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Abstract. Using martingale methods, we obtain some upper bounds for large and
moderate deviations of products of independent and identically distributed ele-
ments of GLd(R). We investigate all the possible moment conditions, from super-
exponential moments to weak moments of order p > 1, to get a complete picture of
the situation. We also prove a moderate deviation principle under an appropriate
tail condition.

1. Introduction

Let (Ω,F ,P) be a probability space and (Yn)n≥1 be independent and identically
distributed random variables on (Ω,F ,P) taking values in G := GLd(R), d ≥ 2
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(the group of invertible d-dimensional real matrices), with common distribution µ.
Denote by Γµ the closed semi-group generated by the support of µ. Let ‖ · ‖ be the
euclidean norm on Rd, and for every g ∈ GLd(R), let ‖g‖ := sup‖x‖=1 ‖gx‖.

In all the paper, we assume that µ is strongly irreducible, i.e., that no proper
finite union of subspaces of Rd are invariant by Γµ and that it is proximal, i.e., that
there exists a matrix in Γµ admitting a unique (with multiplicity one) eigenvalue
with maximum modulus.

For such a measure µ, it is known that there exists a unique invariant measure
ν on the projective space X := Pd−1(R) (see for instance Theorem 3.1 of Bougerol
and Lacroix, 1985) in the following sense: for any bounded Borel function h from
X to R ∫

X

h(u)ν(du) =

∫
G

∫
X

h(gu)µ(dg)ν(du) . (1.1)

Moreover, if∫
G

logN(g)µ(dg) <∞ , where N(g) := max(‖g‖, ‖g−1‖), (1.2)

then (see for instance Corollary 3.4 page 54 of Bougerol and Lacroix, 1985 or The-
orem 3.28 of Benoist and Quint, 2016b), for every x ∈ Sd−1,

log ‖Yn · · ·Y1x‖
n

−→
n→+∞

λµ =

∫
G

∫
X

σ(g, u)µ(dg)ν(du) almost surely, (1.3)

where

σ(g, x̄) = σ(g, x) = log

(
‖gx‖
‖x‖

)
for g ∈ GLd(R) and x ∈ Rd − {0},

x̄ denoting the class of x in X. Note that the function σ defined above is a cocycle,
in the following sense:

σ(gg′, u) = σ(g, g′u) + σ(g′, u) for any g, g′ ∈ G and u ∈ X . (1.4)

Let Ak = Yk · · ·Y1 for k ≥ 1 and A0 = Id. In this paper we wish to study the
asymptotic behavior of

sup
‖x‖=1

P
(

max
1≤k≤n

|log ‖Akx‖ − kλµ| > nαy

)
, (1.5)

when α ∈ (1/2, 1], under stronger moment conditions on logN(Y1) than (1.2). This
is a way to study rates of convergence in the strong law (1.3). In the probabilistic
terminology, the case α ∈ (1/2, 1) corresponds to the moderate deviation regime,
and α = 1 to the large deviation regime.

The case α = 1/2 corresponds to the normalization of the central limit theorem.
In that case, the asymptotic behavior of (1.5) is due to Benoist and Quint (2016a)
as soon as logN(Y1) has a moment of order 2 (note that Benoist and Quint, 2016a
do not deal with the maximum in (1.5), but their method also applies in that case,
see also Theorem 1(ii) in Cuny et al., 2017+). A previous result is due to Jan
(2001) under a moment of order 2 + ε, ε > 0.

In this paper, we shall give precise informations on the rate of convergence to
0 (as n → ∞) of (1.5) when α ∈ (1/2, 1], under various moment conditions on
the random variable logN(Y1): sub or super-exponential moments in Section 2,
weak moments of order p > 1 in Section 3, and strong moments of order p ≥ 1 in
Section 4.
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In Section 2.2 we shall give a moderate deviation principle for the process{
n−α(log ‖A[nt]x‖ − [nt]λµ), t ∈ [0, 1]

}
when logN(Y1) satisfies Arcones’s tail condition (Arcones, 2002), which is true
under an appropriate sub-exponential moment condition. In Section 4 we obtain
some results in the spirit of Baum and Katz (1965) which complement the results
on complete convergence obtained in Benoist and Quint (2016a) in the case α = 1.
When logN(Y1) has a strong moment of order p ∈ (1, 2) and α = 1/p, this gives
the rate n(p−1)/p in the strong law of large numbers, which was proved by another
method in Cuny et al. (2017+), Theorem 1(i).

All along the paper, the following notations will be used: let F0 = {∅,Ω} and
Fk = σ(Y1, . . . , Yk), for any k ≥ 1. For any x ∈ Sd−1, define X0,x = x and
Xn,x = σ(Yn, An−1x) for n ≥ 1. With these notations, for any x ∈ Sd−1 and any
positive integer k,

log ‖Akx‖ =

k∑
i=1

Xi,x . (1.6)

The equality (1.6) follows easily from the fact that σ is a cocycle (i.e. (1.4) holds).
In Section 6 we shall present some extensions of our results to general cocycles, in
the spirit of Benoist and Quint (2016a).

Throughout the paper we shall use two kinds of martingale approximation:

• If
∫
G

log(N(g))pµ(dg) < ∞ for some p ≥ 2 then, see for instance the identity

(3.9) in Benoist and Quint (2016a), for any x ∈ Sd−1,

Xk,x − λµ = Dk,x + ψ(Ak−1x)− ψ(Akx) , (1.7)

where Dk,x is Fk-measurable and such that E(Dk,x|Fk−1) = 0 and ψ is a bounded
function (we denote by ‖ψ‖sup the supremum of |ψ|). The decomposition (1.7)
is called a martingale-coboundary decomposition. Such a decomposition has been
used for the first time in the paper by Gordin (1969) (see also Gordin and Lif̌sic,
1978). In that case, for any x ∈ Sd−1,

log ‖Akx‖ − kλµ = Mk,x + ψ(x)− ψ(Akx) , (1.8)

where Mk(x) = D1,x + · · ·+Dk,x is a martingale adapted to the filtration Fk.

The term ψ(x)−ψ(Akx) will have a negligible contribution for the questions we
are concerned with, so that it will be sufficient to study the martingale (Mk,x)k≥1.

• If
∫
G

log(N(g))pµ(dg) <∞ for some p ≥ 1 then, setting

D̃n,x = σ(Yn, An−1x)−
∫
G

σ(g,An−1x)µ(dg), andRn,x =

∫
G

σ(g,An−1x)µ(dg)−λµ ,

we have, for any x ∈ Sd−1,

Xk,x − λµ = D̃k,x +Rk,x . (1.9)

Notice that the random variable D̃k,x is Fk-measurable with E(D̃k,x|Fk−1) = 0,
and |Rk,x| ≤ 2

∫
G

log(N(g))µ(dg). In that case, for any x ∈ Sd−1,

log ‖Anx‖ − nλµ =

n∑
k=1

(D̃k,x +Rk,x) := M̃n,x + Un,x . (1.10)
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Here, the contribution of (Uk,x)k≥1 will not be negligible, but we will take advantage
of the fact that ‖Uk,x‖∞ ≤ ck for some finite constant ck. Here and in what follows,
‖ · ‖∞ is the usual essential supremum norm on (Ω,F ,P).

2. The case of (sub/super) exponential moments

2.1. Upper bounds for large deviations. Let r > 0. In this subsection, we assume
that ∫

G

eδ(logN(g))rµ(dg) <∞ , for some δ > 0. (2.1)

We first consider the case r ≥ 1. In that case, using the spectral gap property,
Le Page (1982) proved the following large deviation principle (see also Bougerol
and Lacroix, 1985, Theorem 6.1): there exist some positive constants A,B such
that, for any y ∈ (0, A) and any x ∈ Sd−1,

lim
n→∞

1

n
logP (log ‖Anx‖ − nλµ > ny) = φ(y) , (2.2)

where for any x ∈ Sd−1, t > 0, and y ∈ (0, A),

log γ(t) = lim
n→∞

1

n
logE

(
et log ‖Anx‖

)
, φ(y) = − sup

0<s<B
{sy − log γ(s) + sλµ} < 0

(note that the functions γ and φ do not depend on x). Of course, this is the best
possible result for y ∈ (0, A). However, it does not give any information for large
values of y, and the rate function φ is not explicit (in particular, one cannot easily
describe the behavior of φ when r varies in [1,∞)).

The following result, which is obtained via a completely different method, can
be seen as a complementary result of (2.2). It gives an explicit (up to a constant)
upper bound for φ when y ∈ (0, A), and this upper bound is valid for any y > 0.
In particular, we can see the qualitative change in the behavior of large deviations
for large y when r varies in [1,∞).

Theorem 2.1. Assume that (2.1) holds for some r ≥ 1. Then there exists a
positive constant C such that, for any y > 0,

lim sup
n→∞

1

n
log sup
‖x‖=1

P
(

max
1≤k≤n

|log ‖Akx‖ − kλµ| > ny

)
≤ −C

(
y21y∈(0,1) + yr1y≥1

)
. (2.3)

For r ∈ (0, 1), there is no such result as (2.2). Instead, one can prove:

Theorem 2.2. Assume that (2.1) holds for some r ∈ (0, 1). Then there exists a
positive constant C such that, for any y > 0,

lim sup
n→∞

1

nr
log sup
‖x‖=1

P
(

max
1≤k≤n

|log ‖Akx‖ − kλµ| > ny

)
≤ −Cyr . (2.4)

Proofs of Theorems 2.1 and 2.2: Since
∫
G

(logN(g))2µ(dg) < ∞, we have the de-
composition (1.8). Clearly, since |ψ(x) − ψ(Akx)| ≤ 2‖ψ‖sup, it is equivalent to
prove (2.3) and (2.4) for Mk,x instead of (log ‖Akx‖ − kλµ).
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To do this, we first note that if (2.1) holds, then∥∥∥E(eδ|Xk,x|r ∣∣∣Fk−1

)∥∥∥
∞

=

∥∥∥∥∫ eδ|σ(g,Ak−1x)|rµ(dg)

∥∥∥∥
∞
≤
∫
G

eδ(logN(g))rµ(dg) <∞

(2.5)
(recall that ‖ · ‖∞ is the usual essential supremum norm on (Ω,F ,P)). Using again
that ψ is bounded we infer from (1.7) and (2.5) that there exists a constant K such
that

sup
‖x‖=1

∥∥∥E(eδ|Dk,x|r ∣∣∣Fk−1

)∥∥∥
∞
< K , (2.6)

for any positive integer k.
Starting from Inequality (2.6), it remains to apply known results to the martin-

gale (Mk,x)k≥1.
To prove (2.3) (case r ≥ 1), we apply Theorem 1.1 of Liu and Watbled (2009),

which implies that there exists a positive constant c such that, for any y > 0,

sup
‖x‖=1

P
(

max
1≤k≤n

|Mk,x| > ny

)
≤ 2 exp

(
−nc

(
y21y∈(0,1) + yr1y≥1

))
. (2.7)

The upper bound (2.3) follows directly from (2.7). Note that a direct application of
Theorem 1.1 of Liu and Watbled (2009) gives us (2.7) without the maximum over
k. However, a careful reading of the proof reveals that one can take the maximum
over k. The only argument that should be added to the proof is Doob’s maximal
inequality for non-negative submartingales, which implies that

E
(
eλmax1≤k≤nMk,x

)
≤ E

(
eλMn,x

)
, for any λ > 0.

To prove (2.4) (case r ∈ (0, 1)), we apply Theorem 2.1 of Fan (2015) (see also the
proof of Proposition 3.5 of Dedecker and Fan, 2015) and more precisely the upper
bound (13) in Fan (2015), which implies that there exist two positive constants c1
and c2 such that

sup
‖x‖=1

P
(

max
1≤k≤n

|Mk,x| > ny

)
≤ 4 exp (−c1(ny)r) , for any y > c2n

−(1−r)/(2−r).

(2.8)
The upper bound (2.4) follows directly from (2.8). �

2.2. A moderate deviation principle. Let (bn)n≥0 be a sequence of positive numbers
satisfying the following regularity conditions:

The functions f(n) =
n2

b2n
and g(n) = b2n are strictly increasing to infinity,

and lim
n→∞

n

b2n
= 0. (2.9)

For x ∈ Sd−1, let

Zn,x =

{
log ‖A[nt]x‖ − [nt]λµ

bn
, t ∈ [0, 1]

}
.

The process Zn,x takes values in the space D([0, 1]) equipped with the usual Sko-
rokhod topology.
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For V ≥ 0, let also IV be the usual rate function for the moderate deviation
principle, that is:

IV (h) =
1

2V

∫ 1

0

(h′(u))
2
du (2.10)

if simultaneously h is absolutely continuous with h(0) = 0 and V > 0, and IV (h) =
+∞ otherwise.

The following functional moderate deviation principle holds:

Theorem 2.3. Let (bn)n≥0 be a sequence of positive numbers satisfying the condi-
tion (2.9). Assume

∫
(logN(g))2µ(dg) <∞ and

lim sup
n→∞

n

b2n
log nµ {logN > bn} = −∞ . (2.11)

Then, for any x ∈ Sd−1, n−1E((log ‖Anx‖ − nλµ)2) → V as n → ∞, where
V ∈ (0,∞) does not depend on x. Moreover, for any Borel set Γ ⊂ D([0, 1]),

− inf
ϕ∈Γ◦

IV (ϕ) ≤ lim inf
n→∞

n

b2n
log inf
‖x‖=1

P (Zn,x ∈ Γ)

≤ lim sup
n→∞

n

b2n
log sup
‖x‖=1

P (Zn,x ∈ Γ) ≤ − inf
ϕ∈Γ̄

IV (ϕ) . (2.12)

Remark 2.4. Let (bn)n≥0 be a sequence of positive numbers satisfying (2.9). If
(Xi)i≥1 is a sequence of independent and identically distributed random variables,
Arcones (2002) proved that the functional moderate deviation principle holds pro-
vided E(X2

1 ) <∞ and

lim sup
n→∞

n

b2n
log nP(|X1| > bn) = −∞ . (2.13)

Moreover, he showed that condition (2.13) is also necessary for the moderate devia-
tion principle. Note that our condition (2.11) is exactly Arcones’s tail condition for
the random variable logN(Y1). When bn = nα with α ∈ (1/2, 1), the tail condition
(2.11) is true if

µ {logN > x} ≤ e−x
βa(x) ,

for β = 2 − (1/α) and a function a such that a(x) → ∞ as x → ∞ (note that
β ∈ (0, 1), so only a sub-exponential moment is needed for logN(Y1)).

Remark 2.5. To get a moderate deviation principle for

Z∗n,x = b−1
n max

1≤k≤n
|log ‖Akx‖ − kλµ| ,

it suffices to apply the contraction principle, as described for instance in Sec-
tion 4.2.1 of Dembo and Zeitouni (1998), to the functional

T (h) = sup
x∈[0,1]

|h(x)|

acting on continuous functions from [0, 1] to R. It follows that the sequence
(Z∗n,x)n≥0 satisfies a moderate deviation principle with rate function

J(y) = inf{IV (h), h such that T (h) = y} =
y2

2V
.
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This means exactly that, for any Borel set Γ ⊂ R+,

− inf

{
y2

2V
, y ∈ Γ◦

}
≤ lim inf

n→∞

n

b2n
log inf
‖x‖=1

P
(

max1≤k≤n |log ‖Akx‖ − kλµ|
bn

∈ Γ

)
≤ lim sup

n→∞

n

b2n
log sup
‖x‖=1

P
(

max1≤k≤n |log ‖Akx‖ − kλµ|
bn

∈ Γ

)
≤ − inf

{
y2

2V
, y ∈ Γ̄

}
.

Note that a partial result in this direction has been obtained in Benoist and Quint
(2016b), Proposition 11.12. In that Proposition, the authors proved a moderate
deviation principle for (log ‖Anx‖−nλµ) and the collection of open intervals, under
an exponential moment for logN(Y1). However, their result is stated in a more
general framework than ours (see Section 6 of the present paper for an extension
of Theorem 2.3 to general cocycles).

Proof of Theorem 2.3: Since
∫
G

(logN(g))2µ(dg) < ∞ the decomposition (1.8)

holds, hence n−1E((log ‖Anx‖ − nλµ)2)→ V as n→∞, for some V ∈ [0,∞). The
fact that V > 0 follows from Theorem 4.11.c of Benoist and Quint (2016a) (see
also Theorem 5.1 page 121 of Bougerol and Lacroix, 1985). Moreover, by (1.8), it
is equivalent to prove (2.12) for the process

Z̃n,x =

{
M[nt],x

bn
, t ∈ [0, 1]

}
instead of Zn,x. Now, by a standard argument, to get the result uniformly with
respect to x ∈ Sd−1 in (2.12), it suffices to prove the functional moderate deviation

principle for the process Z̃n,xn , where (xn)n≥1 is any sequence of points in Sd−1.
The result will follow from the next proposition, which is a triangular version

of Theorem 1 in Djellout (2002). This proposition is in fact a corollary of a more
general result for triangular arrays of martingale differences which can be deduced
from Puhalskii’s results and Worms’s paper (see Puhalskii, 1994 and Worms, 2001).
We refer to Theorem 5.1 of the Appendix for a complete statement and some
elements of proof.

Before giving the statement of this proposition, we need more notations. Assum-
ing (2.9), we can construct the strictly increasing continuous function f(x) that is
formed by the line segments from (n, f(n)) to (n+ 1, f(n+ 1)). Similarly we define
g(x) and denote by

c(x) = f−1(g(x)) . (2.14)

Proposition 2.6. Let
(
di,n)1≤i≤n be a triangular array of real-valued square-

integrable martingale differences with respect to a triangular array of filtrations
(Fi,n)0≤i≤n. Let (bn)n≥0 be a sequence of positive numbers satisfying (2.9), and let

Z̄n =

{
d1,n + · · ·+ d[nt],n

bn
, t ∈ [0, 1]

}
.

Assume that the three following conditions holds
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(1) There exists a non-negative number V such that, for any δ > 0 and any
t ∈ [0, 1],

lim sup
n→∞

n

b2n
logP

∣∣∣∣∣∣
 1

n

[nt]∑
i=1

E(d2
i,n|Fi−1,n)

− V t
∣∣∣∣∣∣ > δ

 = −∞ . (2.15)

(2) For any ε > 0 and δ > 0,

lim sup
n→∞

n

b2n
logP

(
1

n

n∑
i=1

E
(
d2
i,n1|di,n|>εnb−1

n

∣∣∣Fi−1,n

)
> δ

)
= −∞ . (2.16)

(3)

n

b2n
log

(
sup

n≤m≤c(n+1)

sup
1≤k≤m

n
∥∥P(|dk,m| > bn|Fk−1,m

)∥∥
∞

)
→ −∞ as n→∞ ,

(2.17)
where c(n) is defined in (2.14).

Then, for any Borel set Γ ⊂ D([0, 1]),

− inf
ϕ∈Γ◦

IV (ϕ) ≤ lim inf
n→∞

n

b2n
logP

(
Z̄n ∈ Γ

)
≤ lim sup

n→∞

n

b2n
logP

(
Z̄n ∈ Γ

)
≤ − inf

ϕ∈Γ̄
IV (ϕ) , (2.18)

where IV is defined in (2.10).

Let us conclude the proof of Theorem 2.3. Let (xn)n≥1 be any sequence of points
in Sd−1. We apply Proposition 2.6 to the martingale differences di,n = Di,xn (recall
that Di,x is the martingale difference of the decomposition (1.7)). Condition (2.16)
is clearly satisfied thanks to (1.7) and the fact that∥∥∥E(X2

k,xn1|Xk,xn |>εnb
−1
n

∣∣∣Fk−1

)∥∥∥
∞

=

∥∥∥∥∫ (σ(g,Ak−1xn))21|σ(g,Ak−1xn)|>εnb−1
n
µ(dg)

∥∥∥∥
∞

≤
∫
G

(logN(g))21logN(g)>εnb−1
n
µ(dg) .

To check Condition (2.15), we apply Proposition 3.1 in Benoist and Quint
(2016a), which implies that, for any δ > 0 and any t ∈ [0, 1], there exist A > 0 and
α > 0 such that, for the variance V defined in Theorem 2.3,

P

∣∣∣∣∣∣
 1

n

[nt]∑
i=1

E(D2
i,xn |Fi−1)

− V t
∣∣∣∣∣∣ > δ

 ≤ Ae−αn .
Condition (2.15) follows then easily, since n2b−2

n →∞ as n→∞.
It remains to check Condition (2.17). By (1.7) again, it is equivalent to prove

the condition for Xk,xm instead of Dk,xm . Now∥∥∥E(1|Xk,xm |≥bn

∣∣∣Fk−1

)∥∥∥
∞

=

∥∥∥∥∫ 1|σ(g,Ak−1xm)|≥bn µ(dg)

∥∥∥∥
∞
≤ µ {logN ≥ bn} ,

and the result follows by (2.11). �
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3. The case of weak moment of order p > 1

In this section, we study the asymptotic behavior of (1.5) when logN(Y1) has
only a weak moment of order p > 1.

Theorem 3.1. Let p > 1 and and assume that

sup
t>0

tpµ {logN > t} <∞ . (3.1)

Let α ∈ (1/2, 1] and α ≥ 1/p. Then there exists a positive constant C such that,
for any y > 0,

lim sup
n→∞

nαp−1 sup
‖x‖=1

P
(

max
1≤k≤n

| log ‖Akx‖ − kλµ| > nαy

)
≤ C

yp
. (3.2)

Proof of Theorem 3.1: The case p > 2. In that case the decomposition (1.8) holds,
and it is equivalent to prove (3.2) for Mk,x instead of (log ‖Akx‖−kλµ). To do this,
we shall apply the following inequality due to Haeusler (1984): for all γ, u, v > 0,

P
(

max
1≤k≤n

|Mk,x| ≥ γ
)
≤

n∑
i=1

P (|Di,x| ≥ u) + 2P

(
n∑
i=1

E(D2
i,x|Fi−1) ≥ v

)
+ 2 exp

(
γu−1

(
1− log

(
γuv−1

)))
. (3.3)

Note that if (3.1) holds for p > 2, then

∥∥E (X2
k,x|Fk−1

)∥∥
∞ =

∥∥∥∥∫
G

(σ(g,Ak−1x))2µ(dg)

∥∥∥∥
∞
≤
∫
G

(logN(g))2µ(dg) <∞ ,

(3.4)
and there exists a positive constant C such that∥∥∥E(1|Xk,x|≥u

∣∣∣Fk−1

)∥∥∥
∞

=

∥∥∥∥∫ 1|σ(g,Ak−1x)|≥u µ(dg)

∥∥∥∥
∞
≤ µ {logN ≥ u} ≤ C

up
,

(3.5)
for any u > 0 and any positive integer k. Using again that ψ is bounded we infer
from (1.7) and (3.4) that there exist two positive constants c1, c2 such that

sup
‖x‖=1

∥∥E (D2
k,x|Fk−1

)∥∥
∞ ≤ c1 , (3.6)

sup
u>0

up sup
‖x‖=1

P (|Dk,x| ≥ u) ≤ sup
u>0

up sup
‖x‖=1

∥∥E (1|Dk,x|≥u|Fk−1

)∥∥
∞ ≤ c2 , (3.7)

for any positive integer k. Taking γ = nαy, u = nαy/r with r ∈ (0,∞), and
v = 2nc1 in (3.3), we get

P
(

max
1≤k≤n

|Mk,x| ≥ nαy
)
≤ c3

(
1

ypnαp−1
+

1

y2rn(2α−1)r

)
, (3.8)

for some positive constant c3. Selecting r > (αp − 1)/(2α − 1), the upper bound
(3.2) follows directly from (3.8).
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The case p ∈ (1, 2). Let x ∈ Sd−1. In that case, the decomposition (1.8) holds. We
use now the basic inequality

P
(

max
1≤k≤n

| log ‖Akx‖ − kλµ| ≥ nαy
)
≤ P

(
max

1≤k≤n
|M̃k,x| ≥ nαy/2

)
+ P

(
max

1≤k≤n
|Uk,x| ≥ nαy/2

)
. (3.9)

We first deal with the second term on the right-hand side of (3.9). We shall need
the following extension of Theorem 3 in Wu and Zhao (2008). The proof is given
in Appendix.

Theorem 3.2. Let p ∈ (1, 2). Let (Xk)k∈Z be a sequence of real-valued random
variables in Lp adapted to a non-decreasing filtration (Fk)k∈Z. Let Si = X1+· · ·+Xi

and S∗n = max1≤i≤n |Si|. Then, for any n ≥ 1,

‖S∗n‖p ≤ (2cp + 1)

 n∑
j=1

‖Xj‖pp

1/p

+ 2(p−1)/p(2cp + 1)

r−1∑
j=0

2r−j∑
k=1

‖E(Sk2j − S(k−1)2j |F(k−2)2j+1)‖pp

1/p

, (3.10)

where cp = 21/p p
p−1 and r is the unique positive integer such that 2r−1 ≤ n < 2r.

For k ≤ 0, set Rk,x = R0,x and Fk = F0. We first observe that |Rk,x| ≤∫
G

logN(g)µ(dg) < ∞ for every k ≥ 0. Hence we may apply Theorem 3.2 with
Xk := Rk,x. With that choice, we have

Sk2j − S(k−1)2j =

2j∑
`=1

R(k−1)2j+`,x ,

and, using independence (twice),∣∣E(R(k−1)2j+`,x|F(k−2)2j+1)
∣∣ ≤ sup

y∈Sd−1

∣∣∣∣∫
G

(E (σ(g,A`−1y))− λµ)µ(dg)

∣∣∣∣
= sup

y∈Sd−1

|E(X`,y)− λµ| .

Let n ≥ 1 and r ≥ 1 be such that 2r−1 ≤ n < 2r. We infer that there exists Cp > 0,
such that∥∥∥∥ max

1≤k≤n
|Uk,x|

∥∥∥∥
p

≤ Cpn1/p + Cp

r−1∑
j=0

2(r−j)/p
2j∑
`=1

sup
‖y‖=1

|E(X`,y)− λµ|

≤ Cpn1/p +
Cp2

1/p

21/p − 1
n1/p

∑
`≥1

sup‖y‖=1 |E(X`,y)− λµ|
`1/p

. (3.11)

Recall that (3.1) holds for p ∈ (1, 2). Hence, for any r < p, by (6) of Cuny et al.
(2017+), ∑

n≥1

nr−2 sup
‖y‖=1

|E(Xn,y)− λµ| <∞ . (3.12)
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Since p+1/p > 2 one can choose r close enough to p in such a way that −1/p < r−2.
In particular, it follows that∑

`≥1

`−1/p sup
‖y‖=1

|E(X`,y)− λµ| <∞ . (3.13)

Hence, using (3.11), ∥∥∥∥ max
1≤i≤n

|Ui,x|
∥∥∥∥
p

≤ C̃pn1/p ,

and

sup
‖x‖=1

P
(

max
1≤k≤n

|Uk,x| ≥ ynα/2
)
≤ (2C̃p)

pn

ypnpα
, (3.14)

which ends the control of the second term on the right-hand side of (3.9).
We now deal with the first term on the right-hand side of (3.9), that is the

martingale term. We shall need the following result (to be proved in Appendix).
It is a maximal-version of Theorem 2.5 in Gouëzel and Melbourne (2014) (a von
Bahr-Esseen inequality for martingales having weak moments of order p ∈ (1, 2)).
For a real-valued random variable X, let ‖X‖p,∞ = supt>0 t(P(|X| > t))1/p.

Proposition 3.3. Let (Dn)n∈N be a sequence of (Fn)n∈N-martingale differences in
weak-Lp, p ∈ (1, 2). Then, for any y > 0,

P

 max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

Dj

∣∣∣∣∣∣ ≥ y
 ≤ K

yp

n∑
k=1

‖Dk‖pp,∞ ,

where K = 4p/(p− 1) + 8/(2− p).

Now, since (3.1) holds, then so does (3.7). It follows from Proposition 3.3 applied

with Dj = D̃j,x that

sup
‖x‖=1

P
(

max
1≤k≤2n

|M̃k,x| ≥ nαy/2
)
≤ C

ypnαp−1
, (3.15)

for some positive constant C. The upper bound (3.2) follows from (3.9), (3.14) and
(3.15).

The case p = 2. We start from (3.9). Note first that the upper bound (3.14)
still holds for p = 2, with the same proof. We now deal with the first term on
the right-hand side of (3.9). Instead of Proposition 3.3, we shall use the following
result of Hao and Liu (2014) (see also Theorem 14 in Cuny et al., 2017+): if

P(|D̃k,x| > y) ≤ P(X > y) for any y > 0 and some positive random variable X,
then, for every q > 1, every γ ∈ (1, 2] and every L ∈ N, there exists C > 0, such
that for every n ≥ 1 and every λ > 0,

P
(

max
1≤k≤n

|M̃k,x| ≥ λ
)
≤ nP

(
X >

λ

4(L+ 1)

)
+

C

(λ)qγ(L+1)/(q+L)

∥∥∥E(|D̃1,x|γ |F0) + · · ·+ E(|D̃n,x|γ |Fn−1)
∥∥∥q(L+1)/(q+L)

q
. (3.16)

We apply (3.16) with X = logN(Y1) + E(logN(Y1)). Since (3.1) holds with p = 2,
then X has a weak moment of order 2, and, for every γ ∈ (1, 2), there exists Cγ > 0
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such that for every n ≥ 1,

‖E(|D̃n,x|γ |Fn−1)‖∞ ≤ Cγ .

Hence, for every integer L and every q > 1, there exists C > 0 such that

P
(

max
1≤k≤n

|M̃k,x| ≥ nαy/2
)
≤ nP

(
X ≥ nαy

8(L+ 1)

)
+

Cnq(L+1)/(q+L)

(nαy)qγ(L+1)/(q+L)
.

Since α > 1/2 one may find γ ∈ (1, 2), such that γα > 1. For such a choice, taking
q = L large enough, we obtain the desired result. �

4. The case of strong moments of order p ≥ 1

In this section, we prove some results in the spirit of Baum and Katz (1965) for
the quantity (1.5).

Theorem 4.1. Let p ≥ 1 and assume that∫
(logN(g))pµ(dg) <∞ . (4.1)

Let α ∈ (1/2, 1] and α ≥ 1/p. Then for any y > 0∑
n≥1

nαp−2 sup
‖x‖=1

P
(

max
1≤k≤n

| log ‖Akx‖ − kλµ| > nαy

)
<∞ . (4.2)

Remark 4.2. Theorem 4.1 is due to Benoist and Quint (2016a) in the case where
α = 1 and p > 1.

Remark 4.3. Let us recall a well known consequence of (4.2), when p ∈ [1, 2)
and α = 1/p. The sequence max1≤k≤n | log ‖Akx‖ − kλµ| being non-decreasing,
Inequality (4.2) with α = 1/p is equivalent to∑

N≥1

sup
‖x‖=1

P
(

max
1≤k≤2N

| log ‖Akx‖ − kλµ| > 2N/py

)
<∞ . (4.3)

This implies that, for any x ∈ Sd−1, the sequence(
2−N/p max

1≤k≤2N
| log ‖Akx‖ − kλµ|

)
N≥1

converges completely. It follows that, for any x ∈ Sd−1, n−1/p(log ‖Anx‖ − nλµ)
converges to 0 almost surely as n → ∞. Hence (4.2) is a more precise statement
than Theorem 1(i) of Cuny et al. (2017+).

Of course, (4.2) does not hold for p = 2 and α = 1/2. Instead, we have the
following result, which implies a bounded law of the iterated logarithm.

Theorem 4.4. Assume that
∫

(logN(g))2µ(dg) < ∞, and let V be defined as in

Theorem 2.3. Then for any y >
√
V , we have∑

n≥1

1

n
sup
‖x‖=1

P
(

max
1≤k≤n

| log ‖Akx‖ − kλµ| > y
√

2n log log n

)
<∞ . (4.4)
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Remark 4.5. From (4.4) one can easily infer that, for any x ∈ Sd−1,

lim sup
n→∞

| log ‖Anx‖ − nλµ|√
2n log logn

≤
√
V , almost surely.

Of course, this is a less precise result than the compact law of the iterated loga-
rithm, which also holds provided

∫
(logN(g))2µ(dg) < ∞ (for instance, this is a

consequence of Theorem 1(iii), case p = 2, of Cuny et al. (2017+)). Note however
that (4.4) and the compact law of the iterated logarithm are two different results,
which cannot be deduced from one another.

Proof of Theorem 4.1: The proof follows the line of that of Theorem 3.1.

The case p ≥ 2. In that case the decomposition (1.8) holds, and it is equivalent to
prove (4.2) for Mk,x instead of (log ‖Akx‖ − kλµ).

Starting from (1.7) and (3.5), we see that

sup
‖x‖=1,k≥1

P (|Dk,x| ≥ nαy/r) ≤ µ {logN ≥ nαy/2r}+ 1nαy≤2r(2‖ψ‖sup+|λµ|) . (4.5)

Taking γ = nαy, u = nαy/r with r > 0, and v = 2nc1 (cf. (3.6) for the definition
of c1) in (3.3), we get

P
(

max
1≤k≤n

|Mk,x| ≥ nαy
)
≤ nµ {logN ≥ nαy/2r}

+ n1nαy≤2r(2‖ψ‖sup+|λµ|) +
κ1

y2rn(2α−1)r
, (4.6)

for some κ1 > 0. Interverting the sum and the integral, we see that∑
n>0

nαp−1µ {logN ≥ nαy/2r} ≤ κ2

yp

∫
(logN(g))pµ(dg) , (4.7)

for some positive constant κ2 depending only on r. Taking r > (αp − 1)/(2α − 1)
in (4.6) and using the upper bound (4.7), the proof of (4.2) is complete for p ≥ 2.

The case p ∈ (1, 2). We start again from (3.9). If (4.1) holds for p ∈ (1, 2) then, by
(6) of Cuny et al. (2017+), (3.12) holds with r = p. Since p + 1/p > 2 and p < 2,
there exists q such that p < q < 2 and p+ 1/q > 2. Hence, we infer that∑

n≥1

n−1/q sup
‖x‖=1

|E(Xn,x)− λµ| <∞ , (4.8)

and, using (3.11) in Lq rather than in Lp, we infer that for every n ≥ 1∥∥∥∥ max
1≤i≤n

|Ui,x|
∥∥∥∥
q

≤ Cqn1/q ,

for some Cq > 0. Hence,

sup
‖x‖=1

P
(

max
1≤k≤n

|Uk,x| ≥ ynα/2
)
≤ (2Cq)

qn

yqnqα
,

and, since q > p,∑
n≥1

nαp−2 sup
‖x‖=1

P
(

max
1≤k≤n

|Uk,x| > nαy/2

)
<∞ . (4.9)

It remains to deal with the first term on the right-hand side of (3.9). As in the

proof of Theorem 3.1 (case p = 2), we use that P(|D̃k,x| > y) ≤ P(X > y) with
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X = logN(Y1)+E(logN(Y1)) which means that |D̃k,x| is uniformly (with respect to
k and x) stochastically bounded by the random variable logN(Y1) +E(logN(Y1)).
Since logN(Y1) has a moment of order p ∈ (1, 2), following exactly the proof of
Theorem 2 of Dedecker and Merlevède (2007), we obtain that∑

n≥1

nαp−2 sup
‖x‖=1

P
(

max
1≤k≤n

|M̃k,x| > nαy/2

)
<∞ , (4.10)

and the proof is complete for p ∈ (1, 2).

The case p = 1. In that case α = 1 also. So, let us start from the inequality (3.9)
with α = 1.

The second term on the right-hand side of (3.9) may be handled thanks to a
“maximal version” of Proposition 3.1 of Benoist and Quint (2016a), which implies
that: for any y > 0, there exist constants A > 0, β > 0 such that, for any positive
integer n,

sup
‖x‖=1

P
(

max
1≤k≤n

|Uk,x| ≥ ny/2
)
≤ Ae−βn . (4.11)

Note that a direct application of of Proposition 3.1 of Benoist and Quint (2016a)
gives us (4.11) without the maximum over k. To prove (4.11), it is convenient to
work on the projective space X := Pd−1(R) rather than on Sd−1. Denote by x̄ the
class (in X) of x ∈ Rd − {0}. Then, we define Un,x̄ := Un,x. Applying Lemma 23
in Dedecker et al. (2009), with B = 2

∫
G

log(N(g))µ(dg) ≥ sup1≤i≤n ‖Ri,x‖∞, we
get that for any δ > 0 and any positive integer m with mB/n ≤ δ/2,

P
(

max
1≤k≤n

|Uk,x| ≥ nδ
)
≤ 2 exp

( −δ2n

64B2m

)
+ P

 max
1≤i≤[n/m]

1

m

∣∣∣ im∑
j=(i−1)m+1

E(Rj,x|F(i−1)m)
∣∣∣ ≥ δ/4

 . (4.12)

Note that, for any positive integer i,∥∥∥∥∥∥
im∑

j=(i−1)m+1

E(Rj,x|F(i−1)m)

∥∥∥∥∥∥
∞

≤ sup
x̄∈X

∣∣∣∣∣
m∑
k=1

(
E
∫
G

σ(g,Ak−1x)µ(dg)− λµ
)∣∣∣∣∣

Recall that, by our assumptions, the Markov chain (An−1x)n≥1 with (compact)
state space X and transition probability given by Pf(x̄) :=

∫
G
f(gx)µ(dg) has a

unique invariant probability ν. In particular, for every continuous function f on
X, the sequence (

1

n
E

(
n∑
k=1

f
(
Ak−1x

)))
n≥1

converges uniformly (with respect to x̄) to ν(f). Applying this uniform convergence
result to f(u) =

∫
G
σ(g, u)µ(dg)− λµ, it follows that, for any δ > 0, there exists an

integer m ≥ 1 such that

sup
x̄∈X
|E(Um,x̄)| < mδ/4 . (4.13)

The maximal inequality (4.11) follows by taking into account (4.13) in (4.12) and
by taking δ = y/2.
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Let us deal with the first term on the right-hand side of (3.9). Let Γn :=
∪nk=1{log(N(Yk)) ≥ yn} and notice that on Γcn,

σ(Yk, Ak−1x) = σ(Yk, Ak−1x)1{log(N(Yk))<yn} .

Define

Lk,x :=

k∑
j=1

(
σ(Yk, Ak−1x)1{log(N(Yk))<yn} −

∫
G

σ(g,Ak−1x)1{log(N(g))<yn}µ(dg)
)
,

and note that (Lk,x)1≤k≤n is a martingale. Let

I(n) =

∫
G

log(N(g))1{log(N(g))≥yn}µ(dg) ,

and note that

P
(

max
1≤k≤n

|M̃k,x| ≥ ny/2
)
≤ P(Γn) + P

(
max

1≤k≤n
|Lk,x| ≥ ny/4

)
+ 1{I(n)≥y/4} .

Using Doob’s maximal inequality, we infer that

P
(

max
1≤k≤n

|M̃k,x| ≥ ny/2
)
≤ P(Γn) +

16

n2y2
E
(
L2
n,x

)
+ 1{I(n)≥y/4} .

The last term on the right-hand side is equal to 0 for n large enough since (4.1)
holds with p = 1.

Now, P(Γn) ≤ nP(logN(Y1) ≥ yn). Hence it is standard that
∑
n≥1 n

−1P(Γn) <

∞, since (4.1) holds with p = 1.
On the other hand,

sup
‖x‖=1

E
(
L2
n,x

)
≤ n

∫
G

(logN(g))21{log(N(g))<yn}µ(dg) .

Then, it is also standard that
∑
n≥1 n

−3 sup‖x‖=1 E(L2
n,x) < ∞, since (4.1) holds

with p = 1. �

Proof of Theorem 4.4: In that case the decomposition (1.8) holds. Again, it will
be convenient to work on X. By Proposition 4.9 of Benoist and Quint (2016a) (see
also their equation (3.9)) there exists a continuous function σ0 on G×X, such that∫
G
σ0(g, ·)µ(dg) ≡ λµ andDk,x̄ = σ0(Yk, Ak−1x)−λµ. Moreover, supu∈X |σ0(·, u)| ≤

2‖ψ‖sup + logN(·) ∈ L2(µ).

By (1.8) it is equivalent to prove (4.2) forMk,x instead of (log ‖Akx‖−kλµ). Since
σ0 is continuous and

∫
G

(log(N(g)))2µ(dg) <∞, we define a continuous function χ
by setting

χ :=

∫
G

(σ0(g, ·)− λµ)2µ(dg) .

Then (using (1.8) again), by orthogonality of the martingale increments, we have,
for any x ∈ Sd−1,

V = lim
n→+∞

1

n
E((log ‖Anx‖ − nλµ)2) = lim

n→+∞

1

n

n∑
k=1

E(D2
k,x̄)

= lim
n→+∞

1

n

n∑
k=1

E(χ(Ak−1x)) =

∫
X

E(D2
1,u)ν(du) ,
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where the above convergences are uniform with respect to x̄ (see the proof of The-
orem 4.1, case p = 1).

We are ready to prove Theorem 4.4. We shall proceed by truncation. Let y >
√
V

and set ε := y −
√
V . Let n ≥ 1. Let α > 0 be fixed for the moment. For every

1 ≤ k ≤ n, define

Fk,n,x := Dk,x1{|Dk,x|≤α
√
n/
√

log logn} − E
(
Dk,x1{|Dk,x|≤α

√
n/
√

log logn}|Fk−1

)
and

L̃k,n,x =

k∑
j=1

Fj,n,x .

Then, using Markov’s inequality,

P
(

max
1≤k≤n

|Mk,x| > y
√

2n log log n

)
≤ P

(
max

1≤k≤n
|L̃k,n,x| > (y − ε/2)

√
2n log log n

)
+ P

(
max

1≤k≤n
|Mk,x − L̃k,n,x| > (ε/2)

√
2n log log n

)
≤ P

(
max

1≤k≤n
|L̃k,n,x| > (y − ε/2)

√
2n log log n

)
+

2n

ε
√

2n log log n
sup
k≥1

E
(

2|Dk,x|1{|Dk,x|>α√n/√log logn}

)
.

Now, starting from (1.7) and arguing as in (3.5),

sup
‖x‖=1,k≥1

E
(
|Dk,x|1{|Dk,x|>α√n/√log logn}

)
≤ E

(
(logN(Y1) + |λµ|+ 2‖ψ‖sup)1{logN(Y1)+|λµ|+2‖ψ‖sup>α

√
n/
√

log logn}

)
.

Since
∫

(logN(g))2µ(dg) <∞, it is now standard that∑
n≥1

4

ε
√

2n log log n
sup

‖x‖=1,k≥1

E
(
|Dk,x|1{|Dk,x|>α√n/√log logn}

)
<∞ .

Hence, it remains to prove that∑
n≥1

1

n
sup
‖x‖=1

P
(

max
1≤k≤n

|L̃k,n,x| > (y − ε/2)
√

2n log log n

)
<∞ . (4.14)

We shall use the following sharper version of Haeusler’s bound (3.3) (see the end
of the proof of Lemma 1 in Haeusler, 1984): for any γ, u, v > 0,

P
(

max
1≤k≤n

∣∣∣L̃k,n,x∣∣∣ ≥ γ) ≤ n∑
i=1

P (|Fi,n,x| ≥ u) + 2P

(
n∑
i=1

E(F 2
i,n,x|Fi−1) ≥ v

)
+ 2 exp

(
γu−1 − (γu−1 + vu−2) log(γuv−1 + 1)

)
. (4.15)

Notice that for every 1 ≤ k ≤ n, |Fk,n,x| ≤ 2α
√
n/
√

log log n and that
n∑
i=1

E(F 2
i,n,x|Fi−1) ≤

n∑
i=1

E(D2
i,x|Fi−1) =

n∑
i=1

χ(Ai−1x) . (4.16)



Large and moderate deviations for the left random walk on GLd(R) 519

Hence, by Proposition 3.1 of Benoist and Quint (2016a) (recall that χ is continuous),∑
n≥1

sup
‖x‖=1

P

(
n∑
i=1

E(F 2
i,n,x|Fi−1) ≥ n(

√
V + ε)2

)
<∞ . (4.17)

We shall apply (4.15) with γ := (y − ε/2)
√

2n log log n, v := (
√
V + ε/4)2n and

u := 4α
√
n/
√

log log n. Using that for every t ≥ 0, log(1 + t) ≥ t − t2/2, we infer
that

γu−1 − (γu−1 + vu−2) log(γuv−1 + 1) ≤ −γ
2v−1

2
(1− γuv−1) .

Since
γ2v−1

2 log log n
=

(
√
V + ε/2)2

(
√
V + ε/4)2

> 1 ,

and since γuv−1 = 4
√

2α(
√
V + ε/2)(

√
V + ε/4)−2 → 0 as α→ 0, we can choose α

small enough in such a way that there exists δ > 1 for which

exp
(
γu−1 − (γu−1 + vu−2) log(γuv−1 + 1)

)
≤ (log n)−δ . (4.18)

Combining (4.15), (4.16), (4.17) and (4.18) we conclude that (4.14) holds. �

5. Appendix

5.1. Proof of Proposition 2.6. As we shall see the proposition is a consequence
of the following more general result concerning the functional moderate deviation
principle of an array of martingale differences.

Theorem 5.1. Let (di,n)1≤i≤n be an array of square-integrable martingale differ-
ences, adapted to an array of filtrations (Fi,n)0≤i≤n. Let (bn)n≥0 be a sequence of
positive numbers such that bn/

√
n→∞ and bn/n→ 0 as n→∞, and let

Z̄n =

{
d1,n + · · ·+ d[nt],n

bn
, t ∈ [0, 1]

}
.

Suppose the conditions (2.15) and (2.16) satisfied. In addition, assume that

lim sup
n→∞

n

b2n
logP

(
max

1≤k≤n
|dk,n| > bn

)
= −∞ . (5.1)

and that, for any λ > 0, δ > 0,

lim sup
n→∞

n

b2n
logP

(
n

b2n

n∑
k=1

E
(
e
λbn|dk,n|

n 1nb−1
n <|dk,n|≤bn |Fk−1,n

)
> δ

)
= −∞ . (5.2)

Then, the functional moderate deviation principle (2.18) holds.

Proof of Theorem 5.1: The proof will be done with the help of a truncature argu-
ment, using Puhalskii’s functional moderate deviation principle for the main part
and proving that the other parts have negligible contributions.

First, to soothe the notations, we suppress the index n and we denote dk = dk,n
and Fk = Fk,n. We use a tuncation of the variables dk as follows: for all 1 ≤ k ≤ n,
let

d̄k := dk1|dk|≤nb−1
n
− E

(
dk1|dk|≤nb−1

n
|Fk−1

)
,

d′k := dk1nb−1
n <|dk|≤bn − E

(
dk1nb−1

n <|dk|≤bn |Fk−1

)
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and

d′′k := dk1|dk|>bn − E
(
dk1|dk|>bn |Fk−1

)
.

With these notations, we clearly have that, for any t ∈ [0, 1]

Zn(t) = b−1
n

[nt]∑
k=1

dk = Z̄n(t) + Z ′n(t) + Z ′′n(t) ,

with Z̄n(t) = b−1
n

∑[nt]
k=1 d̄k, Z ′n(t) = b−1

n

∑[nt]
k=1 d

′
k and Z ′′n(t) = b−1

n

∑[nt]
k=1 d

′′
k . Notice

first that

b−1
n

n∑
j=1

E
(
|dk|1|dk|>bn |Fk−1

)
≤ n

b2n

1

n

n∑
j=1

E
(
d2
k1|dk|>bn |Fk−1

)
and that for any δ > 0,

n

b2n
logP

(
b−1
n

n∑
k=1

|dk|1|dk|>bn ≥ δ

)
≤ n

b2n
logP

(
max

1≤k≤n
|dk| > bn

)
.

Hence, by taking into account conditions (2.16) and (5.1), we can deduce that
the process Z ′′n has a negligible contribution to the functional moderate deviation
principle (see Theorem 4.2.13 in Dembo and Zeitouni (1998)).

On another hand, note that (d̄k)1≤k≤n is a triangular sequence of martingale
differences such that ‖d̄k‖∞ ≤ 2n/bn. Using conditions (2.15) and (2.16), we can
apply the functional moderate deviation principle of Puhalskii (1994) which en-
tails that Z̄n satisfies (2.18). Therefore to end the proof it remains to show that
the process Z ′n has a negligible contribution to the functional moderate deviation
principle; that is: for any δ > 0,

lim sup
n→∞

n

b2n
logP

(
sup
t∈[0,1]

|Z ′n(t)| > δ

)
= −∞ . (5.3)

Observe that

b−1
n

n∑
k=1

E
(
|dk|1nb−1

n <|dk|≤bn |Fk−1

)
≤ 1

n

n∑
k=1

E
(
d2
k1|dk|>nb−1

n
|Fk−1

)
,

which by using condition (2.16) implies that (5.3) will hold if we can prove that,
for any δ > 0,

lim sup
n→∞

n

b2n
logP

(
b−1
n

n∑
k=1

|dk|1nb−1
n <|dk|≤bn > δ

)
= −∞ . (5.4)

With this aim, we use the arguments developed in the proof of Proposition 1 in
Worms (2001). For the sake of clarity, let us give some details. Take λ a positive
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number and set Yk,λ := 2λbn
n |dk|1nb−1

n <|dk|≤bn . We have

P

(
b−1
n

n∑
k=1

|dk|1nb−1
n <|dk|≤bn > δ

)
= P

(
n∑
k=1

Yk,λ >
2λδb2n
n

)

≤ P

(
n∑
k=1

{
Yk,λ − logE

(
eYk,λ |Fk−1

)}
>
λδb2n
n

)

+ P

(
n∑
k=1

logE
(
eYk,λ |Fk−1

)
>
λδb2n
n

)
.

Since the Yk,λ are Fk-measurable, we have

E
( ∏n

k=1 e
Yk,λ∏n

k=1 E(eYk,λ |Fk−1)

)
= 1 .

Hence

lim sup
n→∞

n

b2n
logP

(
n∑
k=1

{
Yk,λ − logE

(
eYk,λ |Fk−1

)}
>
λδb2n
n

)
≤ −λδ ,

which is going to −∞ by letting λ tend to ∞. Hence, to prove (5.4) (and then
(5.3)), it suffices to show that, for any positive λ, δ,

lim sup
n→∞

n

b2n
logP

(
n∑
k=1

logE
(
eYk,λ |Fk−1

)
>
λδb2n
n

)
= −∞ .

This holds under condition (5.2) by taking into account that ex1A − 1 = (ex− 1)1A
and also that log(1 + u) ≤ u for any x > 0, u > 0. The proof of Theorem 5.1 is
therefore complete. �

End of the proof of Proposition 2.6. We start with some observations. Obvi-
ously condition (5.2) holds under the stronger one: for any λ > 0,

lim sup
n→∞

n

b2n

n∑
k=1

∥∥∥∥E(eλbn|dk,n|n 1nb−1
n <|dk,n|≤bn |Fk−1,n

)∥∥∥∥
∞

= 0 .

Note now that this condition is equivalent to the following one. There is a constant
C with the following property: for any λ > 0 there exists a positive integer N(λ)
such that for n > N(λ),

n

b2n

n∑
k=1

∥∥P (|dk,n| > unb−1
n |Fk−1,n

)∥∥
∞ ≤ C exp(−λu) for all 1 ≤ u ≤ b2n/n .

(5.5)
(The proof of this equivalence can be done by following the proof of Comment 6 in
Merlevède and Peligrad, 2009). To end the proof of the proposition, it remains to
show that condition (2.17) implies (5.5) (since it obviously implies condition (5.1)).
Under the regularity conditions (2.9), this can be achieved by following the lines
of the proof of Corollary 7 in Merlevède and Peligrad (2009) (by taking sn =

√
n,

kn = n and an = n/b2n). �
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5.2. Proof of Theorem 3.2. The proof follows the lines of the proof of Theorem 3
in Wu and Zhao (2008), but in the non-stationary setting, and is then done by
induction. For n = 1, the inequality is clearly true. Assume that the inequality
holds up to n− 1 for any sequence (Xk)k∈Z of real-valued random variables in Lp
and adapted to a non-decreasing filtration (Fk)k∈Z, and let us prove it for n. Set
ap = 2cp + 1. By the triangle inequality

S∗n ≤ max
1≤k≤n

∣∣∣∣∣
k∑
i=1

[Xi − E(Xi|Fi−1)]

∣∣∣∣∣+ max
1≤k≤n

∣∣∣∣∣
k∑
i=1

E(Xi|Fi−1)

∣∣∣∣∣ . (5.6)

By von Bahr-Esseen’s inequality together with Doob’s maximal inequality for mar-
tingales,∥∥∥∥∥ max

1≤k≤n

∣∣∣∣∣
k∑
i=1

(Xi − E(Xi|Fi−1))

∣∣∣∣∣
∥∥∥∥∥
p

≤ cp

(
n∑
i=1

‖Xi − E(Xi|Fi−1)‖pp

)1/p

≤ 2cp

(
n∑
i=1

‖Xi‖pp

)1/p

. (5.7)

To estimate the impact of the second term in the right-hand side of (5.6), we start
by writing n = 2m, or n = 2m + 1 according to a value odd or even of n. Notice
that∥∥∥∥∥∥ max

1≤k≤n

∣∣∣∣∣∣
k∑
j=1

E(Xi|Fi−1)

∣∣∣∣∣∣
∥∥∥∥∥∥
p

≤

∥∥∥∥∥ max
1≤k≤m

∣∣∣∣∣
2k∑
i=1

E(Xi|Fi−1)

∣∣∣∣∣
∥∥∥∥∥
p

+

∥∥∥∥ max
0≤k≤[(n−1)/2]

|E(X2k+1|F2k)|
∥∥∥∥
p

. (5.8)

The second term in the right hand side of (5.8) is estimated in a trivial way:∥∥∥∥ max
0≤k≤[(n−1)/2]

|E(X2k+1|F2k)|
∥∥∥∥
p

≤

[(n−1)/2]∑
k=0

‖E(X2k+1|F2k)‖pp

1/p

≤

(
n∑
i=1

‖Xi‖pp

)1/p

. (5.9)

For the first term in the right hand side of (5.8), we set

Yi = E(X2i−1|F2i−2) + E(X2i|F2i−1) , Wi =

i∑
j=1

Yj and Gi = F2i−1 ,

and we note that∥∥∥∥∥ max
1≤k≤m

∣∣∣∣∣
2k∑
i=1

E(Xi|Fi−1)

∣∣∣∣∣
∥∥∥∥∥
p

=

∥∥∥∥∥ max
1≤k≤m

∣∣∣∣∣
k∑
i=1

Yi

∣∣∣∣∣
∥∥∥∥∥
p

.

In addition, (Yk)k∈Z is a sequence of real-valued random variables in Lp and adapted
to the non-decreasing filtration (Gk)k∈Z. By the induction hypothesis, noticing that
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m < 2r−1 ≤ n,∥∥∥∥∥ max
1≤k≤m

∣∣∣∣∣
k∑
i=1

Yi

∣∣∣∣∣
∥∥∥∥∥
p

≤ ap

 m∑
j=1

‖Yj‖pp

1/p

+ 2(p−1)/pap

r−2∑
j=0

2r−1−j∑
k=1

‖E(Wk2j −W(k−1)2j |G(k−2)2j+1)‖pp

1/p

.

But

‖E(Wk2j −W(k−1)2j |G(k−2)2j+1)‖p ≤ ‖E(Sk2j+1 − S(k−1)2j+1 |F(k−2)2j+1+1)‖p .

On another hand,

m∑
j=1

‖Yj‖pp ≤ 2p−1
m∑
i=1

(
‖E(X2i−1|F2i−2)‖pp + ‖E(X2i|F2i−1)‖pp

)
≤ 2p−1

n∑
i=1

‖E(Xi|Fi−1)‖2p .

Therefore∥∥∥∥∥ max
1≤k≤m

∣∣∣∣∣
2k∑
i=1

E(Xi|Fi−1)

∣∣∣∣∣
∥∥∥∥∥
p

≤ 2(p−1)/pap

(
n∑
i=1

‖E(Xi|Fi−1)‖pp

)1/p

+ 2(p−1)/pap

r−1∑
j=1

2r−j∑
k=1

‖E(Sk2j − S(k−1)2j |F(k−2)2j+1)‖2p

1/2

,

which gives since n < 2r,∥∥∥∥∥ max
1≤k≤m

∣∣∣∣∣
2k∑
i=1

E(Xi|Fi−1)

∣∣∣∣∣
∥∥∥∥∥
p

≤ 2(p−1)/pap

r−1∑
j=0

2r−j∑
k=1

‖E(Sk2j − S(k−1)2j |F(k−2)2j+1)‖2p

1/2

. (5.10)

So, overall, starting from (5.6) and taking into account the upper bounds (5.7),
(5.8), (5.9) and (5.10), Inequality (3.10) follows proving the induction hypothesis
at step n. ♦

5.3. Proof of Proposition 3.3. Let y > 0. For every 1 ≤ k ≤ n, define

D̃k := Dk1{|Dk|≤y} − E
(
Dk1{|Dk|≤y}|Fk−1

)
,

so that (D̃k)1≤k≤n is a sequence of martingale differences. We have

P

 max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

(Dj − D̃j)

∣∣∣∣∣∣ ≥ y/2
 ≤ 4

y

n∑
k=1

E
(
|Dk|1{|Dk|>y}

)
.
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Now,

E
(
|Dk|1{|Dk|>y)}

)
= yP(|Dk| > y) +

∫ +∞

y

P(|Dk| > t)dt ≤ p

p− 1
‖Dk‖pp,∞y1−p .

Hence,

P

 max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

(Dj − D̃j)

∣∣∣∣∣∣ ≥ y/2
 ≤ 4p

yp(p− 1)

n∑
k=1

‖Dk‖pp,∞ . (5.11)

On another hand, by Doob’s maximal inequality,

P

 max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

D̃j

∣∣∣∣∣∣ ≥ y/2
 ≤ 4

y2

n∑
k=1

E(D2
k1{|Dk|≤y}) .

Now,

E
(
D2
k1{|Dk|≤y}

)
≤
∫ y

0

2tP(|Dk| > t)dt ≤ 2

2− p
‖Dj‖pp,∞y2−p .

Hence,

P

 max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

D̃j

∣∣∣∣∣∣ ≥ y/2
 ≤ 8

yp(2− p)

n∑
k=1

‖Dk‖pp,∞ . (5.12)

The result follows from (5.11) and (5.12).

6. General cocycles

It turns out that all the results obtained under moments greater than 2 made use
of a martingale-coboundary decomposition with bounded (in L∞) coboundary and
of the fact that we study partial sums associated with a cocycle. Another ingre-
dient of general nature used in the proofs is Proposition 3.1 of Benoist and Quint
(2016a). In particular all the results obtained under moments greater than 2 may
be generalized to cocycles admitting such a martingale-coboundary decomposition.
Such cocycles are called centerable in Benoist and Quint (2016a).

We shall also give sufficient conditions under which the results under moments
weaker than 2 hold for general cocycles.

Let us describe the situations that should be considered in the sequel.

Let G be a locally compact second countable group. Let X be compact and
second countable. Assume that G acts continuously on X and denote that action
by gx.

Let σ : G × X → R be a cocycle, meaning that it satisfies the equality (1.4).
We shall only be concerned with continuous cocycles. Given a continuous cocycle,
define σsup(g) := supu∈X |σ(g, u)| for every g ∈ G.

Let µ be a probability measure on the Borel sets of G.

Assume that there exists a unique µ-invariant probability ν on the Borel sets of
X, that is a unique probability satisfying (1.1).

Let (Ω,F ,P) be a probability space. Assume that there exists a sequence
(Yn)n≥1of iid random variables on (Ω,F ,P) taking values in G with common law
µ. Define An := Yn · · ·Y1 for every n ≥ 1 and A0 = e the neutral element of G.
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Our goal is to study the sequence defined by

Sn,u := σ(An, u) =

n−1∑
k=0

σ(Yk+1, Aku) ∀n ≥ 1, ∀u ∈ X .

Definition 6.1. We say that σ is centerable if σsup ∈ L1(µ) and if there exist a
cocycle σ0 and a continuous function ψ on X such that

∫
G
σ0(g, u)µ(dg) = λµ for

every u ∈ X, where λµ :=
∫
G×X σ(h, v)µ(dh)ν(dv), and

σ(g, u) = σ0(g, u) + ψ(u)− ψ(gu) ∀(g, u) ∈ G×X . (6.1)

Remark 6.2. A sufficient condition for σ to be centerable is Gordin’s condition:∑
n≥0

sup
u∈X
|E(σ(Yn+1, Anu))− λµ|

=
∑
n≥0

sup
u∈X

∣∣∣∣∫
G×G

σ(g, g′u)µ(dg)µ∗n(dg) − λµ
∣∣∣∣ <∞ .

• Assume that there exist r > 0 and δ > 0 such that∫
G

eδ σ
r
sup(g)µ(dg) <∞ .

If σ is centerable, then the conclusions of Theorem 2.1 and Theorem 2.2 hold with
Sk,u in place of log ‖Akx‖ for the corresponding value of r > 0.

• Assume σsup ∈ L2(µ) and

lim sup
n→∞

n

b2n
log nµ {σsup > bn} = −∞ , (6.2)

for some sequence (bn)n≥1 satisfying (2.9). Then, if σ is centerable, the conclusion
of Theorem 2.3 holds with S[nt],u in place of log ‖A[nt]x‖.

In the same way, if σ is centerable, in the case of weak moments of order p > 2
(resp. strong moments of order p ≥ 2), the conclusion of Theorem 3.1 (resp. of
Theorem 4.1) holds with Sk,u in place of log ‖Akx‖.

Let us now mention results under weak moments of order p, 1 < p < 2 or under
(strong) moments of order 1 ≤ p < 2.

• Let 1 < p < 2. Assume that

sup
t>0

tpµ{σsup > t} <∞ ,

and that ∑
n≥1

n−1/p sup
u∈X
|E(σ(Yn, An−1u)) − λµ| <∞ .

Then the conclusion of Theorem 3.1 holds with Sk,u in place of log ‖Akx‖.

• Let 1 ≤ p < 2. Assume that σsup ∈ Lp(µ) and that there exists q > p such
that ∑

n≥1

n−1/q sup
u∈X
|E(σ(Yn, An−1u)) − λµ| <∞ .

Then the conclusion of Theorem 4.1 holds with Sk,u in place of log ‖Akx‖.
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