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Abstract. Let (E, d) be a compact metric space, X = (X1, . . . , Xn, . . . ) and
Y = (Y1, . . . , Yn, . . . ) two independent sequences of independent E-valued random
variables and (LX

n )n≥1 and (LY
n )n≥1 the associated sequences of empirical mea-

sures. We establish a Large Deviation Principle for (W∞(LX
n , LY

n ))n≥1 where W∞

is the ∞-Wasserstein distance,

W∞(LX
n , LY

n ) = min
σ∈Sn

max
1≤i≤n

d(Xi, Yσ(i))

where Sn stands for the set of permutations of {1, . . . , n}.

1. Introduction

There has been a lot of interest for years in considering the space M1(E) of
Borel probability measures on a metric space (E, d) endowed with the so-called
p-Wasserstein distances

Wp(ν, γ) = inf
Q∈C(ν,γ)

{(∫

E×E

d(x, y)pQ(dx, dy)

)1/p
}

where p ∈ [1,∞) and C(ν, γ) stands for the set of Borel probability measures on
E2 with first marginal Q1 = ν and second marginal Q2 = γ, see Chapter 6 in Vil-
lani (2009) for a broad review. However, the ∞-Wasserstein distance equivalently
defined by either

W∞(ν, γ) = lim
p→∞

Wp(ν, γ)

or
W∞(ν, γ) = inf

Q∈C(ν,γ)
sup

{
u, u ∈ S(Q ◦ d−1)

}
(1.1)
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where S(Q ◦ d−1) ⊂ E2 stands for the support of the probability measure Q ◦ d−1

has attracted much less attention so far.1

Let us give right now an elementary example in order to illustrate the difference
between the Wp’s and W∞. Let E = [0, 1] endowed with the Euclidean distance
and consider the sequence (νn = (1 − 1

n )δ0 + 1
nδ1)n≥1. For every n ≥ 1 the set

C(νn, δ0) has a single element Qn =
(
1− 1

n

)
δ(0,0)+

1
nδ(1,0). It follows that for every

p ∈ [1,∞) we have Wp(ν
n, δ0) =

(
1
n

) 1
p thus limn→∞ Wp(ν

n, δ0) = 0 while for every
n ≥ 1 we have W∞(νn, δ0) = 1. In words, as it happens for the usual Lp and
L∞ norms on measurable functions spaces, perturbations so small that they do not
impact Wp distances in the limit can have dramatic consequences when using the
W∞ distance instead. This naturally leads to wonder what happens at the level of
asymptotic results, the Law of Large Numbers and the Large Deviation Principle,
when random measures like empirical measures are involved and this was the main
motivation in carrying out the present work.

The reference paper on W∞ is Champion et al. (2008). There the authors con-
sider measures with support on compact subsets of R

m (m ≥ 1). Some of their
results have been generalized from R

m to the setting of Polish spaces and general
cost functions in Jylhä (2015). We recall them for latter use. In what follows (E, d)
is a metric space.

Lemma 1.1. (Proposition 2.1 in Champion et al., 2008 and Theorem 2.6 in Jylhä,
2015) For any two ν, γ ∈ M1(E) with compact supports there exists at least one
Q ∈ C(ν, γ) such that

W∞(ν, γ) = sup
{
u, u ∈ S(Q ◦ d−1)

}
.

They further establish the existence of nice solutions to the problem (1.1) which
they call infinitely cyclically monotone couplings.

Definition 1.2. A probability measure P ∈ M1(E2) is called infinitely cyclically
monotone if and only if for every integer n ≥ 2, every (x1, y1), . . . , (xn, yn) ∈ S(P )
and every σ ∈ Sn we have

max
1≤i≤n

d(xi, yi) ≤ max
1≤i≤n

d(xi, yσ(i)). (1.2)

Lemma 1.3. (Theorem 3.2 and Theorem 3.4 in Champion et al., 2008 and The-
orem 2.16 in Jylhä, 2015) For any two γ, ν ∈ M1(E) with compact supports there
exists at least one infinitely cyclically monotone P ∈ C(γ, ν) such that

W∞(γ, ν) = sup
{
u, u ∈ S(P ◦ d−1)

}
.

In order to check that P ∈ M1(E2) is infinitely cyclically monotone we only need
to know its support. The way mass is spread over S(P ) does not matter : this
property is concerned with subsets of E2 rather than with fully specified probability
measures. This is the reason why we will also call infinitely cyclically monotone
subsets of E2 that satisfy (1.2). Infinitely cyclically monotone couplings are nice
solutions to the problem (1.1) in the sense that

1Let us recall that the support S(P ) of a Borel probability measure P on a metric space (E, d)
is defined by x ∈ S(P ) if and only if for every ε > 0, P (B(x, ε)) > 0 where B(x, ε) stands for the
open ball centered at x with radius ε. If E is separable, in particular if E is compact, S(P ) is
closed, see e.g. Theorem 2.1 in Parthasarathy (1967).
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Lemma 1.4. (Theorem 3.4 in Champion et al., 2008 and Theorem 2.17 in Jylhä,
2015) Any infinitely cyclically monotone P ∈ M1(E2) satisfies

W∞(P1, P2) = sup
{
u, u ∈ S(P ◦ d−1)

}
.

Indeed, once an infinitely cyclically monotone A ⊂ E2 is given, no matter how one
spreads mass over A provided the couple that maximizes (x, y) 7→ d(x, y) over A is
covered, the marginals of the resulting probability measure over E2 will always be
at the same W∞ distance. This will show useful when constructing approximations.
For any two γ, ν ∈ M1(E) we shall denote by C∞(ν, γ) the set of infinitely cyclically
monotone couplings of ν and γ.

Our framework is the following: We are given a compact metric space (E, d).
Without loss of generality we can assume that supx,y∈E d(x, y) = 1. Let (Xn)n≥1

and (Yn)n≥1 be two independent sequences of E-valued independent random vari-
ables defined on the same probability space (Ω,A,P). We assume that all the Xi’s
(resp. Yi’s) have the same distribution µ1 (resp. µ2). For every n ≥ 1 we consider
the empirical measures

LX
n =

1

n

n∑

i=1

δXi
and LY

n =
1

n

n∑

i=1

δYi
.

Since for every n ≥ 1 every Q ∈ C(LX
n , LY

n ) can be represented as a bi-stochastic
matrix and since, according to the Birkhoff-Von Neumann Theorem, every bi-
stochastic matrix is a convex combination of permutation matrices (see e.g. Theo-
rem 5.5.1 in Serre, 2002) we have

W∞(LX
n , LY

n ) = min
σ∈Sn

max
1≤i≤n

d(Xi, Yσ(i)) (1.3)

where Sn stands for the set of permutations of {1, . . . , n}. Hence, computing
W∞(LX

n , LY
n ) is nothing but solving a minimax matching problem which is a fun-

damental combinatorial question. Equality (1.3) can be rephrased as

W∞(LX
n , LY

n ) = dH(S(LX
n ),S(LY

n )) (1.4)

where S(LX
n ) = {X1, . . . , Xn}, S(L

Y
n ) = {Y1, . . . , Yn} and dH is the so-called Haus-

dorff distance. Let us recall that the Hausdorff distance is defined on the set of
non-empty closed subsets of E by

dH(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}

see e.g. Section 6.2.2 in Delfour and Zolésio (2011). It is the essential tool in many
applications like image processing Huttenlocher et al. (1993), object matching Sim
et al. (1999), face detection Jesorsky et al. (2001) and evolutionary optimization
Schutze et al. (2012) to name just a few.

The first results on (W∞(LX
n , LY

n ))n≥1 have been focused on concentration in-
equalities for independent E = [0, 1]2-valued Xi’s and Yi’s with common distribu-
tion µ1 = µ2 = λ where λ stands for the uniform distribution over [0, 1]2 . In
Leighton and Shor (1989) the authors establish that there exists a K > 0 such that

1

K
n−1/2(logn)3/4 ≤ W∞(LX

n , LY
n ) ≤ Kn−1/2(logn)3/4
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with probability 1 − o(1). Using majorizing measures, it is demonstrated in Ta-
lagrand (1994) that the latter result is a particular case of a general property of
empirical discrepancies.

Concerning Large Deviations, in Ganesh and O’Connell (2007) the authors prove
that if E = [0, 1]2 and µ1 = λ is the uniform distribution over E then the sequence
(W∞(LX

n , λ))n≥1 obeys an LDP with good rate function

T∞(x) = inf
ν∈M1(E)
W∞(ν,λ)=x

{H(ν|λ)} .

where for any two ρ, γ ∈ M1(E)

H(ρ|γ) =

{ ∫
E log dρ

dγ dρ if ρ ≪ γ

∞ otherwise.

To obtain this result they prove that in this particular case the map ν 7→ W∞(ν, λ)
is continuous with respect to the weak convergence topology, and then apply the
contraction principle, see Theorem 4.2.1 in Dembo and Zeitouni (1998). They
further show in the same framework as here, i.e. E-valued Xi’s and Yi’s where
(E, d) is any compact metric space, that (W1(L

X
n , LY

n ))n≥1 obeys an LDP with
good rate function

I1(x) = inf
ν1,ν2∈M1(E)
W1(ν1,ν2)=x

{
H(ν1|µ1) +H(ν2|µ2)

}
.

Their proof relies on the fact that, according to the Kantorovitch-Rubinstein The-
orem (see e.g. Theorem 11.8.2 in Dudley, 2002), when E is compact W1 generates
the weak convergence topology. As a consequence (LX

n )n≥1 and (LY
n )n≥1 satisfy

an LDP on M1(E) endowed with W1 and again the contraction principle leads to
the aforementioned LDP for (W1(L

X
n , LY

n ))n≥1. Following the same approach, one
can deduce from Theorem 1.1 in Wang et al. (2010) that for every p ∈ [1,∞) the
sequence (Wp(L

X
n , LY

n ))n≥1 obeys an LDP with good rate function

Ip(x) = inf
ν1,ν2∈M1(E)
Wp(ν1,ν2)=x

{
H(ν1|µ1) +H(ν2|µ2)

}
.

Again in Ganesh and O’Connell (2007) it is conjectured that (W∞(LX
n , LY

n ))n≥1

obeys an LDP with rate function

I∞(x) = inf
ν1,ν2∈M1(E)
W∞(ν1,ν2)=x

{
H(ν1|µ1) +H(ν2|µ2)

}

Our main result is that if instead of I∞ one considers its lower semi-continuous
regularization J∞ which is defined by

J∞(x) = sup
δ>0

inf
y∈B(x,δ)

I∞(y),

see e.g. Chapter 1 in Rockafellar and Wets (1998), then

Theorem 1.5. The sequence (W∞(LX
n , LY

n ))n≥1 satisfies an LDP on [0, 1] with
good rate function J∞(x).

In Section 3.1 we show that if e.g. E = [0, 1] is endowed with the usual Euclidean
distance and µ1 = µ2 = µ admits f(x) = 3

21[0, 13 ]
(x) + 3

21[ 23 ,1]
(x) as a density

w.r.t. the Lebesgue measure then, due to the disconnectedness of the support
of µ, I∞ fails to be lower semi-continuous. Hence, I∞ and J∞ do not always
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coincide. This example illustrates a general feature of the problem considered here :
the connectedness properties of the support of the reference measures are the key
ingredient in the behavior of (W∞(LX

n , LY
n ))n≥1. We will say more about that in

Proposition 1.13 below.
One might wonder why the idea that leads from an LDP for (LX

n )n≥1 and
(LY

n )n≥1 in (M1(E),W1) to an LDP for (W1(L
X
n , LY

n ))n≥1 is not applicable to the
analysis of the LD properties of (W∞(LX

n , LY
n ))n≥1. Actually an LDP for (LX

n )n≥1

can not hold when M1(E) is endowed with W∞, at least at this level of generality.
Indeed, consider the probability measure µ1 on E = [0, 1] which density with respect
to the Lebesgue measure is g(x) = 2(1[0, 14 ]

(x)+1[ 34 ,1]
(x)) and assume that (LX

n )n≥1

satisfies an LDP on (M1(E),W∞) with some rate function R. Clearly for every
odd integer n we have P(W∞(LX

n , µ1) < 3/8) = 0 hence for every ν ∈ B(µ1, 3/8)
we should necessarily have R(ν) = ∞. So we would get

lim sup
n→∞

1

n
logP(W∞(LX

n , µ1) ≤
1

4
) = −∞ (1.5)

but for every even n we have P(W∞(LX
n , µ1) ≤ 1

4 ) ≥
(

n
n/2

)
2−n which contradicts

(1.5). Again this is due to the lack of connectedness of the support of µ1 and,
in a sense, Theorem 1.5 is the only possible “Sanov-like” statement involving W∞

without any additional assumption.

Now let us give some facts about the zeros of J∞. First notice that since

0 ≤ I∞(W∞(µ1, µ2)) ≤ H(µ1|µ1) +H(µ2|µ2) = 0

we necessarily have J∞(W∞(µ1, µ2)) = 0. Actually, due to the highly discontinuous
nature of W∞, W∞(µ1, µ2) need not be the only zero of J∞. We shall first prove
the following

Lemma 1.6. Let x ∈ [0, 1] be such that J∞(x) = 0. Necessarily x ≥ W∞(µ1, µ2).

The zeros of J∞ are related to some particular elements of E2 as defined next

Definition 1.7. We shall say that (a, b) ∈ E2 is a couple of directly connected
points and write a ↔ b if and only if a ∈ S(µ1), b ∈ S(µ2) and there exists Q ∈
C∞(µ1, µ2) such that for every integer N ≥ 2, every (α2, β2), . . . , (αN , βN ) ∈ S(Q)
and every σ ∈ SN we have d(a, b) ≤ maxi=1,...,N

{
d(αi, βσ(i))

}
where (α1, β1) =

(a, b).

Notice that in this definition (a, b) need not be an element of S(Q). In words,
a ↔ b if and only if there exists Q ∈ C∞(µ1, µ2) such that {(a, b)}∪S(Q) is still an
infinitely cyclically monotone subset of E2. Consider the set

Zµ1,µ2 = {x ∈ [0, 1] : ∃(a, b) ∈ E2 such that a ↔ b and x = d(a, b)}

Proposition 1.8. J∞(x) = 0 if and only if x ∈ Zµ1,µ2 .

The notion of directly connected points takes a simpler form when µ1 = µ2.

Proposition 1.9. If µ1 = µ2 = µ then a, b ∈ E are directly connected if and only if
a, b ∈ S(µ) and for every integer N ≥ 3 and every sequence α1, . . . , αN of elements
of S(µ) such that α1 = a and αN = b there is at least one integer L such that
1 ≤ L ≤ N − 1, and d(a, b) ≤ d(αL, αL+1).
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In words, if µ1 = µ2 = µ then a ↔ b if and only if one can not decompose a
journey from a to b into several stages between elements of S(µ) such that each of
these stages has length strictly smaller than d(a, b). As an example consider again
E = [0, 1] and µ1 = µ2 = µ with density f(x) = 3

21[0, 13 ]
(x) + 3

21[ 23 ,1]
(x) w.r.t. the

Lebesgue measure. Then 1
3 ↔ 2

3 hence J∞(13 ) = 0 as it is established through a
direct computation in Section 3.1.

Finally we investigate the almost sure behaviour of (W∞(LX
n , LY

n ))n≥1 as n → ∞
when µ1 = µ2 = µ. The elements of Zµ, hence the asymptotic behaviour of
(W∞(LX

n , LY
n ))n≥1, are directly related to the connectedness properties of S(µ). So

let us write S(µ) = ∪D
i=1Ai where the Ai are the connected components of S(µ).

Here D = 1 means that S(µ) is connected and we do not exclude the possibility
that D = ∞. We have

Lemma 1.10. Zµ = {0} if and only if S(µ) is connected.

For every x ∈ S(µ) let us denote by Ai(x) the connected component of S(µ) that
contains x and for any two closed B,C ⊂ E we set

d(B,C) = inf
(x,y)∈B×C

d(x, y).

Lemma 1.11. For every a, b ∈ S(µ), if a ↔ b then d(a, b) = d(Ai(a), Ai(b)).

For any two connected components Ai, Aj of S(µ) we shall write Ai ↔ Aj if and
only if there exists a ∈ Ai and b ∈ Aj such that a ↔ b. It directly follows from
Lemma 1.11 that

Zµ =
{
d(Ai, Aj), (i, j) ∈ {1, . . . , D}2 such that Ai ↔ Aj

}
.

In order to formulate our result we need the following

Lemma 1.12. If S(µ) is not connected every x ∈ Zµ such that x 6= 0 is an isolated
point.

Hence, if S(µ) is not connected, we can order the elements of Zµ

β1 > β2 > · · · > βn > · · ·

where β1 = maxZµ, and for every integer i ≥ 2

βi =

{
maxZµ \ {β1, . . . , βi−1} if βi−1 6= 0

0 if βi−1 = 0.

Proposition 1.13. (1) If S(µ) is connected then W∞(LX
n , LY

n ) → 0 almost
surely.

(2) If S(µ) is not connected and
(a) there exists only two connected components Ai, Aj of S(µ) such that

Ai ↔ Aj and d(Ai, Aj) = β1 then

lim infW∞(LX
n , LY

n ) = β2 and lim supW∞(LX
n , LY

n ) = β1 (1.6)

almost surely.
(b) there are more than two connected components Ai, Aj of S(µ) such

that Ai ↔ Aj and d(Ai, Aj) = β1 then W∞(LX
n , LY

n ) → β1 almost
surely.
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Hence, if E = [0, 1] and µ admits f(x) = 3
21[0, 13 ]

(x) + 3
21[ 23 ,1]

(x) as a density

w.r.t. the Lebesgue measure then lim supW∞(LX
n , LY

n ) = 1
3 almost surely and

lim infW∞(LX
n , LY

n ) = 0 almost surely.

The paper is structured as follows : Section 2 is devoted to the proof of Theo-
rem 1.5. In Section 3 we discuss the properties of I∞ and J∞. Section 4 is concerned
with the almost sure asymptotic behaviour of (W∞(LX

n , LY
n ))n≥1 while Section 5

deals with the proof of some complementary results.

2. Proof of Theorem 1.5

The basic idea in the proof of Theorem 1.5 is to partition E in such a way
that we are essentially led to consider finite set valued Xi’s and Yi’s. Indeed, on
the one hand we will see that W∞ is well-behaved with respect to partitioning
(see Lemma 2.1 below) and on the other hand proceeding this way reduces the
computation of probabilities to simple classical combinatorial estimates. In order
to go from the particular case, i.e. E finite, to the general one we shall need some
results on the weak convergence of nets of probability measures. In Section 2.1
we give an account on partitions, nets and the weak convergence topology. The
proof of all the statements there is postponed to Section 5. The LD lower bound is
established in Section 2.2 while the LD upper bound is derived in Section 2.3.

2.1. Some facts about partitions of E, nets and the weak convergence topology.
Let P be the set of finite measurable partitions of E into non-empty sets. To
every Π = (A1, . . . , AL) ∈ P we associate once for all through Section 2 a family
(s1, . . . , sL) ∈ EL such that for every 1 ≤ i ≤ L we have si ∈ Ai. We further
associate to every Π = (A1, . . . , AL) ∈ P a map π as follows

π : M1(E) → M1({s1, . . . , sL})

ν 7→
∑L

i=1 ν(Ai)δsi .

Finally for every Π = (A1, . . . , AL) ∈ P we define its maximal diameter as

∆(Π) = max
1≤i≤L

sup
x,y∈Ai

d(x, y).

The following result links the W∞ distance between elements of M1(E) to the
analogue W∞ distance between their contractions through π.

Lemma 2.1. For every ν1, ν2 ∈ M1(E) and every Π ∈ P we have

|W∞(ν1, ν2)−W∞(π(ν1), π(ν2))| ≤ 2∆(Π).

Let Π = (A1, . . . , AL) and K = (B1, . . . , BR) be two elements of P . We say that K
is a refinement of Π if and only if for every 1 ≤ i ≤ L, there exists Ji ⊂ {1, . . . , R}
such that Ai = ∪j∈Ji

Bj , and we denote it by Π � K. This makes (P ,�) a directed
set. Let us recall that (J,E) is a directed set if and only if J is a non-empty set and
E is a reflexive and transitive relation on J such that for every i, j ∈ J there exists
a k ∈ J such that iE k and j E k. We introduce a general directed set (J,E) since
we will use both (P ,�) and (N,≤) as directed sets and we do not want to be too
specific in the results below. We call net any map (P j)j∈J defined on a directed set
(J,E). A topological space (T, T )-valued net (P j)j∈J is said to converge to some
P ∈ T if and only if for every neighbourhood U of P there exists a j(U) ∈ J such
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that for every k ∈ J satisfying j(U) E k we have P k ∈ U . We shall denote this
limj∈J P j = P . We call subnet of (P j)j∈J any sub-family (P l)l∈L parametrized
by a cofinal L, i.e. a subset L ⊂ J such that for every j ∈ J there exists l ∈ L
satisfying jE l. (While this is not the most general definition of a subnet it will be
sufficient for the problem considered here). Let us recall that a topological space
(T, T ) is compact if and only if every net in T admits a subnet that converges to
some point in T . Finally, for every real-valued net (P j)j∈J we shall consider as
usual

lim sup
j∈J

P j = inf
j∈J

sup
i:jEi

P i and lim inf
j∈J

P j = sup
j∈J

inf
i:jEi

P i.

For this and other questions related to nets we refer to e.g. Kelley (1975). The
following lemmas are a consequence of a kind of Portmanteau result for nets of
probability measures that will be derived in Section 5.

Lemma 2.2. Every net (P j)j∈J of probability measures supported on R that con-
verges weakly to some probability measure P satisfies

lim sup
j∈J

supS(P j) ≥ supS(P ). (2.1)

Lemma 2.3. Let (P j)j∈J be a net of Borel probability measures on a compact
metric space (Y, δ) that converges weakly to some probability measure P . For every
x ∈ S(P ) and every j ∈ J there exists an xj ∈ S(P j) such that the net (xj)j∈J

converges to x.

Lemma 2.4. Every P ∈ M1(E2) which is the limit in the weak convergence topol-
ogy of a net (P j)j∈J of infinitely cyclically monotone elements of M1(E2) is infin-
itely cyclically monotone.

2.2. LD lower bound. For every integer n ≥ 1 we consider

M1,n(E)=

{
ν∈M1(E) : there exists (x1, . . . , xn) ∈ Ensuch that ν=

1

n

n∑

i=1

δxi

}
.

The following lemma is the key point in the proof of the LD lower bound

Lemma 2.5. For every ε > 0, every Π = (A1, . . . , AL) ∈ P with ∆(Π) ≤ ε/2 and
every ν1, ν2 ∈ M1(E) there exists two sequences (ν1,n)n≥1 and (ν2,n)n≥1 such that

(1) For every n ≥ 1 we have ν1,n, ν2,n ∈ M1,n(E).
(2) For every 1 ≤ i ≤ L we have ν1,n(Ai) → ν1(Ai) and ν2,n(Ai) → ν2(Ai).
(3) There exists an N0 such that for every n ≥ N0 we have

|W∞(ν1, ν2)−W∞(ν1,n, ν2,n)| ≤ ε.

Proving Lemma 2.5 actually requires one more lemma

Lemma 2.6. For every Q ∈ M1(E2) and every Π = (A1, . . . , AL) ∈ P there exists
a sequence (Qn = 1

n

∑n
i=1 δ(xn

i ,y
n
i ))n≥1 of elements of M1(E2) such that

(1) For every 1 ≤ u, v ≤ L we have Qn(Au ×Av) → Q(Au ×Av).
(2) The sequence (Qn)n≥1 converges weakly to Q.
(3) If Q(Au × Av) = 0 then for every n ≥ 1 we have Qn(Au ×Av) = 0.
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Proof of Lemma 2.6 Let Q be an element of M1(E2) and Π = (A1, . . . , AL) ∈ P .
Let (Xi, Yi)i≥1 be a sequence of independent and Q−identically distributed random
couples. According to the strong Law of Large Numbers there exists an event B of
probability 1 such that for every 1 ≤ u, v ≤ L

1

n

n∑

i=1

1Au×Av
(Xi, Yi) → Q(Au ×Av)

on B. Moreover, since E2 is separable (it is compact), according to Varadarajan’s
Lemma, see e.g. Theorem 11.4.1 in Dudley (2002), there exists an event C of
probability 1 such that

1

n

n∑

i=1

δ(Xi,Yi)
w
→ Q

on C where
w
→ stands for the weak convergence of probability measures. Hence

almost every realization of
(
1
n

∑n
i=1 δ(Xi,Yi)

)
n≥1

can play the role of (Qn)n≥1 and

the conclusions of Lemma 2.6 follow. �

Proof of Lemma 2.5 Let ν1 and ν2 be two elements of M1(E), ε > 0 and Π ∈ P
with ∆(Π) ≤ ε/2. According to Lemma 1.3 there is a Q ∈ C(ν1, ν2) such that

W∞(ν1, ν2) = supS(Q ◦ d−1).

Let (Qn)n≥1 be the sequence of elements of M1(E2) associated to Q and Π by
Lemma 2.6. We shall prove that (ν1,n = Qn

1 )n≥1 an (ν2,n = Qn
2 )n≥1 meet the

conditions of Lemma 2.5. First, (1) and (2) in Lemma 2.5 are clearly satisfied with
these (ν1,n)n≥1 and (ν2,n)n≥1. Now, due to the definition of W∞, for every n ≥ 1
we have

W∞(ν1,n, ν2,n) ≤ supS(Qn ◦ d−1)

and due to (1) and (3) in Lemma 2.6 there exists N1 such that for every n ≥ N1

we have

supS(Qn ◦ d−1) ≤ supS(Q ◦ d−1) + ε

hence W∞(ν1,n, ν2,n) ≤ W∞(ν1, ν2) + ε. So we are left to prove that there exists
an N2 such that for every n ≥ N2 we have W∞(ν1, ν2) − ε ≤ W∞(ν1,n, ν2,n). Let
us assume that this is not true i.e. that there exists a sequence (nk)k≥1 such that
for every k ≥ 1 we have

W∞(ν1, ν2)− ε > W∞(ν1,nk , ν2,nk). (2.2)

According to Lemma 1.1 for every k ≥ 1 there exists a Cnk ∈ C(ν1,nk , ν2,nk) such
that

W∞(ν1,nk , ν2,nk) = supS(Cnk ◦ d−1).

The sequence (Cnk)k≥1 admits a weakly converging subsequence since M1(E2)
is compact for the weak convergence topology, see Theorem 6.4 in Parthasarathy
(1967). By a slight abuse of notation we still denote (Cnk )k≥1 this converging
subsequence. Let C be its limit. Due to (2) in Lemma 2.6 we necessarily have
C1 = ν1 and C2 = ν2. Moreover (Cnk ◦ d−1)k≥1 is a sequence of probability
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measures on R that weakly converges to C ◦ d−1. Combining (2.2) with Lemma 2.2
we have

W∞(ν1, ν2)− ε ≥ lim sup
k→∞

W∞(ν1,nk , ν2,nk)

= lim sup
k→∞

supS(Cnk ◦ d−1)

≥ supS(C ◦ d−1)

≥ W∞(ν1, ν2)

which can not be. The announced result follows. �

Proof of the LD lower bound. As usual, in order to prove the LD lower bound
it is sufficient to prove that for every x ∈ [0, 1] and every ε > 0 we have

lim inf
n→∞

1

n
logP(W∞(LX

n , LY
n ) ∈]x− ε, x+ ε[) ≥ −J∞(x). (2.3)

In particular we can assume that J∞(x) < ∞ for otherwise (2.3) trivially holds.
If J∞(x) < ∞ then for every m ≥ 1 there exists an ym such that |x − ym| <
1/m, I∞(ym) < ∞ and limm→∞ I∞(ym) = J∞(x). Now let us assume that for
every m and every ν1, ν2 ∈ M1(E) such that W∞(ν1, ν2) = ym we have

lim inf
n→∞

1

n
logP(W∞(LX

n , LY
n ) ∈]ym − ε/4, ym + ε/4[) ≥ −H(ν1|µ1)−H(ν2|µ2).

(2.4)
It follows that for every m large enough and every ν1, ν2 ∈ M1(E) such that
W∞(ν1, ν2) = ym

lim inf
n→∞

1

n
logP(W∞(LX

n , LY
n ) ∈]x− ε, x+ ε[) ≥

≥ lim inf
n→∞

1

n
logP(W∞(LX

n , LY
n ) ∈]ym − ε/4, ym + ε/4[)

≥ −H(ν1|µ1)−H(ν2|µ2)

hence

lim inf
n→∞

1

n
logP(W∞(LX

n , LY
n ) ∈]x− ε, x+ ε[) ≥

≥ sup
ν1,ν2∈M1(E)
W∞(ν1,ν2)=ym

−H(ν1|µ1)−H(ν2|µ2)

≥ − inf
ν1,ν2∈M1(E)
W∞(ν1,ν2)=ym

H(ν1|µ1) +H(ν2|µ2)

≥ −I∞(ym)

which leads to (2.3) by letting m → ∞. Hence it is sufficient to establish (2.4) and
this is what we do now.
Let ε > 0, ym ∈ [0, 1] be such that I∞(ym) < ∞ and ν1, ν2 ∈ M1(E) be such
that W∞(ν1, ν2) = ym. According to Lemma 2.5 to any Π = (A1, . . . , AL) ∈ P
with ∆(Π) ≤ ε/32 we can associate two sequences (ν1,n)n≥1 and (ν2,n)n≥1 and an
integer N0 such that for every n ≥ 1 we have ν1,n, ν2,n ∈ M1,n(E) and for every
n ≥ N0 one has

P(W∞(LX
n , LY

n ) ∈]ym − ε/4, ym + ε/4[) =

= P(|W∞(LX
n , LY

n )−W∞(ν1, ν2)| < ε/4)

≥ P(|W∞(LX
n , LY

n )−W∞(ν1,n, ν2,n)| ≤ ε/8).
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We obviously have

|W∞(LX
n , LY

n )−W∞(ν1,n, ν2,n)| ≤ |W∞(LX
n , LY

n )−W∞(π(LX
n ), π(LY

n ))|+

+|W∞(π(LX
n ), π(LY

n ))−W∞(π(ν1,n), π(ν2,n))|+

+|W∞(π(ν1,n), π(ν2,n))−W∞(ν1,n, ν2,n)|

so due to Lemma 2.1 we get

{π(LX
n ) = π(ν1,n)} ∩ {π(LY

n ) = π(ν2,n)} ⊂

⊂ {|W∞(LX
n , LY

n )−W∞(ν1,n, ν2,n)| ≤ ε/8}

hence

P(|W∞(LX
n , LY

n )−W∞(ν1,n, ν2,n)| ≤ ε/8) ≥

≥ P({π(LX
n ) = π(ν1,n)} ∩ {π(LY

n ) = π(ν2,n)})

= P({π(LX
n ) = π(ν1,n)})P({π(LY

n ) = π(ν2,n)})

since the sequences (Xn)n≥1 and (Yn)n≥1 are independent. It follows from elemen-
tary combinatorics (see e.g. Lemma 2.1.9 in Dembo and Zeitouni, 1998) that

P({π(LX
n ) = π(ν1,n)}) ≥ (n+ 1)−L exp−nH(π(ν1,n)|π(µ1))

and the analogue for P({π(LY
n ) = π(ν2,n)}) also holds true. As a consequence

lim inf
n→∞

1

n
logP(W∞(LX

n , LY
n ) ∈]ym − ε/4, ym + ε/4[) ≥

≥ − lim sup
n→∞

(H(π(ν1,n)|π(µ1)) +H(π(ν2,n)|π(µ2)))

= −H(π(ν1)|π(µ1))−H(π(ν2)|π(µ2)) (2.5)

≥ −H(ν1|µ1)−H(ν2|µ2) (2.6)

where (2.5) is due to (2) in Lemma 2.5 and (2.6) comes from the fact that

H(π(ν1)|π(µ1)) ≤ H(ν1|µ1)

for every Π ∈ P , see e.g. Theorem 1.4.3 in Dupuis and Ellis (1997).

2.3. LD upper bound. We first establish the LD upper bound under the assumption
that E is finite. Then we extend this result to the general case.

2.3.1. A particular case. Here we assume that E = {a1, . . . , aN}. Since for every
n ≥ 1 we have W∞(LX

n , LY
n ) ∈ Γ = {d(ai, aj), 1 ≤ i, j ≤ N} which is a finite set it

is sufficient in order to establish the LD upper bound to show that for every δ ∈ Γ
we have

lim sup
n→∞

1

n
logP(W∞(LX

n , LY
n ) = δ) ≤ − inf

ν1,ν2∈M1(E)
W∞(ν1,ν2)=δ

{
H(ν1|µ1) +H(ν2|µ2)

}
.

(2.7)
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For every n ≥ 1 we get

P(W∞(LX
n , LY

n ) = δ) (2.8)

=
∑

ν1,n,ν2,n∈M1,n(E)
W∞(ν1,n,ν2,n)=δ

P(LX
n = ν1,n, LY

n = ν2,n)

≤
∑

ν1,n,ν2,n∈M1,n(E)
W∞(ν1,n,ν2,n)=δ

exp
(
−nH(ν1,n|µ1)− nH(ν2,n|µ2)

)
(2.9)

≤ (n+ 1)2N exp


−n inf

ν1,ν2∈M1(E)
W∞(ν1,ν2)=δ

{
H(ν1|µ1) +H(ν2|µ2)

}



see e.g. Lemma 2.1.9 in Dembo and Zeitouni (1998) for the elementary combina-
torial estimate (2.9). The announced (2.7) follows.

2.3.2. The general case. Let us introduce some more notations. For every Π ∈ P
we consider

IΠ∞(x) = inf
ν1,ν2∈M1(E)
W∞(ν1,ν2)=x

{
H(π(ν1)|π(µ1)) +H(π(ν2)|π(µ2))

}

and we shall denote by JΠ
∞ the lower semi-continuous regularization of IΠ∞.

Since [0, 1] is compact the sequence (W∞(LX
n , LY

n ))n≥1 is naturally exponentially
tight so it is sufficient in order to establish the LD upper bound to consider events of
the form {W∞(LX

n , LY
n ) ∈ [a, b]}, see Lemma 1.2.18 in Dembo and Zeitouni (1998).

According to Lemma 2.1 for every a, b ∈ [0, 1], a ≤ b, and every Π ∈ P we have for
every n ≥ 1 that

P(W∞(LX
n , LY

n ) ∈ [a, b]) ≤ P(W∞(π(LX
n ), π(LY

n )) ∈ [a− 2∆(Π), b+ 2∆(Π)]).

Hence, due to the computation carried out assuming that E is finite we get for
every Π ∈ P

lim sup
n→∞

1

n
logP(W∞(LX

n , LY
n ) ∈ [a, b]) ≤

≤ − inf
ν1,ν2∈M1({s1,...,sL})

W∞(ν1,ν2)∈[a−2∆(Π),b+2∆(Π)]

{
H(ν1|π(µ1)) +H(ν2|π(µ2))

}

≤ − inf
ν1,ν2∈M1(E)

W∞(ν1,ν2)∈[a−2∆(Π),b+2∆(Π)]

{
H(π(ν1)|π(µ1)) +H(π(ν2)|π(µ2))

}

≤ − inf
x∈[a−2∆(Π),b+2∆(Π)]

IΠ∞(x)

≤ − inf
x∈[a−2∆(Π),b+2∆(Π)]

JΠ
∞(x).

Hence, to conclude the proof of the LD upper bound we are left to prove that

sup
Π∈P

inf
x∈[a−2∆(Π),b+2∆(Π)]

JΠ
∞(x) ≥ inf

x∈[a,b]
J∞(x). (2.10)

Assume for a while the following
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Lemma 2.7. For every x ∈ [0, 1] we have supΠ JΠ
∞(x) = J∞(x).

Assume also that (2.10) does not hold : There exists a δ > 0 such that for every
Π ∈ P

inf
x∈[a−2∆(Π),b+2∆(Π)]

JΠ
∞(x) < inf

x∈[a,b]
J∞(x) − δ.

Since for every Π ∈ P the map x 7→ JΠ
∞(x) is lower semi-continuous there exists a

net (xΠ)Π∈P such that xΠ ∈ [a− 2∆(Π), b+ 2∆(Π)] and

JΠ
∞(xΠ)− δ/2 < inf

x∈[a,b]
J∞(x)− δ.

Due to the log sum inequality, see e.g. Theorem 2.7.1 in Cover and Thomas (1991),

for every K,K ′ ∈ P such that K � K ′ and every x ∈ [0, 1] we have IK∞(x) ≤ IK
′

∞ (x)

hence JK
∞(x) ≤ JK′

∞ (x) so for every Π′ ∈ P such that Π′ � Π we have

JΠ′

∞ (xΠ)− δ/2 < inf
x∈[a,b]

J∞(x)− δ.

Since (xΠ)Π∈P is a [0, 1]-valued net it admits a converging subnet which limit we

denote x∗ ∈ [a, b]. Due to the fact that JΠ′

∞ is lower semi-continuous we get

lim inf
Π∈P

JΠ′

∞ (xΠ) ≥ JΠ′

∞ (x∗)

hence

JΠ′

∞ (x∗) < inf
x∈[a,b]

J∞(x)− δ/2

which, according to Lemma 2.7, implies J∞(x∗) < infx∈[a,b] J∞(x)− δ/2. Since the
latter can not be (2.10) holds and the LD upper bound follows.

Proof of Lemma 2.7 According to Theorem 1.4.3 in Dupuis and Ellis (1997) for
every x ∈ [0, 1] and every Π ∈ P IΠ∞(x) ≤ I∞(x) hence JΠ

∞(x) ≤ J∞(x) whence
supΠ JΠ

∞(x) ≤ J∞(x). Conversely let x be a fixed element of [0, 1]. We shall
assume that supΠ JΠ

∞(x) < ∞ for otherwise the claimed equality trivially holds.
Hence for every Π ∈ P and every δ > 0 there exists yδ,Π such that |x − yδ,Π| < δ,
limδ→0 I

Π
∞(yδ,Π) = JΠ

∞(x) and

IΠ∞(yδ,Π)− δ/2 < inf
y∈B(x,δ)

IΠ∞(y). (2.11)

In particular we can assume that IΠ∞(yδ,Π) < ∞ thus there exists νΠ,δ
1 , νΠ,δ

2 ∈

M1(E) such that W∞(νΠ,δ
1 , νΠ,δ

2 ) = yδ,Π and

H(π(νΠ,δ
1 )|π(µ1)) +H(π(νΠ,δ

2 )|π(µ2))− δ ≤ IΠ∞(yδ,Π)− δ/2. (2.12)

Next we define ρΠ,δ
1 , ρΠ,δ

2 ∈ M1(E) by

ρΠ,δ
1 (F ) =

∑

Ai∈Π

π(νΠ,δ
1 )(Ai)

µ1(Ai)
µ1(F ∩ Ai)

and accordingly

ρΠ,δ
2 (F ) =

∑

Ai∈Π

π(νΠ,δ
2 )(Ai)

µ2(Ai)
µ2(F ∩ Ai)
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for every borelian F ⊂ E. Clearly π(νΠ,δ
1 ) = π(ρΠ,δ

1 ) and π(νΠ,δ
2 ) = π(ρΠ,δ

2 ) hence

|W∞(ρΠ,δ
1 , ρΠ,δ

2 )−W∞(νΠ,δ
1 , νΠ,δ

2 )|

≤ |W∞(ρΠ,δ
1 , ρΠ,δ

2 )−W∞(π(ρΠ,δ
1 ), π(ρΠ,δ

2 ))| +

+|W∞(π(ρΠ,δ
1 ), π(ρΠ,δ

2 ))−W∞(π(νΠ,δ
1 ), π(νΠ,δ

2 ))|+

+|W∞(π(νΠ,δ
1 ), π(νΠ,δ

2 ))−W∞(νΠ,δ
1 , νΠ,δ

2 )|

≤ 4∆(Π).

According to Theorem 1.4.3 in Dupuis and Ellis (1997) and Theorem 2.7.1 in Cover
and Thomas (1991) we have

H(ρΠ,δ
1 |µ1) = sup

K∈P

∑

Bj∈K

ρΠ,δ
1 (Bj) log

ρΠ,δ
1 (Bj)

µ1(Bj)

= sup
K∈P
K�Π

∑

Ai∈Π

∑

Bj∈K
Bj⊂Ai

ρΠ,δ
1 (Bj) log

ρΠ,δ
1 (Bj)

µ1(Bj)

= sup
K∈P
K�Π

∑

Ai∈Π

∑

Bj∈K
Bj⊂Ai

π(νΠ,δ
1 )(Ai)

µ1(Ai)
µ1(Bj) log

π(νΠ,δ
1 )(Ai)

µ1(Ai)

= sup
K∈P
K�Π

∑

Ai∈Π

π(νΠ,δ
1 )(Ai) log

π(νΠ,δ
1 )(Ai)

µ1(Ai)

= H(π(νΠ,δ
1 )|π(µ1))

and H(ρΠ,δ
2 |µ2) = H(π(νΠ,δ

2 )|π(µ2)) as well, hence

H(ρΠ,δ
1 |µ1) +H(ρΠ,δ

2 |µ2) = H(π(νΠ,δ
1 )|π(µ1)) +H(π(νΠ,δ

2 )|π(µ2)).

Thus it follows from the preceding, (2.11) and (2.12) that for every δ > 0 and every
Π ∈ P we have

inf
u∈B(yδ,Π,4∆(Π))

I∞(u)− δ ≤ inf
y∈B(x,δ)

IΠ∞(y)

hence

inf
y∈B(x,δ+4∆(Π))

I∞(y)− δ ≤ inf
y∈B(x,δ)

IΠ∞(y)

whence

inf
y∈B(x,δ+4∆(Π))

I∞(y)− δ ≤ sup
Π∈P

sup
δ>0

inf
y∈B(x,δ)

IΠ∞(y)

= sup
Π

JΠ
∞(x).

But for every δ > 0 we have

sup
Π∈P

inf
y∈B(x,δ+4∆(Π))

I∞(y) = sup
Π∈P

∆(Π)<δ

inf
y∈B(x,δ+4∆(Π))

I∞(y)

hence

inf
y∈B(x,6δ)

I∞(y) ≤ sup
Π∈P

JΠ
∞(x)

whence supΠ JΠ
∞(x) ≥ J∞(x). �
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3. On some properties of I∞ and J∞.

3.1. I∞ can fail to be lower semi-continuous. All through Section 3.1 we consider
that E = [0, 1] is endowed with the usual Euclidean distance and that µ1 = µ2 = µ
admits f(x) = 3

21[0, 13 ]
(x) + 3

21[ 23 ,1]
(x) as a density w.r.t. the Lebesgue measure.

That in this setting I∞ is not lower semi-continuous is an immediate consequence
of the following two lemmas.

Lemma 3.1. Let ν1 and ν2 be two elements of M1(E) such that W∞(ν1, ν2) = 1
3 ,

S(ν1) ⊂ S(µ) and S(ν2) ⊂ S(µ). Necessarily at least one of ν1 or ν2 has an atom.

Lemma 3.2. The sequence (ρn)n≥4 of elements of M1(E) defined by the densities

gn(x) =
3

2
1[0, 13−

1
n
](x) +

(
3

2
−

1

n

)
1[ 13−

1
n
, 13 ]

(x)+

+

(
3

2
+

1

n

)
1[ 23 ,

2
3+

1
n
](x) +

3

2
1[ 23+

1
n
,1](x)

is such that for every n ≥ 4 we have

1

3
< W∞(ρn, µ) ≤

1

3
+

2

n

and

H(ρn|µ) =
3

2n

(
1−

2

3n

)
log

(
1−

2

3n

)
+

3

2n

(
1 +

2

3n

)
log

(
1 +

2

3n

)
.

Indeed, let ν1, ν2 ∈ M1(E) be such that W∞(ν1, ν2) = 1
3 . We have two possibili-

ties :

i) S(ν1) or S(ν2) is not included in S(µ) which implies that H(ν1|µ) +
H(ν2|µ) = ∞;

ii) both S(ν1) and S(ν2) are included in S(µ) which, according to Lemma 3.1,
implies that at least one of ν1 or ν2 has an atom, hence H(ν1|µ)+H(ν2|µ) =
∞.

Thus I∞(13 ) = ∞. Meanwhile, it follows from Lemma 3.2 that the sequence

(xn)n≥4 defined by xn = W∞(ρn, µ) is such that xn → 1
3 and 0 ≤ I∞(xn) ≤

H(ρn|µ) +H(µ|µ) → 0 as n → ∞, whence I∞ is not lower semi-continuous. From
the preceding we deduce that J∞(13 ) = 0.

3.1.1. Proof of Lemma 3.1. Lemma 3.1 is an immediate consequence of the follow-
ing three lemmas

Lemma 3.3. Let ν1 and ν2 be two elements of M1(E) such that S(ν1) ⊂ S(µ)
and S(ν2) ⊂ S(µ). If W∞(ν1, ν2) ≤ 1

3 then necessarily at least one of these two
statements is true

i) ν1([0, 1
3 ]) = ν2([0, 1

3 ]);

ii) at least one of ν1 or ν2 has an atom.

Lemma 3.4. Let ν1 and ν2 be two elements of M1(E) such that S(ν1) ⊂ S(µ),
S(ν2) ⊂ S(µ), W∞(ν1, ν2) ≤ 1

3 and ν1([0, 13 ]) = ν2([0, 1
3 ]) = α with α ∈]0, 1[. Then

at least one of these two statements is true
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i) we have

W∞(ν1, ν2) = max
{
W∞(γ1, γ2),W∞(θ1, θ2)

}

where γ1, γ2 ∈ M1([0, 13 ]) and θ1, θ2 ∈ M1([ 23 , 1]) are defined by

γ1(A) =
ν1(A)

ν1([0, 13 ])
, θ1(B) =

ν1(B)

ν1([ 23 , 1])

for every measurable A ⊂ [0, 1
3 ] and B ⊂ [ 23 , 1], γ

2 and θ2 being defined on

the ground of ν2 accordingly;
ii) at least one of ν1 or ν2 has an atom.

Lemma 3.5. Let ζ1 and ζ2 be two elements of M1([0, 1
3 ]) (resp. M1([ 23 , 1])) such

that W∞(ζ1, ζ2) = 1
3 . Then at least one of ζ1 or ζ2 has an atom.

Proof of Lemma 3.3. Let ν1 and ν2 be two elements of M1(E) such that S(ν1) ⊂
S(µ) and S(ν2) ⊂ S(µ). We shall prove the following, which is equivalent to the
announced statement : If ν1([0, 1

3 ]) 6= ν2([0, 1
3 ]) and neither ν1 nor ν2 have an

atom then W∞(ν1, ν2) > 1
3 . To this end assume that ν1([0, 1

3 ]) > ν2([0, 13 ]). Let

Q ∈ C(ν1, ν2) be such that W∞(ν1, ν2) = supS(Q ◦ d−1). We have

ν1([0,
1

3
]) = Q([0,

1

3
]× E)

= Q([0,
1

3
]× [0,

1

3
]) +Q([0,

1

3
]×]

1

3
,
2

3
[) +Q([0,

1

3
]× [

2

3
, 1])

= Q([0,
1

3
]× [0,

1

3
]) +Q([0,

1

3
]× [

2

3
, 1])

since Q([0, 1
3 ]×] 13 ,

2
3 [) ≤ ν2(] 13 ,

2
3 [) = 0 because S(ν2) ⊂ S(µ) = [0, 13 ] ∪ [ 23 , 1]. But

Q([0, 13 ]× [0, 13 ]) ≤ Q(E × [0, 13 ]) = ν2([0, 13 ]) hence

Q([0,
1

3
]× [

2

3
, 1]) = ν1([0,

1

3
])−Q([0,

1

3
]× [0,

1

3
])

≥ ν1([0,
1

3
])− ν2([0,

1

3
])

> 0.

We have ν2({ 2
3}) = 0 since ν2 has no atom, hence Q([0, 13 ]×{ 2

3}) ≤ Q(E×{ 2
3}) = 0

whence Q([0, 1
3 ]×] 23 , 1]) > 0. Since [0, 13 ]×] 23 , 1] =

⋃
m>1[0,

1
3 ]×[ 23+

1
m , 1] there exists

an m0 > 0 such that Q([0, 13 ]×[ 23+
1

m0
, 1]) > 0 hence W∞(ν1, ν2) = supS(Q◦d−1) ≥

1
3 + 1

m0
> 1

3 . �

Proof of Lemma 3.4. Let ν1 and ν2 be two elements of M1(E) such that S(ν1) ⊂
S(µ), S(ν2) ⊂ S(µ), W∞(ν1, ν2) ≤ 1 and ν1([0, 13 ]) = ν2([0, 1

3 ]) = α with α ∈]0, 1[.
We shall prove that if ii) is false then i) is necessarily true. According to Lemma
1.3 there exists a Q ∈ C∞(ν1, ν2) such that W∞(ν1, ν2) = supS(Q ◦ d−1). Since
S(ν1) ⊂ S(µ) and S(ν2) ⊂ S(µ) we have Q(E×] 13 ,

2
3 [) = Q(] 13 ,

2
3 [×E) = 0. Since

supS(Q ◦ d−1) ≤ 1
3 we further have Q([0, 13 ]× [ 23 , 1] \ {(

1
3 ,

2
3 )}) = Q([ 23 , 1]× [0, 13 ] \

{(23 ,
1
3 )}) = 0. But Q({(13 ,

2
3 )})+Q({(23 ,

1
3 )}) = 0 for otherwise either ν1 or ν2 would

have at least an atom. Hence Q(E × E) = 1 = Q([0, 13 ]× [0, 13 ]) +Q([ 23 , 1]× [ 23 , 1])

whence Q([0, 13 ] × [0, 13 ]) = ν1([0, 1
3 ]) = ν2([0, 1

3 ]) = α > 0 and Q([ 23 , 1] × [ 23 , 1]) =

ν1([ 23 , 1]) = ν2([ 23 , 1]) = 1 − α > 0. Since S(Q) is infinitely cyclically monotone ,
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the probability measures on E2 defined by

Qsw(A) =
Q(A ∩ [0, 1

3 ]× [0, 1
3 ])

Q([0, 1
3 ]× [0, 1

3 ])
, Qne(B) =

Q(B ∩ [ 23 , 1]× [ 23 , 1])

Q([ 23 , 1]× [ 23 , 1])

for every measurable A,B ⊂ E2 are elements of C∞(γ1, γ2) and C∞(θ1, θ2) respec-
tively and S(Q) = S(Qsw) ∪ S(Qne). Indeed, for every measurable A ⊂ [0, 13 ] we
have

Qsw
1 (A) = Qsw(A× E)

=
Q(A× E ∩ [0, 13 ]× [0, 13 ])

Q([0, 13 ]× [0, 13 ])
(3.1)

=
Q(A× E)

ν1([0, 1
3 ])

(3.2)

=
ν1(A)

ν1([0, 1
3 ])

where (3.2) follows from (3.1) due to the fact that Q([0, 1
3 ]×] 13 , 1]) = 0. One proves

that Qsw
2 = γ2, Qne

1 = θ1 and Qne
2 = θ2 the same way. Thus we have W∞(γ1, γ2) =

supS(Qsw ◦ d−1) and W∞(θ1, θ2) = supS(Qne ◦ d−1) hence

W∞(ν1, ν2) = supS(Q ◦ d−1)

= max
{
supS(Qsw ◦ d−1), supS(Qne ◦ d−1)

}

= max
{
W∞(γ1, γ2),W∞(θ1, θ2)

}
.

�

Proof of Lemma 3.5. Let ζ1 and ζ2 be two elements of M1([0, 13 ]) such that

W∞(ζ1, ζ2) = 1
3 . (The proof when ζ1 and ζ2 are elements of M1([ 23 , 1]) is obviously

the same.) There exists a Q ∈ C∞(ζ1, ζ2) such that supS(Q ◦ d−1) = 1
3 and, to fix

notations, we assume that (0, 13 ) ∈ S(Q). We shall prove that if ζ2 has no atoms

on [0, 1
3 ] then 0 is an atom for ζ1. To this end it is sufficient to prove that for

every u, v ∈]0, 1
3 [ we have ζ1([0, u]) ≥ ζ2([0, v]) since this leads to ζ1([0, u]) = 1

for every u ∈]0, 13 [ hence ζ1({0}) = 1. So, let us assume there exists u∗, v∗ ∈]0, 1
3 [

such that ζ1([0, u∗]) < ζ2([0, v∗]). Since (0, 1
3 ) ∈ S(Q) we have 0 < ζ1([0, u∗]) <

ζ2([0, v∗]). Since ζ2 has no atoms on [0, 13 ] there exists a v∗∗ ∈]0, 1[ such that

ζ1([0, u∗]) = ζ2([0, v∗∗]). We can assume that ζ1([0, u∗]) < 1 for otherwise we
would have ζ1([0, u∗]) = ζ2([0, v∗∗]) = 1 hence W∞(ζ1, ζ2) = max{u∗, v∗∗} < 1

3 .

We define four probability measures on [0, 1
3 ] by setting for every measurable A

ζ1,l(A) =
ζ1(A ∩ [0, u∗])

ζ1([0, u∗])
, ζ2,l(A) =

ζ2(A ∩ [0, v∗∗])

ζ2([0, v∗∗])

and

ζ1,r(A) =
ζ1(A∩]u∗, 1

3 ])

ζ1(]u∗, 1
3 ])

, ζ2,r(A) =
ζ2(A∩]v∗∗, 1

3 ])

ζ2(]v∗∗, 13 ])
.
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There exist two infinitely cyclically monotone Ql ∈ C(ζ1,l, ζ2,l) and Qr ∈
C(ζ1,r, ζ2,r) and we observe that the probability measure K defined on E2 by

K = ζ1([0, u∗])Ql + ζ1(]u∗,
1

3
])Qr

= ζ2([0, v∗∗])Ql + ζ2(]v∗∗,
1

3
])Qr

is such that K ∈ C(ζ1, ζ2). Moreover

W∞(ζ1, ζ2) ≤ supS(K ◦ d−1)

= max{W∞(ζ1,l, ζ2,l),W∞(ζ1,r , ζ2,r)}

≤ max{max(u∗, v∗∗),max(1 − u∗, 1− v∗∗)}

<
1

3

which contradicts W∞(ζ1, ζ2) = 1
3 and concludes the proof.

3.1.2. Proof of Lemma 3.2. First of all notice that for every n ≥ 3 we have
ρn([0, 13 ]) 6= µ([0, 1

3 ]) hence W∞(ρn, µ) > 1
3 according to Lemma 3.4. Next, it

is not difficult to check that for every n ≥ 4 the probability measure on E2 denoted
Qn which density w.r.t. the Lebesgue measure on E2 is given by

hn(x) =
3

2
(
1
3 − 1

n

)1[0, 13−
1
n
]2(x) + n

(
3

2
−

1

n

)
1[ 13−

1
n
, 13 ]

2(x)+

+1[ 13−
1
n
, 13 ]×[ 23 ,

2
3+

1
n
](x) +

9

2
1[ 23 ,1]

2(x)

is such that Qn
1 = µ and Qn

2 = ρn hence W∞(µ, ρn) ≤ supS(Qn ◦ d−1) ≤ 1
3 + 2

n .
Finally, that H(ρn|µ) is as given is the result of a straightforward computation.

3.2. On the zeros of J∞. First we prove Lemma 1.6. In Section 3.2.2 we establish
that if J∞(x) = 0 then x ∈ Zµ1,µ2 while the converse is proven in Section 3.2.3.
Finally in Section 3.2.4 we prove Proposition 1.9

3.2.1. Proof of Lemma 1.6. Let x ∈ [0, 1] be such that J∞(x) = 0 : There exists a
sequence (xn)n≥1 of elements of [0, 1] such that xn → x and limn→∞ I∞(xn) = 0.
Thus, by taking subsequences if needed, we can say that there exists a sequence
(Pn)n≥1 of infinitely cyclically monotone elements of M1(E × E) such that for
every n ≥ 1 we have xn = supS(Pn ◦ d−1), H(Pn

1 |µ
1) +H(Pn

2 |µ
2) → 0 as n → ∞

and (Pn)n≥1 is convergent w.r.t. the weak convergence topology on M1(E2) since
E2 is compact. Lets denote P the limit of (Pn)n≥1. We necessarily have that

Pn
1

w
→ P1 = µ1 and Pn

2
w
→ P2 = µ2 since

0 ≤ H(P1|µ
1) +H(P2|µ

2) ≤ lim inf
(
H(Pn

1 |µ
1) +H(Pn

2 |µ
2)
)
= 0

for ν 7→ H(ν|µ) is lower semi-continuous w.r.t. the weak convergence topology,
see e.g. Theorem 1.4.3 in Dupuis and Ellis (1997). According to Lemma 2.4 P ∈

C∞(µ1, µ2) whence supS(P ◦ d−1) = W∞(µ1, µ2). Finally, since Pn w
→ P Lemma

2.2 implies x = lim supn→∞ supS(Pn ◦ d−1) ≥ supS(P ◦ d−1) = W∞(µ1, µ2). �
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3.2.2. If J∞(x) = 0 then x ∈ Zµ1,µ2 . Let x ∈ [0, 1] be such that J∞(x) = 0. We
know from Lemma 1.6 that x ≥ W∞(µ1, µ2). Moreover there exists a sequence
(xn)n≥1 of elements of [0, 1] such that xn → x and limn→∞ I∞(xn) = 0. Again, by
taking subsequences if needed, we can say that there exists a sequence (Pn)n≥1 of
infinitely cyclically monotone elements of M1(E ×E) such that for every n ≥ 1 we
have xn = supS(Pn ◦ d−1) = d(an, bn), (an, bn) ∈ S(Pn)

H(Pn
1 |µ

1) +H(Pn
2 |µ

2) → 0 (3.3)

n → ∞ and (Pn)n≥1 is convergent w.r.t. the weak convergence topology on M1(E×
E). We can also assume that (an)n≥1 and (bn)n≥1 are converging sequences of
elements of S(µ1) and S(µ2) respectively. Lets denote P (resp. a, b) the limit of
(Pn)n≥1 (resp. (an)n≥1, (b

n)n≥1). We obviously have that x = d(a, b) and we prove
that a ↔ b. Again, due to Lemma 2.4, Lemma 2.2 and (3.3) we necessarily have

that Pn
1

w
→ P1 = µ1 and Pn

2
w
→ P2 = µ2, hence P ∈ C∞(µ1, µ2). We have that

a ∈ S(µ1) and b ∈ S(µ2) since both S(µ1) and S(µ2) are closed so we are left to
prove that for every integer N ≥ 2, every (α2, β2), . . . , (αN , βN ) ∈ S(P ) and every
σ ∈ SN we have

d(a, b) ≤ max
i=1,...,N

{
d(αi, βσ(i))

}

where α1 = a and β1 = b. Indeed, it follows from Lemma 2.3 that for every
integer i, 2 ≤ i ≤ N , and every n ≥ 1 there exists (αn

i , β
n
i ) ∈ S(Pn) such that

(αn
i , β

n
i ) → (αi, βi) as n → ∞. Moreover, (an, bn) → (a, b) and (an, bn) ∈ S(Pn)

for every n ≥ 1. Since Pn is infinitely cyclically monotone and supS(Pn ◦ d−1) =
d(an, bn) we have that for every σ ∈ SN d(an, bn) ≤ maxi=1,...,N{d(αn

i , β
n
σ(i))}

where αn
1 = an and βn

1 = bn. This proves the announced inequality by taking the
limit n → ∞ and x ∈ Zµ1,µ2 since x = d(a, b) and a ↔ b.

3.2.3. If x ∈ Zµ1,µ2 then J∞(x) = 0. First we prove that W∞(µ1, µ2) ∈ Zµ1,µ2 . In-
deed, according to Lemma 1.3 there exists P ∈ C∞(µ1, µ2) such that W∞(µ1, µ2) =
supS(P ◦ d−1) = d(a, b) with (a, b) ∈ S(P ). Clearly a ↔ b hence W∞(µ1, µ2) ∈
Zµ1,µ2 . So now let x ∈ Zµ1,µ2 be such that x > W∞(µ1, µ2) since we already know
that J∞(W∞(µ1, µ2)) = 0. Since x ∈ Zµ1,µ2 there exists (a, b) ∈ S(µ1) × S(µ2)
such that x = d(a, b) and a ↔ b which means that there exists Q ∈ C∞(µ1, µ2)
such that for every integer N ≥ 2, every (α2, β2), . . . , (αN , βN ) ∈ S(Q) and every
σ ∈ SN we have d(a, b) ≤ maxi=1,...,N

{
d(αi, βσ(i))

}
where (α1, β1) = (a, b). Since

d(a, b) = x > W∞(µ1, µ2) = supS(Q ◦ d−1) ≥ 0 there exists an ε0 small enough to
ensure that for every 0 < ε < ε0 we can find an open neighbourhood Uε × Vε of
(a, b) such that

(1) Uε ∩ Vε = ∅;
(2) Uε × Vε ∩ S(Q) = ∅;
(3) µ1(Uε) > 0 and µ2(Vε) > 0;
(4) supx,y∈Uε

d(x, y) ≤ ε/2 and supx,y∈Vε
d(x, y) ≤ ε/2.

Starting from those (Uε)0<ε<ε0 and (Vε)0<ε<ε0 , for every 0 < ε < ε0 one can choose
a finite partition Πε = (Bε

1 , . . . , B
ε
L(ε)) of E into non-empty measurable sets such

that

(1) for every 1 ≤ i ≤ L(ε) we have supx,y∈Bε
i
d(x, y) ≤ ε/2;

(2) there exists two distinct integers i(a) and i(b) such that 1 ≤ i(a), i(b) ≤
L(ε), Bε

i(a) = Uε and Bε
i(b) = Vε.
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To every Πε we associate (sε1, . . . , s
ε
L(ε)) ∈ EL(ε) such that for every 1 ≤ i ≤ L(ε)

we have sεi ∈ Bε
i with sεi(a) = a, sεi(b) = b and we set

πε : M1(E) → M1({sε1, . . . , s
ε
L(ε)})

ν 7→
∑L(ε)

i=1 ν(Bε
i )δsεi .

For every 0 < ε < ε0 we define two elements κ1,ε and κ2,ε of M1(E) by

κ1,ε(A) =
µ1(A ∩Bε

i(a))

µ1(Bε
i(a))

and κ2,ε(A) =
µ2(A ∩Bε

i(b))

µ2(Bε
i(b))

.

For every 0 < ε < ε0 and every η ∈]0, 1[ we further introduce

Qε,η = η
(
κ1,ε ⊗ κ2,ε

)
+ (1− η)Q

which is an element of M1(E × E) such that Qε,η
1 = ηκ1,ε + (1 − η)µ1 and Qε,η

2 =
ηκ2,ε + (1 − η)µ2. Finally, we also consider

Cε,η = ηδ(a,b) + (1− η)
∑

(i,j)∈{1,...,L(ε)}2

Q(Bε
i ×Bε

j )δ(sεi ,sεj).

We have Cε,η
1 = πε(Qε,η

1 ) and Cε,η
2 = πε(Qε,η

2 ). Since Cε,η need not be infinitely
cyclically monotone we have to consider

C̃ε,η = ηδ(a,b) + (1− η)
∑

(i,j)∈{1,...,L(ε)}2

Q(Bε
i ×Bε

j )δ(s̃ε1(i,j),s̃ε2(i,j))

where for every (i, j) ∈ {1, . . . , L(ε)}2 such that Q(Bε
i ×Bε

j ) > 0 we have

(s̃ε1(i, j), s̃
ε
2(i, j)) ∈ Bε

i ×Bε
j ∩ S(Q)

and (s̃ε1(i(a), i(b)), s̃
ε
2(i(a), i(b))) = (a, b). That a ↔ b implies that C̃ε,η is infinitely

cyclically monotone thus, according to Lemma 1.4, W∞(C̃ε,η
1 , C̃ε,η

2 ) = d(a, b) = x.

Clearly W∞(Cε,η
1 , C̃ε,η

1 ) ≤ ε and W∞(Cε,η
2 , C̃ε,η

2 ) ≤ ε so |W∞(Cε,η
1 , Cε,η

2 )− x| ≤ 2ε
which implies that |W∞(Qε,η

1 , Qε,η
2 ) − x| ≤ 4ε according to Lemma 2.1. For every

0 < ε < ε0 and every η ∈]0, 1[ we have

I∞(W∞(Qε,η
1 , Qε,η

2 )) ≤ H(Qε,η
1 |µ1) +H(Qε,η

2 |µ2)

= H(ηκ1,ε + (1− η)µ1|µ1) +H(ηκ2,ε + (1− η)µ2|µ2)

≤ ηH(κ1,ε|µ1) + (1− η)H(µ1|µ1) +

+ηH(κ2,ε|µ2) + (1 − η)H(µ2|µ2)

= ηH(κ1,ε|µ1) + ηH(κ2,ε|µ2).

Since for every 0 < ε < ε0 we have H(κ1,ε|µ1) < ∞ and H(κ2,ε|µ2) < ∞ one can
find an ηε ∈]0, 1[ such that

lim
ε→0

(
ηεH(κ1,ε|µ1) + ηεH(κ2,ε|µ2)

)
= 0.

Now, for every 0 < ε < ε0 we set xε = W∞(Qε,ηε

1 , Qε,ηε

2 ). By construction we have
limε→0 x

ε = x and limε→0 I∞(xε) = 0 hence J∞(x) = 0.
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3.2.4. Proof of Proposition 1.9. The key here is that when µ1 = µ2 = µ the set
C∞(µ1, µ2) is reduced to the diagonal coupling of µ with itself, which we denote
Qµ.

Let a, b ∈ E such that a ↔ b. Let N be any integer larger than 3 and α1, . . . , αN

be any sequence of elements of S(µ) of size N , with α1 = a and αN = b. We

introduce (α̃i, β̃i)1≤i≤N+1 by setting (α̃1, β̃1) = (a, b) and (α̃i, β̃i) = (αi−1, αi−1) ∈
S(Qµ) for every integer i, 2 ≤ i ≤ N + 1. Since a ↔ b, for every σ ∈ SN+1 we

have d(a, b) ≤ maxi=1,...,N+1 d(α̃i, β̃σ(i)). Taking σ such that σ(i) = i+ 1 for every
1 ≤ i ≤ N and σ(N + 1) = 1 leads to d(a, b) ≤ d(αL, αL+1) for some L such that

1 ≤ L ≤ N − 1 since d(α̃1, β̃σ(1)) = d(a, a) = 0 and d(α̃N+1, β̃σ(N+1)) = d(b, b) = 0.
Conversely let a, b ∈ S(µ) such that for every integer N ≥ 3 and every sequence

α1, . . . , αN of elements of S(µ) such that α1 = a and αN = b there is at least
one integer L such that 1 ≤ L ≤ N − 1 and d(a, b) ≤ d(αL, αL+1). To prove

that a ↔ b we prove that for every integer N larger than 2, every family (α̃2, β̃2) =

(α̃2, α̃2), . . . , (α̃N , β̃N) = (α̃N , α̃N ) of elements of S(Qµ) and every σ ∈ SN we have

d(a, b) ≤ maxi=1,...,N d(α̃i, β̃σ(i)) where (α̃1, β̃1) = (a, b). If 1 is a fixed point of σ

then obviously d(a, b) ≤ maxi=1,...,N

{
d(α̃i, α̃σ(i))

}
. If σ(1) 6= 1 we denote C(σ, 1)

the cycle of σ which contains 1

C(σ, 1) = (1, σ(1), . . . , σk−1(1))

where k is the length of C(σ, 1). By setting α1 = α̃1 = a, α2 = α̃σ(1), α3 =
α̃σ2(1), . . . , αk = α̃σk−1(1), αk+1 = b we clearly obtain a journey from a to b through
elements of S(µ) divided into k stages hence

d(a, b) ≤ max
L=1,...,k

d(αL, αL+1)

= max
i∈C(σ,1)∪{σk(1)}

d(α̃i, β̃σ(i))

≤ max
i=1,...,N

d(α̃i, β̃σ(i))

which achieves the proof that a ↔ b.

4. On the almost sure asymptotic behavior of (W∞(LX
n , LY

n ))n≥1

In this section we will successively prove Lemma 1.10, 1.11, 1.12 and Propo-
sition 1.13. To this end we need some more notations and results. For every
x, y ∈ S(µ) and every integer n ≥ 2 we set

Rn(x, y) = {ᾱ = (α1, . . . , αn) ∈ S(µ)n such that α1 = x and αn = y},

C (x, y) = ∪n≥2Rn(x, y) and δµ(x, y) = inf
ᾱ∈C (x,y)

max
i∈{1,...,n−1}

d(αi, αi+1).

For every a, b, c ∈ S(µ), every ᾱ = (α1, . . . , αn) ∈ C (a, b) and every γ̄ = (γ1, . . . , γm)
∈ C (b, c) we shall write

ᾱ ∨ γ̄ = (α1, . . . , αn, γ2, . . . , γm) ∈ C (a, c).

We will use δµ mainly to define appropriate partitions of S(µ). It has the following
properties

Lemma 4.1. (1) For every a, b ∈ S(µ) we have δµ(a, b) ≤ d(a, b).
(2) For every a, b, c ∈ S(µ) we have δµ(a, b) ≤ max{δµ(a, c), δµ(c, b)}.
(3) For every a, b ∈ S(µ) we have a ↔ b if and only if δµ(a, b) = d(a, b).
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Proof of Lemma 4.1 1. For every a, b ∈ S(µ), by considering ᾱ = (a, b) we
immediately get δµ(a, b) ≤ d(a, b). 2. For every a, b, c ∈ S(µ) and every ε > 0 there
exists ᾱ1 = (α1

1 = a, . . . , α1
n = c) ∈ C (a, c) such that

max
i=1,...,n−1

d(α1
i , α

1
i+1) < δµ(a, c) + ε/2

and there exists ᾱ2 = (α2
1 = c, . . . , α2

m = b) ∈ C (c, b) such that

max
i=1,...,m−1

d(α2
i , α

2
i+1) < δµ(c, b) + ε/2.

Since ᾱ = ᾱ1 ∨ ᾱ2 = (α1
1 = a, . . . , α1

n = c, α2
2, . . . , α

2
m = b) ∈ C (a, b) we have

δµ(a, b) ≤ max{ max
i=1,...,n−1

d(α1
i , α

1
i+1), max

i=1,...,m−1
d(α2

i , α
2
i+1)}

≤ max{δµ(a, c), δµ(c, b)}+ ε

which leads to the announced inequality by taking ε → 0. 3. Let a, b ∈ S(µ) be
such that a ↔ b. By definition of ↔ for every n ≥ 2 and every ᾱ ∈ Rn(a, b) we have
d(a, b) ≤ maxi∈{1,...,n−1} d(αi, αi+1) hence d(a, b) ≤ δµ(a, b). It follows that if a ↔ b
we have δµ(a, b) = d(a, b) since δµ(a, b) ≤ d(a, b) is always true. Conversely assume
that a, b ∈ S(µ) are such that we have δµ(a, b) = d(a, b) thus d(a, b) ≤ δµ(a, b). It
follows from the definition of δµ that for every integer n ≥ 2 and every ᾱ ∈ Rn(a, b)
we have d(a, b) ≤ maxi∈{1,...,n−1} d(αi, αi+1) which by definition means a ↔ b. �

Proof of Lemma 1.10 First we assume that S(µ) is connected. Then it is well-
chained i.e. for every a, b ∈ S(µ) such that a 6= b and every ε > 0 there exist
an integer n ≥ 2 and ᾱ ∈ Rn(a, b) such that for every 1 ≤ i ≤ n − 1 we have
d(αi, αi+1) ≤ ε, see e.g. 8.2 of Chapter I in Whyburn (1942). Thus δµ(a, b) = 0 for
every a, b ∈ S(µ) hence, according to the third point of Lemma 4.1, a ↔ b if and
only if d(a, b) = 0 whence Zµ = {0}. Now we prove that if Zµ = {0} then S(µ)
is connected. It is sufficient to prove that S(µ) is well-chained since, according
to e.g. 9.21 of Chapter I in Whyburn (1942) any metric, compact, well-chained
space is connected. Actually we shall prove that if Zµ = {0} then necessarily for
every a, b ∈ S(µ) we have δµ(a, b) = 0 since this is obviously equivalent to the
well-chained condition. To this end we proceed by contradiction and assume that
we have Zµ = {0} and that there exists some a, b ∈ S(µ) such that δµ(a, b) > 0.
We shall construct (u, v) ∈ S(µ)2 such that δµ(u, v) = d(u, v) = δµ(a, b) > 0 in
contradiction with Zµ = {0}.

According to the definition of δµ for every integer n ≥ 1 there exists ᾱn =
(αn

1 , . . . , α
n
L(n)) ∈ C (a, b) such that

δµ(a, b) ≤ max
i=1,...,L(n)−1

d(αn
i , α

n
i+1) < δµ(a, b) +

1

n
.

Since ᾱn ∈ C (a, b) it follows from the second point in Lemma 4.1 that

δµ(a, b) ≤ max
i=1,...,L(n)−1

δµ(αn
i , α

n
i+1). (4.1)

Due to the first point in Lemma 4.1 we have

max
i=1,...,L(n)−1

δµ(αn
i , α

n
i+1) ≤ max

i=1,...,L(n)−1
d(αn

i , α
n
i+1) < δµ(a, b) +

1

n
. (4.2)
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For every n ≥ 1 we consider G(n) ⊂ {1, . . . , L(n)−1} defined by j ∈ G(n) if and only
if δµ(αn

j , α
n
j+1) = maxi=1,...,L(n)−1 δ

µ(αn
i , α

n
i+1). We further define i0(n) ∈ G(n) to

be such that d(αn
i0(n)

, αn
i0(n)+1) = maxi∈G(n) d(α

n
i , α

n
i+1). In particular

d(αn
i0(n)

, αn
i0(n)+1) ≤ max

i=1,...,L(n)−1
d(αn

i , α
n
i+1) < δµ(a, b) +

1

n
. (4.3)

According to the definition of i0(n), every j ∈ {1, . . . , L(n)− 1} such that

d(αn
j , α

n
j+1) > d(αn

i0(n)
, αn

i0(n)+1)

is necessarily such that

δµ(αn
j , α

n
j+1) < δµ(αn

i0(n)
, αn

i0(n)+1).

By definition of δµ for every such j ∈ {1, . . . , L(n)− 1} there exists

α̂j = (α̂j
1, . . . , α̂

j
M(j)) ∈ C (αn

j , α
n
j+1)

such that

max
l=1,...,M(j)−1

d(α̂j
l , α̂

j
l+1) < δµ(αn

i0(n)
, αn

i0(n)+1)

≤ d(αn
i0(n)

, αn
i0(n)+1). (4.4)

By replacing every such (αn
j , α

n
j+1) ring in the ᾱn chain by the corresponding α̂j

chain we get γ̄ ∈ C (a, b) such that max d(γi, γi+1) = d(αn
i0(n)

, αn
i0(n)+1). Since

γ̄ ∈ C (a, b), according to the second point of Lemma 4.1 and (4.4) we have

δµ(a, b) ≤ d(αn
i0(n)

, αn
i0(n)+1). (4.5)

So we have a sequence ((un, vn) = (αn
i0(n)

, αn
i0(n)+1))n≥1 of elements of S(µ)2 such

that for every n ≥ 1

δµ(a, b) ≤ δµ(un, vn) < δµ(a, b) +
1

n

according to (4.1) and (4.2) and

δµ(a, b) < d(un, vn) ≤ δµ(a, b) +
1

n
.

according to (4.3) and (4.5). Since S(µ)2 is compact, from this sequence we can
extract a sub-sequence ((unk , vnk)k≥1 that converges towards some (u, v) ∈ S(µ)2.
Obviously d(u, v) = δµ(a, b) and if we show that δµ(u, v) = δµ(a, b) too the proof of
Lemma 1.10 is done. It follows from the definition of (unk , vnk)k≥1 that for every
k ≥ 1 we have

δµ(a, b) ≤ δµ(unk , vnk)

≤ max {δµ(unk , u), δµ(u, v), δµ(v, vnk )}

≤ max {d(unk , u), δµ(u, v), d(v, vnk )}

hence by taking k large enough we get δµ(a, b) ≤ δµ(u, v) since δµ(a, b) > 0. On
the other hand

δµ(u, v) ≤ max {δµ(unk , u), δµ(unk , vnk), δµ(v, vnk)}

≤

{
d(unk , u), δµ(a, b) +

1

nk
, d(v, vnk)

}
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hence δµ(u, v) ≤ δµ(a, b) + 1
nk

for k large enough hence δµ(a, b) = δµ(u, v). �

Proof of Lemma 1.11 Let a, b ∈ S(µ) be such that a ↔ b : According to
Lemma 4.1 we have δµ(a, b) = d(a, b). If a = b then Ai(a) = Ai(b) and the equality
d(a, b) = d(Ai(a), Ai(b)) is satisfied. If a 6= b necessarily Ai(a) 6= Ai(b) for if a
and b were elements of the same connected component of S(µ) we would have
δµ(a, b) = 0 6= d(a, b) since every connected space is well-chained. By definition we
have d(a, b) ≥ d(Ai(a), Ai(b)) and it can not be that d(a, b) > d(Ai(a), Ai(b)) since this
would be in contradiction with a ↔ b. Indeed, since Ai(a) and Ai(b) are both closed
there exists (x(a), x(b)) ∈ Ai(a) ×Ai(b) such that d(x(a), x(b)) = d(Ai(a), Ai(b)) and
according to the second point in Lemma 4.1

δµ(a, b) ≤ max{δµ(a, x(a)), d(x(a), x(b)), δµ(b, x(b))} = d(x(a), x(b)) < d(a, b)

since δµ(a, x(a)) = δµ(b, x(b)) = 0 because Ai(a) and Ai(b) are connected hence
well-chained, and this contradicts a ↔ b. �

Proof of Lemma 1.12 We start showing that β1 = supZµ is not the limit of
an increasing sequence (xn)n≥1 of elements of Zµ. We can assume that β1 > 0
since otherwise the claim is clearly true. We proceed by contradiction and assume
there exists an increasing sequence (xn)n≥1 of elements of Zµ such that xn → β1.
Then there exists a sequence (an, bn)n≥1 of elements of S(µ)2 such that for every
n ≥ 1, an ↔ bn and δµ(an, bn) = d(an, bn) = xn. Since E is compact, by taking
sub-sequences if needed, we can assume that there exists a, b ∈ S(µ) such that
an → a, bn → b and d(a, b) = β1. So, we can choose ε > 0 small enough to ensure
that there exists an N0 such that for every n ≥ N0, δ

µ(an, an+1) ≤ d(an, an+1) <
ε, δµ(bn, bn+1) ≤ d(bn, bn+1) < ε and

ε < β1 − ε < δµ(aN0 , bN0) = d(aN0 , bN0) < d(an, bn)

hence

δµ(an, bn)

≤ max
k=0,...,n−N0−1

{δµ(aN0+k, aN0+k+1), δ
µ(aN0 , bN0), δ

µ(bN0+k, bN0+k+1)}

= δµ(aN0 , bN0)

< d(an, bn)

in contradiction with an ↔ bn. Thus β1 = maxZµ is an isolated point of Zµ. One
can repeat this to prove that every βi = supZµ \ {β1, . . . , βi−1} is an isolated point
as long as βi 6= 0. �

With Lemma 1.12 in hands we can start the proper proof of Proposition 1.13. We
first prove that

P(lim supW∞(LX
n , LY

n ) ∈ Zµ) = P(lim inf W∞(LX
n , LY

n ) ∈ Zµ) = 1. (4.6)

Indeed, since J∞ is a good rate function, it follows from Theorem 1.5 that for every
ε > 0 there exists C(ε) > 0 such that

lim sup
n→∞

1

n
logP(W∞(LX

n , LY
n ) ∈ V c

ε ) < −C(ε)
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where Vε = [0, ε[∪
(
∪β∈Zµ

]β − ε, β + ε[
)
. Thus

∑

n≥1

P(W∞(LX
n , LY

n ) ∈ V c
ε ) < ∞

hence P(lim sup{W∞(LX
n , LY

n ) ∈ V c
ε }) = 0 according to the Borel-Cantelli Lemma.

It follows that for every ε > 0

P(lim supW∞(LX
n , LY

n ) ∈ V̄ε) = 1 and P(lim infW∞(LX
n , LY

n ) ∈ V̄ε) = 1

which, because of Lemma 1.12, implies (4.6) by taking ε ↓ 0. The first point in
Proposition 1.13 follows immediately thanks to Lemma 1.10.

From now on we assume that S(µ) has at least two connected components. We
shall prove in Section 4.1 that we always have

P(lim supW∞(LX
n , LY

n ) = β1) = 1. (4.7)

Next we will prove in Section 4.2 that if there exists only two connected components
Ai, Aj of S(µ) such that Ai ↔ Aj and d(Ai, Aj) = β1 then

P(lim infW∞(LX
n , LY

n ) = β2) = 1 (4.8)

and in Section 4.3 we will prove that in all other situations where S(µ) is not
connected

P(lim inf W∞(LX
n , LY

n ) = β1) = 1. (4.9)

All these results rely on the following “bins and balls” lemma which proof is post-
poned until the end of the section.

Lemma 4.2. Let U = (U1, . . . , Un, . . . ) and V = (V1, . . . , Vn, . . . ) be two indepen-
dent sequences of independent random variables with the same law on {1, . . . , L}
defined by P(U1 = i) = γi, 0 < γi < 1 for every i ∈ {1, . . . , L}. The counters

Un =

(
n∑

i=1

1{1}(Ui), . . . ,

n∑

i=1

1{L}(Ui)

)

and

V n =

(
n∑

i=1

1{1}(Vi), . . . ,

n∑

i=1

1{L}(Vi)

)

are such that

(1) If L = 2 then P(lim sup{Un 6= V n}) = 1;
(2) If L = 2 then P(lim sup{Un = V n}) = 1;
(3) If L = 3 then P(lim sup{Un = V n}) = 0.

4.1. Proof of (4.7). According to Lemma 1.11 and Lemma 1.12 there exists (at
least) two a, b ∈ S(µ) such that a ↔ b and d(a, b) = d(Ai(a), Ai(b)) = β1. We define
a partition of S(µ) into two non-empty sets by taking

C1 = {y ∈ S(µ) such that δµ(a, y) < β1}

and

C2 = {y ∈ S(µ) such that δµ(a, y) ≥ β1}.

Notice that if x ∈ C1 and y ∈ C2 then necessarily d(x, y) ≥ β1. Indeed if
we had d(x, y) < β1 then, according to Lemma 4.1, we would have δµ(a, y) ≤
max{δµ(a, x), δµ(x, y)} < β1 in contradiction with y ∈ C2. It follows that if
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LX
n (C1) 6= LY

n (C
1) then for every σ ∈ Sn there exists at least one 1 ≤ i ≤ n

such that Xi ∈ C1 and Yσ(i) ∈ C2 hence W∞(LX
n , LY

n ) ≥ β1. Thus

lim sup{LX
n (C1) 6= LY

n (C
1)} ⊂ {lim supW∞(LX

n , LY
n ) ≥ β1}

hence

P(lim sup{LX
n (C1) 6= LY

n (C
1)}) ≤ P(lim supW∞(LX

n , LY
n ) ≥ β1).

By defining for every integer i ≥ 1

Ui =

{
1 if Xi ∈ C1

2 if Xi ∈ C2

and Vi accordingly on the ground of Yi we see that

P(lim sup{Un 6= V n}) = P(lim sup{LX
n (C1) 6= LY

n (C
1)})

whence P(lim supW∞(LX
n , LY

n ) ≥ β1) = 1 according to Lemma 4.2, which combined
to (4.6) proves (4.7).

4.2. Proof of (4.8). Here we assume that there is a unique pair {Ai, Aj} of con-
nected components of S(µ) such that Ai ↔ Aj and d(Ai, Aj) = β1. Let a ∈ Ai

and b ∈ Aj be such that a ↔ b and d(a, b) = β1. Since Zµ has no accumu-
lation point there exists (at least) two Ak, Al such that Ak ↔ Al, d(Ak, Al) =
β2 < β1 and (a′, b′) ∈ Ak × Al with a′ ↔ b′ and d(a′, b′) = β2. With C1 and
C2 as defined in the previous section we necessarily have either a′, b′ ∈ C1 or
a′, b′ ∈ C2. Indeed if we had e.g. a′ ∈ C1 and b′ ∈ C2 then we would have
δµ(a, b′) ≤ max{δµ(a, a′), δµ(a′, b′)} < β1 in contradiction with the definition of
C2. So we assume that a′, b′ ∈ C1, the other case works the same way by switching
a and b if needed. We define a partition of C1 into two non-empty sets by setting

C1,1 = {y ∈ C1 such that δµ(a′, y) < β2}

and
C1,2 = {y ∈ C1 such that δµ(a′, y) ≥ β2}.

Again, if x ∈ C1,1 and y ∈ C1,2 then necessarily d(x, y) ≥ β2. It follows that
if W∞(LX

n , LY
n ) < β2 then necessarily LX

n (C1,1) = LY
n (C

1,1) and LX
n (C1,2) =

LY
n (C

1,2) simultaneously hence

{lim infW∞(LX
n , LY

n ) < β2}

⊂ lim sup{W∞(LX
n , LY

n ) < β2}

⊂ lim sup
{
{LX

n (C1,1) = LY
n (C

1,1)} ∩ {LX
n (C1,2) = LY

n (C
1,2)}

}
.

By defining for every integer i ≥ 1

Ui =





1 if Xi ∈ C1,1

2 if Xi ∈ C1,2

3 if Xi ∈ C2

and Vi accordingly on the ground of Yi we see that

P(lim sup{Un = V n})

= P(lim sup
{
{LX

n (C1,1) = LY
n (C

1,1)} ∩ {LX
n (C1,2) = LY

n (C
1,2)}

}
)

hence P(lim inf W∞(LX
n , LY

n ) < β2) = 0 according to Lemma 4.2. Thus, from (4.6)
we deduce that

P(lim infW∞(LX
n , LY

n ) ∈ {β1, β2}) = 1. (4.10)
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Next we show that necessarily P(lim infW∞(LX
n , LY

n ) ≤ β2) = 1. Indeed, it follows
from Lemma 4.2 that P(lim sup{LX

n (C1) = LX
n (C1)}) = 1 so we can define an

increasing sequence (Ti)i≥1 of diverging random times such that for every integer
i ≥ 1, LX

Ti
(C1) = LY

Ti
(C1). We further define four processes by means of

TX,1
1 = inf{n ≥ 1, Xn ∈ C1}, TX,1

i+1 = inf{n > TX,1
i , Xn ∈ C1},

TX,2
1 = inf{n ≥ 1, Xn ∈ C2}, TX,1

i+1 = inf{n > TX,1
i , Xn ∈ C2},

T Y,1
1 = inf{n ≥ 1, Yn ∈ C1}, T Y,1

i+1 = inf{n > T Y,1
i , Yn ∈ C1},

T Y,2
1 = inf{n ≥ 1, Yn ∈ C2}, T Y,1

i+1 = inf{n > T Y,1
i , Yn ∈ C2},

and

X̃ = (XTX,1
1

, XTX,1
2

, . . . , XTX,1
n

, . . . ) Ỹ = (YTY,1
1

, YTY,1
2

, . . . , YTY,1
n

, . . . )

X̂ = (XTX,2
1

, XTX,2
2

, . . . , XTX,2
n

, . . . ) Ŷ = (YTY,2
1

, YTY,2
2

, . . . , YTY,2
n

, . . . ).

In words, we sort the Xi’s and Yi’s according to whether they take values in C1 or
C2. Clearly X̃, Ỹ , X̂ and Ŷ are four independent processes of independent random
variables. The variables X̃i and Ỹj are all distributed according to µ1 which is µ

conditioned on C1 and the X̂i and Ŷj are all distributed according to µ2 which is
µ conditioned on C2. Since for every integer i ≥ 1 we have

W∞(LX
Ti
, LY

Ti
) ≤ max

{
W∞(LX̂

Ti
, LŶ

Ti
),W∞(LX̃

Ti
, LỸ

Ti
)
}

we get

lim infW∞(LX
n , LY

n ) ≤ lim infW∞(LX
Ti
, LY

Ti
)

≤ lim supW∞(LX
Ti
, LY

Ti
)

≤ max
{
lim supW∞(LX̂

n , LŶ
n ), lim supW∞(LX̃

n , LỸ
n )
}
.

But supZµ1 ≤ β2 and supZµ2 ≤ β2 hence

P(lim supW∞(LX̂
n , LŶ

n ) ≤ β2) = P(lim supW∞(LX̃
n , LỸ

n ) ≤ β2) = 1

according to (4.7) whence P(lim infW∞(LX
n , LY

n ) ≤ β2) = 1 which combined with
(4.10) concludes the proof of (4.8).

4.3. Proof of (4.9). Finally let us assume that there are (at least) two different
{Ai, Aj} and {Ak, Al} such that Ai ↔ Aj , Ak ↔ Al and d(Ai, Aj) = d(Ak, Al) =
β1. There exists a, b, a′, b′ such that a ↔ b, a′ ↔ b′, a ∈ Ai, b ∈ Aj , a

′ ∈ Ak and
b′ ∈ Al. Since at least one of Ak or Al is not Ai or Aj , at least one of a′ or b′ is not
a or b, let us denote it c. We define a partition of S(µ) into three non-empty sets
by setting

D1 = {y ∈ S(µ) such that δµ(a, y) < β1}

and
D2 = {y ∈ S(µ) such that δµ(a, y) ≥ β1, δ

µ(c, y) < β1}

and
D3 = {y ∈ S(µ) such that δµ(a, y) ≥ β1, δ

µ(c, y) ≥ β1}.

Again, for any two x and y in two different elements of the partition D1, D2 and
D3 we necessarily have d(x, y) ≥ β1. Hence

{
W∞(LX

n , LY
n ) < β1

}
⊂ {LX

n (D1) = LY
n (D

1)} ∩ {LX
n (D2) = LY

n (D
2)}
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whence

P(lim infW∞(LX
n , LY

n ) < β1) ≤ P(lim sup{W∞(LX
n , LY

n ) < β1})

≤ P(lim sup
{
{LX

n (D1) = LY
n (D

1)} ∩ {LX
n (D2) = LY

n (D
2)}
}
) = 0

according to Lemma 4.2.
Proof of Lemma 4.2 We shall proceed by means of an elementary coupling.

To the sequences U and V we associate the sequences Ũ and Ṽ by setting Ũi =

(u1, . . . , uL) ∈ {0, 1}L with uk = 1 if Ui = k all other components of Ũi being 0.

The random variables Ṽi are defined accordingly on the ground of the Vi’s, and

we set Zi = Ũi − Ṽi. If L = 2 then Zi ∈ {(0, 0), e1,−e1} with e1 = (1,−1) and
P(Zi = e1) = P(Zi = −e1). If L = 3 then Zi ∈ {(0, 0, 0), e1, e2, e3,−e1,−e2,−e3}
with e1 = (1,−1, 0), e2 = (1, 0,−1), e3 = (0, 1,−1) and for every j = 1, 2, 3 we have
P(Zi = ej) = P(Zi = −ej). Hence Zn =

∑n
l=1 Zi, Z0 = (0, . . . , 0) corresponds

to the position of a symmetric random walk on Z
d with d = L(L−1)

2 , and {Un =
V n} = {Zn = 0}, while {Un 6= V n} = {Zn 6= 0}. Thus the first claim corresponds
to the fact that a one-dimensional symmetric random walk is infinitely often away
from zero with probability one. The second claim corresponds to the fact that one-
dimensional symmetric random walks are recurrent. The third claim corresponds
to the fact that three-dimensional symmetric random walks are transient. �

5. Additional proofs

Here we give the proofs of the lemmas presented in Section 2.1. They are ordered
so as to minimize the total length of the paper and not according to the expository
order. Lemmas 2.2, 2.3 and 2.4 are already established in Champion et al. (2008)
and Jylhä (2015) for sequences rather than nets. We give their proofs as well as a
proof of (1.4) for the paper to be self-contained.

5.1. One more lemma. We shall employ the following Portmanteau-type result sev-
eral times in the present section

Lemma 5.1. Let (P j)j∈J be a net of Borel probability measures on a metric space
(Y, δ) that converges weakly to some probability measure P . For every open U ⊂ Y
we have

lim inf
j∈J

P j(U) ≥ P (U).

Proof of Lemma 5.1. We follow the proof of Theorem 11.1.1 in Dudley (2002).
Let F = U c. For every x ∈ Y we define δ(x, F ) = infy∈F δ(x, y) and for every m ≥
1, fm(x) = min(1,mδ(x, F )) and Fm = f−1

m ({1}). We see that fm is an increasing
sequence of bounded and continuous functions that converges to 1U . For every
ε > 0 there exists an M0 such that for every m ≥ M0 we have P (Fm) > P (U)− ε
and for those m we have

lim inf
j∈J

P j(U) ≥ lim inf
j∈J

∫

Y

fm(x)P j(dx)

=

∫

Y

fm(x)P (dx)

≥ P (Fm)

> P (U)− ε
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the conclusion follows by letting ε → 0. �

5.2. Proof of Lemma 2.3. Assume that the announced statement is not true: There
exist an x ∈ S(P ) such that for every net (xj)j∈J satisfying xj ∈ S(P j) the net does
not converge to x. Consider (xj)j∈J with xj defined by d(x, xj) = infy∈S(P j) d(x, y).

Then there exist an ε > 0 and a cofinal L ⊂ J such that for every l ∈ L d(x, xl) > ε.
For every l ∈ L we have P l(B(x, ε/2)) = 0 while P (B(x, ε/2)) > 0 by definition.
This is impossible according to Lemma 5.1 and the conclusion follows. �

5.3. Proof of Lemma 2.4. Let n ≥ 2, (x1, y1), . . . , (xn, yn) ∈ S(P ) and σ ∈ Sn.

Due to Lemma 2.3 for every 1 ≤ i ≤ n there exists (xj
i , y

j
i )j∈J such that for every

j ∈ J (xj
i , y

j
i ) ∈ S(P j) and limj∈J (x

j
i , y

j
i ) = (xi, yi). Since for every j ∈ J, P j is

infinitely cyclically monotone we have max1≤i≤n d(x
j
i , y

j
i ) ≤ max1≤i≤n d(x

j
i , y

j
σ(i))

and passing to the limit we get max1≤i≤n d(xi, yi) ≤ max1≤i≤n d(xi, yσ(i)). �

5.4. Proof of Lemma 2.2. For every j ∈ J we denote xj = supS(P j) and x =
supS(P ). Let us assume that (2.1) does not hold i.e. there exists an η > 0 such
that lim supj∈J xj < x − η. As a consequence there exists a subnet (P l)l∈L of

(P j)j∈J such that for every l ∈ L we have P l(]x − η/2, x + η/2[) = 0 while by
definition P (]x − η/2, x+ η/2[) > 0. But according to Lemma 5.1 we should have
lim inf l∈L P l(]x− η/2, x+ η/2[) ≥ P (]x− η/2, x+ η/2[). The conclusion follows.�

5.5. Proof of Lemma 2.1. Let ν1, ν2 ∈ M1(E) and Π = (A1, . . . , AL) ∈ P . Accord-
ing to Lemma 1.3 there exists P ∈ C∞(ν1, ν2) such that W∞(ν1, ν2) = supS(P ◦
d−1). Consider PΠ ∈ M1({s1, . . . , sL}

2) defined by

PΠ =

L∑

i,j=1

P (Ai ×Aj)δ(si,sj).

Since P ∈ C∞(ν1, ν2) necessarily PΠ ∈ C(π(ν1), π(ν2)) hence

W∞(π(ν1), π(ν2)) ≤ supS(PΠ ◦ d−1)

≤ supS(P ◦ d−1) + 2∆(Π)

≤ W∞(ν1, ν2) + 2∆(Π).

We are left to prove that W∞(ν1, ν2) ≤ W∞(π(ν1), π(ν2))+2∆(Π). Again, accord-
ing to Lemma 1.3 there exists QΠ ∈ C∞(π(ν1), π(ν2)) such that

W∞(π(ν1), π(ν2)) = supS(QΠ ◦ d−1).

Clearly QΠ is of the form QΠ =
∑L

i,j=1 Qi,jδ(si,sj). Now we consider Q ∈ M1(E2)
defined by

Q(F ) =

L∑

i,j=1

Qi,j

ν1(Ai)ν2(Aj)
ν1 ⊗ ν2(F ∩ (Ai ×Aj)). (5.1)

Since QΠ ∈ C(π(ν1), π(ν2)) we see that Qi,j = 0 as soon as ν1(Ai) = 0 or ν2(Aj) = 0
so Q is well defined and we can assume that the sum in (5.1) runs over i, j such
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that ν1(Ai)ν
2(Aj) 6= 0. Let us check that e.g. Q1 = ν1. For every measurable

U ⊂ E we have

Q(U × E) =
L∑

i,j=1

Qi,j

ν1(Ai)ν2(Aj)
ν1 ⊗ ν2((U × E) ∩ (Ai ×Aj))

=

L∑

i,j=1

Qi,j

ν1(Ai)ν2(Aj)
ν1(U ∩ Ai)ν

2(Aj)

=
L∑

i,j=1

Qi,j

ν1(Ai)
ν1(U ∩ Ai)

=
L∑

i=1

1

ν1(Ai)




L∑

j=1

Qi,j


 ν1(U ∩ Ai)

=

L∑

i=1

ν1(U ∩ Ai) (5.2)

= ν1(U)

where (5.2) is due to the fact that QΠ ∈ C(π(ν1), π(ν2)). Now

W∞(ν1, ν2) ≤ supS(Q ◦ d−1)

≤ supS(QΠ ◦ d−1) + 2∆(Π)

≤ W∞(π(ν1), π(ν2)) + 2∆(Π).

which concludes the proof. �

5.6. On W∞ and the Hausdorff distance. Here we prove (1.4) i.e. for any integer
n ≥ 1 and every (x1, . . . , xn), (y1, . . . , yn) in En we have

W∞(LX
n , LY

n ) = dH(S(LX
n ),S(LY

n ))

where LX
n = 1

n

∑n
i=1 δxi

and LY
n = 1

n

∑n
i=1 δyi

. Indeed, for every integer 1 ≤ i ≤ n
and every σ ∈ Sn we have

d(xi, yσ(i)) ≥ inf
y∈S(LY

n )
d(xi, y)

hence

max
i=1,...,n

d(xi, yσ(i)) ≥ sup
x∈S(LX

n )

inf
y∈S(LY

n )
d(x, y)

whence

W∞(LX
n , LY

n ) = min
σ∈Sn

max
i=1,...,n

d(xi, yσ(i)) ≥ sup
x∈S(LX

n )

inf
y∈S(LY

n )
d(x, y).

The proof that W∞(LX
n , LY

n ) ≥ supy∈S(LY
n ) infx∈S(LX

n ) d(x, y) is the same once one

has noticed that W∞(LX
n , LY

n ) = minσ∈Sn
maxi=1,...,n d(xσ(i), yi).

To prove the reverse inequality notice that there exists x∗ ∈ S(LX
n ) and y∗ ∈

S(LY
n ) such that W∞(LX

n , LY
n ) = d(x∗, y∗) and without loss of generality we can

claim that for every y ∈ S(LY
n ) we have d(x∗, y) ≥ d(x∗, y∗). In words, transporting
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the mass at x∗ somewhere else than y∗ would have been at least as expensive. We
get infy∈S(LY

n ) d(x
∗, y) ≥ d(x∗, y∗) hence

sup
x∈S(LX

n )

inf
y∈S(LY

n )
d(x, y) ≥ d(x∗, y∗)

whence dH(S(LX
n ),S(LY

n )) ≥ W∞(LX
n , LY

n ) which concludes the proof of the an-
nounced claim.
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