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Abstract. In this work, we study asymptotics of multitype Galton-Watson forests
with finitely many types. We consider critical and irreducible offspring distributions
such that they belong to the domain of attraction of a stable law, where the stability
indices may differ. We show that after a proper rescaling, their corresponding
height process converges to the continuous-time height process associated with a
strictly stable spectrally positive Lévy process. This gives an analog of a result
obtained by Miermont (2008) in the case of multitype Galton-Watson forests with
finite covariance matrices of the offspring distribution. Our approach relies on a
remarkable decomposition for multitype trees into monotype trees introduced in
Miermont (2008).

1. Introduction

In the pioneer works Aldous (1991, 1993), Aldous introduced the continuum
random tree as the limit of rescaled Galton-Watson (GW) trees conditioned on
the total progeny for offspring distributions having finite variance. Specifically,
he proved that their properly rescaled contour functions converge in distribution
in the functional sense to the normalized Brownian excursion, which codes the
continuum random tree as the contour function does for discrete trees. This work
has motivated the study of the convergence of other rescaled paths obtained from
GW trees, and more generally GW forests, possibly with infinite variance, such as
the Lukasiewicz path and the height process. Duquesne and Le Gall (2002) obtained
in full generality an unconditional version of Aldous’ result for trees and forests.
More precisely, they showed that the concatenation of rescaled height processes (or

Received by the editors June 21th, 2016; accepted October 25th, 2017.

2010 Mathematics Subject Classification. 60J80, 60F17.
Key words and phrases. Multitype Galton-Watson tree; Height process; Scaling limit; Contin-

uum random tree.
Research supported by the Swiss National Science Foundation 200021 144325/1.

21

http://alea.impa.br/english/index_v15.htm
https://doi.org/10.30757/ALEA.v15-02
http://stochastik.math.uni-goettingen.de/~gberzunza/


22 G. H. Berzunza Ojeda

rescaled contour functions) converges in distribution to the so-called continuous-
time height process associated to a spectrally positive Lévy process. In particular,
when the offspring distribution belongs to the domain of attraction of a stable
law of index α ∈ (1, 2], Duquesne (2003) showed that the height processes of GW
trees conditioned on having n vertices converge in distribution to the normalized
excursion of the continuous-time height process associated with a strictly stable
spectrally positive Lévy process of index α.

The present work has been motivated by the following result of Miermont (2008),
which extends the previous ones on monotype GW trees to multitype GW trees
and forests. Recall that multitype GW trees are a generalization of usual GW
trees (or forests) that describe the genealogy of a population where individuals are
differentiated by types that determine their offspring distribution. More precisely,
Miermont establishes an unconditional version for the convergence of the rescaled
height process of critical multitype GW forests with finitely many types to the
reflected Brownian motion, under the hypotheses that the offspring distribution is
irreducible and has finite covariance matrix. Moreover, under an additional expo-
nential moment assumption, similar results are proved for GW trees conditioned
on the number individuals of a given type, the limit of the height process is given
by the normalized Brownian excursion. More recently, de Raphélis (2017) has ex-
tended the unconditional result in Miermont (2008) for multitype GW forests with
infinitely many types, under similar assumptions. Informally speaking, these re-
sults claim that multitype GW forests behave asymptotically in a similar way as
the monotype ones, at least in the finite variance case. Therefore, this suggests
that we should expect an analogous behavior for multitype GW forests that satisfy
weaker hypotheses.

Our main goal is to show an unconditional result for critical multitype GW
forests with finitely many types whose offspring distribution is still irreducible, but
may have infinite variance. Specifically, we are interested in establishing scaling
limits for their associated height processes, when the offspring distributions belong
to the domain of attraction of a stable law where the stability indices may differ.
This will lead us to modify and extend the results of Miermont (2008).

In the rest of the introduction, we will describe our setting more precisely and
give the exact definition of multitype GW trees and forests. We then provide the
main assumptions on the offspring distribution in Section 1.2. This will enable us
to state our main results in Section 1.4.

1.1. Multitype plane trees and forests. We recall the standard formalism for family
trees. Let U be the set of all labels:

U =

∞
⋃

n=0

N
n,

where N = {1, 2, . . . } and with the convention N
0 = {∅}. An element of U is a

sequence u = u1 · · ·uj of positive integers, and we call |u| = j the length of u (with
the convention |∅| = 0). If u = u1 · · ·uj and v = v1 · · · vk belong to U , we write
uv = u1 · · ·ujv1 · · · vk for the concatenation of u and v. In particular, note that
u∅ = ∅u = u. For u ∈ U and A ⊆ U , we let uA = {uv : v ∈ A}, and we say that
u is a prefix (or ancestor) of v if v ∈ uU , in which case we write u ⊢ v. Recall that
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the set U comes with a natural lexicographical order ≺, such that u ≺ v if and only
if either u ⊢ v, or u = wu′, v = wv′ with nonempty words u′, v′ such that u′1 < v′1.

A rooted planar tree t is a finite subset of U which satisfies the following condi-
tions:

I. ∅ ∈ t, we called it the root of t.
II. For u ∈ U and i ∈ N, if ui ∈ t then u ∈ t, and uj ∈ t for every 1 ≤ j ≤ i.

We let T be the set of all rooted planar trees. We call vertices (or individuals)
the elements of a tree t ∈ T, the length |u| is called the height of u ∈ t. We
write ct(u) = max{i ∈ Z+ : ui ∈ t} for the number of children of u. The vertices
of t with no children are called leaves. For t a planar tree and u ∈ t, we let
tu = {v ∈ U : uv ∈ t} be the subtree of t rooted at u, which is itself a tree. The
remaining part [t]u = {u} ∪ (t \ utu) is called the subtree of t pruned at u. The
lexicographical order ≺ will be called the depth first order on t.

In addition to trees, we are also interested in forests. A forest f is a nonempty
subset of U of the form

f =
⋃

k

kt(k),

where (t(k)) is a finite or infinite sequence of trees, which are called the components
of f . In words, a forest may be thought of as a rooted tree where the vertices at
height one are the roots of the forest components. We let F be the set of rooted
planar forests. For f ∈ F, we define the subtree fu = {v ∈ U : uv ∈ f} ∈ T if u ∈ f ,
and fu = ∅ otherwise. Also, let [f ]u = {u} ∪ (f \ ufu) ∈ F. With this notation, we
observe that the tree components of f are f1, f2, . . . . We let cf (u) be the number of
children of u ∈ f . In particular, cf (∅) ∈ N ∪ {∞} is the number of components of
f . We call |u|− 1 the height of u ∈ f . Notice that that notion of height differs from
the convention on trees because we want the roots of the forest components to be
at height 0.

Let d ∈ N, we call [d] = {1, . . . , d} the set of types. A d-type planar tree,
or simply a multitype tree is a pair (t, et), where t ∈ T and et : t → [d] is a
function such that et(u) corresponds to the type of a vertex u ∈ t. We let T

(d)

be the set of d-type rooted planar trees. For i ∈ [d], we write c
(i)
t
(u) = #{j ∈

Z+ : uj ∈ t and et(uj) = i} for the number of offspring of type i of u ∈ t. Then,

ct(u) =
∑

i∈[d] c
(i)
t
(u) is the total number of children of u ∈ t. Analogous definitions

hold for d-type rooted planar forests (f , ef ), whose set will be denoted by F
(d). For

sake of simplicity, we shall frequently denote the type functions et, ef by e when it
is free of ambiguity, and will even denote elements of T(d), F(d) by t or f , without
mentioning e. Moreover, it will be understood then that tu, fu, [t]u, [f ]u are marked
with the appropriate function.

Finally, for t ∈ T
(d) and i ∈ [d], we let t(i) = {u ∈ t : et(u) = i} be the set of

vertices on t bearing the type i, and f (i) the corresponding notation for the forest
f ∈ F

(d).

1.2. Multitype offspring distributions. We set Z+ = {0, 1, 2, . . .} and d ∈ N. A
d-type offspring distribution µ = (µ(1), . . . , µ(d)) is a family of distributions on the
space Z

d
+ of integer-valued non-negative sequences of length d. It will be useful to
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introduce the Laplace transforms ϕ = (ϕ(1), . . . , ϕ(d)) of µ by

ϕ(i)(s) =
∑

z∈Zd
+

µ(i)({z}) exp(−〈z, s〉), for i ∈ [d],

where s = (s1, . . . , sd) ∈ R
d
+ and 〈x, y〉 is the usual scalar product of two vectors

x, y ∈ R
d. We let 0 be the vector of Rd

+ with all components equal to 0. Then, for
i, j ∈ [d], we define the quantity

mij = −
∂ϕ(i)

∂sj
(0) =

∑

z∈Zd
+

zjµ
(i)({z})

that corresponds to the mean number of children of type j, given by an individ-
ual of type i. We let M := (mij)i,j∈[d] be the mean matrix of µ, and mi =

(mi1, . . . ,mid) ∈ R
d
+ be the mean vector of the measure µ(i).

We say that a measure µ on Z
d
+ is non-degenerate, if there exists at least one

i ∈ [d] so that

µ(i)











z ∈ Z
d
+ :

d
∑

j=1

zj 6= 1









 > 0.

The offspring distribution that we consider in this work is assumed to be non-
degenerate in order to avoid cases which will lead to infinite linear trees.

Definition 1.1. The mean matrix (or the offspring distribution µ) is called irre-

ducible, if for every i, j ∈ [d], there is some n ∈ N so that m
(n)
ij > 0, where m

(n)
ij is

the ij-entry of the matrix Mn.

Recall also that if M is irreducible, then according to the Perron-Frobenius the-
orem, M admits a unique eigenvalue ρ which is simple, positive and with maximal
modulus. Furthermore, the corresponding right and left eigenvectors can be chosen
positive and we call them a = (a1, . . . , ad) and b = (b1, . . . , bd) respectively, and
normalize them such that 〈a, 1〉 = 〈a,b〉 = 1; see Chapter V of Athreya and Ney
(2004). We then say that µ is sub-critical if ρ < 1, critical ρ = 1 and supercritical
if ρ > 1.

Main assumptions. Throughout this work, we consider an offspring distribu-
tion µ =

(

µ(1), . . . , µ(d)
)

on Z
d
+ satisfying the following conditions:

(H1) µ is irreducible, non-degenerate and critical.
(H2.1) Let ∆ be a nonempty subset of [d]. For every i ∈ ∆, there exists αi ∈ (1, 2]

such that the Laplace transform of µ(i) satisfies

ψ(i)(s) := − logϕ(i)(s) = 〈mi, s〉+ |s|αiΘ(i) (s/|s|) + o(|s|αi), as |s| ↓ 0,

for s ∈ R
d
+ and where

Θ(i)(s) =

∫

Sd

|〈s,y〉|αiλi(dy),

with λi a finite Borel non-zero measure on Sd = {y ∈ R
d : |y| = 1} such

that for αi ∈ (1, 2), λi has support in {y ∈ R
d
+ : |y| = 1}. We write | · | for

the Euclidean norm.
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(H2.2) For i ∈ [d] \∆, the Laplace transform of µ(i) satisfies

ψ(i)(s) := − logϕ(i)(s) = 〈mi, s〉+ o(|s|αi), as |s| ↓ 0.

where αi = minj∈∆ αj (which it does not depend on i).

Let us comment on these assumptions:

1. We notice that criticality, hypothesis (H1), implies finiteness of all coeffi-
cients of the mean matrix M.

2. For i ∈ [d], we say that µ(i) has finite variance when

∂2ϕ(i)

∂sj∂sk
(0) <∞, for j, k ∈ [d].

We then write Q(i) for its covariance matrix. In particular, when µ(i) sat-
isfies the condition (H2.1) with αi = 2, one can easily verify that it possess
finite variance and that it does not have variance when αi ∈ (1, 2). This
shows that our assumptions on the offspring distribution are less restrictive
than the ones made in Miermont (2008), where the author assumes finitess
of the covariance matrices.

3. In the case when µ(i) has finite variance, one can consider a measure λi on
Sd such that

Θ(i)(s) = 〈s,Q(i)s〉, s ∈ R
d
+;

see for example Section 2.4 of Samorodnitsky and Taqqu (1994).
4. Let ξ1, ξ2, . . . be a sequence of i.i.d. random variables on Z

d
+ with common

distribution µ(i) satisfying (H2.1). We observe that

− logE

[

exp

(

−

〈

1

n1/αi

n
∑

k=1

(ξk −mi) , s

〉)]

→
n→∞

|s|αiΘ(i) (s/|s|) , (1.1)

for s ∈ R
d
+. Then, we conclude that

1

n1/αi

n
∑

k=1

(ξk −mi)
d

−−−−→
n→∞

Yαi
, (1.2)

where the convergence is in distribution and Yαi
is a αi-stable random

vector in R
d
+ whose Laplace exponent satisfies

ψYαi
(s) = |s|αiΘ(i) (s/|s|) , s ∈ R

d
+.

Satos book Sato (2013) and Samorodnitsky and Taqqu (1994) are good
references for background on multivariate stable distributions. On the other
hand, we notice from (1.1) that the equation (1.2) is equivalent to the
hypothesis (H2.1).

5. We point out that in the monotype case, that is d = 1, the condition (H2.1)
may be thought as a particular case of the assumption made in Duquesne
(2003) and Kortchemski (2013), which deal with arbitrary critical offspring
distributions in the domain of attraction of an one-dimensional stable law,
in order to get the convergence of the rescaled monotype GW tree to the
continuum stable tree.
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6. For i ∈ [d] \∆, let µ(i) be a measure that satisfies the hypothesis (H2.2).
We can rewrite the expression of its Laplace exponent in the following way

ψ(i)(s) := − logϕ(i)(s) = 〈mi, s〉+ |s|αiΘ(i) (s/|s|) + o(|s|αi),

as |s| ↓ 0 and where

Θ(i)(s) =

∫

Sd

|〈s,y〉|αiλi(dy),

with λi ≡ 0. Recall that αi = minj∈∆ αj for i ∈ [d] \∆. This will be useful
for the rest of the work.

Finally, let α = mini∈[d] αi and λ̄ =
∑

i∈[d] 1{α=αi}aiλi. We define

c̄ = (〈a,Θ(b)〉)1/α =

(
∫

Sd

|〈b,y〉|αλ̄(dy)

)1/α

,

where Θ(s) = (Θ(1)(s)1{α=α1}, . . . ,Θ
(d)(s)1{α=αd}) ∈ R

d
+, for s ∈ R

d
+. We notice

that c̄ 6≡ 0 due to (H2.1). This constant will play a role similar to the constant
defined in equation (2) of Miermont (2008), i.e., it corresponds to the total variance
of the offspring distribution µ, when the covariance matrices are finite.

1.3. Multitype Galton-Watson trees and forests. Let µ be a d-type offspring distri-

bution. We define the law P
(i)
µ (or simply P(i)) of a d-type GW tree (or multitype

GW tree) rooted at a vertex of type i ∈ [d] and with offspring distribution µ by

P(i) (T = t) =
∏

u∈t

c
(1)
t

(u)! . . . c
(d)
t

(u)!

ct(u)!
µ(et(u))

({

c
(d)
t

(u), . . . , c
(d)
t

(u)
})

,

where T : T(d) → T
(d) is the identity map (see e.g., Abraham and Delmas, 2015,

or Miermont, 2008 for a formal construction of a probability measure on T
(d)). In

particular, under the criticality assumption, (H1), the multitype GW trees with
offspring distribution µ are almost surely finite. Similarly, for x = (x1, . . . , xr) a
finite sequence with terms in [d], we define Px

µ
(or simply Px) the law of multitype

GW forest with roots of type x and with offspring distribution µ as the image
measure of

⊗r
j=1 P

(xj) by the map

(t(1), . . . , t(r)) 7−→ ∪r
k=1kt(k),

i.e., it is the law that makes the identity map F : F
(d) → F

(d) the random
forest whose trees components F1, . . . , Fr are independent with respective laws
P(x1), . . . ,P(xd). A similar definition holds for an infinite sequence x ∈ [d]N.

We then say that a F
(d)-value random variable F is a multitype GW forest with

offspring distribution µ and roots of type x when it has law Px. Similarly, a
T
(d)-value random variable T with law P(i) is a multitype GW tree with offspring

distribution µ and root of type i ∈ [d].

1.4. Main results. In this section, we state our main results on the asymptotic
behavior of d-type GW trees with offspring distribution satisfying our main as-
sumptions. In this direction, we first recall the definition of the discrete height
process associated with a forest f ∈ F.

Let us denote by #t the total progeny (or the total number of vertices) of t.
Similarly, #f represents the total progeny of the forest f . Let ∅ = ut(0) ≺ ut(1) ≺
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· · · ≺ ut(#t− 1) be the list of vertices of t in depth-first order. The height process
Ht = (Ht

n, n ≥ 0) is defined by Ht
n = |ut(n)|, with the convention that Ht

n = 0 for
n ≥ #t. For the forest f , we let 1 = uf (0) ≺ uf (1) ≺ · · · ≺ uf (#f−1) be the depth-
first ordered list of its vertices, and write H f = (H f

n, n ≥ 0) by H f
n = |uf (n)| − 1,

for 0 ≤ n < #f . Detailed description and properties of this object can be found for
example in Duquesne (2003).

Recall that α = mini∈[d] αi with α1, . . . , αd as our main assumptions. Let Y (α) =
(Ys, s ≥ 0) be a strictly stable spectrally positive Lévy process with index α ∈ (1, 2]
with Laplace exponent

E[exp(−λYs)] = exp(−sλα),

for λ ∈ R+.
We can now state our main result.

Theorem 1.2. Let F be a d-type GW forest distributed according to Px, for some
arbitrary x ∈ [d]N. Then, under Px, the following convergence in distribution holds
for the Skorohod topology on the space D(R+,R) of right-continuous functions with
left limits:

(

1

n1−1/α
HF

⌊ns⌋, s ≥ 0

)

d
−−−−→
n→∞

(

1

c̄
Hs, s ≥ 0

)

,

where H stands for the continuous-time height process associated with the strictly
stable spectrally positive Lévy process Y (α).

In particular, we notice that this result implies the convergence in law of the
d-type GW forest properly rescaled towards the stable forest of index α for the
Gromov-Hausdorff topology; see for example Lemma 2.4 of Le Gall (2005). On
the other hand, when α = 2, it is well-known that (Hs, s ≥ 0) is proportional to
the reflected Brownian motion. The notion of height process for spectrally positive
Lévy process has been studied in great detail in Duquesne and Le Gall (2002).

Next, for n ≥ 0, we let Υf
n be the first letter of uf (n), with the convention that

for n ≥ #f , it equals the number of components of f . In words, Υf
n is the index of

the tree component to which uf (n) belongs.

Theorem 1.3. For i ∈ [d], let F be a d-type GW forest distributed according to
Pi, where i = (i, i, . . . ). Then, under Pi, we have the following convergence in
distribution in D(R+,R):

(

1

n1−1/α
ΥF

⌊ns⌋, s ≥ 0

)

d
−−−−→
n→∞

(

−
c̄

bi
Is, s ≥ 0

)

,

where Is is the infimum at time s of the strictly stable spectrally positive Lévy process
Y (α).

Let us explain our approach while we describe the organization for the rest of
the paper. We begin by exposing in Section 2.1 the key ingredient, that is, a
remarkable decomposition of d-type forests into monotype forests. The plan then
is to compare the corresponding height processes of the multitype GW forest and
the monotype GW forest, and show that they are close for the Skorohod topology.
In this direction, we will need to control the shape of large d-type GW forests.
First, we establish in Section 2.2 sub-exponential tail bounds for the height and
the number of tree components of d-type GW forests that may be of independent
interest. Secondly, we estimate in Section 2.3 the asymptotic distribution of the
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different vertices types. To be a little more precise, Proposition 2.7 provides a
convergence of types theorem for multitype GW trees, which extends Theorem 1
(iii) in Miermont (2008), for the infinite variance case. Roughly speaking, it shows
that all types are homogeneously distributed in the limiting tree. We conclude with
the proofs of Theorem 1.2 and 1.3 in Section 3 by pulling back the known results of
Duquesne and Le Gall (2002) on the convergence of the rescaled height process of
monotype GW forests to the multitype GW forest. Finally, in Section 4, we present
two applications. The first one is an immediate consequence of Theorem 1.2 and
1.3 which provides information about the maximal height of a vertex in a multitype
GW tree. Our second application involves a particular multitype GW tree, known
as alternating two-type GW tree which appears frequently in the study of random
planar maps. We establish a conditioned version of Theorem 1.2 for this special
tree.

The global structure of the proofs is close to that Miermont (2008). Although we
will try to make this work as self-contained as possible, we will often refer the reader
to this paper when the proofs are readily adaptable, and will rather focus on the
new technical ingredients. One difficulty arises from the fact that we are assuming
weaker assumptions on the offspring distribution than in Miermont (2008), we do
not assume a finitess of the covariances matrices of the offspring distributions and
this forces us to improve some of Miermont’s estimates.

2. Preliminary results

Through this section unless we specify otherwise, we let F be d-type GW for-
est with law Px where x ∈ [d]N and such that its offspring distribution µ =
(µ(1), . . . , µ(d)) satisfies the main assumptions. More precisely, it is important to
keep in mind that there is a nonempty subset ∆ of [d] such that the family of dis-
tributions (µ(i))i∈∆ satisfy (H2.1) while the remainder (µ(i))i∈[d]\∆ fulfills (H2.2).

2.1. Decomposition of multitype GW forests. In this section, we introduce the pro-
jection function Π(i) defined by Miermont (2008) that goes from the set of d-types
planar forests to the set of monotype planar forests. Roughly speaking, the func-
tion Π(i) removes all the vertices of type different from i and then it connects the
remaining vertices with their most recent common ancestor, preserving the lexico-
graphical order. More precisely, set a d-type forest f ∈ F

d and let v1 ≺ v2 ≺ · · · be
the vertices of f (i) listed in depth-first order such that all ancestors of vk have types
different from i. They will be the roots of the new forest. We then build a forest
Π(i)(f) = f ′ with as many tree components as there are elements in {v1, v2, . . . }.
Recursively, starting from the set of roots 1, 2, . . . of f ′, for each u ∈ f ′, we let
vu1, vu2, . . . , vuk be vertices of (vufvu) \ {vu} arranged in lexicographical order and
such that:

I. They have type i, i.e. ef (vuj) = i for 1 ≤ j ≤ k,
II. All their ancestors on (vufvu) \ {vu} have types different from i (if any).

Then, we add the vertices u1, . . . , uk to f ′ as children of u, and continue iteratively.
See Figure 2.1 for an example when d = 3.
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f2f1

Π(1)(f) : Π(2)(f) : Π(3)(f) :

f :

Figure 2.1. A realization of the projection Π(i) for a three-type planar

forest with two tree components, type 1 vertices represented with circles,

type 2 vertices with triangles and type 3 vertices with diamonds.

We have the following key result:

Proposition 2.1. Let x ∈ [d]N and i ∈ [d]. Then, under the law Px, the forest
Π(i)(F ) is a monotype GW forest with critical non-degenerate offspring distribution
µ̄(i) that is in the domain of attraction of a stable law of index α = minj∈[d] αj.

More precisely, the Laplace exponent of µ̄(i) satisfies

ψ̄(i)(s) = s+
1

ai

(

c̄

bi
s

)α

+ o(sα), s ↓ 0,

where s ∈ R+.

The proof of this proposition is based in an inductive argument that consists in
removing types one by one until we are left with a monotype GW forests. More
precisely, we suppose that the vertices with type d are removed from the forest
f ∈ F

(d). We point out that one can delete any other type similarly. We let
v1 ≺ v2 ≺ . . . be the vertices of f listed in depth-first order such that ef (vi) 6= d
and ef (v) = d for every v ⊢ vi. These are the vertices of f with type different from

d which do not have ancestors of type d. We build a forest Π̃(f) = f̃ recursively.

We start from the set {v1, v2, . . . } and for each vu ∈ f̃ , we let vu1 ≺ · · · ≺ vuk be
the descendants of vu in f such that:

I. They have type different from d.
II. For 1 ≤ j ≤ k, all the vertices between vu and vuj have type d (if any).

Then, we add these vertices to f̃ , and continue in an obvious way. We naturally
associate the type ef to the vertices of Π̃(f). In the sequel, we refer to this procedure
as the d- to (d− 1)-type operation.

The following lemma shows that after performing the d-to (d−1)-type operation
in the multitype GW forest F , we obtain a (d− 1)-type GW forest which offspring
distribution still satisfying our main assumptions. First, we fix some notation. We
denote by m̃d the vector in R

d−1
+ with entries

m̃dk =
mdk

1−mdd
, for k ∈ [d− 1],
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and for j ∈ [d− 1], we write m̃j for the vector in R
d−1
+ with entries

m̃jk = mjk +
mjdmdk

1−mdd
, for k ∈ [d− 1].

We stress that due to the irreducibility assumption on the mean matrix M of the
measure µ, we have that 1−mjj > 0 for all j ∈ [d]. Thus, all the previous quantities
are finite.

Lemma 2.2. Let x ∈ [d]N. Then, under the law Px, the forest Π̃(F ) is a non-
degenerate, irreducible, critical (d − 1)-type GW forest. Moreover, its offspring
distribution µ̃ = (µ̃(1), . . . , µ̃(d−1)) has Laplace exponents

ψ̃(j)(s) = 〈m̃j , s〉+ |s|α̃j Θ̃(j) (s/|s|) + o(|s|α̃j ), |s| ↓ 0,

for j ∈ [d− 1], s ∈ R
d−1
+ , α̃j = min(αj , αd) and

Θ̃(j)(s) =

∫

Sd

|〈s, ỹ + ydm̃d〉|
α̃j λ̃j(dy),

where λ̃j = 1{α̃j=αj}λj + 1{α̃j=αd}
mjd

1−mdd
λd, y = (y1, . . . , yd) ∈ R

d and ỹ =

(y1, . . . , yd−1) ∈ R
d−1.

It is important to stress that λ̃j ≡ 0 when j, d ∈ [d] \ ∆, and otherwise it is
non-zero (recall the last comment after the introduction of the main assumptions
in Section 1.2).

Proof : The fact that Π̃(F ) is a non-degenerate, irreducible, critical (d − 1)-type
GW forest follows from Lemma 3 (i) in Miermont (2008). Moreover, we deduce
from this same lemma (see specifically equations (8) and (9) in Miermont, 2008)
that the offspring distribution µ̃ = (µ̃(1), . . . , µ̃(d−1)) has Laplace exponents

ψ̃(j)(s) = ψ(j)(s, ψ̃(d)(s)), (2.1)

for j ∈ [d− 1] and s ∈ R
d−1
+ , where ψ̃(d) is implicitly defined by

ψ̃(d)(s) = ψ(d)(s, ψ̃(d)(s)). (2.2)

This is obtained by separating the offspring of each individual with types equal and
different from d.

In order to understand the behavior of ψ̃(j) close to zero, we start by analyzing
the one of ψ̃(d). In this direction, we observe from (2.2) and our main assumptions
on the offspring distribution µ that

ψ̃(d)(s) = (1−mdd)〈m̃d, s〉+mddψ̃
(d)(s)

+ |(s, ψ̃(d)(s))|αdΘ(d)

(

(s, ψ̃(d)(s))

|(s, ψ̃(d)(s))|

)

+ o(|(s, ψ̃(d)(s))|αd)

= 〈m̃d, s〉+
1

1−mdd
|(s, ψ̃(d)(s))|αdΘ(d)

(

(s, ψ̃(d)(s))

|(s, ψ̃(d)(s))|

)

+ o(|(s, ψ̃(d)(s))|αd),

as |s| ↓ 0. We also notice that

ψ̃(d)(s) = 〈m̃d, s〉+ o(|s|), as |s| ↓ 0. (2.3)

On the one hand, from the above estimate, we know that

〈(s, ψ̃(d)(s)),y〉 = 〈s, ỹ+ ydm̃d〉+ ydo(|s|), as |s| ↓ 0,
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Thus,

|(s, ψ̃(d)(s))|αdΘ(d)

(

(s, ψ̃(d)(s))

|(s, ψ̃(d)(s))|

)

=

∫

Sd

|〈(s, ψ̃(d)(s)),y〉|αdλd(dy)

=

∫

Sd

|〈s, ỹ + ydm̃d〉|
αd λd(dy) + o(|s|αd) (2.4)

On the other hand, from (2.3), we have that

〈(s, ψ̃(d)(s)), (s, ψ̃(d)(s))〉 = 〈s, s〉+ 〈s, m̃d〉
2 + o(|s|2), as |s| ↓ 0. (2.5)

Then, the previous estimates yield that

ψ̃(d)(s) = 〈m̃d, s〉+
1

1−mdd
|s|αdΘ̃(d) (s/|s|) + o(|s|αd), |s| ↓ 0, (2.6)

where

Θ̃(d)(s) =

∫

Sd

|〈s, ỹ + ydm̃d〉|
αd λd(dy), for s ∈ R

d−1
+ .

Next, we deduce the asymptotic behavior of ψ̃(j). It follows from (2.1) and our
main assumption on the offspring distribution that

ψ̃(j)(s) = 〈m̃j −mjdm̃d, s〉+mjdψ̃
(d)(s)

+ |(s, ψ̃(d)(s))|αjΘ(j)

(

(s, ψ̃(d)(s))

|(s, ψ̃(d)(s))|

)

+ o(|(s, ψ̃(d)(s))|αj )

= 〈m̃j −mjdm̃d, s〉+mjdψ̃
(d)(s)

+ |(s, ψ̃(d)(s))|αjΘ(j)

(

(s, ψ̃(d)(s))

|(s, ψ̃(d)(s))|

)

+ o(|s|αj ) (2.7)

as |s| ↓ 0, where we have used (2.5) for the last equality. We observe that a similar
computation as (2.4) shows that

|(s, ψ̃(d)(s))|αjΘ(j)

(

(s, ψ̃(d)(s))

|(s, ψ̃(d)(s))|

)

=

∫

Sd

|〈s, ỹ + ydm̃d〉|
αj λj(dy) + o(|s|αj ).

Consequently, combining the last display with (2.6), we deduce that equation (2.7)
becomes for |s| ↓ 0,

ψ̃(j)(s) = 〈m̃j , s〉+
mjd

1−mdd
|s|αdΘ̃(d) (s/|s|)

+

∫

Sd

|〈s, ỹ + ydm̃d〉|
αj λj(dy) + o(|s|αd) + o(|s|αj )

which clearly implies our claim. �

We notice that after performing the d- to (d − 1)-type operation, we are left
with a non-degenerate, irreducible, critical (d− 1)-type GW forest whose offspring

distribution µ̃ has mean matrix M̃ = (m̃jk)j,k∈[d−1]. Lemma 2.2 shows that this
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matrix has spectral radius 1 and moreover, it is not difficult to check that its left
and right 1-eigenvectors ã, b̃ satisfying 〈ã,1〉 = 〈ã, b̃〉 = 1 are given by

ã =
1

1− ad
(a1, . . . , ad−1) and b̃ =

1− ad
1− adbd

(b1, . . . , bd−1).

We are now able to establish Proposition 2.1.

Proof of Proposition 2.1: The fact that Π(i)(F ) is a monotype GW forest with criti-
cal non-degenerate offspring distribution is a consequence of Lemma 2.2 by following
exactly the same argument as the proof of Proposition 4 (i) in Miermont (2008).
Roughly speaking, the idea is to remove the types different from i one by one
through the d- to (d − 1)-type operation, and noticing that the hypotheses of the
GW forest under consideration are conserved at every step until we are left with a
critical non-degenerate monotype GW forest. Thus, it only remains to show that
the offspring distribution of Π(i)(F ) is in the domain of attraction of a stable law of
index α = minj∈[d] αj . We prove this by induction on d, in the case i = 1, without
losing generality. The case d = 1 is obvious. So suppose d ≥ 2. We apply the d-
to (d− 1)-type operation through Lemma 2.2, and use the induction hipothesis to
conclude that the offspring distribution µ̄(1) of Π(1)(F ) satisfies

ψ̄(1)(s) = s+
1

ã1

(

c̃

b̃1

)α

+ o(sα), s ↓ 0,

for s ∈ R+ and where c̃ = (〈ã, Θ̃(b̃)〉)1/α, with

Θ̃(s) =
(

Θ̃(1)(s)1{α=α̃1}, . . . , Θ̃
(d−1)(s)1{α=α̃d−1}

)

,

as in Lemma 2.2. On the other hand, we first observe that for j ∈ [d− 1], we have

Θ̃(j)(b̃) =

∫

Sd

|〈b̃, ỹ + ydm̃d〉|
α̃j λ̃j(dy)

=

∫

Sd

∣

∣

∣〈b̃, ỹ〉+ yd〈b̃, m̃d〉
∣

∣

∣

α̃j

λ̃j(dy)

=

(

1− ad
1− adbd

)α̃j
∫

Sd

∣

∣

∣

∣

∣

d−1
∑

k=1

bkyk + yd

d−1
∑

k=1

bk
mdk

1−mdd

∣

∣

∣

∣

∣

α̃j

λ̃j(dy)

=

(

1− ad
1− adbd

)α̃j
(

Θ(j)(b)1{α̃j=αj} +Θ(d)(b)
mjd

1−mdd
1{α̃j=αd}

)

,

where for the last equality, we use the fact the b is the right 1-eigenvector of the
mean matrix M, that is,

∑

k∈[d] bkmdk = bd. Then, from the previous identity, we

have that

〈ã, Θ̃(b̃)〉

=

(

1− ad
1− adbd

)α
(

d−1
∑

k=1

ãkΘ
(k)(b)1{α=αk} +Θ(d)(b)1{α=αd}

d−1
∑

k=1

ãk
mkd

1−mdd

)

=
(1− ad)

α−1

(1− adbd)α
〈a,Θ(b)〉,

where in the last equality, we now use that a is the left 1-eigenvector of the mean
matrix M, i.e.,

∑

k∈[d] akmkd = ad. Therefore, the fact that µ̄(1) belongs to the
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domain of attraction of a stable law of index α follows by induction and the above
equality. �

Following Miermont (2008), we are interested in keeping the information of the
number vertices that we delete during the projection Π(i). More precisely, for
f ∈ F

(d), recall that Π(i)(f) is the monotype forest obtained by removing all the
vertices with type different from i. Then, for a vertex u ∈ Π(i)(f) with children
u1, . . . , uk, we let fvu , fvu1 , . . . , fvuk

be the subtrees of the original forest f rooted
at u, u1, . . . , uk, respectively. Then, we let

Nij(u) = #

{

w ∈ fvu \

(

k
⋃

r=1

fvur

)

: ef (w) = j

}

, for j ∈ [d] \ {i},

be the number of type j vertices that have been deleted between u and its children.
We also let

N̂ij(n) = # {v ∈ fn : ef (v) = j and ef (w) 6= i for all w ⊢ v} , for j ∈ [d] \ {i},

be the number of type j vertices of the n-th tree component of f that lie below the
first layer of type i vertices, i.e. the number of type j vertices of fn that do not
have ancestors of type i.

f2
f1

f :

N12(u(3)) = 4
N13(u(3)) = 1

N̂12(1) = N̂13(1) = 0

N̂12(2) = 2

N̂13(2) = 01

92
1110

161412
63 5

18

212019

22 24 S

177 8 13

23 25 26

4 15

Figure 2.2. A representation of the quantities N1j and N̂2j , for a

three-type planar forest with two tree components, type 1 vertices rep-

resented with circles, type 2 vertices with triangles and type 3 vertices

with diamonds.

The following proposition provides information about the distribution of the
previous quantities.

Proposition 2.3. Let ∅ = u(0) ≺ u(1) ≺ · · · ≺ u(#Π(i)(f) − 1) be the list of
vertices of Π(i)(f) in depth-first order and let x ∈ [d]N. Then, under the law Px

and for each i ∈ [d]:

(i) For every j ∈ [d] \ {i}, the random variables (Nij(u(n)), n ≥ 0) are i.i.d.
Moreover, their Laplace exponents satisfy

φij(s) := − logEx [exp (−sNij(u(0)))] =
aj
ai
s+ cijs

α + o(sα),
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as s ↓ 0, where s ∈ R+, α = minj∈[d] αj and cij > 0 a constant. In
particular, Ex[Nij(u(0))] = aj/ai.

(ii) For every j ∈ [d] \ {i}, the random variables (N̂ij(n), n ≥ 1) are indepen-
dent, and their Laplace exponents satisfy

φ̂ij(s) := − logEx

[

exp
(

−sN̂ij(n)
)]

=
(

ĉijs+ ĉ′ijs
α̂i + o(sα̂i)

)

1{xn 6=i},

as s ↓ 0, for s ∈ R+, some constants ĉij > 0 and ĉ′ij ≥ 0 (that depends on
xn) and where α̂i = minj∈[d]\{i} αj.

The idea of the proof is based in a similar induction argument as in the one
of Proposition 2.1, by making use of the d- to (d − 1)-type operation Π̃. In this
direction, we notice that the left and right 1-eigenvectors a, b of M satisfy, for
1 ≤ j ≤ d,

aj =

d
∑

i=1

aimij and bi =

d
∑

j=1

bjmij

for 1 ≤ i ≤ d. In particular, when d = 2, a simple computation shows that

a2
a1

=
m12

1−m22
=

1−m11

m21
and

b2
b1

=
m21

1−m22
=

1−m11

m12
.

This will be useful in a moment.

Proof :
(i) The fact that for every j ∈ [d] \ {i}, the random variables (Nij(u(n)), n ≥ 0)
are i.i.d. has been proven in Proposition 4 (ii) of Miermont (2008). Basically, this
follows from Jagers’ theorem on stopping lines Jagers (1989). We then focus on the
second part of the statement, and for simplicity, we prove this in the case i = 1,
without losing generality. The idea is based in a similar induction argument as in
the proof of Proposition 2.1, by making use of the d- to (d − 1)-type operation Π̃.

In this direction, for f ∈ F
(d) and u ∈ Π̃(f), we let Ñ(u) be the number of d-type

vertices that have been deleted between u and its children during this procedure.
For j ∈ [d− 1], we let u(j)(0) ≺ u(j)(1) ≺ . . . be the type j vertices of F arranged
in depth-first order. Then, Lemma 3 (ii) in Miermont (2008) ensures that under

Px, the d − 1 sequences (Ñ(u(j)(n)), n ≥ 0) are independent and formed of i.i.d.

elements. Further, their Laplace exponents φ̃(j) respectively satisfy

φ̃(j)(s) = ψ(j)(0, φ̃(d)(s))

for s ∈ R+, 0 the vector of Rd−1
+ with all components equal to 0, and where φ̃(d) is

implicitly given by

φ̃(d)(s) = s+ ψ(d)(0, φ̃(d)(s)). (2.8)

Thus, from our main assumptions on the offspring distribution, it is not difficult to
check by following the same reasoning as the proof of Lemma 2.2 that

φ̃(j)(s) =
mjd

1−mdd
s+ c̃jds

α̃j + o(sα̃j ), as s ↓ 0,

where α̃j = min(αj , αd) and the constant c̃jd = 0 if j, d ∈ [d] \ ∆ and c̃jd > 0
otherwise (recall the main assumptions (H2.1) and (H2.2)).
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Let now proceed to prove our statement. In the monotype case, d = 1, there is
nothing to show. For the case d = 2, one checks from the previous discussion that
the Laplace exponent of N12(u(0)) satisfies

φ12(s) =
m12

1−m22
s+ c̃12s

α̃1 + o(sα̃1), as s ↓ 0.

On the other hand, we know that m12/(1−m22) = a2/a1.

We now consider case d ≥ 3. We apply the operation Π̃, d − 2 times, removing
the types d, d− 1, . . . , 3 one after the other. We then obtain a two-type GW forest
and we observe that the number of type 2 vertices that have only the root as type
1 ancestor is precisely the number of type 2 individuals that are trapped between
two generations of Π(1)(F ). Therefore, in view of the d = 2 case above, it is not
difficult to see that the Laplace exponent of N12(u(0)) satisfies

φ12(s) =
a2
a1
s+ c12s

α + o(sα), as s ↓ 0,

for some constant c12 > 0. Finally, our claim follows by symmetry.
(ii) This is obtained by a similar induction argument. We only need to notice that

for i ∈ [d] and j ∈ [d] \ {i}, N̂ij(n) = 0 when xn = i. �

2.2. Sub-exponential Bounds. The following lemma gives an exponential control
on the height and number of components related to the n first vertices in d-type
GW forests. This extends Lemma 4 in Miermont (2008) which considers the finite
variance case. Recall that for a forest f ∈ F, we let 1 ≺ uf (0) ≺ uf (1) ≺ · · · ≺
uf (#f − 1) be the depth-first ordered list of its vertices. Recall also that Υf

n is the
index of the tree component to which uf (n) belongs.

Lemma 2.4. There exist two constants 0 < C1, C2 < ∞ (depending only on µ)
such that for every n ∈ N, x ∈ [d]N and η > 0,

Px

(

max
0≤k≤n

|uF (k)| ≥ n1−1/α+η

)

≤ C1(n+ 1) exp (−C2n
η)

and

Px

(

ΥF
n ≥ n1−1/α+η

)

≤ C1 exp (−C2n
η) .

Proof : We observe that under Px and independently of x, we have that

max
0≤k≤n

|uF (k)| ≤
∑

i∈[d]

max
0≤k≤n

∣

∣uΠ(i)(F )(k)
∣

∣ and ΥF
n ≤

∑

i∈[d]

ΥΠ(i)(F )
n ,

where each of the forests Π(i)(F ), for i ∈ [d], are critical non-degenerate monotype
GW forests with offspring distribution in the domain of attraction of a stable law
of index α ∈ (1, 2] by Proposition 2.1. Therefore, from the above inequalities, it is
enough to prove the result only for the case d = 1.

In this direction, let µ be a critical non-degenerate offspring distribution on Z+,
with Laplace exponent given by

ψ(s) = s+ csα + o(sα), as s ↓ 0,

for α ∈ (1, 2], s ∈ R+ and c > 0 a constant. Let P be the law of a monotype GW
forest with an infinite number of components and offspring distribution µ. We then
let F be a monotype GW forest with law P.
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It is well-known (Duquesne and Le Gall, 2002, Section 2.2) that |uF (k)| − 1
has the same distribution as the number of weak records for a random walk with
step distribution µ({· + 1}) on {−1} ∪ Z+, from time 1 up to time k. We denote
by (Wn, n ≥ 0) such random walk and we also consider that is defined on some
probability space (Ω,A,P). By assumption, the step distribution of this random
walk is centered and in the domain of attraction of stable law of index α ∈ (1, 2].
That is, Wn/n

1/α converges in distribution towards a stable law of index α as
n→ ∞. We fix τ0 = 0 and write τj , j ≥ 0, for the time of the j-th weak record of
(Wn, n ≥ 0). Therefore, from Feller (1971) and Theorems 1 and 2 in Doney (1982),
the sequence of random variables (τj − τj−1, j ≥ 1) is i.i.d. with Laplace exponent
given by

κ̃(λ) = − logE [exp (−λτ1)] = C̃1λ
1−1/α + o(λ1−1/α), as λ ↓ 0, (2.9)

for some constant C̃1 > 0. We then bound the first probability by

P

(

max
0≤k≤n

|uF (k)| ≥ n1−1/α+η

)

≤ (n+ 1) max
0≤k≤n

P
(

|uF (k)| ≥ n1−1/α+η
)

.

Then, we notice that for 0 ≤ k ≤ n and m ∈ N, we have that

P (|uF (k)| − 1 ≥ m) = P





m
∑

j=1

(τj − τj−1) ≤ k





≤ eE



exp



−
m
∑

j=1

τj − τj−1

k









≤ exp (1−mκ̃(1/n)) ,

where for the last inequality, we use the monotonicity of κ̃. Taking m =
⌈

n1−1/α+η
⌉

− 1 and using (2.9), we get the first bound for large n and thus for
every n up to tuning the constants C1, C2.

The proof for second bound is very similar. For j ≥ 1, let #Fj be the number
of vertices of the j-th tree component of the forest F . By the Otter-Dwass formula
(see, e.g., Pitman, 2006, Chapter 5), under P, (#Fi, i ≥ 1) is a sequence of i.i.d.
random variables with common distribution

P (#F1 = n) = n−1
P (Wn = −1) .

Using again the fact that the step distribution of (Wn, n ≥ 0) is centered and in
the domain of attraction of a stable law of index α, we obtain that

P (#F1 = n) = C̃2n
−1−1/α + o(n−1−1/α), as n→ ∞,

where C̃2 > 0 is some positive constant; see for example Lemma 1 in Kortchemski
(2013). Therefore, an Abelian theorem (Feller, 1971, Theorem XIII.5.5) entails that
the Laplace exponent κ of the distribution of #F1, under P, satisfies

κ(λ) = C̃3λ
1−1/α + o(λ1−1/α), as λ ↓ 0, (2.10)

for some constant C̃3 > 0. Noticing that
{

ΥF
n (n) ≥ m

}

=
{

∑m−1
i=1 #Fi ≤ n

}

, the

second bound is then obtained analogously as the first one. Finally, we tune up the
constants C1, C2 so that they match to both cases. �
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2.3. Convergence of types. In order to compare the height process of the monotype
GW forest Π(i)(F ), i ∈ [d], with that of the d-type GW forest F , we must estimate
the number of vertices of F that stand between a type i vertex of Π(i)(F ) and one
of its descendants. This is the purpose of the following result. Before that, we need
some further notation.

Definition 2.5. We say that a sequence of positive numbers (zn, n ≥ 0) is expo-
nentially bounded if there are positive constants c, C > 0 such that zn ≤ Ce−cnǫ

for
some ε > 0 and large enough n. In order to simplify notations and avoid referring
to the changing ε’s and the constants c and C, we write zn = oe(n) in this case.

For a d-type forest f ∈ F
(d) and a vertex u ∈ f , we let Ancuf (i) be the number of

type i ancestors of a vertex u. We provide the following key estimate for the height
process which is the analogue of Proposition 5 in Miermont (2008).

Proposition 2.6. For every γ > 0 and x ∈ [d]N, we have that

max
i∈[d]

Px

(

max
0≤k≤n

∣

∣

∣

∣

∣

HF
k −

Anc
u(k)
F (i)

aibi

∣

∣

∣

∣

∣

> n1/2−1/2α+γ

)

= oe(n).

On the other hand, observe that the height process of the monotype GW forest
Π(i)(F ) does not visit the vertices of type different from i, in words, it goes faster
than the the height process of the d-type GW forest F . Then, in order to slow
down the height process of Π(i)(F ), we must adjust the time. We conclude this
section with the following result which takes care of the number of vertices with
type different from i that stands between two consecutive type i vertices in Π(i)(F ).
More precisely, for f ∈ F

(d) and n ≥ 0, we let

Λf

i (n) = # {0 ≤ k ≤ n : ef (uf (k)) = i}

be the number of type i vertices standing before the (n+1)-th vertex in depth-first
order. We let u(i)(0) ≺ u(i)(1) ≺ . . . be the type i vertices of f arranged in depth-
first order, and we also consider the quantity Gf

i (n) = #{u ∈ f : u ≺ u(i)(n)}, with
the convention Gf

i (#f (i)) = #f . Similar notation holds if we consider trees instead
of forests. Recall that a = (a1, . . . , ad) is the left 1-eigenvector of the mean matrix
M.

Proposition 2.7. For i ∈ [d] and for any x ∈ [d]N, under Px, we have that
(

ΛF
i (⌊ns⌋)

n
, s ≥ 0

)

→
n→∞

(ais, s ≥ 0) ,

in probability, for the topology of uniform convergence over compact subsets of R+.

Proof : We only need to prove that for i ∈ [d], ε > 0 and for any x ∈ [d]N, we have
that

Px
(∣

∣GF
i (n)− a−1

i n
∣

∣ > εn
)

= 0, (2.11)

as n→ ∞. This will imply the convergence in probability for every rational number
s of GF

i (⌊ns⌋)n
−1 towards a−1

i s as n → ∞. Then, an application of Skorohod’s
representation theorem and a standard diagonal procedure entail that the above
convergence holds for the uniform topology over compact subsets of R+. Finally,
one notices that ΛF

i is the right-continuous inverse function of GF
i which leads to

our statement.
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In this direction, for f ∈ F
(d), we recall that Π(i)(f) denotes the monotype forest

obtained after applying the projection function described in Section 2.1. Recall
that for k ≥ 0 and j ∈ [d] \ {i}, Nij(k) := Nij(u

(i)(k)) denotes the number of

type j vertices that have been deleted between u(i)(k) and its children during the
operation Π(i). Similarly, we define the quantity N ′

ij(k) which counts only the type

j vertices that come before u(i)(n) in depth-first order. Since
∑

j 6=i aj/ai = 1−1/ai,
we notice that

Gf

i (n)− a−1
i n =

∑

j 6=i

(

Rf

1(j;n) +Rf

2(j;n) +Rf

3(j;n)
)

, (2.12)

for n ≥ 0 and where for j ∈ [d] \ {i},

Rf

1(j;n) =
n−1
∑

k=0

(

N ′
ij(k)−Nij(k)

)

1{u(i)(k)⊢u(i)(n)}, Rf

2(j;n) =

Υf

n
∑

k=1

N̂ij(k),

and

Rf

3(j;n) =
n−1
∑

k=0

(Nij(k)− aj/ai) .

We next estimate the probability that these tree terms are large, when we consider
a d-type GW forest. We fix ε > 0, 0 < δ < 1/α and write zn = n1−1/α+δ. We
observe that

∣

∣Rf

1(j;n)
∣

∣ ≤
n−1
∑

k=0

Nij(k)1{u(i)(k)⊢u(i)(n)}.

and

#{k ≥ 0 : u(i)(k) ⊢ u(i)(n)} ≤ Anc
u(i)(n)
f

(i) ≤ max
0≤k≤n

H
Π(i)(F )
k .

Thus, according to our estimate for the height of GW forests in Lemma 2.4, we get
that

Px
(∣

∣RF
1 (j;n)

∣

∣ > εn1+δ
)

≤ Px





⌊zn⌋
∑

k=0

Nij(k) > εn1+δ



+ oe(n).

Moreover, for every β ∈ (0, 1/2),

Px
(∣

∣RF
1 (j;n)

∣

∣ > εn1+δ
)

≤ Px

({

⌊zn⌋
∑

k=1

Nij(k) > εn1+δ

}

∩
{

∀k ∈ {0, 1, . . . , ⌊zn⌋} : Nij(k) < (1− β)εn1+δ
}

)

+Px

(

max
1≤k≤⌊zn⌋

Nij(k) > (1− β)εn1+δ

)

+ oe(n). (2.13)

We recall that under Px, the random variables (Nij(k), k ≥ 0) are i.i.d. with law
in the domain of attraction of a stable law of index α ∈ (1, 2] by Proposition 2.3
(i). Then,

Px

(

max
0≤k≤⌊zn⌋

Nij(k) > (1− β)εn1+δ

)

= 1−
(

1−Px
(

Nij(0) > (1− β)εn1+δ
))⌊zn⌋
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which tends to 0 as n → ∞. On the other hand, the first term in the right-hand
side of (2.13) also tends to 0 as n→ ∞. To see this, note that the event in the first
term may hold only if there are two distinct values of k ∈ {0, 1, . . . , ⌊zn⌋} such that
Nij(k) ≥ βεn/⌊zn⌋. We thus conclude that

Px
(∣

∣RF
1 (j;n)

∣

∣ > εn1+δ
)

→
n→∞

0. (2.14)

Following exactly the same argument, using the bound in Lemma 2.4 on the number
of components of d-type GW forests and Proposition 2.3 (ii), we obtain that

Px
(∣

∣RF
2 (j;n)

∣

∣ > εn1+δ
)

→
n→∞

0. (2.15)

Finally, the estimate

Px
(∣

∣RF
3 (j;n)

∣

∣ > εn1+δ
)

→
n→∞

0, (2.16)

follows by the law of large numbers, since Proposition 2.3 (i) entails that the mean
of Nij(0) is aj/ai.

Therefore, the estimates (2.14), (2.15) and (2.16), when combined with (2.12)
imply the convergence (2.11). �

3. Proof of Theorem 1.2 and 1.3

In this section, we prove our main results.

Proof of Theorem 1.2: We observe that for n ≥ 0 and any s ≥ 0, we have
∣

∣

∣

∣

∣

∣

HF
⌊ns⌋ −

H
Π(i)(F )

ΛF
i
(⌊ns⌋)−1

aibi

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

HF
⌊ns⌋ −

Anc
u(⌊ns⌋)
F (i)

aibi

∣

∣

∣

∣

∣

+
1

aibi

∣

∣

∣
H

Π(i)(F )

ΛF
i
(⌊ns⌋)−1

−Anc
u(⌊ns⌋)
F (i)

∣

∣

∣
.

By Proposition 2.6, under Px, the first term on the right hand side tends to 0 in
probability as n → ∞, uniformly over compact subsets of R+. On the other hand,
from equation (15) in Miermont (2008), we get that

∣

∣

∣H
Π(i)(F )

ΛF
i
(⌊ns⌋)−1

−Anc
u(⌊ns⌋)
F (i)

∣

∣

∣ ≤
∣

∣

∣H
Π(i)(F )

ΛF
i
(⌊ns⌋)−1

−H
Π(i)(F )

ΛF
i
(⌊ns⌋)

∣

∣

∣+ 1.

Recall that under Px, Π(i)(F ) is a critical non-degenerate monotype GW forest
in the domain of attraction of a stable law of index α ∈ (1, 2] by Proposition 2.1.
Then, Theorem 2.3.2 in Duquesne and Le Gall (2002) implies that

1

n1−1/α
max

0≤k≤n

∣

∣

∣
H

Π(i)(F )
k−1 −H

Π(i)(F )
k

∣

∣

∣
→

n→∞
0,

in probability, under Px, and it follows that
(

1

n1−1/α

(

HF
⌊ns⌋ −

1

aibi
H

Π(i)(F )

ΛF
i
(⌊ns⌋)

)

, s ≥ 0

)

→
n→∞

0 (3.1)

in probability for the topology of uniform convergence over compact sets of R+.
Finally, Proposition 2.7 and Theorem 2.3.2 in Duquesne and Le Gall (2002) imply
that

(

1

n1−1/α
H

Π(i)(F )

ΛF
i
(⌊ns⌋)

, s ≥ 0

)

d
−−−−→
n→∞

(

a
1/α
i bi
c̄

Hais, s ≥ 0

)

.
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Moreover, we deduce from the scaling property of the height process H

that (Hais, s ≥ 0)
d
= (a

1−1/α
i Hs, s ≥ 0); see, e.g., Section 3.1 in Duquesne and

Le Gall (2002). Therefore, the result in Theorem 1.2 follows now from (3.1). �

Let us now prove Theorem 1.3.

Proof of Theorem 1.3: For n ≥ 0, i ∈ [d] and any s ≥ 0, we recall that ΛF
i (⌊ns⌋)

denotes the number of type i individuals standing before the (⌊ns⌋+1)-th individual
in depth-first order which we called u(⌊ns⌋). Since all the roots of the forest F have
type i, we claim that

Υ
Π(i)(F )

ΛF
i
(⌊ns⌋)

= Υ⌊ns⌋.

To see this, we observe that u(⌊ns⌋) and the last vertex of type i before u(⌊ns⌋)
in depth-first order belong to the same tree component. Therefore, the label of
the tree component of F containing u(⌊ns⌋) is the same as the label of the tree
component of Π(i)(F ) containing the ΛF

i (⌊ns⌋)-th vertex.

LetWΠ(i)(F ) = (W
Π(i)(F )
n , n ≥ 1) be the Lukasiewicz path associated with mono-

type GW forest Π(i)(F ) (see proof of Lemma 2.4 for the definition) which according
to Proposition 1.2 has offspring distribution that belongs to the domain of attraction
of a stable law of index α ∈ (1, 2]. We need the following property of Lukasiewicz
path,

inf
0≤k≤n

W
Π(i)(F )
k = −ΥΠ(i)(F )

n ,

for n ≥ 1; see for example Duquesne (2003). The result now follows from Corol-
lary 2.5.1 in Duquesne (2003) and similar arguments as at the end of proof of
Theorem 1.2. �

4. Applications

4.1. Maximal height of multitype GW trees. In this section, we present a natural
consequence of Theorems 1.2 and 1.3 which generalizes the result of Miermont
(2008) on the maximal height in the finite covariance case. For a tree t ∈ T, we let
ht(t) be the maximal height of a vertex in t. Recall that Is is the infimum at time
s of the strictly stable spectrally positive Lévy process Y (α).

Corollary 4.1. For i ∈ [d], let T be a d-type GW tree distributed according to P(i)

whose offspring distribution satisfies the main assumptions. Then,

lim
n→∞

nP(i) (ht(T ) ≥ n) = bi(α− 1) ((α− 1)c̄)
α

1−α .

Proof : The proof of this assertion is very similar of Corollary 1 in Miermont (2008).
The only difference that we are now considering that the rescaled height process of
multitype GW forest converges to height process associated with the strictly stable
spectrally positive Lévy process Y (α). Let F be a d-type GW forest distributed
according to P(i) whose offspring distribution satisfies the main assumptions. For
k ≥ 1, we denote by τk the first hitting time of k by (ΥF

n , n ≥ 0) and for x ≥ 0, we
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write ̺x for the first hitting time of x by −I = (−Is, s ≥ 0). From Theorem 1.2
and 1.3, we have that

(

1

n
HF

n
α

α−1 s
, 0 ≤ s ≤ τn

)

d
−−−−→
n→∞

(

1

c̄
Hs, 0 ≤ s ≤ ̺bic̄−1

)

,

under P(i). Let (Fk, k ≥ 1) be the tree components of the multitype GW forest F .
Then, the above convergence implies that

lim
n→∞

P(i)

(

max
1≤k≤n

ht(Fk) < n

)

= P (Hs ≤ c̄, for all 0 ≤ s ≤ ̺bic̄−1)

= exp

(

−
bi
c̄i
N

(

1

c̄
supH ≥ 1

))

= exp
(

−bi(α− 1) ((α− 1)c̄)
α

1−α

)

,

where N is the Itô excursion measure of Y (α) above its infimum (see e.g. Chapter
VIII.2 in Bertoin (1996) for details), and where we have used the Corollary 1.4.2
in Duquesne and Le Gall (2002) for the equality. Recall that under P(i), the
tree components (Fk, k ≥ 1) are independent multitype GW trees. Therefore, the
identity

P(i)

(

max
1≤k≤n

ht(Fk) < n

)

=
(

1−P(i) (ht(T ) ≥ n)
)n

.

yields our claim. �

4.2. Alternating two-type GW tree. We consider a particular family of multitype
GW trees known as alternating two-type GW trees, in which vertices of type 1 only
give birth to vertices of type 2 and vice versa. More precisely, given two probability

measures µ
(1)
2 and µ

(2)
1 on Z+, we consider a two-type GW tree where every vertex

of type 1 (resp. type 2) has a number of type 2 (resp. type 1) children distributed

according to µ
(1)
2 (resp. µ

(2)
1 ), all independent of each other. We denote by µalt the

offspring distribution on Z
2
+ of this particular two-type GW tree. We let

m1 =
∑

z∈Z+

zµ
(1)
2 ({z}) and m2 =

∑

z∈Z+

zµ
(2)
1 ({z})

be the means of the measures µ
(1)
2 and µ

(2)
1 , respectively. We make the assumption

that µ
(1)
2 ({1}) + µ

(2)
1 ({1}) < 2 to discard degenerate cases, and also exclude the

trivial case m1m2 = 0. We observe that the mean matrix associated with µalt

is irreducible and it admits ρ = m1m2 as a unique positive eigenvalue. We then
say that µalt is sub-critical if m1m2 < 1, critical if m1m2 = 1 and supercritical if
m1m2 > 1. In the sequel, we assume that offspring distribution is also critical. We
observe then that the normalized left and right 1-eigenvectors are given by

a = (a1, a2) =

(

1

1 +m1
,

1

1 +m2

)

, and b = (b1, b2) =

(

1 +m1

2
,
1 +m2

2

)

.

Following the notation of Section 1.3, we denote by P
(i)
alt the law of a two-type

GW tree with offspring distribution µalt and root type i ∈ [2], i.e., it is the law
of an alternating two-type GW tree with root type i. We make the next extra
assumptions on the offspring distribution:
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(H′
1) µ

(1)
2 is a geometric distribution, i.e. there exists p ∈ (0, 1) such that

µ
(1)
2 ({z}) = (1− p)pz , z ∈ Z+.

We observe that its Laplace exponent satisfies

ψ1(s) =
p

1− p
s+

1

2

p

(1− p)2
s2 + o(s2), s ↓ 0,

for s ∈ R+. In particular, m1 = p/(1− p).

(H′
2) µ

(2)
1 is in the domain of attraction of a stable law of index α ∈ (1, 2], that

is, its Laplace exponent satisfies

ψ2(s) = m2s+ sαL(s) + o(sα), s ↓ 0,

for s ∈ R+ and where L : R+ → R+ is a slowly varying function at zero.

The following result is a conditioned version of Theorem 1.2 for this particular
two-type GW tree. More precisely, we show that after a proper rescaling the height
process of a critical alternating two-type GW tree whose offspring distribution
satisfies (H′

1) and (H′
2) converges to the normalized excursion of the continuous-

time height process associated with a strictly stable spectrally positive Lévy process
with index α. We stress that the improvement of the convergence in Theorem 1.2 is
because we are able to establish a conditioned version of Proposition 2.7 for this very
particular GW tree. This allows us to adapt the proof of Theorem 2 in Miermont
(2008), in the case where only the geometric part of the offspring distribution does
have small exponential moments.

Before providing a rigorous statement, we need to introduce some further nota-
tion. We consider a function L̄ : R+ → R+ given by

L̄(s) =

(

1

2

p

(1− p)2
a1b

2
21{α=2} + a2b

α
1L(s)

)

, for s ∈ R+, (4.1)

which is a slowly varying function at zero. We write L̃ : R+ → R+ for a slowly
varying function at infinity that satisfies

lim
s→∞

(

1

L̃(s)

)α

L̄

(

1

s1/αL̃(s)

)

= 1,

This function is known in the literature as the conjugate of L̄. The existence
of such a function is due to a result of de Bruijn; for a proof of this fact and
more information about conjugate functions, see Section 1.5.7 in Bingham et al.
(1989). In what follows, we let (Bn, n ≥ 1) be a sequence positive integers such

that Bn = L̃(n)n1/α.
Finally, recall from the beginning of Section 1.4 that Ht = (Ht

n, n ≥ 0) denotes
the height process of the tree t ∈ T.

Theorem 4.2. Let T be an alternating two-type GW tree distributed according to

P
(1)
alt . Then for j = 1, 2, under the law P

(1)
alt (·|#T

(j) = n), the following convergence
in distribution holds on D([0, 1],R):

(

Bn

n
HT

⌊#Ts⌋, 0 ≤ s ≤ 1

)

d
−−−−→
n→∞

(

a
1/α−1
j Hexc

s , 0 ≤ s ≤ 1
)

,

where Hexc is the normalized excursion of the continuous-time height process process
associated with a strictly stable spectrally positive Lévy process Y (α) = (Ys, s ≥ 0)
of index α and with Laplace exponent E(exp(−λYs)) = exp(−sλα), for λ ∈ R+.
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In recent years, this special family of two-type GW trees has been the subject
of many studies due to their remarkable relationship with the study of several
important objects and models of growing relevance in modern probability such
that random planar maps (Le Gall and Miermont, 2011), percolation on random
maps (Curien and Kortchemski, 2015), non-crossing partitions (Kortchemski and
Marzouk, 2017), to mention just a few. On the other hand, up to our knowledge
the result of Theorem 4.2 has not been proved before under our assumptions on
the offspring distribution. Therefore, we believe that this may open the way to
investigate new aspects related to the models mentioned before.

The proof of Theorem 4.2 relies on some intermediate results. We let T be a

two-type GW tree with law P
(1)
alt . We first characterize the law of the reduced forest

Π(j)(T ), for j = 1, 2.

Corollary 4.3. For j = 1, 2, under the law P
(1)
alt , the tree Π(j)(T ) is a critical

monotype GW forest with non-degenerate offspring distribution µ̄j in the domain
of attraction of a stable law of index α, i.e., its Laplace exponent satisfies that

ψ̄j(s) = s+
1

aj

(

s

bj

)α

L̄(s) + o(sα), s ↓ 0.

for s ∈ R+ and where the function L̄ is defined in (4.1).

Proof : The results follows from Lemma 2.2, after some simple computations. �

The next step in order to pass from unconditional statements to conditional
ones is the following estimate for the number of vertices of some specific type in
multitype GW trees.

Lemma 4.4. Let T be a d-type GW tree distributed according to P(i), for i ∈ [d].
Then, for every j ∈ [d]:

(i) For some constant Cij > 0, we have that

P(i)
(

#T (j) = n
)

= Cijn
−1−1/α + o(n−1−1/α), as n→ ∞,

where it is understood that the limit is taken along values for which the probability
on the left-hand side is strictly positive.

(ii) The laws of the number of tree components of Π(j)(T ), under P(i)(·|#T (j) =
n), converge weakly as n→ ∞.

Proof : This very similar to Lemma 6 and Lemma 7 in Miermont (2008) and the
proof is carried out with mild modifications. �

Finally, the last ingredient is a conditioned version of Proposition 2.7 for the
alternating two-type GW tree.

Proposition 4.5. For j = 1, 2, under P
(1)
alt (·|#T

(j) = n), we have that
(

ΛT
j (⌊#Ts⌋)

n
, 0 ≤ s ≤ 1

)

→
n→∞

(s, 0 ≤ s ≤ 1) ,

in probability.
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Proof : We prove the statement only when j = 1. The case j = 2 follows by making
occasional changes in the proof below, observing that

ΛT
1 (#T ) + ΛT

2 (#T ) = #T (1) +#T (2) = #T.

We based our proof on a bijection G due to Janson and Stefánsson (2015) which
maps the alternating two-type GW tree to a standard monotype GW tree. More
precisely, the tree G(T ) has the same vertices as T , but edges are different and are
defined as follows. For every type 1 vertex u we repeat the following operation: let
u0 be the parent of u (if u 6= ∅) and we list the children of u in lexicographical
order u1 ≺ u2 ≺ · · · ≺ uk. If u 6= ∅ draw the edge between u0 and u1 and then
edges between u1 and u2, . . . , uk−1 and uk and finally between uk and u. If u is
a type 1 vertex and a leaf this reduces to draw the edge between u0 and u. One
can check that G(T ) defined by this procedure is a tree and rooted at the corner
between the root of T and its first child. Roughly speaking, this mapping has the
property that every vertex of type 1 is mapped to a leaf, and every type 2 vertex
with k ≥ 0 children is mapped to a vertex with k + 1 children (the interest reader
is referred to Section 3 in Janson and Stefánsson (2015), for details). Moreover,

Janson and Stefánsson showed that under P
(1)
alt , G(T ) is a monotype GW tree with

offspring distribution given by

ν({0}) = 1− p, and ν({z}) = pµ2({z − 1}), for z ∈ N.

Moreover, the criticality assumption m1m2 = 1 implies that the offspring ν is
critical, i.e. it has mean 1. We also notice that ΛT

1 (#T ) = #T (1) is exactly the
number of leaves of the monotype GW tree G(T ). Then, Lemma 2.5 in Kortchemski
(2012) which is a law of large numbers for the number of leaves of monotype GW
trees, implies that for every ε > 0,

P
(1)
alt

(

sup
0≤s≤1

∣

∣

∣

∣

ΩG(T )(⌊#Ts⌋)

#Ts
− (1− p)

∣

∣

∣

∣

> ε
∣

∣

∣
#T ≥ n

)

= oe(n),

where ΩG(T )(n) denotes the number of leaves standing before the (n+1)-th vertex in
depth-first order in the tree G(T ). We observe that the left 1-eigenvector a1 = 1−p.
By Lemma 4.4, we deduce that

P
(1)
alt

(

sup
0≤s≤1

∣

∣

∣

∣

ΩG(T )(⌊#Ts⌋)

#Ts
− a1

∣

∣

∣

∣

> ε
∣

∣

∣#T (1) = n

)

= oe(n). (4.2)

Then, if we admit for a while that

P
(1)
alt

(∣

∣

∣

∣

#T

n
−

1

a1

∣

∣

∣

∣

> ε
∣

∣

∣#T (1) = n

)

= oe(n). (4.3)

We conclude that under P
(1)
alt (·|#T

(1) = n), we have that
(

ΩG(T )(⌊#Ts⌋)

n
, 0 ≤ s ≤ 1

)

→
n→∞

(s, 0 ≤ s ≤ 1) ,

in probability, and the result follows by noticing that
∣

∣

∣ΛT
1 (⌊#Ts⌋)− ΩG(T )(⌊#Ts⌋)

∣

∣

∣ ≤ cG(T )(⌊#Ts⌋)

(recall that ct(u) denotes the number of children of the vertex u in the tree t)
where the term in the right hand of the inequality is o(n) uniformly in s ∈ [0, 1], in
probability, by Theorem 2 in Kortchemski (2017).
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Let us now turn to the proof of (4.3). First, we observe that for 0 < ε < a−1
1 ,

we have that

P
(1)
alt

(∣

∣

∣

∣

#T

n
−

1

a1

∣

∣

∣

∣

> ε,#T (1) = n

)

= P
(1)
alt

(

#T >

(

1

a1
+ ε

)

n,#T (1) = n

)

+P
(1)
alt

(

#T <

(

1

a1
− ε

)

n,#T (1) = n

)

.

(4.4)

The idea is to show that the two term on the right-hand side are oe(n). We start
with the first term. We notice that

P
(1)
alt

(

#T >

(

1

a1
+ ε

)

n,#T (1) = n

)

≤
∞
∑

k=n

P
(1)
alt

(

#T = k,#T (1) <

(

1

a1
+ ε

)−1

n

)

By recalling that #T (1) is the number of leaves of the monotype GW tree G(T ),
Lemma 2.7 (ii) in Kortchemski (2012) implies that terms in the sum are oe(n).
This entails that the first term on the right-hand side of (4.4) is oe(n). We now
focus on the second term. We write

P
(1)
alt

(

#T >

(

1

a1
+ ε

)

n,#T (1) = n

)

≤

⌊(a−1
1 −ε)n⌋
∑

k=n

P
(1)
alt

(

#T = k,#T (1) >

(

1

a1
− ε

)−1

n

)

By using Proposition 1.6 in Kortchemski (2012), we get that

P
(1)
alt

(

#T >

(

1

a1
+ ε

)

n,#T (1) = n

)

≤

⌊(a−1
1 −ε)n⌋
∑

k=n

1

n
P

(1)
alt

(

1

r

k
∑

r=1

1{Xr=−1} >

(

1

a1
− ε

)−1
)

,

where (Xr, r ≥ 1) is a sequence of i.i.d. random variables with common distribution
ν({· + 1}) on {−1} ∪ Z+. Then, an application of Lemma 2.2 (i) in Kortchemski
(2012) shows that this is oe(n). Therefore, we have proved that

P
(1)
alt

(∣

∣

∣

∣

#T

n
−

1

a1

∣

∣

∣

∣

> ε,#T (1) = n

)

= oe(n). (4.5)

Finally, an appeal to Lemma 4.4 (i) completes the proof of (4.3). �

We have now all the ingredients to give the proof of Theorem 4.2.

Proof of Theorem 4.2: Recall from Corollary 4.3 that Π(j)(T ) under P
(1)
alt is a non-

degenerate, critical GW forest with offspring distribution µ̄j in the domain of attrac-
tion of a stable law of index α ∈ (1, 2]. Thus, by first conditioning on the number
of tree components, we obtain using Lemma 4.4 (ii) and Theorem 3.1 Duquesne

(2003) that under P
(1)
alt (·|#T

(j) = n),
(

Bn

n
H

Π(j)(T )
⌊ns⌋ , 0 ≤ s ≤ 1

)

d
−−−−→
n→∞

(

a
1/α
j bjH

exc
s , 0 ≤ s ≤ 1

)

,
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where the convergence is in distribution on D([0, 1],R). To see this, we observe that
conditional on the number of tree components to be r, the GW forest Π(j)(T ) is
composed of r independent GW trees with the same offspring distribution µ̄j . On
the other hand, conditioning the sum of their size to be n, only one of these trees has
size of order n, while the other r−1 trees have total size o(n) with high probability.
This implies that the latter do not contribute to the limit. We refer to Theorem
5.4 in Kortchemski and Marzouk (2016) for details. Then, from Proposition 4.5,

we obtain that under P
(1)
alt (·|#T

(j) = n),
(

Bn

n
H

Π(j)(T )

ΛT
j
(⌊#Ts⌋)

, 0 ≤ s ≤ 1

)

d
−−−−→
n→∞

(

a
1/α
j bjH

exc
s , 0 ≤ s ≤ 1

)

, (4.6)

in distribution.
On the other hand, recall from the proof of Theorem 1.2 that for n ≥ 0 and any

s ≥ 0, we have
∣

∣

∣

∣

∣

∣

∣

HT
⌊#Ts⌋ −

H
Π(j)(T )

ΛT
j
(⌊#Ts⌋)

ajbj

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

HT
⌊#Ts⌋ −

Anc
u(⌊#Ts⌋)
T (j)

ajbj

∣

∣

∣

∣

∣

+Rn(s), (4.7)

where

|Rn(s)| ≤
1

ajbj

(

2 max
0≤k≤n

∣

∣

∣H
Π(j)(T )
k−1 −H

Π(j)(T )
k

∣

∣

∣+ 1

)

.

Therefore, it must be clear that our claim follows from the convergence (4.6) by pro-
viding that the two terms on the right-hand side of (4.7) are o(n/Bn) in probability,
uniformly in s ∈ [0, 1].

In this direction, we observe from (4.5) that P
(1)
alt (#T > δn|#T (j) = n) = oe(n)

for any δ > a−1
j . Combining this with Proposition 2.6, we have for 0 < γ <

1
2 (1− 1/α) and some C > 0 that

P
(1)
alt

(

Bn

n
max

0≤k≤#T

∣

∣

∣

∣

∣

HT
k −

Anc
u(k)
T (j)

ajbj

∣

∣

∣

∣

∣

≥ n− 1
2 (1−1/α)+γ

∣

∣

∣#T (j) = n

)

≤ Cn1+1/αP
(1)
alt

(

Bn

n
max

0≤k≤⌊δn⌋

∣

∣

∣

∣

∣

HT
k −

Anc
u(k)
T (j)

ajbj

∣

∣

∣

∣

∣

≥ n− 1
2 (1−1/α)+γ

)

+ oe(n)

= oe(n),

where P
(1)
alt is the law of alternating two-type GW forest with all its root having

type 1. This shows that first term on the right-hand side of (4.7) is o(n/Bn) in
probability, uniformly in s ∈ [0, 1].

Finally, let Υj be the number of tree components of Π(j)(T ). Then the law of

Π(j)(T ) under the measure P
(1)
alt (·|Υ

j = r) is that of a monotype GW forest with
r tree components. Using Theorem 5.4 in Kortchemski and Marzouk (2016), one
concludes that for ε > 0,

lim
n→∞

P
(1)
alt

(

sup
0≤s≤1

Bn

n
|Rn(s)| ≥ ε

∣

∣

∣#T (j) = n,Υj = r

)

= 0.

By Lemma 4.4 (ii), we know that the laws of Υj under P
(1)
alt (·|#T

(j) = n) are tight
as n varies. Thus, we deduce that the second term on the right-hand side of (4.7)
is also o(n/Bn) in probability, uniformly in s ∈ [0, 1]. �
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K. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge (2013). ISBN 978-1-107-65649-9. MR3185174.

http://www.ams.org/mathscinet-getitem?mr=MR3656342
http://www.ams.org/mathscinet-getitem?mr=MR2203728
http://www.ams.org/mathscinet-getitem?mr=MR2778796
http://www.ams.org/mathscinet-getitem?mr=MR2469338
http://www.ams.org/mathscinet-getitem?mr=MR2245368
http://www.ams.org/mathscinet-getitem?mr=MR3606739
http://www.ams.org/mathscinet-getitem?mr=MR1280932
http://www.ams.org/mathscinet-getitem?mr=MR3185174

	1. Introduction
	1.1. Multitype plane trees and forests
	1.2. Multitype offspring distributions
	1.3. Multitype Galton-Watson trees and forests
	1.4. Main results

	2. Preliminary results
	2.1. Decomposition of multitype GW forests
	2.2. Sub-exponential Bounds
	2.3. Convergence of types

	3. Proof of Theorem 1.2 and 1.3
	4. Applications
	4.1. Maximal height of multitype GW trees
	4.2. Alternating two-type GW tree

	Acknowledgements
	References

