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Abstract. An analogue of the classical Mecke formula for Poisson point processes
is proved for the class of space-time STIT tessellation processes. From this key
identity the Markov property of a class of associated random processes is derived.
This in turn is used to determine the distribution of the number of internal vertices
of the typical maximal tessellation segment.

1. Introduction

The last decades in stochastic geometry have seen a growing interest in models
that deal with random geometric objects evolving in time. As examples we mention
random sequential packings, see Penrose and Yukich (2002); Schreiber et al. (2007),
spatial birth and growth models like the Johnson-Mehl growth process, see Barysh-
nikov and Yukich (2005); Penrose and Yukich (2002), the construction of polygonal
Markov random fields, see Schreiber (2005, 2008, 2010), falling/dead leaf models, see
Cowan and Tsang (1994); Bordenave et al. (2006); Galerne and Gousseau (2012),
on-line geometric random graphs such as the on-line nearest neighbour graph in
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Penrose and Wade (2008); Wade (2009) or the geometric preferential attachment
graph, see Jacob and Mörters (2015); Jordan (2010); Jordan and Wade (2015).
A particularly attractive class of models studied in stochastic geometry is that of
random tessellations. Also within this class, space-time models have found consi-
derable interest. In the present paper we investigate the class of STIT tessellations,
which arise as outcomes of a process of consecutive cell divisions. They have been
invented in Nagel and Weiß (2005) and since their introduction they have stimu-
lated lots of research, cf. Deuß and Thäle (2016); Lachièze-Rey (2011); Martínez
(2014); Martínez and Nagel (2012, 2015, 2016); Mecke et al. (2011); Nagel and
Biehler (2015); Nagel and Weiß (2008); Schreiber and Thäle (2010, 2011, 2012,
2013a,b); Thäle and Weiß (2010, 2013). The acronym STIT stands for the stability
of distribution under the operation of iteration (or nesting) of tessellations.

The STIT tessellation process itself is a Markov process on the space of tes-
sellations. However, there are several interesting situations in which the problem
arises whether or not some classes of associated processes also possess the Markov
property. For example, we look at the random process induced by the functional
of total surface area within a bounded window. It becomes clear that this process
does not inherit the Markov property from the STIT tessellation process, because
this functional does not contain enough information about the tessellation. For
this reason, it is an interesting task and one of the main purposes of this paper to
extract a class of processes that do inherit the Markov property. Such a Markov
property will turn out to be a crucial device in further applications. In the present
paper we will deal with the distribution of the number of internal vertices of a typi-
cal (and possibly weighted) maximal segment of a STIT tessellation. In particular,
we will derive the exact distribution of this random variable and study its moment
properties.

One of the crucial steps on our way is to prove a Mecke-type formula for STIT
tessellations. Such an identity is well known for Poisson point processes Γ. It
says that the expectation of random variables of the form

∑

x∈Γ f(x,Γ) can be
expressed as an expectation of the integral with respect to the intensity measure of
Γ of the function f(x,Γ+ δx), where the unit-mass Dirac measure δx concentrated
at x has been added to Γ, see Chapter 4 in Last and Penrose (2017+) and also
(3.2) below. Our key result, Theorem 3.1, provides a formula for STIT tessellations
that is similar in its structure to Mecke’s equation for Poisson point processes.
We emphasize that our proof uses the global construction of STIT tessellations,
which in turn is based on a Poisson point process on an abstract state space. As
a consequence, our Mecke-type formula is based on the classical Mecke formula for
Poisson point processes.

The present paper is structured as follows. In Section 2 we set up the notation,
formally introduce STIT tessellation processes by their Markovian description and
collect those properties that are needed. The new results are presented in Section 3.
In particular, we present there our Mecke-type formula, the Markov properties
described above as well as an application to maximal segments. The final Section 4
contains all the proofs. They are technically quite involved and they crucially
depend on the ’direct’ global construction of STIT tessellations. For this reason,
we have also included a formal description of this construction together with its key
properties. Our proofs show a high degree of formalism and technical computations.
However, this seems unavoidable and is similar to other models studied in stochastic
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geometry, see, for example, the works Mecke and Muche (1995); Muche (1996, 1998)
on Poisson-Voronoi tessellations.

2. Preliminaries

2.1. Notation. Let Rd be the Euclidean space of dimension d ∈ {1, 2, . . .}. A poly-
tope p ⊂ Rd is the convex hull of a finite point set (containing at least two elements)
and the dimension of p is defined as the dimension of its affine hull. The set of all
polytopes of dimension k is denoted by Pk. Moreover, we shall write P0

k for the
set of all k-dimensional polytopes with their circumcenter at the origin. The spaces
Pk and P0

k are supplied with the Borel σ-fields B(Pk) and B(P0
k) induced by

the Hausdorff-distance, respectively. In our context it is convenient to speak of the
elements of Pd as cells and to denote them by the letter z (for the German word

‘Zelle’). The interior and the boundary of a set B ⊂ Rd are denoted by
◦

B and ∂B,
respectively. Moreover, we write #( · ) for the cardinality of the argument set and
1{. . .} for an indicator function, which takes the value 1 if the condition in brackets
is satisfied and 0 otherwise.

The Lebesgue measure on Rd is denoted by ℓd. Moreover, for d = 1, we write
ℓ+ and ℓ− for the Lebesgue measure on the positive and the negative real half-axes
(0,∞) and (−∞, 0), respectively. To simplify the notation in integrals, we write ds
instead of ℓ+(ds).

If E is a topological space, we denote by B(E) the Borel σ-field on E . If X is a
random element taking values in the measurable space [E ,B(E)] we shall write PX
for its distribution, that is, the image of the probability measure of some underlying

probability space under X . By X
D
= Y we shall indicate that the E-valued random

elements X and Y have the same distribution, that is PX = PY .

2.2. The hyperplane measure Λ. Let H denote the space of all hyperplanes in Rd

and H0 be the subset of hyperplanes containing the origin. Both spaces are supplied
with the usual topology of closed convergence (also called Fell topology, see Kallen-
berg, 2002, Chapter A.2, Last and Penrose, 2017+, Chapter A.3, or Schneider and
Weil, 2008) and thus they carry Borel σ-fields B(H0) and B(H), respectively.

For h ∈ H we shall write h0 ∈ H0 for the parallel linear subspace and h⊥0 for the
one-dimensional subspace orthogonal to it. The two closed half-spaces generated
by a hyperplane h ∈ H \H0 are denoted by h+ and h−, respectively, where we use
the convention that h− is the half-space that contains the origin. For a Borel set
B ⊂ Rd we define

[B] := {h ∈ H : h ∩B 6= ∅} .

This implies [B] ∈ B(H) and that H0 = [{0}].
Let Q be a probability measure on H0 and ℓh⊥

0
the Lebesgue measure on the

subspace h⊥0 . The translation invariant measure Λ is defined by the relation
∫

H

g(h) Λ(dh) =

∫

H0

∫

h⊥

0

g(h0 + z) ℓh⊥

0
(dz)Q(dh0) (2.1)

for all non-negative measurable functions g : H → R. Throughout this paper we
will assume that Λ is such that there is no line in Rd with the property that all
the hyperplanes in the support of Λ are parallel to it. This ensures that, with
probability one, all cells of the STIT tessellations considered below are bounded.



694 W. Nagel et al.

Because Λ([q]) ∈ (0,∞) for all polytopes q ∈ Pk with k ∈ {1, . . . , d}, we can
define the probability measure Λq on [H,B(H)] by

Λq(B) =
Λ(B ∩ [q])

Λ([q])
, B ∈ B(H) . (2.2)

2.3. Tessellations. By definition, a tessellation y of Rd is a countable subset of Pd

satisfying the following three properties:

(i)
◦
z1 ∩

◦
z2= ∅ for all z1, z2 ∈ y, z1 6= z2,

(ii)
⋃

z∈y z = Rd,

(iii) #{z ∈ y : z ∩ C 6= ∅} <∞ for all compact C ⊂ Rd.

A ‘local’ tessellation y of a polytope W ∈ Pd is a finite collection of polytopes
contained in W that have disjoint interiors and cover W . The set of tessellations
of Rd is denoted by T and we write TW for the set of tessellations of a polytope
W ∈ Pd. A natural way a local tessellation arises is via restriction to W of a global
tessellation. Formally, if y ∈ T and W ∈ Pd, we define such a restriction by

y ∧W := {z ∩W : z ∈ y, dim(z ∩W ) = d} ∈ TW ,

where dim(z ∩W ) denotes the dimension of the polytope z ∩W .
Next, we supply T and TW with suitable σ-fields. For this, we recall that the

vague topology on T is the topology on T induced by functions of the form

T → R, y 7→
∑

z∈y

g(z) ,

where g : Pd → R is any non-negative measurable and bounded function that has
compact support, see Kallenberg (2002, Theorem A2.3). Now, we let B(T ) be the
Borel σ-field generated by the vague topology on T . For W ∈ Pd and TW let
B(TW ) be defined analogously. One can check that the restriction map y 7→ y ∧W
then becomes measurable.
Iteration of tessellations. In order to define this operation formally, let y = {zi :
i ∈ N} be a tessellation of Rd and ~y = (y(i))i∈N be a sequence of tessellations. Then
the tessellation y ⊞ ~y, referred to as the iteration of y and ~y, is specified by

y ⊞ ~y := {y(i) ∧ zi : i ∈ N} . (2.3)

Thus, for each i ∈ N we restrict the tessellation y(i) to the cell zi ∈ y. This yields a
local tessellation of zi and the union of all these local tessellations clearly forms a
tessellation of Rd. We notice that ⊞ defines a measurable operation from T × T N

to T .

2.4. The local STIT tessellation process. The random STIT tessellation process is
denoted by Y and its state at time t by Yt. Informally, the dynamics of the con-
tinuous time random local STIT tessellation process Y ∧W = (Yt ∧W )t>0 can be
described as follows. At time zero, the cell W of the initial tessellation {W} re-
ceives an exponentially distributed random lifetime with parameter Λ([W ]). When
the lifetime of W runs out, a random hyperplane h ∈ [W ] is selected according to
the probability distribution ΛW , given in (2.2), and splits W into the two daughter
cells W ∩h+ and W ∩h−. These two daughter cells evolve independently according
to the same rules, i.e. they receive conditionally independent (given h) exponen-
tially distributed random lifetimes with parameters Λ([W ∩ h+]) and Λ([W ∩ h−]),
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respectively, and then they are divided by random hyperplanes with laws ΛW∩h+

and ΛW∩h− , respectively, and so on. The cells in W that arise at time t form the
local STIT tessellation Yt ∧W .

To describe the construction formally, let W ∈ Pd be a polytope and Λ be a
hyperplane measure defined in (2.1). For a tessellation y ∈ TW , a cell z ∈ y and a

hyperplane h ∈ [
◦
z] \ H0 we define the splitting operation ⊘z,h : TW → TW by

⊘z,h(y) := (y \ {z}) ∪ {z ∩ h+, z ∩ h−} .

In other words, ⊘z,h(y) is the tessellation that arises from y by splitting the cell z
by means of the hyperplane h. The splitting operation is measurable and extends
to global tessellations y ∈ T as well.

By the local STIT tessellation process (Yt∧W )t≥0 inW driven by the hyperplane
measure Λ we understand the continuous time pure jump Markov process on TW
with initial tessellation Y0 ∧W =W and generator

Lg(y) :=
∑

z∈y

∫

[z]

[g(⊘z,h(y))− g(y)] Λ(dh) , y ∈ TW ,

for all non-negative measurable g : TW → R.
The description of the STIT tessellation process indicates that within each single

cell the first division follows the same rules as it does in the cells of a Poisson
hyperplane tessellation generated by a space-time hyperplane process (Π̃t)t>0 as
given in (4.1). This suggests that a Mecke-type formula can be shown for single
divisions of cells. But notice that a maximal polytope, which arises when a cell is
divided, depends on the past and (in contrast to the Poisson hyperplane process)
it has an impact on the continuation of the STIT process in the future. This is
expressed in Theorem 3.1.

2.5. The global STIT tessellation process. So far we have described the STIT tes-
sellation process locally within polytopes W ∈ Pd. However, there exists also a
‘global’ construction of a STIT tessellation process in Rd. Since this construction
is rather involved and is needed only as a technical device in our proofs, we de-
cided to postpone its description to Section 4 below. For the moment it is sufficient
to confirm that such a process exists. For this, we recall from Nagel and Weiß
(2005) the following consistency property. Given two polytopes W,W ′ ∈ Pd with
W ′ ⊂ W , the law of (Yt ∧W ) ∧W ′ coincides with that of Yt ∧W ′, where, recall,
for a tessellation y ∈ T and a polytope W ∈ Pd, y ∧W stands for the restriction
of y to W . For all t > 0, this consistency property together with the consistency
theorem for random closed sets, see Schneider and Weil (2008, Theorem 2.3.1),
yield the existence of a random tessellation Yt with the property that its restric-
tion to any W ∈ Pd has the same distribution as the previously constructed local
STIT tessellation Yt ∧W . The translation invariance of the hyperplane measure
Λ also ensures that the law of Yt is invariant under translations. One can also
show that consistency extends to the finite-dimensional distributions of the pro-
cesses Y ∧W = (Yt∧W )t>0. This way, the classical Kolmogorov extension theorem
ensures the existence of a global STIT tessellation process Y = (Yt)t>0 with the
appropriate finite-dimensional distributions.

We will use the notation Y = (Yt)t>0 for the random STIT tessellation process,
Yt for its state at time t > 0. Respective realizations are denoted by y and yt. The
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distribution of (Yt)t>0 is written PY , and correspondingly the distributions of the
other random objects. Furthermore, for a tessellation yt denote ∂yt =

⋃

z∈yt
∂z.

The global STIT tessellation process enjoys the following fundamental properties
(proven in Nagel and Weiß, 2005):
STIT scaling: The dilation tYt of Yt by factor t has the same distribution as Y1,
the STIT tessellation with time parameter 1, that is,

tYt
D
= Y1 for all t > 0 , (2.4)

where multiplication of a tessellation y ∈ T with a factor t stands for the transfor-
mation ty = {tz : z ∈ y} and tz = {tx : x ∈ z}, see Lemma 5 in Nagel and Weiß
(2005).
STIT property: Stability of distribution under the operation of iteration of tes-
sellations.
Let Y = (Yt)t>0 be a STIT tessellation process driven by some hyperplane measure

Λ as in (2.1), and let ~Y = (Y (i))i∈N be a sequence of i.i.d. copies of Y . For fixed

s > 0, we write ~Ys = (Ys
(i))i∈N. Then

Yt
D
= Ys ⊞ ~Yt−s for all 0 < s < t , (2.5)

cf. Nagel and Weiß (2005, Lemma 2). This implies in particular that Y2t
D
= Yt ⊞ ~Yt

for all t > 0. The STIT property means that

Yt
D
= 2(Yt ⊞ ~Yt) for all t > 0 .

STIT intersections: The intersection of the STIT tessellation Yt with a line L =
spanu, where u ∈ Sd−1

+ (upper unit half-sphere) is a Poisson point process with
intensity tΛ([u]) (here u has to be interpreted as the line segment connecting the
origin with u).

2.6. The process of maximal polytopes. As described above, any extant cell z in a
STIT tessellation has a random lifetime, and at the end of its lifetime, at time s
say, it is divided by a hyperplane h. Then we call (p, s) ∈ Pd−1 × (0,∞) with
p = z ∩ h a maximal (d− 1)-polytope, marked with its birth time s.

We emphasize that after its birth, a maximal (d−1)-polytope can be intersected
by other maximal (d− 1)-polytopes and thus be subdivided further, independently
in both of the half-spaces generated by h, i.e., in the two cells adjacent to the
maximal polytope. But regardless of such events, it will be referred to as a birth
time marked maximal polytope, at all times after its birth.

For any t > 0 we denote by Mt =Mt(Yt) =
∑

(p,s)∈M,s<t δ(p,s) the point process

of all birth time marked maximal (d− 1)-polytopes of the global STIT tessellation
Yt. Thus Mt is a point process on the product space Pd−1 × (0,∞), i.e., it is a
random variable with values in N (Pd−1× (0,∞)), the set of locally finite counting
measures on Pd−1 × (0,∞), supplied with the Borel σ-field B(N (Pd−1 × (0,∞)))
induced by the vague topology. As usual, we write (p, s) ∈Mt if Mt({(p, s)}) > 0.

By M = M((Yt)t>0) we denote the random point process of birth time marked
maximal (d− 1)-polytopes pertaining to the STIT process Y = (Yt)t>0. Also M is
a point process on the state space Pd−1 × (0,∞).

We emphasize that, given a realization m of a birth time marked maximal poly-
tope process, one can uniquely reconstruct the trajectory y(m) = (y(mt))t>0 of a
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STIT tessellation process that has m as the realization of the pertaining maximal
(d− 1)-polytope process.

We consider the k-dimensional faces of maximal (d−1)-polytopes, and we refer to
them as maximal k-polytopes, k = 0, ..., d− 2. They appear as the intersection of a
sequence of d−k maximal polytopes of dimension d−1. It is important to note that
for dimensions d ≥ 3 not all intersections of d − k maximal polytopes (even if the
intersection has dimension k) are faces of maximal polytopes. To see this, consider
e.g. three maximal (d− 1)-polytopes p1, p2, p3 such that p1∩p2 ∩p3 6= ∅, and p2, p3
are located in different half-spaces generated by the hyperplane containing p1. In
view of this, the polytopes which generate a maximal k-polytope have to fulfill
additional conditions, which will be formalized in the proof of Proposition 3.2.

3. Results

3.1. A Mecke-type formula for STIT tessellations. For a realization m of the birth
time marked process M of maximal (d− 1)-polytopes we use the notation m(+t) :=
{(p, s+ t) : (p, s) ∈ m}, to express a time shift by t of all the birth times. Further-
more, for (p, s) ∈ m we denote by z(p, s) ∈ y(m) the uniquely determined cell in
the trajectory y(m) that is divided at time s by the maximal polytope p. Finally,
for a cell z ∈ Pd denote by

m ∧ z = {(p ∩ z, s) : (p, s) ∈ m, p ∩
◦
z 6= ∅},

the restriction of m to z.
We are now prepared to present the first main result of this paper, that may be

regarded as a Mecke-type formula for STIT tessellations as discussed in some detail
after its statement. We postpone the proof to Section 4 below.

Theorem 3.1. Let M be the process of birth time marked maximal (d−1)-polytopes
of a (global) STIT tessellation process (Yt)t>0 driven by a hyperplane measure Λ.
Let PM be the distribution of M and PYs be that of Ys at time s > 0. Then
∫

∑

(p,s)∈m

g
(

m ∧ z(p, s), z(p, s), p, s
)

PM (dm)

=

∫ ∫

∑

z∈ys

∫

[

∫ ∫

g
(

(z ∩ h) ∪ (m
(1)
(+s) ∧ (z ∩ h+)) ∪ (m

(2)
(+s) ∧ (z ∩ h−)), z, z ∩ h, s

)

PM (dm(1))PM (dm(2))

]

Λz(dh) Λ([z])PYs(dys)ds (3.1)

for all non-negative measurable functions g : N (Pd−1 × (0,∞)) × Pd × Pd−1 ×
(0,∞) → R.

Theorem 3.1 shares some similarities with the Mecke formula for Poisson point
processes. To re-phrase the latter, let Γ be a Poisson point process with σ-finite
intensity measure µ and distribution PΓ on a measurable space [E ,B(E)]. Then

∫

∑

x∈γ

g(x, γ)PΓ(dγ) =

∫ ∫

g(x, γ + δx)µ(dx)PΓ(dγ) (3.2)

for all non-negative measurable functions g : E ×N (E) → R, see Chapter 4 in Last
and Penrose (2017+). Obviously, M is not a Poisson point process, but formally,
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the left-hand side of (3.1) has the same structure as the left-hand side of the Mecke
formula for Poisson point processes. Moreover, on the right-hand side of (3.1) we
see that an additional hyperplane h is introduced at time s (applying the intensity
measure Λz(dh) Λ([z])ds), which is similar to the right-hand side of the Mecke
formula. The main differences are that in (3.1) for each cell z ∈ ys a hyperplane is
added and moreover, after the division of a cell z by a hyperplane h, realizations
(denoted m(1) and m(2)) of independent copies of M are needed to continue the
process in time.

It is also interesting to compare our Theorem 3.1 with Theorem 3.1 in Georgii
et al. (2015), where the class of so-called branching random tessellation has been
investigated. These tessellation processes constitute a far reaching generalization
of the concept of STIT tessellation processes and allow, in particular, for the inter-
action of cells during the random cell division process as well as for marks (colours)
attached to the cells that are also allowed to influence the cell splitting mechanism.
Specialized to our context, this result says that for any fixed t > 0,
∫

∑

(p,s)∈mt

g
(

(y(mr))r<s, z(p, s), p, s
)

1{s ≤ t}PMt
(dmt)

=

∫ ∫

∑

z∈ys

[

∫

g
(

(yr)r≤s, z, z ∩ h, s
)

Λz(dh)1{s ≤ t}

]

Λ([z])PYs(dys)ds

(3.3)

for all non-negative measurable functions g : {T (0,s], 0 < s < t} × Pd × Pd−1 ×
(0, t) → R.

Here, T (0,s] stands for the class of all measurable mappings from (0, s] to T
which contain the realisations of a STIT tessellation process on the time interval
(0, s]. We notice that relation (3.3) is confined to a finite time horizon for technical
reasons. Another significant difference is that in (3.3) the functions g are allowed
to depend on the evolution that took place in the past of a given time s only (this
is reflected by the appearance of (yr)r≤s). In contrast, the function g in Theorem
3.1 above can depend on a potentially infinite time horizon, including the evolution
after the birth of a particular maximal polytope. On the other hand, relation (3.3)
allows for functions that do not only depend on the tessellation within the cell
in which a maximal polytope is born, but also on its surrounding (and the colors
attached to the cells within this surrounding).

3.2. Application to maximal polytopes. For a realization m of the marked point
process M of maximal (d− 1)-polytopes and for k = 0, ..., d− 1, let

((p1, s1), . . . , (pd−k, sd−k)) ∈ md−k

denote a tuple of maximal polytopes together with their birth times. We denote

such a tuple by (p, s, k) ∈ md−k if and only if s1 < . . . < sd−k and p =
⋂d−k
i=1 pi

is a maximal k-polytope of the STIT tessellation process. If k < d − 1 this is a
k-dimensional face of a maximal (d − 1)-polytope. In this case we call (p, s) =
(

⋂d−k
i=1 pi, s

)

a maximal k-polytope of the STIT tessellation process, marked with

its birth time tuple s. Accordingly, we denote h = (h1, . . . hd−k) ∈ Hd−k and

h =
⋂d−k
i=1 hi. If we write (p, s, k) ∈ md−k

t we mean that (p, s, k) ∈ md−k and that
sd−k < t.
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In the following proposition we consider, for a fixed time parameter t > 0 and
a fixed dimension k ≤ d− 1, the set of all birth time marked maximal k-polytopes
(p, s) and the trace of the STIT tessellation on them, that is, the intersection

mt ⊓ p := (mt \ {(p1, s1), . . . , (pd−k, sd−k)}) ∩ p (3.4)

of p with the other maximal (d − 1)-polytopes of mt. Note that mt ⊓ p describes
the tessellation structure induced by mt in the (relative) interior of the maximal
k-polytope p.

Proposition 3.2. For t > 0 and for all non-negative measurable functions g :
Pk × (0, t)d−k ×B(Rd) → R,
∫

∑

(p,s,k)∈md−kt

g (p, s,mt ⊓ p)PMt
(dmt)

= 2d−k−1

∫

. . .

∫

∑

z∈ysd−k

g

(

z ∩ h, s, z ∩ h ∩

[

d−k−1
⋃

i=1

∂y
(i)
t−si ∪ ∂y

+
t−sd−k

∪ ∂y−t−sd−k

])

P
⊗(d−k+1)
Y (d(y(1), . . . , y(d−k−1), y+, y−))

· 1{z ∩ h 6= ∅}Λ⊗(d−k)(dh)PYsd−k (dysd−k)

· 1{0 < s1 < . . . < sd−k < t} ds1 . . . dsd−k .

If the function g in Proposition 3.2 depends on the birth time marked maximal
k-polytope only, then the restriction to a fixed time t > 0 can be omitted, and the
result can be modified as follows.

Corollary 3.3. For all non-negative measurable functions g : Pk×(0,∞)d−k → R,
∫

∑

(p,s,k)∈md−k

g (p, s)PM (dm)

= 2d−k−1

∫

. . .

∫

∑

z∈ysd−k

g(z ∩ h, s) 1{z ∩ h 6= ∅}Λ⊗(d−k)(dh)PYsd−k (dysd−k)

·1{0 < s1 < . . . < sd−k} ds1 . . . dsd−k .

3.3. Densities and distributions of typical polytopes. In this section we introduce
densities of intrinsic volumes and distributions of typical weighted maximal poly-
topes. These notions as well as the auxiliary Lemma 3.4 will be used later to prove
results for maximal polytopes.

For a fixed k ∈ {0, . . . , d− 1} and a fixed time t > 0, let us consider the marked
point process Φt of circumcenters of maximal k-polytopes of the STIT tessellation
Yt, which we mark with the maximal (d − 1)-polytopes and their birth times and
with the ‘internal structure’ of the maximal k-polytopes induced by Mt.

For a polytope q denote by c(q) its circumcenter and define the mapping

mt 7→ {(c(p),p− c(p), s,mt ⊓ p) : (p, s, k) ∈ md−k
t } . (3.5)

By PΦt we denote the image measure of PMt
under this mapping. Next, we define

̺
(j)
k,t :=

1

ℓd(B)

∫

∑

(x,q,s,T )∈ϕt

1{x ∈ B}Vj(q)PΦt(dϕt) (3.6)
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for B ∈ B(Rd) with 0 < ℓd(B) < ∞, t > 0, k ∈ {0, . . . , d − 1}, and Vj is the jth
intrinsic volume, j ∈ {0, . . . , k}. (Notice that the value in (3.6) does not depend on
the choice of B, see e.g. Schneider and Weil, 2008, Theorem 4.1.3).

In particular, ̺
(0)
k,t is the intensity of the point process of circumcenters of maximal

k-polytopes and in general, ̺
(j)
k,t is the mean cumulative (or total) jth intrinsic

volume of all maximal k-polytopes per unit volume.
Campbell’s Theorem, see Schneider and Weil (2008, Theorem 3.5.3), implies that

the probability measure PΦt can be disintegrated, that is, there exists a probability
measure Q(P,β,τ),t such that the Palm formula

∫

∑

(x,q,s,T )∈ϕt

g(x, q, s, T )PΦt(dϕt)

= ̺
(0)
k,t

∫ ∫

g(x, q, s, T )Q(P,β,τ),t(d(q, s, T ))ℓd(dx)

(3.7)

holds for all non-negative measurable functions g : Rd×Pk×(0, t)d−k×B(Rd) → R.
A random k-dimensional polytope of Pk (endowed with the tuple of its birth times
and the internal structure on it) with distribution Q(P,β,τ),t is called a typical

maximal k-polytope of the tessellation Yt.
In what follows, we also consider typical weighted maximal k-polytopes of Yt,

with the intrinsic volumes Vj , 0 ≤ j ≤ k, as weights. Their distribution Q
(j)

(P,β,τ),t

is defined by the weighted Palm formula
[∫

Vj(q)QP,t(dq)

]−1 ∫
∑

(x,q,s,T )∈ϕt

Vj(q)g(x, q, s, T )PΦt(dϕt)

= ̺
(0)
k,t

∫ ∫

g(x, q, s, T )Q
(j)

(P,β,τ),t
(d(q, s, T ))ℓd(dx) ,

(3.8)

where QP,t is the marginal distribution of Q(P,β,τ),t for P. Note that Q
(0)

(P,β,τ),t
=

Q(P,β,τ),t.

Combining (3.6) and (3.8) immediately leads to the identity

̺
(j)
k,t = ̺

(0)
k,t

∫

Vj(q)QP,t(dq) . (3.9)

Moreover, using the scaling property (2.4) of STIT tessellations and the homo-
geneity of the intrinsic volumes, one easily checks that for t > 0, k ∈ {0, . . . , d− 1}
and j ∈ {0, . . . , k},

̺
(j)
k,t = td−j̺

(j)
k,1. (3.10)

Since PΦt is the image measure of PMt
under the mapping (3.5), the left-hand

side of (3.8) can be transformed accordingly. This yields the following lemma.

Lemma 3.4. For d ≥ 2, k ∈ {0, . . . , d − 1}, g : Pk × (0, t)d−k × B(Rd) → R

non-negative and measurable, and t > 0,

̺
(j)
k,t

∫

g(q, s, T )Q
(j)

(P,β,τ),t
(d(q, s, T ))

=

∫

∑

(p,s,k)∈md−kt

Vj(p)1{c(p) ∈ [0, 1]d} g(p− c(p), s, (mt ⊓ p)− c(p)) PMt
(dmt) .

(3.11)
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Proposition 3.2 or Corollary 3.3 together with an integration with respect to the

time coordinates s1, . . . , sd−k−1 imply that ̺
(j)
k,t can be represented as

̺
(j)
k,t = 2d−k−1 1

ℓd(B)

∫ ∫ ∫

∑

z∈ysd−k

1{c(z ∩ h) ∈ B}Vj(z ∩ h)

PYsd−k (dysd−k)Λ
⊗(d−k)(dh)1{0 < sd−k < t}

sd−k−1
d−k

(d− k − 1)!
dsd−k .

(3.12)

It will be useful to have a more concise representation for ̺
(j)
k,1, which in view of

(3.10) is no restriction of generality.

Proposition 3.5. For all B ∈ B(Rd) with 0 < ℓd(B) <∞, k ∈ {0, . . . , d− 1} and
j ∈ {0, . . . , k} one has that

̺
(j)
k,1 = 2d−k−1 1

(d− k − 1)! (d− j)
·

1

ℓd(B)

·

∫ ∫

∑

z∈y1

1{c(z ∩ h) ∈ B}Vj(z ∩ h) Λ⊗(d−k)(dh)PY1(dy1) .

3.4. Markov properties of typical maximal polytopes and their birth time distribu-
tions. We are now going to apply Proposition 3.2 to prove the Markov properties
for the joint birth time distribution of the typical maximal k-polytope. We start

by determining the marginal distribution Q
(j)
β,t, that is, the birth time distribution

of the typical Vj-weighted maximal k-polytope of Yt. Our next proposition largely
extends and unifies earlier results for the special case k = d − 1 and j = 0 in
Schreiber and Thäle (2013a) and d = 3, k = 1 and j ∈ {0, 1} in Thäle et al. (2012).

Theorem 3.6. Let d ≥ 2, k ∈ {0, . . . , d − 1}, j ∈ {0, . . . , k} and t > 0. The

distribution Q
(j)
β,t of the birth times β = (β1, . . . , βd−k) of the typical Vj-weighted

maximal k-polytope has the density

(s1, . . . , sd−k) 7→ (d− j)(d − k − 1)!
s
k−j
d−k

td−j
1{0 < s1 < . . . < sd−k < t}

with respect to the Lebesgue measure on Rd−k.

After this preparation, the following results can be shown by direct computations.

Corollary 3.7. Let d ≥ 2, k ∈ {0, . . . , d− 1} and j ∈ {0, . . . , k}.

(a) The marginal distribution Q
(j)
βd−k,t

of the last birth time of the typical Vj-

weighted maximal k-polytope has the density

sd−k 7→ (d− j)
s
d−j−1
d−k

td−j
1{0 < sd−k < t}

with respect to the Lebesgue measure on R.

(b) For all sd−k < t, the conditional distribution Q
(j)
(β1,...,βd−k−1),t|βd−k=sd−k

of the birth times (β1, . . . , βd−k−1) of the typical Vj-weighted maximal k-
polytope, given βd−k = sd−k has the density

(s1, . . . , sd−k−1) 7→ (d− k − 1)! s
−(d−k−1)
d−k 1{0 < s1 < . . . < sd−k}
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with respect to the Lebesgue measure on Rd−k−1. In particular, this condi-
tional distribution does not depend on j, and it is the uniform distribution
on the (d − k − 1)-simplex {(s1, . . . , sd−k−1) ∈ Rd−k−1 : 0 < s1 < . . . <

sd−k−1 < sd−k}.

Furthermore, the marginal distribution Q(P,βd−k),t
as well as the conditional

distribution QP,t|βd−k=sd−k
can be calculated.

Corollary 3.8. Let d ≥ 2, k ∈ {0, . . . , d− 1}, j ∈ {0, . . . , k}, g : Pk × (0, t) → R

be non-negative and measurable and t > 0. Then,
∫

g(q, sd−k)Q
(j)

(P,βd−k),t
(d(q, sd−k))

= 2d−k−1
[

̺
(j)
k,t

]−1

td−j

·

∫ ∫ ∫

∑

z∈ysd−k

Vj(z ∩ h) · 1{c(z ∩ h) ∈ [0, 1]d}) · g((z ∩ h)− c(z ∩ h), sd−k)

Λ⊗(d−k)(dh)PYsd−k (dysd−k)
s
−(k−j)
d−k

(d− k − 1)!(d− j)
Q

(j)
βd−k,t

(dsd−k) .

In particular, for almost all sd−k ∈ (0, t) the conditional distribution Q
(j)

P,t|βd−k=sd−k
is given by
∫

g̃(q)Q
(j)

P,t|βd−k=sd−k
(dq)

= 2d−k−1
[

̺
(j)
k,t

]−1 s
−(k−j)
d−k

(d− k − 1)!(d− j)
td−j

∫ ∫ ∫

∑

z∈ysd−k

Vj(z ∩ h)

· 1{c(z ∩ h) ∈ [0, 1]d} · g̃((z ∩ h)− c(z ∩ h)) Λ⊗(d−k)(dh)PYsd−k (dysd−k)

for all non-negative and measurable g̃ : Pk → R.

An application of the result obtained so far yields the following
conditional independence property, which can also be interpreted as a Markov

property for STIT tessellation processes. To formulate it, let Q
(j)

P,t|βd−k=sd−k
and

Q
(j)
(β1,...,βd−k−1),t|βd−k=sd−k

denote conditional distributions (as indicated by their

indexes), pertaining to Q
(j)

(P,β),t
.

Theorem 3.9. Let d ≥ 2, k ∈ {0, . . . , d−1}, j ∈ {0, . . . , k}, g : Pk×(0, t)d−k → R

be non-negative and measurable and t > 0. Then,
∫

g(q, s)Q
(j)

(P,β1,...,βd−k),t
(d(q, s)) =

∫ ∫ ∫

g(q, s)

Q
(j)

P,t|βd−k=sd−k
(dq)Q

(j)
(β1,...,βd−k−1),t|βd−k=sd−k

(d(s1, . . . , sd−k−1))Q
(j)
βd−k

(dsd−k) ,

which is equivalent to the conditional independence of the typical Vj-weighted maxi-

mal k-polytope P and (β1, . . . , βd−k−1), given the last birth time βd−k = sd−k.
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3.5. The number of internal vertices on maximal segments. Now we turn to an
application of the results, considering the maximal segments, i.e., the maximal 1-
polytopes of the STIT tessellation Yt with a driving measure Λ as in (2.1). These
segments may have internal vertices (that is, vertices that are located in the relative
interior of a segment), which arise already at the time of birth of the segment (when
d ≥ 3) and thereafter subject to further subdivision of adjacent cells. In the planar
case, a maximal segment is always born without internal vertices. The following
theorem provides the distribution of the number of internal points of the typical
and the typical length weighted maximal segment, respectively. Formally, for t > 0,
j = 0, 1 and n = 0, 1, 2, . . . we define for the typical Vj-weighted maximal 1-polytope

with distribution Q
(j)

(P,β,τ),t

p1,j(n) :=

∫

1{#T = n}Q
(j)

(P,β,τ),t
(d(q, s, T )), (3.13)

where the variable T stands for the ’internal structure’ as defined in (3.4).

Theorem 3.10. Let d ≥ 2. For all n ∈ {0, 1, 2, . . .} the probabilities p1,0(n) and
p1,1(n), respectively, do neither depend on Λ nor on t, and they are given by

p1,0(n) = d(d− 2)!

∫ 1

0

∫ sd−1

0

. . .

∫ s2

0

s2d−1(d− 2sd−1 − sd−2 − . . .− s1)
n

(d− sd−1 − sd−2 − . . .− s1)n+1
ds1 . . . dsd−1

and

p1,1(n)

=(n+ 1)(d− 1)!

∫ 1

0

∫ sd−1

0

. . .

∫ s2

0

s2d−1(d− 2sd−1 − sd−2 − . . .− s1)
n

(d− sd−1 − sd−2 − . . .− s1)n+2
ds1 . . . dsd−1 .

The fact that p1,0(n) and p1,1(n) do not depend on the time t is consistent with
the scaling property (2.4) of a STIT tessellation, because the number of internal
vertices on a maximal 1-polytope does not change when the tessellation is rescaled.
Theorem 3.10 can also be used to compute the moments of the respective distribu-
tions. The following identities are readily checked by using Theorem 3.10.

Corollary 3.11. Let d ≥ 2 and N
(j)
d , j = 0, 1, be random variables with distribu-

tions given by p1,j. Then

EN
(0)
d =

1

2

d2 − d+ 2

d− 1
and EN

(1)
d =







+∞ if d = 2

d2 − 2d+ 4

d− 2
if d ≥ 3 .

Note that EN
(0)
2 = EN

(0)
3 , while EN

(0)
d is strictly increasing for all d ≥ 3. In

contrast, for the mean number of internal vertices on the typical length-weighted

maximal segment we have that EN
(1)
3 = 7, EN

(1)
4 = 6, EN

(1)
5 = 6 1

3 and EN
(1)
6 = 7

and, considered as a function of d, EN
(1)
d is strictly increasing for d ≥ 5.

In the planar case d = 2, as mentioned above, the probabilities p1,0(n) are known
from Mecke et al. (2011); Thäle (2010), whereas for d = 3 the formula for p1,0(n)
has been established in Thäle et al. (2012) by different methods. Our approach in
the present paper is more general and allows to deduce the corresponding formula
also for the length-weighted maximal segment as well as to deal with arbitrary space
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dimensions. As a concrete example, take d = 3 and consider the length-weighted
typical maximal segment. Here, we have

p1,1(0) = 5 + 18 ln2−
63

4
ln 3 ≈ 0.173506 ,

p1,1(1) = 28 + 90 ln 2−
657

8
ln 3 ≈ 0.159712 , etc.

The mean number of internal vertices is 7 in this case. The values p1,1(n) may be
determined from the formula in Theorem 3.10 by straightforward integration.

4. Proofs

4.1. A global construction. The main technical device in the proof of Theorem 3.1 is
a global construction developed in Mecke et al. (2008a,b, 2011) for the STIT tessel-
lation process with driving measure Λ. Here we summarize the essential ingredients
that are needed for our later purposes.

We start with a Poisson point process Π on the measurable space [H × (0,∞),
B(H × (0,∞))] with the intensity measure Λ ⊗ ℓ+. Now, we define the random

process (Π̃t)t>0 of marked Poisson hyperplane processes, putting

Π̃t := {(h, s) ∈ Π : s ≤ t} , t > 0 . (4.1)

For (h, s) ∈ Π we interpret s as the birth time of the hyperplane h and write
β(h) = s.

Our assumption on the measure Λ ensures that for all t > 0, the Poisson hyper-
plane process Πt = {h ∈ H : (h, s) ∈ Π̃t} a.s. (almost surely) induces a tessellation
of Rd. We denote this Poisson hyperplane tessellation by Xt, and by X = (Xt)t>0

the corresponding random process. For any t > 0 there is an a.s. uniquely de-
termined random cell Z0

t of the Poisson hyperplane tessellation Xt that contains
the origin. The random process on Pd of these zero cells is denoted by (Z0

t )t>0.
Clearly, this process is a pure jump process. Let (ηk)k∈Z be the sequence of its
jump times with the convention that η1 < 1 ≤ η2. In Mecke et al. (2008a, Lemma
4.1) it was shown that

⋃

k∈Z

Z0
ηk

= Rd .

At each jump time ηk a cell Ẑk is chopped off from the current zero cell. The
basic idea is to start immediately within each of these new cells Ẑk a local STIT
tessellation process as described in Section 2.4 (with the window W replaced by

Ẑk). This can formally be described as follows.
Let Σ∗ be a Poisson point process on the measurable space

[

Rd × (−∞, 0)×N (H× (0,∞)),B(Rd × (−∞, 0)×N (H× (0,∞)))
]

with intensity measure ℓd × ℓ− × PΠ, where PΠ is the distribution of the process Π
defined above. Further, define Σ := Σ∗ + δ(0,0,Π), where we suppose that the point
processes Σ∗ and Π are independent. We interpret the points of Σ as a collection
of random points in Rd that are marked with priorities in (−∞, 0) and a birth time
marked hyperplane process from N (H× (0,∞)), the space of locally finite counting
measures on H× (0,∞).

The points from Rd× (−∞, 0] are designed to select a hyperplane process which
is then used for the division of an extant cell. Namely, given a cell z ∈ Pd we
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choose the point (X(z), R(z),Ψ(z)) ∈ Σ such that X(z) ∈ z and R(z) = max{r ∈
(−∞, 0] : (x, r, ψ) ∈ Σ, x ∈ z}.

In other words, X(z) is the a.s. uniquely determined point in z with the highest
priority. Note that after the first division of z this point remains a.s. the same
for one of the two daughter cells, while for the other daughter cell a new point is
selected. It is clear that if z is the zero cell we always have that (X(z), R(z),Ψ(z)) =
(0, 0,Π). Now, if a cell z is born at time β(z) by division of its mother cell or
by separating from the current zero cell, and if (X(z), R(z),Ψ(z)) is chosen as
described, then the marked hyperplane (h, s) ∈ Ψ(z) is used to divide z further if
and only if h ∈ [z] and s = min{s′ > β(z) : (h′, s′) ∈ Ψ(z), h′ ∈ [z]}. This further
division then leads to the birth time marked maximal (d − 1)-polytope (z ∩ h, s),
i.e. β(z ∩ h) = s, and the two new daughter cells have the birth time s as well.

The construction we have described defines a random process on the space T
of tessellations. In fact, it has been shown in Mecke et al. (2008a,b, 2011) that,
restricted to a polytope W , this process coincides with the local STIT tessellation
process in W driven by the hyperplane measure Λ. As explained in Subsection 2.5,
the distribution of this process must then coincide with that one of the global
STIT tessellation process Y = (Yt)t>0 defined by means of consistency and the
Kolmogorov extension theorem. The construction here is an explicit global con-
struction based on the Poisson point process Σ, and it is the key device in the proof
of Theorem 3.1.

4.2. Proof of Theorem 3.1. We are now going to give a proof of Theorem 3.1, which
makes use of the global construction outlined in the previous section. We use the
same notation as there. Moreover, for a realization σ of the Poisson point process
Σ, let m(σ) be the uniquely determined realization of the point process of birth time
marked maximal (d − 1)-polytopes. Correspondingly, y(σ) denotes the realization
of the STIT process determined by σ, and y(σ)s its state at time s. By z ∈ y(σ)
we mean any cell which is extant in some time interval (i.e. between its birth and
its division) in the realization y(σ).

Further, for given (x, r, ψ) ∈ σ and (h, s) ∈ ψ, there can be either no or exactly
one cell z ∈ y(σ) such that z is divided by h at time s. For better readability we
introduce the following abbreviations for a cell z ∈ y(σ) and for a given hyperplane
h and a time s:

1(z, σ∗, (x, r, ψ), (h, s))

:=1{(x, r, ψ) ∈ σ∗} 1{(h, s) ∈ ψ} 1{x ∈ z, 0 6∈ z}

· 1{r = max{r′ ∈ (−∞, 0) : (x′, r′, ψ′) ∈ σ∗, x′ ∈ z}}

· 1{h ∈ [z]} 1{s = min{s′ > β(z) : (h′, s′) ∈ ψ, h′ ∈ [z]}},

1(z, 0, π, (h, s))

:=1{(h, s) ∈ π} 1{0 ∈ z} 1{h ∈ [z]} 1{s = min{s′ > β(z) : (h′, s′) ∈ π}} .

The two notations distinguish whether z is a zero-cell or not. The terms are 1 if z
is divided by h at time s, and 0 otherwise.
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At first, becausem(σ) and y(σ) are uniquely determined by σ, the transformation
formula for image measures implies that

A :=

∫

∑

(p,s)∈m

g(m ∧ z(p, s), z(p, s), p, s)PM(dm)

=

∫

∑

(p,s)∈m(σ)

g(m(σ) ∧ z(p, s), z(p, s), p, s)PΣ(dσ) .

A maximal polytope of dimension d − 1 appears once a cell gets divided. Using
the rules from the global construction of the STIT tessellation, the definition of the
process Σ as a sum of Σ∗ and δ(0,0,Π) and the abbreviations given above this leads
to

A =

∫ ∫

∑

z∈y(σ∗+δ(0,0,π))





∑

(x,r,ψ)∈σ∗

∑

(h,s)∈ψ

1(z, σ∗, (x, r, ψ), (h, s))

+
∑

(h,s)∈π

1(z, 0, π, (h, s))



 g
(

m(σ∗ + δ(0,0,π)) ∧ z, z, z ∩ h, s
)

PΠ(dπ)PΣ∗(dσ∗) .

Applying the Mecke formula (3.2) to the Poisson point processes Σ∗ yields

A =

∫ ∫ ∫ ∫ ∫

∑

z∈y(σ∗+δ(x,r,ψ)+δ(0,0,π))





∑

(h,s)∈ψ

1(z, σ∗ + δ(x,r,ψ), (x, r, ψ), (h, s))

+
∑

(h,s)∈π

1(z, 0, π, (h, s))



 g
(

m(σ∗ + δ(x,r,ψ) + δ(0,0,π)) ∧ z, z, z ∩ h, s
)

PΠ(dψ)ℓd(dx)ℓ−(dr)PΠ(dπ)PΣ∗(dσ∗) .

Next, we apply the Mecke formula (3.2) again, this time with respect to ψ and to
π, i.e. to the Poisson point process Π, which has intensity measure Λ ⊗ ℓ+. This
leads to the equation

A =

∫ ∫ ∫ ∫ ∫

[A1 +A2]PΠ(dψ)ℓd(dx)ℓ−(dr)PΠ(dπ)PΣ∗(dσ∗) (4.2)

with the terms A1 and A2 given by

A1 :=

∫ ∫

∑

z∈y(σ∗+δ(x,r,ψ+δ(h,s))
+δ(0,0,π))

1(z, σ∗ + δ(x,r,ψ+δ(h,s)), (x, r, ψ + δ(h,s)), (h, s))

· g
(

m(σ∗ + δ(x,r,ψ+δ(h,s)) + δ(0,0,π)) ∧ z, z, z ∩ h, s
)

Λ(dh)ds

and

A2 :=

∫ ∫

∑

z∈y(σ∗+δ(x,r,ψ)+δ(0,0,π+δ(h,s))
)

1(z, 0, π + δ(h,s), (h, s))

· g
(

m(σ∗ + δ(x,r,ψ) + δ(0,0,π+δ(h,s))) ∧ z, z, z ∩ h, s
)

Λ(dh)ds .

Now, notice that the (x, r)-value of (x, r, ψ+δ(h,s)) is the same as that of (x, r, ψ).
Furthermore, z ∈ y(σ∗ + δ(x,r,ψ+δ(h,s)) + δ(0,0,π)) and the value of the indicator
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1(z, σ∗ + δ(x,r,ψ+δ(h,s)), (x, r, ψ + δ(h,s)), (h, s)) in A1 is 1, if and only if z ∈ y(σ∗ +

δ(x,r,ψ) + δ(0,0,π))s and z is divided by h at time s.
If s > 0, z ∈ y(σ)s and h ∈ [z], then let y(σ,⊘s,z,h) denote the realization of the

STIT tessellation process which until time s coincides with y(σ), at time s the cell
z is divided by h, and after time s the global construction is continued based on
σ. Note that the division of z by h has an impact on the construction after time s.
With this notation, it follows that

A1 =

∫ ∫

∑

z∈y(σ∗+δ(x,r,ψ)+δ(0,0,π))s

1{h ∈ [z]}

· g
(

m((y(σ∗ + δ(x,r,ψ) + δ(0,0,π),⊘s,z,h))) ∧ z, z, z ∩ h, s
)

Λ(dh)ds

and

A2 =

∫ ∫

∑

z∈y(σ∗+δ(x,r,ψ)+δ(0,0,π))s

1{h ∈ [z]}

· g
(

m((y(σ∗ + δ(x,r,ψ) + δ(0,0,π),⊘s,z,h))) ∧ z, z, z ∩ h, s
)

Λ(dh)ds .

Plugging this into (4.2) and applying then the Mecke formula (3.2) (reading it from
right to left) to the Poisson point processes Σ∗ (not to Π), we conclude that

A =

∫ ∫

[

∫ ∫

∑

z∈y(σ∗+δ(0,0,π))s

∑

(x,r,ψ)∈σ∗

1{h ∈ [z]}

· g
(

m((y(σ∗ + δ(0,0,π),⊘s,z,h))) ∧ z, z, z ∩ h, s) Λ(dh)ds

]

PΠ(dπ)PΣ∗(dσ∗) .

Now we use once more the transformation theorem for image measures and the
fact that m and y are uniquely determined by π and σ∗. Moreover, notice that the
cell z is divided for the first time at s using the hyperplane h into two daughter
cells and that within these two daughter cells two independent STIT tessellation
processes are realized. This yields

A =

∫ ∫ ∫ ∫ ∫

∑

z∈ys

g
(

(z ∩ h) ∪ (m
(1)
(+s) ∧ (z ∩ h+)) ∪ (m

(2)
(+s) ∧ (z ∩ h−)), z, z ∩ h, s

)

· 1{h ∈ [z]}Λ(dh)PM (dm(1))PM (dm(2))PYs(dys)ds .

Together with the definition (2.2) of the probability measure Λz this finally leads
to the identity

A =

∫∫

∑

z∈ys

∫ [ ∫ ∫

g
(

(z ∩ h) ∪ (m
(1)
(+s) ∧ (z ∩ h+)) ∪ (m

(2)
(+s) ∧ (z ∩ h−)), z, z ∩ h, s

)

PM (dm(1))PM (dm(2))

]

Λz(dh)Λ([z])PYs(dys)ds

and the proof of the theorem is complete. �

4.3. Proof of Proposition 3.2. The purpose of the present subsection is to prove
Proposition 3.2. This is prepared by the following technical lemma. Let Fd−1(z)
denote the set of all facets (that is, faces of dimension d− 1) of a polytope z ∈ Pd.
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Lemma 4.1. For all non-negative measurable functions g̃ : Pd−1 → R and 0 <
s1 < s2, we have that

∫

∑

z1∈ys1

∫ ∫

∑

z2∈ys2−s1∧(z1∩h
+
1 )

g̃(z1 ∩ h1 ∩ z2)1{(z2 ∩ h1) ∈ Fd−1(z2)}

·1{h1 ∈ [z1]}PYs2−s1 (dys2−s1)Λ(dh1)PYs1 (dys1)

=

∫

∑

z∈ys2

∫

g̃(z ∩ h1)1{h1 ∈ [z]}Λ(dh1)PYs2 (dys2) .

Proof : Assume that h1∩
◦
z1 6= ∅ and z2 ∈ ys2−s1∧(z1∩h

+
1 ). Then z2∩h1 ∈ Fd−1(z2)

if and only if z2 ⊂ z1 and there is a cell z ∈ ys2−s1 ∧ z1 such that z2 = z ∩ h+1 and
z2 ∩ h1 = z ∩ h1 6= ∅. Hence, using Fubini’s theorem,

∫

∑

z1∈ys1

∫ ∫

∑

z2∈ys2−s1∧(z1∩h
+
1 )

g̃(z1 ∩ h1 ∩ z2)1{(z2 ∩ h1) ∈ Fd−1(z2)}

·1{h1 ∈ [z1]}PYs2−s1 (dys2−s1)Λ(dh1)PYs1 (dys1)

=

∫ ∫ ∫

∑

z1∈ys1

∑

z∈ys2−s1∧z1

g̃(z ∩ h1)1{h1 ∈ [z]}Λ(dh1)

PYs2−s1
(dys2−s1)PYs1 (dys1)

=

∫

∑

z∈ys2

∫

g̃(z ∩ h1)1{h1 ∈ [z]}Λ(dh1)PYs2 (dys2),

where the last equality follows from (2.5). �

Now we prove Proposition 3.2. If (p, s) =
(

⋂d−k
i=1 pi, s

)

is a marked maximal k-

polytope generated by a (d−k)-tuple ((p1, s1), . . . (pd−k, sd−k)) = (p, s, k) ∈ md−k
t ,

then we can represent it in the following way which will be used in the formulas
below. The (d−1)-polytope p1 is located on a hyperplane h1 with birth time s1, and
at that time it divides a cell z1, i.e., p1 = z1 ∩ h1. For a STIT tessellation process,
on both cells (indicated by + and –) adjacent to p1 appear independent traces
until time s2 and these two traces will be treated separately. Let us consider the
case that the remaining maximal polytopes ((p2, s2), . . . (pd−k, sd−k)) are located
in the cell z1 ∩ p

+
1 . This cell is subdivided in the time interval (s1, s2) by {(p, s) ∈

mt ∧ (z1 ∩ p
+
1 ) : s1 < s < s2}. Then, at time s2, one of the cells, z2 ⊆ z1 ∩ p

+
1 is

divided by (p2, s2), and dim(p1 ∩ p2) = d− 2. In particular, this means that one of
the (d− 1)-dimensional faces of z2 is a subset of p1, and this face is divided by p2.
The maximal (d− 1)-polytope p2 is located on a hyperplane h2 with birth time s2.

This can now be continued inductively. The combination of the possible choices
in each step of the adjacent cells, indicated by + and –, leads to a factor 2d−k−1. The
(d − k)-tuple (p, s, k) ∈ md−k

t will be processed step by step, and after separating
(p1, s1) the remaining (d − k − 1)-tuple is denoted (p1, s1), and so on. Further,
assume pi ⊂ hi ∈ H, i.e., the hyperplane hi supports pi.

For 0 < s < t and m a realization of M denote m(+s,t) := {(p, s′ + s) : (p, s′) ∈
M, 0 < s′ < t − s}, that is, the set of all birth time marked maximal (d − 1)-
polytopes, with a birth time shifted by s, and such that the shifted birth time is

between s and t. Furthermore, we denote pj :=
⋂d−k
i=j+1 pi, for j = 1, . . . d− k − 2.
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Now,

A :=

∫

∑

(p,s,k)∈md−kt

g (p, s,mt ⊓ p)PMt
(dmt)

=

∫

∑

(p1,s1)∈mt

∑

(p1,s1)

g (p, s,mt ⊓ p)PMt
(dmt).

Next, we apply Theorem 3.1, exchange the order of integration and partition the
sum into two parts. This yields

A =

∫ ∫ ∫ ∫ ∫

∑

z1∈ys1

[

∑

(p1,s1)∈(m
+,(d−k−1)

(+s1,t)
∧(z1∩h

+
1 ))

1{dim(z1 ∩ h1 ∩ p1) = k}

· g
(

z1 ∩ h1 ∩ p1, s, [(m−
(+s1,t)

∪m+
(+s1,t)

) \ {p2, . . . , pd−k−1}] ∩ z1 ∩ h1 ∩ p1
)

+
∑

(p1,s1)∈(m
−,(d−k−1)

(+s1,t)
∧(z1∩h

−

1 ))

1{dim(z1 ∩ h1 ∩ p1) = k}

· g
(

z1 ∩ h1 ∩ p1, s, [(m−
(+s1,t)

∪m+
(+s1,t)

) \ {p2, . . . , pd−k−1}] ∩ z1 ∩ h1 ∩ p1
)

]

PM (dm−)PM (dm+)1{h1 ∈ [z1]}Λ(dh1)1{0 < s1 < t}PYs1 (dys1)ds1 .

In the first item in squared brackets, i.e., the case (p1, s1) ∈ (m
+,(d−k−1)
(+s1,t)

∧ (z1 ∩

h+1 )), decompose (p1, s1) into (p2, s2) and the remaining (d− k− 2)-tuple (p2, s2).
Applying Theorem 3.1 once again, but this time to

∫

∑

(p2,s2)∈(m+
(+s1,t)

∧(z1∩h
+
1 ))

{. . .}PM (dm+)

and noting that z2 ⊂ z1, yields
∫ ∫

∑

(p1,s1)∈(m
+,(d−k−1)

(+s1,t)
∧(z1∩h

+
1 ))

1{dim(p1 ∩ z1 ∩ h1) = k}

· g
(

z1 ∩ h1 ∩ p1, s,

[(m−
(+s1,t)

∪m+
(+s1,t)

) \ {z1 ∩ h1, p2, . . . , pd−k−1}] ∩ z1 ∩ h1 ∩ p1
)

PM (dm−)PM (dm+)

=

∫

. . .

∫

∑

z2∈ys2−s1∧(z1∩h
+
1 )

[

∑

(p2,s2)∈(m
++,(d−k−2)

(+s2,t)
∧(z2∩h

+
2 ))

1{dim(p2 ∩ z2 ∩ h1 ∩ h2) = k}

· g
(

z2 ∩ h1 ∩ h2 ∩ p2, s,

[(m−
(+s1,t)

∪m++
(+s2,t)

∪m+−
(+s2,t)

) \ {p3, . . . , pd−k−1}] ∩ z2 ∩ h1 ∩ h2 ∩ p2
)
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+
∑

(p2,s2)∈(m
+−,(d−k−2)

(+s2,t)
∧(z2∩h

−

2 ))

1{dim(p2 ∩ z2 ∩ h1 ∩ h2) = k}

· g
(

z2 ∩ h1 ∩ h2 ∩ p2, s,

[(m−
(+s1,t)

∪m++
(+s2,t)

∪m+−
(+s2,t)

) \ {p3, . . . , pd−k−1}] ∩ z2 ∩ h1 ∩ h2 ∩ p2
)

]

PM (dm−)PM (dm++)PM (dm+−)PYs2−s1
(dys2−s1)

1{h2 ∈ [z2]}Λ(dh2)1{0 < s1 < s2 < t}ds2 .

Now, we apply this argument repeatedly to all summands and decompose (p, s)
step by step. Note that zd−k ⊂ . . . ⊂ z1, and also that the intersections like
[(m−

(+s1,t)
∪m++

(+s2,t)
∪m+−

(+s2,t)
)\ {p3, . . . , pd−k−1}]∩ z2∩h1∩h2∩p2 do not depend

on the combinations of signs (which determine a part of the space) in the upper
index. Hence, Lemma 4.1 yields that A is equal to

A =
∑

(a1,...,ad−k−1)∈{+,−}d−k−1

∫

. . .

∫

∑

zd−k∈ysd−k

· g

(

zd−k ∩ h, s,

(

d−k−1
⋃

i=1

m
(i)
(+si,t)

∪m+
(+sd−k,t)

∪m−
(+sd−k,t)

)

∩ zd−k ∩ h

)

· 1{zd−k ∩ h 6= ∅}Λ(dhd−k) . . .Λ(dh2)Λ(dh1)

PM (dm+)PM (dm−)PM (dm(d−k−1)) . . .PM (dm(1))PYsd−k (dysd−k)

· 1{0 < s1 < . . . < sd−k < t} ds1 . . . dsd−k .

Now substitutem
(i)
(+si,t)

by the corresponding STIT tessellations y
(i)
t−si = y(m

(i)
(+si,t)

).

Furthermore, due to the spatial consistency of STIT tessellations the values of the
summands do not depend on (a1, . . . , ad−k−1) ∈ {+,−}d−k−1. Noting finally, that
the first sum is running over 2d−k−1 terms leads to the identity
∫

∑

(p,s,k)∈md−kt

g (p, s,mt ⊓ p)PMt
(dmt)

= 2d−k−1

∫

. . .

∫

∑

z∈ysd−k

g

(

z ∩ h, s, z ∩ h ∩
[

⋃d−k−1
i=1 ∂y

(i)
t−si ∪ ∂y

+
t−sd−k

∪ ∂y−t−sd−k

]

)

P
⊗(d−k+1)
Y (d(y(1), . . . y(d−k−1), y+, y−))1{z ∩ h 6= ∅}Λ⊗(d−k)(dh)

PYsd−k (dysd−k) · 1{0 < s1 < . . . < sd−k < t} ds1 . . . dsd−k ,

which completes the proof. �

4.4. Proof of Proposition 3.5. Using the scaling property (2.4), changing the order
of integration and substituting ysd−k by 1

sd−k
y1, we obtain from (3.12) that

̺
(j)
k,1 = 2d−k−1 1

ℓd(B)

∫ ∫ ∫

∑

z∈ysd−k

1{c(z ∩ h) ∈ B}Vj(z ∩ h)

PYsd−k (dysd−k)Λ
⊗(d−k)(dh)1{0 < sd−k < 1}

sd−k−1
d−k

(d− k − 1)!
dsd−k
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= 2d−k−1 1

ℓd(B)

∫ ∫ ∫

∑

z∈ 1
sd−k

y1

1{c(z ∩ h) ∈ B}Vj(z ∩ h)

PY1(dy1)Λ
⊗(d−k)(dh)1{0 < sd−k < 1}

sd−k−1
d−k

(d− k − 1)!
dsd−k

= 2d−k−1 1

ℓd(B)

∫ ∫ ∫

∑

z∈y1

1{c( 1
sd−k

z ∩ h) ∈ B}Vj(
1

sd−k
z ∩ h)

PY1(dy1) Λ
⊗(d−k)(dh)1{0 < sd−k < 1}

sd−k−1
d−k

(d− k − 1)!
dsd−k .

We consider the two inner integrals separately. Let γ1 denote the mean number of
cell centroids per unit volume and let Q1 denote the distribution of the typical cell
of Y1. Then an application of Campbell’s theorem, multiplication with sd−k, and
the homogeneity of the jth intrinsic volume Vj yield

I :=
1

ℓd(B)

∫ ∫

∑

z∈y1

1{c( 1
sd−k

z ∩ h) ∈ B}Vj(
1

sd−k
z ∩ h)PY1(dy1)Λ

⊗(d−k)(dh)

=
1

ℓd(B)
γ1

∫ ∫ ∫

1{c((z + x) ∩ sd−kh) ∈ sd−kB} s−jd−k

· Vj((z + x) ∩ sd−kh) ℓd(dx)Q1(dz)Λ
⊗(d−k)(dh) .

In a next step, we use that sd−kh = h + (sd−k − 1)x⊥ = h0 + sd−kx
⊥, which is a

translation of h, where x⊥ = h∩h
⊥

0 , h0 the k-dimensional linear subspace parallel

to h and h
⊥

0 its orthogonal complement. The image of the measure 1{dim(h) =
k} ·Λ⊗(d−k)(dh) (the product measure, endowed with the indicator density) under

the mapping h 7→ h is invariant under translations. Then, according to Schneider
and Weil (2008, Theorem 4.4.1), we obtain that

I =
1

ℓd(B)
γ1

∫ ∫ ∫

1{c((z + x) ∩ h) ∈ sd−kB} s−jd−k Vj((z + x) ∩ h)

ℓd(dx)Q1(dz)s
−(d−k)
d−k Λ⊗(d−k)(dh)

= sdd−k
1

ℓd(sd−kB)
γ1

∫ ∫ ∫

1{c((z + x) ∩ h) ∈ sd−kB} s−jd−k Vj((z + x) ∩ h)

ℓd(dx)Q1(dz)s
−(d−k)
d−k Λ⊗(d−k)(dh)

= s
k−j
d−k

1

ℓd(sd−kB)
γ1

∫ ∫ ∫

1{c((z + x) ∩ h) ∈ sd−kB}Vj((z + x) ∩ h)

ℓd(dx)Q1(dz)Λ
⊗(d−k)(dh)

= s
k−j
d−k

1

ℓd(B)

∫ ∫

∑

z∈y1

1{c(z ∩ h) ∈ B}Vj(z ∩ h)PY1(dy1)Λ
⊗(d−k)(dh) ,

where the last equation follows from Campbell’s theorem and by replacing sd−kB
by B.

Plugging this expression for I into the equation for ̺
(j)
k,1 above yields
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̺
(j)
k,1 = 2d−k−1 1

ℓd(B)

∫ ∫ ∫

∑

z∈y1

s
k−j
d−k1{c(z ∩ h) ∈ B}Vj(z ∩ h)

PY1(dy1)Λ
⊗(d−k)(dh)1{0 < sd−k < 1}

sd−k−1
d−k

(d− k − 1)!
dsd−k

= 2d−k−1 1

(d− k − 1)! (d− j)

1

ℓd(B)

·

∫ ∫

∑

z∈y1

1{c(z ∩ h) ∈ B}Vj(z ∩ h)PY1(dy1)Λ
⊗(d−k)(dh) ,

where the last equation results by integration with respect to sd−k. �

4.5. Proof of Theorem 3.6. For any non-negative measurable function
g : (0, t)d−k → R, Corollary 3.3 and an application of Lemma 3.4 yield
∫

g(s)Q
(j)
β,t(ds) =

∫

g(s)Q
(j)

(P,β,τ),t
(d(q, s, T ))

=2d−k−1
[

̺
(j)
k,t

]−1
∫

. . .

∫

∑

z∈ysd−k

1{c(z ∩ h) ∈ [0, 1]d} · Vj(z ∩ h) · g(s) Λ⊗(d−k)(dh)

· 1{0 < s1 < . . . < sd−k < t} ds1 . . . dsd−k−1 PYsd−k (dysd−k)dsd−k .

Using (2.4) and substituting ysd−k by 1
sd−k

y1 we obtain (similarly to the calculations

in the proof of Proposition 3.5)
∫

g(s)Q
(j)
β,t(ds) = 2d−k−1

[

̺
(j)
k,t

]−1
∫

. . .

∫

∑

z∈ 1
sd−k

y1

1{c(z ∩ h) ∈ [0, 1]d} · Vj(z ∩ h) · g(s)

Λ⊗(d−k)(dh)PY1(dy1)1{0 < s1 < . . . < sd−k < t} ds1 . . . dsd−k−1dsd−k

= 2d−k−1
[

̺
(j)
k,t

]−1
∫ ∫

∑

z∈y1

1{c(z ∩ h) ∈ [0, 1]d} · Vj(z ∩ h) Λ⊗(d−k)(dh)PY1(dy1)

·

∫

. . .

∫

g(s) · sk−jd−k · 1{0 < s1 < . . . < sd−k < t} ds1 . . . dsd−k−1dsd−k .

We can now use Proposition 3.5 together with the scaling relation (3.10) to evaluate

̺
(j)
k,t. This yields the desired result immediately. �

4.6. Proof of Corollary 3.8. Applying Lemma 3.4, Corollary 3.3 and Corollary 3.7
(a) yields

∫

g(q, sd−k)Q
(j)

(P,βd−k),t
(d(q, sd−k))

=2d−k−1
[

̺
(j)
k,t

]−1

∫ ∫ ∫

∑

z∈ysd−k

Vj(z ∩ h) · 1{c(z ∩ h) ∈ [0, 1]d} · g((z ∩ h)− c(z ∩ h), sd−k)

Λ⊗(d−k)(dh)PYsd−k (dysd−k)
sd−k−1
d−k

(d− k − 1)!
1{0 < sd−k < t} dsd−k
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=2d−k−1
[

̺
(j)
k,t

]−1

∫ ∫ ∫

∑

z∈ysd−k

Vj(z ∩ h) · 1{c(z ∩ h) ∈ [0, 1]d}) · g((z ∩ h)− c(z ∩ h), sd−k)

Λ⊗(d−k)(dh)PYsd−k (dysd−k)
s
−(k−j)
d−k

(d− k − 1)!(d− j)
td−j Q

(j)
βd−k,t

(dsd−k)

and the result follows. �

4.7. Proof of Theorem 3.9. It is sufficient to consider functions g of the form

g(q, s) = g1(q) · g2(s1, . . . , sd−k−1) · g3(sd−k) ,

where g1 : Pk → R, g2 : (0, t)d−k−1 → R, g3 : (0, t) → R are non-negative
measurable functions. The proposition for general g follows then by a standard
measure-theoretic procedure. As in the proof of Theorem 3.6, we have

∫

g(q, s)Q
(j)

(P,β1,...,βd−k),t
(d(q, s))

=
[

̺
(j)
k,t

]−1
∫

∑

(p,s,k)∈md−kt

1{c(p) ∈ [0, 1]d}Vj(p) g (p− c(p), s)PMt
(dmt)

=2d−k−1
[

̺
(j)
k,t

]−1

∫

. . .

∫

∑

z∈ysd−k

g1
(

(z ∩ h)− c(z ∩ h))
)

1{c(z ∩ h) ∈ [0, 1]d}Vj(z ∩ h)

Λ⊗(d−k)(dh)PYsd−k (dysd−k)

· g2(s1, . . . , sd−k−1)1{0 < s1 < . . . < sd−k} ds1 . . . dsd−k−1

· g3(sd−k)1{0 < sd−k < t}dsd−k .

Now, we apply Corollary 3.7 and Corollary 3.8 and obtain that this is equal to

∫ ∫ ∫

(d− k − 1)!(d− j)sk−jd−k

td−j
g1(q)Q

(j)

P,t|βd−k=sd−k
(dq)

· g2(s1, . . . , sd−k−1)
1

(d− k − 1)!
sd−k−1
d−k Q

(j)
(β1,...,βd−k−1),t|βd−k=sd−k

d(s1, . . . , sd−k−1) g3(sd−k)
td−j

(d− j)
s
−(d−j−1)
d−k Q

(j)
βd−k

(dsd−k)

=

∫ ∫ ∫

g(q, s)Q
(j)

P,t|βd−k=sd−k
(dq)Q

(j)
(β1,...,βd−k−1),t|βd−k=sd−k

d(s1, . . . , sd−k−1)Q
(j)
βd−k

(dsd−k) ,

which completes the proof. �

4.8. Proof of Theorem 3.10. For fixed h = (h1, . . . , hd−1) ∈ Hd−1 with the hy-

perplanes in general position define the line h =
⋂d−1
i=1 hi. Because the intersec-

tion of a STIT with a line is a Poisson point process (see Nagel and Weiß, 2003),
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h ∩
[

⋃d−2
i=1 ∂y

(i)
t−si ∪ ∂y

+
t−sd−1

∪ ∂y−t−sd−1

]

is a realization of a superposition of d in-

dependent Poisson point processes on the line h, with a law invariant under trans-
lations on this line. Due to the stationarity of STIT tessellations, the intensity of
this point process depends only on the direction of this line, which we denote by
u ∈ Sd−1, and, up to a factor b(u) > 0, it is given by the sum

a(s) =

d−2
∑

i=1

(t− si) + 2(t− sd−1) = d · t− 2sd−1 −
d−2
∑

i=1

si .

Thus for any cell z the number of points of

z ∩ h ∩

[

d−2
⋃

i=1

∂y
(i)
t−si ∪ ∂y

+
t−sd−1

∪ ∂y−t−sd−1

]

follows a Poisson distribution with parameter V1(z ∩h) · b(u) · a(s). Now, we apply
this fact together with Lemma 3.4 and Proposition 3.2 to conclude that for j = 0, 1

∫

1{#T = n}Q
(j)

(P,β,τ),t
(d(p, s, T ))

=
[

̺
(j)
1,t

]−1
∫

∑

(p,s,1)∈md−1
t

Vj(p) · 1{c(p) ∈ [0, 1]d}1{#(mt ⊓ p) = n}PMt
(dmt)

= 2d−2
[

̺
(j)
1,t

]−1
∫

. . .

∫

∑

z∈ysd−1

Vj(z ∩ h)1{c(z ∩ h) ∈ [0, 1]d}

·1

{

#

(

z ∩ h ∩

[

d−2
⋃

i=1

∂y
(i)
t−si ∪ ∂y

+
t−sd−1

∪ ∂y−t−sd−1

])

= n

}

P⊗d
Y (d(y(1), . . . y(d−2), y+, y−))PYsd−1

(dysd−1
)

·1{0 < s1 < . . . < sd−1 < t} ds1 . . . dsd−1Λ
⊗(d−1)(dh),

and hence
∫

1{#T = n}Q
(j)

(P,β,τ),t
(d(p, s, T ))

= 2d−2
[

̺
(j)
1,t

]−1
∫

. . .

∫

∑

z∈ysd−1

Vj(z ∩ h)1{c(z ∩ h) ∈ [0, 1]d}

·
[V1(z ∩ h)b(u)a(s)]n

n!
e−V1(z∩h)b(u)a(s)PYsd−1

(dysd−1
) (4.3)

·1{0 < s1 < . . . < sd−1 < t} ds1 . . . dsd−1 Λ
⊗(d−1)(dh) .

For the stationary STIT tessellation Ysd−1
we consider the induced one-dimen-

sional tessellation Y ′
sd−1

= Ysd−1
∩ h as a marked point process (centers of the

segments, marked with the lengths of the segments). Its intensity, that is, the
mean number of segment centres per unit length on h is equal to b(u) sd−1.

Denote by Ql the distribution of the length of the typical segment, which is the
exponential distribution with parameter b(u) sd−1. Then the stationarity of the
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STIT tessellation and the refined Campbell theorem for marked point processes,
see Schneider and Weil (2008, Theorem 3.5.3), imply for the inner integral that

I :=

∫

∑

z∈ysd−1

Vj(z ∩ h)1{c(z ∩ h) ∈ [0, 1]d}

·
[V1(z ∩ h)b(u)a(s)]n

n!
e−V1(z∩h)b(u)a(s) PYsd−1

(dysd−1
)

=

∫

∑

z′∈y′sd−1

Vj(z
′)1{c(z′) ∈ [0, 1]d} [V1(z

′)b(u)a(s)]n

n! e−V1(z
′)b(u)a(s) PY ′

sd−1
(dy′sd−1

)

= b(u) sd−1V1([0, 1]
d ∩ h)

∫

xj
[xb(u)a(s)]n

n!
e−xb(u)a(s) Ql(dx)

= b(u) sd−1V1([0, 1]
d ∩ h)

∫ ∞

0

xj
[xb(u)a(s)]n

n!
e−xb(u)a(s)b(u) sd−1e

−b(u) sd−1x dx .

Integration yields

I =























V1([0, 1]
d ∩ h)

(n+ 1)a(s)ns2d−1

(a(s) + sd−1)n+2
if j = 1 ,

b(u)V1([0, 1]
d ∩ h)

a(s)ns2d−1

(a(s) + sd−1)n+1
if j = 0 .

Now we compute the inner integral on the right-hand side of (3.12) for the special
choices B = [0, 1]d and k = 1 in the same way:

Iρ :=

∫

∑

z∈ysd−1

Vj(z ∩ h)1{c(z ∩ h) ∈ [0, 1]d}PYsd−1
(dysd−1

)

=

∫

∑

z′∈y′sd−1

Vj(z
′)1{c(z′) ∈ [0, 1]d}PY ′

sd−1
(dy′sd−1

)

= b(u) sd−1V1([0, 1]
d ∩ h)

∫

xj Ql(dx)

= b(u) sd−1V1([0, 1]
d ∩ h)

∫ ∞

0

xj b(u) sd−1e
−b(u) sd−1x dx

and thus we obtain

Iρ =

{

V1([0, 1]
d ∩ h) if j = 1 ,

b(u)V1([0, 1]
d ∩ h) sd−1 if j = 0 .

Combining these results leads to

̺
(j)
1,t =























2d−2 td−1

(d− 1)!

∫

V1([0, 1]
d ∩ h) Λ⊗(d−1)(dh) if j = 1 ,

2d−2 td

d(d− 2)!

∫

b(u)V1([0, 1]
d) Λ⊗(d−1)(dh) if j = 0 .

Plugging the inner integral I and the expression for ̺
(j)
1,t into (4.3), yields
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p1,0(n)

=d(d− 2)!

∫ t

0

∫ sd−1

0

. . .

∫ s2

0

s2d−1

td
(d · t− 2sd−1 − sd−2 − . . .− s1)

n

(d · t− sd−1 − sd−2 − . . .− s1)n+1
ds1 . . . dsd−1

and

p1,1(n)

=(n+ 1)(d− 1)!

∫ t

0

∫ sd−1

0

. . .

∫ s2

0

s2d−1

td−1

(d · t− 2sd−1 − sd−2 − . . .− s1)
n

(d · t− sd−1 − sd−2 − . . .− s1)n+2

ds1 . . . dsd−1 .

The substitution ui := tsi, i ∈ {1, . . . , d − 1} shows that these probabilities are
independent of the time parameter t. �
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