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Abstract. In this paper, we define a directed version of the Diffusion-Limited-
Aggregation model. We present several equivalent definitions in finite volume and
a definition in infinite volume. We obtain bounds on the speed of propagation of
information in infinite volume and explore the geometry of the infinite cluster. We
also explain how these results fit in a strategy for proving a shape theorem for this
model.

1. Introduction

Diffusion-Limited Aggregation (in short, DLA) is a statistical mechanics growth
model that has been introduced by Witten and Sander (1981). It is defined as
follows. A first particle — a site of Z2 — is fixed. Then, a particle is released “at
infinity” and performs a symmetric random walk. As soon as it touches the first
particle, it stops and sticks to it. Then, we release another particle, which will also
stick to the cluster (the set of the particles of the aggregate), and so on. . . After a
large number of iterations, one obtains a fractal-looking cluster.

DLA does not just model sticking particles, but also Hele-Shaw flow (see
Shraiman and Bensimon, 1984), dendritic growth (see Vicsek, 1992) and dielectric
breakdown (see Brady and Ball, 1984). Figure 1.2 illustrates the viscous fingering
phenomenon, which appears in Hele-Shaw flow. This phenomenon can be observed
by injecting quickly a large quantity of oil into water.

This model is extremely hard to study; only two non-trivial results are rigorously
known about DLA: an upper bound on the speed of growth (see Kesten, 1987) and
the fact that the infinite cluster has almost surely infinitely many holes, i.e. that
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Figure 1.1. DLA cluster obtained by Vincent Beffara.

Figure 1.2. Viscous fingering picture obtained by Jessica Todd.

the complement of the cluster has infinitely many finite components (see Eberz-
Wagner, 1999). The difficulty comes from the fact that the dynamics is neither
monotone nor local, and that it roughens the cluster.

The non-locality is quite clear: if big arms surround P , even if they are far from
it, P will never be added to the cluster.

By non-monotonicity (which is a more serious issue), we mean that there is
no coupling between a DLA starting from a cluster C and another from a cluster
D ( C such that, at each step, the inclusion of the clusters remains valid almost
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surely. To understand why, throw the same particles for both dynamics, i.e. use
the näıve coupling. The big cluster will catch the particles sooner than the small
one: when a particle is stopped in the C-dynamics1, it may go on moving for the
D-dynamics and stick somewhere that is not in the C-cluster, which would break
the monotonicity. In fact, this is even a proof of the non-existence of any monotonic
coupling, under the assumption that there exists (P,Q) ∈ D × (C\D) such that if
R ∈ {P,Q}, R can be connected to infinity by a Z2-path avoiding C\{R}.

Finally, the fact that the dynamics roughens the cluster instead of smoothing it is
what makes the difference between the usual (external) DLA and the internal DLA
of Diaconis and Fulton (1991), for which a shape theorem exists (see Lawler et al.,
1992). Even though this roughening is not mathematically established, simulations
such as the one of Figure 1.1 suggest it by the fractal nature of the picture they
provide.

The rigorous study of DLA seeming, for the moment, out of reach, several toy
models have been studied. These models are usually easier to study for one of the
following reasons:

• either the particles are not added according to the harmonic measure of the
cluster (i.e. launched at infinity) but “according to some nicer measure”2;
• or the dynamics does not occur in the plane3.

In this paper, we prove some results on Directed Diffusion-Limited Aggregation
(DDLA), which is a variant where the particles follow downward directed random
walks. A large cluster is presented in Figure 1.3. Directed versions of DLA have
already been considered by physicists4 but, to our knowledge, they have been rig-
orously studied only in the case of the binary tree (or Bethe lattice). The present
model is defined in the plane. Simulations strongly suggest that the DDLA-cluster

Figure 1.3. Large DDLA cluster obtained by Vincent Beffara.

1and if, at the considered time, the C-cluster is still bigger than the D-one. . .
2See e.g. Carleson and Makarov (2002).
3See e.g. Benjamini and Yadin (2008) for a study of DLA on cylinders G × N or Amir et al.

(2016, 2013); Amir (2017+) for results on long-range DLA on Z.
4See Bradley and Strenski (1984, 1985); Majumdar (2003).
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converges after suitable rescaling to some deterministic convex compact, delimited
from below by two segments.

DDLA can be seen either as a ballistic deposition model where the falling parti-
cles fluctuate randomly or as a stretch version of DLA. See respectively Seppäläinen
(2000) and Berger et al. (2014). See also Johansson Viklund et al. (2012) for a study
of the Hastings-Levitov version of DDLA; Johansson Viklund et al. (2012) and the
present paper have been written independently.

Let us now review the main results of this paper. In Section 2, we define DDLA
in discrete and continuous time. We also provide equivalent definitions in terms of
downward directed random walks that fall onto the aggregate and stick to it, and
in terms of upward directed random walks released from the aggregate and trying
to avoid it. The upward version in continuous time is suitable for defining DDLA
in infinite volume. This is performed in Section 3. We argue in Section 2 why we
believe that defining this infinite volume version of DDLA should be an ingredient
in the computation of the conjectured asymptotic shape (see Conjecture 2.3). We
get the following upper bound on how far we need to go to define the dynamics on
a finite set during a finite time.

Notation. Throughout the paper, we use “a.s.e.” as an abbreviation for “almost surely,
eventually”, which means either “almost surely, there exists n0 ∈ Z+ such that for all
n ≥ n0” or “almost surely, there exists t0 ∈ R+ such that for all t ≥ t0”.

Theorem 3.4. Let F be a non-empty finite subset of Z2. Consider continuous
time DDLA with the following initial configuration: outside F , a vertex is in the
aggregate at time 0 if and only if its height is 0; at every point of F , it is unknown
whether it is initially empty or occupied. If we denote by ht the height of the set of
vertices with unknown status at time t and by dt its (horizontal) width, then a.s.e.

ht ≤ c0 · t ln t and dt ≤ c0 · t2 ln t

for some deterministic constant c0 independent of F .

In Section 4, we use Kesten’s argument (Kesten, 1987) to obtain bounds on the
speed of horizontal growth and vertical growth of the cluster. We get the following
result.

Theorem 4.1. Consider discrete time DDLA initiated with {(0, 0)}. Denote by
hn the height of the cluster at time n, and by dn its width. For some constant c1,
almost surely, eventually, √

2n ≤ hn ≤ c1n2/3

and

c−11 n1/3 ≤ dn ≤ c1
√
n.

As far as Kesten’s argument is concerned, it is in Lemma 4.4 that the difference
between DLA and directed DLA becomes apparent.

Finally, Section 5 explores the geometry of the infinite cluster. In a very weak
sense, “Corollary 5.3 states that the cluster does not grow sideways as much as we
could have imagined, and Proposition 5.4 roughly indicates that the cluster tends
to grow in a vertical fashion”.

Corollary 5.3. Launch a DDLA from {(0, 0)}. Almost surely, for every n ∈ Z+,
only finitely many points of (Z+ × {n}) ∪ ({n} × Z+) are added to the cluster.
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Proposition 5.4. Consider a DDLA starting from C 6= ∅. Let

C∞ :=
⋃
t≥0

Ct.

Then, almost surely, every open cone which contains a vertical half-line intersects
C∞ at infinitely many points.

Section 2 is used in subsequent sections. Apart from that, all sections are inde-
pendent, and may thus be read in any order. They are all conceived as very humble
steps towards a shape theorem: each of them brings a very weak answer to an im-
portant question. Section 3 indicates that the dependencies in the model are not
completely wild. Section 4 estimates the horizontal and vertical speed of growth of
the model: understanding the scaling is the first step in proving a shape theorem.
At last, the conjectured asymptotic shape is delineated below by two segments, and
simulations suggest that this angle is strictly less than π

2 . In Section 5, we prove a
very weak form of this.

2. Presentation of DDLA

2.1. Some notation. In this paper, when dealing with DDLA, we will think of Z2

as rotated by an angle of +π
4 (so that the particles we will throw move downward).

The vertices of Z2 will often be referred to as sites. Let

E := {((a, b), (c, d)) ∈ (Z2)2 : (a = c & b = d+ 1) or (a = c+ 1 & b = d)}
be the set of the (directed) edges; it endows Z2 with a structure of directed
graph. We will denote by d the graph-distance on (Z2,E), i.e. the ‖ · ‖1-distance.
If e = (P,Q) is an edge, we call P the upper vertex of e and Q its lower vertex.
They are referred to as u(e) and l(e).

A downward directed symmetric random walk is a Markov chain with
transition probabilities

p(P,Q) = 1(P,Q)∈E/2.

An upward directed symmetric random walk is obtained with transition prob-
abilities

p(P,Q) = 1(Q,P )∈E/2.

When the starting point of a directed random walk is not specified, it is tacitly
taken to be (0, 0).

The height of P = (a, b), denoted by h(P ), is a+ b. Its horizontal deviation
(relative to 0) is d(P ) := b − a. The height (resp. horizontal deviation) of P
relative to Q is h(P )− h(Q) (resp. d(P )− d(Q)). If A ⊂ Z2, we set

h(A) := sup
P∈A

h(P ), d(A) := sup
P∈A

d(P ) and |d|(A) := sup
P∈A
|d(P )|.

The line of height n is

Ln := {(x, y) ∈ Z2
+ : x+ y = n}.

We also set
L≤n := {(x, y) ∈ Z2

+ : x+ y ≤ n}.
A line Ln is said to be above a set S if S ⊂ L≤n−1. Finally, if one fixes a subset
C of Z2, the activity of a site P ∈ Z2 relative to C is

actC(P ) := P[∀n ∈ Z+, P +Wn 6∈ C] · |{e ∈ E : l(e) ∈ C & u(e) = P}|,
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where (Wn)n∈Z+
is an upward directed symmetric random walk and | . | stands

for the cardinality operator. In what follows, we will consider a growing subset of
Z2, called cluster. The current activity (or activity) of a site P will then be
relative to the cluster at the considered time. The activity of the cluster will be
the sum over all sites of their activity.

2.2. Definition in discrete time. At time 0, the cluster is C0 := {(0, 0)}. Assume
that the cluster has been built up to time n, and that Cn ⊂ L≤n. To build Cn+1,
choose any line Lk above Cn. Then, independently of all the choices made so far,
choose uniformly a point in Lk, and send a downward symmetric random walk
(Wn) from this point. If the walk intersects Cn, then there must be a first time τ
when the walker is on a point of the cluster: let

Cn+1 := Cn ∪ {Wτ−1} ⊂ L≤n+1.

If the random walk fails to hit the cluster, we iterate the procedure {choice of a
starting point + launching of a random walk} independently and with the same
k, until a random walk hits the cluster, which will happen almost surely. This is
obviously the same as conditioning the procedure to succeed.

The dynamics does not depend on the choices of k: indeed, choosing uniformly
a point in Lk+1 and taking a step downward give the same measure to all the
points of Lk (and if a walker goes outside Z2

+, it will never hit the cluster). The
dynamics is thus well-defined. We call this process Directed Diffusion-Limited
Aggregation (or DDLA).

Remark 2.1. Since the process does not depend on the choices of k, we can take it
as large as we want so that we may (informally at least) think of the particles as
falling from infinity.

Here is another process, which is the same (in distribution) as DDLA. We set
C0 := {(0, 0)}. Assume that we have built Cn, a random set of cardinality n + 1.
We condition the following procedure to succeed:

Procedure. We choose, uniformly and independently of all the choices made so far,
an edge e such that l(e) ∈ Cn. We launch an upward directed symmetric random
walk from u(e). We say that the procedure succeeds if the random walk does not
touch Cn.

The particle added to the cluster is the upper vertex of the edge that has been
chosen. Iterating the process, we obtain a well-defined dynamics. It is the same
as the first dynamics: this is easily proved by matching downward paths with the
corresponding upward ones.

2.3. Definition in continuous time. We now define DDLA in continuous time:
this is the natural continuous time version of the second definition of DDLA. Let
((Ne

t )t≥0)e∈E be a family of independent Poisson processes of intensity 1 indexed
by the set of the directed edges. The cluster C(0) is defined as {(0, 0)} and we set
T (0) := 0.

Assume that for some (almost surely well-defined) stopping time T (n), the cluster
C(T (n)) contains exactly n particles. Then, wait for an edge whose lower vertex
is in C(T (n)) to ring (such edges will be called growth-edges). When the clock
on a growth-edge e rings, send an independent upward directed random walk from
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its upper vertex. If it does not intersect C(T (n)), add a particle at u(e) and define
T (n+ 1) to be the current time. Otherwise, wait for another growth-edge to ring,
and iterate the procedure.

This dynamics is almost surely well-defined for all times5 because it is stochasti-
cally dominated by first-passage percolation (Kesten, 1986). Markov chain theory
guarantees that (Cn)n∈Z+

and (C(T (n)))n∈Z+
are identical in distribution.

Remark 2.2. This definition in continuous time consists in adding sites at a rate
equal to their current activity.

2.4. Some general heuristics. Before going any further, it may be useful to know
what is the theorem we are looking for and how the results presented in this paper
may play a part in its proof. In this subsection, we present highly informal heuristics
that have not been made mathematically rigorous in any way yet. They constitute
a strategy for proving a shape theorem for DDLA.

Conjecture 2.3. There is some convex compact D of non-empty interior such

that C(t)
t converges almost surely to D for the Hausdorff metric. Furthermore, the

boundary of D consists in two segments and the (−π/4)-rotated graph of a concave
function.

To prove such a result, the step 0 may be to prove that the width and height of
the cluster both grow linearly in time, so that we would know that we use the right
scaling. This would result from a stronger form of Proposition 4.8.

Provided this, one may use compactness arguments to prove that if there exists a
unique “invariant non-empty compact set” D, then we have the desired convergence
(to D). By invariance, we informally mean the following: if t is large enough and

if we launch a DDLA at time t from (tD) ∩ Z2, then C(t+s)
t+s “remains close” to D.

This existence and uniqueness may be proved by finding a (maybe non-explicit)
ordinary differential equation satisfied by the upper interface of D. To do so, we
would proceed in two steps.

Step 1. First of all, one needs to check that the upper interface is typically “more
or less” the (−π/4)-rotated graph of a differentiable function. To do so, one would
need to control fjords. Roughly speaking, we call fjord the area delimited by two
long and close arms of the cluster. Fjords are the enemies of both regularity and
“being the graph of a function”.

Here are some heuristics about fjords: in Figure 1.3, we observe that there are
mesoscopic fjords far from the vertical axis and no such fjord close to it. We try to
account for this.

Definition 2.4. We say that a site P shades a second one if it can catch particles
that would go to the second site if P was vacant.

Assume that we have a behaviour as suggested by Figure 1.3. If we are close to
the vertical axis, the local slope is close to 0. We will assume that, at any time, none
of the two top-points of the arms delineating the considered fjord shades the other:
they will thus survive (i.e. keep moving), following more or less upward directed
random walks. By recurrence of the 2-dimensional random walk, we obtain that
the two top-points will collide at some time, closing the fjord. To avoid the shading

5i.e. supn T (n) is almost surely infinite
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phenomenon, one needs a still unknown proper and tractable definition of top-point.
However, it seems quite reasonable to expect this phenomenon “not to occur” if
the slope is close to 0 because there is no initial shading.

When the slope gets higher, the shading phenomenon appears. If the slope is
not too high, the “lower top-point” manages to survive but it is hard for it to catch
up with the upper one: this creates a fjord6. If the slope is too high, the “lower
top-point” stops catching particles: we are in the lower interface.

Step 2. Now, we need to find an ODE satisfied by r, where α 7→ r(α) is the angular
parametrization of the upper interface of D and is defined on (−α0, α0). We assume
that α = 0 corresponds to what we think of as the vertical.

Assume that one can launch a DDLA from an infinite line of slope tan(θ) —
which is made possible by Section 3 when tan(θ) ∈ (−1, 1), and can actually be
done in general — and define a deterministic7 speed of vertical growth v(α). The set
D being invariant, r(α) · cos(α) must be proportional to v(θ(α)), where tan(θ(α))
stands for the local slope of D at the neighborhood of the point defined by α and
r(α).

More exactly, we have {
r(α) · cos(α) = c · v(θ(α))

tan(α− θ(α)) = r′(α)
r(α) .

The knowledge of θ(α0) due to the previous step allows us to find α0.

Simulations suggest that α0 < π/4; Corollary 5.3 is a weak result in this direction.

The last point that has to be checked is that the lower interface consists of two
segments. Assume that the points of the lower interface are of bounded local slope.
From this and large deviation theory, one can deduce that it costs typically expo-
nentially much for a particle to stick to the lower interface at large distance from
the upper interface.8 This might allow us to compare DDLA with ballistic deposi-
tion, for which the upper interface converges to the graph of a concave function (see
Seppäläinen, 2000) and the lower interface converges to the union of two segments
(use the Kesten-Hammersley Lemma, see Smythe and Wierman, 1978).

3. Bounds on the transport of information

In this section, we define Directed Diffusion-Limited Aggregation starting from
a suitable infinite set. Notice that we make the trivial adjustment that the process
now lives in Z2 instead of Z2

+.
Here is a very informal description of the construction. Each edge has a Poisson

clock and infinitely many upward directed symmetric random walks attached to it,
everything being chosen independently. When a clock rings at some edge for the
kth time, if its upper extremity is vacant and its lower one occupied, the kth random

6Simulations suggest that this process builds fjords forming a deterministic angle with the

vertical.
7by ergodicity arguments
8By this, we mean that, conditionally on an initial cluster, the probability that the next particle

sticks to the lower interface at distance d from the upper interface is lower than e−εd, for some

constant ε.
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walk is sent and we see if it hits the current cluster or not: we add a particle if and
only if the walk does not hit the cluster.

In finite volume, this is not problematic because we can (almost surely) define
the first (or next) ringing time: since we only need to know the state of the
cluster just before we send the walk, the construction is done. In the case of
an infinite initial cluster, in any non-trivial time interval, there are almost surely
infinitely many ringing times to consider.9 To define the dynamics, a solution is
to show that, for all (P0, T0) ∈ Z2 × R?+, what happens at P0 before time T0 just
depends on some random finite set of edges. Indeed, in this case, we can apply the
construction in finite volume. This is the idea behind Harris-like constructions. See
e.g. Seppäläinen (2000) for an easy Harris-like construction of ballistic deposition,
the local and monotonic version of DDLA.

Rigourously, the construction goes as follows. Let ((Ne
t )t≥0)e∈E be a family of

independent Poisson processes of intensity 1 indexed by the set of the directed edges.
Let ((W e,k

n )n∈N)e∈E,k∈N? be a family of independent upward directed symmetric
random walks (simply referred to as random walks in this section) indexed by
E× N?.

Notations. Let rθ be the rotation of centre (0, 0) and angle θ. For b ∈ R?+, let

Cb := r−π/4
(
{(x, y) ∈ R2 : |y| ≥ b|x|}

)
be the b-cone and let

Wb := r−π/4
(
{(x, y) ∈ R2 : |y| = (b+ 1)x}

)
be the b-wedge. (Remember that we think of Z2 as rotated by an angle of +π/4.)

When b is not specified, it is taken to be equal to the a introduced in the next line.

Assumption on the cluster. There is some (a,K) ∈ R2
+ such that for all P ∈ C,

(P + (K,K) + Ca) ∩ C = ∅ and (P + s((K,K) + Ca)) ∩ C = ∅,
where s maps Q ∈ Z2 to −Q.

Let us fix T0 ∈ R?+. Let us pick a site P0 in Z2 and try to decide whether we add
it to the cluster before time T0 or not and, if so, when. If this can be done with
probability 1, then the dynamics is almost surely well-defined. Indeed, it is enough

to check every (P0, T0) in Z2 × Z>0.

Definitions 3.1. A site P is said to be activated if there is an upward directed
path (Q0, . . . , Qn) such that:

• Q0 ∈ C,
• Qn = P ,
• there is an increasing n-tuple (t1, . . . , tn) such that tn ≤ T0 and for every
k ∈ {1, . . . , n}, the clock at (Qk−1, Qk) rings at time tk.

The model consisting in adding a vertex P before time t if and only if the condition
above is satisfied for t instead of T0 is called Directed First-Passage Percolation
(or DFPP). We also say that a directed edge (P,Q) is activated if there is an
upward directed path (Q0, . . . , Qn) such that:

9This problem is essentially the same as the one that makes impossible a discrete-time con-
struction: we cannot throw our particles one after another because there is no uniform probability

measure on an infinite countable set.



258 S. Martineau

Figure 3.4. The b-cone and the b-wedge for b = 2.

Figure 3.5. A finite portion of a cluster satisfying the assumption
for (a,K) = (1, 2).

• Q0 ∈ C,
• Qn−1 = P
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• Qn = Q,
• there is an increasing n-tuple (t1, . . . , tn) such that tn ≤ T0 and for every
k ∈ {1, . . . , n}, the clock at (Qk−1, Qk) rings at time tk.

For any directed edge (P,Q), each time the clock at (P,Q) rings, if (P,Q) belongs
to the current DFPP cluster, then we launch a new random walk from Q; the kth

random walk to be launched is Q+W (P,Q),k.

Proposition 3.2. The probability that P ∈ Z2 is activated decays exponentially
fast in d(P,C).

Remark 3.3. Proposition 3.2 is a direct consequence of the exponential decay of
subcritical percolation if T0 < ln 2.

Proof : Let B(P, n) denote the ‖.‖1-ball of centre P and radius n. Let k0 ∈ Z>0. If

the following holds for n = bd(P,C)
k0
c − 1:

∀ 0 < k ≤ k0,
B(P, (k0 − k + 1)n) contains all the vertices that can be connected to
B(P, (k0 − k)n) by edges whose clock rings between k−1

2 and k
2 ,

then P cannot belong to the activation cluster of C for T0 ≤ k0/2. But, by the
exponential decay of activation percolations over a time-range equal to 1/2 < ln 2,
the probability that this condition is not satisfied is lower than

k0∑
k=1

|B(P, k0n)|ce−n/c,

which decays exponentially fast in n. �

It is possible to prove that the dynamics is well-defined in the framework pre-
sented above. As this is more technical and less quantitative than what follows, we
will not work at that level of generality. We prove bounds on the speed of propa-
gation of the information for a horizontal initial cluster, which imply that one can
define the state of a vertex at a given time by looking at finitely many vertices and
walks, so that the model is indeed well defined. Such a control guarantees a weak
(and quantitative) form of locality, which may help studying further DDLA. Actu-
ally, we will see that one can adapt Theorem 3.4 so that it holds in the framework
presented above, provided that a < 1.

Let us consider a DDLA launched with the initial interface

D := {P ∈ Z2 : h(P ) = 0}.

Before stating the proposition, we need to introduce some terminology. Let F b Z2,
i.e. let F be a non-empty finite subset of Z2. We want to define where some infor-
mation about F may be available. Formally, we want our area of potential influence
(a random subset of Z2 depending on time) to satisfy the following property: if we
use the same clocks and walks to launch a DDLA from D and one from D∆G with
G ⊂ F , the clusters will be the same outside the area of potential influence at the
considered time. In fact, the way this area is defined in this section, we even know
that the pair (area, data of the particles present in the cluster outside the area)
satisfies the (say weak) Markov Property.
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We define this area as follows10. Instead of saying that a site of Z2 — in the
cluster or not — belongs to the area of potential influence, we will say that it is
red, which is shorter and more visual. A non-red site belonging to the cluster will
be colored in black. Initially,

R0 := F

is the red area. Then, a site P becomes red when one of the following events occurs:

• P = u(e), the site l(e) is red, the clock on e rings and the launched random
walk avoids black sites;
• P = u(e), the site l(e) is black, the clock on e rings and the launched

random walk avoids black sites and goes through at least one red site.

It is not clear that this is well-defined, for the same reason that makes the
definition in infinite volume uneasy, but we will see in the proof of Theorem 3.4
that some larger11 set is finite almost surely for all times, so that the construction
boils down to finite volume, entailing proper definition of the red area.

By construction, it is clear that if it is well-defined, red is a good notion of area
of potential influence.

Notations. Rt will denote the red area at time t. We set ht := h(Rt) and dt :=
|d|(Rt). This holds only for this section.

Theorem 3.4. If F b Z2 and if we choose D as initial cluster, then (Rt(F ))t≥0
is well-defined and a.s.e.

ht ≤ c0 · t ln t and dt ≤ c0 · t2 ln t

for some deterministic constant c0 independent of F .

Proof : Without loss of generality, we may assume that R0 = {(0, 0)}. Indeed, if

one takes F to be {(0, 0)}, then for any finite subset G of h−1(Z+), the event G ⊂ R1 has

positive probability.

The rough idea of the proof is the following:

(1) We prove that the red area cannot be extremely wide.
(2) We show that if it is not very wide, it is quite small (in height).
(3) We prove that if it is small, it is narrow.
(4) We initialize the process with the first step and then iterate Steps 2 and

Step 3, allowing us to conclude.

Step 1: At most exponential growth. For n ∈ Z+, we set

Sn :=
{
P ∈ Z2 : h(P ) + |d(P )| ≤ 2n and h(P ) > 0

}
.

We consider the following model.
At time 0, the cluster is S0 := S0. An edge e is said to be decisive if l(e) ∈ St

and u(e) 6∈ St. The cluster does not change until a clock on a decisive edge rings.
When this event occurs, St, which was Sn for some random n, becomes Sn+1. The
data of St is thus just the data of this random n(t).

Let (τn)n≥1 be a sequence of independent random variables such that τn follows
an exponential law of parameter 2n. Let Tn :=

∑n
k=1 τk. Then, by construction,

10Some looser definition may be proposed but this one is used because it is tractable.
11Of course, as in all Harris-like constructions, this set is larger than some set that is not

defined yet !
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Figure 3.6. Illustration of the model used in Step 1.

(Tn)n∈Z+
has the same law as the sequence of the jumping times of the cluster from

one state to another.

Proposition 3.5. Almost surely, eventually,

Tben2c >
n2

8
.

Proof : Consider f : n 7→ ben2c. By construction, one has the following estimate:

E

 f(n+1)∑
k=f(n)+1

τk

 =

f(n+1)∑
k=f(n)+1

1

2k
∼

n→∞
n.

Setting Tn :=
∑f(n+1)
k=f(n)+1 τk, we have

Var[Tn] =
indep.

f(n+1)∑
k=f(n)+1

Var[τk] ≤ 1

4
× π2

6
.

By Chebyshev’s inequality and our control on the expectation, for n large enough,

P
[
Tn <

n

2

]
≤ π2

3n2
.

By the Borel-Cantelli Lemma, a.s.e. Tn >
n
2 . The result follows. �

Consequently, for some (explicit) c ∈ R?+, a.s.e. St ⊂ Sbectc. The area Rt is
therefore well-defined and is a.s.e. a subset of Sbectc.

Step 2: Polynomial growth of the height.

Lemma 3.6. Let M be a sequence of positive real numbers such that a.s.e., Rn ⊂
SbMnc. Assume that Mn is eventually larger than n. Then for some constant
a ∈ R?+, a.s.e., hn ≤ an lnMn.

Proof : The colored area is the set the sites that are red or black. It is dominated
by the directed first-passage percolation starting from D and using the same clocks.



262 S. Martineau

Let Pt be the cluster of this percolation at time t. We know that, a.s.e. Rn ⊂
SbMnc ∩Pn =: A

exp(cn)
n , where Art := Sbrc ∩Pt. For n ∈ Z+ and a ∈ R?+,

P
[
h(AMnn ) > an lnMn

]
≤ P

[
∃k ≤ 2n,h

(
AMnk+1

2

)
− h

(
AMnk/2

)
> a lnMn/2

]
≤ 2nmax

k≤2n
P
[
h

(
AMnk+1

2

)
− h

(
AMnk

2

)
> a lnMn/2

]
≤ 2ne−cst·a lnMn(2Mn + 1)

≤ 2n(2Mn + 1)1−cst·a.

(For the last inequality, see the last sentence of the proof of Proposition 3.2.) Since n =
O(Mn), taking a large enough implies that the probabilities P

[
h(AMn

n ) > an lnMn

]
are summable. Applying the Borel-Cantelli Lemma, we obtain that a.s.e. hn ≤
an lnMn.

�

Applying Lemma 3.6 to (ecn) and increasing slightly the value of a, one gets that
a.s.e., h(t) ≤ at2. Indeed, (n+ 1)2 ∼

n→∞
n2.

Step 3: Polynomial lateral growth.

Lemma 3.7. Let M be a sequence of real numbers greater than 1 such that a.s.e.,
hn ≤Mn. Then, for some constant b ∈ R?+, a.s.e., dn ≤ b · nMn.

Notation. If k ∈ Z+, let Hk := {P ∈ Z2 : 0 ≤ h(P ) ≤ k} be the k-strip.

Proof : Given a natural number k, we consider the dynamics defined as in Step 1,
but with

Skn := Sn ∩Hk

instead of Sn. We denote by Sk
t the corresponding cluster at time t. As long as

ht ≤ k, we have Rt ⊂ Sk
t .

Let τn be i.i.d. random variables following an exponential law of parameter 1
and let

Tn :=

n∑
i=1

τi.

The sequence of the jumping times of the Hk-dynamics dominates stochastically
(Tn/2k)n.

Large deviation theory guarantees that there is some cst′ such that for any
n ∈ Z+,

P
[
d(SMn

n ) ≥ b3nMnc
]
≤ P

[
Tb3nMnc/(2Mn) ≤ n

]
≤ P

[
Tb3nMnc ≤ 2nMn

]
≤ e−cst′×nMn .

The Borel-Cantelli Lemma thus gives: a.s.e., d(SMn
n ) < b3nMnc. �

It results from Lemma 3.7 applied to the estimate of Step 2 that a.s.e., dt ≤ bt3.
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Step 4: Final bounds. Applying Lemma 3.6 to the polynomial estimates we now
have yields the following: a.s.e., ht ≤ cst′′ · t ln t. Applying Lemma 3.7 to this
estimate gives the almost quadratic bound on the width. �

Remark 3.8. The same arguments can be adapted to prove Theoremn 3.4 for any
sufficiently horizontal initial cluster. More exactly, it is enough to assume that
the initial cluster satisfies the geometric assumption given at the beginning of the
section with a < 1. In this case, the constant c0 depends on a, the quantity ht
stands for the maximal distance from a point of Rt to C and dt designates the
diameter of Rt.

4. Bounds on the height and width of the cluster

Let us consider the discrete-time dynamics starting from (0, 0). In this section, let
hn := h(Cn) and dn := |d|(Cn). Following Kesten (1987), we obtain the following
bounds:

Theorem 4.1. For some constant c1, almost surely, eventually,
√

2n ≤ hn ≤ c1n2/3

and

c−11 n1/3 ≤ dn ≤ c1
√
n.

Remark 4.2. For DLA, Kesten has proved that the radius of the cluster is almost
surely eventually lower than c1n

2/3.

Proof : Before applying Kesten’s argument, we need some lower bound on the ac-
tivity of the cluster. This is natural since a high activity of the cluster guarantees,
for all P ∈ Z2, a low probability that this site will be the next to be added to the
cluster (lower than 1/act(cluster)). This allows us to control the probability that
a path of length l is added between times n0 and n1 and thus the probability that
the height (or the width) of the cluster is increased by l between n0 and n1.

Notice that the lower bounds are consequences of the upper bounds and the fact
that Cn contains n+ 1 particles.

Definition 4.3. An animal is a non-empty finite set that can be obtained by a
DDLA starting from (0, 0).

Lemma 4.4. There is a constant c such that

∀F b Z2
+, F is an animal =⇒ act(F ) ≥ cmax(|d|(F ),

√
h(F )).

Proof : First of all, we notice that

act(F ) =
∑

P∈Lh(F )

2P[∃k ∈ Z+, P +Wk ∈ F ], (4.1)

where (Wk) is a downward directed symmetric random walk. This is a consequence
of the equivalence between the two constructions of DDLA in discrete time.

We will prove that there exists c ∈ R?+ such that for every animal F and every
Q ∈ Lh(F ),

d(Q) ∈
[
−
√

h(F ), 0
]

=⇒ P[∃k ∈ Z+, Q+Wk ∈ F ] > c.
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Together with the first formula of the proof, this will imply that

act(F ) ≥ c
√

h(F ).

Let F be an animal and P ∈ F be such that h(P ) = h(F ). By symmetry, we
can assume that d(P ) ≥ 0. Since F is an animal, for all Q ∈ Lh(F ) such that
d(Q) < d(P ), we have the following inequality:

P[∃k ∈ Z+, Q+Wk ∈ F ] ≥ P[d(Q+Wh(F )) > 0].

Besides, if d(Q) > −
√

h(F ), then

P[d(Q+Wh(F )) > 0] ≥ P
[
W̃h(F ) >

√
h(F )

]
,

where (W̃k)k is the symmetric 1-dimensional random walk. The quantity in the
right-hand side of this inequality is bounded from below by the Central Limit
Theorem, implying half of the desired inequality.

Let P ∈ F be such that |d(P )| = |d|(F ). Since F is an animal, there exists
A ⊂ F such that A is an animal, h(P ) = h(A) and P ∈ A. It follows from (?) that

F ⊂ F ′ =⇒ act(F ) ≤ act(F ′).

Thus, we just need to prove the result for A.
By symmetry, we can assume that d(P ) > 0. If Q ∈ Lh(A) and d(Q) ∈ [0,d(P )],

P[∃k,Q+Wk ∈ A] ≥ P[d(Q+Wh(A)) > 0] ≥ 1

2
.

This ends the proof of the lemma. �

Let (f, α) be
(
n 7→ h(An), 12

)
or (n 7→ |d|(An), 1). We will prove that there exists

almost surely k0 such that

∀k > k0,∀l, 2k ≤ l ≤ 2k+1 =⇒ f(2k+1)− f(l) ≤ 2k+3

cf(l)α
+ 2k/2.

We then conclude using the following lemma.

Lemma 4.5 (discrete version of Gronwall’s Lemma). Let α ∈ (0, 1], c ∈ R?+ and

(an)n∈Z+
∈ ZZ+

+ . Assume that ∀n, an+1 − an ∈ [0, 1] and that there exists k0 such
that

∀k > k0, ∀l, 2k ≤ l ≤ 2k+1 =⇒ a2k+1 − al
2k

≤ 8

c · aαl
+ 2−k/2.

Then, there exists some c1 depending only on (α, c) such that, eventually,

an ≤ c1n1/(α+1).

Its proof is postponed to the end of the section.

Let (k, l) be such that 2k ≤ l ≤ 2k+1 and let us set m := b 2k+3

c·f(l)α + 2k/2c. We

are looking for an upper bound on P[f(2k+1) − f(l) > m] in order to apply the
Borel-Cantelli Lemma.

Definition 4.6. The path (P1, . . . , Pn) ∈ (Z2
+)n is said to be filled in order if

• it is an upward directed path: ∀i, Pi+1 − Pi ∈ {(0, 1), (1, 0)};
• all the Pi belong to the considered cluster;
• if i < j, Pi is added to the cluster before Pj .
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Assume that f(2k+1)− f(l) > m. Let P be such that

f(P ) = max
Q∈C

2k+1

f(Q).

By construction of DDLA, there exists a path filled in order linking 0 to P . Taking
its r last steps for a suitable value of r, we obtain a path P = (P1, . . . , Pr) that is
filled in order (relative to C2k+1) and such that Pr = P and f(Pr)− f(P1) = m. In
particular, there exists a path of length m — (P1, . . . , Pm) — filled in order such
that its sites are added to the cluster between times l and 2k+1.

The number of upward directed paths of length m starting in L≤l is

(l + 1)(l + 2)

2
· 2m.

We now need to control, for such a path P = (P1, . . . , Pm), the probability that it is
filled in order between times l and 2k+1. More precisely, we extend P to an infinite
upward directed path and look for an upper bound on the probability that its first m
sites are successfully added between times l and 2k+1. For n ∈ [l+ 1, 2k+1], assume
that i = min{j ∈ N : Pj 6∈ Cn−1}. Let In be the event that Pi is the site added at

time n. The probability we want to control is lower than P
[∑2k+1

n=l+1 In ≥ m
]
.

We know, by Lemma 4.4, that P[In|Cn−1] ≤ 1
c·f(n−1)α . By monotonicity of f,

this implies that, almost surely,

2k+1∑
n=l+1

P[In|Cn−1] ≤ 2k

c · f(l)α
.

We now use the following exponential bound:

Theorem 4.7 (Theorem 4.b in Freedman (1973)). Let (Fn) be a filtration. Let τ
be an (Fn)-stopping time. Let (Xn) be a sequence of random variables such that

for every n, Xn ∈ [0, 1] and Xn is Fn-measurable.

Let Mn := E[Xn|Fn−1]. Let (a, b) be such that 0 < b ≤ a. Then,

P

[
τ∑
n=1

Xn ≥ a and

τ∑
n=1

Mn ≤ b

]
≤
(
b

a

)a
ea−b.

Applying this to In with Fn := σ(C0, . . . , Cn), a := m, b := 2k

c·f(l)α ≤
m
8 and a

constant stopping time, we obtain that the probability that there are at least m
successful fillings through P between times l and 2k+1 is lower than

(
e
8

)m
.

Thus,

P[f(2k+1)− f(l) > m] ≤ (l+1)(l+2)
2 · 2m ·

(
e
8

)m
≤ (2k+1 + 2)2 ·

(
e
4

)2k/2
.

Since
∑
k≥1

∑2k+1

l=2k+1(2k+1 + 2)2 ·
(
e
4

)2k/2
< ∞, by the Borel-Cantelli Lemma and

Lemma 4.5, the proposition is established. �
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Proof of Lemma 4.5: Take d0 such that (21/(α+1) − 1) · d0 > 8
cdα0

+ 1 and take

c1 > 21+1/(α+1)d0. For k > k0,

a2k ≥ d0 · 2k/(α+1) =⇒ a2k+1 − a2k ≤ 8
c .

2k

dα0 ·2kα/(α+1) + 2k/2

=⇒ a2k+1 − a2k ≤ ( 8
cdα0

+ 1) · 2k/(α+1)

=⇒ a2k+1 − a2k ≤ d0 · 2(k+1)/(α+1) − d0 · 2k/(α+1),

where the last line results from the choice of d0. Thus, there exists k1 > k0 such
that a2k1 ≤ 2d0 · 2k1/(α+1).

If ∀k ≥ k1, a2k > d0 · 2k/(α+1), then the implication we have just proved shows
that

∀k > k1, a2k − a2k1 ≤ d0 · 2k/(α+1) − d0 · 2k1/(α+1),

which implies that ∀k ≥ k1, a2k ≤ 2d0 ·2k/(α+1). Since (an)n∈Z+ is a non-decreasing
sequence, we obtain

∀m > 2k1 , am ≤ 21+1/(α+1) · d0 ·m1/(α+1).

Thus, we can assume that k1 is such that a2k1 ≤ d0 · 2k1/(α+1). Assume that
there exists k2 > k1 such that a2k2 > d0 · 2k2/(α+1). Take a minimal such k2.
By minimality, there exists some minimal l between 2k2−1 + 1 and 2k2 such that
al−1 ≤ d0 · (l − 1)1/(α+1) and al > d0 · l1/(α+1). Thus,

a2k2 − al ≤
8

c
.

2k2−1

dα0 · lα/(α+1)
+ 2(k2−1)/2

and, since al ≤ al−1 + 1,

a2k2 ≤ d0 · (l − 1)1/(α+1) + 1 + 8
c .

2k2−1

dα0 ·lα/(α+1) + 2(k2−1)/2

≤ 2d0 · 2k2/(α+1) + 1.

In fact, we have proved that, for k ≥ k1,

a2k ≤ d0 · 2k/(α+1) =⇒ a2k+1 ≤ 2d0 · 2(k+1)/(α+1) + 1

and

a2k > d0 · 2k/(α+1) =⇒ a2k ≤ 2d0 · 2k/(α+1) + 1
=⇒ a2k+1 ≤ 2d0 · 2(k+1)/(α+1) + 1.

This implies the proposition. �

We can deduce from this a version of Theorem 4.1 for the continuous-time model.
Of course, we set ht := h(Ct) and dt := |d|(Ct).

Proposition 4.8. For some constant d1, almost surely, for every positive ε, even-
tually,

(2− ε)t ≤ ht ≤ d1t
and√

t

d1
≤ dt ≤ d1t.

Proof : The quantities ht and dt grow at most linearly because continuous-time
DDLA is stochastically dominated by First-Passage Percolation.

If the lower extremity of an edge is a highest point of the cluster, then the activity
of this edge is 1. Consequently, if Tk is the first time when the cluster is of height
k, then (Tk+1 − Tk)k∈Z+ is stochastically dominated by independent exponential
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random variables of parameter 2 (there exist at least 2 edges of lower extremity
being a highest point of the cluster). This entails the at least linear growth of the
height.

It results from this, the fact that discrete- and continuous-time DDLA define the
same process and Theorem 4.1 that the number N(t) of particles in the cluster at
time t satisfies, for some deterministic constant a,

N(t) ≥ at3/2,

almost surely eventually12. This implies that, a.s.e. dt ≥ N(t)1/3

c1
≥ a1/3

c1

√
t.

�

5. The infinite cluster

Notation. In this section, we set

Sn := {P ∈ Z2 : ‖P‖1 = n} and Bn := {P ∈ Z2 : ‖P‖1 ≤ n}.
We call elementary loop

L := {P ∈ Z2 : ‖P‖∞ = 1}.

We start this section with a formal definition of (undirected) DLA.

Recall that if F b Z2, the harmonic measure of F is the unique probability
measure µF such that the following holds:

Take any sequence (νn) of probability measures on Z2 satisfying

∀G b Z2, ∃nG,∀n ≥ nG, νn(G) = 0.

Take Wn the symmetric (non-directed) nearest-neighbor random walk in Z2, starting
at 0. Choose independently a starting point P according to νn. If G is a non-empty
subset of Z2, let

τ(G) = min{k : Wk ∈ G},
which is finite almost surely. Then,

∀Q ∈ F,Pn
[
P +Wτ(−P+F ) = Q

]
−−−−→
n→∞

µF ({Q}).

In words, µF measures the probability that a site in F is the first site of F to be
touched by a walk launched from very far. For more information on the harmonic
measure, see Spitzer (1976).

There are several equivalent13 definitions of DLA. The setting that will be con-
venient in this section is the following. The first cluster is C0 := {(0, 0)} ⊂ B0.
Assume that the first n clusters have been built and are subsets of Bn. Indepen-
dently of all the choices made so far, choose a point P in Sn+2 according to µSn+2 .
Throw a symmetric random walk (P +Wk)k∈Z+ starting at P and set

Cn+1 := {P +Wτ(−P+Cn)−1} ∪ Cn ⊂ Bn+1.

This process is called Diffusion-Limited Aggregation.14

12because N(t) goes to infinity when t tends to infinity.
13The equivalences between the following definition and the natural definitions you may think

of boil down to the definition of harmonic measure and strong Markov Property for random walks.
14The process consisting in adding a site with probability proportional to its harmonic measure

relative to {P /∈ Cn : ∃Q ∈ Cn, ‖P −Q‖1 = 1} is very similar to this process, but not equal to

it in distribution.
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The following fact about C∞ :=
⋃
n Cn is well-known.

Proposition 5.1. There is some ε > 0 such that for all P ∈ Z2, P[P 6∈ C∞] ≥ ε.
Proof : Let P ∈ Z2. We consider our evolution temporally: we launch the first
particle, look at it step after step until it sticks, before launching the second par-
ticle. . . A step is said to be critical if the current particle is at distance 1 from P
and P is at distance 1 from the current cluster.

We wait for a critical step (we may wait forever). Conditionally on the fact that
such a step exists, with probability 4−7, the particle tries — immediately after the
first critical step — to visit all the points of P +L, say clockwise.15 Since the step
is critical and L has cardinality 8, the particle must stick to some particle of the
cluster and the cardinality of (P + L) ∩ Ccurrent time is increased by 1. Doing so at
the first 8 critical steps that occur16 prevents P from being added to the cluster.
The fact thus holds for ε := 4−7×8. �

Such a proof cannot work for the directed version of DLA. Indeed, take a site
P with a neighbor belonging to the cluster. Even assuming that there are enough
particles coming in the neighborhood of P , one cannot always surround P by modi-
fying a finite number of steps: for example, (2, 0) will never be added to the cluster
before (1, 0) if one considers a DDLA launched from (0, 0). The screening effect of
the particles above it can be very strong, but will never reduce its activity to 0.

However, we can prove the following proposition.

Proposition 5.2. Consider a DDLA starting from {(0, 0)}. With positive proba-
bility, the site (1, 0) is never added to the cluster.

Proof : With positive probability, the first vertex to be added is (0, 1). Denote by
Xt the maximal first coordinate of an element of Z+ × {1} that belongs to the
cluster at time t. At time t, the activity of (1, 0) is at most 21−Xt times the activity
of (Xt + 1, 1). (To see this inequality, map a directed random walk W launched at

(1, 0) that takes its first Xt steps to the left to the random walk launched at (Xt + 1, 1)

that merges with W as soon as W enters Z+ × {1}.) Thus, conditionally on the fact
that (n, 1) is added to the cluster before (1, 0), the probability that (1, 0) is added
to the cluster before (n + 1, 1) is at most 2−n. Since

∏
n≥1(1 − 2−n) is positive,

Proposition 5.2 is established. �

Corollary 5.3. Consider a DDLA starting from {(0, 0)}. Almost surely, for every
n ∈ Z+, only finitely many points of (Z+ × {n}) ∪ ({n} × Z+) are added to the
cluster.

Notation. Recall that for b ∈ R?+, we set Cb := r−π/4
(
{(x, y) ∈ R2 : |y| ≥ b|x|}

)
.

Proposition 5.4. Consider a DDLA starting from C 6= ∅. Let

C∞ :=
⋃
t≥0

Ct.

Then, almost surely, for all P ∈ Z2, for all b > 0, C∞ ∩ (P + Cb) is infinite.

15By this, we mean that the following 7 steps that the particle would take if it was not hindered

by the cluster are the ones making it visit P + L clockwise.
16which means at every critical step if there are less than 8 of them

By “the first 8 critical steps”, we mean the first critical step (which occurs for the kth1 particle),

the first critical step of a particle different from the kth1 one, and so on up to 8.



Directed DLA 269

Proof : Notice that it is enough to prove the fact with “non-empty” instead of
“infinite”.

There is an increasing path P = (P1, . . . , Pn) going from a point of C to a point
in P + Cb. The conic structure and the law of large numbers guarantee that the
activity of Pn is bounded away from 0 (say larger than c > 0) as long as P +Cb = ∅
(which we now assume).

Thus, if k(t) := max{i : Pi ∈ Ct} and if k(t) < n, then Pk(t)+1 will be added

at rate at least 2n−k(t)c > 0. Indeed, a walk can reach Pn from Pk+1 by using P;
then, from Pn, it escapes with probability c. Consequently, k(t) will almost surely
take a finite time to increase its value, as long k(t) < n. Thus k(∞) = n, and
Proposition 5.4 is established. �

Let us conclude with a couple of questions.

Question 5.5. For which values of b does it hold that the infinite DDLA cluster
is almost surely a subset of Cb up to finitely many points?

Question 5.6. What is the distribution of the number of ends of the infinite DDLA
cluster?
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