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Abstract. We prove that classical and free Brownian motions with initial distri-
butions are unimodal for sufficiently large time, under some assumption on the
initial distributions. The assumption is almost optimal in some sense. Similar re-
sults are shown for a symmetric stable process with index 1 and a positive stable
process with index 1/2. We also prove that free Brownian motion with initial sym-
metric unimodal distribution is unimodal, and discuss strong unimodality for free
convolution.

1. Introduction

A Borel measure µ on R is unimodal if there exist a ∈ R and a function f : R →
[0,∞) which is non-decreasing on (−∞, a) and non-increasing on (a,∞), such that

µ(dx) = µ({a})δa + f(x) dx. (1.1)

The most outstanding result on unimodality is Yamazato’s theorem (Yamazato,
1978) saying that all classical selfdecomposable distributions are unimodal. After
this result, in Hasebe and Thorbjørnsen (2016), Hasebe and Thorbjørnsen proved
the free analog of Yamazato’s result: all freely selfdecomposable distributions are
unimodal. The unimodality has several other similarity points between the classical
and free probability theories Hasebe and Sakuma (2017). However, it is not true
that the unimodality shows complete similarity between the classical and free prob-
ability theories. For example, classical compound Poisson processes are likely to be
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non-unimodal in large time (Wolfe, 1978), while free Lévy processes with compact
support become unimodal in large time (Hasebe and Sakuma, 2017). In this paper,
we mainly focus on the unimodality of classical and free Brownian motions with
initial distributions and consider whether the classical and free versions share simi-
larity points or not. In free probability theory, the semicircle distribution is the free
analog of the normal distribution. In random matrix theory, it appears as the limit
of eigenvalue distributions of Wigner matrices as the size of the random matrices
goes to infinity. Free Brownian motion is defined as a process with free indepen-
dent increments, started at 0 and distributed as the centered semicircle distribution
S(0, t) at time t > 0. Furthermore, we can provide free Brownian motion with ini-
tial distribution µ which is a process with free independent increments distributed
as µ at t = 0 and as µ⊞ S(0, t) at time t > 0. The definition of ⊞, called additive
free convolution, is provided in Section 2.1. The additive free convolution is the
distribution of the sum of two random variables which are freely independent (for
the definition of free independence see Nica and Speicher, 2006). In Biane (1997),
Biane gave the density function formula of free Brownian motion with initial distri-
bution (see Section 2.2). In our studies, we first consider the symmetric Bernoulli
distribution µ := 1

2δ+1 +
1
2δ−1 as an initial distribution and compute the density

function of µ⊞ S(0, t). Then we see that the probability distribution µ⊞ S(0, t) is
unimodal for t ≥ 4 (and it is not unimodal for 0 < t < 4). This computation leads
to a natural problem:

Problem 1.1. For which class of probability measures µ on R does the free Brownian
motion with initial distribution µ become unimodal for sufficiently large time?

We then answer to this problem as follows (formulated as Theorem 3.2 and
Proposition 3.4 in Section 3.1):

Theorem 1.2. (1) Let µ be a compactly supported probability measure on R and
Dµ := sup{|x−y| : x, y ∈ supp(µ)}. Then µ⊞S(0, t) is unimodal for t ≥ 4D2

µ.
(2) Let f : R → [0,∞) be a Borel measurable function. Then there exists a prob-

ability measure µ on R such that µ ⊞ S(0, t) is not unimodal for any t > 0
and

∫

R

f(x) dµ(x) <∞. (1.2)

Note that such a measure µ is not compactly supported by (1).

The function f can grow very fast such as ex
2

, and so, a tail decay of the initial
distribution does not imply large time unimodality.

The corresponding classical problem is natural, that is, for which class of initial
distributions on R does Brownian motion become unimodal for sufficiently large
time t > 0? We prove in this direction the following results (formulated as Theo-
rem 4.3 and Proposition 4.2 in Section 4, respectively):

Theorem 1.3. (1) Let µ be a probability measure on R such that

α :=

∫

R

eεx
2

dµ(x) <∞ (1.3)

for some ε > 0. Then the distribution µ ∗ N(0, t) is unimodal for all t ≥
36 log(2α)

ε .
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(2) There exists a probability measure µ on R satisfying that
∫

R

eA|x|p dµ(x) <∞ for all A > 0 and 0 < p < 2 (1.4)

such that µ ∗N(0, t) is not unimodal for any t > 0.

Thus, in the classical case, the tail decay (1.3) is sufficient and almost necessary
to guarantee the large time unimodality. From these results, we conclude that the
classical and free versions of the problems of unimodality for Brownian motions
with initial distributions share common features as both become unimodal in large
time under each assumption.

Further related results in this paper are as follows. In Section 3.2 we prove that
µ ⊞ S(0, t) is always unimodal whenever µ is symmetric around 0 and unimodal
(see Theorem 3.6). In Section 3.3, we define freely strongly unimodal probability
measures as a natural free analogue of strongly unimodal probability measures.
We conclude that the semicircle distributions are not freely strongly unimodal
(Lemma 3.9). More generally, we have the following result (restated as Theo-
rem 3.10 later):

Theorem 1.4. Let λ be a probability measure with finite variance, not being a delta
measure. Then λ is not freely strongly unimodal.

On the other hand, there are many strongly unimodal distributions with finite
variance in classical probability including the normal distributions and exponential
distributions. Thus the notion of strong unimodality breaks the similarity between
the classical and free probability theories.

In Section 5, we focus on other processes with classical/free independent in-
crements with initial distributions. We consider a symmetric stable process with
index 1 and a positive stable process with index 1/2. Then we prove large time
unimodality similar to the case of Brownian motion but under different tail decay
assumptions.

2. Preliminaries

2.1. Definition of free convolution. Let µ be a probability measure on R. The
Cauchy transform

Gµ(z) :=

∫

R

1

z − x
dµ(x) (2.1)

is analytic on the complex upper half plane C+. We define the truncated cones

Γ±
α,β := {z ∈ C

± : |Re(z)| < α|Im(z)|, Im(z) > β}, α > 0, β ∈ R. (2.2)

In Bercovici and Voiculescu (1993, Proposition 5.4), it was proved that for any
γ < 0 there exist α, β > 0 and δ < 0 such that Gµ is univalent on Γ+

α,β and

Γ−
γ,δ ⊂ Gµ(Γ

+
α,β). Therefore the right inverse function G−1

µ exists on Γ−
γ,δ. We

define the R-transform of µ by

Rµ(z) := G−1
µ (z)− 1

z
, z ∈ Γ−

γ,δ. (2.3)

Then for any probability measures µ and ν on R there exists a unique probability
measure λ on R such that

Rλ(z) = Rµ(z) +Rν(z), (2.4)
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for all z in the intersection of the domains of the three transforms. We denote
λ := µ⊞ ν and call it the (additive) free convolution of µ and ν.

2.2. Free convolution with semicircle distributions. Almost all the materials and
methods in this section are following (Biane, 1997). The semicircle distribution
S(0, t) of mean 0 and variance t > 0 is the probability measure with density

1

2πt

√

4t− x2, (2.5)

supported on the interval [−2
√
t, 2

√
t]. We then compute its Cauchy transform and

its R-transform (see, for example, Nica and Speicher, 2006):

GS(0,t)(z) =
z −

√
z2 − 4t

2t
, z ∈ C

+, (2.6)

where the branch of the square root on C \ R+ is such that
√
−1 = i. Moreover

RS(0,t)(z) = tz, z ∈ C
−. (2.7)

Let µ be a probability measure on R and let µt = µ⊞ S(0, t). Then we define the
following set:

Ut :=

{

u ∈ R

∣

∣

∣

∣

∫

R

1

(x− u)2
dµ(x) >

1

t

}

, (2.8)

and the following function from R to [0,∞) by setting

vt(u) := inf

{

v ≥ 0

∣

∣

∣

∣

∫

R

1

(x− u)2 + v2
dµ(x) ≤ 1

t

}

. (2.9)

Then vt is continuous on R and one has Ut = {x ∈ R | vt(u) > 0}. Moreover, for
every u ∈ Ut, vt(u) is the unique solution v > 0 of the equation

∫

R

1

(x− u)2 + v2
dµ(x) =

1

t
. (2.10)

We define
Ωt,µ := {x+ iy ∈ C | y > vt(x)}. (2.11)

Then the map Ht(z) := z + RS(0,t)(Gµ(z)), defined on C+, is a homeomorphism

from Ωt,µ to C+ ∪ R and it is conformal from Ωt,µ onto C+. Hence there exists an

inverse function Ft : C+ ∪ R → Ωt,µ. By Biane (1997, Lemma 1, Proposition 1),

the domain Ωt,µ is equal to the connected component of the set H−1
t (C+) which

contains iy for large y > 0 and for all z ∈ C+ one has

Gµt(z) = Gµt(Ht(Ft(z)))

= Gµt

(

Ft(z) +RS(0,t)

(

Gµ(Ft(z))
)

)

= Gµ(Ft(z)).

(2.12)

MoreoverGµt has a continuous extension to C+∪R. Then µt is Lebesgue absolutely
continuous by Stieltjes inversion and the density function pt : R → [0,∞) of µt is
given by

pt(ψt(x)) = − 1

π
lim

y→+0
Im(Gµt(ψt(x) + iy)) =

vt(x)

πt
, x ∈ R, (2.13)

where

ψt(x) = Ht(x+ ivt(x)) = x+ t

∫

R

(x− u)

(x− u)2 + vt(x)2
dµ(u). (2.14)
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It can be shown that ψt is a homeomorphism of R. Furthermore the topological
support of pt is given by ψt(Ut), and pt extends to a continuous function on R and
is real analytic in {x ∈ R : pt(x) > 0}.

Example 2.1. Let µ := 1
2δ−1+

1
2δ+1 be the symmetric Bernoulli distribution. Recall

that the topological support of the density function pt is equal to ψt(Ut). If 0 <
t ≤ 1, we have

Ut =







u ∈ R

∣

∣

∣

∣

∣

∣

√

2 + t−
√
t2 + 8t

2
< |u| <

√

2 + t+
√
t2 + 8t

2







, (2.15)

and if t > 1, we have

Ut =







u ∈ R

∣

∣

∣

∣

∣

∣

−

√

2 + t+
√
t2 + 8t

2
< u <

√

2 + t+
√
t2 + 8t

2







. (2.16)

If 0 < t ≤ 1 then the number of connected components of Ut is two, and therefore
µt is not unimodal. If t > 1 then Ut is connected. By the density formula (2.13),
the unimodality of µt is equivalent to the unimodality of the function vt(u), the
latter being expressed in the form

vt(u) =

√

−(2u2 + 2− t) +
√
t2 + 16u2

2
. (2.17)

Calculating its first derivative then shows that µt is unimodal if and only if t ≥ 4;
see Figures 2.1–2.6.

According to Example 2.1, we have a question about what class of initial distri-
butions implies the large time unimodality of free Brownian motion. We will give
a result for this in Section 3.1.
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Figure 2.2. p1(x)

-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

0.5

Figure 2.3. p2(x)

-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

0.5

Figure 2.4. p3(x)

-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

0.5

Figure 2.5. p4(x)

-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

0.5

Figure 2.6. p7(x)



358 T. Hasebe and Y. Ueda

2.3. A basic lemma for unimodality. A unimodal distribution is allowed to have a
plateau or a discontinuous point in its density such as the uniform distribution or
the exponential distribution. If we exclude such cases, then unimodality can be
characterized in terms of levels of density.

Lemma 2.2. Let µ be a probability measure on R that is Lebesgue absolutely con-
tinuous. Suppose that its density p(x) extends to a continuous function on R and
is real analytic in {x ∈ R : p(x) > 0}. Then µ is unimodal if and only if, for any
a > 0, the equation p(x) = a has at most two solutions x.

The proof is just to use the intermediate value theorem and the fact that a real
analytic function never has plateaux. Note that the idea of the above lemma was
first introduced by Haagerup and Thorbjørnsen (2014) to prove that a “free gamma
distribution” is unimodal.

3. Free Brownian motion with initial distribution

3.1. Large time unimodality for free Brownian motion. The semicircular distribu-
tion is the free analogue of the normal distribution. Therefore, a process with free
independent increments is called (standard) free Brownian motion with initial dis-
tribution µ if its distribution at time t is given by µ ⊞ S(0, t). In this section, we
firstly prove that free Brownian motion with compactly supported initial distribu-
tion is unimodal for sufficiently large time, by using Biane’s density formula (see
Section 2.2).

Lemma 3.1. Suppose that t > 0. The following statements are equivalent.

(1) µ⊞ S(0, t) is unimodal.
(2) For any R > 0 the equation

∫

R

1

(x− u)2 +R2
dµ(x) =

1

t
(3.1)

has at most two solutions u ∈ R.

Proof : We adopt the notations µt = µ ⊞ S(0, t), vt, pt and ψt in Section 2.2. This
proof is similar to Hasebe and Thorbjørnsen (2016, Proposition 3.8). Recall that µt

is absolutely continuous with respect to Lebesgue measure and the density function
pt is continuous on R since its Cauchy transform Gµt has a continuous extension
to C+ ∪R, and the density function is real analytic in ψt(Ut) and continuous on R

by Section 2.2.
Suppose (2) first. Since ψt is a homeomorphism of R, by Lemma 2.2 it suffices

to show that for any a > 0 the equation

a = pt(ψt(u)) =
vt(u)

πt
, u ∈ R (3.2)

has at most two solutions u ∈ R. Since vt(u) is a unique solution of the equation
(2.10) if it is positive, then we have

{

u ∈ R

∣

∣

∣

∣

a =
vt(u)

πt

}

=

{

u ∈ R

∣

∣

∣

∣

∫

R

1

(x− u)2 + (πat)2
dµ(x) =

1

t

}

. (3.3)

By the assumption (2), the equation a = vt(u)
πt has at most two solutions in R.
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Conversely, suppose that (2) does not hold. Then for some R > 0 there are three
distinct solutions u1, u2, u3 ∈ R to (3.1). By (3.3) this shows that vt(ui) = R and
hence pt(ψt(ui)) =

R
πt for i = 1, 2, 3. Again by Lemma 2.2, µt is not unimodal. �

Now we are ready to prove Theorem 1.2 (1).

Theorem 3.2. Let µ be a compactly supported probability measure, and let Dµ be
the diameter of the support: Dµ = sup{|x− y| : x, y ∈ supp(µ)}. Then µ ⊞ S(0, t)
is unimodal for t ≥ 4D2

µ.

Proof : Applying a shift we may assume that µ is supported on [−Dµ

2 ,
Dµ

2 ]. For
fixed R > 0, we define by

ξR(u) :=

∫

R

1

(x − u)2 +R2
dµ(x), u ∈ R. (3.4)

Then we have

ξ′R(u) =

∫

Dµ
2

−Dµ
2

2(x− u)

{(x− u)2 +R2}2 dµ(x),

ξ′′R(u) =

∫

Dµ
2

−Dµ
2

6(x− u)2 − 2R2

{(x− u)2 +R2}3 dµ(x).
(3.5)

If u < −Dµ

2 , then x−u > −Dµ

2 − (−Dµ

2 ) = 0 for all x ∈ supp(µ), so that ξ′R(u) > 0.

If u >
Dµ

2 , then x − u <
Dµ

2 − Dµ

2 = 0 for all x ∈ supp(µ), so that ξ′R(u) < 0. We

take t ≥ 4D2
µ and consider the form of ξR(u) on u ∈ (−Dµ

2 ,
Dµ

2 ).

If 0 < R <
√
3Dµ, then (x−u)2+R2 < (

Dµ

2 +
Dµ

2 )2+(
√
3Dµ)

2 = 4D2
µ ≤ t, so that

ξR(u) =

∫

R

1

(x− u)2 +R2
dµ(x) >

1

t
, u ∈

(

−Dµ

2
,
Dµ

2

)

. (3.6)

Hence the equation ξR(u) = 1
t has at most two solutions u ∈ R if t ≥ 4D2

µ. If

R ≥
√
3Dµ, then the function ξR(u) satisfies the following three conditions:

• ξ′R(u) > 0 for all u < −Dµ

2 and ξ′R(u) < 0 for all u >
Dµ

2 ,
• ξ′R is continuous on R,

• ξ′′R(u) < 0 for all u ∈
(

−Dµ

2 ,
Dµ

2

)

.

By the intermediate value theorem, ξ′R has a unique zero in [−Dµ

2 ,
Dµ

2 ] and hence

ξR takes a unique local maximum in the interval [−Dµ

2 ,
Dµ

2 ] (and therefore it is

a unique global maximum on R). Therefore the equation ξR(u) =
1
t has at most

two solutions if t ≥ 4D2
µ. Hence we have that the free convolution µ ⊞ S(0, t) is

unimodal if t ≥ 4D2
µ by Lemma 3.1. �

Problem 3.3. What is the optimal universal constant C > 0 such that µ ⊞ S(0, t)
is unimodal for all t ≥ CD2

µ and all probability measures µ with compact support?

We have already shown that C ≤ 4. Recall from Example 2.1 that if µ is the
symmetric Bernoulli distribution on {−1, 1}, then µ ⊞ S(0, t) is unimodal if and
only if t ≥ 4. Since the diameter Dµ of the support of µ is 2, we conclude that
2 ≤ C ≤ 4.

The next question is whether there exists a probability measure µ such that
µ ⊞ S(0, t) is not unimodal for any t > 0 or at least for sufficiently large t > 0.
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Such a distribution must have an unbounded support if it exists. Such an example
can be constructed with an idea similar to Huang (2015, Proposition 4.13) (see also
Hasebe and Sakuma, 2017, Example 5.3).

Proposition 3.4. Let f : R → [0,∞) be a Borel measurable function. Then there
exists a probability measure µ such that µ ⊞ S(0, t) is not unimodal at any t > 0
and

∫

R

f(x) dµ(x) <∞. (3.7)

Proof : We follow the notations in Section 2.2. Let {wn}n and {an}n be sequences
in R satisfying

• wn > 0,
∑∞

n=1 wn = 1,
• an+1 > an, n ≥ 1,
• lim

n→∞
(an+1 − an) = ∞.

Consider the probability measure µ :=
∑∞

n=1 wnδan on R and define the function

Xµ(u) :=

∫

R

1

(u− x)2
dµ(x) =

∞
∑

n=1

wn

(u− an)2
. (3.8)

Recall that Ut is the set of u ∈ R such that Xµ(u) > 1/t. Set bk :=
ak+1+ak

2 for all
k ∈ N. Then we have

|bk − an| ≥
ak+1 − ak

2
, k, n ∈ N (3.9)

and so

Xµ(bk) ≤
(

2

ak+1 − ak

)2 ∞
∑

n=1

wn =

(

2

ak+1 − ak

)2

→ 0

as k → ∞. This means that for each t > 0 there exists an integer K(t) > 0 such
that Xµ(bk) <

1
t for all k ≥ K(t). This implies that, for k ≥ K(t), the closure of

Ut does not contain bk. Note that the set Ut is an open set. Therefore, there exists
a sequence {εk(t)}∞k=K(t)+1 of positive numbers such that

Ut ∩ (bK(t),∞) =

∞
⋃

k=K(t)+1

(ak − εk(t), ak + εk(t)), (3.10)

where the closures of the intervals are disjoint. Thus the set supp(µt) = ψt(Ut)
consists of infinitely many connected components for all t > 0, and hence µt is not
unimodal for any t > 0.

In the above construction, the weights wn are only required to be positive. There-
fore, we may take

wn =
c

n2 max{f(an), 1}
, (3.11)

where c > 0 is a normalizing constant. Then the integrability condition (3.7) is
satisfied. �

Proposition 3.4 shows that tail decay estimates of the initial distribution do not
guarantee the large time unimodality. In Section 4 we shall see that the situation
is different for classical Brownian motion.
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3.2. Free Brownian motion with symmetric initial distribution. This section proves
a unimodality result of different flavor. It is well known that if µ and ν are sym-
metric unimodal distributions, then µ ∗ ν is also (symmetric) unimodal (see Sato,
2013, Exercise 29.22). The free analogue of this statement is not known.

Conjecture 3.5. Let µ and ν be symmetric unimodal distributions. Then µ⊞ ν is
unimodal.

We can give a positive answer in the special case when one distribution is a
semicircle distribution.

Theorem 3.6. Let µ be a symmetric unimodal distribution on R. Then µ⊞S(0, t)
is unimodal for any t > 0.

Remark 3.7. There is a unimodal probability measure µ such that µ⊞S(0, 1) is not
unimodal (see Lemma 3.9). Hence we cannot remove the assumption of symmetry
of µ.

Proof of Theorem 3.6. By Lemma 3.1 it suffices to show that for any R > 0 the
equation

∫

R

1

(u− x)2 +R2
dµ(x) =

1

t
(3.12)

has at most two solutions u ∈ R. Up to a constant multiplication, the LHS is the
density of µ∗CR, which is unimodal since µ and CR are symmetric unimodal. Since
the density of µ ∗ CR is real analytic, Lemma 2.2 implies that the equation (3.12)
has at most two solutions. This shows that µ⊞ S(0, t) is unimodal. �

3.3. Freely strong unimodality. In classical probability, a probability measure is
said to be strongly unimodal if µ ∗ ν is unimodal for all unimodal distributions
ν on R. A distribution is strongly unimodal if and only if the distribution is
Lebesgue absolutely continuous, supported on an interval and a version of its density
is log-concave (see Sato, 2013, Theorem 52.3). From this characterization, the
normal distributions are strongly unimodal. We discuss the free version of strong
unimodality.

Definition 3.8. A probability measure µ on R is said to be freely strongly unimodal
if µ⊞ ν is unimodal for all unimodal distributions ν on R.

Lemma 3.9. The semicircle distributions are not freely strongly unimodal.

Proof : The Cauchy distribution is not strongly unimodal since its density is not
log-concave. Hence, there exists a unimodal probability measure µ such that µ∗C1

is not unimodal. Since the density of µ ∗ C1 is real analytic on R, by Lemma 2.2
there exists t > 0 such that the equation

π
d(µ ∗ C1)

dx
(x) =

∫

R

1

(x − y)2 + 1
dµ(y) =

1

t
(3.13)

has at least three distinct solutions x1, x2, x3 ∈ R. Lemma 3.1 then implies that
S(0, t)⊞µ is not unimodal. By changing the scaling, we conclude that no semicircle
distributions are freely strongly unimodal. �

Theorem 3.10. Let λ be a probability measure with finite variance, not being a
delta measure. Then λ is not freely strongly unimodal.
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Proof : We may assume that λ has mean 0. Suppose that λ is freely strongly
unimodal. A simple induction argument shows that λ⊞n is freely strongly unimodal
for all n ∈ Z+. We derive a contradiction below. By Lemma 3.9 we can take
a unimodal probability measure µ such that µ ⊞ S(0, 1) is not unimodal. Our
hypothesis shows that the measure D√

nv(µ) ⊞ λ⊞n is unimodal, where v is the
variance of λ and Dc(ρ) is the push-forward of a measure ρ by the map x 7→
cx for c ∈ R. By the free central limit theorem (Maassen, 1992, Theorem 5.2),
the unimodal distributions D1/

√
nv(D

√
nv(µ) ⊞ λ⊞n) = µ ⊞ D1/

√
nv(λ

⊞n) weakly

converge to µ⊞S(0, 1) as n→ ∞. Since the set of unimodal distributions is weakly
closed (see Sato, 2013, Exercise 29.20), we conclude that µ⊞S(0, 1) is unimodal, a
contradiction. �

Problem 3.11. Does there exist a freely strongly unimodal probability measure that
is not a delta measure?

4. Classical Brownian motion with initial distribution

This section discusses large time unimodality for classical standard Brownian
motion with an initial distribution µ, which is a process with independent incre-
ments distributed as µ∗N(0, t) at time t ≥ 0. Before going to the general case, one
example will be helpful in understanding unimodality for µ ∗N(0, t).

Example 4.1. Elementary calculus shows that

1

2
(δ−1 + δ1) ∗N(0, t) (4.1)

is unimodal if and only if t ≥ 1; see Figures 4.7-4.12.
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Figure 4.7. t = 0.25
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Figure 4.8. t = 0.5
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Figure 4.9. t = 0.75
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Figure 4.10. t = 1
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Figure 4.11. t = 2
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Figure 4.12. t = 4

This simple example suggests that Brownian motion becomes unimodal for suffi-
ciently large time, possibly under some condition on the initial distribution. In some
sense, we give an almost optimal condition on the initial distribution for the large
time unimodality to hold. We start by providing an example of initial distribution
with which the Brownian motion never becomes unimodal.
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Proposition 4.2. There exists a probability measure µ on R such that µ ∗N(0, t)
is not unimodal at any t > 0, and

∫

R

eA|x|pdµ(x) <∞ (4.2)

for all A > 0 and 0 < p < 2.

Proof : We consider sequences {wn}n∈N ⊂ (0,∞) and {an}n∈N ⊂ R such that

∞
∑

n=1

wn = 1, (4.3)

bk := inf
n∈Z+\{k}

|ak − an − 1| → ∞ as k → ∞. (4.4)

Moreover we assume that for all t > 0 there exists k0 = k0(t) ∈ N such that

k ≥ k0(t) ⇒ wke
− 1

2t > bke
− b2k

2t . (4.5)

Define a probability measure µ by setting µ :=
∑∞

n=1 wnδan and the following
function:

ft(x) :=
√
2πt · d(µ ∗N(0, t))

dx
(x) =

∞
∑

n=1

wne
− (x−an)2

2t , x ∈ R. (4.6)

Then we have

f ′
t(x) =

∞
∑

n=1

wn

(

−x− an
t

)

e−
(x−an)2

2t , x ∈ R. (4.7)

If needed we may replace k0(t) by a larger integer so that bk >
√
t holds for all

k ≥ k0(t). For k ≥ k0(t) we have

f ′
t(ak − 1) =

wk

t
e−

1
2t −

∑

n∈N,n6=k

wn

(ak − an − 1

t

)

e−
(ak−an−1)2

2t

≥ wk

t
e−

1
2t −

∑

n∈N,n6=k

wn
|ak − an − 1|

t
e−

(ak−an−1)2

2t

≥ wk

t
e−

1
2t −

∑

n∈N,n6=k

wn
bk
t
e−

b2k
2t

≥ 1

t

(

wke
− 1

2t − bke
− b2k

2t

)

> 0,

(4.8)

where we used the fact that x 7→ |x|e− x2

2t takes the global maximum at x = ±
√
t

on the third inequality and the assumption (4.5) on the last line. This implies that
µ ∗N(0, t) is not unimodal for any t > 0.

Next we take specific sequences {wn}n and {an}n satisfying the conditions (4.3)–
(4.5). Set ak = ak, k ∈ N where a ≥ 2. Note that there exists some constant c > 0
such that bk ≥ cak for all k ∈ N. Hence we have that bk → ∞ as k → ∞. Moreover
we set

wk :=Me−
b2k
k , (4.9)
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whereM > 0 is a normalized constant, that is, M = (
∑∞

k=1 e
− b2

k
k )−1 (note that the

series converges). Since bk → ∞ as k → ∞, we have

bke
− b2k

2t

wk
=

1

M
bke

b2k
k − b2k

2t → 0, as k → ∞. (4.10)

For all t > 0 there exists k0 = k0(t) ∈ N such that k ≥ k0 implies that e−
1
2t >

bke
− b2k

2t /wk. Therefore the sequences {wn}n and {an}n satisfy the condition (4.5).
Finally we show that µ =

∑∞
n=1 wnδan has the property (4.2). For every A > 0

and 0 < p < 2, using the inequality bk ≥ cak shows that
∫

R

eA|x|p dµ(x) =
∞
∑

k=1

wke
A|ak|p =M

∞
∑

k=1

e−k−1b2keAakp

≤M
∞
∑

k=1

e−Aapk(c2A−1k−1a(2−p)k−1) <∞.

(4.11)

Thus the proof is complete. �

Note that for any sequences {wn}n and {an}n satisfying the conditions (4.3)–
(4.5) the distribution µ =

∑∞
n=1 wnδan has the following property:

∫

R

eεx
2

dµ(x) = ∞ for all ε > 0. (4.12)

Then we have a natural question whether the large time unimodality of µ ∗N(0, t)
holds or not if the initial distribution µ does not satisfy the condition (4.12). We
solve this question as follows.

Theorem 4.3. Let µ be a probability measure on R such that

α :=

∫

R

eεx
2

dµ(x) <∞. (4.13)

for some ε > 0. Then µ ∗N(0, t) is unimodal for t ≥ 36 log(2α)
ε .

Remark 4.4. The proof becomes much easier if we assume that µ has a compact
support.

Proof of Theorem 4.3: For x > 0 we have

µ(|y| > x) =

∫

|y|>x

1 dµ(y) ≤
∫

|y|>x

eεy
2

eεx2 dµ(y) ≤ αe−εx2

. (4.14)

Let

ft(x) :=
√
2πt · d(µ ∗N(0, t))

dx
(x) =

∫

R

e−
(x−y)2

2t dµ(y). (4.15)

Then we have

f ′
t(x) =

∫

R

(y − x

t

)

e−
(y−x)2

2t dµ(y)

=

∫ ∞

x

y − x

t
e−

(y−x)2

2t dµ(y)−
∫ x

−∞

x− y

t
e−

(x−y)2

2t dµ(y).

(4.16)

For x > 0, we have
∫ ∞

x

y − x

t
e−

(y−x)2

2t dµ(y) ≤
√
t

t
e−

1
2µ((x,∞)) ≤ α√

t
e−

1
2−εx2

. (4.17)
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For x ≥
√
t

2 , we have

∫ x

−∞

x− y

t
e−

(x−y)2

2t dµ(y) ≥
∫ x−

√

t
3

−3x

x− y

t
e−

(x−y)2

2t dµ(y)

≥ 1

t
min

{

√
t

3
e−

1
18 , 4xe−

8x2

t

}

µ

(

[

−3x, x−
√
t

3

]

)

.

(4.18)

Now the function g(x) := 4xe−
8x2

t has a local maximum at x =
√
t

4 , and hence for

all x ≥
√
t

2 ,

g(x) ≤ 2e−2
√
t <

1

3
e−

1
18

√
t, (4.19)

where 2e−2 ≈ 0.2706 and 1
3e

− 1
18 ≈ 0.3153. Hence we have

∫ x

−∞

x− y

t
e−

(x−y)2

2t dµ(y) ≥ 4x

t
e−

8x2

t µ

(

[

−3x, x−
√
t

3

]

)

≥ 4x

t
e−

8x2

t µ

(

[

−
√
t

6
,

√
t

6

]

)

≥ 2√
t
e−

8x2

t (1− αe−
εt
36 ),

(4.20)

where the last inequality holds thanks to (4.14) and x ≥
√
t

2 . Therefore if x ≥
√
t

2
then

f ′
t(x) ≤

α√
t
e−

1
2−εx2 − 2√

t
e−

8x2

t (1− αe−
εt
36 )

=
α√
t
e−

1
2−εx2

{

1− 2e
1
2

α
eεx

2− 8x2

t (1 − αe−
εt
36 )

}

.

(4.21)

If t ≥ 16
ε then eεx

2− 8x2

t ≥ e
1
2 εx

2 ≥ e
εt
8 . Hence if t ≥ 16

ε then

f ′
t(x) ≤

α√
t
e−

1
2−εx2

{

1− 2e
1
2

α
e

εt
8 (1− αe−

εt
36 )

}

. (4.22)

If t ≥ 36 log(2α)
ε then 1− αe−

εt
36 ≥ 1

2 and we have

1− 2e
1
2

α
e

εt
8 (1− αe−

εt
36 ) ≤ 1− e

1
2 · 2 9

2 · α 7
2 < 0. (4.23)

By taking t ≥ max{ 16
ε ,

36 log(2α)
ε } = 36 log(2α)

ε , we have

f ′
t(x) < 0 if x ≥

√
t

2
. (4.24)

Similarly, we have

f ′
t(x) > 0 if x ≤ −

√
t

2
. (4.25)
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Next, we will show that f ′′
t (x) < 0 for all x ∈ R with |x| <

√
t

2 . We then calculate
the following

f ′′
t (x) =

∫

R

(x− y)2 − t

t2
e−

(x−y)2

2t dµ(y)

=

∫

|x−y|>
√
t

(x− y)2 − t

t2
e−

(x−y)2

2t dµ(y)

−
∫

|x−y|≤
√
t

t− (x − y)2

t2
e−

(x−y)2

2t dµ(y).

(4.26)

Since the function h(u) := u2−t
t2 e−

u2

2t has a local maximum at u = ±
√
3t, we have

∫

|x−y|>
√
t

(x− y)2 − t

t2
e−

(x−y)2

2t dµ(y) ≤ 2

t
e−

3
2µ([x−

√
t, x+

√
t]c). (4.27)

For all x ∈ R with |x| <
√
t

2 , we have [x−
√
t, x+

√
t]c ⊂

[

−
√
t

2 ,
√
t

2

]c
, and therefore

∫

|x−y|>
√
t

(x− y)2 − t

t2
e−

(x−y)2

2t dµ(y) ≤ 2

t
e−

3
2µ
([

−
√
t

2
,

√
t

2

]c)

≤ 2

t
e−

3
2αe−

εt
4 .

(4.28)

Since the function −h(u) is decreasing on [0,
√
3t], we have

∫

|x−y|≤
√
t

t− (x− y)2

t2
e−

(x−y)2

2t dµ(y) ≥
∫

|x−y|≤2
√

t
3

t− (x− y)2

t2
e−

(x−y)2

2t dµ(y)

≥ t− 4
9 t

t2
e−

4
9
t

2t µ
([

x− 2
√
t

3
, x+

2
√
t

3

])

=
5

9t
e−

2
9µ
([

x− 2
√
t

3
, x+

2
√
t

3

])

≥ 5

9t
e−

2
9µ
([

−
√
t

6
,

√
t

6

])

≥ 5

9t
e−

2
9 (1− αe−

εt
36 ).

(4.29)

Therefore

f ′′
t (x) ≤

2

t
e−

3
2αe−

εt
4 − 5

9t
e−

2
9 (1 − αe−

εt
36 )

=
1

t

{

2e−
3
2αe−

εt
4 − 5

9
e−

2
9 (1 − αe−

εt
36 )
}

.

(4.30)

If t ≥ 36 log(2α)
ε , then

2e−
3
2αe−

εt
4 − 5

9
e−

2
9 (1− αe−

εt
36 ) ≤ e−

3
2

(2α)8
− 5

18
e−

2
9 < 0, (4.31)

and therefore f ′′
t (x) < 0 if |x| <

√
t

2 .
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To summarize, if t ≥ 36 log(2α)
ε , then we have the following properties:

x ≤ −
√
t

2
⇒ f ′

t(x) > 0,

x ≥
√
t

2
⇒ f ′

t(x) < 0,

|x| <
√
t

2
⇒ f ′′

t (x) < 0.

(4.32)

Hence ft(x) has a unique local maximum in
(

−
√
t

2 ,
√
t

2

)

when t ≥ 36 log(2α)
ε , which

is a unique global maximum on R as well. Therefore µ ∗ N(0, t) is unimodal for

t ≥ 36 log(2α)
ε . �

Remark 4.5. If µ is unimodal then µ ∗N(0, t) is unimodal for all t > 0. This is a
consequence of the strong unimodality of the normal distribution N(0, t) (see Sec-
tion 3.3), in contrast with the failure of freely strong unimodality of the semicircle
distribution (see Lemma 3.9).

We close this section by placing a problem for future research.

Problem 4.6. Estimate the position of the mode of classical Brownian motion with
initial distributions satisfying the assumption (4.13). Our proof shows that for
t ≥ 36

ε log(2α), the mode is located in the interval [−
√
t/2,

√
t/2]. How about free

Brownian motion?

5. Large time unimodality for stable processes with index 1 and index

1/2 with initial distributions

We investigate large time unimodality for stable processes with index 1 (follow-
ing Cauchy distributions) and index 1/2 (following Lévy distributions) with initial
distributions.

5.1. Cauchy process with initial distribution. Let {Ct}t≥0 be the symmetric Cauchy
distribution

Ct(dx) :=
t

π(x2 + t2)
· 1R(x) dx, x ∈ R, C0 = δ0, (5.1)

which forms both classical and free convolution semigroups. A Cauchy process with
initial distribution µ is a process with independent increments that follows the law
µ ∗Ct at time t ≥ 0. It is known that the Cauchy distribution satisfies the identity

µ⊞ Ct = µ ∗ Ct (5.2)

for any µ and t ≥ 0, and so the distributions µ∗Ct can also be realized as the laws at
time t ≥ 0 of a process with free independent increments with initial distribution µ.
The authors do not know a written proof of (5.2) in the literature, so give a proof
below. The Cauchy transform of the Cauchy distribution is given by GCt(z) =
1/(z + it) on C+ (e.g. by the residue theorem), and hence RCt(z) = −itz. Then
Rµ⊞Ct

(z) = Rµ(z)−itz, and after some computation we can check that Gµ⊞Ct
(z) =

Gµ(z+it). The Stieltjes inversion formula implies that for t > 0 the free convolution
µ⊞ Ct has the density

− 1

π
Im(Gµ(x+ it)) =

∫

R

t

π((x − y)2 + t2)
dµ(y), (5.3)



368 T. Hasebe and Y. Ueda

which is exactly the density of µ ∗ Ct.
As in the cases of free and classical BMs, taking µ to be the symmetric Bernoulli

1
2 (δ−1 + δ1) is helpful. By calculus we can show that µ ∗Ct is unimodal if and only

if t ≥
√
3; see Figures 5.13-5.18. Thus it is again natural to expect that a Cauchy

process becomes unimodal for sufficiently large time, under some condition on the
initial distribution. We start from the following counterexample.
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Figure 5.13. t = 0.25
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Figure 5.14. t = 0.5
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Figure 5.15. t = 1
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Figure 5.16. t =
√
2
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Figure 5.17. t =
√
3
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Figure 5.18. t = 3

Proposition 5.1. There exists a probability measure µ on R such that µ ∗ Ct is
not unimodal for any t > 0, and

∫

R

|x|p dµ(x) <∞, 0 < p < 3. (5.4)

Proof : Let {wn}n≥1 be a sequence of positive numbers such that
∑∞

n=1 wn = 1
and {an}n≥1 be a sequence of real numbers. Consider the probability measure

µ =
∞
∑

n=1

wnδan . (5.5)

Suppose that the sequence

bk = inf
n∈Z+\{k}

|ak − an − 1|, k ∈ Z+ (5.6)

satisfies the condition

lim
k→∞

wkb
3
k = ∞. (5.7)

When {an} is increasing, this condition means that the distance between an and
an+1 grows sufficiently fast. Let

ft(x) :=
π

t

d(µ ∗ Ct)

dx
(x) =

∞
∑

n=1

wn

(x − an)2 + t2
. (5.8)

Then we obtain

f ′
t(x) =

∞
∑

n=1

−2wn(x− an)

[(x− an)2 + t2]2
, (5.9)
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and so for sufficiently large k such that bk > 0 and for each t > 0

f ′
t(ak − 1) =

2wk

(1 + t2)2
+

∑

n≥1,n6=k

−2wn(ak − an − 1)

[(ak − an − 1)2 + t2]2

≥ 2wk

(1 + t2)2
−

∑

n≥1,n6=k

2wn

|ak − an − 1|3

≥ 2wk

(1 + t2)2
−

∑

n≥1,n6=k

2wn

b3k

≥ 2wk

(1 + t2)2
− 2

b3k
= 2wk

(

1

(1 + t2)2
− 1

wkb3k

)

.

(5.10)

The condition (5.7) shows that f ′
t(ak − 1) is positive for sufficiently large k ∈ Z+.

This shows that µ ∗ Ct is not unimodal for any t > 0.
If we take the particular sequences an = an and wn = cnra−3n, where a ≥ 2, r >

0 and c > 0 is a normalizing constant, then the sequence bn satisfies bn ≥ Can for
some constant C > 0 independent of n. Then the conditions (5.7) and (5.4) hold
true. �

In the above construction, for any positive weights {wn}n and any sequence
{an}n that satisfies (5.7), the third moment of µ is always infinite,

∫

R

|x|3 dµ(x) = ∞, (5.11)

due to the inequality |ak| ≥ bk−|a1|−1 and the condition (5.7). The next question
is then whether there exists a probability measure µ with a finite third moment
such that µ∗Ct is not unimodal for any t > 0, or at least for sufficiently large t > 0.
The complete answer is given below.

Theorem 5.2. Let µ be a probability measure on R which has a finite absolute
third moment

β :=

∫

R

|x|3 dµ(x) <∞.

Then µ ∗ Ct is unimodal for t ≥ 20β
1
3 .

Proof : The Markov inequality implies the tail estimate

µ([−x, x]c) ≤ β

x3
, x > 0. (5.12)

It suffices to prove that the function

ft(x) :=
π

t

d(µ ∗ Ct)

dx
(x) =

∫

R

1

(x − y)2 + t2
dµ(y) (5.13)

has a unique local maximum for large t > 0. Suppose first that x > 0. The
derivative f ′

t splits into the positive and negative parts

f ′
t(x) =

∫

y>x

2(y − x)

[(x− y)2 + t2]2
dµ(y)−

∫

y≤x

2(x− y)

[(x − y)2 + t2]2
dµ(y). (5.14)
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By calculus the function u 7→ 2u
(u2+t2)2 takes a global maximum at the unique point

u = t/
√
3. Using the tail estimate (5.12) yields the estimate of the positive part

∫

y>x

2(y − x)

[(x − y)2 + t2]2
dµ(y) ≤

∫

y>x

2 t√
3

( t
2

3 + t2)2
dµ(y) ≤ β

t3x3
. (5.15)

On the other hand the negative part can be estimated as
∫

y≤x

2(x− y)

[(x− y)2 + t2]2
dµ(y) ≥

∫

−x<y<x/2

2(x− y)

[(x − y)2 + t2]2
dµ(y). (5.16)

Elementary calculus shows that for −x < y < x/2,

2(x− y)

[(x− y)2 + t2]2
≥ min

{

4x

(4x2 + t2)2
,

x

(x2/4 + t2)2

}

, (5.17)

and if we further restrict to the case x ≥ t/4, then

min

{

4x

(4x2 + t2)2
,

x

(x2/4 + t2)2

}

≥ min

{

4x

(4x2 + 16x2)2
,

x

(x2/4 + 16x2)2

}

≥ 10−3

x3
.

(5.18)

Thus we obtain
∫

y≤x

2(x− y)

[(x− y)2 + t2]2
dµ(y) ≥ 10−3

x3
µ((−x/2, x/2)) ≥ 10−3

x3

(

1− β

(x/2)3

)

≥ 10−3

x3

(

1− 83β

t3

)

, x ≥ t/4.

(5.19)

Comparing (5.15) and (5.19), taking t ≥ 20β1/3 guarantees that the positive part
is smaller than the negative part, and hence

f ′
t(x) < 0, x ≥ t

4
. (5.20)

Similarly, if t ≥ 20β1/3 then

f ′
t(x) > 0, x ≤ − t

4
. (5.21)

In order to show that f ′
t has a unique zero, it suffices to show that f ′′

t (x) < 0 for
|x| ≤ t/4. Now we have

f ′′
t (x) =

∫

|y−x|>t/
√
3

2[3(y − x)2 − t2]

[(x − y)2 + t2]3
dµ(y)

−
∫

|y−x|≤t/
√
3

2[t2 − 3(y − x)2]

[(x− y)2 + t2]3
dµ(y).

(5.22)

The function u 7→ 2(3u2− t2)/(u2+ t2)3 attains a global maximum at u = ±t and a
global minimum at u = 0. Therefore, the positive part can be estimated as follows:

∫

|y−x|>t/
√
3

2[3(y − x)2 − t2]

[(x− y)2 + t2]3
dµ(y) ≤

∫

|y−x|>t/
√
3

2(3t2 − t2)

(t2 + t2)3
dµ(y)

=
1

2t4
µ

([

x− t√
3
, x+

t√
3

]c)

.

(5.23)
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For all x such that |x| ≤ t/4, we have the inclusion
[

x− t√
3
, x+

t√
3

]c

⊆
[

− t

5
,
t

5

]c

, (5.24)

and hence we obtain
∫

|y−x|>t/
√
3

2[3(y − x)2 − t2]

[(x− y)2 + t2]3
dµ(y) ≤ 1

2t4
µ

([

− t

5
,
t

5

]c)

≤ 53β

2t7
. (5.25)

On the other hand, the negative part has the estimate
∫

|y−x|≤t/
√
3

2[t2 − 3(y − x)2]

[(x− y)2 + t2]3
dµ(y) ≥

∫

|y−x|≤t/2

2[t2 − 3(y − x)2]

[(x− y)2 + t2]3
dµ(y). (5.26)

By calculus, the function u 7→ (t2 − 3u2)/(u2 + t2)3 is decreasing on [0, t], and so
∫

|y−x|≤t/2

2[t2 − 3(y − x)2]

[(x − y)2 + t2]3
dµ(y)

≥
∫

|y−x|≤t/2

2(t2 − 3 t2

4 )

( t
2

4 + t2)3
dµ(y) =

32

125t4
µ

([

x− t

2
, x+

t

2

])

≥ 32

125t4
µ

([

− t

4
,
t

4

])

≥ 1

4t4

(

1− 43β

t3

)

(5.27)

for all |x| ≤ t/4. The positive part (5.25) is smaller than the negative part (5.27)
if we take t in such a way that t ≥ 10β1/3. Thus f ′′

t (x) < 0 for all |x| ≤ t/4 and
t ≥ 10β1/3. �

5.2. Positive stable process with index 1/2 with initial distribution. A positive stable
process with index 1/2 has the distribution

Lt(dx) :=
t√
2π

· e
− t2

2x

x3/2
· 1(0,∞)(x) dx, x ∈ R, (5.28)

at time t ≥ 0 which is called the Lévy distribution. We restrict to the case where
the initial distribution is compactly supported.

Theorem 5.3. If µ is a compactly supported on R with diameter Dµ then µ ∗ Lt

is unimodal for all t ≥ (90/4)1/4D
1/2
µ .

Proof : By performing a translation we may assume that µ is supported on [0, γ],
where γ = Dµ. We set the following function:

gt,y(x) :=
e−

t2

2(x−y)

(x− y)3/2
1(0,∞)(x− y), x, y ∈ R. (5.29)

Note that this function is C∞ with respect to x. Consider the following function

ft(x) :=

√
2π

t
· d(µ ∗ Lt)

dx
(x) =

∫ γ

0

gt,y(x) dµ(y), x ∈ R, (5.30)

which is supported on (0,∞) and has the derivative

d

dx
ft(x) =

∫ γ

0

t2 − 3(x− y)

2(x− y)7/2
e−

t2

2(x−y) 1(0,∞)(x− y) dµ(y). (5.31)

If 0 < x < t2/3 then t2 − 3(x − y) > t2 − 3 · t2/3 = 0 for all 0 ≤ y ≤ γ, and
therefore f ′

t(x) > 0. Moreover, if t2/3 + γ < x then we have that t2 − 3(x − y) <
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t2 − 3(t2/3 + γ) + 3γ = 0 for all 0 ≤ y ≤ γ, and therefore f ′
t(x) < 0. For

t2/3 < x < t2/3 + γ, the second derivative of ft is given by

f ′′
t (x) =

∫ γ

0

15(x− y)2 − 10t2(x− y) + t4

4(x− y)11/2
e−

t2

2(x−y) 1(0,∞)(x− y) dµ(y). (5.32)

Note that t2/3− γ < x− y < t2/3 + γ. Since for X ∈ R

15X2 − 10t2X + t4 < 0 iff
t2

3
− 2t2

3
√
10

< X <
t2

3
+

2t2

3
√
10
, (5.33)

if 2t2

3
√
10

≥ γ then f ′′
t (x) < 0.

To summarize, we have obtained that if t2 ≥ 3
√
10
2 γ then

• f ′
t(x) > 0, x < t2/3,

• f ′
t(x) < 0, x > t2/3 + γ,

• f ′′
t (x) < 0, t2/3 < x < t2/3 + γ.

Hence ft has a unique local maximum in [t2/3, t2/3 + γ], which is a unique global

maximum on R as well. Therefore µ ∗ Lt is unimodal for all t2 ≥ 3
√
10
2 γ. �

We give a counterexample for large time unimodality for positive stable processes
of index 1/2 when the initial distribution is not compactly supported.

Proposition 5.4. There exists a probability measure µ on R such that µ ∗ Lt is
not unimodal for any t > 0, and

∫

R

|x|p dµ(x) <∞, 0 < p <
5

2
. (5.34)

Proof : Let {wn}n≥1 be a sequence of positive numbers such that
∑∞

n=1 wn = 1
and {an}n≥1 be a sequence of real numbers such that the sequence

bk = inf
n∈N\{k}

|ak − an|, k ∈ N (5.35)

satisfies

lim
k→∞

wkb
5/2
k = ∞. (5.36)

Consider the probability measure

µ =

∞
∑

n=1

wnδan . (5.37)

Let

ft(x) :=

√
2π

t

d(µ ∗ Lt)

dx
(x) =

∑

n≥1,an<x

wn
e−

t2

2(x−an)

(x− an)3/2
. (5.38)

Then we obtain

f ′
t(x) = −

∑

n≥1,an<x

wnh(x− an), (5.39)

where h(x) = 3x−t2

2x7/2 e
− t2

2x , and for each k ∈ N and each t > 0

f ′
t(ak + t2/6) = wk · 54

√
6

t5
e−3 −

∑

n:n6=k
an<ak+t2/6

wnh(ak − an + t2/6).
(5.40)
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Since bk → ∞ as k → ∞, there exists a positive integer k(t) such that bk + t2/6 >
5+

√
10

15 t2 for all k ≥ k(t). For k ≥ k(t) and n 6= k such that an < ak + t2/6, we
can show that ak − an ≥ bk; otherwise, by the definition of bk it must hold that

ak − an ≤ −bk < − 5+2
√
10

30 t2, which contradicts an < ak + t2/6. Since the map h is

positive and strictly decreasing on (5+
√
10

15 t2,∞), for k ≥ k(t) we have

f ′
t(ak + t2/6) ≥ wk · 54

√
6

t5
e−3 −

∑

n:n6=k
an<ak+t2/6

wnh(bk + t2/6) (5.41)

≥ wk · 54
√
6

t5
e−3 − h(bk + t2/6) (5.42)

= wk · 54
√
6

t5
e−3 − 3bk − t2/2

2(bk + t2/6)7/2
e
− t2

2(bk+t2/6) . (5.43)

The condition (5.36) shows that f ′
t(ak+ t

2/6) is positive for sufficiently large k ∈ N.
This shows that µ ∗ Lt is not unimodal for any t > 0.

If we take the particular sequences ak = ak and wk = cka−
5
2 k where a > 2 and

c > 0 is a normalizing constant, then the sequence bk satisfies bk ≥ Cak for some
constant C > 0. Then the condition (5.36) holds true and

∫

R

|x|p dµ(x) =
∑

k≥1

wk|ak|p = c
∑

k≥1

ka(p−5/2)k. (5.44)

Hence the above integral is finite if and only if 0 < p < 5/2. �

In the above construction, for any positive weights {wn}n and any sequence
{an}n that satisfies (5.36), the 5/2-th moment of µ is always infinite, that is,

∫

R

|x|5/2 dµ(x) = ∞. (5.45)

We conjecture that if the integral in (5.45) is finite then µ ∗Lt is unimodal in large
time. More generally, considering results on Cauchy processes in Section 5.1, it is
natural to expect the following.

Conjecture 5.5. Suppose that St (resp. Tt) is the law at time t ≥ 0 of a classical
(resp. free) strictly stable process of index α ∈ (0, 2). If µ is a probability measure
such that

∫

R

|x|2+α dµ(x) <∞, (5.46)

then µ ∗ St (resp. µ⊞ Tt) is unimodal for sufficiently large t > 0.
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