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Abstract. We introduce a stochastic system of interacting particles which is ex-
pected to furnish, as the number of particles goes to infinity, a stochastic approach
of the 2-D Keller-Segel model. In this note, we prove existence and some unique-
ness for the stochastic model for the parabolic-elliptic Keller-Segel equation, for all
regimes under the critical mass. Prior results for existence and weak uniqueness
have been very recently obtained by Fournier and Jourdain (2015).

1. Introduction and main results.

The (Patlak) Keller-Segel system introduced in Keller and Segel (1970), is a
tentative model to describe chemo-taxis phenomenon, an attractive chemical phe-
nomenon between organisms. In two dimensions, the classical 2-D parabolic-elliptic
Keller-Segel model reduces to a single non linear P.D.E.,

∂tρt(x) = ∆x ρt(x) + χ∇x.((K ∗ ρt)ρt)(x) (1.1)

with some initial ρ0. Here ρ : R+ × R2 → R, χ > 0 and K : x ∈ R2 7→ x
‖x‖2 ∈ R2

is the gradient of the harmonic kernel, i.e. K(x) = ∇ log(‖ x ‖).
It is not difficult to see that (1.1) preserves positivity and mass, so that we may

assume that ρ0 is a density of probability, i.e. ρ0 ≥ 0 and
∫
ρtdx =

∫
ρ0dx = 1.

With this choice, (1.1) is written in a non-dimensional form. In order to compare
it to the usual formulation, the reader can think that the parameter χ is actually
given by

χ = χ0
αm
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where χ0 is the chemotactic sensitivity, α is the rate of production of chemoattrac-
tant by the cells, m is the total mass and D is the product of the diffusivities.

As usual, ρ is modeling a density of cells, and ct = K∗ρt is (up to some constant)
the concentration of chemo-attractant.

A very interesting property of such an equation is a blow-up phenomenon

Theorem 1.1. Assume that ρ0 log ρ0 ∈ L1(R2) and that (1+ ‖ x ‖2)ρ0 ∈ L1(R2).
Then if χ > 4, the maximal time interval of existence of a classical solution of (1.1)
is [0, T ∗) with

T ∗ ≤ 1

2π χ (χ− 4)

∫
‖ x ‖2 ρ0(x) dx .

If χ ≤ 4 then T ∗ = +∞.

For this result, a wonderful presentation of what Keller-Segel models are and
an almost up to date state of the art, we refer to the unpublished HDR docu-
ment Blanchet (2012). We also apologize for not furnishing a more complete list
of references on the topic, where beautiful results were obtained by brilliant math-
ematicians. But the present paper is intended to be a short note.

Actually (1.1) is nothing else but a Mc Kean-Vlasov type equation (non linear
Fokker-Planck equation if one prefers), involving a potential which is singular at
0. Hence one can expect that the movement of a typical cell will be given by a
non-linear diffusion process

dXt =
√

2 dBt − χ (K ∗ ρt)(Xt) dt , (1.2)

ρt(x) dx = L(Xt) ,

where L(Xt) denotes the distribution of probability of Xt. A natural possible
approach of (1.2) is through the limit, as N goes to infinity, of a linear system of
stochastic differential equations in mean field interactions given for i = 1, ..., N by

dXi,N
t =

√
2 dBi,Nt − χ

N

N∑
j 6=i

Xi,N
t −Xj,N

t

‖ Xi,N
t −Xj,N

t ‖2
dt , (1.3)

for a well chosen initial distribution of the X .,N
0 . Here the Bi,N. are for each N in-

dependent standard 2-D Brownian motions. Under some exchangeability assump-
tions, it is expected that the distribution of any particle (say X1,N ) converges to a
solution of (1.2) as N → ∞, yielding a solution to (1.1). This strategy (including
the celebrated propagation of chaos phenomenon) has been well known for a long
time. One can see Méléard (1996) for bounded and Lipschitz potentials, Malrieu
(2001); Cattiaux et al. (2008) for unbounded potentials connected with the granular
media equation.

The goal of the present note is the study of existence, uniqueness and non explo-
sion for the system (1.3). That is, this is the very first step of the whole program
we have described previously. Moreover we will see how the N -particle system is
feeling the blow-up property of the Keller-Segel equation.

(1.3) can be viewed as a “modern” formulation of the microscopic description
given by Keller and Segel themselves in Keller and Segel (1971). The main difficulty
is of course that the potentials explode when two particles are colliding. For such
singular potentials very few is known.
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Fournier, Hauray and Mischler, in Fournier et al. (2014), have tackled the case of

the 2-D viscous vortex model, corresponding to K(x) = x⊥

‖x‖2 for which no blow-up

phenomenon occurs. In the same spirit the sub-critical Keller-Segel model corre-
sponding to K(x) = x

‖x‖2−ε for some ε > 0 is studied in Godinho and Quiñinao

(2015). The methods of both papers are close, and mainly based on some entropic
controls. These methods seem to fail for the classical Keller-Segel model we are look-
ing at. However, during the preparation of the manuscript, we received the paper
by Fournier and Jourdain (2015), who prove existence and some weak uniqueness
by using approximations. Though some intermediate results are the same, we shall
here give a very different and much direct approach, at least for existence and some
uniqueness. However, we shall use one result in Fournier and Jourdain (2015) to
prove a more general uniqueness result. Also notice that a similar model (but with
a different treatment after collisions) was studied from a numerical point of view in
Haškovec and Schmeiser (2009) and a theoretical one in Haškovec and Schmeiser
(2011).

It can also be noticed that when we replace the attractive potential K by a
repulsive one (say −K), we find models connected with random matrix theory (like
the Dyson Brownian motion).

Our main theorem in this paper is the following

Theorem 1.2. Let M = {there exists at most one pair i 6= j such that Xi = Xj}.
Then,

• for N ≥ 4 and χ < 4
(

1− 1
N−1

)
, there exists a unique (in distribution) non

explosive solution of (1.3), starting from any x ∈M . Moreover, the process
is strong Markov, lives in M and admits a symmetric σ-finite, invariant
measure given by

µ(dX1, ..., dXN ) = Π1≤i<j≤N ‖ Xi −Xj ‖−
χ
N dX1...dXN ,

• for N ≥ 2, if χ > 4, the system (1.3) does not admit any global solution
(i.e. defined on the whole time interval R+),
• for N ≥ 2, if χ = 4, either the system (1.3) explodes or the N particles are

glued in finite time.

Let us explain a little bit more on the meaning of this statement. A (weak)
solution of (1.3) up to a stopping time T and starting from x is a Probability
measure Px on the state of continuous paths from R+ into (R2)N such that for all
t > 0,

M i,N
t = Xi,N

t∧T − x
i −
∫ t∧T

0

χ

N

N∑
j 6=i

Xi,N
s −Xj,N

s

‖ Xi,N
s −Xj,N

s ‖2
ds

is well defined and is a martingale with brackets

〈M ik,N ,M jl,N 〉t = 2 (t ∧ T ) δik=jl .

(Recall that xi = (xi1 , xi2)). The supremum of all stopping times such that this
property holds is the explosion time or the lifetime, we shall denote by ξ in the
sequel.

The first part of the Theorem thus tells us that for any x ∈ M such a solution
Px exists with ξ = +∞, Px almost surely. In addition the hitting time TMc of the
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complement of M is Px almost surely infinite too. Finally, the family (Px)x∈M is a
strong Markov family on C0(R+,M) that admits µ as a symmetric measure.

When χ ≥ 4 we shall not describe the explosion time ξ, but we shall prove that,
denoting by TN the first time of collision of all the N particles, ξ ∧ TN < +∞. If
χ > 4 we will see that a solution cannot exist after time TN , hence TN∧ξ = ξ < +∞.
For χ = 4 the situation is more intricate but on TN < t < ξ (which can be empty)

we will see that all the particles are glued (i.e. Xi,N
t = Xj,N

t for all i and j). The

situation for 4
(

1− 1
N−1

)
≤ χ < 4 is still more intricate, but some results are

contained in Fournier and Jourdain (2015).

The proof of this theorem is partly “pathwise”, based on comparisons between
one dimensional diffusion processes and the behavior of squared Bessel processes,
partly based on Dirichlet forms theory and partly based on an uniqueness result
for 2 dimensional skew Bessel processes obtained in Fournier and Jourdain (2015).
The latter is only used to get rid of a non allowed polar set of starting positions
which appears when using Dirichlet forms.

Recall that a set E is polar if for all x ∈M the hitting time TE of E defined as

TE = inf{t > 0 , Xt ∈ E}
is Px almost surely infinite.

Since later we will be interested in the limit N → +∞, this theorem is in a sense
optimal: for χ < 4 we have no asymptotic explosion while for χ > 4 the system
explodes. Also notice that in the limiting case χ = 4, we have (at least) explosion
for the density of the stochastic system and not for the equation (1.1).

The remaining part of the whole program will be the aim of future works.

2. Study of the system (1.3).

Most of the proofs in this section will use comparison with squared Bessel pro-
cesses. Let us recall some basic results on these processes.

Definition 2.1. Let δ ∈ R. The unique strong solution (up to some explosion time
τ) of the following one dimensional stochastic integral equation

Zt = z + 2

∫ t

0

√
Zs dBs + δ t ,

is called the (generalized) squared Bessel process of dimension δ starting from z ≥ 0.

In general squared Bessel processes are only defined for δ ≥ 0, that is why we used
the word generalized in the previous definition. For these processes the following
properties are known

Proposition 2.2. Let Z be a generalized squared Bessel process of dimension δ.
Let τ0 the first hitting time of the origin.

• If δ < 0, then τ0 is almost surely finite and equal to the explosion time,
• if δ = 0, then τ0 < +∞ and Zt = 0 for all t ≥ τ0 almost surely,
• if 0 < δ < 2, then τ0 < +∞ almost surely and the origin is instantaneously

reflecting, i.e starting from 0 the hitting time of ]0,+∞[ is almost surely
equal to 0,
• if δ ≥ 2, then the origin is polar (hence τ0 = +∞ almost surely).
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For all this see Revuz and Yor (1999) chapter XI, proposition 1.5.

Now come back to (1.3). For simplicity we skip the index N in the definition of
the process. Since all coefficients are locally Lipschitz outside the set

A =
{

there exists (at least) a pair i 6= j such that Xi = Xj
}

and bounded when the distance to A is bounded from below, the only problem is
the one of collisions between particles. As usual we denote by ξ the lifetime of the
process. For simplicity we also assume, for the moment, that the starting point
does not belong to A, so that the lifetime is almost surely positive.

For 2 ≤ k ≤ N we define K = {1, ..., k} and K̄2 = {(i, j) ∈ K2|i 6= j}. We shall

say that a k-collision occurs at (a random) time T if Xi
T = Xj

T for all (i, j) ∈ K̄2,
X l
T 6= Xi

T for all l > k. Of course, there is no lack of generality when looking at
the first k indices, and we can also assume that at this peculiar time T , any other
collision involves at most k other particles.

In what follows we denote Di,j = Xi −Xj , and

Zk =
∑

(i,j)∈K̄2

‖ Di,j ‖2 .

Of course a k-collision occurs at time T if and only if T < ξ and ZkT = 0.

Let us study the process Zk. Applying Ito’s formula we get on t < ξ

Zkt = Zk0 + 2
√

2

∫ t

0

∑
(i,j)∈K̄2

Di,j
s (dBis − dBjs) + 4k(k − 1)

(
2− χ

N

)
t (2.1)

− 2χ

N

∫ t

0

∑
(i,j)∈K̄2

Di,j
s

N∑
l=1
l6=i,j

(
Di,l
s

‖ Di,l
s ‖2

+
Dl,j
s

‖ Dl,j
s ‖2

)
ds .

We denote

dMk
s =

∑
(i,j)∈K̄2

Di,j
s (dBis − dBjs)

Eks =
∑

(i,j)∈K̄2

Di,j
s

N∑
l=1
l 6=i,j

(
Di,l
s

‖ Di,l
s ‖2

+
Dl,j
s

‖ Dl,j
s ‖2

)

the martingale part and the non-constant drift part.

2.1. Investigation of the martingale part Mk. Let us compute the martingale
bracket, using the immediate Di,l = −Dl,i and Di,l +Dl,j = Di,j .

d < Mk >s =
∑

(i,j)∈K̄2

(l,m)∈K̄2

< Di,j
s (dBis − dBjs), Dl,m

s (dBls − dBms ) >

=
∑

(i,j)∈K̄2

(l,m)∈K̄2

Di,j
s Dl,m

s (δil − δim − δjl + δjm) ds
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=
∑

(i,j)∈K̄2

Di,j
s

∑
m∈K
m6=i

Di,m
s +

∑
l∈K
l 6=i

Di,l
s +

∑
l∈K
l 6=j

Dl,j
s +

∑
m∈K
m6=j

Dm,j
s

 ds

= 2
∑

(i,j)∈K̄2

Di,j
s

∑
m∈K
m6=i

Di,m
s +

∑
m∈K
m6=j

Dm,j
s

 ds

= 2k
∑

(i,j)∈K̄2

‖ Di,j
s ‖2

i.e. finally

d < Mk >s= 2k ZKs ds . (2.2)

According to Doob’s representation theorem (applied to 1Is<ξ d < Mk >s), there
exists (on an extension of the initial probability space) a one dimensional Brownian
motion W k such that almost surely for t < ξ

2
√

2

∫ t

0

∑
(i,j)∈K̄2

Di,j
s (dBis − dBjs) = 4

√
k

∫ t

0

√
Zks dW

k
s . (2.3)

2.2. Reduction of the drift term. In order to study the drift term Ekt we will divide
it into two sums: the first one, Ckt taking into consideration the i and j in K, i.e.
the pair of particles which will be directly involved in the eventual k-collision; the
other one Rkt , involving the remaining indices.

More precisely Ekt = Ckt +Rkt with

Ckt =
∑

(i,j)∈K̄2

∑
l∈K
l 6=i,j

Di,j
t

(
Di,l
t

‖ Di,l
t ‖2

+
Dl,j
t

‖ Dl,j
t ‖2

)
,

Rkt =
∑

(i,j)∈K̄2

N∑
l=k+1

Di,j
t

(
Di,l
t

‖ Di,l
t ‖2

+
Dl,j
t

‖ Dl,j
t ‖2

)
.

We will deal with Rkt later. First we ought to simplify the expression of Ckt . Indeed

Ckt =
∑

(i,j)∈K̄2

∑
l∈K
l 6=i,j

Di,j
t

(
Di,l
t

‖ Di,l
t ‖2

+
Dl,j
t

‖ Dl,j
t ‖2

)

=
∑

(i,l)∈K̄2

 Di,l
t

‖ Di,l
t ‖2

∑
j∈K
j 6=i,l

Di,j
t

+
∑

(j,l)∈K̄2

 Dl,j
t

‖ Dl,j
t ‖2

∑
i∈K
i6=j,l

Di,j
t



=
∑

(i,l)∈K̄2

i<l

 Di,l
t

‖ Di,l
t ‖2

∑
j∈K
j 6=i,l

Di,j
t +

Dl,i
t

‖ Dl,i
t ‖2

∑
j∈K
j 6=i,l

Dl,j
t

 +
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+
∑

(j,l)∈K̄2

j<l

 Dl,j
t

‖ Dl,j
t ‖2

∑
i∈K
i6=j,l

Di,j
t +

Dj,l
t

‖ Dj,l
t ‖2

∑
j∈K
i6=j,l

Di,l
t


so that using again Dl,iDl,j = Di,lDj,l the latter is still equal to

=
∑

(i,l)∈K̄2

i<l

Di,l
t

‖ Di,l
t ‖2

∑
j∈K
j 6=i,l

(Di,j
t +Dj,l

t )

+
∑

(j,l)∈K̄2

j<l

Dl,j
t

‖ Di,l
t ‖2

∑
i∈K
i6=j,l

(Di,j
t +Dl,i

t )


and using again Di,l +Dl,j = Di,j , we finally arrive at

Ckt = 2 (k − 2) × #{(i, l) ∈ K2|i < l} = k(k − 1)(k − 2) . (2.4)

2.3. Back to the process Zk. With the results obtained in (2.3) and (2.4) we may
simplify (2.1), writing (still on t < ξ)

Zkt = Z0
t + 4

√
k

∫ t

0

√
Zks dW

k
s + 2k(k − 1)

(
4− kχ

N

)
t− 2χ

N

∫ t

0

Rks ds . (2.5)

Hence defining

V kt =
1

4k
Zkt

the process V k satisfies

dV kt = 2
√
V kt dW

k
t + (k − 1)

(
2− kχ

2N

)
dt− χ

2kN
Rkt dt , (2.6)

i.e. can be viewed as a perturbation of a squared Bessel process of dimension

δ = (k − 1)

(
2− kχ

2N

)
,

we shall denote by Uk in the sequel.

2.4. The case of an N -collision. If k = N , RN = 0 so that V N is exactly the
squared Bessel process of dimension N−1

2 (4− χ). Hence, according to proposition
2.2

• if χ > 4 there is explosion in finite time for the process V N (hence for X
also),
• if χ = 4, there is an almost sure N -collision in finite time, and then all the

particles are glued, provided no explosion occurred before for the process
X,

• if 4
(

1− 1
N−1

)
< χ < 4 there is an almost sure N -collision in finite time,

provided no explosion occurred before for the process X,

• if χ ≤ 4
(

1− 1
N−1

)
there is almost surely no N -collision (before explosion).

In particular we see that the particle system immediately feels the critical value
χ = 4, in particular explosion occurs in finite time as soon as χ > 4.

For 4
(

1− 1
N−1

)
< χ < 4 we know that V N is instantaneously reflected once it hits

the origin, but it does not indicate whether all or only some particles will separate
(we only know that they are not all glued). Notice that when N = 2 this condition
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reduces to 0 < χ < 4, and then both particles are separated. Hence in this very
specific case, there is no explosion (for the distance between both particles) in finite
time almost surely, but there are always 2-collisions.

2.5. Towards non explosion for χ ≤ 4
(

1− 1
N−1

)
. As we said before, the lifetime

ξ is greater than or equal to the first multiple collision time T .
Since we shall consider V k as a perturbation of Uk, what happens for the latter?

• for χ > 4N
k , Uk reaches 0 in finite time a.s. and then explosion occurs,

• for χ = 4N
k , Uk reaches 0 and is sticked,

• for 4N
k > χ > 4N

k

(
1− 1

k−1

)
, Uk reaches 0 and is instantaneously reflected,

• for χ ≤ 4N
k

(
1− 1

k−1

)
, Uk does not hit 0 in finite time a.s.

Lemma 2.3. For all 3 ≤ k ≤ N , it holds

4N

k

(
1− 1

k − 1

)
≥ 4

(
1− 1

N − 1

)
.

Proof : Introduce the function

u 7→ g(u) =
4N

u

(
1− 1

u− 1

)
defined for u > 1. Then

g′(u) =
4N

u(u− 1)

(
2− u
u

+
1

u− 1

)
is negative on [2+

√
2,+∞[, so that the lemma is proved for N ≥ k ≥ 4. For k = 3,

it amounts to N
6 ≥

N−2
N−1 which is true for all N ≥ 3 (with equality for N = 3 and

N = 4). �

In particular, since χ ≤ 4
(

1− 1
N−1

)
, Uk never hits 0 for 3 ≤ k ≤ N , while it

reaches 0 but is instantaneously reflected for k = 2. What we expect is that the
same occurs for V k.

In order to prove it, let T be the first multiple collision time. With our convention
(changing indices if necessary) there exists some 2 ≤ k ≤ N such that T is the first
k-collision time T k. Note that this does not prevent other k′-collisions (with k′ ≤ k)
possibly at the same time T for the particles with indices larger than k+ 1. But as
we will see this will not change anything. The reasoning will be the same but the
conclusion completely different for k = 2 and for k ≥ 3.

2.5.1. No k-collisions for k ≥ 3. Introduce, for ε > 0, the random set

Akε = {T = T k < +∞ and inf
i∈K , l≥k+1

inf
t≤T
‖ Di,l

t ‖≥ 2ε} .

It holds

{T = T k < +∞} =
⋃

ε∈1/N

Akε .

In particular if P(T = T k < +∞) > 0 there exists some ε > 0 so that P(Akε) > 0.
We shall see that this is impossible when k ≥ 3.
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Indeed recall that

Rkt =
∑

(i,j)∈K̄2

N∑
l=k+1

Di,j
t

(
Di,l
t

‖ Di,l
t ‖2

+
Dl,j
t

‖ Dl,j
t ‖2

)
.

So on Akε , we have, for t ≤ T ,

|Rkt | ≤
∑

(i,j)∈K̄2

N∑
l=k+1

‖ Di,j
t ‖

(
1

‖ Di,l
t ‖2

+
1

‖ Dl,j
t ‖2

)

≤
∑

(i,j)∈K̄2

‖ Di,j
t ‖

N − k
ε

≤ N − k
ε

√
k(k − 1)

√
Zkt

the latter being a consequence of Cauchy-Schwarz inequality. Thus on Akε , for t ≤ T

|Rkt | ≤
2

ε
(N − k)k

√
k − 1

√
V kt . (2.7)

Hence, on Akε for t ≤ T the drift bk (which is not Markovian) of V kt satisfies

bk ≥ b̂k(v) =
(k − 1)

2

(
4− Nχ

k

)
− 2

ε
(N − k)k

√
k − 1

√
v . (2.8)

In particular for any θ > 0,

b̂k(v) ≥ (k − 1)

2

(
4− Nχ

k

)
− θ

provided v is small enough. Thus the hitting time of the origin for the process with

drift b̂k is larger than the one for the corresponding squared Bessel process (thanks
to well known comparison results between one dimensional Ito processes, see e.g.
Ikeda and Watanabe, 1981, Chap.6, Thm 1.1), and since this holds for all θ, finally
is larger than the one of Uk. But as we already saw, Uk never hits the origin for

3 ≤ k. Using again the comparison theorem (this time with bk and b̂k(v)), V k does
not hit the origin in finite time on Akε which is in contradiction with P(Akε) > 0.

2.5.2. About 2-collisions. Actually all we have done in the previous sub subsec-
tion is unchanged for k = 2, except the conclusion. Indeed U2 reaches the origin
but is instantaneously reflected. So V 2 (on A2

ε) can reach the origin too, but is also
instantaneously reflected. Actually using that

bk(v) ≤ b̄k(v) =
(k − 1)

2

(
4− Nχ

k

)
+

2

ε
(N − k)k

√
k − 1

√
v ,

together with the Feller’s explosion test, it is easily seen that V 2 will reach the
origin with a (strictly) positive probability (presumably equal to one, but this is
not important for us).

But this instantaneous reflection is not enough for the non explosion of the
process X, because Xi is R2 valued. Before going further in the construction, let
us notice another important fact: there are no multiple 2-collisions at the same
time, i.e. starting from Ac the process lives in M at least up to the explosion time
ξ. Of course this is meaningful provided N ≥ 4.
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To prove the previous sentence, first look at

Yt =‖ D1,2
t ‖2 + ‖ D3,4

t ‖2 ,

assuming that YT = 0 and that no other 2-collision happens at time T . It is easily
seen that (just take care that we had an extra factor 2 in our definition of Zkt )

Yt = Y0 + 2
√

2

∫ t

0

(
D1,2
s (dB1

s − dB2
s ) +D3,4

s (dB3
s − dB4

s )
)

+ 8
(

2− χ

N

)
t

− χ

N

∫ t

0

(
D1,2
s

N∑
l=1
l 6=1,2

( D1,l
s

‖ D1,l
s ‖2

+
Dl,2
s

‖ Dl,2
s ‖2

)
+D3,4

s

N∑
l=1
l6=3,4

( D3,l
s

‖ D3,l
s ‖2

+
Dl,4
s

‖ Dl,4
s ‖2

))
ds,

so that, defining Vt = Yt/4 we get that

dVt = 2
√
Vt dWt + 2

(
2− χ

N

)
dt+ Rt dt

where Rt is a remaining term we can manage just as we did for Zkt . Since for
N ≥ 4, 2

(
2− χ

N

)
≥ 2, Vt, hence Yt does not hit the origin. Notice that if we

consider k(≥ 2) 2-collisions, the same reasoning is still true, just replacing 4 by 2k,
the final equation being unchanged except for Rt.

2.5.3. Non explosion. According to all what precedes what we need to prove is
the existence of the solution of (1.3) with an initial configuration satisfying X0 = x
with x1 = x2, all other coordinates being different and different from x1 = x2.
Indeed, on ξ < +∞, Xξ ∈ δM the set of particles with exactly two glued particles,
so that if we can prove that starting from any point of δM , we can build a strong
solution on an interval [0, S] for some strictly positive stopping time S, it will show
that ξ = +∞ almost surely. However we will not be able to prove the existence of
such a strong solution. Actually we think that it does not exist. We will thus build
some weak solution and show uniqueness in some specific sense.

This will be the goal of the next sections.

3. Building a solution.

3.1. Existence of a weak solution. Writing

M = ∪i<j ∩k 6=l ; l 6=i,j {Xk 6= X l}

we see that M is an open subset of R2N .
Recall that x ∈ δM means that exactly two coordinates coincide (say x1 = x2),

all other coordinates being distinct and distinct from x1. We may thus define

dx = min{i ≥ 3 ; i 6= j ; j = 1, ..., N ; ‖ xi − xj ‖} > 0 ,

so that

Ωx = ΠN
j=1B(xj , dx/2) ⊂ M , (3.1)

and points y ∈ Ωx ∩ δM will satisfy y1 = y2. If x /∈ δM , we may similarly define
dx = min{i 6= j ; j = 1, ..., N ; ‖ xi − xj ‖} and then Ωx. In all cases the balls
B(., .) are the open balls. Now if K is some compact subset of M we can cover K
by a finite number of sets Ωx, so that for any measure µ, a function g belongs to
L1
loc(M,µ) if and only if g ∈ L1(Ωx, µ) for all x in M .



Stochastic Keller-Segel 457

The natural measure to be considered is

µ(dX1, ..., dXN ) = Π1≤i<j≤N ‖ Xi −Xj ‖−
χ
N dX1...dXN , (3.2)

since it is, at least formally, the symmetric measure for the system (1.3).
It is clear that for x /∈ δM , µ is a bounded measure on Ωx. When x ∈ δM , say

that x1 = x2 and perform the change of variables

Y 1 = X1 −X2 , Y 2 = X1 +X2 .

In restriction to Ωx, µ can be written

µ(dX1, ..., dXN ) = C(N, x) ‖ Y 1 ‖−
χ
N dY 1 dY 2 dX3...dXN ,

hence is a bounded measure on Ωx provided χ < 2N just looking at polar coordi-
nates for Y 1. In this case it immediately follows that µ is a σ finite measure on M .
Also remark that if f is compactly supported by K and belongs to L2(dµ) then it
belongs to L2(dX) and∫

K

f2 dX ≤ sup
K

(‖ Y 1 ‖
χ
N )

∫
K

f2 dµ .

But we can say much more.

To this end consider the symmetric form

E(f, g) =

∫
M

< ∇f,∇g > dµ , f, g ∈ C∞0 (M) . (3.3)

First we check that this form is closable in the sense of Fukushima (1980). To this
end it is enough to show that it is a closable form when restricted to functions
f, g ∈ C∞0 (Ωx) for all x ∈M . If x /∈ δM the form is equivalent to the usual scalar
product on square Lebesgue integrable functions, so that it is enough to look at
x ∈ δM .

Hence let fn be a sequence of functions in C∞0 (Ωx), converging to 0 in L2(dµ)
and such that ∇fn converges to some vector valued function g in L2(dµ). What we
need to prove is that g is equal to 0. To this end consider a vector valued function
h which is smooth and compactly supported in Ωx∪{d(., δM) > ε} for some ε > 0.
Then a simple integration by parts shows that∫

< g, h > dµ = lim
n

∫
< ∇fn, h > dµ = lim

n

∫
fnH dµ

for some H ∈ L2(dµ) so is equal to 0. Hence g vanishes almost surely on Ωx ∪
{d(., δM) > ε}, for all ε > 0, so that g is µ-almost everywhere equal to 0.

By construction, E is regular and local. Hence, its smallest closed extension
(E ,D(E)) is a Dirichlet form, which is in addition regular and local. According to
Theorem 6.2.2. in Fukushima (1980), there exists a µ-symmetric diffusion process
X. whose form is given by E . Notice that, integrating by parts, we see that the
generator of this diffusion process coincides with the generator L given by

L =

N∑
i=1

∆xi −
χ

N

N∑
i=1

∑
i6=j

xi − xj

‖ xi − xj ‖2

 ∇xi (3.4)

for the functions f in C∞0 (M) such that Lf ∈ L2(µ). This is a core for the domain
D(L). The Dirichlet form theory tells us that once f ∈ D(L), f(Xt) − f(X0) −
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∫ t
0
Lf(Xs)ds is a Px martingale for quasi every starting point x, i.e. for all x out

of some subset E of M which is of zero µ-capacity.
But remark that for any x ∈ M − E and t > 0, the transition kernel pt(x, .) of

the Markov semi-group is absolutely continuous with respect to µ. Indeed using
the local Malliavin calculus as in Cattiaux (1986) (or elliptic standard results), this
transition kernel has a (smooth) density w.r.t. Lebesgue measure (hence w.r.t. µ)
on each open subset of M ∩ {d(., δM) > ε} for any ε > 0. Hence if µ(A) = 0,
µ(A ∩ {d(., δM) > ε}) = 0 for all ε > 0 so that pt(x,A ∩ {d(., δM) > ε}) = 0 and
finally using monotone convergence, pt(x,A) = 0.

Since pt(x, .) is absolutely continuous w.r.t. µ, we deduce from Theorem 4.3.4
in Fukushima (1980) that the sets of zero µ capacity are exactly the polar sets for
the process.

Note that the function x 7→ x does not belong to D(L), so that we cannot use
the previous result. Nevertheless

Lemma 3.1. Assume that χ < N . Then for all x ∈M − E and all i = 1, ..., N ,

Xi
t −Xi

0 −
∫ t

0

χ

N

∑
i 6=j

Xi
s −Xj

s

‖ Xi
s −X

j
s ‖2

 ds

is a Px martingale, and actually is Px almost surely equal to
√

2Bit for some Brow-
nian motion.

Proof : To prove the lemma, for all x ∈M −E it is enough to show the martingale
property starting from x up to the exit time S(x) of Ωx (since XS(x) ∈ M −
E because E is polar, see the discussion above). In the sequel, for notational
convenience, we do not write the exit time S(x) (all times t have to be understood
as t ∧ S(x)) and we simply write M instead of Ωx.

To show this result it is actually enough to look locally in the neighborhood of
a point x ∈ δM such that x1 = x2, and with our previous notation to look at both
coordinates of y = x1 − x2. Indeed x 7→ x1 + x2 belongs (at least locally) to D(L)
as well as all other coordinates xj for j ≥ 3.

Let gj(x) = yj for j = 1, 2 be the coordinate application of y = x1 − x2. Clearly
Lgj ∈ Lp(µ) for p < 2− χ

N , hence belongs to L1 thanks to our assumption on χ/N .
Introduce the function defined on R by,

hε(u) = sin2
(π u

2ε

)
1|u|≤ε + 1|u|>ε .

h is of C2 class except at |u| = ε. Now define vε(x) = g1(x)hε(g
1(x)). We have

L(vε)(x) =

[
4h′ε(g

1) + 2 g1 h′′ε (g1)− χ

N

(
2hε(g

1)
g1

|g1 + g2|2
+ 2h′ε(g

1) + Rε

)]
(x)

the remaining term Rε corresponding to the interactions with particles xj for j ≥ 3.

For all ε > 0, vε thus belongs to D(L) and vε(Xt)− vε(X0)−
∫ t

0
Lvε(Xs)ds is a

Px martingale, with brackets 4
∫ t

0
|∇vε(Xs)|2 ds for all x ∈M − E.

But it is easily seen that Lvε converges to Lg1 in L1(µ) as ε → 0. Since vε
converges to g1 in L1(µ) too, we deduce that

Eµ

(
g1(Xt+h)− g1(Xt)−

∫ t+h

t

Lg1(Xs)ds|Ft

)
= 0 for all t ≥ 0 and h ≥ 0,

(3.5)
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where Ft denotes the natural filtration on the probability space, since the same
property is true for vε. Similarly the brackets converge to 4t. Since the same holds
for g2, we get the desired result Pµ almost surely. Actually this result holds true
Px almost surely for µ almost all x ∈M .

But since pt(x, .) is absolutely continuous w.r.t. µ for t > 0, it immediately
follows using the Markov property at time t, that (3.5) is true Px a.s. for all
x ∈ M − E, but only for t > 0. Hence for all x ∈ M − E and all t > 0, Ns

t =

g1(Xt+s) − g1(Xt) −
∫ t+s
t

Lg1(Xu)du is a martingale defined on [t,+∞[, whose
bracket is given by 4(s− t), i.e. is (2 times) a Brownian motion. In particular for
a fixed t, (Ns

t )0<s≤t is bounded in L2(Px). Up to a sub-sequence it is thus weakly
convergent in L2(Px) as s→ 0 so that N0

t = Nt is well defined Px a.s., and satisfies
(3.5) for all t ≥ 0 this time. Thus it is a martingale with a linear bracket, i.e. 2
times a Brownian motion. �

The previous lemma shows that the diffusion X. is simply the µ symmetric
solution of (1.3) killed when it hits the boundary ∂M .

Assume in addition that χ ≤ 4
(

1− 1
N−1

)
. Then the previous diffusion process

never hits ∂M since the latter is exactly the set where either some k-collision occurs
for some k ≥ 3 or at least two 2-collisions occur at the same time. So it is actu-
ally the unique µ-symmetric Markov diffusion defined on M̄ solving (1.3). Indeed
we could associate to any markovian extension of (E , C∞0 (M)) another diffusion
process, which would coincide with the previous one up to the hitting time of ∂M
which is almost surely infinite. We have thus obtained

Theorem 3.2. Assume that χ ≤ 4
(

1− 1
N−1

)
and that N ≥ 4. Then there exists

a unique µ-symmetric (see (3.2)) diffusion process (Xt,Px) (i.e. a Hunt process
with continuous paths), defined for t ≥ 0 and x ∈M −E where E ⊂M is polar (or
equivalently of µ capacity equal to 0) such that for all f ∈ C∞0 (R2N ),

f(Xt)− f(x)−
∫ t

0

Lf(Xs)ds

is a Px martingale (for the natural filtration) with L given by (3.4). Furthermore
X. lives in M (never hits ∂M).

Proof : As for the previous lemma, it is enough to work locally in the neighborhood
of the points in δM and to look at the new particles (y = x1 − x2, z = x1 +
x2, x3, ..., xN ). Let f ∈ C∞0 (M) be written in these new coordinates. Using a
Taylor expansion in y (z and all the others xj being fixed) and the fact that if
the partial derivatives at y = 0 of a smooth function of y are vanishing, then
this function belongs to the domain of the generator, we see that proving the
martingale property for f amounts to the corresponding martingale property for
smooth functions g written as g(y, z, xj) = y h(z, xj) i.e. amounts to the previous
lemma (and of course the remaining particles for which there is no problem).

It remains to extend the martingale property we proved to hold for f ∈ C∞0 (M)
to f ∈ C∞0 (R2N ). Take f ∈ C∞0 (R2N ) and define Sε as the first time the distance
d(X., ∂M) is less than ε. Then replacing f by some fε ∈ C∞0 (M) which coincides

with f on d(y, ∂M) ≥ ε, we see that f(Xt∧Sε) − f(x) −
∫ t∧Sε

0
Lf(Xs)ds is a Px

martingale. Since Sε growths to infinity the conclusion follows from Lebesgue
theorem. �
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Remark 3.3. The main disadvantage of the previous construction is that it is not
explicit and that it does not furnish a solution starting from all x ∈M but only for
all x except those in some unknown polar set. In particular, proving the regularity
of the Markov transition kernels up to δM requires additional work. The advantage
is that if we require µ-symmetry, we get uniqueness of the diffusion process.

This Theorem is to be compared with Theorem 7 in Fournier and Jourdain
(2015), where existence of a weak solution is shown by using approximation and

tightness, in the same χ ≤ 4
(

1− 1
N−1

)
case (take care of the normalization of

χ which is not the same here and therein). Note that the result in Fournier and
Jourdain (2015) is concerned with existence starting from some initial absolutely
continuous density and does not furnish a diffusion process. ♦

3.2. Existence and uniqueness of a weak solution. In this subsection we assume

that χ ≤ 4
(

1− 1
N−1

)
and that N ≥ 4. Our aim is to build a solution starting

from any point in M , i.e. to get rid of the polar set E in the previous sub-section.
The construction will be very similar (still using Dirichlet forms) but we shall here
use one result in Fournier and Jourdain (2015), namely the uniqueness result for a
2 dimensional Bessel process.

We start with an important lemma

Lemma 3.4. Let Px be the solution of (1.3) built in Theorem 3.2 and starting from
some allowed point x. Then∫ +∞

0

1IδM (Xs) ds = 0 , Px a.s.

Proof : We can cover δM by an enumerable union of Ωy (y ∈ δM). It is thus
immediate that the lemma will be proved once we prove that∫ +∞

0

1IδM∩Ωy (Xs) ds = 0 , Px a.s.

But we have seen in the previous section that, when the process is in some Ωy
(where say y1 = y2), the process ‖ D1,2

t ‖2 is larger than or equal to the square of
a Bessel process Ut of index δ strictly between 0 and 2. But (see Revuz and Yor
(1999) proof of proposition 1.5 p.442), the time spent at the origin by the latter is

equal to 0, i.e.
∫ +∞

0
1IUs=0 ds = 0 almost surely. The same necessarily holds for

D1,2, hence the result. �

We intend now to prove some uniqueness, when starting from a point in δM .
Actually, using some standard tools of concatenation of paths, it is enough to look
at the behavior of our process starting at some y ∈ δM with y1 = y2, up to the exit
time of Ωy (or some open non empty subset of Ωy). In this case the only difficulty is
to control the pair (X1

. , X
2
. ) since all other coordinates are defined through smooth

coefficients. Of course writing

D1,2
t = X1

t −X2
t , S1,2

t = X1
t +X2

t

we have that

dD1,2
t = 2 dW 1

t −
2χ

N

D1,2
t

‖ D1,2
t ‖2

dt+ b1(Xt) dt (3.6)
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and

dS1,2
t = 2 dW 2

t + b2(Xt) dt (3.7)

where b1 and b2 are smooth functions (in Ωy), W 1 and W 2 being two independent
2 dimensional Brownian motions.

Define Ω̄y as we defined Ωy (see (3.1), but replacing dy/2 by dy/4 and consider
a smoothed version η of the indicator of Ω̄y i.e. a smooth non negative function
such that

1IΩ̄y ≤ η ≤ 1IΩy .

We may extend all coefficients (except D/ ‖ D ‖2) as smooth compactly supported
functions outside Ωy, and replace D/ ‖ D ‖2 by η(X)D/ ‖ D ‖2. If we can show
uniqueness for this new system we will have shown uniqueness up to the exit time
of Ω̄y for (3.6), (3.7) and the remaining part of the initial system.

Hence our problem amounts to the following one: prove uniqueness for Y =
(D,S, X̄) ∈ R2 × R2 × R2(N−2) solution of

dDt = 2 dWt −
2χ

N

Dt

‖ Dt ‖2
dt+ b(Dt, St, X̄t) dt ,

dSt = 2 dW ′t + b′(Dt, St, X̄t) dt , (3.8)

dX̄t =
√

2 dB̄t + b̄(Dt, St, X̄t) dt ,

where b, b′, b̄ are smooth and compactly supported in R2N .

Thus, after a standard Girsanov transform, we are reduced to prove uniqueness
for

dDt = 2 dWt −
2χ

N

Dt

‖ Dt ‖2
dt,

dSt = 2 dW ′t , (3.9)

dX̄t =
√

2 dB̄t ,

hence for D.. U. = D./2 is some type of 2-dimensional skew Bessel process with
dimension χ/2N (see Blei (2012) for the one dimensional version). Its squared
norm |U.|2 is a squared Bessel process of dimension δ = 2 − χ

N , so that the origin
is not polar for the process D..

As we did in the previous sub-section, we can directly prove the existence and
uniqueness of a symmetric Hunt process (here the reference measure is |D|−χ/N dD)
using the associated Dirichlet form, and since the origin is not polar, we know the
existence of a solution starting from D0 = 0. Here we only need χ < N , but for the
whole construction our initial assumption on χ is required. Finally we can check
that the occupation time formula of Lemma 3.4 is still true.

But as before, if now we have existence starting from every initial point, we
only have uniqueness in the sense of symmetric Markov processes. To get weak
uniqueness we can use polar coordinates: the squared norm is a squared Bessel
process, so that strong uniqueness holds (with the corresponding dimension we
are looking at); the polar angle is much tricky to handle. This is the main goal of
Lemmata 19 and 20 in Fournier and Jourdain (2015), and the final weak uniqueness
then follows from the proof of Theorem 17 in Fournier and Jourdain (2015) and the
occupation time formula.
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Remark 3.5. It can be noticed that this result is out of reach of the method de-
veloped in Krylov and Röckner (2005) for a general Brownian motion plus drift b,
since it requires that b ∈ Lp(dX) for some p > 2. Also notice that one cannot use
standard Girsanov transform for solving (3.9), since for a 2-dimensional Brownian
motion starting from the origin,∫ t

0

1

|Bs|2
ds = +∞ a.s. for all t > 0 ,

see Revuz and Yor (1999). ♦

Remark 3.6. Of course our construction of a solution is quite abstract and one
should ask about the behavior of D0+ in (3.8) when D0 = 0. Since we do not have
a strong solution, this question is out of reach at least rigorously. But since the
solution starting from 0 is rotation invariant (this is easily seen), one can imagine
that the particle starting from 0 will uniformly choose an angle in [0, 2π] and start
a (constant times) Bessel process of dimension 2 − (χ/N) in this direction for an
“infinitesimal” time t = 0+. Of course for the initial process we also have to add the
drift coming from the Girsanov transformation. This leads to a time discretization
procedure which is different in nature from Haškovec and Schmeiser (2009). ♦

Acknowledgement: We want to thank an anonymous referee who helped us
in improving the presentation of this paper.
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