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Abstract. In this paper, we study a random field constructed from the two-
dimensional Gaussian free field (GFF) by modifying the variance along the scales in
the neighborhood of each point. The construction can be seen as a local martingale
transform and is akin to the time-inhomogeneous branching random walk. In the
case where the variance takes finitely many values, we compute the first order of
the maximum and the log-number of high points. These quantities were obtained
by Bolthausen et al. (2001) and Daviaud (2006) when the variance is constant on
all scales. The proof relies on a truncated second moment method proposed by
Kistler (2015), which streamlines the proof of the previous results. We also discuss
possible extensions of the construction to the continuous GFF.

1. Introduction

1.1. The model. Let (Wk)k≥0 be a simple random walk starting at u ∈ Z2 with law
Pu. For every finite box B ⊆ Z2, the Gaussian free field (GFF) on B is a centered
Gaussian field φ $ {φv}v∈B with covariance matrix

GB(u, v) $
π

2
· Eu

[
τ∂B−1∑
k=0

1{Wk=v}

]
, u, v ∈ B, (1.1)
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where τ∂B is the first hitting time of (Wk)k≥0 on the boundary of B,

∂B $ {v ∈ B | ∃z 6∈ B such that ‖v − z‖2 = 1},
and ‖ · ‖2 denotes the Euclidean distance in Z2. With this definition, B contains its
boundary. We let Bo $ B\∂B. By convention, summations are zero when there are
no indices, so φ is identically zero on ∂B. This is the Dirichlet boundary condition.
The constant π/2 in (1.1) is a convenient normalization for the variance.

In this paper, we consider a family of Gaussian fields constructed from the GFF
{φv}v∈VN on the square box VN $ {0, 1, ..., N}2. These Gaussian fields are the
analogues, in the context of the GFF, of the time-inhomogeneous branching random
walks studied in Bovier and Kurkova (2004); Fang and Zeitouni (2012a); Bovier
and Hartung (2014); Ouimet (2015). We study the maxima and the number of
high points of this family of Gaussian fields as N →∞.

The construction is very natural for any Gaussian field on a metric space and
bears strong similarities with martingale transforms. It is based on the modification
of the variance in neighborhoods around every point along different mesoscopic
scales. More precisely, for λ ∈ (0, 1) and v = (v1, v2) ∈ VN , consider the closed
neighborhood [v]λ in VN consisting of the square box of width N1−λ centered at v
that has been cut off by the boundary of VN :

[v]λ $

([
v1 −

1

2
N1−λ, v1 +

1

2
N1−λ

]
×
[
v2 −

1

2
N1−λ, v2 +

1

2
N1−λ

])⋂
VN .

By convention, we define [v]0 $ VN and [v]1 $ {v}. We stress that square boxes
are not essential to the construction; any neighborhood centered at v containing
points at distance roughly N1−λ would do. Let F∂[v]λ∪[v]cλ

$ σ({φv, v /∈ [v]oλ}) be

the σ-algebra generated by the variables on the boundary of the box [v]λ and those
outside of it. Since the neighborhoods are shrinking with λ, for any v ∈ VN , the
collection Fv $ {F∂[v]λ∪[v]cλ

}λ∈[0,1] is a filtration. In particular, if we let

φv(λ) $ E
[
φv | F∂[v]λ∪[v]cλ

]
,

then
for every v ∈ VN , (φv(λ))λ∈[0,1] is a Fv-martingale.

It is also a Gaussian field, therefore disjoint increments of the form φv(λ
′)− φv(λ)

are independent. These observations motivate the definition of scale-inhomogeneous
Gaussian free field, which can be seen as a martingale-transform of (φv(λ))λ∈[0,1]

applied simultaneously for every v ∈ VN .
Fix M ∈ N and consider the parameters

σ $ (σ1, σ2, ..., σM ) ∈ (0,∞)M , (variance parameters)

λ $ (λ1, λ2, ..., λM ) ∈ (0, 1]M , (scale parameters)

where 0 $ λ0 < λ1 < ... < λM $ 1. The parameters (σ,λ) can be encoded
simultaneously in the left-continuous step function

σ(s) $ σ11{0}(s) +

M∑
i=1

σi1(λi−1,λi](s), s ∈ [0, 1] .

We write ∇i for the difference operator with respect to the index i. When the index
variable is obvious, we omit the subscript. For example,

∇φv(λi) $ φv(λi)− φv(λi−1) .
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Definition 1.1 (Scale-inhomogeneous Gaussian free field). Let φ $ {φv}v∈VN be
the GFF on VN . The (σ,λ)-GFF on VN is a Gaussian field ψ $ {ψv}v∈VN defined
by

ψv $
M∑
i=1

σi∇φv(λi) =

M∑
i=1

σi
(
φv(λi)− φv(λi−1)

)
. (1.2)

Similarly to the GFF, we define

ψv(λ) $ E
[
ψv | F∂[v]λ∪[v]cλ

]
.

The field with two variances (M = 2) was presented in Arguin and Zindy (2015),
where it was used to prove Poisson-Dirichlet statistics of the Gibbs measure in the
homogeneous case (M = 1).

1.2. Main results. The main results of this paper are the derivation of the first or-
der of the maximum and the log-number of high points for the scale-inhomogeneous
Gaussian free field of Definition 1.1. The methods of proof are general and di-
rectly applicable to time-inhomogeneous branching random walks and to other log-
correlated Gaussian fields.

First, we need to introduce some notations. For any positive measurable function
f : [0, 1]→ R, define the integral operators

Jf (s) $
∫ s

0

f(r)dr and Jf (s1, s2) $
∫ s2

s1

f(r)dr .

It turns out that the first order of the maximum and the log-number of high points
are controlled by the concavification of Jσ2(·). Let Ĵσ2 be the function whose graph
is the concave hull of Jσ2 . Its graph is an increasing and concave polygonal line,
see Figure 1.1 for an example. There exists a unique non-increasing left-continuous
step function s 7→ σ̄(s) such that

Ĵσ2(s) = Jσ̄2(s) =

∫ s

0

σ̄2(r)dr for all s ∈ (0, 1].

The points on [0, 1] where σ̄ jumps will be denoted by

0 $ λ0 < λ1 < ... < λm $ 1, (1.3)

where m ≤M . To be consistent with previous notations, we set σ̄l $ σ̄(λl).

Theorem 1.2 (First order of the maximum). Let {ψv}v∈VN be the (σ,λ)-GFF on
VN of Definition 1.1, then

lim
N→∞

maxv∈VN ψv
logN2

= Jσ2/σ̄(1) $ γ? in probability .

In the homogeneous case where M = 1 and σ1 = 1, the result reduces to γ? = 1,
as proved in Bolthausen et al. (2001), which corresponds to the first order of the
maximum of N2 i.i.d. Gaussian variables of mean 0 and variance logN . Note that
the result of Theorem 1.2 can be written as follows :

γ? = Jσ2/σ̄(1) =

m∑
l=1

∫ λl

λl−1

σ2(s)

σ̄(s)
ds =

∫ 1

0

σ̄(s)ds . (1.4)

This is simply a weighted average of homogeneous cases on the intervals [λl−1, λl]
with variance parameter σ̄l. We say that s 7→ σ̄2(s) act as the effective variance of
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0 1 s
λ0

λ1 λ2 λ3 λ4 λ5 λ6
λ7

λ0 λ1 λ2 λ3
λ4

slope = σ̄2
1

σ̄2
2

σ̄2
3

σ̄2
4

Jσ2(λ1)

Jσ2(λ2)
Jσ2(λ3)
Jσ2(λ4)

Figure 1.1. Example of Jσ2 (closed line) and Ĵσ2 (dotted line)
with 7 values for σ2.

the field. We stress that γ? is strictly smaller than σ̄1 in cases where the concave hull
is not a straight line. In particular, the upper bound on the level of the maximum
cannot be proved by a simple union bound as in the homogeneous case.

The set of γ-high points of the field ψ is defined as

HγN $ {v ∈ VN | ψv ≥ γ logN2}, for all 0 ≤ γ < γ?.

The number of high points will depend on critical levels defined by

γl $
∫ 1

0

σ2(s)

σ̄(s ∧ λl)
ds = Jσ2/σ̄(λl) +

Jσ2(λl, 1)

σ̄l
, 1 ≤ l ≤ m, γ0 $ 0 . (1.5)

Theorem 1.3 (Log-number of high points or Entropy). Let {ψv}v∈VN be the (σ,λ)-
GFF on VN of Definition 1.1 and let γl−1 ≤ γ < γl for some l ∈ {1, ...,m}, then

lim
N→∞

log |HγN |
logN2

= (1− λl−1)−
(γ − Jσ2/σ̄(λl−1))2

Jσ2(λl−1, 1)
$ Eγ in probability.

The homogeneous case where M = 1 and σ1 = 1 was proved in Daviaud (2006).
In that case, we have Eγ = 1 − γ2 as for N2 i.i.d. Gaussian variables of mean 0
and variance logN . The proofs of Theorems 1.2 and 1.3 are deferred to Section 3.
The method of proof is explained in Section 2. It is a refinement of the second
moment method based on the control of the increments of high points at every
scale. The method was used in Kistler (2015) to obtain a new proof of the first
order of the maximum in the homogeneous case. Here we extend this method to
the log-number of high points in all settings and to the first order of the maximum
in the inhomogeneous setting. In the scale-dependent case, as opposed to the
homogeneous case, it is necessary to truncate the first moment using the information
at every scale λl to get the correct upper bound.
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1.3. Related works and conjectures. The scale-inhomogeneous GFF is the equiva-
lent of the time-inhomogeneous branching random walk (IBRW) where the variance
of the random walk is a function of time. In particular, Theorems 1.2 and 1.3 can
be proved for branching random walks using the same technique, see Section 2 of
Ouimet (2014). In fact, much more precise information is known about the maxima
of these models. In Bovier and Kurkova (2004), the authors introduce a continuous
version of Derrida’s Generalized Random Energy Model (GREM) Derrida (1985),
which is akin to a time-inhomogeneous branching random walk, for which they ob-
tain the first order of the maximum and the free energy. In particular, they noticed
the concavification phenomenon for the first order. This observation also appears in
Capocaccia et al. (1987) for the GREM. A model interpolating between the GREM
and the branching random walk was introduced in Kistler and Schmidt (2015) where
Poisson statistics of the extremes are proved. For Gaussian IBRWs with two values
of the variance (M = 2), the lower order corrections for the maximum and tightness
of the law were proved in Fang and Zeitouni (2012a). In this case, convergence of
the extremal processes and of the law of the recentered maximum have been shown
in Bovier and Hartung (2014). This is also proved in the case where the integral
of the variance remains strictly below its concave hull (for example, in the case of
increasing variances), see Bovier and Hartung (2015). For strictly decreasing vari-
ances, the lower order corrections for IBBMs exhibit a slowdown of the order t1/3 as
proved in Fang and Zeitouni (2012b); Maillard and Zeitouni (2016). Similar results
for non-Gaussian IBRWs and more general variances are proved in Mallein (2015),
though not at the level of convergence of the law. In Ouimet (2015), the second
order of the maximum for the Gaussian IBRW with a finite number of variances is
shown by generalizing the approach of Fang and Zeitouni (2012a) and the tightness
follows from Fang (2012).

In general, we expect that the scale-inhomogeneous GFF with a finite num-
ber of variances behave as the time-inhomogeneous branching random walk with
the same parameters for the lower order correction term of the maximum and for
its law. For the homogeneous GFF, the convergence of the law of the recentered
maximum was proved in Bramson et al. (2016). In Arguin and Zindy (2015), the
scale-inhomogeneous GFF with two values of the variance was introduced to prove
Poisson-Dirichlet statistics for the extremes of the homogeneous GFF. Actual Pois-
son statistics for local extremes was proved later in Biskup and Louidor (2016).

One interest of Definition 1.1 for the scale-inhomogeneous GFF is that it can be
extended to a piecewise smooth variance function σ : [0, 1] → [a, b] where a > 0.
Consider the two-dimensional continuous Gaussian free field φ = {φv}v∈[0,1]2 on the

unit square [0, 1]2, see e.g. Sheffield (2007) for a definition. The field φ cannot be
defined as a random function. However, averages over sets make sense as random
variables. In particular, for every v ∈ [0, 1]2 and λ ∈ [0, 1], one can define φrv(λ) as
the average of the field over a circle of radius rλ :

φrv(λ) $
1

2πrλ

∫ 2π

0

φv+rλeiθ dθ . (1.6)

The parameter r plays the role of N−1 in the discrete setting. The continuous
scale-inhomogeneous GFF for the variance function λ 7→ σ(λ) can then be defined
in terms of these averages :

ψrv(1) $
∫ 1

0

σ(λ) dφrv(λ), v ∈ [0, 1]2.
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The stochastic integral makes sense because (φrv(λ))λ∈[0,1] is a Gaussian martingale.
Following the definition in Duplantier and Sheffield (2011) (up to a factor 2), a point
v ∈ [0, 1]2 is called γ-thick if

lim
r→0

ψrv(1)

log(r−2)
≥ γ

where it is assumed that the continuous Green function on [0, 1]2 associated to φ has
been normalized as in (1.1). This is the notion analogous to γ-high points. It was
shown in Hu et al. (2010) that the Hausdorff dimension of the set of γ-thick points
is 2(1−γ2) when σ ≡ 1. In view of Theorem 1.3, it is reasonable to conjecture that
the Hausdorff dimension of the set of γ-thick points of ψ is

2

(
(1− λ?)−

(γ − Jσ2/σ̄(λ?))
2

Jσ2(λ?, 1)

)
, (1.7)

where λ? $ inf{λ ∈ [0, 1] : γ ≤
∫ 1

0
σ2(s)
σ̄(s∧λ)ds}.

2. Outline of Proof

As stated before, the results of this paper are applicable to time-inhomogeneous
branching random walks and, more generally, to any scale-dependent log-correlated
Gaussian field. The proof relies on two main ingredients: an underlying approxi-
mate tree structure present in log-correlated models and an adaptation of the mul-
tiscale refinement of the second moment method introduced in Kistler (2015). In
particular, the method requires understanding the increments of high points along
every scale to prove tight upper and lower bounds. In Kistler (2015), this method
was used to streamline the proof of Bolthausen et al. (2001) for the first order of
the maximum of the homogeneous GFF. Here, we adapt the method to deal with
scale-inhomogeneous fields and log-number of high points.

To see the tree structure, define the branching scale between v and v′ in VN :

ρ(v, v′) $ max{λ ∈ [0, 1] : [v]λ ∩ [v′]λ 6= ∅} . (2.1)

This is the largest λ for which the two neighborhoods [v]λ and [v′]λ intersect. We

always have by definition that ‖v− v′‖2 is of order N1−ρ(v,v′). The branching scale
plays the same role as the branching time (normalized to lie in [0, 1]) in branching
random walk. More precisely, let {φv}v∈VN be a homogeneous GFF and consider
the increments φv(λ

′) − φv(λ) and φv′(µ
′) − φv′(µ) for some choice of λ < λ′ and

µ < µ′. The Markov property of the Gaussian free field (see Section A) implies
that for λ, µ > ρ(v, v′),

φv(λ
′)− φv(λ) is independent of φv′(µ

′)− φv′(µ),

because the neighborhoods [v]λ and [v′]µ are disjoint, see Figure 2.2. This means
that the increments after the branching scale are independent.

On the other hand, if λ < ρ, it can be shown using Green function estimates
(see e.g. Lemma 12 in Bolthausen et al., 2001) that

V (φv(λ)− φv′(λ)) = O(1) .

In other words, the values of φv(λ) and φv′(λ) must be close. This suggests that the
increments before the branching scale are almost identical. In particular, without
losing much information, we can restrict the field {φv(λ)}v∈VN to a set Rλ ⊆ VN
containing bNλc2 v’s with neighborhoods [v]λ that can only touch at their boundary
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and are not cut off by ∂VN . To remove any ambiguity, define Rλ in such a way
that maxv∈VN minz∈Rλ ‖v− z‖2 is minimum. We call Rλ the set of representatives
at scale λ and define R1 $ VN . For instance, if N = 2n, λ ∈ [0, 1) and λn ∈ N,
then divide VN into a grid with N2λ squares of side length N1−λ, the center point
of each square is a representative at scale λ.

scales

1

0

v v′

v

v′

ρν ν′ λ λ′

µ µ′

s = distance of N1−sρ(v, v′)

ν

ν ′

λ

λ′ = µ′
µ

0
scales

Figure 2.2. The branching structure of the GFF.

Of course, the branching structure here is not exact as in branching random
walk. In particular, nothing precise can be said on the increments φv(λ

′) − φv(λ)
and φv′(λ

′)−φv′(λ) in the case where λ < ρ < λ′. However, the contribution of such
increments can be made negligible by considering a large number of increments, as
we shall do. This branching structure holds also for the (σ,λ)-GFF, since it is
defined in terms of the increments of φ, see (1.2) and Lemma A.1.

For 0 < γ < γ?, the γ-high points are such that ψv ≥ γ logN2. It is reasonable
to expect that for these points, there exists a unique optimal path λ 7→ LγN (λ) such
that ψv(λ) ≥ LγN (λ) at each scale λ. We write L?N for the corresponding optimal
path in the case of the maximum level γ?. It is the information on these paths along
the scales that is crucial for the method to yield tight upper and lower bounds. We
explain heuristically how to determine these optimal paths using first moments.

Consider the set of v’s for which the increments of the field ψ reach level ∇γi
between each scale λi :

ΛN,M $ {v ∈ VN | ∇ψv(λi) ≥ ∇γi logN2 for all i ∈ {1, 2, . . . ,M}} ,

where γ0 $ 0. By construction, |ΛN,M | is a lower bound on the number of points in
VN reaching a height of γM logN2. We also consider the corresponding quantity at
intermediate scales λk < λM . In this case, because of correlations, we can restrict
ourselves to representatives at scale λk :

ΛN,k $ {v ∈ Rλk | ∇ψv(λi) ≥ ∇γi logN2 for all i ∈ {1, 2, . . . , k}} .
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There are O(N2λk) representatives at scale λk and the variance of the increments
is V(∇ψv(λi)) = σ2

i∇λi logN + O(1) if we ignore the boundary effect. Therefore,
using the independence between the increments and standard Gaussian estimates
(see Lemma A.7, it will be used repeatedly) :

E [|ΛN,k|] � N2λk

k∏
i=1

P (∇ψv(λi) ≥ 2∇γi logN) � N2λkN
−2
∑k
i=1

(∇γi)
2

σ2
i
∇λi

(logN)k/2
,

where � means that the ratio of the two sides lies in a compact interval bounded
away from 0, for N large enough. In other words,

lim
N→∞

log(E [|ΛN,k|])
logN2

=

k∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
.

Since there should be representatives at each scale λk that ultimately yield a high
value at scale λM , it is intuitive that the level of the maximum can be found by
maximizing

γM =

M∑
i=1

∇γi under the constraints

k∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
≥ 0 , 1 ≤ k ≤M .

This optimization problem can be solved using the Karush-Kuhn-Tucker theorem
(see Lemma B.2). We write (γ?1 , γ

?
2 , ..., γ

?
M ) for the unique solution. We will make

extensive use of the polygonal line L?N (·) linking the points (0, 0), (λ1, γ
?
1 logN2),

(λ2, γ
?
2 logN2), . . . , (λM , γ

?
M logN2) to prove Theorem 1.2 and 1.3 :

L?N (s) $
∫ s

0

σ2(r)

σ̄(r)
dr logN2 = Jσ2/σ̄(s) logN2, s ∈ [0, 1] . (2.2)

This is the optimal path for the maximum. Figure 2.3 shows an example of such a
path. In particular, it is important to note that the optimal path coincides with its
concave hull at each scale λl, namely

L?N (λl) = L̂?N (λl) = Ĵσ2/σ̄(λl) logN2 = Jσ̄(λl) logN2, 1 ≤ l ≤ m . (2.3)

0 1 s
λ0

λ1 λ2 λ3 λ4 λ5 λ6
λ7

λ0 λ1 λ2 λ3
λ4

L?
N(λ1)

L?
N(λ2)

L?
N(λ3)

L?
N(λ4) γ4 = γ?

γ3
γ2

γ1
γ

Figure 2.3. Example of LγN (bold line), L?N (thin line) and its con-

cavified version L̂?N (dotted line), with 7 values for σ2 and γ1 < γ < γ2.
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The same heuristic can be used to determine the optimal path LγN (·) for γ-high
points, 0 < γ < γ?. Setting now γM = γ, we get

lim
N→∞

log(E [|ΛN,M |])
logN2

=

M−1∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
+

(
∇λM −

(γ − γM−1)2

σ2
M∇λM

)
. (2.4)

A lower bound for the log-number of γ-high points can be found by maximizing (2.4)
with respect to γ1, γ2, . . . , γM−1 and under the constraints

k∑
i=1

(
∇λi −

(∇γi)2

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M − 1 . (2.5)

The unique solution to this problem is found in Lemma B.3 using again the Karush-
Kuhn-Tucker theorem. The form of the path will always depend on the critical levels
defined in (1.5). Whenever γl−1 ≤ γ < γl, the optimal path for γ-high points is :

LγN (s) $

{
Jσ2/σ̄(s) logN2, 0 ≤ s ≤ λl−1(
Jσ2/σ̄(λl−1) +

Jσ2 (λl−1,s)

Jσ2 (λl−1,1)
(γ − Jσ2/σ̄(λl−1))

)
logN2, λl−1 ≤ s ≤ 1.

(2.6)
The path coincide on [0, λl−1] with the optimal path for the maximum. Also, note
that LγN is continuous and converges uniformly to L?N as γ → γ? (which yields that
L?N is continuous as well).

3. Proofs of the main results

3.1. Preliminaries. For all λ ∈ [0, 1], recall that ψv(λ) $ E[ψv | F∂[v]λ∪[v]cλ
]. By the

Markov property of the GFF (see Lemma A.1), it is not hard to show that for any
partition 0 $ s0 < s1 < ... < sK $ 1 of [0, 1] such that {λi}Mi=0 ⊆ {sj}Kj=0, we have
for all 1 ≤ k ≤ l ≤ K :

ψv(sl)− ψv(sk−1) =

l∑
j=k

σ(sj)∇φv(sj) .

In particular, the independence of the increments of ψ follows directly from the one
for φ. Moreover, using standard estimates on Green functions, Lemma A.2 shows
that

− C1(δ) ≤ V (ψv(sl)− ψv(sk−1))− Jσ2(sk−1, sl) logN ≤ C2 (3.1)

for all v ∈ V δN and N large enough (depending on δ), where

V δN $ {v ∈ VN | min
z∈∂VN

‖v − z‖2 ≥ δN}, δ ∈ (0, 1/2] .

The set V δN contains the points that are at a distance at least δN from the boundary
of VN . Lemma A.3 proves that the upper bound in (3.1) holds on VN , that is

max
v∈VN

V (ψv(sl)− ψv(sk−1)) ≤ Jσ2(sk−1, sl) logN + C (3.2)

for N large enough.
Throughout the proofs, c and C will denote positive constants whose value can

change at different occurrences and might depend on the parameters (σ,λ). For
simplicity, equations in the proofs are implicitly stated to hold for N large enough
where it is needed.
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3.2. First order of the maximum. Theorem 1.2 is a direct consequence of Lemma 3.1,
which proves that γ? logN2 is an upper bound on the first order of the maximum,
and Lemma 3.3 which shows the corresponding lower bound.

Lemma 3.1 (Upper bound on the first order of the maximum). Let {ψv}v∈VN be
the (σ,λ)-GFF on VN of Definition 1.1 and γ? as in Theorem 1.2. For all ε > 0,
there exists a constant c = c(ε,σ,λ) > 0 such that

P
(

max
v∈VN

ψv ≥ (γ? +mε) logN2

)
≤ N−c (3.3)

for N large enough.

Proof : Recall the definition of the optimal path L?N from (2.2) and define

L?,zN (s) $ L?N (s) + z logN2, s ∈ [0, 1] .

Recall the definition of λj in (1.3) and the notation Rλj for the set of representatives
at scale λj . Consider the set of representatives whose value reached just over the
optimal level at λj :

H?,εN,j $
{
v ∈ Rλj | ψv(λj) ≥ L?,jεN (λj)

}
, 1 ≤ j ≤ m .

The idea of the proof is to split the probability that at least one point in VN reaches
just over the optimal height by looking at the first scale λj , 1 ≤ j ≤ m, where the
set H?,εN,j is not empty. This provides the appropriate constraints along the scales

to get the correct upper bound. For 0 < ηε < ε/m, define

Aε $
{
|ψv(λj)− ψvλj (λj)| ≤ ηε logN2 for all j ∈ {1, ...,m} and all v ∈ VN

}
where vλ denotes any representative in Rλ that is closest to v. Here we introduced
the event Aε to approximate the branching structure of the field ψ. Since Rλm = VN
by definition and L?,mεN (λm) = (γ? +mε) logN2, a union bound gives the following
upper bound on the probability in (3.3) :

P
(
|H?,εN,m| ≥ 1

)
≤ P(Acε) +

m∑
l=1

P
({
|H?,εN,1| = ... = |H?,εN,l−1| = 0, |H?,εN,l| ≥ 1

}
∩Aε

)

≤ P(Acε) +

m∑
l=1

P



∃v ∈ Rλl ∩ V oN s.t.

ψv(λ
l) ≥ L?,lεN (λl) and

ψvλj (λj) < L?,jεN (λj)
for all 1 ≤ j ≤ l − 1

 ∩Aε


≤ Ce−c(ηε)(logN)2

+

m∑
l=1

N2λl max
v∈R

λl
∩V oN

P


ψv(λ

l) ≥ L?,lε−ηεN (λl) and

ψv(λ
j) < L

?,j(ε+ηε)
N (λj)

for all 1 ≤ j ≤ l − 1


 (3.4)

The bound on P (Acε) follows easily from a union bound (with m · (N + 1)2 terms),
Gaussian estimates (Lemma A.7) and the variance estimates of Lemma A.6.

It remains to consider the terms in the sum in (3.4). We look at the case l = 1.
Since maxv∈VN V

(
ψv(λ

1)
)
≤ λ1σ̄2

1 logN +C from (3.2) and L?N (λ1) = λ1σ̄1 logN2,
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a Gaussian estimate shows that

P
(
ψv(λ

1) ≥ L?,ε−ηεN (λ1)
)
≤
√
V (ψv(λ1))

L?,ε−ηεN (λ1)
exp

(
−

(L?,ε−ηεN (λ1))2

2V (ψv(λ1))

)

≤ C√
logN

N−2λ1

N−4
(ε−ηε)
σ̄1 .

After multiplying by N2λ1

, we conclude that the l = 1 term in (3.4) goes to 0 like
N−c(ε). We now show a similar estimate for a fixed l ∈ {2, ...,m}. To simplify the
notation, denote (X1

v , ..., X
l
v) $ (ψv(λ

1), ..., ψv(λ
l)). By conditioning on the value

of the vector X $ (X1
v , ..., X

l−1
v ), the probability in (3.4) is equal to∫ L

?,1(ε+ηε)
N (λ1)

−∞
...

∫ L
?,(l−1)(ε+ηε)
N (λl−1)

−∞
P
(
X l
v ≥ L

?,lε−ηε
N (λl) | X = x

)
fv(x) dx

where fv is the density function of X. By independence of the increments, the last
integral is equal to∫ L

?,1(ε+ηε)
N (λ1)

−∞
...

∫ L
?,(l−1)(ε+ηε)
N (λl−1)

−∞
P
(
∇X l

v ≥ L
?,lε−ηε
N (λl)− xl−1

)
fv(x) dx . (3.5)

Since lε − ηε = (ε − lηε) + (l − 1)(ε + ηε), a Gaussian estimate and the bound
maxv∈VN V

(
∇X l

v

)
≤ σ̄2

l∇λl logN + C from (3.2) give

P
(
∇X l

v ≥ L
?,lε−ηε
N (λl)− xl−1

)
≤

√
V (∇X l

v)

L?,lε−ηεN (λl)− xl−1

exp

(
−(∇L?N (λl) + L?,lε−ηεN (λl−1)− xl−1)2

2V (∇X l
v)

)

≤ C√
logN

N−2∇λl exp

(
−2

(L?,lε−ηεN (λl−1)− xl−1)

σ̄l

)

=
C√

logN
N−2∇λlN

−4 ε−lηεσ̄l exp

(
−2

(L
?,(l−1)(ε+ηε)
N (λl−1)− xl−1)

σ̄l

)
. (3.6)

To get the second inequality, we bounded the ratio using

L?,lε−ηεN (λl)− xl−1 ≥ ∇L?N (λl) = σ̄l∇λl logN2

from the integration limits of xl−1 in (3.5). It is convenient to do the change of
variables Yv,j $ (ε+ηε) logN2 +∇L?N (λj)−∇Xj

v for all j ∈ {1, ..., l−1}. Equation
(3.5) is then bounded, using (3.6), by

CN
−4 ε−lηεσ̄l

N2λl
√

logN
N2λl−1

∫ ∞
0

∫ ∞
−y1

...

∫ ∞
−
∑l−2
j=1 yj

l−1∏
j=1

e
−2

yj
σ̄l

e
− ((yj−(ε+ηε) logN2)−∇L?N (λj))

2

2V(Yv,j)√
2πV (Yv,j)

dy.

(3.7)

After multiplying byN2λl, the l-th term of the sum in (3.4) has the right decay if we

show that the integral in (3.7) is bounded by C̃N−2λl−1

. From (3.2), we have

0 < V (Yv,j) ≤ σ̄2
j∇λj logN + C

for all v ∈ V oN . If the variances were all equal to σ̄2
j∇λj logN + C, the argument

would be simpler. Extra work is needed to take care of the boundary effect of the
GFF. We gather the result into a lemma for later use in the proof of Lemma 3.4. �
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Lemma 3.2. Let 2≤ l ≤ m and z$ (zj)
l−1
j=1 be such that 0< zj ≤ σ̄2

j∇λj logN+C.
For all ε̃ > 0, consider the integral

Iε̃(z) $
∫ ∞

0

g1(y1) ...

∫ ∞
−
∑l−3
j=1 yj

gl−2(yl−2)

∫ ∞
−
∑l−2
j=1 yj

e−2al
∑l−1
j=1 yjgl−1(yl−1) dy

where al > 1/σ̄l−1 and

gj(y) $
1√
2πzj

exp

(
− 1

2zj

(
(y − ε̃ logN2)−∇L?N (λj)

)2)
, 1 ≤ j ≤ l − 1 .

Then Iε̃(z) ≤ C̃N−2λl−1

.

Proof : Let βj $
∇L?N (λj)

2zj
, 1 ≤ j ≤ l − 1. When al − βl−1 ≥ 1/

√
zl−1, the first

integral with respect to yl−1 in Iε̃(z) is equal to

e−2al
∑l−2
j=1 yj

∫ ∞
−
∑l−2
j=1 yj

e−2alyl−1
1√

2πzl−1
e
− 1

2zl−1
((yl−1−ε̃ logN2)−∇L?N (λl−1))

2

dyl−1

≤ e−2al
∑l−2
j=1 yj

1
√
zl−1

e
− 1

2zl−1
(∇L?N (λl−1))2

∫ ∞
−
∑l−2
j=1 yj

e−2(al−βl−1)yl−1dyl−1

= e−2al
∑l−2
j=1 yj

1
√
zl−1

e
− 1

2zl−1
(∇L?N (λl−1))2 1

2(al − βl−1)
e2(al−βl−1)

∑l−2
j=1 yj .

Since zl−1 ≤ σ̄2
l−1∇λl−1 logN + C and ∇L?N (λl−1) = σ̄l−1∇λl−1 logN2, the above

is smaller than

Ce−2βl−1

∑l−2
j=1 yjN−2∇λl−1

. (3.8)

When al − βl−1 < 1/
√
zl−1, we have by completing the square :

e−2al
∑l−2
j=1 yj

∫ ∞
−
∑l−2
j=1 yj

e−2alyl−1

√
2πzl−1

e
− ((yl−1−ε̃ logN2)−∇L?N (λl−1))

2

2zl−1 dyl−1

≤ e−2al
∑l−2
j=1 yj

∫ ∞
−
∑l−2
j=1 yj

e−2al(yl−1−ε̃ logN2)

√
2πzl−1

e
− ((yl−1−ε̃ logN2)−∇L?N (λl−1))

2

2zl−1 dyl−1

= e−2al
∑l−2
j=1 yje−2al∇L?N (λl−1)e2a2

l zl−1

·
∫ ∞
−
∑l−2
j=1 yj

1√
2πzl−1

e
− ((yl−1−ε̃ logN2)−(∇L?N (λl−1)−2alzl−1))

2

2zl−1 dyl−1

≤ exp
(
− 2al

l−2∑
j=1

yj − 2al∇L?N (λl−1) + 2a2
l zl−1

)
.

In the regime al − βl−1 < 1/
√
zl−1, note that 2a2

l zl−1 < al∇L?N (λl−1) + 2al
√
zl−1.

Since zl−1 ≤ σ̄2
l−1∇λl−1 logN + C, the above is smaller than

exp
(
− 2al

l−2∑
j=1

yj − al∇L?N (λl−1) + C
√

logN
)
.

By assumption, al > 1/σ̄l−1. Therefore, the above is smaller than

e−2al
∑l−2
j=1 yjN−2∇λl−1

. (3.9)
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The second integral with respect to yl−2 in Iε̃(z) is evaluated similarly using (3.8)
and (3.9) by taking

al−1 $ min{al, βl−1}
and considering whether al−1 − βl−2 ≥ 1/

√
zl−2 or not. Note that al−1 > 1/σ̄l−2

holds since al > 1/σ̄l−1 > 1/σ̄l−2 (because the steps of σ̄ are decreasing in height)
and βl−1 ≥ 1/σ̄l−1 − O((logN)−1) > 1/σ̄l−2 from the bounds on zl−1. This recur-

sive reasoning shows that Iε̃(z) is smaller than C̃N−2λl−1

. �

Lemma 3.3 (Lower bound on the first order of the maximum). Let {ψv}v∈VN be the
(σ,λ)-GFF on VN of Definition 1.1 and γ? as in Theorem 1.2. For all 0 < ε < 1,
there exists a constant c = c(ε,σ,λ) > 0 such that

P
(

max
v∈VN

ψv ≤ (1− ε)γ? logN2

)
≤ N−c (3.10)

for N large enough.

Without loss of generality, we can assume that λi ∈ Q for all i ∈ {0, ...,M}. To

see this, define λ̃i $ λi + ηi where 0 < ηi < mini∇λi and such that λ̃i ∈ Q for all
i ∈ {1, ...,M − 1}. Now, define a new scale-inhomogeneous Gaussian free field :

ψ̃v $
M∑
i=1

σi∇φv(λ̃i) = ψv +

M−1∑
i=1

(σi − σi+1)(φv(λ̃i)− φv(λi)) .

As a particular case of Lemma A.3, note that

max
v∈VN

V
(
φv(λ̃i)− φv(λi)

)
≤ (λ̃i − λi) logN + C = ηi logN + C .

If we can show Lemma 3.3 when the λi’s are rational numbers, then a union bound
and a Gaussian estimate yield

P
(

max
v∈VN

ψv ≤ (1− 2ε)γ? logN2

)
≤ P

(
max
v∈VN

ψ̃v ≤ (1− ε)γ? logN2

)
+
∑
v∈V oN

M−1∑
i=1

P
(
|σi − σi+1|

∣∣∣φv(λ̃i)− φv(λi)∣∣∣ ≥ (ε/(M − 1))γ? logN2
)

≤ N−c(ε,σ,λ) +N2(M − 1) exp
(
−

(
(ε/(M − 1))γ? logN2

)2
2 maxi |σi − σi+1|2(ηi logN + C)

)
.

The second term can be made O(N−c̃(ε,σ,λ)) where c̃ > 0 is arbitrarily large, by
choosing the ηi’s small enough with respect to ε.

The proof of Lemma 3.3 is based on a coarse-graining of the scales introduced
in Kistler (2015). Consider αk $ k

K , 0 ≤ k ≤ K. The parameter K ∈ N will
be chosen large enough depending on ε during the proof. By the argument above,
we can assume that λiK ∈ N0 for all i ∈ {0, ...,M}, so that the αk’s form a finer
partition of [0, 1] than the λi’s. The bounds in (3.1) imply that for all k ∈ {1, ...,K}
and for all v ∈ V δN :

|V (∇ψv(αk))− σ2(αk)∇αk logN | ≤ C(δ) . (3.11)

The parameter δ ∈ (0, 1/2) remains fixed to an arbitrary value in the rest of this
section. For all 0 < ε < 1, denote by L?N,ε the following sub-optimal path :

L?N,ε(s) = (1− ε)L?N (s) = (1− ε)Jσ2/σ̄(s) logN2, s ∈ [0, 1] .
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The proof relies on the Paley-Zygmund inequality (see Lemma A.8) applied to
a modified number of exceedances. In fact, we consider only points in V δN whose
increments are almost optimal. Moreover, and crucially, we drop the first r incre-
ments. We will choose r during the proof. This allows more independence between
the variables of the field, which is needed to find a tight lower bound using the
Paley-Zygmund inequality. More precisely, define

N ?
ε $

∑
v∈V δN

1Av where Av $ {∇ψv(αj) ≥ ∇L?N,ε(αj) ∀j ∈ {r + 1, ...,K}} .

For a fixed ε > 0, there is the following inequality for c = c(ε) > 0 :

P
(

max
v∈VN

ψv ≥ (1− 3ε)γ? logN2

)
≥ P (N ?

ε ≥ 1)−O(N−c) . (3.12)

Indeed, on the event {N ?
ε ≥ 1}, we have

max
v∈V δN

ψv − ψv(αr) ≥ (1− ε)Jσ2/σ̄(αr, 1) logN2

= (1− ε)γ? logN2 − (1− ε)Jσ2/σ̄(αr) logN2

≥ (1− 2ε)γ? logN2

where we take K large enough that (1 − ε)Jσ2/σ̄(αr) < εγ?. Furthermore, the

probability P(maxv∈V δN ψv − ψv(αr) ≥ (1− 2ε)γ? logN2) is equal to

P

(
max
v∈V δN

ψv − ψv(αr) ≥ (1− 2ε)γ? logN2, min
v∈V δN

ψv(αr) > −εγ? logN2

)

+ P

(
max
v∈V δN

ψv − ψv(αr) ≥ (1− 2ε)γ? logN2, min
v∈V δN

ψv(αr) ≤ −εγ? logN2

)
.

The distribution of ψv(αr) is symmetric, so the second term is smaller than

P

(
max
v∈V δN

ψv(αr) ≥ εγ? logN2

)
≤ N2 exp

(
− (εγ?)2 logN2

maxi σ2
i αr

)
(3.13)

where we used a union bound, a Gaussian estimate and (3.2) to get the inequality.
This is O(N−c) by choosing K large enough for a fixed ε and r. On the other hand,
the first term is smaller than P(maxv∈V δN ψv ≥ (1− 3ε)γ? logN2). Since VN ⊇ V δN ,

this implies (3.12) as claimed.

Proof of Lemma 3.3: In view of (3.12), it suffices to show P (N ?
ε ≥ 1) = 1−O(N−c).

The Paley-Zygmund inequality implies

P (N ?
ε ≥ 1) ≥ (E [N ?

ε ])2

E [(N ?
ε )2]

.

We show

E
[
(N ?

ε )2
]
≤ (1 +O(N−

1
2K (1−(1−ε)2

)) (E [N ?
ε ])2, (3.14)

which proves the claim.
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The first moment is easily evaluated by the independence of the increments :

E [N ?
ε ] =

∑
v∈V δN

P(Av) =
∑
v∈V δN

K∏
j=r+1

P
(
∇ψv(αj) ≥ ∇L?N,ε(αj)

)
.

Using Gaussian estimates and the variance estimates in (3.11), the probabilities are
for every j and v ∈ V δN :

pv,j $ P
(
∇ψv(αj) ≥ ∇L?N,ε(αj)

)
� 1√

logN
exp

(
−(1− ε)2σ

2(αj)

σ̄2(αj)
∇αj logN2

)
. (3.15)

Write ej for the exponential term on the right-hand side of (3.15). The first moment
satisfies

E [N ?
ε ] =

∑
v∈V δN

P (Av) ≥
c(ε, δ)

(logN)
1
2 (K−r)

× |V δN | ×
K∏

j=r+1

ej . (3.16)

Now, we compare this with the second moment :

E
[
(N ?

ε )2
]

=
∑

v,v′∈V δN

P(Av ∩Av′) .

We divide the sum depending on the correlations between ψv and ψv′ . More pre-
cisely, recall the definition of the branching scale in (2.1) :

ρ(v, v′) $ max{λ ∈ [0, 1] : [v]λ ∩ [v′]λ 6= ∅}, v, v′ ∈ VN .

Write the second moment as∑
v,v′∈V δN
ρ(v,v′)<αr

P (Av ∩Av′) +

K−1∑
k=r+1

∑
v,v′∈V δN

αk−1≤ρ(v,v′)<αk

P (Av ∩Av′) +
∑

v,v′∈V δN
ρ(v,v′)≥αK−1

P (Av ∩Av′) . (3.17)

In particular, the first term in (3.17) is equal to∑
v,v′∈V δN
ρ(v,v′)<αr

P (Av)P (Av′) ≤
∑

v,v′∈V δN

P (Av)P (Av′) = (E [N ?
ε ])2. (3.18)

It remains to show that the second and third term in (3.17) are negligible com-
pared to (E [N ?

ε ])2. We write the details for the second term since the last term
is done similarly and is easier. By Lemma A.1 (following the Markov property of
the GFF), note that if αk−1 ≤ ρ(v, v′) < αk for some k ≥ r + 1, then ∇ψv′(αj′),
j′ ≥ k + 1, is independent of ∇ψv(αj) for j ≤ k − 2 and j ≥ k + 1. Therefore, for
v, v′ ∈ V δN such that αk−1 ≤ ρ(v, v′) < αk, we have

P (Av ∩Av′) ≤
k−2∏
j=r+1

pv,j

K∏
j=k+1

pv,jpv′,j ≤

 K∏
j=r+1

e2
j

(∏r
j=1 ej

ek−1e2
k

)k−1∏
j=1

ej

−1

where we dropped the conditions on j ∈ {k − 1, k} for v as well as the conditions
on j ≤ k for v′ in the first inequality. We simply rearranged the probabilities and
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eliminated the log terms to get the last inequality. The number of pairs v, v′ ∈ V δN
such that αk−1 ≤ ρ(v, v′) < αk is at most |V δN | ×N2(1−αk−1). Therefore, by (3.16),∑

v,v′∈V δN
αk−1≤ρ(v,v′)<αk

P (Av ∩Av′) ≤
(E [N ?

ε ])2

(logN)−K
×N−2αk−1(1−(1−ε)2)

(∏r
j=1 ej

ek−1e2
k

)
(3.19)

×N
−2αk−1(1−ε)2∏k−1

j=1 ej

The right-hand side of (3.19) is separated in three factors by ×. The third factor is
bounded by 1 because ∫ t

0

σ2(s)

σ̄2(s)
ds ≤ t, t ∈ (0, 1],

by definition of σ̄. To bound the second factor, set r ≥ 3 independently of any other
variable. Note that if r depended on K, the bound in (3.13) would not necessarily
tend to 0. There are two cases to consider : αk ≤ λ1 and αk > λ1. When αk ≤ λ1,
the ratio of exponentials is bounded by 1 because e1e2e3 = ek−1e

2
k and we have

N−2αk−1(1−(1−ε)2) ≤ N−
1
K (1−(1−ε)2) since αk−1 ≥ αr ≥ 1/(2K). When αk > λ1,

the ratio of exponentials is bounded by Nλ1(1−(1−ε)2) by choosing K large enough

for a fixed ε and we have N−2αk−1(1−(1−ε)2) ≤ N−2λ1(1−(1−ε)2) because αk−1 ≥ λ1.
Since λ1 ≥ 1/K, the right-hand side of (3.19) is always bounded by

(E [N ?
ε ])2 (logN)K ×N− 1

K (1−(1−ε)2) .

With (3.18), this shows (3.14) and concludes the proof of the lemma. �

3.3. Log-number of high points. The proof of the upper bound for the log-number
of high-points uses an argument based on the path at every scale λl similar to the
one in Lemma 3.1. Recall the definition of the critical levels γl and the entropy Eγ
in Theorem 1.3.

Lemma 3.4 (Upper bound on the log-number of high points). Let {ψv}v∈VN be
the (σ,λ)-GFF on VN of Definition 1.1 and γ? as defined in Theorem 1.2. Also,
let γl−1 < γ ≤ γl for some l ∈ {1, ...,m}. For all 0 < ε < (γ − γl−1)/m, there
exists a constant c = c(γ, ε,σ,λ) > 0 such that

P
(
|HγN | ≥ N

2Eγ+ε
)
≤ N−c (3.20)

for N large enough.

Proof : Recall the definition of the optimal path LγN from (2.6) and the notation
Rλj for the set of representatives at scale λj . Consider

Hγ,εN,j $
{
v ∈ Rλj | ψv(λj) ≥ Lγ+jε

N (λj)
}
, 1 ≤ j ≤ m .

Since Rλm = VN , note that

HγN = Hγ,0N,m = Hγ−mε,εN,m .

This is useful because the hypothesis ε < (γ − γl−1)/m implies γl−1 < γ − jε ≤ γl,
which means (in particular) that for all j ∈ {1, ..., l − 1},

the paths L?N and Lγ−jεN coincide on the interval [0, λj ]. (3.21)

The idea is to split the probability that at least N2Eγ+ε points in VN reach the
optimal height by looking at the first scale λj , 1 ≤ j ≤ l− 1, where the set Hγ−jε,εN,j
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is not empty. As for the maximum, this yields the appropriate constraints along
the scales to get the correct upper bound. A union bound in (3.20) gives

P
(
|HγN | ≥ N

2Eγ+ε
)

= P
(
|Hγ−mε,εN,m | ≥ N2Eγ+ε

)
≤ P

(
|Hγ−1ε,ε

N,1 | = ... = |Hγ−(l−1)ε,ε
N,l−1 | = 0

and |Hγ−mε,εN,m | ≥ N2Eγ+ε

)
+

l−1∑
j=1

P
(
|Hγ−jε,εN,j | ≥ 1

)
. (3.22)

Because of (3.21), the probabilities in the sum are bounded by N−c(ε) in exactly
the same manner as P(|H?,εN,m| ≥ 1) in Lemma 3.1. The first probability in (3.22)
is bounded by

P
(∣∣∣∣{v ∈ VN | ψv ≥ LγN (1) and ψvλj (λj) < LγN (λj)

for all 1 ≤ j ≤ l − 1

}∣∣∣∣ ≥ N2Eγ+ε

)

≤ Ce−c(ηε)(logN)2

+N−εN−2EγN2 max
v∈V oN

P

 ψv ≥ Lγ−ηεN (1) and

ψv(λ
j) < Lγ+jηε

N (λj)
for all 1 ≤ j ≤ l − 1

 (3.23)

using Markov’s inequality and using the event Aε as in (3.4), where we impose

0 < ηε < min{γ,Jσ2(1)ε/(4γ), σ̄l−1ε/(4lcγ), ε/m}

this time around. See (3.26) for the definition of cγ . See just below and also (3.27)
for the justification of the constraints on ηε. When l = 1, a Gaussian estimate and
the bound maxv∈VNV (ψv)≤ Jσ2(1) logN + C from (3.2) yield

P
(
ψv ≥ Lγ−ηεN (1)

)
≤
√
V (ψv)

Lγ−ηεN (1)
exp

(
−

(Lγ−ηεN (1))2

2V (ψv)

)
≤ C(γ)N−2+2Eγ

√
logN

N
4γ

J
σ2 (1)

ηε

because Lγ−ηεN (1) = 2(γ − ηε) logN and Eγ = 1 − γ2/Jσ2(1) in this case. This

proves that the second term in (3.23) decays like N−c(γ,ε), as needed.
It remains to show a similar estimate for a fixed l ∈ {2, ...,m}. To simplify the

notation, denote (X1
v , ..., X

l−1
v , Xm

v ) $ (ψv(λ
1), ..., ψv(λ

l−1), ψv). By conditioning
on the value of the vector X $ (X1

v , ..., X
l−1
v ), the probability in (3.23) is equal to∫ Lγ+1ηε

N (λ1)

−∞
...

∫ L
γ+(l−1)ηε
N (λl−1)

−∞
P
(
Xm
v ≥ L

γ−ηε
N (1) | X = x

)
fv(x) dx

where fv is the density function of X. By independence of the increments, the last
integral is equal to∫ Lγ+1ηε

N (λ1)

−∞
...

∫ L
γ+(l−1)ηε
N (λl−1)

−∞
P
(
Xm
v −X l−1

v ≥ Lγ−ηεN (1)− xl−1

)
fv(x) dx . (3.24)

The bound maxv∈VN V
(
Xm
v −X l−1

v

)
≤ Jσ2(λl−1, 1) logN + C from (3.2) and a

Gaussian estimate show that

P
(
Xm
v −X l−1

v ≥ Lγ−ηεN (1)− xl−1

)
= P

(
Xm
v −X l−1

v ≥ LγN (1)− LγN (λl−1) + Lγ−ηεN (λl−1)− xl−1

)
≤ C(γ)√

logN
N
−2

(γ−J
σ2/σ̄

(λl−1))2

J
σ2 (λl−1,1) exp

(
−2

(γ − Jσ2/σ̄(λl−1))

Jσ2(λl−1, 1)
(Lγ−ηεN (λl−1)− xl−1)

)
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where we introduced LγN (λl−1) and used (2.6). By definition of Eγ and the definition
of γl−1 in (1.5), this is equal to

C(γ)N−2+2Eγ
√

logN
N2λl−1

exp

(
−2

[
(γ − γl−1)

Jσ2(λl−1, 1)
+

1

σ̄l−1

]
(Lγ−ηεN (λl−1)− xl−1)

)
=
C(γ)N−2+2Eγ
√

logN
N2λl−1

N
4lcγ
σ̄l−1

ηε
exp

(
−2

cγ
σ̄l−1

(L
γ+(l−1)ηε
N (λl−1)− xl−1)

)
(3.25)

where

cγ $
(γ − γl−1)σ̄l−1

Jσ2(λl−1, 1)
+ 1 > 1 . (3.26)

Putting the bound (3.25) in (3.24) and in (3.23), we get that the first term in (3.22)
decays like

N
−
(
ε− 4lcγ

σ̄l−1
ηε
)

(3.27)

provided that∫ ∞
0

∫ ∞
−y1

...

∫ ∞
−
∑l−2
j=1 yj

l−1∏
j=1

e
−2

cγ
σ̄l−1

yj e
− ((yj−ηε logN2)−∇Lγ

N
(λj))

2

2V(Yv,j)√
2πV (Yv,j)

dy ≤ C̃N−2λl−1

,

where Yv,j $ ηε logN2 +∇LγN (λj)−∇Xj
v . Similarly to (3.7), the integral has the

right decay as a consequence of Lemma 3.2, with al $ cγ/σ̄l−1 > 1/σ̄l−1, because
L?N and LγN coincide on the interval [0, λl−1]. �

Lemma 3.5 (Lower bound on the log-number of high points). Let {ψv}v∈VN be the
(σ,λ)-GFF on VN of Definition 1.1 and γ? as in Theorem 1.2. Let γ > 0 be such
that γl−1 ≤ γ < γl for some l ∈ {1, ...,m}. For all 0 < ε < min{1/4, (γl−γ)/(4γ)},
there exists a constant c = c(γ, ε,σ,λ) > 0 such that

P
(
|HγN | < N2Eγ−ε̃

)
≤ N−c

for N large enough, where ε̃ $ 24(γ?)2

σ̄2
m∇λm

ε.

We use the same notations as in the proof of Lemma 3.3. As before, we can
assume, without loss of generality, that λiK ∈ N0 for all {0, ...,M} so that the αk’s
form a finer partition of [0, 1] than the λi’s. The parameter K ∈ N will be chosen
large enough depending on γ and ε during the proof. Again, we restrict ourselves
to V δN to ensure that for all k ∈ {1, ...,K} and for all v ∈ V δN :

|V (∇ψv(αk))− σ2(αk)∇αk logN | ≤ C(δ) . (3.28)

The parameter δ ∈ (0, 1/2) remains fixed to an arbitrary value in the remainder of
this section. Next, define the path :

LγN,ε(s) $ (1− ε)Lγ(1+4ε)
N (s), s ∈ [0, 1] .

Since ε < (γl − γ)/(4γ) by hypothesis, we have γl−1 ≤ γ < γ(1 + 4ε) < γl. This
condition implies that the increments of the path LγN,ε are always bounded by the

increments of the sub-optimal path L?N,ε (see Figure 2.3), namely

LγN,ε(s2)− LγN,ε(s1) ≤ L?N,ε(s2)− L?N,ε(s1), 0 ≤ s1 ≤ s2 ≤ 1 . (3.29)
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Indeed, the paths L
γ(1+4ε)
N and L?N coincide on the interval [0, λl−1]. Moreover,

when s ∈ (λl−1, 1], we have by the definition of the critic levels γl in (1.5) and the

optimal path L
γ(1+4ε)
N in (2.6) :

d

ds

(L
γ(1+4ε)
N (s)− L?N (s))

logN2
=

d

ds

∫ s

λl−1

[
σ2(u)

(
γ(1 + 4ε)− Jσ2/σ̄(λl−1)

)
Jσ2(λl−1, 1)

− σ2(u)

σ̄(u)

]
du

≤ σ2(s)

σ̄l
− σ2(s)

σ̄(s)
since γ(1 + 4ε) < γl

≤ 0 since σ̄ is non-increasing.

This proves inequality (3.29). By hypothesis, we also have ε < 1/4, which yields

LγN,ε(1) = (1− ε)(1 + 4ε)γ logN2 > (1 + 2ε)γ logN2 . (3.30)

The proof again relies on the Paley-Zygmund inequality applied to a modified
number of exceedances where we consider only points in V δN whose increments are
almost optimal. We drop the first r increments to allow more independence which is
needed for the second-moment method to work. We can choose r ≥ 3 independently
of any other variable as in the proof of Lemma 3.3. The case l = 1 is easier to deal
with, so we omit the details. Assume l ∈ {2, ...,m} and define

N γ
ε $

∑
v∈V δN

1Av where Av $ {∇ψv(αj) ≥ ∇LγN,ε(αj) ∀j ∈ {r + 1, ...,K}}.

Note that for a fixed ε > 0, there is the following inequality for c = c(γ, ε) > 0 :

P
(
|HγN | ≥ N

2Eγ−ε̃
)
≥ P

(
N γ
ε ≥ N2Eγ−ε̃

)
−O(N−c). (3.31)

Indeed, the probability P
(
N γ
ε ≥ N2Eγ−ε̃

)
is equal to

P

(
N γ
ε ≥ N2Eγ−ε̃, min

v∈V δN
ψv(αr) > −εγ logN2

)

+ P

(
N γ
ε ≥ N2Eγ−ε̃, min

v∈V δN
ψv(αr) ≤ −εγ logN2

) (3.32)

To simplify the argument, assume from now on that K is large enough to en-
sure αr ≤ λl−1. The first probability in (3.32) is smaller than P

(
|HγN | ≥ N2Eγ−ε̃

)
because the points v ∈ V δN that are contributing to the sum N γ

ε , on the event
{minv∈V δN ψv(αr) > −εγ logN2}, are also in HγN . Indeed, when 1Av = 1,

ψv − ψv(αr) ≥ (1− ε)Lγ(1+4ε)
N (1)− (1− ε)L?N (αr)

= (1− ε)(1 + 4ε)γ logN2 − (1− ε)Jσ2/σ̄(αr) logN2

≥ (1 + ε)γ logN2 (3.33)

where we take K large enough that (1− ε)Jσ2/σ̄(αr) < εγ and use (3.30) to obtain
the last inequality in (3.33). The distribution of ψv(αr) is symmetric, so the second
probability in (3.32) is smaller than

P

(
max
v∈V δN

ψv(αr) ≥ εγ logN2

)
≤ N2 exp

(
− (εγ)2 logN2

maxi σ2
i αr

)
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where we used a union bound, a Gaussian estimate and (3.2) to get the inequality.
This is O(N−c) by choosing K large enough for a fixed ε and r. Therefore, we have
(3.31) as claimed.

Proof of Lemma 3.5: In view of (3.31), it suffices to show that P
(
N γ
ε ≥ N2Eγ−ε̃

)
=

1−O(N−c). The Paley-Zygmund inequality (Lemma A.8) implies

P
(
N γ
ε ≥ N2Eγ−ε̃

)
≥
(

1− N2Eγ−ε̃

E [N γ
ε ]

)2
(E [N γ

ε ])2

E [(N γ
ε )2]

. (3.34)

First, we make sure that N2Eγ−ε̃/E [N γ
ε ] → 0 as N → ∞. By independence of

the increments and the variance estimate (3.28), Gaussian estimates yield for some
constant c = c(γ, ε, δ) > 0 :

E [N γ
ε ] =

∑
v∈V δN

P (Av) =
∑
v∈V δN

K∏
j=r+1

P
(
∇ψv(αj) ≥ ∇LγN,ε(αj)

)
≥ c · (logN)−

1
2 (K−r)N

2(1−(1−ε)2)+2(1−ε)2Eγ(1+4ε)+2(1−ε)2
∫ αr
0

σ2(s)

σ̄2(s)
ds

≥ N2(1−(1−ε)2)+2(1−ε)2Eγ(1+4ε) . (3.35)

By the definition of Eγ in Theorem 1.3, and because γl−1 ≤ γ < γ(1 + 4ε) < γl,

∣∣Eγ(1+4ε) − Eγ
∣∣ =

(γ(1 + 4ε)− Jσ2/σ̄(λl−1))2 − (γ − Jσ2/σ̄(λl−1))2

Jσ2(λl−1, 1)

=
16ε2γ2 + 8εγ(γ − Jσ2/σ̄(λl−1))

Jσ2(λl−1, 1)
≤ 12(γ?)2

σ̄2
m∇λm

ε $ ε̃/2 (3.36)

where we used ε < 1/4, γ < γ? and Jσ2(λl−1, 1) ≥ Jσ2(λm−1, 1) = σ̄2
m∇λm to

obtain the inequality. By inserting the bound (3.36) in (3.35), we get

E [N γ
ε ] ≥ N2(1−(1−ε)2)+2(1−ε)2(Eγ−ε̃/2) = N2Eγ−ε̃N2(1−(1−ε)2)(1−Eγ+ε̃/2).

Since (1− ε)2 < 1 and Eγ ≤ 1, it proves the assertion that N2Eγ−ε̃/E [N γ
ε ]→ 0 and

also justify the use of the Paley-Zygmund inequality. In view of (3.34), it suffices
to show, like in Lemma 3.3, that

E
[
(N γ

ε )2
]
≤ (1 +O(N−

1
2K (1−(1−ε)2

)) (E [N γ
ε ])2

to prove the lemma. The proof is almost identical to the proof of Lemma 3.3.
Indeed, by Gaussian estimates and the variance estimates in (3.28), the probabilities
on the increments in Av are for every j and v ∈ V δN :

p̃v,j $ P
(
∇ψv(αj) ≥ ∇LγN,ε(αj)

)
� ẽj√

logN

where the ẽj ’s are the corresponding exponential factors. The proof is exactly the
same up to (3.19) with ẽj ’s instead of ej ’s. From there, the third factor in the
decomposition is still bounded by 1 because of property (3.29), and the rest of the
argument follows if we choose K large enough for a fixed ε and γ. This ends the
proof of the lemma. �
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Appendix A. Technical lemmas

The Markov property of the GFF, which is a consequence of the strong Markov
property of the simple random walk (in the covariance function in (1.1)), implies
that the value of the field inside a neighborhood is independent of the field outside
given the boundary, see e.g. Dynkin (1980). In particular, for theneighborhood [v]λ,
where λ ∈ [0, 1], this implies

φv(λ) $ E
[
φv | F∂[v]λ∪[v]cλ

]
= E

[
φv | F∂[v]λ

]
. (A.1)

Let v, v′ ∈ VN , λ < λ′ and µ < µ′. Another direct consequence is the fact that for
λ, µ > ρ(v, v′) or λ > ρ(v, v′) > µ′,

φv(λ
′)− φv(λ) is independent of φv′(µ

′)− φv′(µ) . (A.2)

This is because the shell [v]λ ∩ [v]cλ′ does not intersect the shell [v′]µ ∩ [v′]cµ′ in
both cases, see Figure 2.2. We stress that, in general, the field ψ does not have the
Markov property. However, by working with increments of the field ψ, the property
analogous to (A.2) can be proved.

Lemma A.1. Let v, v′ ∈ VN , λ < λ′ and µ < µ′. If we have λ, µ > ρ(v, v′) or
λ > ρ(v, v′) > µ′, then

ψv(λ
′)− ψv(λ) is independent of ψv′(µ

′)− ψv′(µ) .

Proof : Let v ∈ VN and λ < λ′. By Definition 1.1 of the field ψ and its conditional
expectation, we have

ψv(λ) =
∑

1≤i≤M

σiE
[
∇φv(λi) | F∂[v]λ∪[v]cλ

]
=
∑

1≤i≤M :
λi−1<λ

σi (φv(λ ∧ λi)− φv(λi−1)) . (A.3)

For the last equality, note that, when λi−1 < λ, the increments φv(λ∧λi)−φv(λi−1)
are linear combinations of variables inside the set ∂[v]λ∪ [v]cλ and, when λi > λ, we
have E[φv(λi)−φv(λ∨λi−1) | F∂[v]λ∪[v]cλ

] = 0 by the tower property of conditional

expectations. By applying the same argument to ψv(λ
′), we get

ψv(λ
′)− ψv(λ) =

∑
1≤i≤M :

λ≤λi−1<λ
′ or λ<λi≤λ′

or λi−1≤λ<λ′≤λi

σi (φv(λ
′ ∧ λi)− φv(λ ∨ λi−1)) . (A.4)

The conclusion of the lemma follows from (A.2). �

In the remainder of this section, we always assume, without loss of generality,
that N = 2n for some n ∈ N and λn, λ′n, λin ∈ N0 for all i ∈ {0, ...,M}.

Lemma A.2. Let δ ∈ (0, 1/2] and λi−1 ≤ λ < λ′ ≤ λi for some i ∈ {1, ...,M},
then

− C1(δ, σi) ≤ V (ψv(λ
′)− ψv(λ))− (λ′ − λ)σ2

i logN ≤ C2(σi) (A.5)

for all v ∈ V δN and N large enough depending on δ. The constant C1 only depends
on δ when λ = 0.

Proof : The Markov property (A.1) yields E
[
φv − φv(λ) | F∂[v]λ′

]
= φv(λ

′)−φv(λ).

Using the conditional variance formula and V (X | F) $ E
[
(X − E [X | F ])2 | F

]
,
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we can compute the variance of (A.4) in the special case λi−1 ≤ λ < λ′ ≤ λi :

V (ψv(λ
′)− ψv(λ)) = σ2

i V
(
E
[
φv − φv(λ) | F∂[v]λ′

])
= σ2

i

(
V (φv − φv(λ))− E

[
V
(
φv − φv(λ) | F∂[v]λ′

)])
= σ2

i (V (φv − φv(λ))− V (φv − φv(λ′))) . (A.6)

But, it is well known that {φu−E [φu | F∂B ]}u∈B is a GFF when B ⊆ Z2 is a finite
box, see e.g. Zeitouni (2014). Simply choose B = [v]s, s = λ, λ′, in (A.6), then by
the variance definition in (1.1),

V (ψv(λ
′)− ψv(λ)) = σ2

i (G[v]λ(v, v)−G[v]λ′
(v, v)) . (A.7)

Using standard estimates for the discrete Green function, we can now evaluate the
last expression. For every finite box B ⊆ Z2, Proposition 1.6.3 of Lawler (1991)
shows that (keeping in mind our choice of normalization by π/2 in (1.1)) :

GB(x, y) =

[ ∑
z∈∂B

Px (Wτ∂B = z) a(z − y)

]
− a(y − x), x, y ∈ B, (A.8)

where

a(w) =

{
log(‖w‖2) + const. +O(‖w‖−2

2 ) if w ∈ Z2\{0}
0 if w = 0

(A.9)

and Px is the law of the simple random walk starting at x ∈ Z2. Using (A.8), we
can rewrite the difference of Green functions in (A.7) as∑

z∈∂[v]λ

Pv

(
Wτ∂[v]λ

= z
)
a(z − v) −

∑
z∈∂[v]λ′

Pv

(
Wτ∂[v]

λ′
= z
)
a(z − v) . (A.10)

When λ′ = 1, we have ‖z − v‖2 = 0 for z ∈ ∂[v]λ′ . Otherwise, we assumed v ∈ V δN ,
so take N large enough (depending on δ) that [v]λ′ is not cut off by ∂VN . We have

‖z − v‖2 ≤
√

2N1−λ for z ∈ ∂[v]λ in general and ‖z − v‖2 ≥ 1
2N

1−λ′ for z ∈ ∂[v]λ′

when λ′ 6= 1. We deduce the following bound on the variance in (A.7) :

max
v∈V δN

V (ψv(λ
′)− ψv(λ)) ≤ σ2

i ((1− λ)− (1− λ′)) logN + σ2
iC

= (λ′ − λ)σ2
i logN + C2(σi) .

Similarly, we have ‖z − v‖2 ≥ δN for z ∈ ∂[v]λ when λ = 0. Otherwise, take N
large enough (depending on δ) that [v]λ is not cut off by the boundary of VN . We

have ‖z − v‖2 ≥ 1
2N

1−λ for z ∈ ∂[v]λ when λ 6= 0 and ‖z − v‖2 ≤ 1√
2
N1−λ′ for

z ∈ ∂[v]λ′ in general. We deduce the following bound on the variance in (A.7) :

min
v∈V δN

V (ψv(λ
′)− ψv(λ)) ≥ σ2

i ((1− λ)− (1− λ′)) logN − σ2
iC(δ)

= (λ′ − λ)σ2
i logN − C1(δ, σi) .

This ends the proof of the lemma. �

Since the upper bound in Lemma A.2 is only valid for N large enough depending
on δ, we cannot immediately conclude that it holds for all v ∈ VN . We show in the
next lemma how to extend the bound.
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Lemma A.3. Let λi−1 ≤ λ < λ′ ≤ λi for a certain i ∈ {1, ...,M}, then

max
v∈VN

V (ψv(λ
′)− ψv(λ)) ≤ (λ′ − λ)σ2

i logN + C(σi) (A.11)

for N large enough.

Proof : When v ∈ ∂VN , the bound is trivial because ψv = 0. Therefore, let v ∈ V oN .
To obtain the upper bound on the difference of Green functions in (A.7), we only
used the fact that [v]λ′ was not cut off by ∂VN for N large enough depending on δ.
Hence, we only need to show that when [v]λ′ is cut off, there exists u ∈ V oN such
that [u]λ′ is not cut off and for which

G[v]λ(v, v)−G[v]λ′
(v, v) ≤ G[u]λ(u, u)−G[u]λ′

(u, u) + C̃(σi) . (A.12)

Assume that [v]λ′ is cut off by ∂VN and choose u to be the center of VN . Clearly, the
neighborhood [u]λ′ is not cut off by the boundary of VN . When λ′ = 1, inequality
(A.12) is trivial because G[v]λ′

(v, v) = G[u]λ′
(u, u) = 0 and G[v]λ(v, v) ≤ G[u]λ(u, u)

since [v]λ is cut off and [u]λ is not. Now, assume λ′ < 1. Denote θ(x) $ x+ u− v
the translation function that moves v to u, see Figure A.4.

VN

[v]λ′

[v]λ

v

[u]λ′

[u]λ

u

Figure A.4. The grey area θ([v]λ) is the translation of [v]λ.

For the rest of the proof, redefine [v]0 as the square box of side length N centered
at v that has been cut off by ∂VN . Since θ([v]λ) ⊆ [u]λ, we have

G[v]λ(v, v)−G[v]λ′
(v, v) =

π

2
· Ev

 τ∂[v]λ
−1∑

k=τ∂[v]
λ′

1{Wk=v}1{τ∂[v]
λ′
<τ∂[v]

λ′∩∂VN
}


=
π

2
· Eu

τ∂θ([v]λ)−1∑
k=τ∂[u]

λ′

1{Wk=u}1{τ∂[u]
λ′
<τθ(∂[v]

λ′∩∂VN )}


≤ π

2
· Eu

 τ∂[u]λ
−1∑

k=τ∂[u]
λ′

1{Wk=u}

 = G[u]λ(u, u)−G[u]λ′
(u, u) .
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This proves (A.12) when λ 6= 0. Since [v]0 $ VN throughout the article and we
defined [v]0 differently in this proof, it remains to show that

max
v∈VN

GVN (v, v)−G[v]0(v, v) ≤ C̃(σi) (A.13)

for (A.12) to be true when λ = 0. By the strong Markov property and (A.8) :

GVN (v, v)−G[v]0(v, v) =
∑

z∈∂[v]0∩V oN

Pv

(
Wτ∂[v]0

= z
)
GVN (z, v)

=
∑

z∈∂[v]0∩V oN

Pv

(
Wτ∂[v]0

= z
) ∑
w∈∂VN

Pz

(
Wτ∂VN

= w
)

(a(w − v)− a(v − z)) .

But ‖w − v‖2 ≤
√

2N for all w ∈ ∂VN and ‖v − z‖2 ≥ 1
2N for all z ∈ ∂[v]0 ∩ V oN .

We get the desired conclusion using (A.9). �

In order to approximate the branching structure of the (σ,λ)-GFF in Lemma 3.1
and Lemma 3.4, we need to show that the variance of ψv(λ) − ψvλ(λ) is bounded
by a constant, where vλ denotes any representative in Rλ that is closest to v. Our
final goal here is to show Lemma A.6. We start by proving a more general version
of Lemma 12 found in Bolthausen et al. (2001). We define

φv(A) $ E
[
φv | F∂(A∩VN )

]
and d(z,A) $ minw∈A ‖z − w‖2 for any non-empty set A ⊆ Z2.

Lemma A.4. Let B ⊆ Z2 be a square box of width smaller or equal to N/2 such
that B ∩ VN 6= ∅. Moreover, let 0 ≤ η < 1 and L ∈ {1, 2, ..., N/4}, then there exists
a constant C = C(η) > 0 such that

max
u,v∈B∩VN
d(u,∂B)=L
‖u−v‖2≤ηL

V (φu(B)− φv(B)) ≤ C . (A.14)

Proof : Let u, v ∈ B ∩ VN be such that d(u, ∂B) = L and ‖u − v‖2 ≤ ηL. Denote
B $ B ∩ VN . Using the conditional variance formula as in (A.6), we have

V (φu(B)− φv(B)) = V (E [φu − φv | F∂B ])

= V (φu − φv)− E [V (φu − φv | F∂B)]

= (GVN (u, u)−GVN (u, v) +GVN (v, v)−GVN (v, u))

− (GB(u, u)−GB(u, v) +GB(v, v)−GB(v, u)) . (A.15)

For this proof, redefine [u]0 as the square box of side length N centered at u that has
been cut off by ∂VN . From (A.13), we know maxu∈VN GVN (u, u)−G[u]0(u, u) ≤ C.
Using the exact same method, we can also easily show that

max
v∈VN

‖u−v‖2≤ηN/2

GVN (v, v)−G[u]0(v, v) ≤ C(η)

because we would have ‖v−z‖2 ≥ (1−η)N/2 for all z ∈ ∂[u]0∩V oN in the reasoning
below (A.13), where η < 1 by hypothesis. Finally, −GVN (u, v) ≤ −G[u]0(u, v), so
proving (A.14) boils down to the proof of the following inequality :

(♣) $

{
(G[u]0(u, u)−G[u]0(u, v))− (GB(u, u)−GB(u, v))
+ (G[u]0(v, v)−G[u]0(v, u))− (GB(v, v)−GB(v, u))

}
≤ C̃(η) . (A.16)

To show (A.16), we consider two cases : d(u, ∂VN ) ≤ L and d(u, ∂VN ) > L.
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Case 1 : d(u, ∂VN ) ≤ L

Since B ⊆ [u]0 (recall that B is a square box of width smaller or equal to N/2
and contains u), then we always have

(♣) ≤ (G[u]0(u, u)−GB(u, u)) + (G[u]0(v, v)−GB(v, v)) . (A.17)

Note that the box B is cut off by ∂VN in Case 1. By translating u, v,B together
in such a way that u doesn’t get closer to ∂VN with respect to both axes, each
difference of Green functions in (A.17) can only increase (see the argument below
Figure A.4). Therefore, it is sufficient to bound (A.17) when d(u, ∂VN ) = L.
Assume d(u, ∂VN ) = L for the rest of Case 1. Since d(u, ∂B) = L by hypothesis, we
have d(u, ∂B) = L and we get d(v, ∂B) ≥ d(1−η)Le ≥ 1 by the triangle inequality.
Consequently,

(♣) ≤ G[u]0(u, u) +G[u]0(v, v)− 2 logL+ C(η) (A.18)

using (A.8) and (A.9).
By the symmetries of the square, we can assume, without loss of generality, that

the minimum in d(u, ∂VN ) = L is achieved on the bottom edge of VN (which lies
on the x-axis). Define the half-space H $ {z = (z1, z2) ∈ Z2 | z2 ≥ 0}. Since we
have [u]0 ⊆ H and d(v, ∂H) ≤ (1 + η)L, by the triangle inequality, then

(♣) ≤ 2 max
z∈H

d(1−η)Le≤d(z,∂H)≤(1+η)L

GH(z, z)− 2 logL+ C(η) . (A.19)

From Proposition 8.1.1 of Lawler and Limic (2010),

GH(z, z) = a(z − z̄) (A.9)
= log(‖z − z̄‖2) + const. +O(‖z − z̄‖−2

2 ) (A.20)

where z = (z1, z2) and z̄ $ (z1,−z2). The conclusion for Case 1 follows from (A.19)
because 2 ≤ 2d(1− η)Le ≤ ‖z − z̄‖2 ≤ 2(1 + η)L in (A.20).

Case 2 : d(u, ∂VN ) > L

For Case 2, we follow the argument from Bolthausen et al. (2001). We give the
details for convenience. For all k ∈ N0, define [u]k0 ⊆ Z2 the square box of side
length 2kN centered at u (not cut off by anything). For instance, [u]0 = [u]00 ∩ VN
in this proof. Note that [u]0 ⊆ [u]10 ⊆ [u]20 ⊆ ... and [u]0 ∪

⋃∞
k=1[u]k0 = Z2, so

(♣) ≤
{

(G[u]0(u, u)−G[u]0(u, v))− (GB(u, u)−GB(u, v))
+ (G[u]0(v, v)−G[u]0(v, u))− (GB(v, v)−GB(v, u))

}
+

∞∑
k=1

{
(G[u]k0

(u, u)−G[u]k0
(u, v))− (G[u]k−1

0
(u, u)−G[u]k−1

0
(u, v))

+ (G[u]k0
(v, v)−G[u]k0

(v, u))− (G[u]k−1
0

(v, v)−G[u]k−1
0

(v, u))

}

=
π

2
· Eu

 ∞∑
k=τ∂B

(1{Wk=u} − 1{Wk=v})

+
π

2
· Ev

 ∞∑
k=τ∂B

(1{Wk=v} − 1{Wk=u})

.
The inequality comes from the fact that each pair of braces in the infinite sum is
equal to V[u]k0

(E[φu−φv | F∂[u]k−1
0

]) ≥ 0 by steps analogous to (A.15). The equality

follows because the infinite sum is telescopic.
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By conditioning on the point z ∈ ∂B where the simple random walk starting
at u or v will be when hitting the boundary of B, and using the strong Markov
property, we deduce

(♣) ≤
∑
z∈∂B

(
Pu(Wτ∂B

=z)−Pv(Wτ∂B
=z)

)
· π

2
· Ez

[ ∞∑
k=0

(1{Wk=u} − 1{Wk=v})

]

=
∑
z∈∂B

(
Pu(Wτ∂B

=z)−Pv(Wτ∂B
=z)

)
· (a(v − z)− a(u− z)) (A.21)

where “ a ”, the potential kernel (see p.37 in Lawler, 1991), is defined by

a(w) $
π

2
· E0

[ ∞∑
k=0

(1{Wk=0} − 1{Wk=w})

]
.

Theorem 1.6.2 in Lawler (1991) shows that this is the same function as in (A.9).
Therefore, we can evaluate (A.21) :

a(v − z)− a(u− z) = log

(
‖v − z‖2
‖u− z‖2

)
+O(‖v − z‖−2

2 )−O(‖u− z‖−2
2 ) . (A.22)

By the triangle inequality, we have

log

(
1− ‖u− v‖2
‖u− z‖2

)
≤ log

(
‖v − z‖2
‖u− z‖2

)
≤ log

(
1 +
‖u− v‖2
‖u− z‖2

)
. (A.23)

Now, notice that

• ‖u− v‖2 ≤ ηL by hypothesis ;
• ‖u− z‖2 ≥ L for all z ∈ ∂B by the assumption of Case 2 ;
• ‖v − z‖2 ≥ ‖u− z‖2 − ‖u− v‖2 ≥ d(1− η)Le for all z ∈ ∂B, from the first

two bullets and the triangle inequality.

Using the three bullets in (A.22) and (A.23), we have

log(1− η)− C1

d(1− η)Le2
≤ (A.22) ≤ log(1 + η) +

C2

d(1− η)Le2
(A.24)

for appropriate constants C1, C2 > 0. Since L ≥ 1 and d(1 − η)Le ≥ 1, inequality
(A.16) follows by regrouping (A.21), (A.22) and (A.24). �

Lemma A.5. Let 0 ≤ λ′ < 1 and d ≥ 1/
√

2. For all v ∈ VN , define Sv,d to be the

set of finite boxes B ⊆ Z2 such that [v]λ′ ⊆ B∩VN and maxz∈∂B ‖v−z‖2 ≤ dN1−λ′ ,
then there exists a constant C = C(d) > 0 such that

max
v∈VN

max
B∈Sv,d

V (φv(λ
′)− φv(B)) ≤ C

for N large enough.

Proof : This follows directly from the calculations in Lemma A.2 and Lemma A.3
where B ∩ VN plays the same role as [v]λ. �

The next lemma is used in equation (3.4) of Lemma 3.1 and equation (3.23) of
Lemma 3.4 to show that the error coming from the approximation of the branching
structure of ψ is small enough that the problem of finding the upper bound for the
maximum and the log-number of γ-high points is the same (modulo the additional
hurdle caused by the decay of variance near the edges of VN ) as in the context of
branching random walks.
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Lemma A.6. Let λj−1 < λ ≤ λj for a certain j ∈ {1, ...,M}, then there exists a
constant C = C(σ1, ..., σj) > 0 such that

max
v∈VN

V (ψv(λ)− ψvλ(λ)) ≤ C

for N large enough.

Proof : The lemma is trivial when λ = 1 since v = v1. Therefore, assume 0 < λ < 1.
Choose vλ ∈Rλ any representative that is closest to v (there may be more than one).
For all µ ∈ (0, λ], the square box Bµ ⊆ Z2 of width 2dN1−µe centered at vλ contains
both [v]µ and [vλ]µ because ‖v − vλ‖∞ ≤ 1

2N
1−λ. Then, by Jensen’s inequality :

V (φv(µ)− φvλ(µ)) ≤ 3 ·

 V (φv(µ)− φv(Bµ))
+ V (φv(Bµ)− φvλ(Bµ))
+ V (φvλ(Bµ)− φvλ(µ))

 ≤ C̃ . (A.25)

To see the last inequality, bound the first and third variance term inside the braces
using Lemma A.5 with d = 3/

√
2 and bound the second variance term inside the

braces using Lemma A.4 with η = 1/
√

2 (since ‖v−vλ‖2 ≤ N1−λ/
√

2 ≤ N1−µ/
√

2),
u = vλ and L = dN1−µe. Now, from (A.3) and Jensen’s inequality, we get

V (ψv(λ)− ψvλ(λ)) = V
(

σj(φv(λ)− φvλ(λ))

+
∑j−1
i=1 (σi − σi+1)(φv(λi)− φvλ(λi))

)
≤ j ·

{
σ2
j V (φv(λ)− φvλ(λ))

+
∑j−1
i=1 (σi − σi+1)2 V (φv(λi)− φvλ(λi))

}
.

Simply use (A.25) to bound each variance term inside the braces by a constant.
This ends the proof of the lemma. �

Lemma A.7 (Gaussian estimates, see e.g. Adler and Taylor, 2007). Suppose that
Z ∼ N (0, σ2) where σ > 0, then for all z > 0,(

1− σ2

z2

)
σ√
2πz

exp

(
− z2

2σ2

)
≤ P (Z ≥ z) ≤ σ√

2πz
exp

(
− z2

2σ2

)
.

Lemma A.8 (Paley and Zygmund, 1932 inequality). Let 0 ≤ X ∈ L2(P) be such
that P (X > 0) > 0, then for all 0 ≤ θ ≤ 1,

P (X ≥ θE [X]) ≥ (1− θ)2 (E [X])2

E [X2]
.

Appendix B. Karush-Kuhn-Tucker theorem and applications

In this section, we state the Karush-Kuhn-Tucker theorem and the solutions
to the two optimization problems posed in Section 2. The optimal path for the
maximum, λ 7→ L?N (λ), comes from the solution to the problem stated in Lemma
B.2 while the optimal path for γ-high points, λ 7→ LγN (λ), comes from the solution
to the problem stated in Lemma B.3. The Karush-Kuhn-Tucker theorem only gives,
a priori, necessary conditions for local optimality. However, the conditions are also
sufficient for global optimality here because the objective function fγ below and the
constraint functions gk are continuously differentiable and concave (fγ? is linear),
see Hanson (1981). The proof of the two lemmas can be found in Appendix A of
Ouimet (2014) and are direct applications of the theorem.



806 L.-P. Arguin and F. Ouimet

Theorem B.1 (Karush-Kuhn-Tucker, see e.g. Delfour, 2012). Let f : Rn1 → R be
an objective function and let

U≥ $ {x ∈ Rn1 | gk(x) ≥ 0 ∀k ∈ {1, ..., n2}}
be a set of constraints specified by the constraint functions gk : Rn1→ R, 1≤ k ≤ n2.
Furthermore, assume that

(a) f attains a local maximum at x? ∈ U≥ with respect to U≥;
(b) f is Fréchet differentiable at x?;
(c) the gk’s are Fréchet differentiable at x?.

When the constraints qualify (they do in Lemma B.2 and Lemma B.3 because the
gk’s are concave and 0 ∈ U>, see Slater’s condition in Delfour, 2012), then there
exists (µ1, ..., µn2) ∈ Rn2 such that the following points hold for all k ∈ {1, ..., n2}
(∇ is the gradient here) :

(1) ∇f(x?) +
∑n2

k=1 µk∇gk(x?) = 0;
(2) gk(x?) ≥ 0;
(3) µk ≥ 0;
(4) µkgk(x?) = 0.

Lemma B.2. (Optimal path for the maximum) Let

fγ?(x1, ..., xM ) $
M∑
i=1

xi

be the objective function to maximize under the constraints

gk(x1, ..., xM ) $
k∑
i=1

(
∇λi −

x2
i

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M,

then there exists a unique global maximum. The solution is given by

x?i = ∇Jσ2/σ̄(λi), 1 ≤ i ≤M,

and the maximum is given by

fγ?(x?1, ..., x
?
M ) = Jσ2/σ̄(1) $ γ?.

Lemma B.3. (Optimal path for γ-high points) Let γl−1 ≤ γ < γl for a certain
l ∈ {1, ...,m}, where the critical levels γl are defined in (1.5). Furthermore, let

fγ(x1, ..., xM−1) $
M−1∑
i=1

(
∇λi −

x2
i

σ2
i∇λi

)
+

(
∇λM −

(γ −
∑M−1
i′=1 xi′)

2

σ2
M∇λM

)
be the objective function to maximize under the constraints

gk(x1, ..., xM−1) $
k∑
i=1

(
∇λi −

x2
i

σ2
i∇λi

)
≥ 0, 1 ≤ k ≤M − 1 ,

then there exists a unique global maximum. The solution is given by

x?i =

{
∇Jσ2/σ̄(λi) when λi ≤ λl−1

∇Jσ2 (λi)

Jσ2 (λl−1,1)
(γ − Jσ2/σ̄(λl−1)) when λi > λl−1

for all i ∈ {1, ...,M − 1} and the maximum is given by

fγ(x?1, ..., x
?
M−1) = (1− λl−1)−

(
γ − Jσ2/σ̄(λl−1)

)2
Jσ2(λl−1, 1)

$ Eγ .
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