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Abstract. The asymptotic normality of the Maximum Likelihood Estimator
(MLE) is a cornerstone of statistical theory. In the present paper, we provide
sharp explicit upper bounds on Zolotarev-type distances between the exact, un-
known distribution of the MLE and its limiting normal distribution. Our approach
to this fundamental issue is based on a sound combination of the Delta method,
Stein’s method, Taylor expansions and conditional expectations, for the classical
situations where the MLE can be expressed as a function of a sum of indepen-
dent and identically distributed terms. This result is tailored for the broad class of
one-parameter exponential family distributions.

1. Introduction

The asymptotic normality of maximum likelihood estimators (MLEs) is one of
the best-known and most fundamental results in mathematical statistics. Under
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certain regularity conditions (given later in this section), we have the following
classical theorem, first discussed in Fisher (1925).

Theorem 1.1 (Asymptotic Normality of the MLE). Let X1, . . . , Xn be i.i.d. ran-
dom variables with probability density (or mass) function f(xi|θ), where θ is a scalar
parameter. Its true value is denoted by θ0. Assume that the MLE exists and it is
unique and conditions (R1)-(R4), see below, are satisfied. Then√

ni(θ0)
(
θ̂n(X)− θ0

)
d−−−−→

n→∞
N (0, 1),

where i(θ0) is the expected Fisher information quantity and
d→ means convergence

in distribution.

The aim of the present paper is to complement this qualitative result with a quan-
titative statement, in other words, to find the best possible approximation for the

distance, at finite sample size n, between the distribution of
√
ni(θ0)

(
θ̂n(X)− θ0

)
on the one hand and N (0, 1) on the other hand. In mathematical terms, for
Z ∼ N (0, 1), we are interested in the quantity

dH

(√
ni(θ0)

(
θ̂n(X)− θ0

)
, Z
)

= sup
h∈H

∣∣∣E [h(√ni(θ0)
(
θ̂n(X)− θ0

))]
− E [h (Z)]

∣∣∣ (1.1)

with

H = {h : R→ R, absolutely continuous and bounded} . (1.2)

Distances of this type are called Zolotarev-type distances. Our focus will lie on
the classical situations where the MLE can be expressed as a function of a sum of
independent and identically distributed terms.

Consider an i.i.d. sample of observations X = (X1, . . . , Xn). Writing θ̂n(X)
the MLE of the scalar parameter of interest θ ∈ Θ ⊆ R, we are interested in
settings where there exists a one-to-one twice differentiable mapping q : Θ → R
with q′(θ) 6= 0 ∀θ ∈ Θ such that

q
(
θ̂n(X)

)
=

1

n

n∑
i=1

g(Xi) (1.3)

for some g : R → R. Situations of this kind are all but rare; with f(x|θ) the
probability density (or mass) function, classical examples include

• the normal distribution with density f(x|µ, σ2)= 1
σ
√

2π
exp

(
− 1

2σ2 (x− µ)2
)
,

x ∈ R, for which µ ∈ R is our unknown parameter, whereas σ > 0 is
considered to be known. The MLE for θ = µ is

θ̂n(X) =
1

n

n∑
i=1

Xi;

• the normal distribution, where now the mean µ is known and θ = σ2

represents the unknown parameter, with

θ̂n(X) =
1

n

n∑
i=1

(Xi − µ)2;
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• the Weibull distribution with density f(x|α, σ) = α
σ

(
x
σ

)α−1
exp

(
−
(
x
σ

)α)
,

x ≥ 0, where σ is the unknown scale parameter and α > 0 is fixed. The
MLE for θ = σ is defined through(

θ̂n(X)
)α

=
1

n

n∑
i=1

Xα
i ;

• the Laplace scale model with density f(x|σ) = 1
2σ exp(−|x|/σ), θ = σ > 0,

over R, for which

θ̂n(X) =
1

n

n∑
i=1

|Xi|.

The broad one-parameter exponential families do satisfy condition (1.3); actually, it
is possible to show that MLEs of the form (1.3) are characteristic of these families,
see Proposition 3.1 for details. Hence, our results do apply to most of the well-
known distributions.

We now present in detail the notation used throughout the paper. We write Eθ[]
the expectation under the specific value θ of the parameter. In line with the notation
used above, the joint density or probability mass function of X is written f(x|θ).
The true, unknown value of the parameter is θ0 and Θ denotes the parameter
space. For Xi = xi some observed values, the likelihood function is denoted by
L(θ;x) = f(x|θ) and we denote its natural logarithm, called the log-likelihood
function, by l(θ;x). The derivatives of the log-likelihood function with respect to θ
are l′(θ;x), l′′(θ;x), . . . , l(j)(θ;x), for j any integer greater than 2, and i(θ) denotes
the expected Fisher information number for one random variable. Whenever the

MLE exists and is also unique, we will write it as before under the form θ̂n(X). For
Θ being an open interval, we use the results in Mäkeläinen et al. (1981) to secure
the existence and uniqueness of the MLE. Thus, it suffices to assume that:

(A1) The log-likelihood function l(θ;x) is a twice continuously differentiable
function with respect to θ and the parameter varies in an open interval
(a, b), where a, b ∈ R ∪ {−∞,∞} and a < b;

(A2) lim
θ→a,b

l(θ;x) = −∞;

(A3) l′′(θ;x) < 0 at every point θ ∈ (a, b) for which l′(θ;x) = 0.

Note that we tacitly assume those conditions in Theorem 1.1 when requiring ex-
istence and uniqueness of the MLE. Asymptotic normality further requires the
following sufficient regularity conditions:

(R1) the parameter is identifiable, which means that if θ 6= θ′, then ∃x : f(x|θ) 6=
f(x|θ′);

(R2) the density f(x|θ) is three times differentiable with respect to θ, the third
derivative is continuous in θ and

∫
f(x|θ) dx can be differentiated three

times under the integral sign;
(R3) for any θ0 ∈ Θ and for X denoting the support of f(x|θ), there exists a

positive number ε and a function M(x) (both of which may depend on θ0)
such that∣∣∣∣ d3

dθ3
log f(x|θ)

∣∣∣∣ ≤M(x) ∀x ∈ X, θ0 − ε < θ < θ0 + ε,

with Eθ0 [M(X)] <∞;
(R4) i(θ) > 0, ∀θ ∈ Θ.
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These conditions, in particular (R2), ensure that, provided the respective expres-
sions exist, Eθ[l

′(θ;X)] = 0 and Varθ[l
′(θ;X)] = ni(θ). These conditions form the

basis of Theorem 1.1 above; see page 472 of Casella and Berger (1990) for a basic
sketch of the proof.

The first paper to address the problem of assessing the accuracy of the normal
approximation for the MLE is Anastasiou and Reinert (2017). After deriving gen-
eral bounds on Zolotarev-type distances, they use the bounded Wasserstein distance
dbW , which is also known as Fortet-Mourier distance (see, e.g., Nourdin and Peccati,
2012) and is linked to the Kolmogorov distance (H is the class of indicator functions

of half-spaces) via dK(·, ·) ≤ 2
√
dbW (·, ·). We state in Theorem 2.4 of Section 2 the

bound obtained in that paper. For the broad class of distributions satisfying (1.3),
our bound is better than, or at least as good as, the Anastasiou and Reinert (2017)
bound (hereafter referred to as AR-bound) both in terms of sharpness and simplic-
ity. The tools we use to reach this result are the Delta method, Stein’s method for
normal approximation, Taylor expansions and conditional expectations.

The paper is organised as follows. Our new upper bound is described, proved
and compared to the AR-bound in Section 2, and practical statistical applications
are exhibited. In Section 3 we then apply our results to the class of one-parameter
exponential family distributions and treat some specific examples in detail.

2. New bounds on the distance to the normal distribution for the MLE

In order to obtain bounds on the aforementioned distance, we partly employ the
following lemma. From now on, unless otherwise stated, || · || denotes the infinity
norm || · ||∞. Also, for the sake of presentation we drop the subscript θ0 from the
expectation and variance.

Lemma 2.1 (Reinert, 1998). Let Y1, . . . , Yn be independent random variables with

E(Yi) = 0, Var(Yi) = σ2 > 0 and E
[
|Yi|3

]
< ∞. Let W = 1√

n

∑n
i=1 Yi, with

E(W ) = 0, Var(W ) = σ2 and let K ∼ N (0, σ2). Then for any function h ∈ H,
with H given in (1.2), one has

|E[h(W )]− E[h(K)]| ≤ ‖h
′‖√
n

(
2 +

1

σ3
E
[
|Y1|3

])
.

As we shall see below, our strategy consists in benefiting from the special form of

q(θ̂n(X)), which is a sum of random variables and thus allows us to use the sharp
bound of this lemma. It is precisely at this point that the Delta method comes into

play: abusing notations and language, instead of comparing θ̂n(X) to Z ∼ N (0, 1)

we rather compare q(θ̂n(X)) to Z, and then bound the distance between θ̂n(X)

and q(θ̂n(X)). The outcome of this approach is the next theorem, the main result
of the present paper.

Theorem 2.2. Let X1, . . . , Xn be i.i.d. random variables with probability density
(or mass) function f(xi|θ) and let Z ∼ N (0, 1). Assume that (R1)-(R4) are satis-
fied. Furthermore, assume that the MLE exists and (1.3) is satisfied. In addition,

the mapping g : R → R is such that E
[
|g(X1)− q(θ0)|3

]
< ∞ for θ0 ∈ Θ the true

value of the parameter. Then, for any h ∈ H as in (1.2),
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(1) if q′′(·) is not uniformly bounded but for any θ0 ∈ Θ there exists 0 < ε =
ε(θ0) such that sup

θ:|θ−θ0|<ε
|q′′(θ)| <∞, we have

∣∣∣E [h(√n i(θ0)
(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣
≤ ‖h

′‖√
n

(
2 +

[i(θ0)]
3
2

|q′(θ0)|3
E
[
|g(X1)− q(θ0)|3

])

+ E

[(
θ̂n(X)− θ0

)2
](

2
‖h‖
ε2

1{∃θ ∈ Θ : q(θ) 6= θ}+
‖h′‖

√
n i(θ0)

2 |q′(θ0)|
sup

θ:|θ−θ0|≤ε
|q′′(θ)|

)
;

(2.1)

(2) if q′′(·) is uniformly bounded, with |q′′(θ)| ≤ B∗ ∀θ ∈ Θ for some B∗ > 0,
we have∣∣∣E [h(√n i(θ0)

(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣
≤ ‖h

′‖√
n

(
2 +

[i(θ0)]
3
2

|q′(θ0)|3
E
[
|g(X1)− q(θ0)|3

])

+ ‖h′‖B∗
√
n i(θ0)

2 |q′(θ0)|
E

[(
θ̂n(X)− θ0

)2
]
1 {∃θ ∈ Θ : q(θ) 6= θ} . (2.2)

Proof : The asymptotic normality of the MLE is explicitly stated in Theorem 1.1.
Applying the widely known Delta method to this result in combination with the
requirement q′(θ0) 6= 0 yields√

n i(θ0)

q′(θ0)

(
q
(
θ̂n(X)

)
− q (θ0)

)
d−−−−→

n→∞
N (0, 1) (2.3)

with q
(
θ̂n(X)

)
= 1

n

∑n
i=1 g(Xi). Using the triangle inequality,∣∣∣E [h(√n i(θ0)

(
θ̂n(X)− θ0

))]
− E[h(Z)]

∣∣∣
≤

∣∣∣∣∣E
[
h

(√
n i(θ0)

q′(θ0)

(
q
(
θ̂n(X)

)
− q (θ0)

))]
− E[h(Z)]

∣∣∣∣∣ (2.4)

+

∣∣∣∣∣E
[
h
(√

n i(θ0)
(
θ̂n(X)− θ0

))
− h

(√
n i(θ0)

q′(θ0)

(
q
(
θ̂n(X)

)
− q (θ0)

))]∣∣∣∣∣ .
(2.5)

We first obtain an upper bound for (2.4) using (indirectly) Stein’s method via
Lemma 2.1. Some simple rewriting yields√

n i(θ0)

q′(θ0)

(
q
(
θ̂n(X)

)
− q (θ0)

)
=

√
n i(θ0)

q′ (θ0)

(
1

n

n∑
i=1

g (Xi)− q (θ0)

)

=
1√
n

n∑
i=1

{√
i (θ0)

q′(θ0)
(g(Xi)− q(θ0))

}
=

1√
n

n∑
i=1

Yi,
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where Yi =

√
i(θ0)

q′(θ0) (g(Xi)− q(θ0)) , i = 1, 2, . . . , n and, obviously, the Yi’s are inde-

pendent and identically distributed random variables. The Central Limit Theorem

applied to 1√
n

∑n
i=1 Yi implies that 1√

n

∑n
i=1(Yi − E(Y1))

d−−−−→
n→∞

N (0,Var(Y1)).

From (2.3) we know however that 1√
n

∑n
i=1 Yi

d−−−−→
n→∞

N (0, 1); comparing the two

asymptotic results reveals that, necessarily (since two normal distributions can only
be equal if their expectations and variances are the same), we have

E [g(X1)] = q(θ0) and Var [g(X1)] =
(q′(θ0))2

i(θ0)
,

where condition (R4) allows to divide by i(θ0). Hence, as Lemma 2.1 requires,
E[Yi] = 0, Var[Yi] = 1, and E[|Yi|3] < ∞ thanks to the additional condition on g.
Applying the result of the lemma we get∣∣∣∣∣E

[
h

(√
n i(θ0)

q′(θ0)

(
q
(
θ̂n(X)

)
− q (θ0)

))]
− E[h(Z)]

∣∣∣∣∣
≤ ‖h

′‖√
n

(
2 +

[i(θ0)]
3
2

|q′(θ0)|3
E
[
|g(X1)− q(θ0)|3

])
. (2.6)

Now we are searching for an upper bound on (2.5). Since the case q(θ) = θ ∀θ ∈ Θ
is obvious, we from here on assume that q(θ) 6= θ. We denote

A := A(q, θ0,X)

:= h
(√

n i(θ0)
(
θ̂n(X)− θ0

))
− h

(√
n i(θ0)

q′(θ0)

(
q
(
θ̂n(X)

)
− q (θ0)

))
and our scope is to find an upper bound for |E [A]|.
Case 1: ∀θ ∈ Θ there exists 0 < ε = ε(θ0) such that sup

θ:|θ−θ0|<ε
|q′′(θ)| < ∞. Then,

using the law of total expectation related to conditioning on
∣∣∣θ̂n(X)− θ0

∣∣∣ ≥ ε or∣∣∣θ̂n(X)− θ0

∣∣∣ < ε yields

|E[A]| ≤ E [|A|] = E
[
|A|

∣∣∣ ∣∣∣θ̂n(X)− θ0

∣∣∣ ≥ ε]P (∣∣∣θ̂n(X)− θ0

∣∣∣ ≥ ε)
+ E

[
|A|

∣∣∣ ∣∣∣θ̂n(X)− θ0

∣∣∣ < ε
]
P
(∣∣∣θ̂n(X)− θ0

∣∣∣ < ε
)
.

Markov’s inequality and the elementary results of P
(∣∣∣θ̂n(X)− θ0

∣∣∣ < ε
)
≤ 1 and

|A| ≤ 2‖h‖ further yield

|E(A)| ≤ 2‖h‖
E

[(
θ̂n(X)− θ0

)2
]

ε2
+ E

[
|A|

∣∣∣∣∣∣θ̂n(X)− θ0

∣∣∣ < ε
]
. (2.7)

We now focus on the conditional expectation on the right-hand side of (2.7). A

second-order Taylor expansion of q
(
θ̂n(x)

)
about θ0 gives

q
(
θ̂n(x)

)
= q(θ0) +

(
θ̂n(x)− θ0

)
q′(θ0) +

1

2

(
θ̂n(x)− θ0

)2

q′′(θ∗), (2.8)
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for θ∗ between θ̂n(x) and θ0. Since q′(θ) 6= 0 ∀θ ∈ Θ is assumed, we can multiply

both sides in (2.8) with

√
n i(θ0)

q′(θ0) . Rearranging the terms,√
n i(θ0)

(
q
(
θ̂n(x)

)
− q(θ0)

)
q′(θ0)

=
√
n i(θ0)

(
θ̂n(x)− θ0

)
+

√
n i(θ0)

2q′(θ0)
q′′ (θ∗)

(
θ̂n(x)− θ0

)2

.

The above result along with another first-order Taylor expansion (recall that
√
n
(
θ̂n(X)− θ0

)2

= oP(1) as n→∞) gives

h
(√

n i(θ0)
(
θ̂n(x)− θ0

))
− h

(√
n i(θ0)

q′(θ0)

(
q
(
θ̂n(x)

)
− q(θ0)

))

= −
√
n i(θ0)

2q′(θ0)
q′′(θ∗)

(
θ̂n(x)− θ0

)2

h′(t(x)), (2.9)

where t(x) is between
√
n i(θ0)

(
θ̂n(x)− θ0

)
and

√
n i(θ0)

q′(θ0)

(
q
(
θ̂n(x)

)
− q(θ0)

)
.

Equality (2.9) combined with Lemma 2.1 in Anastasiou and Reinert (2017) related
to conditional expectations yield

E
[
|A|

∣∣∣ ∣∣∣θ̂n(X)− θ0

∣∣∣ < ε
]

= E

[∣∣∣∣∣−
√
n i(θ0)

2q′(θ0)
q′′(θ∗)

(
θ̂n(X)− θ0

)2

h′(t(X))

∣∣∣∣∣
∣∣∣∣∣ ∣∣∣θ̂n(X)− θ0

∣∣∣ < ε

]

≤
‖h′‖

√
n i(θ0)

2 |q′(θ0)|
E

[
|q′′(θ∗)|

(
θ̂n(X)− θ0

)2
∣∣∣∣ ∣∣∣θ̂n(X)− θ0

∣∣∣ < ε

]
≤
‖h′‖

√
n i(θ0)

2 |q′(θ0)|
sup

θ:|θ−θ0|<ε
|q′′(θ)|E

[(
θ̂n(X)− θ0

)2
∣∣∣∣ ∣∣∣θ̂n(X)− θ0

∣∣∣ < ε

]
≤
‖h′‖

√
n i(θ0)

2 |q′(θ0)|
sup

θ:|θ−θ0|<ε
|q′′(θ)|E

[(
θ̂n(X)− θ0

)2
]
. (2.10)

Combining the bounds in (2.6), (2.7) and (2.10) we get the result in (2.1).
Case 2: There exists B∗ > 0 such that q′′(·) is uniformly bounded with
|q′′(θ)| ≤ B∗ ∀θ ∈ Θ. In this case, we do not need to take conditional expec-
tations. The result in (2.9) gives

E [|A|] ≤
‖h′‖

√
n i(θ0)

2 |q′(θ0)|
E

[
|q′′(θ∗)|

(
θ̂n(X)− θ0

)2
]

≤ B∗
‖h′‖

√
n i(θ0)

2 |q′(θ0)|
E

[(
θ̂n(X)− θ0

)2
]
. (2.11)

The above result and the bound in (2.6) give the bound in (2.2) for the case where
q′′(·) is uniformly bounded in θ. �

Remark 2.3. (1) The convergence of the terms (apart from the first one) is governed

by the asymptotic behaviour of the mean squared error E

[(
θ̂n(X)− θ0

)2
]
, whose
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rate of convergence is O
(

1
n

)
. This result is obtained using the decomposition

E
[
(θ̂n(X)− θ0)2

]
= Var

[
θ̂n(X)

]
+ bias2

[
θ̂n(X)

]
. (2.12)

Under the standard asymptotics (from the regularity conditions) the MLE is asymp-
totically efficient, meaning that

nVar
[
θ̂n(X)

]
−−−−→
n→∞

[i(θ0)]−1,

and hence the variance of the MLE is of order 1
n . In addition, from Theorem 1.1

the bias of the MLE is of order 1√
n

; see also Cox and Snell (1968), where no explicit

conditions are given. Combining these two results and using (2.12) shows that the
mean squared error of the MLE is of order 1

n .

(2) In the simplest possible situation where θ̂n(X) is already a sum of i.i.d. terms,
q(x) = x and hence our upper bound simplifies to

∣∣∣E [h(√n i(θ0)
(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣
≤ ‖h

′‖√
n

(
2 + [i(θ0)]

3
2 E
[
|g(X1)− θ0|3

])
,

which is equivalent to Lemma 2.1.
(3) One may wonder whether asking (R1)-(R4) to hold is not a too strong assump-
tion given that we assume the MLE to be of the special form (1.3).
Indeed, one can easily get from the Central Limit Theorem that
√
n
(
q(θ̂(X))− E[g(X1)]

)
d−−−−→

n→∞
N (0,Var[g(X1)]) without needing the asymptotic

normality of θ̂(X) through (R1)-(R4). However, without this asymptotic normality

of θ̂(X) we cannot obtain (2.3), and without the latter explicit asymptotic result we
cannot link E[g(X1)] and Var[g(X1)] to their corresponding q-based quantities. The
sequel of the proof would boil down. This is the (perhaps not so obvious) reason
why from the beginning of the proof we need the regularity conditions (R1)-(R4).

In order to appreciate the sharpness and simplicity of our new bounds, we com-
pare our result to the AR-bound. For ease of presentation the comparison is con-
cerned with the case where q′′(·) is not uniformly bounded, but only bounded in
a neightbourhood of θ0. Therefore, we employ the result in (2.1). Similar results
hold when q′′(·) is uniformly bounded. We now state the main result of Anastasiou
and Reinert (2017).

Theorem 2.4 (Anastasiou and Reinert, 2017). Let X1, X2, . . . , Xn be i.i.d. random
variables with density or frequency function f(xi|θ) such that the regularity condi-

tions (R1)-(R4) are satisfied and that the MLE, θ̂n(X), exists and it is unique.

Assume that E

[∣∣∣( d
dθ logf(X1|θ)

)
θ=θ0

∣∣∣3] < ∞ and that E

[(
θ̂n(X)− θ0

)4
]
< ∞.

Let 0 < ε = ε(θ0) be such that (θ0 − ε, θ0 + ε) ⊂ Θ as in (R3) and let Z ∼ N (0, 1).
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Then for any function h that is absolutely continuous and bounded,∣∣∣E [h(√n i(θ0)
(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣
≤ ‖h

′‖√
n

2 +
1

[i(θ0)]
3
2

E

∣∣∣∣∣
(

d

dθ
logf(X1|θ)

)
θ=θ0

∣∣∣∣∣
3


+ 2‖h‖
E

[(
θ̂n(X)− θ0

)2
]

ε2
+

‖h′‖√
n i(θ0)

E
[
|R2(θ0;X)|

∣∣∣|θ̂n(X)− θ0| ≤ ε
]

+
1

2

E

( sup
θ:|θ−θ0|≤ε

∣∣∣l(3)(θ;X)
∣∣∣)2
∣∣∣∣∣∣|θ̂n(X)− θ0| ≤ ε

 1
2[

E

[(
θ̂n(X)− θ0

)4
]] 1

2

,
where

R2(θ0;x) = (θ̂n(x)− θ0) (l′′(θ0;x) + n i(θ0)) . (2.13)

Obvious observations are that the AR-bound requires finiteness of the fourth

moment of θ̂n(X)− θ0 and that this bound is more complicated than ours. Let us
now comment on the bounds term by term.

• In the first term of the bounds, the different positioning of the expected
Fisher information number is explained by the fact that we apply Lemma
2.1 to the standardised version of g(X1), g(X2), . . . , g(Xn), which have vari-

ance [q′(θ0)]2

i(θ0) , while Anastasiou and Reinert (2017) obtain the result by ap-

plying the lemma after standardising d
dθ logf(X1|θ)

∣∣
θ=θ0

,
d
dθ logf(X2|θ)

∣∣
θ=θ0

, . . . , d
dθ logf(Xn|θ)

∣∣
θ=θ0

, which have variance equal to

i(θ0).
• The second and third terms vanish in our bound when q(θ) = θ ∀θ ∈ Θ,

while the AR-bound does not take this simplification into account. In
addition, when q(θ) 6= θ the second term is the same in both bounds,
whereas the third term in our bound reads

E

[(
θ̂n(X)− θ0

)2
]
‖h′‖

√
n i(θ0)

2 |q′(θ0)|
sup

θ:|θ−θ0|≤ε
|q′′(θ)| (2.14)

and is to be compared to

‖h′‖
2
√
ni(θ0)

E
[(

sup
θ:

|θ−θ0|≤ε

∣∣l(3)(θ;X)
∣∣)2∣∣∣|θ̂n(X)− θ0| ≤ ε

] 1
2[

E

[(
θ̂n(X)− θ0

)4
]] 1

2

+ ‖h′‖√
n i(θ0)

E
[
|R2(θ0;X)|

∣∣∣|θ̂n(X)− θ0| ≤ ε
]

(2.15)

where R2(θ0;x) = (θ̂n(x)− θ0) (l′′(θ0;x) + n i(θ0)). The second derivative,
q′′(θ), plays in our bound the role of l(3)(θ;X), up to an important differ-
ence: l(3)(θ;X) is a sum. Consequently, the first term in (2.15) has

√
n in

its numerator, exactly as in (2.14). The distinct positioning of the infor-
mation quantity i(θ0) has the same reason as explained above. Besides the
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obvious additional term in the AR bound (the second term in (2.15)), our

bound is also clearly sharper at the level of moments of θ̂n(X)− θ0 since

E

[(
θ̂n(X)− θ0

)2
]
≤
[
E

[(
θ̂n(X)− θ0

)4
]] 1

2

by the Cauchy-Schwarz inequality.

From this comparison one sees that our new bound is simpler and, moreover, has
one term less. This is particularly striking in the simplest possible setting where

θ̂n(X) is a sum of i.i.d. terms, where our bound clearly improves on the AR-bound.
An advantage of the AR-bound is its wider applicability as it works for all MLE
settings, even when an analytic expression of the MLE is not known.

We conclude this section by indicating practical statistical applications of our
bounds in (2.1) and (2.2). This will be shown through their usefulness in the
construction of confidence intervals for θ0. The Kolmogorov distance relates directly
to exact conservative confidence intervals and the next proposition links our results
to the Kolmogorov distance. Slightly different results for conservative confidence
intervals were also given in Anastasiou and Reinert (2017).

Proposition 2.5. Let W be any real-valued random variable and Z ∼ N (0, 1).
Assume that there exist δ1 > 0 and δ2 ≥ 0 such that, for any function h with ‖h′‖
and ‖h‖ bounded,

|E[h(W )]− E[h(Z)]| ≤ δ1‖h′‖+ δ2‖h‖. (2.16)

Then dK(W,Z) ≤ 2
√
δ1 + δ2.

Proof : The proof of this proposition follows the approach explained in the proof
of Theorem 3.3 on page 48 of Chen et al. (2011), where a similar result is shown
that links the Wasserstein and the Kolmogorov distance. Let z ∈ R and for α =√
δ1(2π)

1
4 let

hα(w) =


1, if w ≤ z,
1 + z−w

α , if z < w ≤ z + α,

0, if w > z + α,

so that hα is bounded Lipschitz with ‖hα‖ ≤ 1 and ‖h′α‖ ≤ 1
α . The definition of

hα combined with (2.16) leads to

P (W ≤ z)− P (Z ≤ z) ≤ E [hα(W )]− E [hα(Z)] + E [hα(Z)]− P (Z ≤ z)
≤ |E [hα(W )]− E [hα(Z)]|+ E [hα(Z)]− P (Z ≤ z)
≤ δ1‖h′α‖+ δ2‖hα‖+ P (z < Z ≤ z + α)

≤ δ1
α

+ δ2 +
α√
2π

= 2

√
δ1

(2π)
1
4

+ δ2 ≤ 2
√
δ1 + δ2.

Similarly, using now

h∗α(w) =


0, if w ≤ z − α,
w−(z−α)

α , if z − α < w ≤ z,
1, if w > z,
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we can show that P (W ≤ z) − P (Z ≤ z) ≥ −
(
2
√
δ1 + δ2

)
, which completes the

proof. �

Our bounds are of the form (2.16), where in our case W =
√
ni(θ0)

(
θ̂n(X)− θ0

)
and δ1 and δ2 are explicitly given with δ1 = O

(
1√
n

)
and δ2 = O

(
1
n

)
in (2.1), while

for (2.2) take δ2 = 0. Using Proposition 2.5 we get

dK

(√
n i(θ0)(θ̂n(X)− θ0), Z

)
≤ 2
√
δ1 + δ2 ≤ BK ,

where BK is a sharp bound not depending on θ0 or the data. In view of Theorem 2.2,
this bound can be obtained by upper bounding 1/q′(θ0) and supθ:|θ−θ0|≤ε |q

′′(θ)|
(which is done on a case-by-case basis) as well as the mean squared error

E

[(
θ̂n(X)− θ0

)2
]

(e.g., through Theorem 5.1 in Anastasiou and Reinert, 2017).

The presence of the Fisher information quantity is in many settings not a problem,
as it often does not depend on θ0; this is typically the case for location models.
Therefore, for y ∈ R we have∣∣∣P (√n i(θ0)

(
θ̂n(X)− θ0

)
≤ y
)
− P (Z ≤ y)

∣∣∣ ≤ BK
⇔ −BK ≤ P

(√
n i(θ0)

(
θ̂n(X)− θ0

)
≤ y
)
− P (Z ≤ y) ≤ BK . (2.17)

With Φ−1(·) the quantile function of the standard normal distribution, α ∈ [0, 1]
and α

2 − BK > 0, applying (2.17) to y = Φ−1
(
α
2 −BK

)
and to y =

Φ−1
(
1− α

2 +BK
)

yields

P
(

Φ−1
(α

2
−BK

)
≤
√
n i(θ0)

(
θ̂n(X)− θ0

)
≤ Φ−1

(
1− α

2
+BK

))
≥ 1− α.

Hence, if the expected Fisher information number for one random variable, i(θ0),
is known and does not depend on θ0, then(

θ̂n(X)−
Φ−1

(
1− α

2 +BK
)√

n i(θ0)
, θ̂n(X)−

Φ−1
(
α
2 −BK

)√
n i(θ0)

)
is a conservative 100(1− α)% confidence interval for θ0.

3. Calculation of the bound in different scenarios

In this section we shall consider examples for which we explicitly calculate our
upper bounds from Theorem 2.2 and compare them to the AR-bound. In partic-
ular, we shall show that our results are tailor-made for one-parameter exponential
families. To further assess their accuracy, we simulate data from exponential distri-
butions and compare our corresponding bound to the actual distance between the
unknown exact law of the MLE and its asymptotic normal law, for distinct values
of the sample size n.

3.1. Bounds for one-parameter exponential families. The probability density (or
mass) function for one-parameter exponential families is given by

f(x|θ) = exp {k(θ)T (x)−A(θ) + S(x)}1{x∈B}, (3.1)

where the set B = {x : f(x|θ) > 0} is the support of the density and does not
depend on θ; k(θ) and A(θ) are functions of the parameter; T (x) and S(x) are
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functions only of the data. Whenever k(θ) = θ we have the so-called canonical case,
where θ and T (X) are called the natural parameter and natural observation (Casella
and Berger, 1990). The identifiability constraint in (R1) entails that k′(θ) 6= 0
(Geyer, 2013), an important detail for the following investigation.

Proposition 3.1. Suppose X1, . . . , Xn are i.i.d. with probability density (or mass)
function that can be expressed in the form of (3.1). Assume that the regularity

conditions (R1)-(R4) are satisfied and the MLE θ̂n(X) exists and is unique. Let

θ 7→ D(θ) = A′(θ)
k′(θ) be invertible. Then q(·) = D(·), with q : Θ → R as in The-

orem 2.2. Moreover, under the same regularity conditions, no distributions other
than (3.1) admit an MLE of the form (1.3).

Proof : Using (3.1), we have that

L(θ;x) =

n∏
i=1

f(xi|θ) = exp

{
k(θ)

n∑
i=1

T (xi)− nA(θ) +

n∑
i=1

S(xi)

}
,

l(θ;x) = k(θ)

n∑
i=1

T (xi)− nA(θ) +

n∑
i=1

S(xi),

and hence

l′(θ;x) = k′(θ)

n∑
i=1

T (xi)− nA′(θ) = 0⇐⇒ D(θ) =
1

n

n∑
i=1

T (xi),

which means that θ̂n(X) = D−1
(

1
n

∑n
i=1 T (Xi)

)
under the invertibility assumption

for D(θ). It follows that q(·) = D(·).
For the second statement, let us start from q

(
θ̂n(X)

)
= 1

n

∑n
i=1 g(Xi). Such an

MLE form necessarily comes from a log-likelihood equation of the form q(θ) =
1
n

∑n
i=1 g(xi) ⇐⇒

∑n
i=1 g(xi) − nq(θ) = 0. Let us write the invertible func-

tion q(θ) as some ratio α′(θ)/β′(θ) for two differentiable functions α and β with
β′(θ) 6= 0∀θ ∈ Θ. From this we deduce that l(θ;x) = β(θ)

∑n
i=1 g(xi)−nα(θ)+f(x)

for some function f of the observations. Since l(θ;x) is a log-likelihood built
from independent observations, the function f necessarily is a sum which we write∑n
i=1 S(xi) (which could also contain constants). The claim now readily follows. �

This result hence shows that, as announced in the Introduction, the broad one-
parameter exponential families do satisfy (1.3) and there is no distribution out-
side these families that can be of that form under the given regularity conditions.
This remarkable result represents a new characterization of the exponential fami-
lies through their MLE. With this in hand, Theorem 2.2 can be applied to (3.1),
resulting in

Corollary 3.2. Let X1, . . . , Xn be i.i.d. random variables with the probability
density (or mass) function of a one-parameter exponential family. Assume that

(R1)-(R4) are satisfied and the MLE θ̂n(X) exists and is unique. Then, with
Z ∼ N (0, 1) and h ∈ H as defined in (1.2),
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(1) if D′′(·) is not uniformly bounded but for any θ0 ∈ Θ there exists 0 < ε =
ε(θ0) such that sup

θ:|θ−θ0|<ε
|D′′(θ)| <∞, we have

∣∣∣E [h(√n i(θ0)
(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣
≤ ‖h

′‖√
n

2 +
|k′(θ0)|3E

[
|T (X1)−D(θ0)|3

]
|A′′(θ0)− k′′(θ0)D(θ0)|

3
2


+ E

[(
θ̂n(X)− θ0

)2
]2

‖h‖
ε2

1 {∃θ ∈ Θ : D(θ) 6= θ}

+
‖h′‖
√
n|k′(θ0)|

2
√
|A′′(θ0)− k′′(θ0)D(θ0)|

sup
θ:|θ−θ0|≤ε

|D′′(θ)|

 ;

(3.2)

(2) if D′′(·) is uniformly bounded, with |D′′(θ)| ≤ B∗ ∀θ ∈ Θ for some B∗ > 0,
we have∣∣∣E [h(√n i(θ0)

(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣
≤ ‖h

′‖√
n

2 +
|k′(θ0)|3E

[
|T (X1)−D(θ0)|3

]
|A′′(θ0)− k′′(θ0)D(θ0)|

3
2


+ ‖h′‖B∗

√
n|k′(θ0)|

2
√
|A′′(θ0)− k′′(θ0)D(θ0)|

E

[(
θ̂n(X)− θ0

)2
]
1 {∃θ ∈ Θ : D(θ) 6= θ} .

(3.3)

Proof : We readily have

i(θ0) = E [−l′′(θ0;X1)] = A′′(θ0)− k′′(θ0)E[T (X1)] =
A′′(θ0)k′(θ0)− k′′(θ0)A′(θ0)

k′(θ0)

and q′(θ0) = A′′(θ0)k′(θ0)−k′′(θ0)A′(θ0)

[k′(θ0)]2
. Combining these two results yields

√
i(θ0)

|q′(θ0)|
=

|k′(θ0)| 32√
|A′′(θ0)k′(θ0)− k′′(θ0)A′(θ0)|

=
|k′(θ0)|√

|A′′(θ0)− k′′(θ0)D(θ0)|
.

This result, along with the fact that g(x) = T (x) and q(θ) = D(θ) by Proposi-
tion 3.1, allows to deduce the announced upper bound from Theorem 2.2. �

Remark 3.3. It is particularly interesting to spell out this bound in the canonical
case k(θ) = θ. Since then k′(θ) = 1, D(θ) = A′(θ), we find that if A′′′(·) is
not uniformly bounded but for any θ0 ∈ Θ there exists 0 < ε = ε(θ0) such that
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sup
θ:|θ−θ0|<ε

|A′′′(θ)| <∞, then∣∣∣E [h(√n i(θ0)
(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣
≤ ‖h

′‖√
n

2 +
E
[
|T (X1)−A′(θ0)|3

]
|A′′(θ0)|

3
2


+ E

[(
θ̂n(X)− θ0

)2
](

2
‖h‖
ε2

1 {∃θ ∈ Θ : A′(θ) 6= θ}

+
‖h′‖
√
n

2
√
|A′′(θ0)|

sup
θ:|θ−θ0|≤ε

|A′′′(θ)|

)
.

A similar result as the one in (3.3) holds when A′′′(·) is uniformly bounded. Now, as
i(θ) = A′′(θ) and l′′(θ;X) = −nA′′(θ), R2(θ;x) = 0 and straightforward manipula-
tions show that all terms in the AR-bound coincide with those in our bound (3.2),

except for

[
E

[(
θ̂n(X)− θ0

)4
]] 1

2

, making the AR-bound less sharp than ours.

However, Anastasiou and Reinert (2017) have shown that, in the canonical expo-

nential setting, their bound can actually have an E

[(
θ̂n(X)− θ0

)2
]

factor, imply-

ing that both bounds are exactly the same in the canonical case. In order to get an
idea of how our bound improves on the AR-bound in non-canonical cases, we treat
the exponential distribution under a non-canonical parametrisation in subsection
3.3.

3.2. Bounds for the Generalised Gamma distribution. Let us consider X1, . . . , Xn

i.i.d. random variables from the Generalized Gamma GG(θ, d, p) distribution, where
the shape parameters d, p > 0 are considered to be known and the scale parameter
θ is the unknown parameter of interest. The Generalised Gamma distribution
includes many other known distributions as special cases: the Weibull for d = p,
the Gamma when p = 1, and the negative exponential when p = d = 1. Indeed,
with Γ(·) denoting the Gamma function, the probability density function for x > 0
is

f(x|θ) =
pxd−1

θd
exp

{
−
(
x
θ

)p}
Γ
(
d
p

)
= exp

{
−x

p

θp
+ log p− d log θ + (d− 1) log x− log

(
Γ

(
d

p

))}
where, in the terminology of one-parameter exponential families, B = (0,∞), Θ =
(0,∞), T (x) = xp, k(θ) = − 1

θp , A(θ) = d log θ and S(x) = log p + (d − 1) log x −
log
(

Γ
(
d
p

))
. Simple steps yield

l(θ0;x) = − 1

θp0

n∑
i=1

xpi + n log p− nd log θ0 + (d− 1) log

(
n∏
i=1

xi

)
− n log

(
Γ

(
d

p

))

l′(θ0;x) =
p

θp+1
0

n∑
i=1

xpi − n
d

θ0
= 0⇔ θ̂n(x) =

(
p

nd

n∑
i=1

xpi

) 1
p

.
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It is easy to verify that indeed l′′(θ̂n(x);x) = −n pd

[θ̂n(x)]
2 < 0, which shows that the

MLE exists and is unique. The regularity conditions (R1)-(R4) are also satisfied
and D(θ0) = q(θ0) = d

pθ
p
0 with its second derivative not being uniformly bounded

but bounded in a neighbourhood of θ0. Using therefore the first result of Corollary
3.2 for ε = θ0

2 we obtain∣∣∣E [h(√n i(θ0)
(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣ ≤ ‖h′‖√
n

(
2 +

(
3 + 6

p

d

) 3
4

)

+

1− 2
( p

nd

) 1
p

Γ
(
nd+1
p

)
Γ
(
nd
p

) +
( p

nd

) 2
p

Γ
(
nd+2
p

)
Γ
(
nd
p

)
1 {{d 6= 1} ∪ {p 6= 1}}

×

[
8‖h‖+

‖h′‖
√
ndp|p− 1|

2

(
1

2p−2
1{p < 2}+

(
3

2

)p−2

1{p ≥ 2}

)]
. (3.4)

Let us briefly show how to obtain this bound. As already indicated, for the

Generalised Gamma distribution, D(θ0) = d
pθ
p
0 and thus E

[
|T (X)−D(θ0)|3

]
=

E

[∣∣∣Xp − d
pθ
p
0

∣∣∣3]. This third absolute moment is very complicated to calculate.

Therefore, we use Hölder’s inequality and the fact that X ∼ GG(θ0, d, p) and thus

Xp ∼ Gamma
(
d
p ,

1
θp0

)
to get

E

[∣∣∣∣Xp − d

p
θp0

∣∣∣∣3
]
≤

[
E

[(
Xp − d

p
θp0

)4
]] 3

4

=

[
E
[
X4p

]
+

(
dθp0
p

)4

+ 6

(
dθp0
p

)2

E
[
X2p

]
− 4

(
dθp0
p

)3

E [Xp]− 4
d

p
θp0E

[
X3p

]] 3
4

=

[
θ4p

0

d

p

(
6 + 3

d

p

)] 3
4

= θ3p
0

(
d

p

) 3
4
(

6 + 3
d

p

) 3
4

. (3.5)

Simpler calculations yield

|k′(θ0)|√
|A′′(θ0)− k′′(θ0)D(θ0)|

=

√
p

√
dθp0

. (3.6)

Using that Xp
i ∼ Gamma

(
d
p ,

1
θp0

)
⇒
∑n
i=1X

p
i ∼ Gamma

(
ndp ,

1
θp0

)
, we get

E

[(
θ̂n(X)− θ0

)2
]

=
( p

nd

) 2
p

E

( n∑
i=1

Xp
i

) 2
p

+ θ2
0 − 2

( p

nd

) 1
p

θ0E

( n∑
i=1

Xp
i

) 1
p


= θ2

0

( p

nd

) 2
p

Γ
(
nd+2
p

)
Γ
(
nd
p

) + θ2
0 − 2θ2

0

( p

nd

) 1
p

Γ
(
nd+1
p

)
Γ
(
nd
p

)
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= θ2
0

1− 2
( p

nd

) 1
p

Γ
(
nd+1
p

)
Γ
(
nd
p

) +
( p

nd

) 2
p

Γ
(
nd+2
p

)
Γ
(
nd
p

)
 . (3.7)

The second derivative of the function D(θ) is not uniformly bounded and thus we
use the result in (3.2). Regarding sup

θ:|θ−θ0|≤ε
|D′′(θ)|, one has to be careful as the

supremum depends on the value of p:

sup
θ:|θ−θ0|≤ε

∣∣d(p− 1)θp−2
∣∣ = d|p− 1| sup

θ:|θ−θ0|≤ε

∣∣θp−2
∣∣

= d|p− 1|


(θ0 − ε)p−2, if 0 < p < 2

(θ0 + ε)p−2, if p ≥ 2.

(3.8)

Thus, applying now the results of (3.5), (3.6), (3.7) and (3.8) on the general ex-
pression for the first upper bound in Corollary 3.2, we obtain the result in (3.4).

Remark 3.4. (1) The bound in (3.4) is O
(

1√
n

)
. This is not obvious as we need to

comment on the order of the term

(
1− 2

(
p
nd

) 1
p

Γ(nd+1
p )

Γ(ndp )
+
(
p
nd

) 2
p

Γ(nd+2
p )

Γ(ndp )

)
. Using

the Taylor expansion for a ratio of Gamma functions (see Tricomi and Erdélyi,
1951)

Γ(z + a)

Γ(z + b)
= za−b

(
1 +

(a− b)(a+ b− 1)

2z
+O

(
|z|−2

))
for large z (here, nd/p) and bounded a and b, we can see that this term is of order
1
n , leading to the overall order of 1√

n
.

(2) The indicator function in the last term of the bound in (3.4) comes from the
fact that q(θ) = θ ∀θ ∈ Θ⇐⇒ d, p = 1.

3.3. Bounds for the (negative) exponential distribution. In this subsection, we con-
sider the most famous special case of the Generalised Gamma distribution: the
(negative) exponential distribution. First we will treat the canonical form of the
distribution and then we will change the parametrisation to discuss the more inter-
esting non-canonical setting. In the canonical case D′′(·) is not uniformly bounded
but it is bounded in a neighbourhood of θ0; therefore, (3.2) of Corollary 3.2 is used.
As for the non-canonical setting, we will show that D(θ) = θ ∀θ ∈ Θ which means
that only the (same) first term of the bounds in (3.2) and (3.3) survives.

3.3.1. The canonical case: Exp(θ). We start with X1, . . . , Xn exponentially dis-
tributed i.i.d. random variables with scale parameter θ > 0 and probability density
function f(x|θ) = θexp{−θx} = exp{log θ− θx} for x > 0, which we write Exp(θ).
In terms of (3.1), this means B = (0,∞), Θ = (0,∞), T (x) = −x, k(θ) = θ,
A(θ) = − log θ and S(x) = 0. Further we have that

l′(θ;x) =
n

θ
−

n∑
i=1

xi, l′′(θ;x) = − n

θ2
,

the unique MLE is given by θ̂n(X) = 1/X̄ with X̄ = 1
n

∑n
i=1Xi and (R1)-(R4) are

satisfied.



Delta method for bounds on MLE 169

With this in hand, we can easily see that D(θ0) = q(θ0) = A′(θ0)
k′(θ0) = − 1

θ0
and

|k′(θ0)|√
|A′′(θ0)− k′′(θ0)D(θ0)|

= θ0. (3.9)

Simple calculations allow us here to bypass the Hölder inequality used for the Gener-

alized Gamma case and to obtain E
[
|T (X)−D(θ0)|3

]
= E

[∣∣∣ 1
θ0
−X

∣∣∣3] ≤ 2.41456
θ30

.

Since Xi ∼ Exp(θ) ∀i ∈ {1, 2, . . . , n} then X̄ ∼ Gam(n, nθ), with Gam(α, β) being
the Gamma distribution with shape parameter α and rate parameter β. Conse-
quently,

E[(θ̂n(X)− θ0)2] =
(nθ0)2

(n− 1)(n− 2)
− 2nθ2

0

n− 1
+ θ2

0 =
(n+ 2)θ2

0

(n− 1)(n− 2)
.

Moreover, for ε > 0 such that 0 < ε < θ0, we obtain sup
θ:|θ−θ0|≤ε

|D′′(θ)| = 2
(θ0−ε)3 .

Choosing ε = θ0
2 , we get sup

θ:|θ−θ0|≤ε
|D′′(θ)| = 16

θ30
. Using this result and (3.9),

Corollary 3.2(1) gives∣∣∣E [h(√n i(θ0)
(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣ ≤4.41456
‖h′‖√
n

+ 8‖h‖ (n+ 2)

(n− 1)(n− 2)

+ 8‖h′‖
√
n(n+ 2)

(n− 1)(n− 2)
. (3.10)

This bound is of order O
(

1√
n

)
and coincides, as discussed in Remark 3.3, with the

AR-bound.

3.3.2. The non-canonical case: Exp
(

1
θ

)
. We now proceed to examine the more in-

teresting case where X1, . . . , Xn are i.i.d. random variables from Exp
(

1
θ

)
. The

probability density function is

f(x|θ) =
1

θ
exp

{
−1

θ
x

}
= exp

{
−logθ − 1

θ
x

}
corresponding to B = (0,∞), Θ = (0,∞), T (x) = x, k(θ) = − 1

θ , A(θ) = logθ and
S(x) = 0. As before, simple steps give that the MLE exists, it is unique and equal

to θ̂n(X) = X̄. The regularity conditions are satisfied and we obtain using (3.2)
((3.3) will give the same result) that∣∣∣E [h(√n i(θ0)

(
θ̂n(X)− θ0

))]
− E [h(Z)]

∣∣∣ ≤4.41456
‖h′‖√
n
. (3.11)

Indeed, D(θ0) = q(θ0) = θ0, making the last two terms of both bounds in Corollary

3.2 vanish. The result then follows from E
[
|T (X)−D(θ0)|3

]
= E

[
|X − θ0|3

]
≤

2.41456θ3
0 and

|k′(θ0)|√
|A′′(θ0)− k′′(θ0)D(θ0)|

=
1

θ0
.

Remark 3.5. (1) The order of the bound in terms of the sample size is, as expected,
1√
n

, corresponding to the order obtained for the Generalized Gamma distribution.

The constant here is better than the one inherited from (3.4) for p = d = 1, thanks
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to a sharper bound for E
[
|T (X)−D(θ0)|3

]
.

(2) The AR-bound is given by

4.41456
‖h′‖√
n

+ 8
‖h‖
n

+ 2
‖h′‖√
n

+ 80
‖h′‖√
n

(
6

n
+ 3

)1/2

,

showing that our new bound is an improvement.

3.3.3. Empirical results. For a more complete picture, we also assess the accuracy
of our results using simulation-based data. The process we follow is quite simple.
We generate 10000 trials of n = 10, 100, 1000, 10000 and 100000 random i.i.d. obser-
vations from the exponential distribution Exp

(
1
2

)
(non-canonical case). As function

h we choose h(x) = 1
x2+2 with h ∈ H, ‖h‖ = 0.5 and ‖h′‖ = 3

√
1.5

16 . With Ẽ[h(Z)]

being the approximation of E[h(Z)] up to three decimal places, simple calculations

yield Ẽ[h(Z)] = 0.379. Each trial gives an MLE θ̂n(X), hence we have 10000 em-

pirical values of h
(√

n i(θ0)
(
θ̂n(X)− θ0

))
to compare to 0.379. Taking the aver-

age provides a simulated estimation of
∣∣∣E [h(√n i(θ0)

(
θ̂n(X)− θ0

))]
− E[h(Z)]

∣∣∣,
which we compare to the upper bound given in (3.11). Our bound provides a very
strong improvement on the AR-bound (see Table 3.1). Of course, this estimated
distance is only a lower bound to the true distance, as we have chosen a particular
function h instead of the supremum over all functions h ∈ H, but its calculation still
provides an idea of the accuracy of our bounds. This closeness logically increases
with the sample size and becomes quite sharp for n ≥ 100.

Table 3.1. Simulation results for the Exp
(

1
2

)
distribution treated

as a non-canonical exponential family

n
∣∣∣Ê [h(√n i(θ0)(θ̂n(X)− θ0)

)]
− Ẽ[h(Z)]

∣∣∣ New Bound AR-bound

10 0.0034 0.321 11.888
100 0.0022 0.101 3.401

1000 0.0012 0.032 1.058
10000 0.0008 0.010 0.333

100000 0.0004 0.003 0.105
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F. G. Tricomi and A. Erdélyi. The asymptotic expansion of a ratio of gamma
functions. Pacific J. Math. 1, 133–142 (1951). MR0043948.

http://www.ams.org/mathscinet-getitem?mr=MR2732624
http://www.ams.org/mathscinet-getitem?mr=MR0237052
http://dx.doi.org/10.1017/S0305004100009580
http://dx.doi.org/10.1017/S0305004100009580
http://dx.doi.org/10.1214/12-IMSCOLL1001
http://www.ams.org/mathscinet-getitem?mr=MR619279
http://www.ams.org/mathscinet-getitem?mr=MR2962301
http://www.ams.org/mathscinet-getitem?mr=MR1630415
http://www.ams.org/mathscinet-getitem?mr=MR0043948

	1. Introduction
	2. New bounds on the distance to the normal distribution for the MLE
	3. Calculation of the bound in different scenarios
	3.1. Bounds for one-parameter exponential families
	3.2. Bounds for the Generalised Gamma distribution
	3.3. Bounds for the (negative) exponential distribution

	References

