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Abstract. We study the spread of an epidemic between two communities. We
model the two communities as independent random graphs, then add a small set
of bridge edges between the communities, and the epidemic on this network is the
contact process. When the epidemic is supercritical, we prove that it survives for
exponentially long in the network size. Further, when the epidemic survives, we
prove that the time for the infection to spread to the second community when
started from a single individual in the first converges in distribution when suitably
normalized. These results generalize to a graph with N communities.

1. Introduction

Let G1 = (V1, E1) and G2 = (V2, E2) be independent instances of G(n, p), the
Erdös-Rényi random graph ensemble with n vertices and edge probability p. Con-
struct the graph G = (V,E) such that V = V1 ∪ V2 and E = E1 ∪ E2 ∪ B, where
B ⊂ V1 × V2 is a set of ‘bridge’ edges chosen independently of G1 and G2. When
B is a small set of edges relative to Ei (i = 1, 2), then the graph will have two
distinct communities with a higher concentration of edges within each community
than between the two communities. We study the contact process (defined below)
on this graph as a model for a Susceptible-Infected-Susceptible epidemic in a net-
work with two communities. Figure 1.1 depicts simulations of the contact process
on a network with 1000 total vertices (n = 500 in each community), mean degree
np = 50 and |B| = 1 bridge edge. Each line represents an independent simula-
tion in which initially there are 2 infected vertices in V1 and all other vertices are
healthy; infected vertices become healthy at rate 1 and transmit the infection to
their neighbors at rate λ = 0.06. In each simulation the infection very quickly
reaches a quasi-equilibrium state in the first component V1, then makes a jump to
the second component V2 at a random time. Our goal is to rigorously prove this
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behavior, and to determine the limiting distribution of the random jump time. We
also prove that the contact process survives for exponentially long (in n) on the
random graph before eventually hitting the absorbing state in which all vertices are
healthy.
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Figure 1.1. Simulation results for the contact process on G with
|B| = 1, n = 500, p = 0.1 and λ = 0.06 so that b = 3. Each line
represents an independent trial started from two initially infected
vertices in V1.

The contact process on a graph G is a continuous time Markov process (ξt)t≥0,
where ξt ⊂ V denotes the set of infected vertices at time t. If λ = λ(n, p) > 0
is the infection rate, then an infected vertex sends the infection to each of its
neighbors in G according to independent Poisson processes with rate λ, and it
becomes uninfected according to an independent Poisson process with rate 1. In
effect, a healthy vertex v /∈ ξt becomes infected at rate λ |N (v) ∩ ξt|, where N (v)
denotes the set of neighbors of v in G, while an infected vertex becomes healthy at
rate 1. This is made rigorous by Harris’ graphical construction, which is described
in Section 4.

The contact process has been studied on two different models of power-law ran-
dom graphs by Chatterjee and Durrett (2009) and Berger et al. (2005). The term
power-law random graph refers to the degree distribution having tails that decay
like ck−α. For the random graphs considered by Chatterjee and Durrett (2009)
and Berger et al. (2005) it was shown that the contact process survives on these
graphs for a long time (superpolynomial in |V |) for any λ > 0. These results were
extended by Can and Schapira (2015) to include graphs with unbounded mean
degree, and by Can (2015) who computed the metastable density for the contact
process in the preferential attachment graph. The results of Chatterjee and Durrett
(2009) were further strengthened by Mountford et al. (2016) and Mountford et al.
(2013), who showed that the infection survives for exponentially long in |V | and
computed the metastable density for the contact process on the configuration model
of power-law random graphs. This was in contrast to the mean-field calculations of
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Pastor-Satorras and Vespignani (2001a,b), which predicted that for α > 3 there is
a λc > 0 so the contact process will die out quickly for λ < λc. Subsequently, Pe-
terson (2011) showed that λc > 0 for the contact process on the complete graph
with random vertex weights following a power-law, and in fact explicitly gives the
value of λc in terms of the second moment of the vertex weights.

1.1. Main Results. We study the high-degree regime where the mean degree of the
random graph scales as np = na where a ∈ (0, 1] is a constant. Since we want
the graph to be connected, we need the average degree to be at least np ≥ c log n
for c > 1. However, part of the proof requires that the random walk on G(n, p)
be very close to uniformly distributed on the vertices after a short amount of time
(see Lemmas 2.6 and 4.1). This part of the proof is simplified when np = na,
though a similar method may work for smaller average degrees. Additionally, in
the early stages of the infection process we must have large neighborhoods so that
transmission events between neighboring infected vertices are rare. For smaller
degrees, additional care will be needed to guarantee that the infection spreads out
quickly.

Before we state our main results, we will need some notation. Let P [·] denote
the law of G = G1 ∪ G2 ∪ B, where G1, G2 ∼ G(n, p) are independent random
graphs, and the edges in B are chosen independently of G1 and G2 such that each
edge in B has exactly one endpoint in G1 and one in G2 (the specific distribution
of the edges in B does not matter for our proofs). The dependence on n and p has
been suppressed from our notation. Once G is chosen according P [·], it is fixed
for all time, so we let PA (·) be the law of the contact process conditional on G
with ξ0 = A ⊂ V , and abbreviate Pv (·) := P{v} (·). We will also often want to
observe the contact process on only one of the two subcomponents. That is, we
will ignore the edges in B, so ξt = ξt ∩ V1 for all t whenever ξ0 = A ⊂ V1, and
we denote the law of this restricted process conditional on G by PG1

A (·). We will
use an = O(bn) to mean an ≤ Cbn for C > 0, an = Ω(bn) to mean an > cbn for
c > 0, and an = o(bn) to mean an/bn → 0. For sequences of non-negative random
variables, we use the notation Xn = OP(an) to mean there exists a constant C > 0
such that P [Xn ≤ Can] → 1 as n → ∞, and Xn = oP(an) to mean that for any
δ > 0, P [Xn ≤ δan]→ 1

First we must guarantee that the contact process on the random graph can
survive long enough to spread from the first community to the second. If npλ =
b < 1 is constant, then the contact process is dominated by a subcritical branching
process, and dies out quickly, so we assume that npλ = b > 1. In this case we have
the following theorem, which says that the supercritical contact process survives
exponentially long on the random graph when it survives for at least Ω(log log n)
time. We assume survival for at least Ω(log log n) time because at this point the
infection has either died out (with probability ≈ 1/b) or reached order log n vertices.

Theorem 1.1. Fix constants a ∈ (0, 1] and b > 1. Consider the contact process,
ξt, on the Erdős-Rényi random graph G1 ∼ G(n, p) with np = na, npλ = b > 1,
and ξ0 = {v} ⊂ V1, and let r = 2

b−1 log log n. Then there exist constants η3, ε, c > 0
depending on b so that for any δ > 0

P

[
PG1
v

(
min

t∈[η3 logn,ecn]
|ξt| ≤ εn

∣∣∣∣ |ξr| > 0

)
> δ

]
→ 0.
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The constants η3 and ε in Theorem 1.1 are defined in Lemma 3.2, and the proof
appears thereafter. We use an approach similar to the one employed by Peterson
(2011) to prove exponential survival of the supercritical contact process on the
complete graph with random vertex weights. That is, we show that if the size of the
contact process initially exceeds γn for some γ > ε, then in a small constant amount
of time, the size of the contact process is likely (with probability exponentially close
to 1) to have increased by the end of the time interval without ever having dropped
below size εn. The main difference between our proof and Peterson’s is that we
must rely on an isoperimetric inequality (Lemma 2.3) to guarantee that the contact
process has room to expand.

Our main question is, if the infection is started at a single vertex v0 ∈ V1, and
the infection is able to spread, how long will it be before a positive fraction of
the vertices in V2 are infected? In other words, how long does the infection take
to cross a bridge between the two populations and spread throughout the second
population? Theorem 1.2 answers this question.

Theorem 1.2. Fix a ∈ (0, 1] and b > 1. Suppose np = na, npλ = b > 1, and
there are 0 < |B| = o(na/ log n log log n) bridges between V1 and V2. Choose any
v0 ∈ V1. There exists ε > 0 so that if τ := inf{t > 0 : |ξt ∩ V2| > εn}, then for any
x ∈ [0,∞) and any δ > 0

P

[∣∣∣∣Pv0 ( τ

na/ |B|
≤ x

)
−
(

1− 1

b

)[
1− exp

(
− (b− 1)2

b
x

)]∣∣∣∣ > δ

]
→ 0.

We remark that in Theorems 1.1 and 1.2, the infimum can be taken over all
initially infected vertices v0 ∈ V inside of the P-probability, and the proofs hold
as written. Theorem 1.2 says that when the infection survives long enough (which
happens with probability ≈ 1 − 1/b), the distribution of τ , the time at which
the infection has spread to a positive fraction of vertices in V2, is approximately
exponential with rate |B| (b−1)2/(bna). The upper bound on the number of bridges
that we can accommodate is because our proof requires that the amount of time
between the first log n successive potential transmissions of the infection between
the two communities is at least Ω(log log n), and the rate at which such potential
transmissions occur is |B|λ = b |B| /na. The maximum number of bridges allowable
to guarantee the separation of timescales seen in Figure 1.1 should be O(na) as
the following mean-field argument demonstrates. For small times t, the number
of infected vertices in V1 at time t is approximately e(b−1)t, since each infected
vertex has expected degree np and spreads the infection to each neighbor at rate
λ, while becoming healthy at rate 1. Therefore, the number of infected vertices
in V1 will reach εn at time s = log(εn)/(b − 1). The expected rate at which the
infection is transmitted from V1 to V2 at time t is approximately e(b−1)tλ |B| /n =
be(b−1)t |B| /n1+a, so the expected number of times the infection is transmitted
from V1 to V2 before time s is∫ s

0

be(b−1)t |B|
n1+a

dt =
b(e(b−1)s − 1) |B|
n1+a(b− 1)

≈ |B| εb
na(b− 1)

.

So, if |B| � na then the infection is likely to spread to V2 before reaching size εn
in V1. It is worthwhile to note that if V1 and V2 are two halves of a homogeneous
Erdős-Rényi random graph with mean degree na then |B| ≈ n1+a, so no separation
of timescales should be observable.
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Theorem 1.2 generalizes easily to N communities, G1, . . . , GN , each independent
and distributed as G(n, p) with np = na (N is fixed). If Bij is the (possibly empty)
set of bridge edges between communities i and j, and Bi = ∪jBij , then we assume
maxi |Bi| = o(na/ log n log log n) and for all 1 ≤ i, j, k, ` ≤ N there are constants
c, C > 0 such that whenever |Bij | > 0 and |Bk`| > 0 then

c ≤ |Bij |
|Bk`|

≤ C.

Under this assumption, all pairs of communities have either a comparable number of
bridges, or no bridges (are not directly connected), so we let βij =
|Bij | /maxk,` |Bk`|. We can then define a process χt ∈ {0, 1}N such that χt(i) = 1 if
and only if community i has at least εn infected vertices at time tna/maxk,` |Bk`|.
If npλ = b > 1 and χ0 = (1, 0, 0, . . . , 0), then χt converges in distribution (as
n→∞) on a finite time interval to the monotone stochastic process in which χt(i)
flips from 0 to 1 at rate

∑
j χt(j)βij(b−1)2/b. That is, at the community level, the

infection process resembles an SI epidemic with inhomogeneous infection rates.
The assumption that the number of bridges between connected communities is of

a single order of magnitude is not necessary, except that things become a bit more
complicated when the number of bridges between communities can span multiple
orders of magnitude. In particular, we need to consider multiple time scales. The
time for the infection to pass from community i to community j is proportional to
the ‘length’ of the shortest path between the two, where a path from i to j is a
sequence of communities i = x0, x1, . . . , xk = j such that

∣∣Bx`x`+1

∣∣ > 0, the ‘length’

of this path is 1/min`
∣∣Bx`x`+1

∣∣ and the shortest path is the one with the minimal
‘length’. This is because most time will be spent while the infection attempts to
cross the narrowest bottleneck.

1.2. Proof Outline. We assume throughout most of the proof of Theorem 1.2 that
there is a single bridge edge, B = {(ub, vb)} with ub ∈ V1 and vb ∈ V2. The
extension to multiple bridges is straightforward, and we comment on how this is
done in Section 5.

Step 1. When the contact process starts from a single vertex, ξ0 = {v0} ⊂ G1,
for a short amount of time, t ≤ r = O(log log n), |ξt| is well approximated by a
continuous time branching process with survival probability 1−1/b, where b = npλ
(Lemmas 3.1 and 3.2). By time r, the contact process has either died out, or is
destined to survive for exponentially long with positive density by Theorem 1.1.
The main difficulty in this part of the proof is managing ‘collision’ events, where an
infected vertex attempts to spread the infection to another already infected vertex.
Once the process grows beyond size na, these collision events potentially stifle the
growth of ξt. We overcome this obstacle by the use of the isoperimetric bound
given in Lemma 2.3. This bound says that as long as the contact process contains
at most a small fraction of vertices in V1, then the number of edges between ξt and
V \ ξt will be large. We use this bound to show that while |ξt| is not too large, it
stochastically dominates a random walk with positive drift.

Step 2. We use the self-duality of the contact process, which essentially means
that the time reversal of the contact process has the same distribution as the contact
process – we carefully define the dual process in Section 4. The dual process started
at time t > 0, {ζts}s∈[0,t], is constructed so that if it is started from a single vertex
ζt0 = {v} ⊂ V , then ζts ∩ ξt−s 6= ∅ for some s ∈ (0, t) if and only if v ∈ ξt. In



14 David Sivakoff

the graphical construction of the contact process, edges attempt to transmit the
infection at rate λ independent of ξt, so we observe the dual process started from ub
when the bridge edge (ub, vb) attempts to transmit the infection. The dual process
will reach size Ω(log n) by time r with probability close to 1 − 1/b. The primary
difficulty at this point, and really the main obstacle in the proof, is getting the dual
process, which has grown backwards in time, to intersect with the contact process,
which has grown forwards in time to size at least εn (since G is not the complete
graph, it is possible for all of the vertices in the contact process to be far from
the vertices in the dual process). We do this by coupling the particles in the dual
process with a random walk process in which each particle jumps according to an
independent simple random walk on the vertices of G and dies at rate 1. Those
particles which survive for time tmix = O(log log n) and do not collide with other
particles will all be well mixed (Lemmas 2.6 and 4.1), and each intersects with the
contact process with probability larger than ε, which implies that the two processes
intersect with high probability.

Step 3. At the times when the bridge edge (ub, vb) attempts to transmit the

infection (a Poisson process {T (ub,vb)
k }k with rate λ) we start an independent dual

process. Each dual process to survive to time r will intersect with ξt and result
in the infection spreading to vb. In turn, vb will spread the infection to V2 with
probability approaching 1− 1/b by repeating the first step of the proof. Therefore,
the number of times that the bridge edge must attempt to transmit the infection
approaches a Geometric([1−1/b]2) distribution, and the interarrival times between
successive attempts are distributed as independent Exp(λ). So on the event that
ξr 6= ∅, the time required to spread the infection to V2 approaches an Exp(λ[1 −
1/b]2) distribution, and the probability that ξr 6= ∅ approaches 1− 1/b; this is the
statement in Theorem 1.2.

Section 2 is devoted to proving two key lemmas about Erdős-Rényi random
graphs with moderate degree – an isoperimetric bound and a strong mixing time
estimate. In Section 3 we compare the early stages of the contact process with a
branching process and prove Theorem 1.1. In Section 4 we prove a key lemma about
the dual of the contact process, and in Section 5 we put everything together for the
proof of Theorem 1.2. The Appendix contains some basic properties of branching
processes that are used in Section 3.

2. Isoperimetric Inequality and Mixing Time Bounds

In this section we prove Lemma 2.3, which gives a bound on the ε-isoperimetric
number (defined below) of an Erdős-Rényi random graph with large mean degree,
and Lemma 2.6, which says that the random walk on the high-degree random
graph is almost uniformly distributed after a constant number of steps. These two
properties of the random graph, which is fixed for all time, hold with P-probability
tending to 1 as n→∞, so when we later consider the contact process on a random
graph, we can assume it has these properties.

We will make frequent use of the following Bernstein inequality for binomial
probabilities (as it appears in Prokhorov (2002)).

Lemma 2.1. Suppose X ∼ Bin(m, q). Then for all t > 0,

P (|X − EX| ≥ t) ≤ 2 exp

{
−t2

2(VarX + t/3)

}
.
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Definition 2.2. For U ⊂ V , let ∂U ⊂ E denote the set of edges with exactly
one end vertex in U . Define the ε-isoperimetric number, iε(G), of a graph,
G = (V,E) as

iε(G) = min

{
|∂U |
|U |

∣∣∣∣ U ⊂ V, |U | ≤ ε |V |} .
Lemma 2.3. If G ∼ G(n, p) is an Erdős-Rényi random graph on n vertices with
edge probability p such that np ≥ 28(log n)3, then for any fixed ε > 0

P
[
iε(G) ≥ (1− ε)np− (np)2/3

]
→ 1

as n→∞.

Note that this bound is essentially tight since if U is any deterministic set of εn
vertices, then |∂U | ∼ Binomial(|U | (1 − ε)n, p) so |∂U | = |U | (1 − ε)np(1 + oP(1)).
The proof is adapted from the proof of a similar result for the 1

2 -isoperimetric
number of random regular graphs due to Bollobás (1988).

Proof : Denote by P (u,m) the probability of the event that G contains a set of
vertices U ⊂ V with |U | = u and |∂U | ≤ m. We will have proved the lemma once
we show that

εn∑
u=1

P (u,m(u)) = o(1)

where m(u) := u
[
(1− ε)np− (np)2/3

]
. By Markov’s inequality

P (u,m(u)) ≤
(
n

u

)m(u)∑
s=0

(
u(n− u)

s

)
ps(1− p)u(n−u)−s

=

(
n

u

)
P (Xu ≤ m(u))

where Xu ∼ Binomial(u(n− u), p). Applying Lemma 2.1 with t = EXu −m(u) =
u(εnp− up+ (np)2/3), noting that t ≥ u(np)2/3 (since u ≤ εn) gives

P (Xu ≤ m(u)) ≤ P
(
|Xu − EXu| ≥ u(np)2/3

)
≤ 2 exp

{
−u2(np)4/3

2
[
u(n− u)p(1− p) + u(np)2/3/3

]}

≤ 2 exp

{
−u(np)2/3

2(np)1/3 + 2/3

}
≤ 2 exp

{
−1

3
u(np)1/3

}
,

provided (np)1/3 > 2/3. Applying the assumption that np ≥ 28(log n)3 completes
the proof:

εn∑
u=1

P (u,m(u)) ≤ 2

∞∑
u=1

[
ne−(np)

1/3/3
]u

= 2ne−(np)
1/3/3

(
1− ne−(np)

1/3/3
)−1

= o(1).

�
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We will make use of a random walk on a random graph in the proof of Theo-
rem 1.2, and we will need a bound on the mixing time of this random walk. Loosely
speaking, this is the number of steps that it takes for the random walk to be ‘close’
to its stationary state. Let

‖µ− ν‖TV :=
1

2

∑
v∈V
|µ(v)− ν(v)| =

∑
v∈V

(µ(v)− ν(v))+ = sup
A⊂V

|µ(A)− ν(A)|

denote the total variation distance between two probability measures, µ and ν, on
the vertices of a graph G = (V,E).

Let Xk be a discrete-time, simple random walk on the vertices of G ∼ G(n, p)
where np = na and a ∈ (0, 1]. We denote the k-step transition probabilities of Xk

by P k(u, v) for u, v ∈ V . Also, we will denote the probability measure on V that
corresponds to the kth step of the random walk started at u by P k(u, ·). Let π be
the stationary distribution for this random walk whenever it is uniquely defined.
Note that the random walk is ergodic (so π is unique) with P-probability tending
to 1 because Xk is aperiodic (G is not bipartite) and irreducible (G is connected)
with probability superpolynomially close to 1.

Typically, the mixing time for a random walk, Xk, is defined to be the smallest
k such that supu∈V

∥∥P k(u, ·)− π
∥∥ ≤ α for some fixed α ∈ (0, 1/2). In the proof of

Lemma 4.1 we need tight control on P k(u, ·) for many vertices, u, simultaneously,
so our goal is to show that for some constant kmix depending only on a,

sup
u∈V

∣∣∣∣P kmix(u,A)− |A|
n

∣∣∣∣ ≤ |A| oP(n−1)

for every A ⊂ V , where the oP(n−1) term does not depend on A. For this we need
the following lemma, which says that the stationary distribution of Xk is almost
uniform.

Lemma 2.4. Let G ∼ G(n, p) with np = na, a ∈ (0, 1], and let π be the stationary
distribution for the simple random walk on G (conditional on its existence and
uniqueness). If µ is the uniform probability distribution on G (µ({v}) = n−1 for
all v ∈ V ), then

P
[
|π(A)− µ(A)| ≤ 3n−(1+a/3) |A| ∀A ⊂ V

]
= 1− exp[−Ω(na/3)].

Proof : It is easily verified that π(v) = deg(v)/(2 |E|) for all v ∈ V . By Lemma 2.1,
deg(v) ∈ [na−n2a/3, na+n2a/3] for all v ∈ V with P-probability 1−exp[−Ω(na/3)].
This implies that, for all A ⊂ V and all sufficiently large n (≥ 23/a),

π(A) ≤ |A|
n

[
1 + n−a/3

1− n−a/3

]
≤ |A|

n

[
1 + 3n−a/3

]
with P-probability 1 − exp[−Ω(na/3)]. Likewise, we have the corresponding lower
bound π(A) ≥ (|A| /n)[1− 3n−a/3] for all A with P-probability 1− exp[−Ω(na/3)],
which proves the lemma, since µ(A) = |A| /n. �

Note that Lemma 2.4 is slightly stronger than the statement that

‖π − µ‖TV ≤ 3n−a/3

with probability 1− exp[−Ω(na/3)].
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Dou (1992) proved that when G ∼ G(n, d/(n− 1)), d ∈ {1, . . . , n− 1}, and k ≥ 0
and v ∈ V are fixed, then

E
∥∥P k(v, ·)− µ

∥∥
TV
≤ c

(
n

dk
+

1

d

)1/2

for some absolute constant c. (Note that µ, the uniform probability distribution,
appears in the statement, and not π.) The problem is that this result does not
provide a bound on the mixing time, which entails taking the supremum over all
initial locations for the random walk. This presents a problem for us, since we want
to say that many independent random walks, started from different locations, will
all be well mixed at the same time. To remedy this for high degree random graphs,
we have the next lemma.

Lemma 2.5. Let G ∼ G(n, p) with np = na for a constant a ∈ (0, 1]. If κ =
b1 + 1/ac, then

P

[
sup
v∈V
‖Pκ(v, ·)− π‖TV ≤ n

−(κa−1)/3
]
→ 1.

The definition of κ in Lemma 2.5 is such that κ is the smallest integer strictly larger
than 1/a.

Proof : We will employ a simple path counting argument similar to an argument
used by Lubetzky and Sly (2010) to prove cutoff for the random walk on random
regular graphs. Let Pk(u, v) denote the number of paths in G of length k that start
at u and end at v. As in the proof of Lemma 2.4, we use Lemma 2.1 to bound the
maximum and minimum degrees of G as deg(v) ∈ [na − n2a/3, na + n2a/3] for all
v ∈ V with P-probability 1 − exp[−Ω(na/3)]. Therefore, the probability that the
random walk traverses any path of length k, (v0, v1), (v1, v2), . . . , (vk−1, vk) ∈ E, is

P 1(v0, v1) · P 1(v1, v2) · · ·P 1(vk−1, vk) ≥ 1

nka
(1− kn−a/3)

with P-probability 1−exp[−Ω(na/3)]. Thus, with P-probability 1−exp[−Ω(na/3)],
for each u, v ∈ V

P k(u, v) ≥ Pk(u, v)
1

nka
(1− kn−a/3).

To obtain a lower bound on Pk(u, v), we introduce the following notation for balls
of radius k in G. For any u ∈ V and k ≥ 0, let

Bk(u) := {v ∈ V | dist(u, v) ≤ k}
∂VBk(u) := Bk(u) \Bk−1(u)

where dist(u, v) denotes the length of the shortest path in G from u to v, and
∂VB0(u) := {u}.

For a pair of vertices u, v ∈ V , let ku =
⌈
κ−1
2

⌉
and kv =

⌊
κ−1
2

⌋
, so that ku+kv =

κ− 1. We will construct a ball of radius ku around u, then remove this ball from V
and construct a second ball around v of radius kv whenever v /∈ Bku(u). Since most
vertices in V are not within ku of u, we will have two disjoint sets of vertices for
most pairs u, v. The number of paths between u and v in G is at least the number
of edges between the vertex boundaries of these two balls, so we seek a uniform
lower bound on this quantity.
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To obtain bounds on |∂VBku(u)|, we start at u and reveal edges layer by layer.
To start, by Lemma 2.1,

P
[
na − n2a/3 ≤ |∂VB1(u)| ≤ na + n2a/3

]
= 1− exp[−Ω(na/3)].

By induction on k, we wish to show that there is C > 0 such that
∣∣|∂VBk(u)| − nak

∣∣
≤ Cnak−a/3 for all k ≤ ku with P-probability 1− exp[−Ω(na/3)]. Assume for some
k ≤ ku that there is a constant Ck−1 > 0 such that

P
[
|∂VBk−1(u)| ≥ n(k−1)a(1− Ck−1n−a/3)

]
= 1− exp[−Ω(na/3)], and

P
[
|Bk−1(u)| ≤ n(k−1)a(1 + Ck−1n

−a/3)
]

= 1− exp[−Ω(na/3)].

Let Ek−1 be the intersection of the two events above; we will show there exists a
constant Ck > 0 such that P [Eck ∩ Ek−1] = exp[−Ω(na/3)]. Since k ≤ ku, we have

that (k− 1)a < 1/2, so on Ek−1, |V \Bk−1(u)| ≥ n− n1/2 for large n. This means
that for large n, on Ek−1, there are at least n(k−1)a+1(1−2Ck−1n

−a/3) and at most
n(k−1)a+1(1 + Ck−1n

−a/3) potential edges between ∂VBk−1(u) and V \ Bk−1(u).
Therefore, by Lemma 2.1,

P

[
Ek−1 ∩

{
|∂VBk(u)| < n(k−1)a+1p(1− 2Ck−1n

−a/3)−
[
n(k−1)a+1p

]2/3}]
= exp[−Ω(na/3)],

which implies

P
[
Ek−1 ∩

{
|∂VBk(u)| < nka(1− 3Ck−1n

−a/3)
}]

= exp[−Ω(na/3)].

Likewise,

P
[
Ek−1 ∩

{
|∂VBk(u)| > nka(1 + 2Ck−1n

−a/3)
}]

= exp[−Ω(na/3)].

It follows that if Ck = 3Ck−1, then P [Eck ∩ Ek−1] = exp[−Ω(na/3)], which con-
cludes the induction argument, and implies we can take C = 3ku .

After exposing Bku(u) we can employ the same argument starting from v ∈
V \Bku(u), but at each step avoiding the vertices in Bku(u). Let

Buk (v) := {w ∈ V \Bku(u) | distu(v, w) ≤ k}
∂VB

u
k (v) := Buk (v) \Buk−1(v),

where distu(v, w) denotes the graph distance on the maximal subgraph of G with
vertex set V \ Bku(u). Note that when a > 1/2, kv = 0, so Bukv (v) = {v}. When
a ≤ 1/2, removing the vertices in Bku(u) from V does not affect any of the estimates
made above, because |Bku(u)| = OP(nkua) and kua ≤ (1 + a)/2 < 1− a/3, so at
the induction step

∣∣V \ (Bku(u) ∪Buk−1(v))
∣∣ ≥ n(1−n−a/3) for large n. Therefore,∣∣∣∣∂VBukv (v)

∣∣− nkva∣∣ ≤ Cnkva−a/3 with probability 1− exp[−Ω(na/3)].
Now we observe that every edge between the sets ∂VBku(u) and ∂VB

u
kv

(v) con-
tributes at least one path of length κ to Pκ(u, v). On the event v /∈ Bku(u) and
the above bounds on ∂VBku(u) and ∂VB

u
kv

(v) hold, there are at least |∂VBku(u)| ·∣∣∂VBukv (v)
∣∣ ≥ n(κ−1)a(1 − 2Cn−a/3) potential edges between the two sets. So by

again applying Lemma 2.1 we have that

P
[
v /∈ Bku(u), Pκ(u, v) < nκa−1(1− 2Cn−a/3 − n−(κa−1)/3)

]
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= exp[−Ω(n(κa−1)/3)],

where the constant in the exponent Ω(n(κa−1)/3)) does not depend on u or v. Since
a ≥ κa− 1 > 0, by applying a union bound over all pairs u, v, we conclude that

P

[
Pκ(u, v) ≥ 1

n
(1− n−(κa−1)/3) ∀u ∈ V and v ∈ V \Bku(u)

]
= 1− exp[−Ω(n(κa−1)/3)].

Therefore, with P-probability 1− exp[−Ω(n(κa−1)/3)], for all large n

sup
u∈V
‖µ− Pκ(u, ·)‖TV = sup

u∈V

∑
v∈V

(
1

n
− Pκ(u, v)

)
+

≤ sup
u∈V

∑
v∈V \Bku (u)

(
1

n
− 1

n
(1− n−(κa−1)/3)

)
+

+
1

n
|Bku(u)|

≤ n−(κa−1)/3.
Applying Lemma 2.4 and the triangle inequality completes the proof. �

An immediate consequence of Lemmas 2.4 and 2.5 is the following lemma, which
we will use in the proof of Theorem 1.2.

Lemma 2.6. Let G ∼ G(n, p) with np = na for a ∈ (0, 1], and P k(u, ·) be probability
measure on V corresponding to the kth step of the simple random walk on G started
at u. Let π be the stationary distribution of the random walk, and µ be the uniform

probability measure on V . If kmix = 7 b1 + 1/ac ·
⌈

1
b1+1/aca−1

⌉
then

P

[
sup
u∈V

∥∥P kmix(u, ·)− π
∥∥
TV
≤ n−2

]
→ 1.

Furthermore,

P

[
sup
u∈V

∣∣P kmix(u,A)− µ(A)
∣∣ ≤ 4n−(1+a/3) |A| ∀A ⊂ V

]
→ 1.

Proof : The first equation is due to the following fact, which is a consequence of
Lemma 4.11 and equation (4.31) of Levin et al. (2009). If supu∈V

∥∥P k(u, ·)− π
∥∥ ≤

α for some k ∈ N and α ∈ (0, 1/2), then for any integer ` > 0,

sup
u∈V

∥∥P `k(u, ·)− π
∥∥ ≤ (2α)`.

In our case, by Lemma 2.5, α = n−(κa−1), k = κ =b1 + 1/ac and ` =7
⌈

1
b1+1/aca−1

⌉
;

note that ‖P k(u, ·)−π‖TV is monotone decreasing in k on the event that the random
walk is ergodic, which occurs with P-probability tending to 1. The second equation
follows from the first and Lemma 2.4. �

3. Survival of the Infection

In this section we will show that the contact process on an Erdős-Rényi random
graph survives for exponentially long whenever it does not die out very quickly. We
will do this by making use of three comparisons with branching processes. We will
use lower and upper bounding branching processes to carefully control the behavior
of the contact process started from a single vertex in its early stages. Then we will
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use a second lower bounding branching process to show that the contact process
will survive to linear size whenever it survives beyond its initial growth stage.
The relevant facts about these branching processes can be found in the Appendix.
Finally, once the contact process occupies a positive fraction of the vertices, we will
compare it to a random walk with positive drift to show that it will continue to
occupy a positive fraction of vertices for exponentially long.

Lemma 3.1. Let r = 2
b−1−2(np)−1/3 log log n = 2

b−1 log log n+o(1) and η2 = 3/ log b.

If the contact process starts with a single vertex, ξ0 = {v}, then

Pv
(

sup
t≤2r
|ξt| > (log n)6

)
= OP(n−2), (3.1)

Pv (0 < |ξr| ≤ η2 log n) = OP((log n)−1), (3.2)∣∣∣∣Pv (|ξr| = 0)− 1

b

∣∣∣∣ = OP((log n)−1). (3.3)

Proof : By Lemma 2.1, the degree of any vertex in G1 or G2 is in the interval
[np − (np)2/3, np + (np)2/3] with P-probability 1 − exp[−Ω((np)1/3)]. For each
n, let Y nt be a branching process in which each individual gives birth to a single
offspring at rate βnY = b−2(np)−1/3 and each individual dies at rate 1. Likewise, let
Znt be a branching process in which each individual gives birth to a single offspring
at rate βnZ = b + (np)−1/3 and each individual dies at rate 1. It is clear that Znt
stochastically dominates |ξt| restricted to the graph G1 (ignoring edges between
G1 and G2) for all time provided Zn0 = |ξ0|. We now apply Lemma A.4 with

r1 = 2
βnZ−1

log log n, η1 = 6b
(b−1) log b >

6βnZ
(βnZ−1) log βnZ

and γ = 7/3, and note that for

large n, γr1 > 2r and η1(log n)17/3 < (log n)6, giving

P

[
Pv
(

sup
t≤γr1

|ξt| > η1(log n)2γ+1

)
≤ P1

(
sup
t≤γr1

Znt > η1(log n)2γ+1

)]
→ 1, so

Pv
(

sup
t≤2r
|ξt| > (log n)6

)
≤ Pv

(
sup
t≤γr1

|ξt| > η1(log n)2γ+1

)
= OP(n−2).

This gives equation (3.1).
This means that with P-probability 1−OP(n−2), we have that

sup
t≤r

max
u∈V
|N (u) ∩ ξt| ≤ (log n)6 < (np)2/3

for large n. Therefore, for all t ∈ [0, r], |N (v) \ ξt| > np − 2(np)2/3, and |ξt|
stochastically dominates Y nt . If η2 = 3/ log b < 3/ log βnY , then by equation (3.1),
Lemma A.2 and the fact that the extinction probability for (Y nt )t≥0 is 1/βnY ,

Pv (|ξr| ≤ η2 log n) ≤ P1 (Y nr ≤ η2 log n) +OP(n−2)

= P1 (Y nr = 0) +OP((log n)−1)

≤ 1

b− 2(np)−1/3
+OP((log n)−1)

=
1

b
+OP((log n)−1).
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Likewise, by an exact calculation of the transition probability for Znr1 on the third
line below, which appears in equation (A.5) of the Appendix, we have (with P-
probability tending to 1 for the first line)

Pv (|ξr| ≤ η2 log n) ≥ P1 (Znr = 0) + Pv (0 < |ξr| ≤ η2 log n)

≥ P1

(
Znr1 = 0

)
+ Pv (0 < |ξr| ≤ η2 log n)

=
1− e−(βnZ−1)r1
βnZ − e−(β

n
Z−1)r1

+ Pv (0 < |ξr| ≤ η2 log n)

=
1

b
−OP((log n)−2) + Pv (0 < |ξr| ≤ η2 log n) .

Combining the last two inequalities (and equation (3.1) to guarantee that ξt dom-
inates Y nt ) completes the proof. �

By Lemma 2.3, the ε-isoperimetric number of Gj for j = 1, 2 is bounded below
as

P
[
i2ε(Gj) ≥ (1− 2ε)np− (np)2/3

]
→ 1.

We choose ε = 1
4 (1− 1/b1/3) > 0 so that

(1− 2ε− (np)−1/3 −O((log n)8b
2/(b−1)(np)−1))b > (1− 3ε)b > 1 (3.4)

for sufficiently large n. Then Lemma 2.3 applied to i2ε(Gj) implies that, with
P-probability tending to 1, for all t such that |ξt| ≤ 2εn,

|∂(ξt)| ≥ (1− 3ε)np |ξt| . (3.5)

The term O((log n)8b
2/(b−1)(np)−1) appears in (3.4) because in the proof of Theo-

rem 1.2 it will be necessary to avoid as many as (log n)8b
2/(b−1) vertices that have

been observed by the dual process defined in the next section. Since (3.5) is a prop-
erty of the graph, which is fixed for all time, we will assume that this inequality
holds for the remainder of the proof. This means that during the time interval
[r, T2ε], where

T2ε = inf{t > r : |ξt| > 2εn},

|ξt| stochastically dominates a branching process with per-capita birth rate (1 −
3ε)b > 1 and death rate 1. Denote this branching process by Wt. Then

P
(
T2ε ≥ s

∣∣ η2 log n < |ξr| < (log n)6b
)
≤ P (Ws ≤ 2εn | Wr = η2 log n)

≤ P (Ws ≤ 2εn | Wr = 1)
η2 logn

,

because the event that Ws ≤ 2εn given that Wr = η2 log n implies that all of
the η2 log n families at time r must not have exceeded size 2εn by time s. If we let
s = 3

(1−3ε)b−1 log n+r, then Lemma A.2 and the observation that −3 logb(1−3ε) < 1

imply

P (Ws ≤ 2εn | Wr = 1)
η2 logn ≤

(
1

(1− 3ε)b
+O(n−2)

)η2 logn

≤ n−3−3 logb(1−3ε) exp[O(n−2 log n)]

= O(n−2).

Lemma 3.1, (3.5) and the last two inequalities imply the next lemma.
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Lemma 3.2. With r defined as in Lemma 3.1, ε = 1
4 (1−1/b1/3) and η3 = 4

(1−4ε)b−1
then

Pv (T2ε ≥ η3 log n | |ξr| > 0) = OP((log n)−1). (3.6)

This means that if the contact process is able to survive to time r, which hap-
pens with P-probability 1− 1/b+OP((log n)−1), then it will reach size 2εn before
time η3 log n. Next we prove Theorem 1.1, which says that if the contact process,
(ξt), survives to time r, then it will continue to survive for exponentially long. In
particular, it will survive long enough to spread to the second component.

Before the proof, we remark that in the proof of Theorem 1.2, we will apply
Theorem 1.1, but with as many asO((log n)6b) vertices removed fromG1 at any time
during the process. This added restriction has no effect on the proof of Theorem 1.1.
Our approach is similar to that of Peterson (2011) for the contact process on the
complete graph with random edge weights.

Proof of Theorem 1.1: We intend to show that there exist constants ρ ∈ (ε, 2ε] and
τ, C > 0 so that

P

[
inf

A⊂V :|A|>ρn
P
(
|ξτ | > ρn, min

t∈[0,τ ]
|ξt| > εn

∣∣∣∣ ξ0 = A

)
≥ 1− e−Cn

]
→ 1, (3.7)

This means that with P-probability exponentially close to 1, if the size of the contact
process initially exceeds ρn, then at time τ the size of the contact process will again
exceed ρn and will not have dropped below εn along the way. By subdividing the
time interval [0, eCn/2] into eCn/2/τ intervals of length τ , this implies that

P

[
sup

A⊂V :|A|>ρn
P
(

min
t∈[0,eCn/2]

|ξt| ≤ εn
∣∣∣∣ ξ0 = A

)
≤ 1

τ
e−Cn/2

]
→ 1. (3.8)

By Lemma 3.2, T2ε < η3 log n with probability 1−o(1) conditional on |ξr| > 0. The
Strong Markov Property and equation (3.8) imply the result with c = C/2.

To prove equation (3.7), first we observe that by monotonicity of the contact
process, it suffices to prove the statement with initial size |A| = ρn. We will
actually prove the stronger statement that for γ = min{ε(1− 4ε)b, 2ε} (recall that
(1− 4ε)b = b2/3 > 1), there exist τ, C > 0 and ρ ∈ (ε, γ), not depending on A, such
that

P
[
P (|ξτ | > ρn, |ξt| ∈ [εn, γn] ∀t ∈ [0, τ ] | ξ0 = A) ≥ 1− e−Cn

]
→ 1. (3.9)

The difference between the events in equations (3.7) and (3.9) is that in the latter
the size of the contact process is also not allowed to exceed size γn.

The total jump rate of |ξt| is at most OP(n) for all t, since all vertices have degrees
close to na = b/λ with P-probability tending to 1. So, for sufficiently small τ > 0
(depending on b), the P-probability that the number of jumps in the time interval

[0, τ ] exceeds 1
4 (γ − ε)n is at most e−C

′n for some C ′ > 0 depending on τ and b. If

we choose ρ = 1
2 (ε+γ), then ξ0 = A with |A| = ρn implies that |ξt| ∈ [εn, γn] for all

t ≤ τ with probability exceeding 1−e−C′n. While |ξt| ∈ [εn, γn], the maximum rate
at which |ξt| → |ξt| − 1 is γn ≤ ε(1 − 4ε)bn < ε(1 − 3ε)bn, which is the minimum
rate at which |ξt| → |ξt| + 1 in this interval by (3.5). Therefore, on the event
that |ξt| ∈ [εn, γn] for all t ≤ τ , |ξt| stochastically dominates a random walk with
positive drift up to time τ . Specifically, |ξt| stochastically dominates Xt, where Xt

is the continuous time random walk that jumps to Xt + 1 at rate ε(1 − 3ε)bn and
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to Xt− 1 at rate ε(1− 4ε)bn. By a standard large deviations argument for random

walks, Pρn (Xτ ≤ ρn) ≤ e−C
′′n, where C ′′ > 0 depends on τ and b. Choosing

C < min{C ′, C ′′}, we have demonstrated equation (3.9), and thus completed the
proof of Theorem 1.1. �

4. Duality

It is well known that the contact process is self-dual in the following sense. For
any two sets of vertices A,B ⊂ V and t > 0

P
(
ξAt ∩B 6= ∅

)
= P

(
ξBt ∩A 6= ∅

)
. (4.1)

For our purposes, the way to understand the contact process duality is through
the graphical representation of the process (see, for example, Part I of Liggett
(1999), which we paraphrase here). To each vertex v ∈ V we assign a rate 1 Poisson
process with jump times {T vk }∞k=1, and to each ordered pair of vertices (u, v) joined
by an edge in G ({u, v} ∈ E) we assign a rate λ Poisson process with jump times

{T (u,v)
k }∞k=1. All of these Poisson processes are independent of one another. To

construct the contact process graphically, we begin by drawing the space-time axes
G × [0,∞). For each k ∈ N and v ∈ V , we draw a recovery dot, •, at the point
(v, T vk ) ∈ G× [0,∞). For each k ∈ N and ordered pair (u, v) such that {u, v} ∈ E,

we draw an infection arrow, →, from (u, T
(u,v)
k ) to (v, T

(u,v)
k ).

We say that there is an active path from (v0, t1) to (v`, t2), with t1 < t2, if there
is a sequence of arrows between v0 and v`,

t1 ≤ T (v0,v1)
k1

< T
(v1,v2)
k2

< · · · < T
(v`−1,v`)
k`

≤ t2,
such that there are no recovery dots encountered along the way,

T vik /∈ [T
(vi−1,vi)
ki

, T
(vi,vi+1)
ki+1

) ∀k ∈ N and i = 1, . . . , `− 1,

T v0k /∈ [t1, T
(v0,v1)
k1

) and T v`k /∈ [T
(v`−1,v`)
k`

, t2] ∀k ∈ N.
We now have that v ∈ ξt if and only if there is a vertex u ∈ ξ0 such that there
is an active path from (u, 0) to (v, t). Therefore, by tracing the arrows in reverse,
we can determine for each v ∈ V whether v ∈ ξt. Because the Poisson processes
determining arrows in each direction between pairs of adjacent vertices are iid, we
have that the sets

{u ∈ V | ∃ v ∈ A s.t. there is an active path from (u, 0) to (v, t)} and

{v ∈ V | ∃u ∈ A s.t. there is an active path from (u, 0) to (v, t)}
are equal in distribution, which is equivalent to the self duality of the contact process
as stated in equation (4.1). Define the dual process, (ζs)s∈[0,t], of the contact process
started at (v, t) ∈ V × [0,∞) by

ζs = {u ∈ V | there is an active path from (u, t− s) to (v, t)}.
We can view (ζs) as being the contact process constructed by time reversal of the
arrows in the graphical representation for (ξt). Note that (ζs) and (ξt) live on the
same probability space, and are such that for any s ∈ [0, t], v ∈ ξt if and only if
ζs ∩ ξt−s 6= ∅. Moreover, P (ζs ∩B 6= ∅ | ζ0 = {v}) = P (ξs ∩B 6= ∅ | ξ0 = {v}) for
all B ⊂ V and s ∈ [0, t] by the duality equation (4.1).

Let {ub, vb} ∈ E be the bridge edge between V1 and V2, such that ub ∈ V1
and vb ∈ V2. We will use the graphical representation of the dual of the contact
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process to determine whether the vertex ub is infected at the times T
(ub,vb)
k . The

idea is that by Theorem 1.1 there are at least εn vertices infected in V1 at the

times T
(ub,vb)
k − r − tmix (where tmix = O(log log n) will be defined later). By

Lemma 3.1, the probability that the dual process started at (ub, T
(ub,vb)
k ) survives

to time T
(ub,vb)
k − r is approximately 1− 1/b. If the dual process does survive, then

by coupling the dual process with a random walk process, we will show that in time
tmix (going backwards in time still) at least one of the active vertices in the dual
process will coincide with one of the εn infected vertices in the contact process at

time T
(ub,vb)
k − r− tmix with high probability. Therefore, ub will be infected at time

T
(ub,vb)
k , which will immediately result in vb becoming infected. In turn, vb starts

a widespread infection in V2 with probability close to 1 − 1/b by Lemma 3.1 and
Theorem 1.1.

To begin, for each k ∈ N we let (ζkt )
t∈[0,T (ub,vb)

k ]
be the dual process on G1 started

at (ub, T
(ub,vb)
k ). Note that {T (ub,vb)

k }k are random times, but they are independent

of {T (u,v)
k }k and {T vk }k for all ordered edges (u, v) and vertices v in G1. The

interpretation of ζkt is that ub ∈ ξ
T

(ub,vb)

k

if and only if ζkt ∩ ξT (ub,vb)

k −t 6= ∅. By

the self-duality of the contact process, we can apply Lemma 3.1 to (ζkt ) to say that∣∣ζkr ∣∣ > 0 with P-probability differing from (1− 1/b) by at most OP((log n)−1), and

when
∣∣ζkr ∣∣ > 0,

∣∣ζkr ∣∣ > η2 log n with P-probability 1 − OP((log n)−1). The purpose
of the next lemma is to show, via a coupling with random walks, that whenever∣∣ζkr ∣∣ > η2 log n, we have ub ∈ ξT (ub,vb)

k

with high probability.

Lemma 4.1. If ζkt is the dual of the contact process started at (ub, T
(ub,vb)
k ), ε > 0

and tmix = 2
b+1 log log n then for all δ > 0

P

[
sup

A⊂V1, |A|≥εn
PG1

(
ζkr+tmix

∩A = ∅
∣∣ ∣∣ζkr ∣∣ ≥ η2 log n

)
> δ

]
→ 0.

For the proof of Lemma 4.1 we will first need to construct the coupling between
ζkt and a random walk process, then prove some facts about this process. Let

Xt = {X1
t , X

2
t , . . . , X

η2 logn
t } be the locations of η2 log n independent, continuous

time, simple random walks on G1 that independently die at rate 1. That is, for
each i, Xi

t is the continuous time random walk on G1 that holds at a vertex u ∈ V1
for time Exp(λ deg(u)), then jumps to v ∼ u with probability 1/ deg(u), and which
has a total life span distributed as Exp(1). When a walker dies, we remove it from
the set Xt.

We can couple Xt with ζkr+t until t = Tdie∧Tcollide, where Tdie = inf{t : Xt = ∅}
is the time at which all of the random walkers die out, and Tcollide = inf{t : Xi

t =

Xj
t for some i 6= j} is the first time at which two random walks collide. First, let

Xi
0 be the ith element of the lexicographical ordering of the vertices in ζkr . We then

update Xi
t according to the infection arrows by always following the first arrow to

arrive in the correct orientation (going backwards in time, so this is actually the
most recent arrow infecting the current vertex at which the walker resides). That
is, if Xi

t is at the vertex u at time t, then Xi
t will jump to v at (random walk) time

T
(ub,vb)
k − r − T (v,u)

` if the arrow from v to u is the next encountered:

T
(v,u)
` = max

w∼u
max
j
{T (w,u)

j | T (w,u)
j < T

(ub,vb)
k − r − t}.
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If, while at the vertex u, Xi
t encounters a recovery dot before an arrow into u (there

is a j so that T
(ub,vb)
k − r− t > Tuj > T

(v,u)
` ) then the random walk dies. It is clear

that this constructs the random walk Xi
t as described above, since the waiting time

until the first infection arrow into the vertex u is distributed as the minimum of
deg(u) random variables with Exp(λ) distribution, which is Exp(λ deg(u)), and the
recovery dots appear at rate 1.

Under this coupling Xt ⊂ ζkr+t. When a collision occurs between two random
walkers, however, our coupling would cause those walks to stick together for all time.
To avoid this, at the time of the first collision, Tcollide, we stop the coupling between
Xt and ζkr+t, and instead let each of the random walks proceed independently (of

the other random walks and of ζkr+t). This way, at time tmix the locations of the
surviving random walks are independent, and as long as tmix < Tcollide they are
still coupled with ζkr+t.

The proof of Lemma 4.1 has three basic ingredients. First, many of the random
walkers will survive for time tmix. Second, most of the random walkers will make
at least kmix jumps by time tmix, so by Lemma 2.6 their locations will be almost
uniformly distributed, so intersection with A is imminent. Finally, a collision is
unlikely to occur before time tmix, so the random walk process will still be coupled
with ζkr+t.

Proof : We assume that
∣∣ζkr ∣∣ ≥ η2 log n, A ⊂ V1 with |A| ≥ εn is fixed, and we have

the coupling described above between Xt and ζkr+t.
First we observe that the random walkers are mutually independent, and so are

their death clocks. Since each random walker dies at rate 1, the number of random
walks that survive to time tmix = 2

b+1 log log n is Binomial(η2 log n, (log n)−2/(b+1)).
So by Chebychev’s inequality, the number of random walks that survive until time
tmix is at least 1

2η2(log n)(b−1)/(b+1) with P-probability 1−OP((log n)−(b−1)/(b+1)).
Next, we want all of the random walkers to make at least kmix steps so we can

apply Lemma 2.6. Since the minimum degree of G1 is at least na − n2a/3 with
P-probability tending to 1, the P-probability that the ith walker, Xi

t , jumps fewer
than kmix times by time tmix (ignoring whether the walker survives to time tmix, as
these events are independent) is at most∑

k<kmix

1

k!
e−b(1−n

−a/3)tmix [b(1− n−a/3)tmix]k

≤ e1−b(1−n
−a/3)tmix [b(1− n−a/3)tmix]kmix

= OP

(
(log n)−2b/(b+1)(log log n)kmix

)
.

Therefore, all of the surviving random walks will make at least kmix jumps by time
tmix with P-probability 1−OP((log n)−(b−1)/(b+1)(log log n)kmix).

Conditional on the events that Xi
t survives to time tmix and makes at least kmix

jumps, then by Lemma 2.6, with P-probability tending to 1 uniformly in A ⊂ V1,

P
(
Xi
tmix
∈ A

)
≥ |A|

n
(1− 4n−a/3) ≥ ε(1− 4n−a/3).

Let E be the event that there are at least 1
2η2(log n)(b−1)/(b+1) random walkers that

survive to time tmix and make at least kmix jumps. Then the probability that none
of the random walkers hits the set A is (with P-probability tending to 1 for the
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second inequality)

P (Xtmix ∩A = ∅) ≤ P (Xtmix ∩A = ∅|E) + P (Ec)

≤ (1− ε(1− 4n−a/3))
1
2η2(logn)

(b−1)/(b+1)

+ P (Ec)

= OP((log n)−(b−1)/(b+1)(log log n)kmix). (4.2)

Now we only need to check that the coupling between Xt and ζkr+t has not
been violated before time tmix. That is, we need to check that Tcollision > tmix.
Observe that Tcollision � T ′ where T ′ ∼ Exp(λ(η2 log n)2), since at any time there

are fewer than |Xt|2 ≤ (η2 log n)2 directed edges connecting vertices occupied by
the random walkers, and each directed edge has a rate λ Poisson clock. Therefore,
the probability that a collision occurs by time tmix is

P (Tcollision ≤ tmix) ≤ P (T ′ ≤ tmix)

= 1− exp
[
−tmixλ(η2 log n)2

]
= 1− exp

[
− 2bη22
b+ 1

n−a(log n)2 log log n

]
= O(n−a(log n)2 log log n). (4.3)

Combining equations (4.2) and (4.3) shows that the coupling between ζkr+t and
Xt will not be violated before time tmix, so

PG1
(
ζkr+tmix

∩A 6= ∅
∣∣ ∣∣ζkr ∣∣ ≥ η2 log n

)
= 1−OP((log n)−(b−1)/(b+1)(log log n)kmix),

which completes the proof. �

5. Proof of Theorem 1.2

First, observe that by equation (3.3) of Lemma 3.1∣∣∣∣PG1
v0 (|ξr| > 0)−

(
1− 1

b

)∣∣∣∣ = OP((log n)−1).

Then by Theorem 1.1, for all δ > 0

P

[
PG1
v0

(
min

t∈[η3 logn,ecn]
|ξt| ≤ εn

∣∣∣∣ |ξr| > 0

)
> δ

]
→ 0,

so if |ξr| > 0, then |ξt| > εn for all times t ∈ [η3 log n, ecn] with P-probability
tending to 1.

Now we consider the sequence of times at which the bridge edge may transmit the

infection from ub to vb, {T (ub,vb)
k }k. The interarrival times, T

(ub,vb)
1 and T

(ub,vb)
k −

T
(ub,vb)
k−1 for k ≥ 2, are independent with distribution Exp(λ). If any of the first

(log n)1/2 interarrival times are smaller than 2r + tmix or if T
(ub,vb)
1 < η3 log n +

r+ tmix, then we will not have enough time to allow the dual process, (ζks ) started

at (u, b, T
(ub,vb)
k ) to intersect with (ξt), and to guarantee that {ub ∈ ξT (ub,vb)

k

} are

essentially independent events for k = 1, . . . , (log n)1/2. The reason for the 2r
term is that once the infection is transmitted to the second component, we need
additional time r to determine whether it survives in that component. Let IA be the
event that all of the first (log n)1/2 interarrival times are each longer than 2r+ tmix,
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that T
(ub,vb)
1 ≥ η3 log n + r + tmix, and that T

(ub,vb)

(logn)1/2
< ecn. Then by a simple

union bound, P (IAc) = OP(n−a log n).
Next, successively for each k = 1, 2, . . . , (log n)1/2 we observe the dual process

(ζks )
s∈[0,T (ub,vb)

k ]
started at (ub, T

(ub,vb)
k ). We observe the kth dual process from time

s = 0 to time s = r, and during this time, by Lemma 3.1, (ζks ) has either died out
or exceeded size η2 log n:

Pv0
(
0 <

∣∣ζkr ∣∣ ≤ η2 log n
)

= OP((log n)−1),∣∣∣∣Pv0 (∣∣ζkr ∣∣ = 0
)
− 1

b

∣∣∣∣ = OP((log n)−1).

If
∣∣ζkr ∣∣ ≥ η2 log n, |ξr| > 0 and IA occurs, then by Lemma 4.1, ζkr+tmix

∩
ξ
T

(ub,vb)

k −r−tmix
6= ∅ with P-probability tending to 1 in P-probability.

We remark here that on the event IA, no two dual processes (ζkt ) for different
values of k ≤ (log n)1/2 are observed simultaneously. By considering the expected
number of offspring in a pure-birth branching process with birth rate 2b > b(1 +
(np)−1/3) starting with a single individual and run to time b+2

b−1 log log n > r+ tmix,

the number of vertices ever infected by any dual process (ζkt ) for k ≤ (log n)1/2

is at most (log n)1/2 · (log n)1+2b(b+2)/(b−1) ≤ (log n)8b
2/(b−1) with P-probability

OP((log n)−1/2). If the kth dual process either fails to survive to time r or fails

to intersect with ξ
T

(ub,vb)

k −r−tmix
, then the contact process (ξt) for t ∈ [T

(ub,vb)
k −

r − tmix, T
(ub,vb)
k ], must avoid any vertices ever infected by (ζks )s∈[0,r+kmix], so as

to avoid observing the same Poisson processes in the graphical construction more
than once. Avoiding these vertices is not a problem, since we have accounted for
the fact that (ξt) must avoid these vertices in equation (3.4), which determines the
lower-bounding branching process used to prove Theorem 1.1.

To this point, by Lemmas 3.1 and 4.1 and Theorem 1.1, the dual process

ζkr+tmix
, started at space-time (ub, T

(ub,vb)
k ), will intersect with ξ

T
(ub,vb)

k −r−tmix
with

P-probability differing from 1− 1
b by at most OP((log n)−1). If successful, the result

is that ub is infected at time T
(ub,vb)
k , and therefore vb ∈ V2 becomes infected at this

time. By applying Lemma 3.1 and Theorem 1.1 to the infection in G2 started at vb,

this will lead to either extinction of the infection within G2 by time T
(ub,vb)
k , or else

wide-spread infection of G2 (with greater than εn infected vertices in G2) by time

T
(ub,vb)
k +η3 log n with P-probability differing from 1− 1

b by at most OP((log n)−1).

Let K denote the smallest value k ≤ (log n)1/2 such that ξ
T

(ub,vb)

k +r
∩ V2 6= ∅, and

let K =∞ if this does not occur. We then have that for all ` < (log n)1/2∣∣∣∣∣∣Pv0 (K > ` | |ξr| > 0)−

[
1−

(
1− 1

b

)2
]`∣∣∣∣∣∣ = OP((log n)−1/2),

which implies that K (given |ξr| > 0) converges in distribution to Geom-

etric
((

1− 1
b

)2)
with P-probability tending to 1. Since the distribution of the

sum of a Geometric
((

1− 1
b

)2)
number of independent Exp(b) random variables

has Exp
(

(b−1)2
b

)
distribution, and since n−aT

(ub,vb)
1 and n−a(T

(ub,vb)
k − T (ub,vb)

k−1 )
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for k ≥ 2 are i.i.d. Exp(b) random variables, we have for fixed x ≥ 0 that∣∣∣∣Pv0 (n−aT (ub,vb)
K > x

∣∣∣ |ξr| > 0
)
− exp

(
− (b− 1)2

b
x

)∣∣∣∣ = oP(1).

The time

τ := inf{t > 0 : |ξv0t ∩ V2| > εn},

differs from T
(ub,vb)
K by OP(log n), which is the time required for the contact process

to grow from a single infected vertex to size εn in each of G1, G2. Therefore, with
equation (3.3) of Lemma 3.1, this completes the proof in the case where there is a
single bridge edge.

The proof for the case of multiple bridges, |B| = o(na/ log n log log n), is nearly

identical if we replace the sequence of bridge transmission times T
(ub,vb)
k with TBk :=

min{T (ub,vb)
` > TBk−1 : (ub, vb) ∈ B, ub ∈ V1, vb ∈ V2, ` ≥ 1} for k ≥ 1 (and

TB0 = 0), the sequence of times at which some bridge edge attempts to transmit
the infection. All that needs to be checked is that the first (log n)1/2 interarrival
times of consecutive transmission attempts are larger than 2r+ tmix = O(log log n)
and the first attempt occurs after time η3 log n. This occurs with P-probability
OP((log logn)−1), as the latter event has the larger probability. The remainder of
the proof proceeds as above. �

Appendix A. Branching Processes

In this section we prove Lemmas A.2 and A.4 regarding the size of a supercritical,
continuous-time branching process, Zt, in which each individual gives birth to a
single offspring at rate β > 1 and dies at rate 1. Let Pr (·) be the probability
measure associated with this process, and for all i, j ∈ Z≥0 and t ≥ 0, let Pij(t) :=
Pr (Zt = j | Z0 = i) =: Pri (Zt = j).

Lemma A.1. Let Zt be a branching process where each individual gives birth to a
single offspring at rate β > 1 and dies at rate 1. If Z0 =

⌈
3 logβ n

⌉
=: α then

Prα (Zt = 0 eventually) ≤ n−3.

Proof : If Z0 = 1, then Pr1 (Zt = 0 eventually) = 1/β Harris (1963). If Z0 = α
then all of the families are mutually independent, so

Prα (Zt = 0 eventually) = β−α ≤ n−3.
�

Lemma A.2. Let Zt be a branching process where each individual gives birth to a
single offspring at rate β > 1 and dies at rate 1. When Z0 = 1, if r = 2

β−1 log log n

and s = 3
β−1 log n, then for any constants C, c > 0 and γ ≥ 1

Pr1 (0 < Zr ≤ C log n) = O((log n)−1), (A.1)

Pr1

(
Zγr >

2β

β − 1
(log n)2γ+1

)
= O(n−2), and (A.2)

Pr1 (0 < Zs ≤ cn) = O(n−2). (A.3)

The proof uses the following standard bounds.
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Lemma A.3. If 0 < y < 1
2 then

− y − y2 ≤ log (1− y) ≤ −y − y2

2
. (A.4)

We now prove Lemma A.2.

Proof : The transition probabilities for Zt can be computed exactly, as in Chapter
V of Harris (1963):

P10(t) =
1− e−(β−1)t

β − e−(β−1)t

P1k(t) = [1− P10(t)] [1− η(t)] η(t)k−1

η(t) =
1− e−(β−1)t

1− 1
β e
−(β−1)t .

(A.5)

So we have at time r = 2
β−1 log log n that

Pr1 (0 < Zr ≤ C log n) =
∑

1≤k≤C logn

P1k(r)

≤ [1− P10(r)] ·
[
1− η(r)C logn

]
. (A.6)

We apply Lemma A.3 to obtain:

log
[
1− e−(β−1)r

]
= log

[
1− (log n)−2

]
≥ −(log n)−2 − (log n)−4

log

[
1− 1

β
e−(β−1)r

]
= log

[
1− 1

β
(log n)−2

]
≤ − 1

β
(log n)−2 − 1

2β2
(log n)−4

whenever n ≥ 5. Subtracting the second line from the first, then multiplying both
sides by C log n gives

log η(r)C logn ≥ −C
(

1− 1

β

)
(log n)−1 −O

(
(log n)−3

)
.

Combining equation (A.6) with this bound and the fact that 1 − e−x ≤ x proves
equation (A.1):

Pr1 (0 < Zr ≤ C log n) ≤ 1− exp
[
log η(r)C logn

]
≤ C

(
1− 1

β

)
(log n)−1 +O

(
(log n)−3

)
.

Equation (A.3) is proved in the same way. To prove equation (A.2) we begin with

Pr1

(
Zγr >

2β

β − 1
(log n)2γ+1

)
=

∑
k> 2β

β−1 (logn)
2γ+1

P1k(γr)

≤ [1− P10(γr)] · η(γr)
2β
β−1 (logn)

2γ+1−1.

Now applying Lemma A.3 as above (but with the upper and lower bounds reversed)
yields:

Pr1

(
Zγr >

2β

β − 1
(log n)2γ+1

)
≤ exp

[
log η(γr)

2β
β−1 (logn)

2γ+1−1
]

≤ exp

[
− 2β

β − 1

(
1− 1

β

)
log n+O

(
(log n)−1

)]
= O(n−2).
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�

Lemma A.4. Using the same setup as in Lemma A.2, let γ ≥ 1 and let η1 =
6β

(β−1) log β , then

Pr1

(
sup

0≤t≤γr
Zt ≥ η1(log n)2γ+2

)
= O

(
n−2

)
.

Proof : For the duration of this proof let T := inf{t | Zt ≥ η1(log n)2γ+2}. Then
the claim in Lemma A.4 is equivalent to P1 (T ≤ γr) = O

(
n−2

)
. Our strategy is to

use equation (A.2) in Lemma A.2 to say that Zγr can be at most O((log n)2γ+1),
then use the Strong Markov Property to say that if Zt exceeds η1(log n)2γ+2 at
any time t ≤ γr, then it is unlikely to drop below size O((log n)2γ+1) by time γr.
In the calculation below, we apply the Strong Markov Property and translation
invariance of the branching process at the third line. The fourth line will follow by
observing that for the branching process to transition from size η1(log n)2γ+2 to size
2β
β−1 (log n)2γ+1, then at least one of the 2β

β−1 (log n)2γ+1 sets of 3 logβ n individuals

must go extinct. The last line will follow from Lemma A.1.

Pr1 (T ≤ γr) ≤ Pr1

(
T ≤ γr, Zγr ≤

2β

β − 1
(log n)2γ+1

)
+ Pr1

(
Zγr >

2β

β − 1
(log n)2γ+1

)
≤ Pr1

(
Zγr ≤

2β

β − 1
(log n)2γ+1

∣∣∣∣ T ≤ γr)+O(n−2)

≤ Prη1(logn)2γ+2

(
inf
t≤γr

Zt ≤
2β

β − 1
(log n)2γ+1

)
+O(n−2)

≤ 1− [1−Pr3 logβ n (Zγr = 0)]
2β
β−1 (logn)

2γ+1

+O(n−2)

≤ 1−
[
1− 1

n3

] 2β
β−1 (logn)

2γ+1

+O(n−2) = O
(
n−2

)
.

�
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