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Abstract. We are interested in quasi-stationarity and quasi-ergodicity when the
absorbing boundary is moving. First we show that, in the moving boundary case,
the quasi-stationary distribution and the quasi-limiting distribution are not well-
defined when the boundary is oscillating periodically. Then we show the existence of
a quasi-ergodic distribution for any discrete-time irreducible Markov chain defined
on a finite space state in a fixed boundary case. Finally we use this last result to
show the quasi-ergodicity in the moving boundary case.

1. Introduction

Let (Ω,A,P) be a probability space and let X = (Xn)n∈Z+ be a Markov chain
with a finite state space (E, E), E being the σ-algebra containing all the subset of
E. Let Px be the probability measure such that Px(X0 = x) = 1 and, for any
measure µ on E, define Pµ =

∫
Pxdµ(x). Denote by P(E) the set of probability

measures defined on E.
We define, for each time n ≥ 0, a subset An ⊂ E called killing subset at time n

and we denote by En the complement of An called survival subset at time n. We
will call (An)n∈Z+ the moving killing subset or the moving killing boundary. We
denote by τ the random variable defined as follows

τ := inf{n ≥ 0 : Xn ∈ An}. (1.1)

For any subset B ⊂ E, we define τB as follows

τB := inf{n ≥ 0 : Xn ∈ B}
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and, to make the notation easier, for any m ∈ Z+, we denote by τm the random
variable defined by

τm := τAm
= inf{n ≥ 0 : Xn ∈ Am}. (1.2)

This article will deal with quasi-stationary, quasi-limiting and quasi-ergodic distri-
butions that we define as follows.

Definition 1.1. ν is a quasi-stationary distribution if for any n ≥ 0

Pν(Xn ∈ ·|τ > n) = ν(·).

Definition 1.2. ν is a quasi-limiting distribution if there exist some µ ∈ P(E)
such that

Pµ(Xn ∈ ·|τ > n) −→
n→∞

ν(·).

Definition 1.3. ν is a quasi-ergodic distribution or a mean-ratio quasi-stationary
distribution if for any µ ∈ P(E) and any bounded measurable function f

Eµ

(

1

n

n−1∑

k=0

f(Xk)|τ > n

)

−→
n→∞

∫

fdν.

We will also be interested in the existence of a Q-process, which can be inter-
preted as the process X conditioned never to be absorbed by (An)n∈Z+ .

In the case where the sequence (An)n∈Z+ does not depend on the time, the ex-
istence of these probability measures was established under several assumptions.
See for example Collet et al. (2013); Méléard and Villemonais (2012) for a gen-
eral review on the theory of quasi-stationary distributions. For modelling purpose,
some recent works (see Cattiaux et al., 2016) introduce some Markov processes
absorbed by moving boundaries and the classical theory on quasi-stationary distri-
butions does not allow anymore to describe the asymptotic behavior of the process
conditioned not to be absorbed. Our purpose is therefore to check whether these
probability measures are still well-defined when (An)n≥0 depends on the time or not.

In all what follows, we will assume that for any x ∈ E0,

Px(τ < ∞) = 1.

and will also assume that the following hypothesis of irreducibility holds

∀n ∈ Z+, ∀x, y ∈ En, ∃m ∈ Z+,Px(Xm∧τn = y) > 0. (1.3)

Quasi-stationary distribution will be studied for general moving killing bound-
aries. However, in a significant part of this article we will deal with moving killing
boundaries (An)n∈Z+ which are γ-periodic with γ ≥ 2.

In this article, we will actually show that there are no quasi-stationary distribu-
tions and quasi-limiting distributions in the sense of Definitions 1.1 and 1.2 when
the boundaries are moving periodically. However, we will show that the notion of
quasi-ergodic distribution and Q-process still makes sense even when the boundary
is moving. In particular, we will show the following statement.

Theorem 1.4. Assume that (An)n∈Z+ is γ-periodic. Then, under assumptions
which will be spelled out later, there exists a probability measure η such that for any
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µ ∈ P(E), for any bounded measurable function f ,

Eµ

(

1

n

n−1∑

k=0

f(Xk)|τ > n

)

−→
n→∞

∫

fdη.

The proof is divided to several steps. First we reduce the problem to the study
of quasi-stationary distribution in a non moving domain, but for a periodic Markov
chain. Then we extend the result proved by Darroch and Seneta (1965) in the
aperiodic case to the periodic situation (γ ∈ Z∗

+).
This article ends with an application of this theorem to random walks absorbed

by 2-periodic moving boundaries.

2. Quasi-stationary distribution with moving killing subset

The following proposition shows that the notion of quasi-stationary distribution
as defined in Definition 1.1 is not relevant when the killing boundary is moving.

Proposition 2.1. Assume there exist l,m ∈ Z+ such that Al 6= Am. Then there
is no measure ν ∈ P(E) satisfying the following property:

∀n ∈ Z+, Pν(Xn ∈ ·|τ > n) = ν(·). (2.1)

Proof : For any n ∈ Z+, denote by fn : P(E) → P(E) the function defined by

fn : µ −→ Pµ(X1 ∈ ·|τn > 1), (2.2)

where τn is defined in (1.2) and denote by µn the probability measure defined by

µn = Pµ(Xn ∈ ·|τ > n). (2.3)

By the Markov property, we have for any n ∈ Z∗
+

µn = Pµn−1(X1 ∈ ·|τn > 1) = fn(µn−1).

Thus, by induction, we obtain for any n ∈ Z+

Pµ(Xn ∈ ·|τ > n) = fn ◦ . . . ◦ f1(µ).

We deduce from this equality that

∀n ∈ Z+, Pν(Xn ∈ ·|τ > n) = ν(·) ⇐⇒ ∀n ∈ Z+, fn(ν) = ν

⇐⇒ ∀n ∈ Z+, Pν(X1 ∈ ·|τn > 1) = ν(·).

In other words, ν is a quasi-stationary distribution in the moving sense if and only
if it is a quasi-stationary distribution in the non-moving sense for all the subsets
An. In particular, if ν satisfies (2.1),

ν(·) = Pν(X1 ∈ ·|τl > 1) and ν(·) = Pν(X1 ∈ ·|τm > 1) ,

where l and m have been mentioned in the statement of the proposition. How-
ever, since the assumption of irreducibility (1.3) holds, the previous statement is
impossible since the support of the quasi-stationary distributions are different. �

Remark 2.2. The Proposition 2.1 can be extended to any general Markov process
defined on any space state. In particular, for continuous-time Markov processes
defined on a metric space (E, d), we may replace the assumption of irreducibility
(1.3) by the following assumption

∀t ∈ R+, ∀x, y ∈ Et, ∀ǫ > 0, ∃t0 ∈ R+,Px(Xt0∧τt ∈ B(y, ǫ)) > 0,

where B(y, ǫ) := {z ∈ E : d(y, z) < ǫ}.



432 W. Oçafrain

Notice moreover that we did not need any assumption about the behavior of
(An)n∈Z+ . In all what follows, we consider that (An)n∈Z+ is γ-periodic with γ ≥ 2.

3. Quasi-limiting distribution when the killing subset is moving period-

ically

We are now interested in knowing whether the definition of quasi-limiting distri-
bution given in definition 1.2 is meaningful when the killing subset is moving or not.
In the usual case, it is well known (see Méléard and Villemonais, 2012 p. 345) that
quasi-stationary distribution and quasi-limiting distribution are equivalent notions.
This implies that the non-existence of a quasi-stationary distribution implies the
non-existence of any quasi-limiting distribution. However, this equivalence does not
hold anymore in the moving case. Consider for example (An)n≥0 such that there
exists n0 such that for any n ≥ n0, An = An0 and assume that there exists a quasi-
stationary distribution νn0 (in the non-moving sense) such that for any probability
measure µ,

Pµ(Xn ∈ ·|τn0 > n) −→
n→∞

νn0 .

Thus, by the Markov property, for any µ ∈ P(E) and any n ≥ 0,

Pµ(Xn+n0 ∈ ·|τ > n+ n0) = Pµn0
(Xn ∈ ·|τAn0

> n) −→
n→∞

νn0 ,

where µn is defined in (2.3) for any n ∈ Z+.
From now on, we will assume that (An)n∈Z+ is periodic and will denote by γ its

period. We will show that quasi-limiting distribution is not well defined when the
killing subset is moving periodically.

Proposition 3.1. Assume (An)n∈Z+ is γ-periodic and there exist 0 ≤ l,m ≤ γ− 1
such that Al 6= Am.

Then there is no ν ∈ P(E) satisfying the following property:

∃µ ∈ P(E), Pµ(Xn ∈ ·|τ > n) −→
n→∞

ν(·).

Proof : Consider again the functions fm defined in (2.2):

fm : µ −→ Pµ(X1 ∈ ·|τm > 1).

Then using the periodicity of (An)n∈Z+ and by the Markov property, for any k ∈
{1, . . . , γ}, m ∈ N and µ ∈ P(E)

Pµ(Xk+mγ ∈ ·|τ > k +mγ) = gk ◦ f
m(µ) (3.1)

with

gk = fk ◦ . . . ◦ f1,

f = fγ ◦ . . . ◦ f1.

Assume that there exists µ ∈ P(E) such that the sequence (Pµ(Xm ∈ ·|τ >
m))m∈Z+ converges to its limit ν. Then

ν = lim
m→∞

Pµ(Xmγ ∈ ·|τ > mγ)

= lim
m→∞

fm(µ).

So for any k ∈ {1, . . . , γ}

ν = gk(ν) = Pν(Xk ∈ ·|τ > k).
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In other words, for any k ∈ {1, . . . , γ},

ν = fk(ν).

We thus may conclude in the proof of proposition 2.1. �

The previous statement implies therefore that the quasi-limiting distribution as
defined in Definition 1.2 is not well-defined when the moving killing subset is pe-
riodic. However, according to the proof of the previous proposition, it seems that
the sequence of these conditioned probabilities could have some limit points.

The following proposition allows us to pass from a moving problem to a non-
moving problem. The existence of limit points will be therefore a consequence of
the existence of classical quasi-stationary distributions for the transformed Markov
chain.

Proposition 3.2. For any 0 ≤ m ≤ γ − 1 and µ ∈ P(E), there is a Markov chain

(X
(m)
n )n∈Z+ such that

Pµ((Xm, . . . , Xm+nγ) ∈ ·|τ > m+ nγ) = Pµm
((X

(m)
0 , . . . , X(m)

n ) ∈ ·|τ (m)
m > n).

(3.2)

where µm is defined in (2.3) and τ
(m)
m = inf{n ∈ Z+ : X

(m)
n ∈ Am}.

Proof : According to the Markov property, it is enough to show that for any γ-
periodic sequence of subsets B = (Bn)n∈Z+ and any measure µ ∈ P(E), there
exists a Markov chain (Zn)n∈Z+ such that

Pµ((Xγ , . . . , Xnγ) ∈ ·|τ(B) > nγ) = Pµ((Z1, . . . , Zn) ∈ ·|τ̃B0 > n), (3.3)

where τ(B) = inf{m ≥ 0 : Xm ∈ Bm} and τ̃B0 = inf{n ∈ Z+ : Zn ∈ B0}. Denote
F0 the complement of B0. For any x ∈ F0 define p(x, ·) by

p(x,A) = Px(Xγ ∈ A, τB > γ), ∀A ⊂ F0,

p(x,B0) = 1− p(x, F0)

and we denote by (Zn)n∈Z+ the Markov chain for which the transition kernel is p.
We will show by induction that, for any φ1, . . . , φn bounded measurable functions,

Eµ(φ1(Xγ) . . . φn(Xnγ)1τ(B)>nγ) = Eµ(φ1(Z1) . . . φn(Zn)1τ̃B0>n).

By definition of (Zn)n∈Z+ , for any probability measure µ and any bounded mea-
surable function φ,

Eµ(φ(Z1)1τ̃B0>1) = Eµ(φ(Xγ)1τ(B)>γ)

which entails the base case. Now assume that the equality for n−1 is satisfied. Let
φ1, . . . , φn be some bounded measurable functions. Then

Eµ(φ1(Xγ) . . . φn(Xnγ)1τ(B)>nγ)

= Eµ(φ1(Xγ)1τ(B)>γEXγ
(φ2(Xγ) . . . φn(X(n−1)γ)1τ(B)>(n−1)γ))

= Eµ(φ1(Z1)1τ̃B0>1EZ1(f2(Z1) . . . φn(Zn−1)1τ̃B0>(n−1)))

= Eµ(φ1(Z1) . . . φn(Zn)1τ̃B0>n).

This concludes the proof. �
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4. Existence of quasi-ergodic distribution with periodic moving killing

subsets

In this section, our aim is to show the existence of a quasi-ergodic distribution
as defined in Definition 1.3 when the boundary is moving periodically. This section
will be split into three parts :

(1) We will first study quasi-ergodicity in the non-moving case (when An =
A0, ∀n ∈ Z+) for irreducible Markov chains.

(2) Then we will use the results obtained in the first part to deduce quasi-
ergodicity for general Markov chains (irreducible or not), but still consid-
ering non-moving boundaries

(3) Finally we will show the existence of quasi-ergodic distribution when
(An)n∈Z+ is moving periodically.

4.1. Quasi-ergodic distribution in the classical non-moving sense in the irreducible
case. In this subsection we will study the quasi-ergodicity of one irreducible Markov
chain Y = (Yn)n∈Z+ in the classical non-moving sense, that is when the killing edge
does not move. Without loss of generality, assume Y is defined in the state space
E0 = {0, . . . ,K} and that the cemetery is {0}. In this subsection and the following,
τ will be defined as (1.1) but refering to Y , that is

τ = inf{n ≥ 0 : Yn = 0}.

Denote by P the transition matrix of Y . Since 0 is an absorbing state for Y , P has
the following form

P =

(
1 0
v Q

)

.

where Q is the sub-transition matrix. We will assume that Q is irreducible (i.e.
∀x, y ∈ E0, ∃n ∈ Z+, Q

n(x, y) > 0). As a result we can define Tx the period of x as

Tx := gcd{n ∈ Z+ : Px(Yn = x, τ > n) > 0}

where gcd refers to the greatest common divisor. By irreducibility of Q, all the x
have the same period and we denote by T this common period.

The existence of quasi-ergodic distributions has already been proved by Darroch
and Seneta (1965) when T = 1. However we will see that this result is not enough
for our purpose and we need to extend it to periodic Markov chains.

Due to the periodicity of Q, there exist (Ci)0≤i≤T−1 a partition of E0 such that
if the support of the initial distribution µ is included in C0, then for any n ∈ Z+

and 0 ≤ k ≤ T − 1,

Pµ(Yk+nT ∈ Ck, τ > k + nT ) = 1.

Without loss of generality, we construct (Ci)0≤i≤T−1 such that 1 ∈ C0. Formally
(Ci)0≤i≤T−1 are defined by

C0 := {y ∈ E0 : ∃n ∈ N,P1(YnT = y, τ > nT ) > 0}, (4.1)

∀1 ≤ i ≤ T − 1, Ci := {y ∈ E0 : ∃x ∈ Ci−1,Px(Y1 = y) > 0}. (4.2)

For each j ∈ {0, . . . , T − 1} and any v ∈ CK , we will denote by v(j) the sub-vector
of v restricted on Cj .

It is well known by the Perron-Frobenius theorem that the spectral radius

ρ := max{|λ| : λ ∈ Sp(Q)}
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is a simple eigenvalue of Q and that one can find a left-eigenvector ν = (ν(j))1≤j≤K

and a right-eigenvector ξ = (ξ(j))1≤j≤K for ρ (i.e. νQ = ρν and Qξ = ρξ) such
that ν(j) > 0 and ξ(j) > 0 for all j ∈ {1, . . . ,K}. We may choose ν and ξ such
that

< ν,1 >=< ν, ξ >= 1

where < ·, · > is the usual Hermitian product on CK . Moreover, since Q is T -
periodic,

{λk := ρe
2ikπ
T : 0 ≤ k ≤ T − 1} ⊂ Sp(Q)

and each λk is simple. For each λk we can obtain a left eigenvector vk and a
right-eigenvector wk from ν and ξ with the following transformation

∀j ∈ {0, . . . , T − 1}, v
(j)
k = e−i 2πjk

T ν(j) and w
(j)
k = ei

2πjk
T ξ(j). (4.3)

See Theorem 1.7 in Seneta (2006, p.23-24) for more details.
The vectors (vi)0≤i≤T−1 are linearly independent. We can complete this family

into a basis V = (vi)0≤i≤K−1 such that vi ∈ Span⊥(v0, . . . , vT−1) for all T ≤ i ≤
K − 1 where

Span⊥(v0, . . . , vT−1) = {v ∈ CK :< v, vi >= 0, ∀i ∈ {0, . . . , T − 1}}.

Let us denote by R the matrix representing the change of basis from the canonical
basis to V . Then we have the following decomposition

Q = R








λ0

. . .

λT−1

0

0 Q0








R−1.

where Q0 is a (K − T )× (K − T ) matrix. We define the matrix Q′ by

Q′ = R

(
0 0
0 Q0

)

R−1.

Proposition 4.1. Let f : {1, . . . ,K} → R be a bounded measurable function. Then
for any x ∈ {1, . . . ,K} and n ∈ N,

Ex

(

1

n

n−1∑

k=0

f(Yk)1τ>n

)

= ρnϕ(f)
T−1∑

l=0

e−
2inlπ

T < wl, δx >< vl,1 > +o(ρn)

where

ϕ(f) =

K∑

i=1

f(i)ν(i)ξ(i).

Proof : Let f : {1, . . . ,K} → R be a bounded measurable function. In this proof we
will consider probability measures on {1, . . . ,K} and functions defined on
{1, . . . ,K} as K-vectors. Thus for any x ∈ {1, . . . ,K} we can say

Ex (f(Yn)1τ>n) =< δxQ
n, f > (4.4)

where δx is the Dirac measure on x. For any x ∈ {1, . . . ,K}, define (αk(x))0≤k≤T−1

the unique family of CK such that there is µx ∈ Span⊥(v0, . . . , vT−1) such that

δx =

T−1∑

k=0

αk(x)vk + µx.
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We will use the following lemma whose proof is postponed after the proof of the
theorem.

Lemma 4.2. For any 0 ≤ k ≤ T − 1,

(αk(x))x∈E0 = wk

where wk is defined in (4.3)

Thus we can write

δx =
T−1∑

k=0

wk(x)vk + µx. (4.5)

So, using (4.4) and (4.5), for any n ∈ Z+

Ex (f(Xn)1τ>n) =<

T−1∑

k=0

wk(x)vkQ
n, f > + < µxQ

n, f >

=

T−1∑

k=0

λn
kwk(x) < vk, f > + < µx(Q

′)n, f > .

Now, using the Markov property, for any k ≤ n,

Eµ(f(Yk)1τ>n) = Eµ(1τ>kf(Yk)PYk
(τ > n− k)) (4.6)

= Eµ(1τ>kgk,n(f)(Yk)) (4.7)

where, for any y ∈ E0,

gk,n(f)(y) = f(y)Py(τ0 > n− k).

Then,

gk,n(f)(y) = f(y) < δyQ
n−k,1 >

=
T−1∑

m=0

λn−k
m f(y)wm(y) < vm,1 > +f(y) < µy(Q

′)n−k,1 > .

Define, for any k ∈ {0, . . . , T − 1} and n ∈ Z+,

gk(f) : y → f(y)wl(y)

wn(f) : y → f(y) < µy(Q
′)n,1 >

Then, using (4.7), for any k ≤ n,

Ex(f(Yk)1τ>n) =< δxQ
k, gk,n(f) >

=
T−1∑

l=0

λk
l wl(x) < vl, gk,n(f) > + < µx(Q

′)k, gk,n(f) >

= Ak,n +Bk,n + Ck,n +Dk,n

where

Ak,n =
T−1∑

l=0

T−1∑

m=0

λk
l λ

n−k
m wl(x) < vl, gm(f) >< vm,1 >

Bk,n =

T−1∑

l=0

λk
l wl(x) < vl, wn−k(f) >
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Ck,n =

T−1∑

m=0

λn−k
m < vm,1 >< µx(Q

′)k, gm(f) >

Dk,n =< µx(Q
′)k, wn−k(f) > .

Hence for any n ∈ N

n−1∑

k=0

Ex(f(Yk)1τ>n) =

n−1∑

k=0

Ak,n +

n−1∑

k=0

Bk,n +

n−1∑

k=0

Ck,n +

n−1∑

k=0

Dk,n. (4.8)

i) Study of
n−1∑

k=0

Ak,n

For any n ∈ N,

n−1∑

k=0

Ak,n =

T−1∑

l=0

T−1∑

m=0

(
n−1∑

k=0

λk
l λ

n−k
m

)

wl(x) < vl, gm(f) >< vm,1 >

=

T−1∑

l=0

nλn
l wl(x) < vl, gl(f) >< vl,1 >

+
∑

l 6=m

λm

(

λn
l − λn

m

λl − λm

)

wl(x) < vl, gm(f) >< vm,1 > .

On one side,

T−1∑

l=0

nλn
l wl(x) < vl, gl(f) >< vl,1 >= nρn

T−1∑

l=0

e−
2inlπ

T wl(x) < vl, gl(f) >< vl,1 >

On the other side, for any 0 ≤ l 6= m ≤ T − 1,

λm

(

λn
l − λn

m

λl − λm

)

= ρe−
2imπ

T

(

ρne−
2inlπ

T − ρne−
2inmπ

T

ρe−
2ilπ
T − ρe−

2imπ
T

)

= ρne−
2imπ

T

(

e−
2inlπ

T − e−
2inmπ

T

e−
2ilπ
T − e−

2imπ
T

)

.

(

e−
2imπ

T

(

e−
2inlπ

T −e−
2inmπ

T

e−
2ilπ
T −e−

2imπ
T

))

n∈Z+

is bounded, hence

1

n
× e−

2imπ
T

(

e−
2inlπ

T − e−
2inmπ

T

e−
2ilπ
T − e−

2imπ
T

)

−→
n→∞

0.

We deduce that, for any 0 ≤ l 6= m ≤ T − 1,

ρne−
2imπ

T

(

e−
2inlπ

T − e−
2inmπ

T

e−
2ilπ
T − e−

2imπ
T

)

= o(nρn)

and therefore

∑

l 6=m

λm

(

λn
l − λn

m

λl − λm

)

wl(x) < vl, gm(f) >< vm,1 >= o(nρn)
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since this is a finite sum. Hence
n−1∑

k=0

Ak,n = nρn
T−1∑

l=0

e−
2inlπ

T wl(x) < vl, gl(f) >< vl,1 > +o(nρn).

ii) Study of
n−1∑

k=0

Bk,n

For any y ∈ E, n ∈ Z+ and 0 ≤ l ≤ T − 1

n−1∑

k=1

λk
l wn−k(f)(y) = f(y) < µy

(
n−1∑

k=0

λk
l (Q

′)n−k

)

,1 >

= f(y) < µyQ
′(λlIK −Q′)−1(λn

l IK − (Q′)n),1 >

where IK is the K ×K-identity matrix. For any 0 ≤ l ≤ T − 1 and n ∈ Z+,

λn
l Ik − (Q′)n = ρn(e

2iπnl
T Ik − ρ−n(Q′)n)

and (e
2iπnl

T Ik −ρ−n(Q′)n)n∈Z+ is bounded since the spectral radius of Q′ is smaller
than ρ. Hence

1

n

(

e
2iπnl

T Ik − ρ−n(Q′)n
)

−→
n→∞

0

where 0 is understood as the zero matrix, and we deduce that

< µyQ
′(λlIK −Q′)−1(λn

l IK − (Q′)n),1 >= o(nρn).

As a result, for any n ∈ Z+,

n−1∑

k=1

λk
l wn−k(f)(y) = o(nρn).

Hence for any n ∈ Z+

n−1∑

k=0

Bk,n =
T−1∑

l=0

wl(x) < vl,
n−1∑

k=0

λk
l wn−k(f) >= o(nρn).

iii) Study of
n−1∑

k=0

Ck,n

In the same way as
n−1∑

k=0

Bk,n,

n−1∑

k=0

Ck,n =
n−1∑

k=0

T−1∑

m=0

λn−k
m < vm,1 >< µx(Q

′)k, gm(f) >

=

T−1∑

m=0

< vm,1 >< µx

(
n−1∑

k=0

λn−k
m (Q′)k

)

, gm(f) > .

For any 0 ≤ m ≤ T − 1 and n ≥ 1,

n−1∑

k=0

λn−k
m (Q′)k = λm × (λmIK −Q′)−1(λn

mIK − (Q′)n).

We already showed that for any 0 ≤ m ≤ T − 1 and n ≥ 1

(λmIK −Q′)−1(λn
mIK − (Q′)n) = o(nρn).
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Finally,
n−1∑

k=0

Ck,n = o(nρn).

iv) Study of
n−1∑

k=0

Dk,n

Finally, let us denote by (q′)
(n)
i,j , for i, j ∈ {1, . . . ,K−T } and n ∈ Z+, the coefficient

of (Q′)n located at the ith row and the jth column. Then for any n ∈ Z+

n−1∑

k=0

Dk,n =
∑

i,j,l,m

µx(j)f(i)µi(m)

(
n−1∑

k=0

(q′)
(n−k)
m,l (q′)

(k)
i,j

)

. (4.9)

Let i, j, l,m ∈ {1, . . . ,K}. By definition of the matrix Q′, the spectral radius of Q′

is strictly smaller than ρ. We deduce from this

(q′)
(n)
i,j = o(ρn), (q′)

(n)
m,l = o(ρn). (4.10)

In particular there is a positive number C such that for any n ∈ Z+ and m, l ∈
{1, . . . ,K},

(q′)
(n−k)
m,l ≤ Cρn−k.

Hence,

n−1∑

k=0

(q′)
(n−k)
m,l (q′)

(k)
i,j ≤ C

n−1∑

k=0

ρn−k(q′)
(k)
i,j (4.11)

= Cnρn

(

1

n

n−1∑

k=1

ρ−k(q′)
(k)
i,j

)

. (4.12)

However, by (4.10), ρ−nq
(n)
i,j → 0 when n tends to infinity and using Cesaro’s lemma,

1

n

n−1∑

k=0

ρ−k(q′)
(k)
i,j −→

n→∞
0.

Thus using (4.9) and (4.12), we deduce that

n−1∑

k=0

Dk,n = o(nρn).

Hence, gathering all these results and using (4.8),

n−1∑

k=0

Ex(f(Yk)1τ>n) = nρn
T−1∑

l=0

e−
2inlπ

T wl(x) < vl, gl(f) >< vl,1 > +o(nρn). (4.13)

However we have for any l ∈ {0, . . . , T − 1}

< vl, gl(f) > =

K∑

j=1

f(j)vl(j)wl(j)

=

T−1∑

j=0

∑

x∈Cj

f(x)vl(x)wl(x)
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=

T−1∑

j=0

∑

x∈Cj

f(x)e−i 2πjl
T ν(x)ei

2πjl
T ξ(x)

=< v0, g0(f) > .

As a result,

Ex

(
n−1∑

k=0

f(Yk)1τ>n

)

= nρn < v0, g0(f) >

T−1∑

l=0

e−
2inlπ

T wl(x) < vl,1 > +o(nρn).

�

Now we prove the lemma 4.2 quoted in the previous proof.

Proof of the lemma 4.2: Let us start by proving that αl is a right-eigenvector as-
sociated to λl. Since Q is a real matrix, it is equivalent to show that αl is a
right-eigenvector associated to λl.

First remind that αl is defined by the relations

δk =

T−1∑

l=0

αl(k)vl + δ′k

for any k ∈ E0 and with δ′k ∈ Span⊥(v0, . . . , vT−1). This implies for any k

< δk, vm >=

T−1∑

l=0

αl(k) < vl, vm >

or, in other words,





< δk, v0 >
...

< δk, vT−1 >




 =






< v0, v0 > . . . < vT−1, v0 >
...

. . .
...

< v0, vT−1 > . . . < vT−1, vT−1 >











α0(k)
...

αT−1(k)




 .

Denote by A the matrix

A =






< v0, v0 > . . . < vT−1, v0 >
...

. . .
...

< v0, vT−1 > . . . < vT−1, vT−1 >




 .

A is simply the Gram’s matrix of the basis (vi)0≤i≤T−1. Thus the determinant
det(A) is positive and for any x ∈ E0

αl(x) =
1

det(A)

∣
∣
∣
∣
∣
∣
∣

< v0, v0 > . . . < δx, v0 > . . . < vT−1, v0 >
...

. . .
...

. . .
...

< v0, vT−1 > . . . < δx, vT−1 > . . . < vT−1, vT−1 >

∣
∣
∣
∣
∣
∣
∣

where the column (< δx, v0 >, . . . , < δx, vT−1 >)T is the l-th columns of the matrix.
We want to show now that αl is a right-eigenvector associated to λl, that is

∀v ∈ CK , < v,Qαl >= λl < v, αl > . (4.14)

In fact it is enough to show (4.14) when v is one of left-eigenvectors and when
v ∈ Span⊥(v0, . . . , vT−1). In the case where v = vk for k ∈ {0, . . . , T − 1}

< vk, αl >
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=

K∑

j=1

vk(j)
1

det(A)

∣
∣
∣
∣
∣
∣
∣

< v0, v0 > . . . < δj , v0 > . . . < vT−1, v0 >
...

. . .
...

. . .
...

< v0, vT−1 > . . . < δj , vT−1 > . . . < vT−1, vT−1 >

∣
∣
∣
∣
∣
∣
∣

=
1

det(A)

∣
∣
∣
∣
∣
∣
∣

< v0, v0 > . . . < vk, v0 > . . . < vT−1, v0 >
...

. . .
...

. . .
...

< v0, vT−1 > . . . < vk, vT−1 > . . . < vT−1, vT−1 >

∣
∣
∣
∣
∣
∣
∣

=

{
1 if l = k
0 otherwise

.

We deduce from this

< vk, Qαl >= λl < vk, αl >, ∀ 0 ≤ k ≤ T − 1.

Finally, for any v ∈ Span(v0, . . . , vT−1)
⊥,

< v, αl >=
1

det(A)

∣
∣
∣
∣
∣
∣
∣

< v0, v0 > . . . 0 . . . < vT−1, v0 >
...

. . .
...

. . .
...

< v0, vT−1 > . . . 0 . . . < vT−1, vT−1 >

∣
∣
∣
∣
∣
∣
∣

= 0,

Thus we have
< v,Qαl >= 0 = λl < vk, αl >

because tQv ∈ Span(v0, . . . , vT−1)
⊥.

Hence for each k ∈ {0, . . . , T − 1}, there is βk ∈ C such that αk = βkwk (where
wk is defined at the beginning of the subsection). We will show that βk = β0 = 1
for any k.

Remark that A can be written as
T∑

i=1

ai−1Pσi
where Pσi

is the permutation matrix

of σi where σi = (i i+1 . . . i− 2 i− 1) and a0 > 0 and a1, . . . , aT−1 ∈ C. In other
words, A is of the following shape

A =








a0 a1 a2 . . . aT−1

aT−1 a0 a1 . . . aT−2

...
...

. . .
...

a1 a2 a3 . . . a0








with a0 > 0 and a1, . . . , aT−1 ∈ CT−1. Moreover, since 1 ∈ C0, < δ1, vl >=<
δ1, v0 >= ν1 for any l ∈ {0, . . . , T − 1}. As a result, for any l ∈ {0, . . . , T − 1},

det(A)αl(1) =

∣
∣
∣
∣
∣
∣
∣

a0 . . . ν1 . . . aT−1

...
. . .

...
. . .

...
a1 . . . ν1 . . . a1

∣
∣
∣
∣
∣
∣
∣

(4.15)

=

∣
∣
∣
∣
∣
∣
∣

ν(1) al+1 . . . . . . al−1

...
...

. . .
. . .

...
ν(1) al+2 . . . . . . al

∣
∣
∣
∣
∣
∣
∣

(4.16)

=

∣
∣
∣
∣
∣
∣
∣

ν(1) a1 . . . . . . aT−1

...
...

. . .
. . .

...
ν(1) a2 . . . . . . a0

∣
∣
∣
∣
∣
∣
∣

(4.17)

= det(A)α0(1). (4.18)
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Indeed, from (4.15) to (4.16), we applied a circular permutation for the columns in
order to put the vector t(ν(1), . . . , ν(1)) at the first column, and the determinant
stays the same after this transformation. From (4.16) to (4.17), we did a circular
permutation on the rows, which does not affect either the determinant.

We deduce from this equality that βk = β0 for any k ∈ {0, . . . , T − 1} because
wk(1) = w0(1). Concerning the fact that β0 = 1, remark that

K∑

i=1

ν(i)α0(i) =

K∑

i=1

v0(i)α0(i)

=
1

det(A)

∣
∣
∣
∣
∣
∣
∣

< v0, v0 > . . . < vT−1, v0 >
...

. . .
...

< v0, vT−1 > . . . < vT−1, vT−1 >

∣
∣
∣
∣
∣
∣
∣

= 1,

and
K∑

i=1

ν(i)α0(i) = β0

K∑

i=1

ν(i)ξ(i) = 1.

�

The statement of Theorem 1 is meaningful provided the coefficient of the leading
term ρn is not equal to 0. In the following proposition we prove that this coefficient
is actually not 0.

Proposition 4.3. For any n ∈ Z+ and any x

T−1∑

l=0

e−
2inlπ

T < wl, δx >< vl,1 > 6= 0

Proof : Let x ∈ E0. Then there exists k ∈ {0, . . . , T − 1} such that x ∈ Ck. Thus,
for any n ∈ Z+,

T−1∑

l=0

e−
2inlπ

T wl(x) < vl,1 > =

T−1∑

l=0

e−
2i(n+k)lπ

T ξ(x)





T−1∑

j=0

∑

y∈Cj

e
2iπlj

T ν(y)





=

T−1∑

j=0

∑

y∈Cj

ξ(x)ν(y)

(
T−1∑

l=0

e−
2iπ(n+k−j)l

T

)

= T
∑

T |n+k−j

∑

y∈Cj

ξ(x)ν(y)

+
∑

T ∤n+k−j

∑

y∈Cj

ξ(x)ν(y)e
iπ(n+k−j)(T −1)

T
sin(π(n + k − j))

sin(π(n+k−j)
T )

︸ ︷︷ ︸

=0

= T
∑

T |n+k−j

∑

y∈Cj

ξ(x)ν(y) > 0.

�
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4.2. Quasi-ergodic distribution for the classical non-moving sense in the general
case. Now assume that the sub-transition matrix Q is not necessarily irreducible.
For each x ∈ {1, . . . ,K}, we denote by Dx the subset of {1, . . . ,K} defined by

Dx := {y ∈ {1, . . . ,K} : ∃n,m ∈ Z+,Px(Yn = y) > 0 and Py(Ym = x) > 0}.

It is well-known that (Dx)x∈{1,...,K} are equivalence classes. Note that, for each
x, the restriction of Y on Dx is irreducible. Thus we can associate, for each Dx,
a period Tx. We can also associate to Dx a spectral radius ρx and some left
and right-eigenvectors (vx,l)0≤l≤Tx−1 and (wx,l)0≤l≤Tx−1 constructed in the same
way as in the subsection 4.1. Particularly, for every x ∈ {1, . . . ,K}, νx := vx,0
and ξx := wx,0 are vectors whose all the components are positive and such that
< νx,1 >=< νx, ξx >= 1. We define also, for any x,

ϕx : f →

|Dx|∑

j=1

f(j)νx(j)ξx(j)

where |Dx| is the number of elements in Dx. Now fix µ ∈ P({1, . . . ,K}). Denote
by Supp(µ) the support of µ. Then we can define

B = {x ∈ {1, . . . ,K} : Supp(µ) ∩Dx 6= ∅}

ρmax = max
x∈B

ρx

and we define Bmax as follows

Bmax = {x ∈ B : ρx = ρmax}.

We set the following hypothesis

Hypothesis 4.4. There exists xmax ∈ {1, . . . ,K} such that

Bmax = Dxmax
.

Under this hypothesis, the following notation will be used

νmax = νxmax
, (4.19)

ξmax = ξxmax
, (4.20)

ϕmax = ϕxmax
. (4.21)

In all what follows, we have to keep in mind that the definition of Bmax implicitly
depends on the initial distribution µ (more precisely on the support of µ).

The following statement explains therefore that the quasi-ergodic distribution
exists if the Hypothesis 4.4 holds.

Theorem 4.5. Let µ ∈ P({1, . . . ,K}). Then, if the Hypothesis 4.4 holds, the
following convergence holds for any measurable bounded function f : {1, . . . ,K} →
R,

Eµ

(

1

n

n−1∑

k=0

f(Yk)|τ > n

)

−→
n→∞

ϕmax(f).

Proof : According to Proposition 4.1, giving the fact that Y is irreducible on each
Dx, we have for any x ∈ {1, . . . ,K}

Ex

(

1

n

n−1∑

k=0

f(Yk)1τ>n

)

= ρnxϕx(f)

T−1∑

l=0

e−
2inlπ
Tx < wx,l, δx >< vx,l,1 > +o(ρnx).

(4.22)
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Thus, for any µ ∈ P(E)

Eµ

(

1

n

n−1∑

k=0

f(Yk)|τ > n

)

=

K∑

j=1

µ(j)Ej

(

1
n

n−1∑

k=0

f(Yk)1τ>n

)

K∑

j=1

µ(j)Pj(τ > n)

=

K∑

j=1

µ(j)ρnj ϕj(f)
Tj−1∑

l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(ρnj )

K∑

j=1

µ(j)ρnj

Tj−1∑

l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(ρnj )

=

∑

j∈Bmax

ϕj(f)µ(j)
Tj−1∑

l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(1)

∑

j∈Bmax

µ(j)
Tj−1∑

l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(1)

=

ϕmax(f)
∑

j∈Bmax

µ(j)
Tj−1∑

l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(1)

∑

j∈Bmax

µ(j)
Tj−1∑

l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(1)

.

Then using Proposition 4.3, we can conclude

Eµ

(

1

n

n−1∑

k=0

f(Yk)|τ > n

)

−→
n→∞

ϕmax(f).

�

4.3. Quasi-ergodic distribution with periodic moving killing subset. In this subsec-
tion we are interested in the quasi-ergodicity of the chain X defined in the Intro-
duction considering that the boundaries are moving γ-periodically. We denote by
Y = (Yn)n∈Z+ the Markov chain defined on E × Z/γZ by

Yn = (Xn, n) (4.23)

Y is therefore a Markov chain defined on a finite space state, which is irreducible if
and only if gcd(T (X), γ) = 1, where T (X) is the period of (Xn)n∈Z+ . If the chain
Y is actually irreducible, the associated period is

T = LCM(T (X), γ)

where LCM(·, ·) refers to the least common multiple.
Moreover we have

τ = inf{n ≥ 0 : Xn ∈ An} = inf{n ≥ 0 : Yn ∈ ∂}

with

∂ := {(x, k) : x ∈ Ak}

Remark that ∂ is a non moving killing subset for the chain Y . Thus we can apply
theorem 4.5 to the process Y which yields the following theorem
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Theorem 4.6. Let µ ∈ P(E0). Assume that (An)n∈Z+ is periodic and Y defined
in (4.23) satisfies the Hypothesis 4.4. Then, for any measurable bounded function
f ,

Eµ

(

1

n

n−1∑

k=0

f(Xk)|τ > n

)

−→
n→∞

∑

(x,y)∈E×Z/γZ−∂

f(x)νmax(x, y)ξmax(x, y)

where νmax and ξmax are the probability measures defined in (4.19) and (4.20)
relatively to Y .

We can also give the following corollary which requires assumptions on X and
(An)n∈Z+ .

Corollary 4.7. Assume that (An)n∈Z+ is γ-periodic and that gcd(T, γ) = 1 (where
T is the period of X). Then there exists η ∈ P(E) such that, for any µ ∈ P(E0)
and any f bounded measurable,

Eµ

(

1

n

n−1∑

k=0

f(Xk)|τ > n

)

−→
n→∞

∫

fdη.

Proof of the theorem 4.6: It is enough to apply Theorem 4.5 to the chain Y defined
on (4.23) and to deduce the results on X thanks to the following equality

Eµ

(

1

n

n−1∑

k=0

f(Xk)|τ > n

)

= Eµ⊗δ0

(

1

n

n−1∑

k=0

f̃(Yk)|τ > n

)

, ∀n ≥ 1

where f̃ is the projection on the first component. �

5. Existence of Q-process with boundaries moving periodically

In this section, we are interested in the Q-process, which can be interpreted as
the law of the process X conditioned never to be killed by the moving boundary.
As before, we still consider that the boundary moves periodically period γ.

To show the existence of the Q-process, we will consider again the Markov chain
Y defined in (4.23), that is defined by

Yn = (Xn, n), ∀n ∈ Z+

and we take back the notation introduced in subsection 4.2 associated to Y .
The following statement ensures the existence of a Q-process even when the

boundary moves. However, it is interesting to observe that we lose the homogeneity
of the Q-process because of the movement of the killing boundary.

Theorem 5.1. For any n ∈ Z+ and any x ∈ E0, the probability measure Qx defined
by

Qx(X1 ∈ ·, . . . , Xn ∈ ·) = lim
m→∞

Px(X1 ∈ ·, . . . , Xn ∈ ·|τ > m)

is well-defined and, under the probability Qx, (Xn)n∈Z+ is a time-inhomogeneous
Markov chain such that for any n ∈ Z+, for any (y, z) ∈ En−1 × En

Qx(Xn = z|Xn−1 = y) =
ξx(z, n)

ρxξx(y, n− 1)
Py(X1 = z).
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Proof : For any m,n ∈ Z+, for any f1, . . . , fn measurable bounded functions and
for any x ∈ E0,

Ex(f1(Y1) . . . fn(Yn)|τ > n+m) =
Ex(f1(Y1) . . . fn(Yn)1τ>n+m)

Px(τ > n+m)
(5.1)

= Ex

(

f1(Y1) . . . fn(Yn)
1τ>nPYn

(τ > m)

Px(τ > n+m)

)

.

(5.2)

According to the equality (4.22) applied to the function equal to 1, for any y ∈
E × Z/γZ− ∂ and n ∈ Z+,

Py(τ > n) = ρny

Ty−1
∑

l=0

e
− 2inlπ

Ty < wy,l, δy >< vy,l,1 > +o(ρny ).

Thus, using this in (5.2),

Ex(f1(Y1) . . . fn(Yn)|τ > m+ n) (5.3)

= Ex

(

f1(Y1) . . . fn(Yn)

1τ>nρ
m
Yn

TYn−1∑

l=0

e
− 2imlπ

TYn < wYn,l, δYn
>< vYn,l,1 > +o(ρmYn

)

ρn+m
x

Tx−1∑

l=0

e−
2i(n+m)lπ

Tx < wx,l, δx >< vx,l,1 > +o(ρn+m
x )

)

(5.4)

= Ex

(

f1(Y1) . . . fn(Yn)

1τ>nρ
m
x

Tx−1∑

l=0

e−
2imlπ

Tx < wx,l, δYn
>< vx,l,1 > +o(ρmx )

ρn+m
x

Tx−1∑

l=0

e−
2i(n+m)lπ

Tx < wx,l, δx >< vx,l,1 > +o(ρn+m
x )

)

(5.5)

= Ex

(

f1(Y1) . . . fn(Yn)

1τ>n

Tx−1∑

l=0

e−
2imlπ

Tx < wx,l, δYn
>< vx,l,1 > +o(1)

ρmx
Tx−1∑

l=0

e−
2i(n+m)lπ

Tx < wx,l, δx >< vx,l,1 > +o(ρmx )

)

.

(5.6)

The passage from (5.4) to (5.5) is due to the fact that, for any n ∈ Z+, Yn ∈ Dx

almost surely and the quantities Tx, ρx, wx,l and vx,l depends only on Dx.
Since the restriction of the chain Y on Dx is irreducible, we can construct as in

the subsection 4.1 some clusters (Cj)0≤j≤Tx−1 such that x ∈ C0 and

Px(Yk+nTx
∈ Ck, τ > k + nTx) = 1, ∀k ∈ {0, . . . , Tx − 1}, ∀n ∈ Z+

For any y ∈ Dx, denote by j(y) the integer such that y ∈ Cj(y). Then we deduce
from the equality (4.3) in the subsection 4.1 that for any y ∈ E × Z/γZ − ∂ and
n ∈ Z+,

e−
2inlπ
Tx < wx,l, δy >= e−

2iπ(n+j(y))l
Tx ξx(y).

Thus, according to (5.6) and the previous equality,

Ex(f1(Y1) . . . fn(Yn)|τ > m+ n) =
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= Ex







f1(Y1) . . . fn(Yn)

1τ>nξx(Yn)

(
Tx−1∑

l=0

e−
2iπ(m+j(Yn))l

Tx < vx,l,1 > +o(1)

)

ρnxξx(x, 0)

(
Tx−1∑

l=0

e−
2iπ(m+n+j(x))l

Tx < vx,l,1 > +o(1)

)








.

However, for any n ∈ Z+,

j(Yn) = j(x) + n mod Tx, a.s.

and for any m,n ∈ Z+,

Tx−1∑

l=0

e−
2iπ(m+n+j(x))l

Tx < vx,l,1 > 6= 0.

Since the state space E × Z/γZ is finite, we may first consider function fi(y) =
1y=xi

, so that quantities in the ratio except 1τ>n are fixed. This justifies thta we
can exchange the expectation and the limit as n → ∞ in the previous expression.
We deduce that,

Ex(f1(Y1) . . . fn(Yn)|τ > m+ n) −→
m→∞

Ex

(

f1(Y1) . . . fn(Yn)
1τ>nξx(Yn)

ρnxξx(x, 0)

)

.

The statement on X is obtained using projection functions and we can deduce from
it the transition kernel of the Q-process.

�

6. Example : discrete-time random walk

We shall illustrate the previous results by looking at a discrete-time random
walk. Let p ∈]0, 1[. We denote by (Mp

n)n∈Z+ the Markov chain defined on Z such
that

P(Mp
n+1 = Mp

n + 1|Mp
n) = 1− p,

P(Mp
n+1 = Mp

n − 1|Mp
n) = p.

Before dealing with the quasi-ergodicity with moving boundaries, let us recall some
properties about quasi-stationarity concerning random walks. For any K ≥ 1 we
define

TK = inf{n ≥ 0 : Mp
n ∈ (−∞, 0] ∪ [K + 1,∞)}

The sub-Markovian transition matrix associate to (Mp
n∧TK

)n∈Z+ is the matrixQK ∈
MK(R) defined by :

QK =












0 1− p 0 . . . 0 0
p 0 1− p . . . 0 0
0 p 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1− p
0 0 0 . . . p 0












.

For any K ≥ 1, denote by PK(X) the characteristic polynomial of QK . Using
standard algebraic manipulations, one can show that for any K ≥ 1, the following
recurrence relation is satisfied

PK+2(X) = −XPK+1(X)− p(1− p)PK(X)
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with P1(X) = −X and P2(X) = X2 − p(1− p). We set P0(X) = 1.
For any K ≥ 0, define

UK(X) =

(

−
1

√

p(1− p)

)K

PK

(

2
√

p(1− p)X
)

.

Then the following equation is satisfied

UK+2(X) = 2XUK+1(X)− UK(X)

for which U0(X) = 1 and U1(X) = 2X . In other words, the sequence (UK)K≥0 are
the Chebyshev’s polynomials of the second kind and we have for any θ ∈ R

UK(cos(θ)) =
sin((K + 1)θ)

sin(θ)
.

The set of roots of UK , hence of PK , is thus well-known. It follows

Sp(QK) =

{

λj := 2
√

p(1− p) cos

(
jπ

K + 1

)

: j ∈ {1, . . . ,K}

}

.

We are interested now in the eigenvectors of QK .

Proposition 6.1. Let K ≥ 1. Then, for any j ∈ {1, . . . ,K}, Ker(QK − λjIk) =
Span(xj) where

xj(i) =

(

−
1

1− p

)i−1

Pi−1(λj) =

(√
p

1− p

)i−1 sin
(

ijπ
K+1

)

sin
(

jπ
K+1

) , ∀i ∈ {1, . . . ,K}.

Proof : Let λ ∈ Sp(QK). We want to find all the eigenvectors x = (x(i))1≤i≤K

associated to λ such that x(1) = 1. We will prove the proposition by double
induction.

Base case: According to the relation QKx = λx, we have

λx(1) = (1 − p)x(2). (6.1)

Having x(1) = 1, we will have therefore x(2) = 2λ = − 1
1−pP1(λ), which conclude

the base case

Inductive step: Let i ∈ {3, . . . ,K−1}. We assume that the equality is satisfied
for i− 1 and i− 2, so we have

x(i − 2) =

(

−
1

1− p

)i−3

Pi−3(λ)

x(i − 1) =

(

−
1

1− p

)i−2

Pi−2(λ).

Using λx = QKx,

λx(i − 1) = px(i − 2) + (1 − p)x(i).

So

x(i) =
1

1− p
(λx(i − 1)− px(i − 2))

=
1

1− p

(

λ

(

−
1

1− p

)i−2

Pi−2(λ) − px(i− 1)

)
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=

(

−
1

1− p

)i−1

(−λPi−2(λ)− p(1− p)Pi−3(λ))

=

(

−
1

1− p

)i−1

Pi−1(λ)

which concludes the proof. �

The previous proposition gives us left and right eigenvectors of QK : if we de-
note by (vi)1≤i≤K (respectively (wi)1≤i≤K) the left (respectively right) eigenvectors
satisfying viQK = λivi (respectively QKwi = λiwi), then

vi(j) =

(
1− p

p

)j−1 sin
(

ijπ
K+1

)

sin
(

iπ
K+1

) ,

wi(j) =

(
p

1− p

)j−1 sin
(

ijπ
K+1

)

sin
(

iπ
K+1

) ,

In particular, considering the spectral radius λ1, the quasi-stationary distribution
ν and the right-eigenvector ξ associated to λ1 satisfying < ν, ξ >= 1 are as follows:

ν(j) =

(
1−p
p

)j−1

sin
(

jπ
K+1

)

K∑

k=1

(
1−p
p

)k−1

sin
(

kπ
K+1

)

ξ(j) =

K∑

k=1

(
1−p
p

)k−1

sin
(

kπ
K+1

)

K∑

k=1

sin2
(

kπ
K+1

)

(
p

1− p

)j−1

sin

(
jπ

K + 1

)

.

We are interested now in moving boundaries. Let N ≥ 1 and consider the simplest
case where (An)n∈Z+ is defined by

An =

{
(−∞, 0] ∪ [2N,∞), if n is even,
(−∞, 1] ∪ [2N − 1,∞), if n is odd.

(6.2)

Recall the previous notation

Y p
n = (Mp

n∧τ0 , n) (6.3)

with n ∈ Z/2Z. The chain is not irreducible (if Mp
0 is even, then for any n, Mp

n

have the same parity as n). It admits exactly two irreducible subsets:

(1) P = {(x, y) ∈ E : x+ y is even}.
(2) I = {(x, y) ∈ E : x+ y is odd}.

But, as we can see in Figure 6.1, the chain Y p behaves as a random walk on each
irreducible subsets:

(1) On P , Y p has the same behavior as a random walk on Z starting from
[2, 2N − 2] absorbed by {1, 2N − 1}.

(2) On I, Y p has the same behavior as a random walk on Z starting from
[1, 2N − 1] absorbed by {0, 2N}.
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0

1

0 1 2 3 4 5 6

Figure 6.1. The black dots represent the states in ∂. The irre-
ducible subsets P and I are represented respectively by the dashed
path and the filled path. On each path, we see that Y p behaves as
a random walk.

Denote by Y p
P (respectively Y p

I ) the Markov chain such that for any µ ∈ P(P)
(respectively P(I))

Pµ(Y
p
1 ∈ ·) = Pµ((Y

p
P )1 ∈ ·) (respectively Pµ(Y

p
1 ∈ ·) = Pµ((Y

p
I )1 ∈ ·)).

Let µ ∈ P(E × Z/2Z). Then there are λ ∈ [0, 1] and µP , µI ∈ P(P) × P(I) such
that

µ = λµP + (1− λ)µI .

Hence we see that two cases are possible:

Proposition 6.2.

(1) if λ = 1, Bmax = P. Then ρmax = 2
√

p(1− p) cos
(

π
2(N−1)

)

, and

Eµ

(

1

n

n−1∑

k=0

f(Mp
k )|τ > n

)

−→
n→∞

2N−3∑

j=1

f(j)
sin2

(
jπ

2(N−1)

)

2N−3∑

k=1

sin2
(

kπ
2(N−1)

) .

(2) if λ 6= 1, Bmax = I. Then ρmax = 2
√

p(1− p) cos
(

π
2N

)
, and

Eµ

(

1

n

n−1∑

k=0

f(Mp
k )|τ > n

)

−→
n→∞

2N−1∑

j=1

f(j)
sin2

(
jπ
2N

)

2N−1∑

k=1

sin2
(
kπ
2N

)
.

When (An)n∈Z+ is moving as (6.2), the quasi-ergodic distribution is the same as
the non-moving quasi-ergodic distribution for one random walk absorbed at {0, 2K}
except when the support of the initial distribution is included in the set of even
numbers. As a matter of fact, if the chain starts from the set of even numbers, it can
be absorbed only by {1, 2N − 1}. Remark also that the quasi-ergodic distribution
of one random walk does not depend on p anymore.

We have also the existence of a Q-process according to theorem 5.1 which is the
time-inhomogeneous Markov chain (Zp

n)n∈Z+ defined by

Px(Z
p
n = y ± 1|Zp

n−1 = y) =
1

2

√
p

1− p

sin
(

(y±1)π
K(y,n)

)

sin
(

yπ
K(y,n)

)

cos
(

π
K(y,n)

)

with K(y, n) = 2N − 1 + (−1)n+y.
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