−1 with
∫
sk σ(ds) = 0,

k = 1, . . . , d.
(b2) Let G(T ) = R∗ and assume that E[

∑
j≥1 |Tj |(log

−(|Tj |))2] < ∞ holds

in Case II and that (A5) holds in Case III. Then S(F) consists of the
φ of the form

φ(t) = E
[
exp

(
i〈W∗, t〉 −W

∫
|〈t, s〉|σ(ds)

)]
(2.26)

where σ is a symmetric finite measure on Sd−1 .
(c) Let 1 < α < 2.

(c1) Let G(T ) = R>. Then S(F) consists of the φ of the form given in
(2.23)

φ(t) = E
[
exp

(
i〈W∗, t〉

−W

∫
|〈t, s〉|α

(
1−i sign(〈t, s〉) tan

(πα
2

))
σ(ds)

)]
(2.27)

where σ is a finite measure on Sd−1 .
(c2) Let G(T ) = R∗. Then S(F) consists of the φ of the form

φ(t) = E
[
exp

(
i〈W∗+Za, t〉 −W

∫
|〈t, s〉|α σ(ds)

)]
(2.28)

where a ∈ Rd, σ is a symmetric finite measure on Sd−1 , and Z :=
limn→∞ Zn if this limit exists in the a.s. sense, and Z = 0, otherwise.

(d) Let α = 2. Then S(F) consists of the φ of the form

φ(t) = E
[
exp

(
i〈W∗ + Za, t〉 −W

tΣtT

2

)]
(2.29)

where a ∈ Rd, Σ is a symmetric positive semi-definite (possibly zero) d× d
matrix and tT is the transpose of t = (t1, . . . , td), and Z := limn→∞ Zn if
this limit exists in the a.s. sense, and Z = 0, otherwise.

(e) Let α > 2. Then S(F) consists of the φ of the form

φ(t) = E[exp(i〈W∗ + a, t〉)], (2.30)

where a ∈ Rd. Furthermore, a = 0 if P(Z1 = 1) < 1.

Theorem 2.4 can be restated as follows. When the assumptions of the theorem
hold, a distribution P on Rd is a solution to (1.1) if and only if it is the law of a
random variable of the form

W∗ + Za+W 1/αYα (2.31)
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where W∗ is the special (endogenous5) solution to the inhomogeneous equation,
Z is a special (endogenous) solution to the one-dimensional homogeneous equa-
tion (which vanishes in most cases, but can be nontrivial when α > 1), a ∈ Rd,
W is a special (endogenous) nonnegative solution to the tilted equation (2.14),
and Yα is a strictly α-stable (symmetric α-stable if G(T ) = R∗) random vector
independent of (C, T ).6 Hence, the solutions are scale mixtures of strictly (sym-
metric if G(T ) = R∗) stable distributions with a random shift. Theorem 2.4 in
particular provides a deep insight into the structure of all fixed points since stable
distributions (see e.g. Samorodnitsky and Taqqu (1994) and the references therein)
and the random variables W∗, W , and Z are well understood. For instance, the
tail behavior of solutions of the form (2.31) can be derived from the tail behavior
of W∗, W , Z, and Yα. The tail behavior of stable random variables is known,
the tail behavior of W has been intensively investigated over the last decades, see
e.g. Alsmeyer and Iksanov (2009); Alsmeyer and Kuhlbusch (2010); Biggins (1979);
Biggins and Kyprianou (2005); Buraczewski (2009); Buraczewski et al. (2013); Dur-
rett and Liggett (1983); Iksanov (2004); Iksanov and Polotskiy (2006); Iksanov and
Rösler (2006); Jelenković and Olvera-Cravioto (2012b); Liang and Liu (2011); Liu
(1998, 2000). The tail behavior of W∗ has been investigated by several authors
in the recent past Alsmeyer et al. (2013); Buraczewski et al. (2013); Buraczewski
and Kolesko (2014); Jelenković and Olvera-Cravioto (2012a,b). Some of the cited
papers concern the one-dimensional case only. However, since the Tj are scalars
here, the tail behavior of W∗ can be reduced to the behavior of its one-dimensional
components and thus the results apply. The tail behavior of Z has been analysed
in Alsmeyer et al. (2013).

2.5. Univariate fixed points. Corollary 2.5 given next, together with Theorems 2.1
and 2.2 of Alsmeyer and Meiners (2013), provides a reasonably full description of
the one-dimensional fixed points of the homogeneous smoothing transforms in the
case G(T ) = R∗.

Corollary 2.5. Let d = 1, C = 0 and G(T ) = R∗. Assume that (A1)-(A4) hold
true. If α = 1, additionally assume that E[

∑
j≥1 |Tj |(log

−(|Tj |))2] < ∞ in Case II

and (A5) in Case III. Then S(F) is composed of the φ of the form

φ(t) =


E[exp(−W |σt|α)], 0 < α < 1,

E[exp(−W |σt|)], α = 1,

E[exp(iaZt−W |σt|α)], 1 < α < 2,

E[exp(iaZt−W (σt)2)], α = 2,

(2.32)

where Z = limn→∞ Zn if the limit exists in the a.s. sense, and Z = 0, otherwise.
Further, σ ranges over [0,∞) and a ranges over R. When α > 2, S(F) only contains
the Fourier transform of δ0 (the constant function 1) unless Z1 = 1 a.s., in which
case S(F) = {t 7→ exp(iat) : a ∈ R}.

5 See Section 3.5 for the definition of endogeny.
6 For convenience, random variables degenerate at 0 are considered strictly α-stable and ran-

dom variables with degenerate laws are assumed strictly 1-stable here.
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The Kac caricature revisited. As an application of Corollary 2.5, we discuss equa-
tions (1.4) and (1.5). In this context d = 1, C = 0 and T1 = sin(Θ)| sin(Θ)|β−1,
T2 = cos(Θ)| cos(Θ)|β−1 and Tj = 0 for all j ≥ 3 where Θ is uniformly distributed
on [0, 2π]. Further, β = 1 in the case of (1.4) and β > 1 in the case of (1.5). In
order to apply Corollary 2.5, we have to check whether (A1)-(A4) and, when α = 1,
(A5) hold (note that we are in Case III).

Since Θ has a continuous distribution, (A1) and the spread-out property in (A5)
hold. Further, for α = 2/β and ϑ ∈ [0, α),

|T1|α + |T2|α = | sin(Θ)|2 + | cos(Θ)|2 = 1 and |T1|ϑ + |T2|ϑ > 1 a.s.

Therefore, (A3) (hence (A2)) holds with α = 2/β and W = 1. The latter almost
immediately implies (A4a). Moreover, since | sin(Θ)| < 1 and | cos(Θ)| < 1 a.s.,
m is finite and strictly decreasing on [0,∞), in particular the second condition
in (A5) holds (since m is the Laplace transform of a suitable finite measure on
[0,∞), it has finite second derivative everywhere on (0,∞)). Further, when α = 1
(i.e. β = 2), the last condition in (A5) is trivially fulfilled since |T1| + |T2| = 1.
Finally, observe that E[Z1] = 0 which allows us to conclude from Theorem 2.3(b)
that Z = 0 whenever α ∈ (1, 2].

Now Corollary 2.5 yields

Corollary 2.6. The solutions to (1.4) are precisely the centered normal distribu-
tions, while the solutions to (1.5) are precisely the symmetric 2/β-stable distribu-
tions.

2.6. The functional equation of the smoothing transform. For appropriate functions
f , call

f(t) = E
[∏
j≥1

f(Tjt)

]
for all t (2.33)

the functional equation of the smoothing transform. Understanding its properties is
the key to solving (2.9). (2.33) has been studied extensively in the literature espe-
cially when f is the Laplace transform of a probability distribution on [0,∞). The
latest reference is Alsmeyer et al. (2012) where Tj ≥ 0 a.s., j ∈ N, and decreasing
functions f : [0,∞) → [0, 1] are considered. Necessitated by the fact that we permit
the random coefficients Tj , j ∈ N in the main equations to take negative values with
positive probability, we need a two-sided version of this functional equation. We
shall determine all solutions to (2.33) within the class M of functions f : R → [0, 1]
that satisfy the following properties:

(i) f(0) = 1 and f is continuous at 0;
(ii) f is nondecreasing on (−∞, 0] and nonincreasing on [0,∞).

A precise description of S(M) which is the set of members of M that satisfy (2.33)
is given in the following theorem.

Theorem 2.7. Assume that (A1)–(A4) hold true and let d = 1. Then the set
S(M) is given by the functions of the form

f(t) =

{
E[exp(−Wc1t

α)] for t ≥ 0,

E[exp(−Wc−1|t|α)] for t ≤ 0
(2.34)

where c1, c−1 ≥ 0 are constants and c1 = c−1 if G(T ) = R∗.
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This theorem is Theorem 2.2 of Alsmeyer et al. (2012) in case where all Tj are
nonnegative. In Section 4.2, we prove the extension to the case where the Tj take
negative values with positive probability.

The rest of the paper is structured as follows. The proof of our main result,
Theorem 2.4 splits into two parts, the direct part and the converse part. The direct
part is to verify that the Fourier transforms given in (2.23)-(2.30) are actually
members of S(F); this is done in Section 4.1. The converse part is to show that any
φ ∈ S(F) is of the form as stated in the theorem. This requires considerable efforts
and relies heavily on the properties of the weighted branching process introduced
in Section 2.2. The results on this branching process which we need in the proofs of
our main results are provided in Section 3. In Section 4, we first solve the functional
equation of the smoothing transform in the case G(T ) = R∗ (Section 4.2). Theorem
2.3 is proved in Section 4.4. The homogeneous equation (2.9) is solved in Section
4.5, while the converse part of Theorem 2.4 is proved in Section 4.6.

The scheme of the proofs follows that in Alsmeyer et al. (2012); Alsmeyer and
Meiners (2012, 2013). Repetitions cannot be avoided entirely and short arguments
from the cited sources are occasionally repeated to make the paper at hand more
self-contained. However, we omit proofs when identical arguments could have been
given and provide only sketches of proofs when the degree of similarity is high.

3. Branching processes

In this section we provide all concepts and tools from the theory of branching
processes that will be needed in the proofs of our main results.

3.1. Weighted branching and the branching random walk. Using the weighted
branching process (L(v))v∈V we define a related branching random walk (Zn)n≥0

by

Zn :=
∑
v∈Gn

δS(v) (3.1)

where S(v) := − log(|L(v)|), v ∈ V and Gn is the set of individuals residing in the
nth generation, see (2.6). By µ we denote the intensity measure of the point process
Z := Z1, i.e., µ(B) := E[Z(B)] for Borel sets B ⊆ R. m (defined in (2.2)) is the
Laplace transform of µ, that is, for γ ∈ R,

m(γ) =

∫
e−γx µ(dx ) = E

[ N∑
j=1

e−γS(v)
]
.

By nonnegativity, m is well-defined on R but may assume the value +∞. (A3)
guarantees m(α) = 1. This enables us to use a classical exponential change of
measure. To be more precise, let (Sn)n≥0 denote a random walk starting at 0 with
increment distribution P(S1 ∈ dx ) := µα(dx ) := e−αxµ(dx ). It is well known (see
e.g. Biggins and Kyprianou (1997, Lemma 4.1)) that then, for any given n ∈ N0,
the distribution of Sn is given by

P(Sn ∈ B) = E
[ ∑
|v|=n

|L(v)|α1B(S(v))
]
, B ⊂ R Borel. (3.2)
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3.2. Auxiliary facts about weighted branching processes.

Lemma 3.1. If (A1)–(A3) hold, then inf |v|=n S(v) → ∞ a.s. on S as n → ∞.
Equivalently, sup|v|=n |L(v)| → 0 a.s. as n→ ∞.

Source: This is Biggins (1998, Theorem 3). �
The following lemma will be used to reduce Case II to Case I.

Lemma 3.2. Let the sequence T satisfy (A1)–(A3). Then so does the sequence
(L(v))|v|=2. If (A4a) or (A4b) holds for T , then (A4a) or (A4b), respectively,

holds for (L(v))|v|=2. If, moreover, E[
∑
j≥1 |Tj |α(log

−(|Tj |))2] <∞, then the same

holds for the sequence (L(v))|v|=2.

Proof : Throughout the proof we assume that (Tj)j≥1 satisfies m(α) = 1 which is
the first part of (A3). Then E[

∑
|v|=2 L(v)

α] = 1 which is the first part of (A3) for

(L(v))|v|=2. We shall use (3.2) to translate statements for (Tj)j≥1 and (L(v))|v|=2

into equivalent but easier ones for S1 and S2. (A1) for (Tj)j≥1 corresponds to S1

being nonlattice. But if S1 is nonlattice, so is S2. The second part of (A3) for
(Tj)j≥1 corresponds to E[eϑS1 ] > 1 which implies E[eϑS2 ] > 1. The same argu-
ment applies to (A4b). The first condition in (A4a) for (Tj)j≥1, m

′(α) ∈ (−∞, 0),
translates into E[S1] ∈ (0,∞). This implies E[S2] = 2E[S1] ∈ (0,∞) which is
the first condition in (A4a) for (L(v))|v|=2. As to the second condition in (A4a),
notice that validity of (A4a) for (Tj)j≥1 in combination with Biggins’ theorem
Lyons (1997) implies that Wn → W as n → ∞ in mean. Then

∑
|v|=2n |L(v)|α

also converges in mean to W . Using the converse implication in Biggins’ theo-
rem gives that (L(v))|v|=2 satisfies the second condition in (A4a) as well. Finally,

E[
∑
j≥1 |Tj |α(log

−(|Tj |))2] < ∞ translates via (3.2) into E[(S+
1 )2] < ∞. Then

E[(S+
2 )2] ≤ E[(S+

1 + (S2 − S1)
+)2] <∞. �

3.3. Multiplicative martingales and infinite divisibility. We shall investigate the
functional equation

f(t) = E
[∏
j≥1

f(Tjt)

]
, t ∈ Rd (3.3)

within the set F of Fourier transforms of probability distributions on Rd and, for
technical reasons, for d = 1 within the class M introduced in Section 2.6. In order
to treat the functions of F and M simultaneously, we introduce the class B of
measurable functions f : Rd → C satisfying supt∈Rd |f(t)| = 1 and f(0) = 1. Then
F ⊆ B and, when d = 1, M ⊆ B. By S(B) we denote the class of f ∈ B satisfying
(3.3).

For an f ∈ S(B), we define the corresponding multiplicative martingale

Mn(t) := Mn(t,L) :=
∏

|v|=n

f(L(v)t), n ∈ N0, t ∈ Rd. (3.4)

The notion multiplicative martingale is justified by the following lemma.

Lemma 3.3. Let f ∈ S(B) and t ∈ Rd. Then (Mn(t))n≥0 is a bounded martingale
w.r.t. (An)n≥0 and thus converges a.s. and in mean to a random variable M(t) :=
M(t,L) satisfying

E[M(t)] = f(t). (3.5)



Fixed points of smoothing transforms with scalar weights 83

Source: Minor modifications in the proof of Biggins and Kyprianou (1997, Theorem
3.1) yield the result. �
Lemma 3.4. Given f ∈ S(B), let M denote the limit of the associated multiplica-
tive martingales. Then, for every t ∈ Rd,

M(t) =
∏

|v|=n

[M ]v(L(v)t) a.s. (3.6)

The identity holds for all t ∈ Rd simultaneously a.s. if f ∈ S(F).

Proof : For n ∈ N0, we have |{|v| = n}| <∞ a.s., and hence

M(t) = lim
k→∞

∏
|v|=n

∏
|w|=k

f(L(vw)t)

=
∏

|v|=n

lim
k→∞

∏
|w|=k

f([L(w)]vL(v)t) =
∏

|v|=n

[M ]v(L(v)t)

for every t ∈ Rd a.s. For f ∈ S(F), by standard arguments, the identity holds for
all t ∈ Rd simultaneously a.s. �

Before we state our next result, we remind the reader that a measure ν on the
Borel sets of Rd is called a Lévy measure if

∫
(1∧|x|2) ν(dx) <∞, see e.g.Kallenberg

(2002, p. 290). In particular, any Lévy measure assigns finite mass to sets of the
form {x ∈ Rd : |x| ≥ ε}, ε > 0.

Proposition 3.5. Let φ ∈ S(F) with associated multiplicative martingales
(Φn(t))n≥0 and martingale limit Φ(t), t ∈ Rd. Then, a.s. as n → ∞, (Φn)n≥0

converges pointwise to a random characteristic function Φ of the form Φ = exp(Ψ)
with

Ψ(t) = i〈W, t〉 − tΣtT

2
+

∫ (
ei〈t,x〉 − 1− i〈t,x〉

1 + |x|2

)
ν(dx), t ∈ Rd, (3.7)

where W is an Rd valued L-measurable random variable, Σ is an L-measurable
random positive semi-definite d×d matrix, and ν is an L-measurable random Lévy
measure on Rd. Moreover,

E[Φ(t)] = φ(t) for all t ∈ Rd. (3.8)

This proposition is the d-dimensional version of Theorem 1 in Caliebe (2003)
and can be proved analogously.7 Therefore, we refrain from giving further details.

Now pick some f ∈ S(B). The proof of Lemma 3.4 applies and gives the coun-
terpart of (3.6)

M(t) =
∏
v∈Tu

[M ]v(L(v)t) a.s. (3.9)

for Tu := {v ∈ G : S(v) > u, S(v|k) ≤ u for 0 < k < |v|}, u ≥ 0. Taking
expectations reveals that f also solves the functional equation with the weight
sequence (L(v))v∈Tu instead of the sequence (Tj)j≥1. Further, when f ∈ S(F), the

7The proof of Theorem 1 in Caliebe (2003) contains an inaccuracy that needs to be corrected.

Retaining the notation of the cited paper, we think that it cannot be excluded that the set of
continuity points C of the function F (l) appearing in the proof of Theorem 1 in Caliebe (2003)
depends on l. In the cited proof, this dependence is ignored when the limit limu→∞,u∈C appears
outside the expectation on p. 386. However, this problem can be overcome by using a slightly

more careful argument.
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proofs of Lemma 8.7(b) in Alsmeyer et al. (2012) and Lemma 4.4 in Alsmeyer and
Meiners (2013) carry over to the present situation and yield

M(t) = lim
u→∞

∏
v∈Tu

f(L(v)t) = lim
u→∞

MTu(t) for all t in Rd a.s. (3.10)

whereMTu(t) :=
∏
v∈Tu

f(L(v)t). This formula allows us to derive useful represen-
tations for the random Lévy triplet of the limit Φ of the multiplicative martingale

corresponding to a given φ ∈ S(F). Denote by Rd = Rd ∪ {∞} the one-point
compactification of Rd.

Lemma 3.6. Let X be a solution to (2.9) with characteristic function φ and d-
dimensional distribution (function) F . Let further (W,Σ, ν) be the random Lévy
triplet of the limit Φ of the multiplicative martingale corresponding to φ, see Propo-
sition 3.5. Then ∑

v∈Tu

F (·/L(v)) v→ ν as u→ ∞ a.s. (3.11)

where
v→ denotes vague convergence on Rd \ {0}. Further, for any h > 0 with

ν({|x| = h}) = 0 a.s., the limit

W(h) := lim
t→∞

∑
v∈Tt

L(v)

∫
{|x|≤h/|L(v)|}

xF (dx) (3.12)

exists a.s. and

W = W(h) +

∫
{h<|x|≤1}

x ν(dx) +

∫
{|x|>1}

x

1 + |x|2
ν(dx)−

∫
{|x|≤1}

x|x|2

1 + |x|2
ν(dx) a.s.

(3.13)
where

∫
{h<|x|≤1} = −

∫
{1<|x|≤h} when h > 1.

Proof : First, notice that by (3.10), for fixed t ∈ Rd, we have

ΦTu(t) :=
∏
v∈Tu

φ(L(v)t) → Φ(t) = lim
n→∞

∏
|v|=n

φ(L(v)t) a.s.

along any fixed sequence u ↑ ∞. ΦTu
(t) is a uniformly integrable martingale in u

with right-continuous paths and therefore the convergence holds outside a P-null set
for all sequences u ↑ ∞. Using the a.s. continuity of Φ on Rd (see Proposition 3.5),
standard arguments show that the convergence holds for all t ∈ Rd and all sequences
u ↑ ∞ on an event of probability one, cf. the proof Alsmeyer and Meiners (2013,
Lemma 4.4). On this event, one can use the theory of triangular arrays as in the
proof of Proposition 3.5 to infer that Φ has a representation Φ = exp(Ψ) with Ψ as in
(3.7). Additionally, Theorem 15.28(i) and (iii) in Kallenberg (2002) give (3.11) and
(3.12), respectively. Note that the integrand of (3.7) being (ei〈t,x〉−1− i〈t,x〉/(1+
|x|2)) rather than (ei〈t,x〉− 1− i〈t,x〉1{|x|≤1}) as it is in Kallenberg (2002) (see e.g.
Corollary 15.8 in the cited reference) does not affect ν but it does influence W. The
integrals

∫
{|x|>1}x/(1 + |x|2)ν(dx) and

∫
{|x|≤1}x|x|

2/(1 + |x|2)ν(dx) appearing in

(3.13) are the corresponding compensation. �
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3.4. The embedded BRW with positive steps only. In this section, an embedding
technique, invented in Biggins and Kyprianou (2005), is explained. This approach
is used to reduce cases in which (A6) does not hold to cases where it does.

Let G>0 := {∅}, and, for n ∈ N,
G>n := {vw ∈ G : v ∈ G>n−1, S(vw) > S(v) ≥ S(vw|k) for all |v| < k < |vw|}.

For n ∈ N0, G>n is called the nth strictly increasing ladder line. The sequence
(G>n )n≥0 contains precisely those individuals v the positions of which are strict
records in the random walk S(∅), S(v|1), . . . , S(v). Using the G>n , we can define
the nth generation point process of the embedded BRW of strictly increasing ladder
heights by

Z>
n :=

∑
v∈G>

n

δS(v). (3.14)

(Z>
n )n≥0 is a branching random walk with positive steps only. Let T> := (L(v))v∈G>

1

and denote by G(T>) the closed multiplicative subgroup generated by T>. The
following result states that the point process Z> := Z>

1 inherits the assumptions
(A1)-(A5) from Z and that also the closed multiplicative groups generated by T
and T> coincide. We write µ>α for the measure defined by

µ>α (B) := E
[ ∑
v∈G>

1

e−αS(v)δS(v))(B)

]
, B ⊆ R≥ Borel.

Proposition 3.7. Assume (A1)-(A3). The following assertions hold.

(a) P(|G>1 | <∞) = 1.
(b) Z> satisfies (A1)-(A3) where (A3) holds with the same α as for Z.
(c) If Z further satisfies (A4a) or (A4b), then the same holds true for Z>,

respectively.
(d) If Z satisfies (A5), then so does Z>.
(e) Let G(Z) be the minimal closed additive subgroup G of R such that Z(R \

G) = 0 a.s. and define G(Z>) analogously in terms of Z> instead of Z.
Then G(Z>) = G(Z) = R.

(f) G(T>) = G(T ).

Remark 3.8. Notice that assertion (f) in Proposition 3.7 is the best one can get.
For instance, one cannot conclude that if T has mixed signs (Case III), then so has
T>. Indeed, if T1 is a Bernoulli random variable with success probability p and
T2 = −U for a random variable U which is uniformly distributed on (0, 1), then all
members of G>1 have negative weights, that is, T> has negative signs only (Case
II).

Proof of Proposition 3.7: Assertions (a), (b), (c) and (e) can be formulated in terms
of the |L(v)|, v ∈ V only and, therefore, follow from Alsmeyer et al. (2012, Lemma
9.1) and Alsmeyer and Meiners (2013, Proposition 3.2).

It remains to prove (d) and (f). For the proof of (d) assume that Z satisfies
(A5). By (c), Z> also satisfies (A4a) and, in particular, the third condition in
(A5). Further, the first condition in (A5) says that µα, the distribution of S1, is
spread-out. We have to check that then µ>α is also spread-out. It can be checked
(see e.g. Biggins and Kyprianou (2005)) that µ>α is the distribution of Sσ for σ =
inf{n ≥ 0 : Sn > 0}. Hence Lemma 1 in Araman and Glynn (2006) (or Corollaries
1 and 3 of Alsmeyer (2002)) shows that the distribution of Sσ is also spread-out.
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That the second condition in (A5) carries over is Alsmeyer and Meiners (2013,
Proposition 3.2(d)). The final condition of (A5) is that E[h3(W1)] < ∞ where
hn(x) = x(log+(x))n log+(log+(x)), n = 2, 3. In view of the validity of (A4a),
Theorem 1.4 in Alsmeyer and Iksanov (2009) yields E[h2(W )] <∞. Now notice that
W is not only the limit of the martingale (Wn)n≥0 but also of the martingaleW>

n =∑
v∈G>

n
|L(v)|α, n ∈ N0, see e.g. Proposition 5.1 in Alsmeyer and Kuhlbusch (2010).

The converse implication of the cited theorem then implies that E[h3(W>
1 )] <∞.

Regarding the proof of (f) we infer from (e) that − log(G(|T |)) = G(Z) =
G(Z>) = − log(G(|T>|)) where |T | = (|Tj |)j≥1 and |T>| = (|L(v)|)v∈G>

1
. Thus,

by (A1), G(|T>|) = G(|T |) = R>. If G(T ) = R>, then T = |T | and T> = |T>|
a.s. and thus G(|T>|) = R> as well. It remains to show that if G(T ) = R∗, then
G(T>) = R∗ as well. To this end, it is enough to show that G(T>) ∩ (−∞, 0) 6= ∅.
If P(Tj ∈ (−1, 0)) > 0 for some j ≥ 1, then P(j ∈ G>1 and Tj < 0) > 0. Assume
now P(Tj ∈ (−1, 0)) = 0 for all j ≥ 1. Since G(T ) = R∗ there is an x ≥ 1 such that
−x ∈ supp(Tj) for some j ≥ 1 where supp(X) denotes the support (of the law) of
a random variable X. By (A3), we have m(α) = 1 < m(β) for all β ∈ [0, α). This
implies that for some k ≥ 1, P(|Tk| ∈ (0, 1)) > 0 and, moreover, P(Tk ∈ (0, 1)) > 0
since P(Tk ∈ (−1, 0)) = 0. Thus, for some y ∈ (0, 1), we have y ∈ supp(Tk). Let m
be the minimal positive integer such that xym < 1. Then −xym ∈ G(T>). �

3.5. Endogenous fixed points. The concept of endogeny, introduced in Aldous and
Bandyopadhyay (2005, Definition 7), is important for the problems considered here.
For the purposes of this paper, it is enough to study endogeny in dimension d = 1.

Suppose that W (v), v ∈ V is a family of random variables such that, for each
fixed n ∈ N0, the W

(v), |v| = n are i.i.d. and independent of An. Further suppose
that

W (v) =
∑
j≥1

Tj(v)W
(vj) a.s. (3.15)

for all v ∈ V. Then the family (W (v))v∈V is called a recursive tree process, the
family (T (v))v∈V innovations process of the recursive tree process. The recursive
tree process (W (v))v∈V is called nonnegative if the W (v), v ∈ V are all nonneg-
ative, it is called invariant if all its marginal distributions in all generations are
identical. There is a one-to-one correspondence between the solutions to (2.9) (in
dimension d = 1) and recursive tree processes (W (v))v∈V as above, see Lemma 6 in
Aldous and Bandyopadhyay (2005). An invariant recursive tree process (W (v))v∈V
is endogenous if W (∅) is measurable w.r.t. the innovations process (T (v))v∈V.

Definition 3.9 (cf. Definition 8.2 in Alsmeyer et al. (2012)).

• A distribution is called endogenous (w.r.t. the sequence (Tj)j≥1) if it is the
marginal distribution of an endogenous recursive tree process with innova-
tions process (T (v))v∈V.

• A random variable W is called endogenous fixed point (w.r.t. (Tj)j≥1) if
there exists an endogenous recursive tree process with innovations process
(T (v))v∈V such that W =W (∅) a.s.

A random variable W is called non-null when P(W 6= 0) > 0. W = 0 is an
endogenous fixed point. Of course, the main interest is in non-null endogenous
fixed points W . An endogenous recursive tree process (W (v))v∈V will be called
non-null when W (∅) is non-null.
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Endogenous fixed points have been introduced in a slightly different way in
Alsmeyer and Meiners (2013, Definition 4.6). In Alsmeyer and Meiners (2013,
Definition 4.6), a random variable W (or its distribution) is called endogenous
(w.r.t. to (T (v))v∈V) if W is measurable w.r.t. (L(v))v∈V and if

W =
∑
|v|=n

L(v)[W ]v a.s. (3.16)

for all n ∈ N0. It is immediate that ([W ]v)v∈V then defines an endogenous recursive
tree process. Therefore, Definition 4.6 in Alsmeyer and Meiners (2013) is (seem-
ingly) stronger than the original definition of endogeny. The next lemma shows
that the two definitions are equivalent.

Lemma 3.10. Let (A1)-(A4) hold and let (W (v))v∈V be an endogenous recursive
tree process with innovations process (T (v))v∈V. Then W (v) = [W (∅)]v a.s. for all
v ∈ V and (3.16) holds.

The arguments in the following proof are basically contained in Alsmeyer et al.
(2012, Proposition 6.4).

Proof : For u ∈ V and n ∈ N0, (3.15) implies W (u) =
∑

|v|=n[L(v)]uW
(uv) a.s.,

which together with the martingale convergence theorem yields

exp(itW (u)) = lim
n→∞

E[exp(itW (u))|F|u|+n]

= lim
n→∞

E
[
exp

(
it

∑
|v|=n

[L(v)]uW
(uv)

)
|F|u|+n

]
= lim

n→∞

∏
|v|=n

φ([L(v)]ut) = [Φ(t)]u a.s. (3.17)

where φ denotes the Fourier transform of W (∅) and Φ(t) denotes the a.s. limit of
the multiplicative martingale

∏
|v|=n φ(L(v)t) as n → ∞. The left-hand side in

(3.17) is continuous in t. The right-hand side is continuous in t a.s. by Propo-
sition 3.5. Therefore, (3.17) holds simultaneously for all t ∈ R a.s. In particular,
exp(itW (∅)) = Φ(t) for all t ∈ R a.s. Thus, exp(itW (u)) = [Φ(t)]u = exp(it[W (∅)]u)
for all t ∈ R a.s. This implies W (u) = [W (∅)]u a.s. �

Justified by Lemma 3.10 we shall henceforth use (3.16) as the definition of en-
dogeny. Theorem 6.2 in Alsmeyer et al. (2012) gives (almost) complete information
about nonnegative endogenous fixed points in the case when the Tj , j ≥ 1 are
nonnegative. This result has been generalized in Alsmeyer and Meiners (2013),
Theorems 4.12 and 4.13. Adapted to the present situation, all these findings are
summarized in the following proposition.

Proposition 3.11. Assume that (A1)-(A4) hold true. Then

(a) there is a nonnegative non-null endogenous fixed pointW w.r.t. the sequence
(|Tj |α)j≥1 given by (2.16). Any other nonnegative endogenous fixed point
w.r.t. (|Tj |α)j≥1 is of the form cW for some c ≥ 0.
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(b) W defined in (2.16) further satisfies

W = lim
t→∞

D
(
e−αt

) ∑
v∈Tt

e−αS(v) = lim
t→∞

∑
v∈Tt

e−αS(v)D
(
e−αS(v)

)
(3.18)

= lim
t→∞

∑
v∈Tt

e−αS(v)
∫
{|x|<eαS(v)}

xP(W ∈ dx ) a.s. (3.19)

where D is as defined on p. 76.
(c) There are no non-null endogenous fixed points w.r.t. (|Tj |β)j≥1 for β 6= α.

(d) If, additionally, E[
∑
j≥1 |Tj |α(log

−(|Tj |))2] <∞, then any endogenous fixed

point w.r.t. (|Tj |α)j≥1 is of the form cW for some c ∈ R, where W is given
by (2.16).

Proof : (a) is Theorem 6.2(a) in Alsmeyer et al. (2012) (and partially already stated
in Proposition 2.2). (3.18) is (11.8) in Alsmeyer et al. (2012), (3.19) is (4.39) in
Alsmeyer and Meiners (2013). (c) is Theorem 6.2(b) in Alsmeyer et al. (2012) in the
case of nonnegative (or nonpositive) recursive tree processes and Theorem 4.12 in
Alsmeyer and Meiners (2013) in the general case. (d) is Theorem 4.13 in Alsmeyer
and Meiners (2013). �

In the case of weights with mixed signs there may be endogenous fixed points
other than those described in Proposition 3.11. Theorem 3.12 given next states
that under (A1)-(A4) these fixed points are always a deterministic constant times
Z, the limit of Zn =

∑
|v|=n L(v), n ∈ N0.

Theorem 3.12. Suppose (A1)-(A4). Then the following assertions hold.

(a) If α < 1, there are no non-null endogenous fixed points w.r.t. T .
(b) Let α = 1 and assume that E[

∑
j≥1 |Tj |(log

−(|Tj |))2] < ∞ holds in Cases

I and II and (A5) holds in Case III. Then the endogenous fixed points are
precisely of the form cW a.s., c ∈ R in Case I, while in Cases II and III,
there are no non-null endogenous fixed points w.r.t. T .

(c) If α > 1, the following assertions are equivalent.
(i) There is a non-null endogenous fixed point w.r.t. T .
(ii) Zn converges a.s. and P(limn→∞ Zn = 0) < 1.
(iii) E[Z1] = 1 and (Zn)n≥0 converges in Lβ for some/all 1 < β < α.
If either of the conditions (i)-(iii) is satisfied, then (Zn)n≥0 is a uniformly
integrable martingale. In particular, Zn converges a.s. and in mean to
some random variable Z with E[Z] = 1 which is an endogenous fixed point
w.r.t. T . Any other endogenous fixed point is of the form cZ for some
c ∈ R.

The proof of this result is postponed until Section 4.4.
We finish the section on endogenous fixed points with the proof of Proposition 2.1

which establishes the existence of W∗. If well-defined, the latter random variable
can be viewed as an endogenous inhomogeneous fixed point.

Proof of Proposition 2.1: By using the Cramér-Wold device we can and do assume
that d = 1. We shall write W ∗

n for W∗
n.

(i) It suffices to show that the infinite series
∑
v∈V |L(v)||C(v)| converges a.s. which

is, of course, the case if the sum has a finite moment of order β. The latter follows
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easily (see, for instance, Jelenković and Olvera-Cravioto (2012a, Lemma 4.1) or
Alsmeyer and Meiners (2013, Proposition 5.4)).
(ii) The assumption entails E[|W ∗

1 |β ] = E[|C|β ] <∞ and thereupon −∞ < E[C] <
∞. If Tj ≥ 0 a.s. for all j ≥ 1, then sufficiency follows from Alsmeyer and Mein-
ers (2013, Proposition 5.4). Thus, assume that E[C] = 0. Then (W ∗

n)n≥0 is a
martingale w.r.t. (An)n≥0, which is Lβ-bounded by assumption and, hence, a.s.
convergent.
(iii) This is the first part of Theorem 1.1 in Buraczewski and Kolesko (2014). �

3.6. A multitype branching process and homogeneous stopping lines. In this section
we assume that (A1)–(A4) and (A6) hold and that we are in the case of weights
with mixed signs (Case III). Because of the latter assumption, when defining the
branching random walk (Zn)n≥0 from (L(v))v∈V, information is partially lost since
each position S(v) is defined in terms of the absolute value |L(v)| of the correspond-
ing weight L(v), v ∈ V. This loss of information can be compensated by keeping
track of the sign of L(v). Define

τ(v) :=

{
1 if L(v) > 0,

−1 if L(v) < 0

for v ∈ G. For the sake of completeness, let τ(v) = 0 when L(v) = 0. The positions
S(v), v ∈ V together with the signs τ(v), v ∈ V define a multitype general branching
process with type space {1,−1}.

Define M(γ) := (µk,`γ (R))k,`=1,−1 where

µk,`γ (·) := E
[ ∑
j≥1:sign(Tj)=k`

|Tj |γδS(j)(·)
]
.

Note thatM(γ) is nonnegative and symmetric since µk,`γ (·) depends on the product

k` only. For γ = α, p = E[
∑
j≥1T

α
j 1{Tj>0}] = µ1,1

α (R) = µ−1,−1
α (R) and q = 1−p =

E[
∑
j≥1|Tj |α1{Tj<0}] = µ1,−1

α (R) = µ−1,1
α (R). Therefore,

M(α) =

(
p q
q p

)
where 0 < p, q < 1 since we are in Case III. Next, we establish that the general
branching process possesses the following properties.

(i) For all h > 0 and all h1, h−1 ∈ [0, h) either µ1,1
α (R \ hZ) > 0, µ1,−1

α (R \
(h−1 − h1 + hZ)) > 0 or µ−1,1

α (R \ (h1 − h−1 + hZ)) > 0. Further, M(α) is
irreducible.

(ii) Either M(0) has finite entries only and Perron-Frobenius eigenvalue ρ > 1
or M(0) has an infinite entry.

(iii) M(α) has eigenvalues 1 and 2p− 1 (with right eigenvectors (1, 1)T and
(1,−1)T, respectively). 1 is the Perron-Frobenius eigenvalue of M(α).

(iv) The first moments of µk,`α are finite and positive for all k, ` ∈ {1,−1}.
(i)–(iv) correspond to assumptions (A1)–(A4) in Iksanov and Meiners (2015) and
will justify the applications of the limit theorems of the cited paper.

Proof of the validity of (i)–(iv): (i) M(α) is irreducible because all its entries are
positive. Now assume for a contradiction that for some h > 0 and some h1, h−1 ∈
[0, h), µ1,1

α (R \hZ) = µ1,−1
α (R \ (h−1 −h1 +hZ)) = µ−1,1

α (R \ (h1 −h−1 +hZ)) = 0.
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Since µ1,−1
α = µ−1,1

α is nonzero, this implies (h−1 −h1 +hZ)∩ (h1 −h−1 +hZ) 6= ∅.
Hence, there are m,n ∈ Z such that h−1 − h1 + hm = h1 − h−1 + hn, equivalently,
2(h−1−h1) = h(n−m). Thus, h−1−h1 belongs to the lattice h

2Z. This contradicts
(A1). While (iii) can be verified by elementary calculations, (ii) is an immediate
consequence of (iii) forM(0) has strictly larger entries thanM(α) which has Perron-
Frobenius eigenvalue 1. (iv) follows from (A4). �

Recall that Tt = {v ∈ G : S(v) > t but S(v|k) ≤ t for all 0 ≤ k < |v|}, t ≥ 0.

Proposition 3.13. Assume that (A1)-(A3) and (A6) hold and that we are in Case
III, i.e., 0 < p, q < 1. Further, let h : [0,∞) → (0,∞) be a càdlàg function such
that h(t) ≤ Ctγ for all sufficiently large t and some C > 0, γ ≥ 0.

(a) Suppose that (A4a) holds and that E
[∑N

k=1 |Tk|αS(k)1+γ
]
< ∞. Then,

for β = α, j = 1,−1, any ε > 0 and all sufficiently large c, the following
convergence in probability holds as t→ ∞ on the survival set S∑

v∈Tt:S(v)≤t+c,τ(v)=j e
−β(S(v)−t)h(S(v)− t)∑

v∈Tt
e−α(S(v)−t)h(S(v)− t)

→ 1

2
− ε(c) ≥ 1

2
− ε. (3.20)

(b) Suppose that (A4b) holds. Then the convergence in (3.20) holds in the a.s.
sense for all β ≥ θ (with θ defined in (A4b)) and sufficiently large c that
may depend on β.

If one chooses c = ∞ (i.e., if one drops the condition S(v) ≤ t+ c), the result holds
with ε(∞) = 0.

Proof : (a) and (b) can be deduced from general results on convergence of multi-
type branching processes, namely, Theorems 2.1 and 2.4 in Iksanov and Meiners
(2015). The basic assumptions (A1)–(A4) of the cited article are fulfilled for these
coincide with (i)-(iv) here. Assumption (A5) and Condition 2.2 in Iksanov and
Meiners (2015) correspond to (A4a) and (A4b) here, respectively. Further, for
fixed j ∈ {1,−1}, the numerator in (3.20) is Zφ(t) =

∑
v∈G [φ]v(t− S(v)) for

φ(t) =
N∑
k=1

e−β(S(k)−t)h(S(k)−t)1{t<S(k)≤t+c, τ(k)=τ(∅)j},

while the denominator is of the form Zψ(t) with

ψ(t) =

N∑
k=1

e−α(S(k)−t)h(S(k)−t)1{τ(k)=τ(∅)j}.

The verification of the remaining conditions of Theorems 2.1 and 2.4 in Iksanov
and Meiners (2015) is routine and can be carried out as in the proof of Proposition
9.3 in Alsmeyer et al. (2012).

The last statement follows from the same proof if one replaces c in the definition
of φ by +∞. �

The final result in this section is on the asymptotic behaviour of
∑
v∈Tt

L(v) in
Case III when α = 1:

Lemma 3.14. Assume that (A1)-(A6) hold, that α = 1 and that 0 < p, q < 1.
Then

t
∑
v∈Tt

L(v) → 0 as t→ ∞ in probability. (3.21)
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Proof : We first explain how (3.21) follows from Theorem 2.14 in Iksanov and Mein-
ers (2015) and then check that the assumptions of the cited theorem are satisfied
in the given situation.

Notice that, for t ≥ 0,
∑
v∈Tt

L(v) = e−tZφ
1

(t)− e−tZφ
−1

(t), where

Zφ
j

(t) =
∑
v∈G

[φj ]v(t− S(v)) and φj(t) = et
∑
|v|=1

e−S(v)1[0,S(v))(t)1{τ(v)=τ(∅)j},

j = 1,−1. Now (3.21) is a consequence of

t

∣∣∣∣ ∑
v∈Tt

L(v)

∣∣∣∣ = t
∣∣e−tZφ1

(t)− e−tZφ
−1

(t)
∣∣

≤ t

∣∣∣∣e−tZφ1

(t)− W

2

∣∣∣∣+ t

∣∣∣∣e−tZφ−1

(t)− W

2

∣∣∣∣ → 0

in P-probability as t→ ∞, where the limit relation is guaranteed by Theorem 2.14
in Iksanov and Meiners (2015).

It remains to justify the application of Theorem 2.14 in Iksanov and Meiners
(2015). The fact that assumptions (A1)–(A4) of Iksanov and Meiners (2015) hold
has been verified at the beginning of the present subsection (see conditions (i)-
(iv)). Our condition (A6) is the standing assumption in Iksanov and Meiners (2015).
Condition 2.8 of Iksanov and Meiners (2015) follows from the last condition in (A5),
namely, E[h3(W1)] < ∞ where W1 is as in (2.17). Condition 2.9 is a consequence
of the first condition in (A5). (2.12) in Iksanov and Meiners (2015) (with δ = 1)
is the second condition of (A5). In order to check that Condition 2.13 in Iksanov
and Meiners (2015) holds, first notice that E[φj(s)] ≤ etP(S1 > t) for all t ≥ 0 and
j = 1,−1. Here, (A5) implies that E[S2

1 ] <∞ and, therefore,

t

∫ ∞

t

e−sE[φj(s)] ds ≤
∫ ∞

t

sP(S1 > s) ds → 0 as t→ ∞.

Similarly,

t sup
s≥t

e−sE[φj(s)] ≤ tP(S1 > t) → 0 as t→ ∞.

This implies validity of Condition 2.13.
Left with checking that (2.10) in Iksanov and Meiners (2015) holds, observe that

e−tZφ
j

(t) ≤
∑
v∈Tt

e−S(v) =:W (t) for j = 1,−1. Hence, it suffices to verify that

E
[
h2

(
sup
t≥0

W (t)
)]

< ∞ (3.22)

where hn(x) = x(log+(x))n log+(log+(x)), n = 2, 3. To this end, we invoke Lemma
8.1 of Alsmeyer and Kuhlbusch (2010) (which is an extension of an observation in
Biggins (1979)). The cited lemma gives that for any 0 < a < 1, there is a finite
constant C(a) > 0 such that

P(W > at) ≥ C(a)P
(
sup
s≥0

W (s) > t
)

for all t > 1.

In view of this inequality and since h2 is regularly varying at +∞, we conclude
that for E[h2(sups≥0W (s))] < ∞ to hold it is sufficient that E[h2(W )] < ∞. Now
E[h3(W1)] <∞ by (A5) which implies E[h2(W )] <∞ according to Proposition 4.2
in Iksanov and Meiners (2015). �
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4. Proofs of the main results

4.1. Proof of the direct part of Theorem 2.4.

Proof of Theorem 2.4 (direct part): We only give (a sketch of) the proof in the case
α = 1 and G(T ) = R>. The other cases can be treated analogously. Let φ be as in
(2.25), i.e.,

φ(t) = E
[
exp

(
i〈W∗+Wa,t〉 −W

∫
|〈t, s〉|σ(ds)− iW

2

π

∫
〈t, s〉 log(|〈t, s〉|)σ(ds)

)]
for some a ∈ Rd and a finite measure σ on Sd−1 with

∫
sk σ(ds) = 0 for k = 1, . . . , d.

Using W∗ =
∑
j≥1 Tj [W

∗]j + C a.s. and W =
∑
j≥1 Tj [W ]j a.s., see (2.13) and

(3.16), we obtain

i〈W∗+Wa,t〉 −W

∫
|〈t, s〉|σ(ds)− iW

2

π

∫
〈t, s〉 log(|〈t, s〉|)σ(ds)

= i〈C,t〉+ i
∑
j≥1

〈[W∗]j + [W ]ja, Tjt〉

−
∑
j≥1

[W ]j

∫
|〈Tjt, s〉|σ(ds)− i

∑
j≥1

[W ]j
2

π

∫
〈Tjt, s〉 log(|〈t, s〉|)σ(ds). (4.1)

Further, since
∫
sk σ(ds) = 0 for k = 1, . . . , d, we have∫

〈Tjt, s〉 log(|〈t, s〉|)σ(ds) =

∫
〈Tjt, s〉 log(|〈Tjt, s〉|)σ(ds)

for all j ≥ 1 with Tj > 0. Substituting this in (4.1), passing to exponential func-
tions, taking expectations on both sides and then using that the pairs ([W∗]j , [W ]j),
j ≥ 1 are i.i.d. copies of (W∗,W ) independent of (C, T ) one can check that φ sat-
isfies (2.19). �

4.2. Solving the functional equation in M.

Theorem 4.1. Assume that (A1)–(A4) hold true and let d = 1. Let f ∈ S(M)
and denote the limit of the corresponding multiplicative martingale by M . Then
there are constants c1, c−1 ≥ 0 such that

M(t) =

{
exp(−Wc1t

α) for t ≥ 0,

exp(−Wc−1|t|α) for t ≤ 0
a.s. (4.2)

Furthermore, if G(T ) = R∗, then c1 = c−1.

We first prove Theorem 4.1 in Cases I and II (see (2.4)). Case III needs some
preparatory work and will be settled at the end of this section.

Proof of Theorem 4.1: Case I: The statement is a consequence of Theorem 8.3 in
Alsmeyer et al. (2012).
Case II: For f ∈ S(M), iteration of (2.33) in terms of the weighted branching
model gives

f(t) = E
[ ∏
|v|=2

f(L(v)t)

]
, t ∈ R. (4.3)

By Lemma 3.2, (L(v))|v|=2 satisfies (A1)–(A4). Further, the endogenous fixed point
W is (by uniqueness) the endogenous fixed point for (|L(v)|α)|v|=2. Since in Case
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II all Tj , j ∈ N are a.s. nonpositive, all L(v), |v| = 2 are a.s. nonnegative. This
allows us to invoke the conclusion of the already settled Case I to infer that (4.2)
holds with constants c1, c−1 ≥ 0. Using (3.6) for n = 1 and t > 0 we get

exp(−Wc1t
α) = M(t) =

∏
j≥1

[M ]j(Tjt) =
∏
j≥1

exp(−[W ]jc−1|Tjt|α)

= exp

(
− c−1

∑
j≥1

|Tj |α[W ]jt
α

)
= exp(−Wc−1t

α) a.s.

In particular, c1 = c−1. �

Assuming that Case III prevails, i.e., 0 < p, q < 1, we prove four lemmas. While
Lemmas 4.2 and 4.5 are principal and will be used in the proof of (the remaining
part of) Theorem 4.1, Lemmas 4.3 and 4.4 are auxiliary and will be used in the
proof of Lemma 4.5.

Lemma 4.2. Let f ∈ S(M). If f(t) = 1 for some t 6= 0, then f(u) = 1 for all
u ∈ R.

Proof : Let t 6= 0 with f(t) = 1, w.l.o.g. t > 0. We have

1 = f(t) = E
[∏
j≥1

f(Tjt)

]
.

Since all factors on the right-hand side of this equation are bounded from above
by 1, they must all equal 1 a.s. In particular, since P(Tj < 0) > 0 for some j (see
Proposition 3.7(e)), there is some t′ < 0 with f(t′) = 1. Let s := min{t, |t′|}. Then,
since f is nondecreasing on (−∞, 0] and nonincreasing on [0,∞), we have f(u) = 1
for all |u| ≤ s. Now pick an arbitrary u ∈ R, |u| > s and let τ := inf{n ≥ 1 :
sup|v|=n |L(v)u| ≤ s}. Then τ <∞ a.s. by Lemma 3.1. Since (

∏
|v|=n f(L(v)u))n≥0

is a bounded martingale, the optional stopping theorem gives

f(u) = E
[ ∏
|v|=τ

f(L(v)u)

]
= 1.

This completes the proof since u was arbitrary with |u| > s. �

Recall that D(t) := t−1(1− ϕ(t)) and define Dα(t) :=
1−f(t)
|t|α for t 6= 0 and

Kl := lim inf
t→∞

Dα(e
−t) ∨Dα(−e−t)
D(e−αt)

, and K±
u := lim sup

t→∞

Dα(±e−t)
D(e−αt)

.

Further, put Ku := K+
u ∨K−

u .

Lemma 4.3. Assume that (A1)-(A4) and (A6) hold, and let f ∈ S(M) with
f(t) < 1 for some (hence all) t 6= 0. Then

0 < Kl ≤ Ku < ∞.

Proof of Lemma 4.3: The proof of this lemma is an extension of the proof of Lemma
11.5 in Alsmeyer et al. (2012). Though the basic idea is identical, modifications are
needed at several places.
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Due to the convexity of ϕ, D is nonincreasing, and therefore∑
v∈Tt:τ(v)=j

e−αS(v)D(e−αS(v))1{S(v)≤t+c}

≥
∑
v∈Tt:τ(v)=j

e−αS(v)1{S(v)−t≤c}∑
v∈Tt

e−αS(v)
D(e−αt)

∑
v∈Tt

e−αS(v)

for j = 1,−1. By Proposition 3.13 with h = 1, the ratio tends to something ≥ 1
2 −ε

in probability on S for given ε > 0 when c is chosen sufficiently large. The second
converges to W a.s. on S by (3.18). Further,∑

v∈Tt

e−αS(v)Dα(L(v)) ≥
∑

v∈Tt:τ(v)=j

e−αS(v)Dα(je
−S(v))1{S(v)≤t+c}

≥ e−αcDα(je
−(t+c))

∑
v∈Tt:τ(v)=j

e−αS(v)1{S(v)≤t+c}

≥ e−αc
Dα(je

−(t+c))

D(e−α(t+c))

∑
v∈Tt:τ(v)=j

e−αS(v)D(e−αS(v))1{S(v)≤t+c}.

For j = 1, passing to the limit t→ ∞ along an appropriate subsequence gives

− log(M(1)) ≥ e−αcK+
u

(1
2
− ε

)
W a.s.

where the convergence of the left-hand side follows from taking logarithms in (3.10),
cf. Alsmeyer et al. (2012, Lemma 8.7(c)). Now one can argue literally as in the
proof of Lemma 11.5 in Alsmeyer et al. (2012) to conclude that K+

u <∞. K−
u <∞

follows by choosing j = −1 in the argument above.
In order to conclude that Kl > 0, we derive an upper bound for − log(M(1))∑

v∈Tt

e−αS(v)Dα(L(v)) ≤ eαc
(
Dα(e

−t)∨Dα(−e−t)
)∑
v∈Tt

e−αS(v)1{S(v)≤t+c}

+
∑
v∈Tt

e−αS(v)Dα(L(v))1{S(v)>t+c}

≤ eαc
Dα(e

−t)∨Dα(−e−t)
D(e−αt)

∑
v∈Tt

e−αS(v)D(e−αS(v))1{S(v)≤t+c}

+
∑
v∈Tt

e−αS(v)Dα(L(v))1{S(v)>t+c}.

Now letting t → ∞ along an appropriate subsequence and using Proposition 3.13,
we obtain that

− log(M(1)) ≤ eαcKlW +KuεW.

Hence, Kl = 0 would implyM(1) = 1 a.s., in particular, f(1) = E[M(1)] = 1 which
is a contradiction by Lemma 4.2. �

Lemma 4.4. Suppose that (A1)–(A4) and (A6) hold, and let f ∈ S(M) with
f(t) < 1 for some t 6= 0. Let (t′n)n≥1 be a sequence of non-zero reals tending to 0.
Then there are a subsequence (t′nk

)k≥1 and a function g : [−1, 1] → [0,∞) which is
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decreasing on [−1, 0], increasing on [0, 1], and satisfies g(0) = 0 and g(1) = 1 such
that

1−f(ztk)
1−f(tk)

−→
k→∞

g(z) for all z ∈ [−1, 1] (4.4)

where (tk)k≥1 = (t′nk
)k≥1 or (tk)k≥1 = (−t′nk

)k≥1. The sequence (tk)k≥1 can be
chosen such that

lim inf
k→∞

(1−f(tk))/(1−ϕ(|tk|α)) ≥ Kl > 0 (4.5)

with ϕ as defined in Proposition 2.2(a).

Proof : From Lemma 4.2 we infer that 1−f(t) > 0 for all t 6= 0. Thus, the ratio
in (4.4) is well-defined. Recalling that f(t) is nonincreasing for t ≥ 0 and nonde-
creasing for t < 0 we conclude that, for z ∈ [0, 1], (1−f(zt))/(1−f(t)) ≤ 1, while
for z ∈ [−1, 0], (1−f(zt))/(1−f(t)) ≤ (1−f(−t))/(1−f(t)). The problem here is
that at this point we do not know whether the latter ratio is bounded as t → 0.
However, according to Lemma 4.3

lim inf
n→∞

(1−f(t′n)) ∨ (1−f(−t′n))
1− ϕ(|t′n|α)

≥ Kl > 0.

Hence, there is a subsequence of either (t′n)n≥1 or (−t′n)n≥1 which, for convenience,
we again denote by (t′n)n≥1 such that

lim inf
n→∞

1−f(t′n)
1− ϕ(|t′n|α)

≥ Kl > 0.

Another appeal to Lemma 4.3 gives

lim sup
n→∞

1−f(−t′n)
1−f(t′n)

= lim sup
n→∞

1−f(−t′n)
1− ϕ(|t′n|α)

1− ϕ(|t′n|α)
1−f(t′n)

≤ Ku

Kl
< ∞.

Hence, the selection principle enables us to choose a subsequence (tn)n≥1 of (t′n)n≥1

along which convergence in (4.4) holds for each z ∈ [−1, 1] (details of the selection
argument can be found in Alsmeyer et al. (2012, Lemma 11.2)). The resulting limit
g satisfies g(0) = 0 and g(1) = 1. From the construction, it is clear that (4.5)
holds. �

Lemma 4.5. Suppose that (A1)–(A4) hold and let f ∈ S(M) with f(t) < 1 for
some t 6= 0. Then

lim
t→0

1− f(zt)

1− f(t)
= |z|α for all z ∈ R. (4.6)

Proof : Taking expectations in (3.9) for u = 0 reveals that f ∈ S(M) satisfies (2.33)
with T replaced by T> = (L(v))v∈G>

1
. Furthermore, Proposition 3.7 ensures that

the validity of (A1)-(A4) for T carries over to T> with the same characteristic
exponent α. Since |L(v)| < 1 a.s. for all v ∈ G>1 we can and do assume until the
end of proof that assumptions (A1)-(A4) and (A6) hold.

As in Alsmeyer et al. (2012); Biggins and Kyprianou (1997); Iksanov (2004), the
basic equation is the following rearrangement of (2.33)

1− f(ztn)

|z|α(1−f(tn))
= E

[∑
j≥1

|Tj |α
1−f(zTjtn)

|zTj |α(1−f(tn))
∏
k<j

f(zTktn)

]
(4.7)
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for z ∈ [−1, 1] and (tn)n≥1 as in Lemma 4.4. The idea is to take the limit as n→ ∞
and then interchange limit and expectation. To justify the interchange, we use the
dominated convergence theorem. To this end, we need to bound the ratios

|Tj |α
1−f(zTjtn)

|zTj |α(1−f(tn))
= |Tj |α

1−f(zTjtn)
1−ϕ(|zTjtn|α)

1−ϕ(|zTjtn|α)
|zTj |α(1−ϕ(|tn|α))

1−ϕ(|tn|α)
1−f(tn)

.

(4.8)

By Lemma 4.3, for all sufficiently large n,

1−f(zTjtn)
1−ϕ(|zTjtn|α)

≤ Ku + 1 for all j ≥ 1 and z ∈ [−1, 1] a.s.

Since (tn)n≥1 is chosen such that (4.5) holds, for all sufficiently large n,

1−ϕ(|tn|α)
1−f(tn)

≤ K−1
l + 1.

Finally, when (A4a) holds, then D(t) = t−1(1− ϕ(t)) → 1 as t→ ∞. This implies
that the second ratio on the right-hand side of (4.8) remains bounded uniformly
in z for all j ≥ 1 a.s. as n → ∞. If (A4b) holds, D(t) is slowly varying at 0 and,
using a Potter bound Bingham et al. (1989, Theorem 1.5.6(a)), one infers that, for
an appropriate constant K > 0 and all sufficiently large n,

1−ϕ(|zTjtn|α)
|zTj |α(1−ϕ(|tn|α))

=
D(|zTjtn|α)
D(|tn|α)

≤ K|zTj |θ−α for all j ≥ 1, z ∈ [−1, 1] a.s.

where θ comes from (A4b). Consequently, the dominated convergence theorem
applies and letting n→ ∞ in (4.7) gives

g(z)/|z|α = E
[∑
j≥1

|Tj |α
g(zTj)

|zTj |α

]
, z ∈ [−1, 1]

with g defined in (4.4). For x ≥ 0, define h1(x) := eαxg(e−x) and h−1(x) :=
eαxg(−e−x). h1 and h−1 satisfy the following system of Choquet-Deny type func-
tional equations

h1(x) =

∫
h1(x+ y)µ+

α (dy) +

∫
h−1(x+ y)µ−

α (dy), x ≥ 0, (4.9)

h−1(x) =

∫
h−1(x+ y)µ+

α (dy) +

∫
h1(x+ y)µ−

α (dy), x ≥ 0, (4.10)

where

µ±
α (B) = E

[∑
j≥1

1{±Tj>0}|Tj |α1{S(j)∈B}

]
, B ⊆ [0,∞) Borel.

By (A6), µ+
α and µ−

α are concentrated on R> and µ+
α (R>) + µ−

α (R>) = 1. By
Lemma 4.4, g is bounded and, hence, h1 and h−1 are locally bounded on [0,∞).
Now use that 1 = h1(0) in (4.9) to obtain that hj(y0) ≥ 1 for some j ∈ {1,−1} and
some y0 > 0. Then, since g is nonincreasing on [−1, 0] and nondecreasing on [0, 1],
hj(y) > 0 for all y ∈ [0, y0].

The desired conclusions can be drawn from Ramachandran et al. (1988, Theorem
1), but it requires less additional arguments to invoke the general Corollary 4.2.3
in Rao and Shanbhag (1994). Unfortunately, we do not know at this point that the
functions hj , j = 1,−1 are continuous which is one of the assumptions of Chapter 4
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in Rao and Shanbhag (1994). On the other hand, as pointed out right after (3.1.1)
in Rao and Shanbhag (1994), this problem can be overcome by considering

H
(k)
j (x) = k

∫ 1/k

0

hj(x+ y) dy , j = −1, 1, k ∈ N.

Since the hj are nonnegative, so are the H
(k)
j . Further, since one of the hj are

strictly positive on [0, y0], the corresponding H
(k)
j is strictly positive on [0, y0) as

well. Local boundedness of the hj implies continuity of the H
(k)
j . For fixed k ∈ N

and j = 1,−1, using the definition ofH
(k)
j , (4.9) or (4.10), respectively, and Fubini’s

theorem, one can conclude that

H
(k)
j (x) =

∫
H

(k)
j (x+ y)µ+

α (dy) +

∫
H

(k)
−j (x+ y)µ−

α (dy).

Thus, for fixed k, H
(k)
1 and H

(k)
−1 satisfy the same system of equations (4.9) and

(4.10). From Corollary 4.2.3 in Rao and Shanbhag (1994) we now infer that there
are product-measurable processes (ξj(x))x≥0, j = 1,−1 with

(i) H
(k)
j (x) = H

(k)
j (0)E[ξj(x)] <∞, x ≥ 0;

(ii) ξj(x+ y) = ξj(x)ξj(y) for all x, y ≥ 0;
(iii)

∫
ξj(x)µα(dx ) = 1 (pathwise).

(ii) together with the product-measurability of ξj implies that ξj(x) = eαjx for all
x ≥ 0 for some random variable αj . Then condition (iii) becomes

∫
eαjxµα(dx ) = 1

(pathwise) which can be rewritten as ϕµα(αj) = 0 (pathwise) for the Laplace trans-
form ϕµα of µα. By (A6), ϕµα is strictly decreasing and hence αj = 0 (pathwise).

From (i) we therefore conclude H
(k)
j (x) = H

(k)
j (0), j = 1,−1. Since hj is lo-

cally bounded and has only countably many discontinuities, H
(k)
j (x) → hj(x) for

(Lebesgue-)almost all x in [0,∞). From the fact that the H
(k)
j are constant, we in-

fer that the hj are constant (Lebesgue-)a.e. This in combination with the fact that
e−αxhj(x) = g(je−x) is monotone implies that hj is constant on (0,∞), hj(x) = cj

for all x ≥ 0, say, j = 1,−1. From H
(k)
j > 0 on [0, y) for some y we further conclude

cj > 0, j = 1,−1. Now (4.9) for x > 0 can be rewritten as c1 = pc1 + qc−1. Since
0 < p, q < 1 by assumption, we conclude c−1 = c1 =: c. Finally, (4.9) for x = 0
yields 1 = c.

By now we have shown that for any sequence (t′n)n≥0 in R \ {0} with t′n → 0
there is a subsequence (t′nk

)k≥0 such that

1− f(ztk)

1− f(tk)
−→
k→∞

|z|α for |z| ≤ 1 (4.11)

for (tk)k≥1 = (t′nk
)k≥1 or (tk)k≥1 = (−t′nk

)k≥1. Replacing z by −z in the formula
above, we see that the same limiting relation holds for the sequence (−tk)k≥1 so
that every sequence tending to 0 has a subsequence along which (4.11) holds. This
implies (4.6). �

Proof of Theorem 4.1: Case III: Let f ∈ S(M). If f(t) = 1 for some t 6= 0, then
f(u) = 1 for all u ∈ R by Lemma 4.2. In this case M(t) = 1 for all t ∈ R, and (4.2)
holds with c1 = c−1 = 0. Assume now that f(t) 6= 1 for all t 6= 0. Using Lemma
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4.5 and arguing as in the proof of Alsmeyer et al. (2012, Lemma 8.8) we conclude

− log(M(t)) = |t|α(− log(M(1)))

for any t 6= 0 and

− log(M(1)) =
∑
|v|=n

|L(v)|α[− log(M(1))]v a.s. for all n ∈ N0.

Since f takes values in [0, 1], we have 0 ≤M(1) ≤ 1 a.s. Moreover, by the dominated
convergence theorem,

1 = f(0) = lim
t→0

f(t) = lim
t→0

E[M(t)] = E
[
lim
t→0

M(1)|t|
α]

= P(M(1) > 0).

Consequently, 0 < M(1) ≤ 1 a.s. Since f(t) 6= 1 for t 6= 0 we infer P(M(1) =
1) < 1. Therefore, − log(M(1)) is a nonnegative, non-null endogenous fixed point
of the smoothing transform with weights |Tj |α. From Proposition 3.11(a), we infer
the existence of a constant c > 0 such that − log(M(1)) = cW . Consequently,
M(t) = exp(−Wc|t|α) a.s. for all t ∈ R. �

4.3. Determining ν and Σ.

Lemma 4.6. Suppose that (A1)-(A4) hold. Let (W,Σ, ν) be the random Lévy
triplet which appears in (3.7).

(a) There exists a finite, deterministic measure σ on the Borel subsets of Sd−1
such that

ν(A) = W

∫∫
Sd−1×(0,∞)

1A(rs)r
−(1+α) σ(ds) dr (4.12)

for all Borel sets A ⊆ Rd a.s. Furthermore, σ is symmetric, i.e., σ(B) =
σ(−B) for all Borel sets B ⊆ Sd−1 if G(T ) = R∗. α ≥ 2 implies σ = 0
(and, thus, ν = 0 a.s.).

(b) If α 6= 2, then Σ = 0 a.s. If α = 2, then there is a deterministic symmetric
positive semi-definite (possibly zero) matrix Σ with Σ =WΣ a.s.

Proof : By (3.6) and (3.7),

i〈W, t〉 − tΣtT

2
+

∫ (
ei〈t,x〉 − 1− i〈t,x〉

1 + |x|2

)
ν(dx)

= i
∑
|v|=n

L(v)〈[W]v, t〉 −
∑

|v|=n L(v)
2t[Σ]vt

T

2

+
∑
|v|=n

∫ (
eiL(v)〈t,x〉 − 1− iL(v)〈t,x〉

1 + |x|2

)
[ν]v(dx)

= i
∑
|v|=n

L(v)

(
〈[W]v, t〉+

∫ [
〈t,x〉

1 + L(v)2|x|2
− 〈t,x〉

1 + |x|2

]
[ν]v(dx )

)

−
∑

|v|=n L(v)
2t[Σ]vt

T

2

+
∑
|v|=n

∫ (
eiL(v)〈t,x〉 − 1− iL(v)〈t,x〉

1 + L(v)2|x|2

)
[ν]v(dx), t ∈ Rd.
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The uniqueness of the Lévy triplet implies

Σ =
∑
|v|=n

L(v)2[Σ]v, (4.13)

∫
g(x) ν(dx) =

∑
|v|=n

∫
g(L(v)x) [ν]v(dx) (4.14)

a.s. for all n ∈ N0 and all non-negative Borel-measurable functions g on Rd.
(a) Let Ir(B) = {x ∈ Rd : r ≤ |x|,x/|x| ∈ B} where r > 0 and B is a Borel
subset of Sd−1 . Define Ir(B) for r < 0 as I|r|(−B). Since ν is a (random) Lévy
measure, ν(Ir(B)) < ∞ a.s. for all r 6= 0 and all B. When choosing g = 1Ir(B),
(4.14) becomes

ν(Ir(B)) =
∑
|v|=n

[ν]v(IL(v)−1r(B)) (4.15)

a.s. for all n ∈ N0. For fixed B define

fB(r) :=

{
1 if r = 0,

E[exp(−ν(Ir−1(B)))] if r 6= 0.

Then, by (4.15) and the independence of (L(v))|v|=n and ([ν]v)|v|=n,

fB(r) = E
[
exp

(
−

∑
|v|=n

[ν]v(IL(v)−1r−1(B))

)]
= E

[ ∏
|v|=n

fB(L(v)r)

]
for all r ∈ R. Further, fB is nondecreasing on (−∞, 0] and nonincreasing on [0,∞).
Since Ir−1(B) ↓ ∅ as r ↑ 0 or r ↓ 0, fB is continuous at 0, and we conclude that
fB ∈ S(M). From Theorem 4.1, we infer that the limit MB of the multiplicative
martingales associated with fB is of the form

MB(r) =

{
exp(−Wσ(B)α−1rα) for r ≥ 0,

exp(−Wσ(−B)α−1|r|α) for r ≤ 0
a.s.,

where σ(B) and σ(−B) are nonnegative constants (depending on B but not on
r) and σ(B) = σ(−B) if G(T ) = R∗. On the other hand, by an argument as in
Alsmeyer and Meiners (2013, Lemma 4.8), we infer thatMB(r) = exp(−ν(Ir−1(B)))
for all r ∈ R a.s. and thus

ν(Ir(B)) =

{
Wσ(B)α−1r−α for r > 0,

Wσ(B)α−1|r|−α for r < 0
a.s. (4.16)

Let D := {[a,b) ∩ Sd−1 : a,b ∈ Qd} where [a,b) = {x ∈ Rd : ak ≤ xk <
bk for k = 1, . . . , d}. D is a countable generator of the Borel sets on Sd−1 . (4.16)
holds for all B ∈ D and all r ∈ Q simultaneously, a.s. From (4.16) one infers
(since P(W > 0) > 0) that σ is a content on D (that is, σ is nonnegative, finitely
additive and σ(∅) = 0). It is even σ-additive on D (whenever the countable union
of disjoint sets from D is again in D). Thus, there is a unique continuation of σ
to a measure on the Borel sets on Sd−1 . For ease of notation, this measure will
again be denoted by σ. By uniqueness, (4.16) holds for all Borel sets B ⊆ Sd−1
and r ∈ Q simultaneously, a.s. and, by standard arguments, extends to all r ∈ R
as well. Lemma 2.1 in Kuelbs (1973) now yields that (4.12) holds for all Borel sets
A ⊆ Rd a.s.
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(b) Turning to Σ, we write Σ = (Σk`)k,`=1,...,d. For every k, ` = 1, . . . , d, (4.13)
implies

Σk` =
∑
|v|=n

L(v)2[Σk`] a.s. for all n ∈ N0, (4.17)

that is, Σk` is an endogenous fixed point w.r.t. (T 2
j )j≥1. If α 6= 2, then Σk` = 0

a.s. by Proposition 3.11(c). Suppose α = 2. Since Σkk ≥ 0 a.s., we infer Σkk =
WΣkk for some Σkk ≥ 0 by Proposition 3.11(a). Further, the Cauchy-Schwarz
inequality implies −Σk` +W

√
ΣkkΣ`` ≥ 0 a.s. Hence, (4.17) and Lemma 4.16 in

Alsmeyer and Meiners (2013) imply Σk` =WΣk` for some Σk` ∈ R. Consequently,
Σ = WΣ for Σ = (Σk`)k,`=1,...,d. Since Σ is symmetric and positive semi-definite,
so is Σ. �

4.4. The proofs of Theorems 2.3 and 3.12. The key ingredient to the proofs of
Theorems 2.3 and 3.12 is a bound on the tails of fixed points. This bound is
provided by the following lemma.

Lemma 4.7. Let d = 1 and assume that (A1)-(A4) hold. Let X be a solution to
(2.9). Then

(a) P(|X| > t) = O(1− ϕ(t−α)) as t→ ∞.
(b) P(|X| > t) = o(1− ϕ(t−α)) as t→ ∞ if X is an endogenous fixed point.

Proof : By (3.11) and (4.12), with F denoting the distribution of X,∑
v∈Tu

F (A/L(v)) → W

∫∫
1A(rs)r

−(1+α) σ(ds) dr as u→ ∞ a.s. (4.18)

for every Borel set A ⊂ R that has a positive distance from 0 (since ν is continuous).
Use the above formula for A = {|x| > 1} and rewrite it in terms of G(t) :=
t−αP(|X| > t−1) for t > 0. This gives∑

v∈Tu

e−αS(v)G(e−S(v)) → W
σ({1,−1})

α
as u→ ∞ a.s. (4.19)

Now one can follow the arguments given in the proof of Lemma 4.9 in Alsmeyer
and Meiners (2013) to conclude (a).

Finally, assume that X is endogenous, X = X(∅), say, for the root value of
an endogenous recursive tree process (X(v))v∈V. Denote by Φ the limit of the
multiplicative martingales associated with the Fourier transform φ of X. Then it is
implicit in the proof of Lemma 3.10 that Φ(t) = exp(itX(∅)) a.s., that is, the Lévy
measure in the random Lévy triplet of Φ vanishes a.s. Hence, the right-hand side
of (4.18) vanishes a.s. (b) now follows by the same arguments as assertion (b) of
Lemma 4.9 in Alsmeyer and Meiners (2013). �

Proof of Theorem 3.12: (a) Assume that α < 1. Then one can argue as in the
proof of Theorem 4.12 in Alsmeyer and Meiners (2013) (with L(v) there replaced
by |L(v)| here) to infer that X = 0 a.s.
(b) Here α = 1.
Case I in which Tj ≥ 0 a.s., j ∈ N. The result follows from Proposition 3.11(d).
Case II in which Tj ≤ 0 a.s., j ∈ N. If X is an endogenous fixed point w.r.t. T , then
X is an endogenous fixed point w.r.t. (L(v))|v|=2. We use Lemma 3.2 to reduce the
problem to the already settled Case I where Tj , j ∈ N have to be replaced with
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the nonnegative L(v), |v| = 2. This allows us to conclude that X = cW for some
c ∈ R. However, since

cW = X =
∑
j≥0

Tj [X]j =
∑
j≥0

(−|Tj |)c[W ]j = −cW a.s.

we necessarily have c = 0.
Case III. Using the embedding technique of Section 3.4, we can assume w.l.o.g. that
(A6) holds in addition to (A1)–(A5). If after the embedding, we are in Case II rather
than Case III, then X = 0 a.s., by what we have already shown. Therefore, the
remaining problem is to conclude that X = 0 a.s. in Case III under the assumptions
(A1)–(A6).

Let Φ denote the limit of the multiplicative martingales associated with the
Fourier transform of X. From the proof of Lemma 3.10 we conclude that Φ(t) =
exp(itX) a.s. which together with (3.12) and (3.13) implies

X = lim
t→∞

∑
v∈Tt

L(v)I(|L(v)|−1) a.s. as t→ ∞ (4.20)

where I(t) :=
∫
{|x|≤t} xF (dx ). Integration by parts gives

I(t) =

∫ t

0

P(X > s)− P(X < −s) ds − t(P(X > t)− P(X < −t)). (4.21)

The contribution of the second term to (4.20) is negligible, for

t|P(X > t)− P(X < −t)| = o(D(t−1)) as t→ ∞ (4.22)

by Lemma 4.7(b) and ∑
v∈Tt

|L(v)|D(|L(v)|−1) → W a.s.

by (3.18). Hence,

X = lim
t→∞

∑
v∈Tt

L(v)

∫ |L(v)|−1

0

(
P(X>s)− P(X<−s)

)
ds a.s. as t→ ∞. (4.23)

One can replace the integral from 0 to |L(v)|−1 above by the corresponding integral
with |L(v)|−1 replaced by et. To justify this, in view of (4.22), it is enough to check
that

lim sup
t→∞

∑
v∈Tt

|L(v)|
∫ |L(v)|−1

et
(1− ϕ(s−1)) ds ≤ cW a.s. (4.24)

for some constant c ≥ 0. This statement is derived in the proof of Theorem
4.13 in Alsmeyer and Meiners (2013) under the assumptions (A1)–(A3), (A4a)
and E[

∑
j≥1 |Tj |(log

−(|Tj |))2] < ∞; see (4.41), (4.42) and the subsequent lines in
the cited reference. Consequently, we arrive at the following representation of X

X = lim
t→∞

∑
v∈Tt

L(v)

∫ et

0

(
P(X>s)− P(X<−s)

)
ds a.s. (4.25)

Now observe that (A5) implies (A4a), and that, under (A1)-(A4a), t(1−ϕ(t−1)) → 1
as t → ∞ because W is integrable as it is the a.s. limit of uniformly integrable
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martingale (
∑

|v|=n |L(v)|)n≥0. In combination with (4.22) this yields |P(X > s)−
P(X < −s)| = o(s−1) as s→ ∞ and so, for every ε > 0 there is a t0 such that

∣∣∣∣ ∫ et

et0

(
P(X>s)− P(X<−s)

)
ds

∣∣∣∣ ≤ ε

∫ et

et0
s−1ds = ε(t− t0)

for all t ≥ t0. Lemma 3.14 thus implies X = 0 a.s. as claimed.
(c) Assume that α > 1.
(i)⇒(iii): Let X be a non-null endogenous fixed point w.r.t. T . Then using Lemma
4.7(b) and recalling that according to Proposition 2.2(c) 1 − ϕ(t−α) is regularly
varying of index −α at ∞ we conclude that E[|X|β ] < ∞ for all β ∈ (0, α). In
particular, E[X|An] is an Lβ-bounded martingale with limit (a.s. and in Lβ) X.
Further, using that {|v| = n : L(v) 6= 0} is a.s. finite for each n ∈ N0, we obtain

E[X|An] = E
[ ∑
|v|=n

L(v)[X]v

∣∣∣An

]
= ZnE[X] a.s.

Hence E[Zn] = 1 for all n ∈ N0 and X = limn→∞ ZnE[X] a.s. and in Lβ . In
particular, E[Z1] < ∞ and (Zn)n≥0 converges in Lβ , which is (iii). As a further
consequence, we obtain the uniqueness of the endogenous fixed point up to a real
scaling factor.
(iii)⇒(ii): The implication follows because (Zn)n≥0 is a martingale, and conver-
gence in Lβ for some β > 1 implies uniform integrability.
(ii)⇒(i): For every n ∈ N0,

Z = lim
k→∞

Zn+k = lim
k→∞

∑
|v|=n

∑
|w|=k

L(v)[L(w)]v

=
∑
|v|=n

L(v) lim
k→∞

∑
|w|=k

[L(w)]v =
∑
|v|=n

L(v)[Z]v a.s. (4.26)

This means that Z is an endogenous fixed point w.r.t. T which is non-null because
P(Z = 0) < 1 by assumption. �

Proof of Theorem 2.3: (a) is Lemma 4.14(a) in Alsmeyer and Meiners (2013); (b)
is Theorem 3.12(c) of the present paper.
(c) Let α ≥ 2. If Z1 = 1 a.s., then Zn = 1 a.s. and the a.s. convergence to Z = 1 is
trivial. Conversely, assume that P(Z1 = 1) < 1 and that Zn → Z a.s. as n → ∞.
According to part (b) of the theorem, (Zn)n≥0 is a martingale, and Zn → Z in Lβ
for all β ∈ (1, α). By an approach that is close to the one taken in Alsmeyer et al.
(2009, Proof of Theorem 1.2) we shall show that this produces a contradiction.
Pick some β ∈ (1, 2) if α = 2 and take β = 2 if α > 2. For Zn → Z in Lβ to hold
true it is necessary that E[|Z1 − 1|β ] < ∞. Then, using the lower bound in the
Burkholder-Davis-Gundy inequality Chow and Teicher (1997, Theorem 11.3.1), we



Fixed points of smoothing transforms with scalar weights 103

infer that for some constant cβ > 0 we have

E[|Z − 1|β ] ≥ cβE
[(∑

n≥0

(Zn+1 − Zn)
2

)β/2]

= cβE
[(∑

n≥0

( ∑
|v|=n

L(v)([Z1]v − 1)

)2)β/2]

≥ cβE
[(m−1∑

n=0

( ∑
|v|=n

L(v)([Z1]v − 1)

)2)β/2]
(4.27)

for every m ∈ N. Since β ∈ (1, 2], the function x 7→ xβ/2 (x ≥ 0) is concave which

implies (x1 + . . . + xm)β/2 ≥ mβ/2−1(x
β/2
1 + . . . + x

β/2
m ) for any x1, . . . , xm ≥ 0.

Plugging this estimate into (4.27) gives

E[|Z − 1|β ] ≥ cβm
β/2−1

m−1∑
n=0

E
[∣∣∣∣ ∑

|v|=n

L(v)([Z1]v − 1)

∣∣∣∣β].
Given An,

∑
|v|=n L(v)([Z1]v − 1) is a weighted sum of i.i.d. centered random vari-

ables and hence the terminal value of a martingale. Thus, we can again use the
lower bound of the Burkholder-Davis-Gundy inequality Chow and Teicher (1997,
Theorem 11.3.1) and then Jensen’s inequality on {Wn(2) > 0} where Wn(γ) =∑

|v|=n |L(v)|γ to infer

E[|Z − 1|β ] ≥ c2βm
β/2−1

m−1∑
n=0

E
[( ∑

|v|=n

L(v)2([Z1]v − 1)2
)β/2]

= c2βm
β/2−1

m−1∑
n=0

E
[
Wn(2)

β/2

( ∑
|v|=n

L(v)2

Wn(2)
([Z1]v − 1)2

)β/2]

≥ c2βm
β/2−1

m−1∑
n=0

E
[
Wn(2)

β/2
∑
|v|=n

L(v)2

Wn(2)
([Z1]v − 1)β

)]

= c2βm
β/2−1E[|Z1 − 1|β ]

m−1∑
n=0

E[Wn(2)
β/2].

To complete the proof it suffices to show

lim
m→∞

mβ/2−1
m−1∑
n=0

E[Wn(2)
β/2] = ∞ (4.28)

for the latter contradicts E[|Z − 1|β ] <∞.
Case α > 2: Recalling that m(2) > 1 in view of (A3) and that β = 2 we have
E[Wn(2)

β/2] = E[Wn(2)] = m(2)n → ∞ and thereupon (4.28).
Case α = 2: Since (A4a) is assumed, we infer Wn(2) → W a.s. and in L1. In
particular E[Wn(2)

β/2] → E[W β/2] > 0 which entails (4.28). �

Remark 4.8. In Theorem 2.3(c) the case when α = 2 and (A4a) fails remains a
challenge. Here, some progress can be achieved once the asymptotics of E[Wn(2)

γ ]
as n → ∞ has been understood, where γ ∈ (0, 1), which is a nontrivial problem
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since limn→∞Wn(2) = 0 a.s. In the case when Seneta-Heyde scaling constants of
the martingale (Wn(2))n≥0 (i.e., constants cn > 0 such that c−1

n Wn(2) converges in
distribution as n → ∞ to a non-trivial limit) are available and when the sequence
((c−1

n Wn(2))
γ)n≥0 is uniformly integrable, E[Wn(2)

γ ] is of order cγn which can then
be used to conclude (4.28). While in general, Seneta-Heyde norming constants
are either not available or not explicit Biggins and Kyprianou (1997), in the case
when m′(2) = 0, called the boundary case by Biggins and Kyprianou Biggins and
Kyprianou (2005), recent progress does allow us to obtain (4.28).

Indeed, under (A1)–(A3) and when α = 2, m′(2) = 0, E[
∑

|v|=1 S(v)
2e−αS(v)] <

∞, E[W1(2)(log
+(W1(2)))

2] < ∞, and E[W̃1(2) log
+(W̃1(2))] < ∞ where W̃1(2) is

defined as
∑

|v|=1 S(v)
+e−2S(v),

√
nWn converges in distribution to a non-trivial

limit by Theorem 1.1 in Aı̈dékon and Shi (2014). Further, for s > 0,

P
(
min
v∈G

S(v) < −s
)

≤ E
[∑
v∈G

e−2S(v)e2S(v)1{S(v)<−s,S(v|k)≥−s for k<|v|}

]
≤ e−2sP(Sn < −s for some n ∈ N0) ≤ e−2s.

Consequently, for t > 0,

P(
√
nWn(2) > t) ≤ e−2s + P

(√
n

∑
|v|=n

e−2S(v)
1{S(v|k)≥−s for all 0≤k≤|v|} > t

)

≤ e−2s +

√
n

t
E
[ ∑
|v|=n

e−2S(v)
1{S(v|k)≥−s for all 0≤k≤|v|}

]

= e−2s +

√
n

t
P
(

min
0≤k≤n

Sk > −s
)
.

We know from Kozlov (1976) that P(min0≤k≤n Sk > −s) ≤ C 1+s√
n

for all n ≥ 0 for a

constant C that does not depend on s and n. Therefore, choosing s = tε for ε > 0,
we conclude that

sup
n≥0

P(
√
nWn(2) > t) ≤ e−2s + C

1 + s

t
= e−2tε + C

1 + tε

t
≤ Cε

t1−ε

for all t ≥ 1 and a constant Cε depending on ε but not on t. This implies uniform
integrability of the sequence (nγ/2Wn(2)

γ)n∈N for all γ ∈ (0, 1).
In conclusion, under the stated assumptions, (4.28) holds and thus, (Zn)n≥0 has

a non-trivial a.s. limit only when Zn = 1 a.s. for all n ∈ N0.

4.5. Solving the homogeneous equation in Rd.

Lemma 4.9. Assume that (A1)–(A4) hold, that α = 1, and that G(T ) = R>.
Further, assume that E[

∑
j≥1 Tj(log

−(Tj))
2] < ∞. Let X = (X1, . . . , Xd) be a

solution to (2.9) with distribution function F and let W(1) = (W (1)1, . . . ,W (1)d)
be defined by

W(1) = lim
t→∞

∑
v∈Tt

L(v)

∫
{|x|≤L(v)−1}

xF (dx) a.s.,

i.e., as in (3.12). Then there is a finite constant K > 0 with maxj=1,...,d |W (1)j | ≤
KW a.s.
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Proof : First of all, the existence of the limit that defines W(1) follows from Lemma
3.6. Fix j ∈ {1, . . . , d}. Then, with Fj denoting the distribution of Xj ,

W (1)j = lim
t→∞

∑
v∈Tt

L(v)

∫
{|x|≤L(v)−1}

xFj(dx )

= lim
t→∞

∑
v∈Tt

L(v)

(∫ L(v)−1

0

(P(Xj > x)− P(Xj < −x)) dx

− L(v)−1(P(Xj > L(v)−1)− P(X < −L(v)−1))

)
a.s.

(4.29)

By Lemma 4.7, there is a finite constant K1 > 0 such that

P(|Xj | > t) ≤ K1(1−ϕ(t−1) = K1t
−1D(t−1) for all sufficiently large t. (4.30)

Therefore, by (3.18),

lim sup
t→∞

∣∣∣∣ ∑
v∈Tt

(P(Xj > L(v)−1)− P(X < −L(v)−1))

∣∣∣∣ ≤ K1W a.s.

It thus suffices to show that, for Ij(t) :=
∫ t
0

(
P(Xj > x)− P(Xj < −x)

)
dx , t ≥ 0,

lim sup
t→∞

∣∣∣∣ ∑
v∈Tt

L(v)Ij
(
L(v)−1

)∣∣∣∣ ≤ K2W a.s. (4.31)

for some finite constantK2 > 0. We write Ij
(
L(v)−1

)
= Ij

(
L(v)−1

)
−Ij(et)+Ij(et)

and observe that by (4.30) and (4.24),

lim sup
t→∞

∣∣∣∣ ∑
v∈Tt

L(v)
(
Ij
(
L(v)−1

)
− Ij(e

t)
)∣∣∣∣ ≤ K3W a.s. (4.32)

for some finite constant K3 > 0. It thus suffices to show that

lim sup
t→∞

|Ij(et)|
∑
v∈Tt

L(v) ≤ K4W a.s. (4.33)

If lim supt→∞ |Ij(et)|/D(e−t) = ∞, then using (3.18) we infer |Ij(et)|
∑
v∈Tt

L(v) →
∞ as t → ∞ a.s. on the survival set S. This implies |W (1)j | = ∞ a.s. on
S, thereby leading to a contradiction, for the absolute value of any other term
that contributes to W (1)j is bounded by a constant times W a.s. Therefore,
lim supt→∞ |Ij(et)|/D(e−t) <∞ a.s. which together with (3.18) proves (4.33). �

For the next theorem, recall that Z := limn→∞ Zn = limn→∞
∑

|v|=n L(v) when-

ever the limit exists in the a.s. sense, and Z = 0, otherwise.

Theorem 4.10. Assume that (A1)-(A4) hold. Let φ be the Fourier transform of
a probability distribution on Rd solving (2.20), and let Φ = exp(Ψ) be the limit of
the multiplicative martingale corresponding to φ.

(a) Let 0 < α < 1. Then there exists a finite measure σ on Sd−1 such that

Ψ(t) = −W
∫

|〈t, s〉|α σ(ds) + iW tan
(πα
2

) ∫
〈t, s〉|〈t, s〉|α−1 σ(ds) (4.34)

a.s. for all t ∈ Rd. If G(T ) = R∗, then σ is symmetric and the second
integral in (4.34) vanishes.
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(b) Let α = 1.
(b1) Assume that Case I prevails and that E[

∑
j≥1 |Tj |(log

−(|Tj |))2] < ∞.

Then there exist an a ∈ Rd and a finite measure σ on Sd−1 with
∫
sj σ(ds) =

0 for j = 1, . . . , d such that

Ψ(t) = iW 〈a, t〉 −W

∫
|〈t, s〉|σ(ds)− iW

2

π

∫
〈t, s〉 log(|〈t, s〉|)σ(ds) (4.35)

a.s. for all t ∈ Rd.
(b2) Assume that Case II or III prevails and E[

∑
j≥1 |Tj |(log

−(|Tj |))2] <
∞ in Case II and (A5) in Case III. Then there exist a finite symmetric
measure σ on Sd−1 such that

Ψ(t) = −W
∫

|〈t, s〉|σ(ds) (4.36)

a.s. for all t ∈ Rd.
(c) Let 1 < α < 2. Then there exist an a ∈ Rd and a finite measure σ on Sd−1

such that

Ψ(t) = iZ〈a, t〉 −W

∫
|〈t, s〉|α σ(ds) + iW tan

(πα
2

)∫
〈t, s〉|〈t, s〉|α−1 σ(ds) (4.37)

a.s. for all t ∈ Rd. If G(T ) = R∗, then σ is symmetric and the second
integral in (4.37) vanishes.

(d) Let α = 2. If E[Z1] = 1, then additionally assume that (A4a) holds. Then
there exist an a ∈ Rd and a symmetric positive semi-definite (possibly zero)
d× d matrix Σ such that

Ψ(t) = i〈a, t〉 −W
tΣtT

2
(4.38)

a.s. for all t ∈ Rd. If P(Z1 = 1) < 1, then a = 0.
(e) Let α > 2. Then there is an a ∈ Rd such that

Ψ(t) = i〈a, t〉 (4.39)

a.s. for all t ∈ Rd. If P(Z1 = 1) < 1, then a = 0.

Proof : We start by recalling that Ψ satisfies (3.7) by Proposition 3.5.
(e) If α > 2, then, according to Lemma 4.6, Σ = 0 a.s. and ν = 0 a.s. (3.7) then
simplifies to Ψ(t) = i〈W, t〉 and (3.6) implies that W =

∑
|v|=n L(v)[W]v a.s. for

all n ∈ N0. Hence, each component of W is an endogenous fixed point w.r.t. T .
From Theorem 3.12(c) we know that non-null endogenous fixed points w.r.t. T exist
only if E[Z1] = 1 and Zn converges a.s. and in mean to Z and then each endogenous
fixed point is a multiple of Z. Now if Z1 = 1 a.s., then Z = 1 a.s. and we arrive
at W = a for some a ∈ Rd which is equivalent to (4.39). If P(Z1 = 1) 6= 1, we
conclude from Theorem 2.3(c) that Z = 0 a.s. Hence, (4.39) holds with a = 0.
(d) Let α = 2. By Lemma 4.6, Ψ is of the form

Ψ(t) = i〈W, t〉 −W
tΣtT

2
a.s.

for a deterministic symmetric positive semi-definite matrix Σ. Since i and 1 are
linearly independent, one again concludes from (3.6) that W is an endogenous
fixed point w.r.t. T . The proof of the remaining part of assertion (d) proceeds as
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the corresponding part of the proof of part (e) with the exception that if E[Z1] = 1,
(A4a) has to be assumed in order to apply Theorem 2.3(c).

We now turn to the case 0 < α < 2. By Lemma 4.6, Σ = 0 a.s. and there exists
a finite measure σ̃ on the Borel subsets of Sd−1 such that

ν(A) = W

∫∫
Sd−1×(0,∞)

1A(rs)r
−(1+α) dr σ̃(ds) (4.12)

for all Borel sets A ⊆ Rd a.s. Plugging this into (3.7), we conclude that Ψ is of the
form

Ψ(t) = i〈W, t〉+W

∫∫ (
eir〈t,s〉 − 1− ir〈t, s〉

1 + r2

)
dr

r1+α
σ̃(ds)

= i〈W, t〉+W

∫
I(〈t, s〉) σ̃(ds), t ∈ Rd, (4.40)

where

I(t) :=

∫ ∞

0

(
eitr−1− itr

1+r2

) dr

r1+α
, t ∈ R.

The value of I(t) is known (see e.g. Gnedenko and Kolmogorov (1968, pp. 168))

I(t) =


ict− tαe−

πiα
2

Γ(1−α)
α , 0 < α < 1,

ict− (π/2)t− it log(t), α = 1,

ict+ tαe−
πi
2 α

Γ(2−α)
α(α−1) , 1 < α < 2,

for t > 0, where Γ denotes Euler’s Gamma function and c ∈ R is a constant that
depends only on α. Further, I(−t) = I(t), the complex conjugate of I(t). Finally,
observe that s0 :=

∫
s σ̃(ds) ∈ Rd since it is the integral of a function which is

bounded on Sd−1 w.r.t. to a finite measure.
(a) Let 0 < α < 1. Plugging in the corresponding value of I(t) in (4.40) gives

Ψ(t) = i〈W +Wcs0, t〉

−W
Γ(1−α)

α

(
e−

πi
2 α

∫
{〈t,s〉>0}

〈t, s〉α σ̃(ds) + e
πi
2 α

∫
{〈t,s〉<0}

|〈t, s〉|α σ̃(ds)
)

= i〈W +Wcs0, t〉 −
W

α
Γ(1−α) cos

(πα
2

)∫
|〈t, s〉|α σ̃(ds)

+ i
W

α
Γ(1−α) sin

(πα
2

)∫
〈t, s〉|〈t, s〉|α−1 σ̃(ds).

Now define σ := Γ(1−α)
α cos

(
πα
2

)
σ̃ and notice that cos(πα2 ) > 0 since 0 < α < 1.

Then we get

Ψ(t) = i〈W̃, t〉 −W

∫
|〈t, s〉|α σ(ds) + iW tan

(πα
2

)∫
〈t, s〉|〈t, s〉|α−1 σ(ds),

where W̃ := W +Wcs0. Now, using linear independence of 1 and i and (3.6), we
conclude that

〈W̃, t〉+W tan
(πα

2

)∫
〈t, s〉|〈t, s〉|α−1 σ(ds)

=
∑
|v|=n

L(v)〈[W̃]v, t〉+
∑
|v|=n

L(v)|L(v)|α−1[W ]v tan
(πα

2

)∫
〈t, s〉|〈t, s〉|α−1 σ(ds)
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for all t ∈ Rd and all n ∈ N0 a.s. For each j = 1, . . . , d, evaluate the above equation
at t = tej for some arbitrary t > 0 and with ej denoting the jth unit vector. Then

divide by t and let t→ ∞. This gives that each coordinate of W̃ is an endogenous
fixed point w.r.t. T which, therefore, must vanish by Theorem 3.12(a). If G(T ) =
R∗, then σ is symmetric by Lemma 4.6 and the integral

∫
〈t, s〉|〈t, s〉|α−1 σ(ds) is

equal to zero. The proof of (a) is thus complete.
(b) Let α = 1. Again, we plug the corresponding value of I(t) in (4.40). With

W̃ := W +Wcs0 and σ := π
2 σ̃, this yields

Ψ(t) = i〈W̃, t〉 −W

∫
|〈t, s〉|σ(ds)− iW

2

π

∫
〈t, s〉 log(|〈t, s〉|)σ(ds) (4.41)

for all t ∈ Rd a.s.
(b2) The measure σ is symmetric by Lemma 4.6 and the last integral in (4.41)
vanishes because the integrand is odd. Now combine (3.6) and (4.41) and use the
linear independence of 1 and i to conclude

〈W̃, t〉 =
∑
|v|=n

L(v)〈[W̃]v, t〉 (4.42)

for all t ∈ Rd a.s. Choosing t = ej for j = 1, . . . , d, we see that each coordinate

of W̃ is an endogenous fixed point w.r.t. T which must vanish a.s. by Theorem
3.12(b).
(b1) We show that

∫
sj σ(ds) = 0 for j = 1, . . . , d or, equivalently, s0 = 0. To this

end, use (3.6) and the linear independence of 1 and i to obtain that

〈W̃, t〉−W 2

π

∫
〈t, s〉 log(|〈t, s〉|)σ(ds)

=
∑
|v|=n

L(v)〈[W̃]v, t〉 −
∑
|v|=n

L(v) log(L(v))[W ]v
2

π

∫
〈t, s〉σ(ds)

−
∑
|v|=n

L(v)[W ]v
2

π

∫
〈t, s〉 log(|〈t, s〉|)σ(ds)

(4.43)

a.s. for all n ∈ N0. Assume for a contradiction that for some j ∈ {1, . . . , d}, we
have

∫
sjσ(ds) 6= 0. Then put J(t) :=

∫
〈t, s〉 log(|〈t, s〉|)σ(ds), t ∈ Rd. For u 6= 0,

one has

J(uej) =

∫
usj log(|usj |)σ(ds) = u log(|u|)

∫
sj σ(ds) + u

∫
sj log(|sj |)σ(ds).

Thus, J(uej) = 0 iff

log(|u|) = −
∫
sj log(|sj |)σ(ds)∫

sj σ(ds)
.

Since we assume
∫
sjσ(ds) 6= 0, one can choose u 6= 0 such that J(uej) = 0.

Evaluating (4.43) at uej and then dividing by u 6= 0 gives

W̃j =
∑
|v|=n

L(v)[W̃j ]v −
∑
|v|=n

L(v) log(L(v))[W ]v
2

π

∫
sj σ(ds),
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where W̃j is the jth coordinate of W̃. Using (3.13) we infer

W̃ = W +Wcs0 = W(1) +

∫
{|x|>1}

x

1 + |x|2
ν(dx)−

∫
{|x|≤1}

x|x|2

1 + |x|2
ν(dx) +Wcs0

a.s., whereW(1) = limt→∞
∑
v∈Tt

L(v)
∫
{|x|≤|L(v)|−1} xF (dx). Since we know from

Lemma 4.6 that all randomness in ν comes from a scalar factorW , we conclude that
W̃ = W(1)+c̃W a.s. for some c̃ ∈ Rd. From Lemma 4.9, we know that |W̃j | ≤ KW
a.s. for someK ≥ 0. In the case

∫
sj σ(ds) < 0 we use these observations to conclude

−KW ≤ W̃j =
∑
|v|=n

L(v)[W̃j ]v −
∑
|v|=n

L(v) log(L(v))[W ]v
2

π

∫
sj σ(ds)

≤ KW −
∑
|v|=n

L(v) log(L(v))[W ]v
2

π

∫
sj σ(ds) → −∞

a.s. on S, the set of survival since
∑

|v|=n L(v)[W ]v = W > 0 a.s. on S and

sup|v|=n L(v) → 0 a.s. by Lemma 3.1. This is a contradiction. Analogously, one

can produce a contradiction when
∫
sj σ(ds) > 0. Consequently,

∫
sjσ(ds) = 0 for

j = 1, . . . , d. Using this and the equation (3.16) for W in (4.43), we conclude that

〈W̃, t〉 =
∑
|v|=n

L(v)〈[W̃]v, t〉

a.s. for all n ∈ N0. Evaluating this equation at t = ej shows that W̃j is an

endogenous fixed point w.r.t. T , hence W̃j = Waj a.s. by Theorem 3.12(b), j =

1, . . . , d. Hence, W̃ =Wa for a = (a1, . . . , ad). The proof of (b) is complete.
(c) Let 1 < α < 2. Plugging the corresponding value of I(t) in (4.40) and arguing
as in the case 0 < α < 1 we infer

Ψ(t) = i〈W̃, t〉 −W

(∫
|〈t, s〉|α σ(ds)− i tan

(πα
2

) ∫
〈t, s〉α|〈t, s〉|α−1 σ(ds)

)
where σ := −α−1(α − 1)−1Γ(2 − α) cos(πα2 )σ̃ (notice that cos(πα2 ) < 0) and, as

before, W̃ := W + cs0. The equality W̃ = aZ for some a ∈ Rd can be checked as
in the proof of the corresponding assertion in the case α = 2. If G(T ) = R∗, then
σ is symmetric by Lemma 4.6 and the integral

∫
〈t, s〉|〈t, s〉|α−1 σ(ds) vanishes. �

4.6. Proof of the converse part of Theorem 2.4. From what we have already derived
in the preceding sections, there is only a small step to go in order to prove the
converse part of Theorem 2.4. The techniques needed to do this final step have
been developed in Alsmeyer and Meiners (2012). Thus we shall only give a sketch
of the proof.

Proof of Theorem 2.4 (converse part): Fix any φ ∈ S(F). Then define the corre-
sponding multiplicative martingale by setting

Mn(t) := exp

(
i
∑
|v|<n

L(v)〈C(v), t〉
) ∏

|v|=n

φ(L(v)t) =: exp(i〈W∗
n, t〉)Φn(t),

(4.44)
t ∈ Rd. From (2.19) one can deduce just as in the homogeneous case that, for
fixed t ∈ Rd, (Mn(t))n∈N0 is a bounded martingale w.r.t. (An)n∈N0 and, thus,
converges a.s. and in mean to a limit M(t) with E[M(t)] = φ(t). On the other
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hand, W∗
n → W∗ in probability implies Φn(t) → Φ(t) := M(t)/ exp(i〈W∗, t〉)

in probability as n → ∞. Mimicking the proof of Theorem 4.2 in Alsmeyer and
Meiners (2012), one can show that ψ(t) = E[Φ(t)] is a solution to (2.20) and that
the Φ(t), t ∈ Rd are the limits of the multiplicative martingales associated with ψ.
Hence Φ(t) = exp(Ψ(t)) for some Ψ as in Theorem 4.10. Finally, φ(t) = E[M(t)] =
E[exp(i〈W∗, t〉+Ψ(t))], t ∈ Rd. The proof is complete. �
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Notation

N {1, 2, 3, . . .}, set of natural numbers
N0 {0, 1, 2, 3, . . .}, set of natural numbers and zero
R∗ R \ {0}, multiplicative group of R
R≥ set of nonnegative real numbers
R> set of positive real numbers

Sd−1 d-dimensional unit sphere
V

∪
n∈N0

Nn, infinite Ulam-Harris tree

i
√
−1, imaginary unit

L(·) the law/distribution (of a random variable)
sign(·) the sign (of a real number)

law
= equality in law

C (C1, . . . , Cd), see (1.1)
T (Tj)j≥1, see (1.1)
m function that maps [0,∞) 3 γ 7→ E[

∑
j |Tj |γ ]

α minimal positive real with m(α) = 1, characteristic index, see (A3)
θ θ < α with m(θ) < ∞, see (A4b)
p, q p = E[

∑
j |Tj |α1{Tj>0}] and q := E[

∑
j |Tj |α1{Tj<0}], see (2.3)

G(T ) closed multiplicative subgroup ⊂ R∗ generated by the nonzero Tj

M, S(M) set of functions defined on p. 80, functions in M solving (2.33)

B, S(B) {f : Rd → C : f(0) = 1 & supt |f(t)| ≤ 1}, functions in B solving (3.3)

F set of Fourier transforms of probability measures on Rd

S(F) functions in F solving (2.20)
S(F)(C) functions in F solving (2.19)

C(v) (C1(v), . . . , Cd(v)), independent copy of C, see Section 2.2
T (v) (Tj(v))j≥1, independent copy of T , see Section 2.2
L(v) multiplicative weight, see Section 2.2
L (L(v))v∈V, family of multiplicative weights

An, A∞ σ((C(v), T (v)) : |v| < n), σ(An : n ≥ 0)
S(v) − log |L(v)|, position of particle v
S (S(v))v∈V, family of positions

τ(v) sign(L(v)), type of particle v
Gn

∑
|v|=n 1{L(v) 6=0}, number of nonzero weights in generation n

G
∪

n≥0 Gn

Nn |Gn|, number of nth generation particles
S {Nn > 0 for all n}, survival set
Zn

∑
v∈Gn

δS(v), point process of nth generation positions

[·]u shift operator, see p. 74
W∗

n, W
∗ ∑

|v|<n L(v)C(v), limn→∞ W∗
n, see (2.11) and (2.12)

ϕ Laplace transform solving (2.15)
W random variable with Laplace transform ϕ, defined via (2.14)
D function that maps t 7→ t−1(1− ϕ(t))
Wn

∑
|v|=n |L(v)|α, additive martingale or Biggins’ martingale, see (2.17)

Zn, Z
∑

|v|=n L(v), limn→∞ Zn (if the lim exists), see (2.18)

(Sn)n≥0 associated random walk, defined via (3.2)
Mn(t)

∏
|v|=n f(L(v)t), multiplicative martingales, see (3.4)

M(t) limn→∞ Mn(t), limit of the multiplicative martingales
(W,Σ, ν) random Lévy triplet, see (3.7)
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