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Abstract. We investigate Bochner integrabilities of generalized Wiener function-
als. We further formulate an Itô formula for a diffusion in a distributional setting,
and apply it to investigate differentiability-index s and integrability-index p > 2 for
which the Bochner integral belongs to Ds

p.

1. Introduction

In this paper, we justify the symbol “
∫ T

0 δy(Xt)dt” denoting a quantity relating
to the local time of a d-dimensional diffusion process X = (Xt)t>0 with X0 being
deterministic (in multi-dimensional case, we assumeX0 6= y), or more generally, the

object “
∫ T

0 Λ(Xt)dt” where Λ is a distribution. Our diffusion process X = (Xt)t>0

is assumed to satisfy a d-dimensional stochastic differential equation

dXt = σ(Xt)dw(t) + b(Xt)dt, X0 = x ∈ R
d,

where w = (w1(t), · · · , wd(t))t>0 is a d-dimensional Wiener process with w(0) = 0.
The main conditions on σ = (σi

j)16i,j6d and b = (bi)16i6d under which we will
work are combinations from the following.

Hypothesis 1.1. (H1) the coefficients σ and b are C∞, and have bounded
derivatives in all orders > 1.

(H2) (σσ∗)(x) is strictly positive, where x = X0 and σ∗ is the transposed matrix
of σ.
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(H3) σσ∗ is uniformly positive definite, i.e., there exists λ > 0 such that

λ|ξ|2
Rd 6 〈ξ, (σσ∗)(y)ξ〉Rd for all ξ, y ∈ R

d,

where 〈•, •〉Rd is the standard inner product on Rd, and | • |Rd = | • | is the corre-
sponding norm.

(H4) σ and b are bounded.

We further formulate stochastic integrals and an Itô formula in this distributional
setting and investigate when the local time belongs to Ds

2 (the Sobolev space of
integrability-index 2 and differentiability-index s ∈ R with respect to the Malliavin
derivative).

In fact, we will formulate
∫ T

0
δy(Xt)dt as a Bochner integral in the space of

generalized Wiener functional. We remark here the Bochner integrability seems
nontrivial when y = X0, since δy(Xt) no longer makes sense at t = 0. On the
other hand, the local time is usually formulated as a classical Wiener functional.
Hence, once the Bochner integrability is proved, a “smoothing effect” should occur

in the Bochner integral
∫ T

0
δy(Xt)dt, i.e., the differentiability-index for

∫ T

0
δy(Xt)dt,

should be greater than that of δy(Xt).
In the case of Brownian motionXt = w(t), everything can be explicitly computed

and we can exhibit this phenomenon. Namely, the following is the prototype of this
study.

Let S ′(Rd) denote the space of all Schwartz distributions on Rd.

Theorem 1.1. Assume d = 1. Let Λ ∈ S ′(R) and s ∈ R. If Λ(w(T )) ∈ Ds
2 then

the mapping

(0, T ] ∋ t 7→
√
T

t
Λ
(√T

t
w(t)

)
∈ D

s
2

is Bochner integrable in D
s
2 and we have
∫ T

0

√
T

t
Λ
(√T

t
w(t)

)
dt ∈ D

s+1
2 .

Since it is known that δ0(w(t)) ∈ D
(−1/2)−
2 (see Watanabe, 1991), we obtain∫ T

0 δ0(w(t))dt ∈ D
(1/2)−
2 , which agrees with the result by Nualart and Vives (1992)

and Watanabe (1994a). The proof of this theorem is due to the chaos compu-
tations (which is essentially the same as Nualart and Vives, 1992 but with no
approximations of the integrand). When b = σσ′/2, this computation brings the
Hölder-continuity of the local time with respect to space variable. The norm on D

s
p

will be denoted by ‖ • ‖p,s.
Theorem 1.2. Let d = 1. Assume (H1), (H3) and that the drift-coefficient is
given by b = σσ′/2. Then for each s < 1

2 and β ∈ (0,min{ 1
2 − s, 1}), there exists a

constant c = c(s, β) > 0 such that

∥∥σ(y)
∫ 1

0

δy(Xt)dt− σ(z)

∫ 1

0

δz(Xt)dt
∥∥
2,s

6 c|y − z|β

for every y, z ∈ R.

The proof of this theorem seems interesting in its own right. The study of
Hölder continuity of local times had been initiated by Trotter (1958, inequalities
(2.1) and (2.3)), in which the almost-sure Hölder-continuity of the Brownian local
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time {l(t, x) : t > 0, x ∈ R} in time-space variable (t, x) was proved (see also
Boufoussi and Roynette, 1993). There are a lot of such studies (see, e.g., Liang,
2006, Ait Ouahra et al., 2014, Lou and Ouyang, 2017 and references therein).

Theorem 1.2 implies immediately the following.

Corollary 1.3. Under the conditions in Theorem 1.2, let pt(x, y) be the transition
density of Xt. Then the mapping

R ∋ y 7→ σ(y)

∫ 1

0

pt(x, y)dt ∈ R

is (globally) β-Hölder continuous for every β < 1.

The latter half of this paper concerns with an Itô formula in a distributional
setting. The classical Itô-Tanaka formula had been extended with several formula-
tions (see Föllmer et al., 1995, Bouleau and Yor, 1981, Wang, 1977/78, Kubo, 1983
and so on). In particular, according to results in Wang (1977/78) and Bouleau and
Yor (1981), the Itô-Tanaka formula for f(Xt) is valid in the case where f is just a
convex function. In our case, we obtained the following.

Theorem 1.4. Assume (H1), (H2) and (H4). Let Ai =
∑d

j=1 σ
j
i ∂/(∂xj) and L be

the generator of the diffusion process X. Suppose that f : Rd → R is a measurable
function such that

(i) f is continuous at x,
(ii) f has at most exponential growth,

(iii)
∫ T

0
‖(Aif)(Xt)‖22,−kdt < +∞ for i = 1, 2, · · · , d,

(iv)
∫ T

0
‖(Lf)(Xt)‖2,−kdt < +∞

for some k ∈ N. Then we have

f(XT )− f(x) =

d∑

i=1

∫ T

0

(Aif)(Xt)dw
i(t) +

∫ T

0

(Lf)(Xt)dt in D
−∞.

We can drop the assumption (H4) if f has at most polynomial growth.
The definition of stochastic integral will be given in Section 4.1 and the time-

integral
∫ T

0 (Lf)(Xt)dt is understood in the sense of Bochner integral in D
−k
2 . Kubo

(1983) also obtained an Itô formula for Brownian motion in a distributional setting.
However, his formula does not need to consider the Bochner integrability because
the time-interval of integration is a closed interval excluding zero. A generalization
to the case of one-dimensional fractional Brownian motion was done by Bender
(2003) (and see references therein), in which, even the case where the time-interval
of integration is such as (0, T ] is considered (Bender, 2003, Theorem 4.4), though
the first distributional derivative of f is assumed to be a regular distribution. But
he did not give a systematic treatment of Bochner integrability. Theorem 1.4 will
be proved in Section 4 and it will be established in Section 4.2 even the case where
f itself is a distribution of exponential-type and furthermore the time-interval of
integration is (0, T ].

A distribution Λ ∈ S
′(Rd) is said to be positive if 〈Λ, f〉 > 0 for every nonneg-

ative test function f ∈ S (Rd). To include local times for diffusions in our scope,
we prepare the following
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Theorem 1.5. Assume d = 1, (H1) and (H2). Let Λ ∈ S ′(R) be positive. Then

there exists k ∈ Z>0 such that we have
∫ T

0
‖Λ(Xt)‖p,−2kdt < +∞ for every p ∈

(1,∞).

Hence the mapping (0, T ] ∋ t 7→ δy(Xt) ∈ D−2k
p is Bochner integrable in the case

of d = 1. For multi-dimensional cases, it is sufficient to assume x 6= y in order to
guarantee the Bochner integrability (Proposition 3.12).

Finally, let Hs
p(R

d) := (1 −△)−s/2Lp(R
d, dz) for p ∈ (1,∞), s ∈ R, which are

called the Bessel potential spaces (see Abels, 2012 or Krylov, 2008 for details). We
will then apply the Itô formula (Theorem 4.9) to derive the following.

Corollary 1.6. Assume (H1), (H3) and (H4). Let p ∈ (1,∞) and s ∈ R. Then for
each Λ ∈ Hs

p(R
d), we have

(i) Λ(Xt) ∈ Ds
p′ for t > 0 and p′ ∈ (1, p);

(ii) if p > 2, we further have
∫ T

t0
Λ(Xt)dt ∈ D

s+1
p′ for t0 ∈ (0, T ] and p′ ∈ [2, p).

It might be natural to ask about the class to which
∫ T

t0
Λ(Xt)dt belongs when

t0 = 0. Some examples are included in Section 4.3.
The organization of the current paper is as follows: We first review the classical

Malliavin calculus in Section 2 to introduce several notations. In particular, the
mapping of Watanabe’s pull-back will be extended to the space of distributions of
exponential-type. Section 3 is devoted to investigate Bochner integrability of the
mapping (0, T ] ∋ t 7→ Λ(Xt) where Λ is a distribution. We will illustrate the Brow-
nian case with detailed computations. The methods there bring a Hölder continuity
in the space variable of the local time in the case where the stochastic differential
equation is written in a Fisk-Stratonovich symmetric form. In Section 4, we give a
definition of stochastic integrals and formulate an Itô formula in this distributional
setting. Corollary 1.6 and some examples will be presented in Section 4.3. Several
estimates necessary for these examples are wrapped up in Appendix A.

2. Review of Malliavin Calculus

First, we make a brief review of the classical Malliavin calculus on the d-dimen-
sional classical Wiener space to introduce notations.

Let (W,F ,P) be the d-dimensional Wiener space on [0, T ], that is, W is the
space of all continuous functions [0, T ] → R

d, F is the σ-field generated by the
canonical process W ∋ w 7→ w(t) ∈ Rd, 0 6 t 6 T , and P is the Wiener measure
with P(w(0) = 0) = 1. The expectation under P will be denoted by E. The
space W contains the subspace H , consisting of all absolutely continuous h ∈ W
with h(0) = 0 and the square-integrable derivative. The subspace H is called the
Cameron-Martin subspace and forms a real Hilbert space with the inner product

〈h1, h2〉H :=

∫ T

0

〈ḣ1(t), ḣ2(t)〉Rddt, h1, h2 ∈ H.

It is known that L2 := L2(W,F ,P) has the following orthogonal decomposition,
called the Wiener-Itô chaos expansion:

L2 = R⊕ C1 ⊕ C2 ⊕ · · · ,
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where each Ck is a closed linear subspace of L2 spanned by multiple stochastic
integrals∫

06t1<···<tk6T

〈ḣ1(t1)⊗ · · · ⊗ ḣk(tk), dw(t1)⊗ · · · ⊗ dw(tk)〉(Rd)⊗k ,

for h1, h2, · · · , hk ∈ H , of k-th degree. Each Ck is called the subspace of Wiener’s
homogeneous chaos of k-th order. We denote by Jk the orthogonal projection onto
Ck. For each separable Hilbert space (E, 〈•, •〉E), Lp(E) denotes the space of E-

valued p-th order integrable random variables F with norm ‖F‖p = E[|F |pE ]1/p.
Each projection Jn extends to L2(E) ∼= L2 ⊗ E → Cn ⊗ E, which is still denoted
by the same symbol.

For each s ∈ R and p ∈ (1,∞), a Sobolev-type space D
s
p(E) (we write this D

s
p

when E = R) is defined as the completion of P := ∪∞
n=1∩m>n {F ∈ L2(E) : JmF =

0} under the norm ‖ · ‖p,s defined by ‖F‖p,s = ‖(I −L)s/2F‖p for F ∈ P , where L
is the Ornstein-Uhlenbeck operator on the Wiener space. It is known that

(I − L)s/2F =

∞∑

k=0

(1 + k)s/2JkF, F ∈ P . (2.1)

Note that D0
p = Lp for p ∈ (1,∞), and

‖F‖22,s =
∞∑

k=0

(1 + k)s‖JkF‖22, F ∈ D
s
2. (2.2)

We further define

D
∞(E) :=

⋂

s>0

⋂

1<p<∞
D

s
p(E) and D

−∞(E) :=
⋃

s<0

⋃

1<p<∞
D

s
p(E).

It is known that (Ds
p(E))′ = D−s

q (E) if and only if 1/p + 1/q = 1 (where “′”
stands for the “continuous dual”) for each s ∈ R, the space D∞(E) is a com-
plete countably-normed space and D−∞(E) is its dual which is called the space of
generalized Wiener functionals. The pairing of Φ ∈ D−∞(E) and F ∈ D∞(E) is
written as E[ΦF ] := D−∞(E)〈Φ, F 〉D∞(E), and then E[Ψ] = D−∞〈Ψ, 1〉D∞ is called

the generalized expectation of Ψ ∈ D−∞.
One can define a (continuous) linear operator D : D−∞(E) → D−∞(E⊗H) such

that (a) each restriction D : Ds+1
p (E) → D

s
p(E ⊗ H) and is continuous for every

s ∈ R and p ∈ (1,∞), and (b) we have 〈DF, e ⊗ h〉E⊗H = 〈DhF, e〉E for e ∈ E,
h ∈ H and F ∈ P , where DhF is given by

〈(DhF )(w), e〉E = lim
ε→0

1

ε
〈F (w + h)− F (w), e〉E for w ∈W . (2.3)

The differential operator Dh in (2.3) is well-defined for almost all w because of the
so-called Cameron-Martin theorem. There also exists a (continuous) linear operator
D∗ : D−∞(E⊗H) → D−∞(E) such that (a)∗ each restriction D∗ : Ds+1

p (E⊗H) →
Ds

p(E) and is continuous for every s ∈ R and p ∈ (1,∞), and (b)∗ we have

D∗(G⊗ h) = −DhG+

∫ T

0

〈ḣ(t), dw(t)〉RdG

for h ∈ H , G ∈ D1
2(E). These operators are related as follows: For F,G ∈ D1

2(E)
and h ∈ H , it holds that

E[〈DF,G⊗ h〉E⊗H ] = E[〈F,D∗(G⊗ h)〉E ].
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Let S (Rd) be the real Schwartz space of rapidly decreasing C∞-functions on
Rd. We denote by S2k(R

d), k ∈ Z the completion of S (Rd) by the norm

|φ|2k := |
(
1 + x2 −△/2

)k
φ|∞, φ = φ(x) ∈ S (Rd),

where △ =
∑d

i=1 ∂
2/(∂xi)

2 and |φ|∞ = supx∈Rd |φ(x)|.
Definition 2.1. (i) A Wiener functional F = (F 1, · · · , F d) ∈ D∞(Rd) is said

to be non-degenerate if ‖ det(〈DF i, DF j〉H)−1
i,j ‖p <∞ for any p ∈ (1,∞).

(ii) A family of Wiener functionals Fα = (F 1
α, · · · , F d

α) ∈ D∞(Rd), α ∈ I,
where I is an index set, is said to be uniformly non-degenerate if for any
p ∈ (1,∞), it holds that supα∈I ‖ det(〈DF i

α, DF
j
α〉H)−1

i,j ‖p <∞.

If F ∈ D∞(Rd) is non-degenerate, then the mapping S (Rd) ∋ φ 7→ φ(F ) ∈ D∞

extends uniquely to a mapping S ′(Rd) ∋ Λ 7→ Λ(F ) ∈ ∪s>0∩1<p<∞D−s
p such that

each restriction maps S−2k(R
d) → D−2k

p and is continuous for every k ∈ Z and p ∈
(1,∞) (see e.g., Ikeda and Watanabe, 1989, Chapter V, Section 9). The generalized
Wiener functional Λ(F ) is called the pull-back of Λ ∈ S ′(Rd) by F ∈ D∞(Rd).

For Λ ∈ S ′(R), we denote by Λ(n) the n-th distributional derivative of Λ.

Lemma 2.2. Let y ∈ R and δy be the Dirac delta-function at y. Then δy ∈ S−2(R),

δ
(2k)
y ∈ S−2(k+1)(R) for k ∈ N, and supa∈R |δa|−2 < +∞.

Proof : It is well known that δy ∈ S−2(R) and δ
(2k)
y ∈ S−2(k+1)(R) for k ∈ N (see

Ikeda and Watanabe, 1989, Chapter V, section 9, Lemma 9.1, p.380). It is also
known that

(
(1 + x2 −△/2)−1δy

)
(x) 6

1

2π

∫ +∞

−∞

eiξ(x−y)

(1 + ξ2

2 )
dξ

for any x, y ∈ R, from which, we easily conclude that

sup
a∈R

|δa|−2 6
1

2π

∫ +∞

−∞

dξ

(1 + ξ2

2 )
< +∞.

�

2.1. Slight extension to exponential-type distributions. It will be convenient to ex-
tend the pull-back procedure from Schwartz distribution space to the space of all
distributions of exponential-type. Let ∂i := ∂/(∂xi), i = 1, 2, · · · , d.
Definition 2.3 (Hasumi, 1961). We say φ ∈ C∞(Rd) belongs to E (Rd) if for any

p ∈ Z>0 and k1, · · · , kd ∈ Z>0, we have supx∈R | exp(p|x|)∂k1
1 · · · ∂kd

d φ(x)| < +∞.

Semi-norms on E (Rd), defined by

|φ|p := sup
k1,··· ,kd∈Z>0:
06k1+···+kd6p

sup
x∈Rd

| exp(p|x|)∂k1
1 · · · ∂kd

d φ(x)|, p = 0, 1, 2, · · ·

make E (Rd) a locally convex metrizable space and induces continuous inclusions

D(Rd) →֒ E (Rd) →֒ S (Rd) and S
′(Rd) →֒ E

′(Rd) →֒ D
′(Rd)

where D
′(Rd) is the space of all distributions on R

d with the test function space
D(Rd), and E ′(Rd) is the continuous dual of E (Rd). Elements in E ′(Rd) are referred
as distributions of exponential-type. The following is known (see Hasumi, 1961,
Proposition 3).
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Theorem 2.4. For any Λ ∈ E ′(Rd), there exist k ∈ Z>0 and a bounded continuous
function f : Rd → R such that

Λ =
∂kd

∂xk1 · · · ∂xkd
[exp(k|x|)f(x)].

Here, the derivatives are understood in the sense of distributional derivatives.

Remark 2.5. The spaces E (Rd) and E ′(Rd) are denoted by H and Λ∞ respectively
in Hasumi (1961). The space E ′(Rd) = Λ∞ is introduced by Sebastião e Silva
(1958) in the study of the Fourier transform of Λ∞, called ultra-distributions (see
Sebastião e Silva, 1958, Hasumi, 1961 and Yoshinaga, 1960).

Define ek(x) :=
∏d

i=1 cosh(kxi) for k ∈ Z>0 and x = (x1, · · · , xd) ∈ Rd. We
postpone the proof of the next proposition after Definition 2.7.

Proposition 2.6. Suppose that Fα = (F 1
α, · · · , F d

α) ∈ D∞(Rd), α ∈ I, where I is
an index set, are uniformly non-degenerate and satisfy

Mr := sup
α∈I

E[exp(r|Fα|Rd)] < +∞ for each r > 0. (2.4)

Then for any p ∈ (1,∞), k ∈ Z>0 and r > 0, there exists a constant c =
c(q, k, r,Mr) > 0, where 1/p+ 1/q = 1, such that

∥∥ ∂kd(erφ)

∂xk1 · · ·∂xkd
(Fα)

∥∥
p,−kd

6 c sup
x∈Rd

|φ(x)|

for all φ ∈ S (Rd) and α ∈ I.

Now, let F ∈ D∞(Rd) be non-degenerate. Take Λ = ∂k1 · · ·∂kd [exp(k|x|)f(x)]
∈ E ′(Rd) (where f is the one associated to Λ in Theorem 2.4) and assume k > 1. Let
ε ∈ (0, 1) be arbitrary and put r := k+ε > 0. Define φ ∈ C0(R

d) (the space of con-

tinuous functions on Rd vanishing at infinity) by φ(x) :=(ek|x|/
∏d

i=1 cosh(rxi))f(x),

so that now we have Λ = ∂k1 · · · ∂kd (erφ) = ∂k1 · · · ∂kd [(
∏d

i=1 cosh(rxi))φ(x)]. Take
any sequence φn ∈ S (Rd), n ∈ N such that |φn − φ|∞ → 0. Then Proposition 2.6
tells us that limn→∞[∂k1 · · · ∂kd (erφn)](F ) exists in D−kd

p for each p ∈ (1,∞). The

limit does not depend on the choice of ε > 0 and the sequence φn ∈ S (Rd). Under
these notations, we put the following.

Definition 2.7. We denote the limit by Λ(F ) and call the pull-back of Λ ∈ E ′(Rd)
by F .

Proof of Proposition 2.6: Let p ∈ (1,∞), k ∈ Z>0, r > 0, α ∈ I, φ ∈ S (Rd) and
J ∈ D∞ be arbitrary. Then

E[
(
∂k1 · · ·∂kd (erφ)

)
(Fα)J ] = E[

( d∏

i=1

cosh(rF i
α)
)
φ(Fα)lα(J)]

where lα(J) ∈ D∞ is of the form

lα(J) =

kd∑

j=0

〈Pj(w), D
jJ〉H⊗j

for some Pj(w) ∈ D∞(H⊗j), j = 0, 1, · · · , kd which are polynomials in Fα, its

derivatives up to the order kd, and det(〈DF i
α, DF

j
α〉H)−1

ij . Take q′ ∈ (1, q), where
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1/p+1/q = 1. Since {Fα}α∈I is uniformly non-degenerate, there exists c0 > 0 such
that

‖lα(J)‖q′ 6 c0‖J‖q,k for all α ∈ I and J ∈ D
∞.

Therefore by taking p′ ∈ (1,∞) such that 1/p′ + 1/q′ = 1, we have

∣∣E[
( d∏

i=1

cosh(rF i
α)
)
φ(Fα)lα(J)]

∣∣ 6 c′0|φ|∞‖ exp
(
r|Fα|

)
‖p′‖J‖q,k,

for some constant c′0 > 0, which implies

‖(ekφ)(k)(Fα)‖p,−k 6 c′0|φ|∞‖ exp(r|Fα|)‖p′ 6 c′0 sup
α∈I

‖ exp(r|Fα|)‖p′ |φ|∞.

�

Corollary 2.8. Suppose that Fα ∈ D∞(Rd) for α ∈ I ⊂ R, where I is an index
set, satisfy

(i) {Fα}α∈I is uniformly non-degenerate;
(ii) supα∈I E[exp(r|Fα|Rd)] < +∞ for each r > 0;

(iii) the mapping I ∋ α 7→ Fα ∈ D∞(Rd) is continuous.

Then for any p ∈ (1,∞) and Λ = ∂k1 · · · ∂kd [exp(k|x|)f(x)] ∈ E ′(Rd) (f is the one
associated to Λ in Theorem 2.4), the mapping

I ∋ α 7→ Λ(Fα) ∈ D
−kd
p

is continuous.

Proof : Let p ∈ (1,∞), α ∈ I and ε > 0 be arbitrary. Suppose that Λ =

∂k1 · · · ∂kd [(
∏d

i=1 cosh(rxi))φ(x)] where r > k > 1 and φ ∈ C0(R
d). Then by Proposi-

tion 2.6, there exists ψ ∈ S (Rd) such that ‖Λ(Fβ)−[∂k1 · · ·∂kd (erψ)](Fβ)‖p,−k < ε/3
for every β ∈ I. Furthermore, by the condition (ii) and (iii), there exists δ > 0 such
that ‖[∂k1 · · · ∂kd (erψ)](Fβ)− [∂k1 · · ·∂kd (erψ)](Fα)‖p < ε/3 if |β − α| < δ. Hence, for
each β ∈ I with |β − α| < δ,

‖Λ(Fα)− Λ(Fβ)‖p,−k

6 ‖Λ(Fα)− [∂k1 · · · ∂kd (erψ)](Fα)‖p,−k

+ ‖[∂k1 · · ·∂kd (erψ)](Fα)− [∂k1 · · · ∂kd (erψ)](Fβ)‖p
+ ‖[∂k1 · · · ∂kd (erψ)](Fβ)− Λ(Fβ)‖p,−k

< ε.

The case of k = 0 is clear. �

If we assume (H1), (H2) and (H4), then we have the Gaussian estimate for the
transition density of X (the special case n = 0 in Lemma 3.10–(ii)) and

sup
t∈K

E[exp(r|X(t, x, w)|)] < +∞ (2.5)

for all r > 0 and compact set K ⊂ (0,∞). Hence by Corollary 2.8, for any Λ =
∂k1 · · · ∂kd [exp(k|x|)f(x)] ∈ E ′(Rd), the mapping (0,∞) ∋ t 7→ Λ(X(t, x, w)) ∈ D−kd

p

is continuous for every p ∈ (1,∞).
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3. Bochner Integrability of Pull-Backs by Diffusions

Let w = (w(t))t>0 be a d-dimensional Wiener process with w(0) = 0. Let
σ : Rd → Rd ⊗ Rd, b : Rd → Rd. We consider the following stochastic differential
equation

dXt = σ(Xt)dw(t) + b(Xt)dt, X0 = x ∈ R
d. (3.1)

In this section, we assume conditions (H1) and (H2). Under these conditions,
the equation (3.1) admits a unique strong solution. We denote by {X(t, x, w)}t>0

the unique strong solution X = (Xt)t>0 to (3.1). Furthermore, for each t > 0 and
x ∈ R, we have X(t, x, w) ∈ D∞(Rd) and is non-degenerate. Henceforward for
t > 0, one can define the pull-back Λ(X(t, x, w)) of Λ ∈ S ′(Rd) by X(t, x, w) as an
element of ∪s>0 ∩1<p<∞ D

−s
p (Recall things just after Definition 2.1).

Fix T > 0 be arbitrary. By the condition (H2), we further know that

sup
t∈K

‖ det(〈DX i
t , DX

j
t 〉H)−1

ij ‖p < +∞ for 1 < p <∞

holds for each closed interval K ⊂ (0, T ], which implies that for each k ∈ Z>0,
p ∈ (1,∞) and Λ ∈ S−2k(R

d), the mapping (0, T ] ∋ t 7→ Λ(X(t, x, w)) ∈ D−2k
p

is continuous (see e.g. Watanabe, 1987, Remark 2.2). In particular, the mapping
[t0, T ] ∋ t 7→ Λ(X(t, x, w)) ∈ D−2k

p is Bochner integrable for each t0 > 0, and hence

the Bochner integral
∫ T

t0
Λ(X(t, x, w))dt makes sense as an element in D−2k

p for

each t0 > 0. If we assume (H4) additionally, then analogous results follow also for
Λ ∈ E ′(Rd) by virtue of the Gaussian estimates for the transition density function
of (Xt)t>0 (or one can refer Lemma 3.10 below) and Corollary 2.8.

Now our problem is the Bochner integrability on (0, T ], i.e., whether it holds

that
∫ T

0 ‖Λ(X(t, x, w))‖p,−2kdt < +∞ or not. The main results of this section
are Theorem 3.4 and Proposition 3.12. Before seeing this, we shall start with the
Brownian case, which would be an introductory example.

3.1. Bochner integrability of δ0(w(t)).

Proposition 3.1. Let d = 1, Λ ∈ S ′(R) and s ∈ R. If Λ(w(T )) ∈ Ds
2 then the

mapping

(0, T ] ∋ t 7→
√
T

t
Λ
(√T

t
w(t)

)
∈ D

s
2

is Bochner integrable in Ds
2 and we have
∫ T

0

√
T

t
Λ
(√T

t
w(t)

)
dt ∈ D

s+1
2 .

Remark 3.2. Hence the Bochner integral poses a sort of “smoothing effect”, in the
sense of raising the regularity-index s, which might be a common understanding
for most of us.

Proof : Recall the integration by parts formula

E[Λ′(w(t))Hn

(w(t)√
t

)
] = t−1/2E[Λ(w(t))Hn+1

(w(t)√
t

)
]

where Λ′ = ∂Λ is the distributional derivative of Λ, Hn := ∂∗n1 is the n-th Her-
mite polynomial and ∂∗ = −∂ + x. The family { 1√

n!
Hn}∞n=0 forms a complete

orthonormal base of L2(R, (2π)
−1/2e−x2/2dx) (see Lemma A.1 in Appendix A).
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Then Λ((T/t)1/2w(t)) has the Fourier expansion (the Wiener-Itô chaos expan-
sion)

Λ
(
√
T

t
w(t)

)
=

∞∑

n=0

1

n!
E[Λ

(
√
T

t
w(t)

)
Hn

(w(t)√
t

)
]Hn

(w(t)√
t

)
,

and hence

‖Λ
(
√
T

t
w(t)

)
‖22,s =

∞∑

n=0

(1 + n)s

n!
E[Λ

(
√
T

t
w(t)

)
Hn

(w(t)√
t

)
]2

Here we have

E[Λ
(
√
T

t
w(t)

)
Hn

(w(t)√
t

)
] = E[Λ(w(T ))Hn

(w(T )√
T

)
].

Therefore

‖
√
T

t
Λ
(
√
T

t
w(t)

)
‖22,s

=
T

t

∞∑

n=0

(1 + n)s

n!
E[Λ(w(T ))Hn

(w(T )√
T

)
]2 =

T

t
‖Λ(w(T ))‖22,s,

that is, we get ‖(T/t)1/2Λ((T/t)1/2w(t))‖2,s = (T/t)1/2‖Λ(w(T ))‖2,s. Since
∫ T

0

∥∥
√
T

t
Λ
(
√
T

t
w(t)

)∥∥
2,s

dt = T 1/2‖Λ(w(T ))‖2,s
∫ T

0

t−1/2dt < +∞,

the function (0, T ] ∋ t 7→ (T/t)1/2Λ((T/t)1/2w(t)) ∈ Ds
2 is Bochner integrable and∫ T

0 (T/t)1/2Λ((T/t)1/2w(t))dt ∈ D
s
2.

Next we show ∫ T

0

√
T

t
Λ
(
√
T

t
w(t)

)
dt ∈ D

s+1
2 . (3.2)

For this, we note that
∫ T

0

√
T

t
Λ
(
√
T

t
w(t)

)
dt

=

∞∑

n=0

1

n!
E[Λ(w(T ))Hn

(w(T )√
T

)
]

∫ T

0

√
T

t
Hn

(w(t)√
t

)
dt

is the chaos expansion for
∫ T

0
(T/t)1/2Λ

(
(T/t)1/2w(t)

)
dt (more precisely, we have

used Corollary 3.6 below). We shall focus on the L2-norm of the last factor:

E[
{∫ T

0

1√
t
Hn

(w(t)√
t

)
dt
}2

]

= 2

∫

0<t<s<T

1√
ts
E[Hn

(w(t)√
t

)
Hn

(w(s)√
s

)
]dtds

= 2

∫

0<t<s<T

1√
ts
E[Hn

(w(t)√
t

)
Hn

(√ t

s

w(t)√
t

+
w(s)− w(t)√

s

)
]dtds

= 2

∫

0<t<s<T

1√
ts
n!
( t
s

)n/2

dtds

= 2(n!)

∫

0<t<s<T

t(n−1)/2s−(n+1)/2dtds =
4T

n+ 1
n!.
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In the third equality, we have used the integration by parts formula and H ′
n =

nHn−1. Hence we have

‖
∫ T

0

√
T

t
Λ
(
√
T

t
w(t)

)
dt‖22,s+1

= T

∞∑

n=0

(1 + n)s+1

(n!)2
E[Λ(w(T ))Hn

(w(T )√
T

)
]2E[

{∫ T

0

1√
t
Hn

(w(t)√
t

)
dt
}2

]

= 4T 2
∞∑

n=0

(1 + n)s

n!
E[Λ(w(T ))Hn

(w(T )√
T

)
]2 = 4T 2‖Λ(w(T ))‖22,s < +∞,

which proves (3.2). �

By Nualart and Vives (1992, Section 2) and Watanabe (1994a), it is known that

δ0(w(t)) ∈ D
(−1/2)−
2 but δ0(w(t)) /∈ D

−1/2
2 for t > 0,

where Ds−
2 := ∩α<sD

α
2 . From this fact and Proposition 3.1, we reached the following

result by Nualart and Vives (1992) and Watanabe (1994a).

Corollary 3.3. If d = 1, we have

∫ T

0

δ0(w(t))dt ∈ D
(1/2)−
2 .

3.2. Bochner integrability of Λ(Xt) where Λ is a distribution. A distribution Λ ∈
D ′(Rd) is said to be positive if 〈Λ, f〉 > 0 for all nonnegative f ∈ D(Rd). It is
known that for a positive distribution Λ ∈ D ′(Rd), there exists a Radon measure µ
on Rd such that

〈Λ, f〉 =
∫

Rd

〈δy , f〉µ(dy), f ∈ D(Rd).

The main objective in this section is to prove

Theorem 3.4. Let d = 1 and x ∈ R. Suppose that Λ ∈ D ′(R) is positive.

(i) If (H1), (H2) and Λ ∈ S−2k(R) where k ∈ Z>0, then for any p ∈ (1,+∞),∫ T

0
‖Λ(X(t, x, w))‖p,−2kdt < +∞.

(ii) If (H1), (H2), (H4) and Λ ∈ E ′(R) hold, then
∫ T

0

∫

R

‖δy(X(t, x, w))‖p,−2µ(dy)dt < +∞, (3.3)

where µ is the Radon measure associated to Λ as above.

Remark 3.5. (a) Therefore if we assume (H1), (H2) and Λ ∈ S−2k(R) is pos-
itive, then (0, T ] ∋ t 7→ Λ(Xt) ∈ D−2k

p is Bochner integrable. If we have

(H4) additionally, the mapping (0, T ]× R ∋ (t, y) 7→ δy(Xt) ∈ D
−2
p is also

Bochner integrable with respect to dt ⊗ µ(dy) (the measurability can be
checked from the construction of δy(Xt)), and we have

∫ T

0

Λ(Xt)dt =

∫ T

0

∫

R

δy(Xt)µ(dy)dt

=

∫

R

∫ T

0

δy(Xt)dtµ(dy) in D
−2
p .
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(b) Under (H1) and (H2), Lemma 2.2 and Theorem 3.4–(i) assures∫ T

0
‖δy(Xt)‖p,−2dt is finite for any y ∈ R.

Corollary 3.6. Let d = 1. Assume (H1) and (H2). For each y ∈ R and n ∈ Z>0,
the mapping (0, T ] ∋ t 7→ Jn[δy(Xt)] ∈ L2 is Bochner integrable and

Jn
[ ∫ T

0

δy(Xt)dt
]
=

∫ T

0

Jn[δy(Xt)]dt.

Proof of Corollary 3.6: By Theorem 3.4, we have
∫ T

0

‖Jn[δy(Xt)]‖L2dt = (1 + n)

∫ T

0

‖Jn[δy(Xt)]‖2,−2dt

6 (1 + n)

∫ T

0

‖δy(Xt)‖2,−2dt < +∞.

This shows the Bochner integrability of the mapping (0, T ] ∋ t 7→ Jn[δy(Xt)] ∈ L2,

and hence
∫ T

0 Jn[δy(Xt)]dt ∈ L2.
Second, for each F ∈ D∞, the mapping Ds

2 ∋ G 7→ E[GF ] ∈ R is linear and
bounded for each s ∈ R. Therefore Bochner integrals and (generalized) expectations
may be interchanged, and accordingly we have

E
[
Jn[

∫ T

0

δy(Xt)dt]F
]
= E

[ ∫ T

0

δy(Xt)dtJnF
]

=

∫ T

0

E[δy(Xt)JnF ]dt

=

∫ T

0

E
[
Jn[δy(Xt)]F

]
dt = E

[ ∫ T

0

Jn[δy(Xt)]dtF
]
,

which proves the second assertion. �

To prove Theorem 3.4, we need several implements.
For each ε > 0, we consider the following d-dimensional stochastic differential

equation

dXt = εσ(Xt)dw(t) + ε2b(Xt)dt. (3.4)

Similarly to the equation (3.1), we denote by {Xε(t, x, w)}t>0 a unique strong
solution Xε = (Xε

t )t>0 to (3.4) such that Xε
0 = x ∈ Rd. Then it holds that for each

ε > 0, {X(ε2t, x, w)}t>0 is equivalent to {Xε(t, x, w)}t>0 in law. A more tricky fact
which we need is the following.

Proposition 3.7. Let Λ ∈ S
′(Rd). Then for every p ∈ (1,∞), s ∈ R and t > 0,

we have ‖Λ(X(ε2t, x, w))‖p,s = ‖Λ(Xε(t, x, w))‖p,s.

Proof : For simplicity, we give a proof in the case of d = 1. Let p ∈ (1,∞),
s ∈ R and t > 0 be arbitrary. It is enough to prove that ‖f(X(ε2t, x, w))‖p,s =
‖f(Xε(t, x, w))‖p,s for each f ∈ S (R). By the Veretennikov-Krylov formula (see
Veretennikov and Krylov, 1976, p.279, Theorem 4), we have

Jn[f(X
ε(t, x, w))]

=

∫ t

0

· · ·
∫ r2

0

(P ε
r1Q

ε
r2−r1 · · ·Q

ε
rn−rn−1

Qε
t−rnf)(x)dw(r1) · · · dw(rn),



Distributional Itô’s Formula and Regularization of Generalized Wiener Functionals 715

where (P ε
r f)(z) := E[f(Xε(r, z, w))] for z ∈ R, Qε

rf := Aε(P ε
r f) and A

ε := εσ d
dx .

In the case ε = 1, we will write Pr := P 1
r , A := A1 and Qr := Q1

r for simplicity.
Therefore, we have to show that

{∫ ε2t

0

· · ·
∫ ε2r2

0

(Pr1Qr2−r1 · · ·Qrk−rk−1
Qε2t−rkf)(x)dw(r1) · · ·dw(rk)

}n

k=0

=
{∫ t

0

· · ·
∫ r2

0

(P ε
r1Q

ε
r2−r1 · · ·Qε

rk−rk−1
Qε

t−rkf)(x)dw(r1) · · · dw(rk)
}n

k=0

in law for each n ∈ N, and hence by the scaling property of Brownian motion:
(ε−1w(ε2t))t>0 = (w(t))t>0 in law, it suffices to show that

(Pε2r1Qε2r2−ε2r1 · · ·Qε2rn−ε2rn−1
Qε2t−ε2rnf)(x)

= ε−n(P ε
r1Q

ε
r2−r1 · · ·Q

ε
rn−rn−1

Qε
t−rnf)(x)

(3.5)

for each 0 < r1 < · · · < rn < t. But this is clear since we have Pε2r = P ε
r ,

A = ε−1Aε and Qε2r = ε−1Qε
r for each r > 0. �

For each ε > 0 and x ∈ Rd, we set

F (ε, x, w) :=
Xε(1, x, w) − x

ε
.

Then the following two conditions are equivalent (see Watanabe, 1987, Theorem
3.4):

◦ (H2), i.e., there exists λ > 0 such that

λ|ξ|2 6 〈ξ, (σσ∗)(x)ξ〉Rd , for all ξ ∈ R
d.

◦ the family {F (ε, x, w)}ε>0 is uniformly non-degenerate.

Proposition 3.8. Let d = 1 and x ∈ R. Suppose (H1) and σ(x)2 > 0. Then for
any p ∈ (1,∞), we have sup0<ε61 ‖δ0(F (ε, x, w))‖p,−2 < +∞.

Proof : Let φ(z) := (1+z2−△)−1δ0(z) ∈ S0 and take q ∈ (1,∞) so that 1/p+1/q =
1. Then for each J ∈ D∞, we have

E[δ0(F (ε, x, w))J ] = E[
(
(1 + z2 −△)φ

)
(F (ε, x, w))J ]

= E[φ(F (ε, x, w))lε(J)]

where lε(J) ∈ D∞ is of the form

lε(J) = 〈P0(ε, w), DJ〉H + 〈P1(ε, w), D
2J〉H⊗H

for some Pi(ε, w) ∈ D∞(H⊗i), i = 1, 2, both of which are polynomials in F (ε, x, w),
its derivatives up to the second order and ‖DXε(1, x, w)‖−2

H (see e.g., Watanabe,
1987, equation (2.20)).

Take q′ ∈ (1, q). Since {F (ε, x, w)}ε>0 is uniformly non-degenerate, there exists
c0 > 0 such that

‖lε(J)‖q′ 6 c0‖J‖q,2 for all ε ∈ (0, 1] and J ∈ D
∞.

Therefore we have for each J ∈ D∞,
∣∣E[δ0(F (ε, x, w))J ]

∣∣ 6 ‖φ‖∞‖lε(J)‖q′ 6 c0‖φ‖∞‖J‖q,2
which implies sup0<ε61 ‖δ0(F (ε, x, w))‖p,−2 6 c0‖φ‖∞ < +∞. �

Second, we recall the next fact (see Ikeda and Watanabe, 1989, Chapter V,
Section 8, p.384) to prove Theorem 3.4.
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Proposition 3.9. Let x ∈ Rd and suppose that (H1) and (H2). Then for any
p ∈ (1,∞) and k ∈ Z>0, there exists C > 0 such that

‖φ ◦ F (ε, x, w)‖p,−2k 6 C‖φ‖−2k for φ ∈ S (Rd), ε ∈ (0, T ].

The last tool we need is the following.

Lemma 3.10. Let x ∈ R
d.

(i) If (H1) and (H2) hold, then there exist K > 0, T0 ∈ (0, T ] with the following
property: For each k1, · · · , kd ∈ Z>0 and p ∈ (1,∞), there exist constants
ν0, c1, c2 > 0 such that

‖∂k1
1 · · ·∂kd

d δy(X(t, x, w))‖p,−(n+2) 6 c1t
−ν0 exp

{
− c2

|x− y|
t

}

for each t ∈ (0, T0] and y ∈ R such that |y| > K.

(ii) If (H1), (H2) and (H4) hold, then for each k1, · · · , kd ∈ Z>0, K > |x| and
p ∈ (1,∞), there exist constants ν0, c1, c2 > 0 such that

‖∂k1
1 · · · ∂kd

d δy(X(t, x, w))‖p,−(n+2) 6 c1t
−ν0 exp

{
− c2

|x− y|2
t

}

for each t ∈ (0, T ] and y ∈ R such that |y| > K.

Here, n := k1 + · · ·+ kd in both cases.

Proof : (i) Assume (H1) and (H2). For simplicity of notation, we prove the case
d = 1. The case d > 2 can be proved by a similar argument. It suffices to prove
that there exist K > 0 and T0 ∈ (0, T ] with the following property:

For each n ∈ Z>0 and p ∈ (1,∞), there exist constants ν0, c1, c2 > 0
such that

|E[Jδ(n)y (Xt)]| 6 c1t
−ν0 exp

{
− c2

|x− y|
t

}
‖J‖p,n+2,

for each J ∈ D∞, t ∈ (0, T0] and y ∈ R with |y| > K.

Let y ∈ R be arbitrary and ϕ(z) := (1 + z2 − △)−1δy(z) ∈ S0. Take a C∞-
function φ : R → R such that

φ(ξ) =

{
1 if ξ 6 1/3,
0 if ξ > 2/3

and then we set ψy(z) := φ
(

z−y
|x−y|

)
. Let p ∈ (1,∞) be arbitrary and let q ∈ (1,∞)

be such that 1/p+ 1/q = 1. Further take q′ ∈ (1, q). Since ψyδy = δy, we have for
each J ∈ D∞ that

E[Jδ(n)y (Xt)] = E[Jψy(Xt)
( dn

dzn
(1 + z2 −△)ϕ

)
(Xt)]

= E[ϕ(Xt)
{ n+2∑

j=0

ψ(j)
y (Xt)lj,t(J)

}
],

(3.6)

where ψ
(j)
y is the j-th derivative of ψy (with convention that ψ

(0)
y = ψy) and each

lj,t(J) is of the form

P0(t, w)J + 〈P1(t, w), DJ〉H + · · ·+ 〈Pn+2(t, w), D
n+2J〉H⊗(n+2) (3.7)

for some Pi(t, w) ∈ D∞(H⊗i), i = 0, 1, · · · , n + 2, which is a polynomial in Xt =
X(t, x, w), its derivatives and ‖DX(t, x, w)‖−2

H , but does not depend on ψy.
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Note that ψy(z) ≡ 0 for |z − x| < |y−x|
3 , and hence the last term in (3.6) equals

to

E[
( n+2∑

j=0

(ϕψ(j)
y )(Xt)lj,t(J)

)
1
{|Xt − x| > |y−x|

3
}
].

Therefore, by taking p′ ∈ (1,∞) such that 1/p′ + 1/q′ = 1, we have

|E[Jδ(n)y (Xt)]| 6
n+2∑

j=0

‖ϕψ(j)
y ‖∞‖lj,t(J)‖q′P

(
|Xt − x| > |y − x|

3

)1/p′

. (3.8)

Henceforth we shall focus on each factor in the last equation.

First, since ψ
(j)
y (z) = |x − y|−jφ(j)((z − y)/|x − y|) for j = 0, 1, · · · , n + 2, and

by Lemma 2.2 we have

sup
y∈R

|y|>K

‖ϕψ(j)
y ‖∞ < +∞ for K > 0 and j = 0, 1, · · · , n+ 2. (3.9)

Second, it is well known that for each r ∈ (1,∞), there exist ν, c′1 = c′1(r) > 0
such that ∥∥‖DXt‖−2

H

∥∥
r
6 c′1t

−ν for any t ∈ (0, T ]

(see Kusuoka and Stroock, 1985, (3.25) Corollary p.22 or Ikeda and Watanabe,
1989, Chapter V, Section 10, Theorem 10.2). Now, bearing in mind the form (3.7),
we see that there exist ν0, c

′′
1 > 0 such that

‖lj,t(J)‖q′ 6 c′′1t
−ν0‖J‖p,2 for j = 0, 1, · · · , n+ 2 and t ∈ (0, T ]. (3.10)

Third, we shall prove that there exist K > 0 and T0 ∈ (0, T ] with the following
property: there exist c′′′1 , c2 > 0 such that

P
(
|Xt − x| > |y − x|

3

)
6 c′′′1 exp

{
− c2

|x− y|
t

}
(3.11)

for all t ∈ (0, T0] and y ∈ R with |y| > K. For this, we recall the following general
fact (see Ikeda and Watanabe, 1989, Chapter V, section 10, Lemma 10.5):

Let κ > 0 and X = (Xt)06t6T be a one-dimensional continuous
semimartingale with its Doob-Mayer decomposition Xt = X0+Mt+

At such that 〈M〉t =
∫ t

0
α(s)ds, At =

∫ t

0
β(s)ds and

sup
06t6T

max{|α(t)|, |β(t)|} 6 κ.

Then for any a > 0 and t ∈ (0,min{ a
2κ , T }], it holds that

P(τa < t) 6
4√
πa

exp
(
− a2

8κt

)
,

where τa := inf{t > 0 : |Xt −X0| > a}.
Since we have assumed (H1), σ2 and b are Lipschitz continuous. Thus there

exists α, β > 0 such that max{|σ2(y)|, |b(y)|} 6 α|y − x| + β for any y ∈ R. Put
κ(z) := αz + β and fix y ∈ R arbitrarily. Let T0 ∈ (0, T ] so that 1 − 6αT0 > 0.

Define τ :=: τ|y−x|/3 := inf{t > 0 : |Xt − x| > |y−x|
3 }. Then the stopped process

Xτ = (Xt∧τ )t>0 is a continuous semi-martingale satisfying

Xt∧τ = x+

∫ t∧τ

0

σy(Xs∧τ )dw(s) +

∫ t∧τ

0

by(Xs∧τ )ds,
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where σy(z) := min{σ(z), κ(|y − x|)} and by(z) := min{b(z), κ(|y − x|)}.
By setting a = |y−x|

3 in the above, we see that if |y−x| > ξ0 := max{ 6βT0

1−6αT0
, 1} >

0 and 0 < t 6 T0 (here, note that ξ0
6(αξ0+β) > T0 since ξ 7→ ξ

6(αξ+β) is a nondecreas-

ing function) then

P
(
|Xt −X0| >

|y − x|
3

)
6 P

(
|Xτa

t −X0| >
|y − x|

3

)

6 P(τa < t)

6
4√

π |y−x|
3

exp
(
− ( |y−x|

3 )2

8(α|y − x|+ β)t

)

6
4
√
3√

πξ0
exp

(
− |y − x|2

72(α|y − x|+ β|y − x|)t
)

=
4
√
3√

πξ0
exp

(
− |y − x|

72(α+ β)t

)
.

Thus (3.11) is satisfied if we set K := |x|+ ξ0, c′′′1 := 4
√
3√

πξ0
and c2 := (72(α+β))−1.

Now, combining (3.8), (3.9), (3.10) and (3.11), we obtain the result.
(ii) Assume (H1), (H2) and (H4). In this case, σ and b are bounded, and hence

the following well-known estimate is available: There exist c′′′1 , c2 > 0 such that

P
(
|Xt − x| > |y − x|

3

)
6 c′′′1 exp

{
− c2

|x− y|2
t

}
(3.12)

for all t ∈ (0, T ] and x, y ∈ R. By using this instead of (3.11), and combining with
(3.8), (3.9) and (3.10), we obtain the result. �

We are now in a position to prove Theorem 3.4.

Proof of Theorem 3.4: (i) Let K > 0 and T0 ∈ (0, T ] be as in Lemma 3.10–(i).
Since

|x− y|2
y2

>
(|x| − |y|)2

y2
=
y2 − 2|xy|+ x2

y2
→ 1 as |y| → +∞,

there exists K ′ > 0 such that

|x− y| > |y|
2
, for any |y| > K ′. (3.13)

Let K ′′ := max{K,K ′}. Let k ∈ N be such that Λ ∈ S−2k(R
d). Let p ∈ (1,∞)

be arbitrary. We have

∫ T

0

‖Λ(Xt)‖p,−2kdt =

∫ T0

0

‖Λ(Xt)‖p,−2kdt+

∫ T

T0

‖Λ(Xt)‖p,−2kdt,

here, the last term is finite since (0, T ] ∋ t 7→ Λ(Xt) ∈ D−2k
p is continuous. The

other term is estimated as
∫ T0

0

‖Λ(Xt)‖p,−2kdt 6

∫ T0

0

∫

R

‖δy(Xt)‖p,−2µ(dy)dt 6 I1 + I2,



Distributional Itô’s Formula and Regularization of Generalized Wiener Functionals 719

where

I1 :=

∫ T0

0

∫

|y|>K′′

‖δy(Xt)‖p,−2µ(dy)dt,

I2 :=

∫ T0

0

∫

|y|6K′′

‖δy(Xt)‖p,−2µ(dy)dt.

We shall look at the integral I1. By Lemma 3.10–(i) and (3.13), there exist
ν0, c1, c2 > 0 such that we have

‖δy(Xt)‖p,−2 6 c1t
−ν0e−c2

|x−y|
t 6 c1t

−ν0 exp
(
− c2

|y|
2t

)
(3.14)

for |y| > K ′′ and t ∈ (0, T0]. To dominate the last quantity, we shall prove that for
some c3 > 0, it holds that

t−ν0 exp
(
− c2

|y|
2t

)
6 c3 exp

(
− c2

|y|
4t

)
for t ∈ (0, T0] and |y| > K ′′. (3.15)

Indeed, we have

t−ν0 exp(−c2 |y|
2t )

exp(−c2 |y|
4t )

= t−ν0 exp
(
− c2

|y|
4t

)
6 t−ν0 exp

(
− c2

K ′′

4t

)
→ 0

as t ↓ 0, which proves (3.15). Combining (3.14) and (3.15), we obtain

I1 6 c1c3

∫ T0

0

∫

|y|>K′′

exp
{
− c2

|y|
4t

}
µ(dy)dt

6 c1c3T

∫

|y|>K′′

exp
{
− c2

|y|
4T

}
µ(dy) = c1c3T 〈Λ, f〉 < +∞

where f ∈ S (R) is given by f(y) := φ(y)e−c2|y|/(4T ), y ∈ R and φ is a C∞-function
such that φ = 0 on a neighbourhood of 0 and φ(y) = 1 if |y| > K ′′.

Next we turn to I2. By Proposition 3.9 and with noting that supa∈R ‖δa‖−2 <
+∞ (Proposition 2.2), we have

t1/2 sup
y∈R

‖δy(X(t, x, w))‖p,−2 = t1/2 sup
y∈R

‖δy(X
√
t(1, x, w))‖p,−2

= sup
y∈R

‖δ(y−x)/
√
t(F (

√
t, x, w))‖p,−2 6 C sup

a∈R

‖δa‖−2

for each t > 0. Hence we can conclude that there exists C′ > 0 such that

‖δy(X(t, x, w))‖p,−2 6 C′t−1/2 for |y| 6 K ′′, t ∈ (0, T ].

Now, it is easy to deduce that

I2 6 C′µ({y ∈ R : |y| 6 K ′′})
∫ T

0

t−1/2dt < +∞.

(ii) is proved similarly by using Lemma 3.10–(ii) instead of Lemma 3.10–(i). �

Recall that the support of Λ ∈ D ′(Rd) is defined as the complement of


y ∈ R :

there exists an open neighbourhood
U of y such that for any f ∈ D(Rd),

suppf ⊂ U ⇒ 〈Λ, f〉 = 0.



 .

The proof of the following lemma will be given after Proposition 3.12 below.
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Lemma 3.11. Let x ∈ Rd and Λ ∈ D ′(Rd) be such that suppΛ 6∋ x. Then there
exists k ∈ Z>0 such that

lim
t↓0

‖Λ(X(t, x, w))‖p,−k = 0 for each p ∈ (1,∞),

if either one of the following holds:

(i) (H1), (H2) and Λ ∈ S ′(Rd).

(ii) (H1), (H2), (H4) and Λ ∈ E ′(Rd).

From this, the following is immediate.

Proposition 3.12. Let x ∈ Rd and Λ ∈ D ′(Rd) be such that suppΛ 6∋ x. Under
the assumption in Lemma 3.11, there exists k ∈ Z>0 such that

∫ T

0

‖Λ(X(t, x, w))‖pp,−kdt < +∞ for each p ∈ (1,∞).

Proof of Lemma 3.11: We shall prove under the assumption (ii). The proof in the
case (i) is omitted since one can prove similarly.

We assume d = 1 just for simplicity. Let p ∈ (1,∞) be arbitrary. By Propo-

sition 2.4, we can write Λ = dk

dxk [exp(k|x|)f(x)], where k is a nonnegative integer
and f : R → R is a bounded continuous function.

Since x /∈ suppΛ, we have r0 := inf{|x − y| : y ∈ suppΛ} > 0. Let Ω :=
∪y∈suppΛBr0/2(y) (i.e., the (r0/2)-neighbourhood of suppΛ), where Br(y) is the
open ball with center y and radius r. Then, we have Λ ∈ D ′(Ω), and the function
f can be rearranged so that suppf ⊂ Ω.

Now let ε > 0 and J ∈ D∞ be arbitrary. Putting ẽk(x) = ek(|x|) = exp(k|x|),
we have

E[Λ(Xε(1, x, w))J ] = E[(ẽkf)
(k)(Xε(1, x, w))J ]

= E[exp(k|Xε(1, x, w)|)f(Xε(1, x, w))lε(J)]

where lε(J) ∈ D∞ is of the form

lε(J) =

k∑

j=0

〈Pj(ε, w), D
jJ〉H⊗j

for some Pj(ε, w) ∈ D∞(H⊗j), j = 0, 1, · · · , k, which are polynomials in F (ε, x, w),

its derivatives up to the order k, and |DXε(t, x, w)|−2
H . Take q′ ∈ (1, q). Since

{F (ε, x, w)}ε>0 is uniformly non-degenerate, there exists c0, ν > 0 such that

‖lε(J)‖q′ 6 c0ε
−ν‖J‖q,k for all ε ∈ (0, T ] and J ∈ D

∞.

Therefore by taking p′ ∈ (1,∞) such that 1/p′ + 1/q′ = 1, we have

∣∣E[Λ(Xε(1, x, w))J ]
∣∣

6 ‖ exp(k|Xε(1, x, w)|)f(Xε(1, x, w))‖p′‖lε(J)‖q′
6 c0ε

−ν‖ exp(k|Xε(1, x, w)|)f(Xε(1, x, w))‖p′‖J‖q,k,
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which implies ‖Λ(Xε(1, x, w))‖p,−k 6 c0ε
−ν‖ exp(k|Xε(1, x, w)|)f(Xε(1, x, w))‖p′

for any ε > 0. By Proposition 3.7, we obtain

‖Λ(X(t, x, w))‖p,−k = ‖Λ(X
√
t(1, x, w))‖p,−k

6 c0t
−ν/2‖ exp(k|X

√
t(1, x, w)|)f(X

√
t(1, x, w))‖p′

= c0t
−ν/2

∥∥ exp(k|Xt|)f(Xt)1{|Xt − x| > r0
2
}

∥∥
p′ .

By Lemma 3.10–(ii), we find that for any r > 0, E[exp(r|X(t, x, w)|)] = O(t−ν′

) as

t ↓ 0 for some ν′ > 0. However we have P(|Xt − x| > r0
2 ) = O(e−r20/(c1t)) as t ↓ 0

for some constant c1 > 0, so that the last quantity converges to zero as t ↓ 0, and
hence get the conclusion. �

3.3. Hölder continuity of local time in space variable: a special case. In this section,
we assume d = 1, (H1) and (H3). Let X = (Xt)t>0 be a unique strong solution to
the following one-dimensional stochastic differential equation

dXt = σ(Xt)dw(t) +
1

2
σ(Xt)σ

′(Xt)dt, X0 = x ∈ R, (3.16)

or equivalently,

dXt = σ(Xt) ◦ dw(t), X0 = x.

The main purpose in this section is to prove Theorem 1.2.

Note that the object σ(y)2
∫ t

0
δy(Xu)du in Theorem 1.2 is identified with the

symmetric local time associated to the diffusion process (Xt)t>0. See Remark 4.15.
The Hermite polynomials Hn, n ∈ Z>0 are defined by H0(x) = 1 and Hn(x) :=

∂∗n1(x) for n ∈ N and x ∈ R, where the operator ∂∗ is given by

∂∗f(x) := −f ′(x) + xf(x), x ∈ R

for any differentiable function f : R → R.
The proof of Theorem 1.2 starts from this paragraph. Let y, z ∈ R be arbitrary.

Let A = Az := σ(z) d
dz and pt(z1, z2) be the transition-density function of X . For

each t > 0, the Krylov-Veretennikov formula tells us that δa(Xt) =
∑∞

n=0 Jn[δa(Xt)]

(the convergence is in D
−∞
2 ) for every a ∈ R, where

Jn[δa(Xt)] =

∫

06t1<···<tn6t

Πn(x; t, a)[t1, · · · , tn]dw(t1) · · · dw(tn) (3.17)

and

Πn(x; t, a)[t1, · · · , tn]

=

∫

R

· · ·
∫

R

pt1(x, z1)Az1 [pt2−t1(z1, z2)] · · ·Azn [pt−tn(zn, a)]dz1 · · · dzn.

We remark that the stochastic integral in (3.17) is well defined since the square-
integrability of each component (t1, · · · , tn) 7→ Πn(x; t, a)[t1, · · · , tn] of the chaos
kernel {Πn(x; t, a)}∞n=0 is established in Watanabe (1994b, Corollary 4.5), in a more
general situation. Since the generator L = 1

2A
2 commutes with A, we have

Πn(x; t, a)[t1, · · · , tn] = (et1LAe(t2−t1)L · · ·Ae(tn−tn−1)LAe(t−tn)L)δa

= [An exp({t1 + (t2 − t1) + · · ·+ (tn − tn−1) + (t− tn)}L)]δa = (AnetL)(δa)
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in the distributional sense. By using (etLδa)(x) = pt(x, a), the formula (3.17)
reduces to

Jn[δa(Xt)] = [An
xpt(x, a)]

∫

06t1<···<tn6t

dw(t1) · · ·dw(tn).

Therefore, by using Corollary 3.6, we have

σ(a)

∫ 1

0

δa(Xs)ds =

∞∑

n=0

∫ 1

0

[σ(a)An
xpt(x, a)]

∫

06t1<···<tn6t

dw(t1) · · · dw(tn)dt.

Hence we have

∥∥σ(y)
∫ 1

0

δy(Xt)dt− σ(z)

∫ 1

0

δz(Xt)dt
∥∥2

2,s

=

∞∑

n=0

(1 + n)sE
[{ ∫ 1

0

[σ(y)An
xpt(x, y)− σ(z)An

xpt(x, z)]

×
∫

06t1<···<tn6t

dw(t1) · · ·dw(tn)dt
}2]

,

and so we need to compute

In := E
[{ ∫ 1

0

[σ(y)An
xpt(x, y)− σ(z)An

xpt(x, z)]

∫

06t1<···<tn6t

dw(t1) · · · dw(tn)dt
}2]

= 2

∫

06s<t61

dsdt
{
σ(y)An

xps(x, y)− σ(z)An
xps(x, z)

}{
σ(y)An

xpt(x, y)− σ(z)An
xpt(x, z)

}

×E
[ ∫

06t1<···<tn6s

dw(t1) · · · dw(tn)
∫

06t1<···<tn6t

dw(t1) · · · dw(tn)
]

=
2

n!

∫

06s<t61

sndsdt
{
σ(y)An

xps(x, y)−σ(z)An
xps(x, z)

}{
σ(y)An

xpt(x, y)−σ(z)An
xpt(x, z)

}
.

(3.18)

Since σ is Lipschitz continuous (which is because of (H1)), the vector field
A = σ(z)(d/dz) is complete, so that one can associate the one-parameter group
of diffeomorphisms {esA}s∈R. Note that esA(x) for each x ∈ R is defined by
d
dse

sA(x) = σ(esA(x)) and esA(x)|s=0 = x.

Lemma 3.13. d
due

uA(x) = σ(x) ∂
∂xe

uA(x) for every u ∈ R and x ∈ R.

Proof : By the homomorphism property: e(s+u)A = esA ◦ euA, we have d
dse

sA(x) =
d
du

∣∣
u=0

e(s+u)A(x) = d
du

∣∣
u=0

esA(euA(x)) = σ(x) ∂
∂xe

sA(x). �

To continue the calculation of In, we shall look at Axpt(x, a). The unique strong
solution X = (Xt)t>0 is now expressed by Xt = ew(t)A(x) (To check this, just apply
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the Itô formula for ew(t)A(x)). Therefore by using Lemma 3.13, we have

Axpt(x, a) = AxE[δa(e
w(t)A(x))]

= σ(x)
∂

∂x

∫

R

δa(e
√
tuA(x))

e−u2/2

√
2π

du

=

∫

R

(
σ(x)

∂

∂x
e
√
tuA(x)

)
δ′a(e

√
tuA(x))

e−u2/2

√
2π

du

=

∫

R

( 1√
t

d

du
e
√
tuA(x)

)
δ′a(e

√
tuA(x))

e−u2/2

√
2π

du

=
1√
t

∫

R

( d

du
δa(e

√
tuA(x))

)e−u2/2

√
2π

du

=

∫

R

δa(e
√
tuA(x))

(−1√
t

d

du

e−u2/2

√
2π

)
du,

where the integral is understood as the coupling of the Schwartz distribution and
the test function. By the repetition of the above procedure, we obtain

An
xpt(x, a) =

∫

R

δa(e
√
tuA(x))

{ (−1)n

tn/2
dn

dun
e−u2/2

√
2π

}
du

=

∫

R

δa(e
√
tuA(x))

1

tn/2
Hn(u)

e−u2/2

√
2π

du.

For each t > 0, define a mapping ϕ : R → R by ϕ(u) := e
√
tuA(x). Since ϕ is

continuously differentiable and |ϕ′(u)| =
√
t|σ(ϕ(u))| >

√
tλ1/2 for every u, where

λ > 0 is the constant appeared in (H3), we see that ϕ is a diffeomorphism. Hence
we can apply the change of variables b = ϕ(u) 1 (and then du/db = (

√
tσ(b))−1) in

the above integral to get

An
xpt(x, a) =

∫

R

δa(b)
1

t(n+1)/2
Hn(ϕ

−1(b))
e−(ϕ−1(b))2/2

√
2πσ(b)

db

=
1

t(n+1)/2
Hn(ϕ

−1(a))
e−(ϕ−1(a))2/2

√
2πσ(a)

.

By using Lemma A.1–(i), we obtain the formula

An
xpt(x, a) =

(−1)nt−(n+1)/2

2πσ(a)

∫ ∞

−∞
(iξ)ne−ξ2/2eiξϕ

−1(a)dξ. (3.19)

Therefore by using (3.19),

σ(y)An
xpt(x, y)− σ(z)An

xpt(x, z)

=
(−1)nt−(n+1)/2

2π

∫ ∞

−∞
(iξ)ne−ξ2/2

{
eiξϕ

−1(y) − eiξϕ
−1(z)

}
dξ

=: IIn.

(3.20)

Lemma 3.14. For any α ∈ [0, 1] and θ ∈ R, we have |eiθ − 1| 6 2|θ|α with the
convention 00 := 1.

1when t = 1, we see that ϕ−1(z) =
∫
z

x

da
σ(a)

and the stochastic process ϕ−1(Xs), which is

nothing but the Wiener process w(s), is known as the Lamperti transformation of X.
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Proof : Let α ∈ [0, 1]. If θ ∈ R \ (−1, 1), then we see that |eiθ − 1| 6 2 6 2|θ|α. On
the other hand, for θ ∈ (−1, 1), |eiθ − 1| 6 |θ| 6 |θ|α 6 2|θ|α because α ∈ [0, 1].
Thus we obtain |eiθ − 1| 6 2|θ|α for all θ ∈ R. �

Let β ∈ [0, 1) be arbitrary. By Lemma 3.14, we have

|IIn| 6
t−(n+1)/2

π
|ϕ−1(y)− ϕ−1(z)|β

∫ ∞

−∞
|ξ|n+βe−ξ2/2dξ

=
t−(n+1)/22(n+β−1)/2

π
Γ
(n+ β + 1

2

)
|ϕ−1(y)− ϕ−1(z)|β .

Since d
dbϕ

−1(b) = 1√
tσ(b)

, we have |ϕ−1(y)− ϕ−1(z)| = t−1/2|
∫ z

y
σ(b)−1db|, so that

|IIn| 6
t−(n+β+1)/22(n+β−1)/2

πλβ/2
Γ
(n+ β + 1

2

)
|y − z|β, (3.21)

where it is recalled again that λ > 0 is what appeared in (H3).
Substituting (3.21) into (3.20),

|σ(y)An
xpt(x, y)− σ(z)An

xpt(x, z)|

6 c2t
−(n+β+1)/22(n+β−1)/2Γ

(n+ β + 1

2

)
|y − z|β

where c2 := (πλβ/2)−1. Note that c2 does not depend on y and z. With putting

c3(n) := Γ
(n+ β + 1

2

)
,

we have obtained

|σ(y)An
xpt(x, y)− σ(z)An

xpt(x, z)| 6 c2t
−(n+β+1)/22(n+β−1)/2c3(n)|y − z|β. (3.22)

Now, by substituting (3.22) into (3.18), we have

In 6
(c2)

2

n!
2n+βc3(n)

2|y − z|2β
∫ 1

0

sns−(n+β+1)/2ds

∫ 1

s

t−(n+β+1)/2dt.

Note that the last iterated integral is finite because β < 1, and gives
∫ 1

0

sns−(n+β+1)/2ds

∫ 1

s

t−(n+β+1)/2dt =
2

(1− β)(n − β + 1)
.

Hence we have

In 6
(c2)

2

(1− β)
|y − z|2β 2

n+β+1c3(n)
2

n!(n− β + 1)
.

Finally we have

∥∥σ(y)
∫ 1

0

δy(Xt)dt− σ(z)

∫ 1

0

δz(Xt)dt
∥∥2
2,s

=

∞∑

n=0

(1 + n)sIn

6
(c2)

2

(1− β)
|y − z|2β

∞∑

n=0

(1 + n)s
2n+β+1c3(n)

2

n!(n− β + 1)
.

By Stirling’s formula, we see that the quantity

(1 + n)s
2n+β+1c3(n)

2

n!(n− β + 1)
= (1 + n)s

2n+β+1

n!(n− β + 1)
Γ
(n+ β + 1

2

)2



Distributional Itô’s Formula and Regularization of Generalized Wiener Functionals 725

behaves like

(1 + n)s
2n+β+1

(n− β + 1)
√
2πn(ne )

n
×
{√

π(n+ β − 1)
(n+ β − 1

2e

)n+β−1
2 }2

=
(1 + n)s2n+β+1

(n− β + 1)
√
2πn(ne )

n
π(n+ β − 1)

(n+ β − 1

2e

)n+β−1

= O(ns+β− 3
2 )

as n→ ∞ for each β. Hence the sum converges if s+ β − 3
2 < −1, i.e., s+ β < 1

2 .
The proof of Theorem 1.2 finishes.

Proof of Corollary 1.3: This is clear from Theorem 1.2 and the inequality

∣∣σ(y)
∫ 1

0

pt(x, y)dt− σ(z)

∫ 1

0

pt(x, z)dt
∣∣

=
∣∣E[σ(y)

∫ 1

0

δy(Xt)dt− σ(z)

∫ 1

0

δz(Xt)dt]
∣∣

6 ‖σ(y)
∫ 1

0

δy(Xt)dt− σ(z)

∫ 1

0

δz(Xt)dt‖2,−1/2.

�

4. Itô’s Formula for Generalized Wiener Functionals

Let w = (w(t))t>0 be the d-dimensional Wiener process with w(0) = 0 and
let (Fw

t )t>0 be the filtration generated by w: Fw
t := σ(w(s) : 0 6 s 6 t), for

t > 0. Similarly to the previous section, we fix x ∈ Rd and consider the following
d-dimensional stochastic differential equation

dXt = σ(Xt)dw(t) + b(Xt)dt, X0 = x ∈ R
d. (4.1)

Also in this section, we assume the conditions (H1) and (H2). We denote by
{X(t, x, w)}t>0 a unique strong solution X = (Xt)t>0 to (4.1).

4.1. Stochastic integrals of pull-backs by diffusion. For each J ∈ D∞, we will de-
note by (DJ)i the i-th component of DJ ∈ D

∞(H): DJ = ((DJ)1, · · · , (DJ)d)
(Recall H is the Cameron-Martin subspace of the d-dimensional Wiener space).
For each t ∈ [0, T ], the evaluation map evt : H ∋ h 7→ h(t) ∈ Rd naturally
induces a map id ⊗ evt : L2(H) ∼= L2 ⊗ H → L2 ⊗ Rd and then we write
DtJ :=: ((DtJ)

1, · · · , (DtJ)
d) := d

dt (id⊗ evt)(DJ) for a.a. t ∈ [0, T ].

Let Λ ∈ D ′(Rd). Throughout this section, we assume either one of

◦ (H1), (H2) and Λ ∈ S ′(Rd);

◦ (H1), (H2), (H4) and Λ ∈ E ′(Rd).

Then Λ(X(t, x, w)) is defined as a generalized Wiener functional. If∫ T

0 ‖Λ(X(t, x, w))‖22,−kdt is finite for some k ∈ N, we define the stochastic inte-

grals
∫ T

0
Λ(X(t, x, w))dwi(t), i = 1, · · · , d as elements in D−∞ via the pairing

E[
(∫ T

0

Λ(X(t, x, w))dwi(t)
)
J ] =

∫ T

0

E[Λ(X(t, x, w))(DtJ)
i]dt, (4.2)

for J ∈ D∞ and i = 1, 2, · · · , d. We define the stochastic integral∫ T

s
Λ(X(t, x, w))dwi(t) similarly for each 0 < s 6 T .
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This pairing is well defined because of the following:

Proposition 4.1. For each k ∈ N and i = 1, 2, · · · , d, there exists a constant C > 0
such that

∫ T

0

|E[Λ(X(t, x, w))(DtJ)
i]|dt 6 C

{∫ T

0

‖Λ(X(t, x, w))‖22,−kdt
}1/2

‖J‖2,k+1

for all J ∈ D∞.

Proof : For simplicity of notation, we prove in the case d = 1. For each k ∈ N and
J ∈ D∞,

∫ T

0

|E[Λ(Xt)DtJ ]|dt 6
∫ T

0

‖Λ(Xt)‖2,−k‖DtJ‖2,kdt

6

{∫ T

0

‖Λ(Xt)‖22,−kdt
}1/2{∫ T

0

‖DtJ‖22,kdt
}1/2

.

(4.3)

By Meyer’s inequality, there exist constants c′, C′ > 0 such that

c′‖Dk′

F‖2 6 ‖F‖2,k′ 6 C′
k′∑

l=0

‖DlF‖2, for all F ∈ D
k′

2

for k′ = 1, 2, · · · , k + 1. Therefore we have

‖DtJ‖22,k 6 (C′)2
{ k∑

l=0

‖DlDtJ‖2
}2

6 (C′)2(k + 1)

k∑

l=0

‖DlDtJ‖22

= (C′)2(k + 1)

k∑

l=0

E[‖DlDtJ‖2H⊗l ]

= C′′
{
E[(DtJ)

2] +
k∑

l=1

∫ T

0

· · ·
∫ T

0

E[(Dsl · · ·Ds1DtJ)
2]ds1 · · ·dsl

}
,

where C′′ := (C′)2(k + 1), so that
∫ T

0

‖DtJ‖22,kdt

6 C′′
k+1∑

l=1

∫ T

0

· · ·
∫ T

0

E[(Dul
· · ·Du1J)

2]du1 · · · dul

6 C′′
k+1∑

l=0

‖DlJ‖22 6 (c′)−2C′′‖J‖22,k+1.

Hence by substituting this into (4.3), we get the result. �

Remark 4.2. (a) As is easily seen, the stochastic integral
∫ T

0 Λ(Xt)dw
i(t) has an-

other expression:
∫ T

0

Λ(Xt)dw
i(t) = D∗[(0, · · · ,

∫ •

0

Λ(Xu)du

︸ ︷︷ ︸
i-th position

, · · · , 0)].

Hence it coincides with the Skorokhod integral as long as the object standing on the
right of D∗ lies in the domain D1

2(H) and then automatically coincides with the Itô
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integral because of the adaptedness. In fact, in view of the Clark-Ocone formula,

every J ∈ L2 can be written as J = E[J ] +
∑d

i=1

∫ T

0 E[(DtJ)
i|Fw

t ]dwi(t) and then
(4.2) is just the Itô isometry. Therefore, our stochastic integral may be a natu-
ral extension of the classical anticipative stochastic integral to this distributional
setting.

(b) By Proposition 4.1, we have
∫ T

0
Λ(Xt)dw

i(t) ∈ D
−(k+1)
2 for i = 1, 2, · · · , d

provided
∫ T

0 ‖Λ(Xt)‖22,−kdt < +∞.

The following is the main result in this section. This is a version of a result by
Uemura (2004, Proposition 1).

Theorem 4.3. Let s ∈ R, p > 2 and assume that (0, T ] ∋ t 7→ Λ(X(t, x, w)) ∈ Ds
p

is continuous. Then we have
∫ T

0

Λ(X(t, x, w))dwi(t) ∈ D
s
p, for i = 1, 2, · · · , d

provided either one of the following

(i) limt↓0 ‖Λ(X(t, x, w))‖p,s = 0.

(ii) s > 0 and
∫ T

0
‖Λ(X(t, x, w))‖2p,sdt <∞.

Remark 4.4. (a) See also a remark just after Lemma 4.12 for verification of the
continuity assumption.

(b) From the proof of Theorem 4.3, we would find that
∫ T

t0

Λ(Xt)dw
i(t) ∈ D

s
p for any t0 > 0

and i = 1, 2, · · · , d if (0, T ] ∋ t 7→ Λ(Xt) ∈ Ds
p is continuous.

The proof of Theorem 4.3 mainly consists of the following series of Proposi-
tions 4.6, 4.7 and 4.8. We will give the proof at the last of this section.

Before the next definition, we note that E[F |Fw
t ] ∈ D∞ for every t > 0 if

F ∈ D∞.

Definition 4.5. Let t > 0. We say that a generalized Wiener functional F ∈ D−∞

is Fw
t -measurable if it holds that E[FG] = E[FE[G|Fw

t ]] for any G ∈ D∞.

Proposition 4.6. Let s ∈ R and p > 2. Then there exists c = c(p, s, T ) > 0 such
that, for any mapping F : (0, T ] ∋ t 7→ F (t) ∈ Ds

p with F (t) is Fw
t -measurable for

any t ∈ (0, T ], any division 0 = t0 < t1 < · · · < tn = T , and any i = 1, 2, · · · , d, we
have

‖
n∑

k=2

F (tk−1)(w
i(tk)− wi(tk−1))‖pp,s 6 c

n∑

k=2

‖F (tk−1)‖pp,s(tk − tk−1).

Proof : Let 0 = t0 < t1 < · · · < tn = T be any division of [0, T ] and set

Φ :=

n∑

k=2

F (tk−1)(w
i(tk)− wi(tk−1)).

To calculate ‖Φ‖p,s, we begin with the chaos expansion of each F (tk−1)(w
i(tk) −

wi(tk−1)). Noting E[F (tk−1)(w
i(tk)− wi(tk−1))] = 0 and

Jm[F (tk−1)(w
i(tk)− wi(tk−1))] = Jm−1[F (tk−1)](w

i(tk)− wi(tk−1)) (4.4)
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for m > 1 (here we have used the condition that F (tk−1) is Fw
tk−1

-measurable), one
finds that the chaos expansion is given by

F (tk−1)(w
i(tk)− wi(tk−1)) =

∞∑

m=1

Jm−1[F (tk−1)](w
i(tk)− wi(tk−1)),

where F (tk−1) =
∑∞

m=0 Jm[F (tk−1)] is the chaos expansion of F (tk−1). Hence, by
using (4.4), we have

(I − L)s/2
n∑

k=2

F (tk−1)(w
i(tk)− wi(tk−1))

=

n∑

k=2

∞∑

m=1

(1 +m)s/2Jm−1[F (tk−1)](w
i(tk)− wi(tk−1))

=

∞∑

m=0

(2 +m)s/2

(1 +m)s/2

n∑

k=2

(1 +m)s/2Jm[F (tk−1)](w
i(tk)− wi(tk−1)).

By Meyer’s Lp-multiplier theorem (see e.g. Ikeda and Watanabe, 1989, Chapter V,
Section 8, Lemma 8.2), there exists c′ = c′(p, s) > 0 such that

‖
n∑

k=2

F (tk−1)(w
i(tk)− wi(tk−1))‖p,s

= ‖(I − L)s/2
n∑

k=2

F (tk−1)(w
i(tk)− wi(tk−1))‖p

6 c′‖
∞∑

m=0

n∑

k=2

(1 +m)s/2Jm[F (tk−1)](w
i(tk)− wi(tk−1))‖p

= c′
∥∥

n∑

k=2

[
(I − L)s/2F (tk−1)

]
(wi(tk)− wi(tk−1))

∥∥
p
.

Note that (I−L)s/2F (tk−1) ∈ L2 and is Fw
tk−1

-measurable. Hence the last quantity
in the Lp-norm can be written as

∫ T

0

n∑

k=2

[
(I − L)s/2F (tk−1)

]
1(tk−1,tk](t)dw

i(t).

Thus by using the Burkholder-Davis-Gundy inequality, we get

‖
n∑

k=2

F (tk−1)(w
i(tk)− wi(tk−1))‖pp,s

6 c′′E
[{ ∫ T

0

n∑

k=2

[
(I − L)s/2F (tk−1)

]2
1(tk−1,tk](t)dt

}p/2]

for some constant c′′ > 0. Finally, using the assumption p > 2 and the Jensen
inequality, we reached

‖
n∑

k=2

F (tk−1)(w
i(tk)− wi(tk−1))‖pp,s 6 c

n∑

k=2

‖F (tk−1)‖pp,s(tk − tk−1)

for some constant c > 0. �
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Given n ∈ N, i = 1, 2, · · · , d and the dyadic division {tk := kT/2n}2nk=0 of [0, T ],
we define

Φn :=

2n∑

k=2

Λ(X(tk−1, x, w))(w
i(tk)− wi(tk−1)).

Proposition 4.7. Let s ∈ R, p > 2 and suppose that

(i) (0, T ] ∋ t 7→ Λ(X(t, x, w)) ∈ Ds
p is continuous and

(ii) limt↓0 ‖Λ(X(t, x, w))‖p,s = 0.

Then we have ‖Φn − Φm‖p,s → 0 as n,m→ ∞.

Proof : Suppose that n < m and let tk := kT/2n and ul := lT/2m. Then we have

Φn − Φm =

2n∑

k=2

∑

l∈{0,1,··· ,2m}:
tk−1<ul6tk

[Λ(Xtk−1
)− Λ(Xul

)](wi(ul)− wi(ul−1))

and hence by Proposition 4.6, we obtain

‖Φn − Φm‖pp,s 6 c

2n∑

k=2

∑

l∈{0,1,··· ,2m}:
tk−1<ul6tk

‖Λ(Xtk−1
)− Λ(Xul

)‖pp,s(ul − ul−1),

for some constant c > 0. By the assumption, the mapping (0, T ] ∋ t 7→ Λ(Xt) ∈ Ds
p

is uniformly continuous, from which, we easily get ‖Φn−Φm‖p,s → 0 as n→ ∞. �

Proposition 4.8. Suppose k ∈ Z>0 and

(i) (0, T ] ∋ t 7→ Λ(X(t, x, w)) ∈ D
−k
2 is continuous;

(ii) limt↓0 ‖Λ(X(t, x, w))‖2,−k = 0.

Then we have

‖Φn −
∫ T

0

Λ(X(t, x, w))dwi(t)‖2,−(k+1) → 0 as n→ ∞.

Proof : The same argument in Proposition 4.1 leads us to

‖Φn −
∫ T

0

Λ(Xt)dw
i(t)‖2,−(k+1)

6

{∫ t1

0

‖Λ(Xt)‖22,−kdt+

2n∑

k=2

∫ tk

tk−1

‖Λ(Xtk−1
)− Λ(Xt)‖22,−kdt

}1/2

.

By the assumption, we have (0, T ] ∋ t 7→ Λ(Xt) ∈ D
−k
2 is uniformly continuous,

and hence the above quantity converges to zero as n→ ∞. �

Proof of Theorem 4.3: (i) Suppose that limt↓0 ‖Λ(Xt)‖p,s = 0. In the first, suppose
that s < 0. Let k be the largest integer, not exceeding s, i.e., k = max{k′ ∈ Z :

k′ 6 s}. By the assumption, the stochastic integral
∫ T

0 Λ(Xt)dw
i(t) is defined as

an element in D
k−1
2 (see Remark 4.2–(b)). On the other hand, Proposition 4.7

tells us that {Φn}∞n=1 is a Cauchy sequence in Ds
p and hence converges to some

Φ ∈ Ds
p. Hence Φn converges to Φ also in D

k−1
2 . Now by Proposition 4.8, it must

be
∫ T

0
Λ(Xt)dw

i(t) = limn→∞ Φn = Φ. Thus we have
∫ T

0
Λ(Xt)dw

i(t) ∈ Ds
p.

Second, suppose that s > 0. In this case, it is clearly satisfied that∫ T

0
‖Λ(Xt)‖pp,sdt < +∞, and hence it reduces to the case (ii).
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(ii) Suppose that s > 0 and
∫ T

0
‖Λ(Xt)‖pp,sdt < +∞. Then by Proposition 4.6,

we have

‖Φn‖pp,s 6 const.

2n∑

k=2

‖Λ(Xtk−1
)‖pp,s(tk − tk−1) →

∫ T

0

‖Λ(Xt)‖pp,sdt,

as n → ∞. Here, tk = kT/2n, k = 0, 1, · · · , 2n. Hence {Φn}∞n=1 forms a bounded
family in Ds

p, so that by Alaoglu’s theorem (for dual spaces of separable normed
spaces), there exists a subsequence {Φnl

}∞l=1 and Φ ∈ Ds
p such that Φnl

→ Φ weakly
in Ds

p. In particular, since s > 0 and p > 2, this convergence is still valid in the weak

topology on L2. On the other hand, it is clearly satisfied that
∫ T

0 ‖Λ(Xt)‖22dt <∞,
and hence {Λ(Xt)}t>0 is now a square-integrable (Ft)t>0-adapted process. The

classical stochastic analysis proves that Φn →
∫ T

0 Λ(Xt)dw
i(t) in L2. Therefore, it

must be
∫ T

0 Λ(Xt)dw
i(t) = liml→∞ Φnl

= Φ, and thus
∫ T

0 Λ(Xt)dw
i(t) ∈ Ds

p. �

4.2. Distributional Itô’s formula. Let Ai, i = 1, 2, · · · , d and L be the vector fields
and the second-order differential operator given by

(Aif)(z) :=
d∑

k=1

σk
i (z)

∂f

∂zk
(z)

(Lf)(z) :=
1

2

d∑

i,j=1

(σσ∗)ji (z)
∂2f

∂zi∂zj
(z) +

d∑

i=1

bi(z)
∂f

∂zi
(z)

for f ∈ S (Rd) and z ∈ R
d. In the case of d = 1, the vector field A1 will be denoted

by A. Under the assumption (H1), these operators naturally act on S ′(Rd) and
E ′(Rd).

Theorem 4.9 (cf. Kubo, 1983). Let x ∈ R
d and assume (H1) and (H2). Then for

each Λ ∈ S ′(Rd) and t0 ∈ (0, T ], we have

Λ(X(T, x, w))− Λ(X(t0, x, w))

=
d∑

i=1

∫ T

t0

(AiΛ)(X(t, x, w))dwi(t) +

∫ T

t0

(LΛ)(X(t, x, w))dt in D
−∞.

(4.5)

Similarly, we have (4.5) for Λ ∈ E ′(Rd) if we further assume (H4).

Proof : For simplicity of notation, we assume d = 1. The case d > 2 is similar. Fix
t0 > 0. Suppose that Λ ∈ S−2k. Then there exist φn ∈ S (R), n ∈ N such that
Λ = limn→∞ φn in S−2k. By Itô’s formula, we clearly have

φn(XT )− φn(Xt0) =

∫ T

t0

(Aφn)(Xt)dw(t) +

∫ T

t0

(Lφn)(Xt)dt

for each n ∈ N. What we have to prove is the following: As n→ ∞,

(a) ‖Λ(Xt)− φn(Xt)‖2,−2k → 0 for t = t0 and T ,

(b) ‖
∫ T

t0

[AΛ(Xt)−Aφn(Xt)]dw(t)‖2,−(2k+2) → 0,

(c) ‖
∫ T

t0

[LΛ(Xt)− Lφn(Xt)]dt‖2,−(2k+2) → 0.
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It is easy to show (a). In fact, for any p ∈ (1,+∞), we have the inequality

‖Λ(Xt)− φn(Xt)‖p,−2k 6 c0t
−K |Λ− φn|−2k (4.6)

where the constants c0 > 0 and K > 0 can depend on p but not on t and φn’s (see
Ikeda and Watanabe, 1989, Chapter V, Section 9, Theorem 9.1 and Section 10,
Theorem 10.2). We shall prove (b). By Proposition 4.1 and (4.2), we have

‖
∫ T

t0

[AΛ(Xt)−Aφn(Xt)]dw(t)‖22,−(2k+2) 6 C

∫ T

t0

‖[A(Λ− φn)](Xt)‖22,−(2k+1)dt.

Next we shall show that there exists c, ν > 0 such that

‖[A(Λ − φn)](Xt)‖22,−(2k+1) 6 ct−ν‖(Λ− φn)(Xt)‖24,−2k (4.7)

for every t ∈ [t0, T ], and then the above quantities converge to zero uniformly in
t ∈ [t0, T ] as n → ∞, and hence (b) is proved. To prove (4.7), it suffices to show
that: there exist c, ν > 0 such that

∣∣E[(σΨ′)(Xt)J ]
∣∣ 6 ct−ν‖Ψ(Xt)‖4,−2k‖J‖2,2k+1 (4.8)

for each Ψ ∈ S−2k and J ∈ D∞. In fact, we have

E[(σΨ′)(Xt)J ] = E
[
Ψ(Xt)

{
P0(t)σ(Xt)J + 〈P1(t), D

(
σ(Xt)J

)
〉H

}]
,

for some Pi(t) ∈ D∞(H⊗i), i = 0, 1 which are polynomials in Xt = X(t, x, w), its
derivatives and ‖DXt‖−2

H . Hence
∣∣E[(σΨ′)(Xt)J ]

∣∣

6 ‖Ψ(Xt)‖4,−2k

{
‖P0(t)σ(Xt)J‖4/3,2k + ‖〈P1(t), D

(
σ(Xt)J

)
〉H‖4/3,2k

}
.

Noting that 1
2 + 1

4 = 3
4 < 1, we can make estimates

‖P0(t)σ(Xt)J‖4/3,2k 6 c′t−ν‖J‖2,2k,
‖〈P1(t), D

(
σ(Xt)J

)
〉H‖4/3,2k 6 c′t−ν‖J‖2,2k+1

for each t > 0, and for some constants c′, ν > 0 (where, c′ may depend on the
derivatives of σ up to the (2k + 1)-th order, which are assumed to be bounded by
(H1)). Now (4.8) follows.

(c) is proved similarly. The statement for Λ ∈ E ′(R) is also proved similarly. �

Theorem 4.10. Let x ∈ Rd. Suppose (H1), (H2) and (H4). Let f : Rd → R be a
locally-integrable function such that

(i) f is continuous at x,
(ii) f ∈ E ′(Rd),

(iii)
∫ T

0
‖(Aif)(X(t, x, w))‖22,−kdt < +∞ for i = 1, 2, · · · , d,

(iv)
∫ T

0
‖(Lf)(X(t, x, w))‖2,−kdt < +∞

for some k ∈ N. Then we have

f(X(T, x, w))− f(x)

=

d∑

i=1

∫ T

0

(Aif)(X(t, x, w))dwi(t) +

∫ T

0

(Lf)(X(t, x, w))dt in D
−∞.

(4.9)

The equation (4.9) still holds without (H4) if f ∈ S ′(Rd).
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Proof : By the conditions (ii), (iii), (iv) and Theorem 4.9, we have for each t0 > 0
that

f(XT )− f(Xt0) =

d∑

i=1

∫ T

t0

(Aif)(Xt)dw
i(t) +

∫ T

t0

(Lf)(Xt)dt

in D−∞. Letting t0 ↓ 0 with using (i), we have f(Xt0) → f(x) in probability.
Moreover, again by (i), we can take δ > 0 such that for any y ∈ Rd, |y − x| < δ
implies |f(y)| < |f(x)|+1. Thus E[f(Xt)

4] 6 (|f(x)|+1)4+E[f(Xt)
4; |Xt−x| > δ],

where lim supt↓0 E[f(Xt)
4; |Xt − x| > δ] < +∞ in view of (ii) and Lemma 3.10–

(ii). Therefore {f(Xt)
2}0<t6T is L2-bounded, so that {(f(Xt) − f(x))2}0<t6T is

uniformly integrable. Hence f(Xt0) → f(x) in L2 as t0 ↓ 0 and (4.9) is proved.
If f ∈ S ′(Rd), then f has at most polynomial growth. In this case,

{f(Xt)
2}0<t6T is L2-bounded without assuming (H4) and then (4.9) can be proved

similarly. �

By Proposition 3.12, Lemma 3.11 and Theorem 4.9, we obtain the following.

Corollary 4.11. Let x ∈ Rd and Λ ∈ E ′(Rd) be such that suppΛ 6 ∋ x. Assume
(H1), (H2) and (H4). Then we have in D

−∞,

Λ(X(T, x, w)) =

d∑

i=1

∫ T

0

(AiΛ)(X(t, x, w))dwi(t) +

∫ T

0

(LΛ)(X(t, x, w))dt.

This still holds without (H4) if f ∈ S ′(Rd).

4.3. An application and examples. In the sequel, we denote by X = (Xt)t>0 the
unique strong solution to the d-dimensional stochastic differential equation

dXt = σ(Xt)dw(t) + b(Xt)dt, X0 = x ∈ R
d, (4.10)

where w = (w(t))t>0 is a d-dimensional Wiener process. We denote by L the

associated generator, i.e., L = 1
2

∑d
i,j=1(σσ

∗)ij∂i∂j +
∑d

i=1 b
i∂i.

Let {Fε}ε∈I ⊂ D
∞(Rd) be a bounded and uniformly non-degenerate family (see

Definition 2.1). Here, the boundedness is used in the sense of {Fε}ε∈I is bounded
in Dk

p(R
d) for each p ∈ (1,∞) and k ∈ Z>0.

Lemma 4.12. For any s ∈ R, p ∈ (1,∞) and p′ > p, there exists c = c(s, p, p′) > 0
such that

‖Λ(Fε)‖p,s 6 c‖(1−△)s/2Λ‖Lp′(R
d,dx)

for every ε ∈ I and Λ ∈ S ′(Rd) with (1−△)s/2Λ ∈ Lp′(Rd, dx).

We note that one can take p′ = p when Fε = ε−1w(ε2T ) as mentioned in Remark
A.5. We don’t give a proof of Lemma 4.12. However, we prove a similar inequality
(Lemma A.4) in Section A.3. The same techniques there are available to show
Lemma 4.12 if we replace the harmonic oscillatorH by the Bessel potential (1−△).
(Although the step (b) in the proof of Lemma A.4 uses results by Bongioanni and
Torrea (2006), we don’t need for the proof of Lemma 4.12. The steps (a) and (b) for
the proof of Lemma 4.12 can be established analogously by a standard integration-
by-parts techniques in the Malliavin calculus. The steps (c)–(e) also run in exactly
the same way.)

Let Hs
p(R

d) := (1−△)−s/2Lp(R
d, dz), p ∈ (1,∞), s ∈ R be the Bessel potential

spaces (see Abels, 2012 and Krylov, 2008 for details). By imitating the proof of
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Corollary 2.8 with using Lemma 4.12 (instead of Proposition 2.6), we can show that
for each p ∈ (1,∞), s ∈ R and Λ ∈ Hs

p(R
d), the mapping (0,∞) ∋ t 7→ Λ(Xt) ∈ Ds

p′

is continuous for p′ ∈ (1, p) under assumptions (H1) and (H2).
We are now in a position to prove Corollary 1.6.

Proof of Corollary 1.6: (i) is clear by Lemma 4.12.
(ii) The operator L is a uniformly elliptic operator of the second order satisfying

(H4). Hence the elliptic regularity theorem (see e.g., Abels, 2012, Chapter III,
Section 7.3, Theorem 7.13) assures that f := (1−L)−1Λ ∈ Hs+2

p (Rd) and σk
j ∂kf ∈

Hs+1
p (Rd) for each j, k = 1, 2, · · · , d. On the other hand, Theorem 4.9 gives

f(XT )− f(Xt0) =

d∑

j,k=1

∫ T

t0

(σk
j ∂kf)(Xt)dw

j(t) +

∫ T

t0

(Lf)(Xt)dt.

Let p′ ∈ [2, p) be arbitrary. We find that f(XT ) ∈ D
s+2
p′ by (i) and

∫ T

t0
(σk

j ∂kf)(Xt)dw
j ∈ D

s+1
p′ for T > 0 by Theorem 4.3, so that we have

∫ T

t0
(Lf)(Xt)dt ∈ D

s+1
p′ . Furthermore, since [t0, T ] ∋ t 7→ f(Xt) ∈ D

s+2
p′ is continu-

ous (recall the remark just before the proof), this mapping is Bochner integrable

and
∫ T

t0
f(Xt)dt ∈ D

s+2
p′ . Therefore

∫ T

t0

Λ(Xt)dt =

∫ T

t0

f(Xt)dt−
∫ T

t0

(Lf)(Xt)dt ∈ D
s+1
p′ .

�

Remark 4.13. By the above remark (just after Lemma 4.12), one would see that
in Corollary 1.6, we can take p′ = p when σ = (identity matrix) and b = 0, i.e.,
Xt = w(t).

Second, we investigate the class Ds
p to which

∫ T

t0
Λ(Xt)dt belongs when t0 = 0

for several cases of Λ ∈ S ′(Rd).

Example 4.14. Assume d = 1, (H1), (H3) and (H4). Let

s(x) :=

∫ x

0

exp
{
−
∫ z

0

2b(η)

σ(η)2
dη

}
dz,

m(x) := 2

∫ x

0

exp
{∫ z

0

2b(η)

σ(η)2
dη

} dz

σ(z)2
,

for x ∈ R.

The function s(x) is called the scale function of L and the measure m(dx) =
m′(x)dx is called the speed measure of L. We fix y ∈ R and define u : R → R

by

u(x) :=: u(x, y) :=
m′(y)

2
|s(x)− s(y)|, x ∈ R. (4.11)

Then it is easily checked that Lu = δy and

(Au)(x) = sgn(x− y)
[
exp

{
−
∫ x

y

2b(η)

σ(η)2
dη

} σ(x)

σ(y)2
]
, x ∈ R.

in the distributional sense. Now we shall prove
{
s < 1

2 ;
p ∈ (1, 1s )

⇒
{

1{X(t,x,w)<y} ∈ D
s
p ;

lim supt↓0 ‖1{X(t,x,w)<y}‖p,s <∞.
(4.12)
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In fact, let s ∈ (0, 1/2) and p ∈ (1, 1s ). Take p′ > p so that sp′ < 1. Then by
Proposition 3.7 and Lemma A.4, there exists c > 0 such that

‖1{X(t,x,w)<y}‖p,s = ‖1(−∞,(y−x)/
√
t)(F̃t)‖p,s

6 c‖(z2 −△)s/21(−∞,(y−x)/
√
t)‖Lp′(R,dz)

for all t ∈ (0, T ].

where F̃t = (X
√
t(1, x, w) − x)/

√
t. Hence we can conclude (4.12) by Proposi-

tion A.3–(iii).
By the condition (H3) and (H4), we see that u ∈ E ′(R). Hence by Theorem 3.4

and Theorem 4.10, we have
∫ T

0

δy(Xt)dt = u(XT )− u(x)−
∫ T

0

(Au)(Xt)dw(t).

It is easy to see that u(XT ) ∈ ∩p>1D
1
p and by (H3) that

exp
{
−
∫ Xt

y

2b(η)

σ(η)2
dη

}σ(Xt)

σ(y)2
∈ D

∞
p for all p ∈ (1,∞).

From this and (4.12), we find lim supt↓0 ‖(Au)(Xt)‖p,s < ∞ for s < 1/2 and p ∈
(1, 1s ). Then by Theorem 4.3–(ii),

∫ T

0 (Au)(Xt)dw(t) ∈ D
s
p for s < 1

2 and p ∈ [2, 1s ),
and thus we reached: under (H1), (H3) and (H4),

∫ T

0

δy(Xt)dt ∈ D
s
p for s <

1

2
and p ∈

[
2,

1

s

)
.

See Airault et al. (2000) for a more general and stronger result.

Remark 4.15. In particular, we see from Example 4.14 that
∫ T

0 δy(Xt)dt is a classical
Wiener functional when d = 1, which is related to the local time at y. This can

be seen as follows: Classically, the symmetric local time {l̃(y, t) : y ∈ R, t > 0} is
defined as a unique increasing process such that

|Xt − y| = |x− y|+
∫ t

0

sgn(Xs − y)dXs + l̃(y, t)

and equivalently given by

l̃(y, t) = lim
ε↓0

1

2ε

∫ t

0

1(y−ε,y+ε)(Xs)d〈X〉s

(see Revuz and Yor, 1999). Since it holds limε↓0(2ε)−1σ21(y−ε,y+ε) = σδy = σ(y)δy
in S ′(R), we have

l̃(y, t) = σ(y)2
∫ t

0

δy(Xu)du.

In the sequel, we denote D
s−
2 := ∩ε>0D

s−ε
2 .

Example 4.16. Assume d = 1, (H1), (H3) and (H4). Let x, y ∈ R be such that x 6= y.

By using Lemma 4.12, we see that the mapping (0, T ] ∋ t 7→ δ′y(X(t, x, w)) ∈ D
−k
2

is continuous for some k ∈ Z>0.
Define u(z1, z2) by (4.11), and then

v(z) := −(∂z2u)(z, y)

=
1

2

{
m′(y)s′(y)sgn(z − y)−m′′(y)|s(z)− s(y)|

}
∈ E

′(R)
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satisfies Lv = δ′y and

(Av)(z) =
σ(z)

2

(
2m′(y)s′(y)δy(z)−m′′(y)s′(z)sgn(z − y)

)
.

Since Xt = X(t, x, w) is non-degenerate for each t > 0, it is known by Watanabe
(1991) that δy(Xt) ∈ Ds

p if s ∈ (−1,− 1
2 ) and p ∈ (1, 1

1+s ). Hence by virtue of con-

ditions (H1) and (H3), for each t0 ∈ (0, T ) and p > 2, we find
∫ T

t0
(Au)(Xt)dw(t) ∈

D
( 1
p
−1)−

p , and thus

∫ T

t0

δ′y(Xt)dt ∈ D
( 1
p
−1)−

p for any t0 > 0 and p > 2.

Example 4.17. In the above Example 4.16, we shall try to investigate the class

to which
∫ T

0 δ′y(Xt)dt belongs. Let p > 2 be arbitrary. Since δy(x + ε•) =

lima↓0(2πa)−1/2 exp{−(x+ ε • −y)2/(2a)} = ε−1 lima↓0(2πε−2a)−1/2 exp{−(y−x
ε −

•)2/(2ε−2a)} = ε−1δ(y−x)/ε(•) in the distributional sense, we have

σ(Xt)(m
′s′)(y)δy(Xt) = (σm′s′)(y)ε−1δ(y−x)/ε(F̃ε),

where ε :=
√
t, Xt = X(t, x, w) and F̃ε = (Xt − x)/ε. We shall prove

ε−1‖δ(y−x)/ε(F̃ε)‖p,s → 0 as ε =
√
t ↓ 0 for every s < −1. (4.13)

Note that the probability density function pF̃ε
of F̃ε has an estimate sup0<ε61 pF̃ε

(z)

6 Cp(z) for some C > 0, where p(z) := (2πc′)−1/2e−z2/(2c′) and c′ > 0 is a constant.
By refining the argument in the proof of Lemma A.4, one finds that for every p′ > p,

‖δ(y−x)/ε(F̃ε)‖p,s 6 const.‖(1−△)s/2δ(y−x)/ε‖Lp′(R,µ)

for all ε ∈ (0, 1], where µ(dz) = p(z)dz. To estimate the last quantity, we apply
the Fourier transformation and integration by parts to get

ε−2(1 −△)s/2δ(y−x)/ε(z) =
−1

2π

∫ ∞

−∞

eiξz

(1 + ξ2)−s/2
ε−2eiξ

y−x
ε dξ

=
1

2π(y − x)2

∫ ∞

−∞

{ d2

dξ2
eiξz

(1 + ξ2)−s/2

}
eiξ

y−x
ε dξ,

in which, one finds that there exists c = c(s) > 0 such that

∣∣ d
2

dξ2
eiξz

(1 + ξ2)−s/2

∣∣ 6 c(1 + z2)(1 + ξ2)s/2.

Hence we obtain

|ε−2(1−△)s/2δ(y−x)/ε(z)| 6
c

2π(y − x)2
(1 + z2)

∫ ∞

−∞
(1 + ξ2)s/2dξ.

Note that
∫∞
−∞(1 + ξ2)s/2dξ < +∞ since s < −1. We thus have

sup
ε>0

ε−2p′‖(1−△)s/2δ(y−x)/ε‖p
′

Lp′(R,µ)
6 c′

∫

R

(1 + z2)p
′

p(z)dz < +∞,

where the constant c′ > 0 may depend on y − x, and which gives (4.13).
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By (H1), (H3) and (H4), we see that limt↓0 σ(Xt) = σ(x) in D∞. Combining

this with (4.13) and Theorem 4.3–(i), we obtain
∫ T

0 (σδy)(Xt)dw(t) ∈ D
(−1)−
p . On

the other hand, we have
∫ T

0
(σs′)(Xt)sgn(Xt − y)dw(t) ∈ L2 ⊂ D

(−1)−
p . Therefore

∫ T

0

(Au)(Xt)dw(t)

= m′(y)s′(y)

∫ T

0

(σδy)(Xt)dw(t) −
m′′(y)

2

∫ T

0

(σs′)(Xt)sgn(Xt − y)dw(t) ∈ D
(−1)−
p .

Hence by Theorem 4.10,
∫ T

0

δ′y(Xt)dt ∈ D
(−1)−
p for any p > 2.

Example 4.18 (Cauchy’s principal value of 1/x). Let d = 1. The tempered distri-
bution p.v. 1x is defined by

〈p.v. 1
x
, f〉 := lim

ε↓0

∫

|x|>ε

f(x)

x
dx, f ∈ S (R).

Let Λ ∈ S ′(R) be the regular distribution (i.e., a distribution associated with a
locally integrable function) given by Λ = x log |x| − x. Then the distributional
derivatives are: Λ′ = log |x| and Λ′′ = p.v. 1x .

We shall first show the Bochner integrability of the pull-back of
(
p.v. 1x

)
by a

Brownian motion w(t): (0, T ] ∋ t 7→
(
p.v. 1x

)
(w(t)). For each J ∈ D∞ and p, q > 1

such that 1/p+ 1/q = 1, we obtain

E[
(
p.v.

1

x

)
(w(t))J ] = E[

(
x log |x| − x

)′′
(w(t))J ]

= E[
(
w(t) log |w(t)| − w(t)

)
lt(J)]

6 ‖
(
w(t) log |w(t)| − w(t)

)
‖p‖lt(J)‖q.

Here lt(J) =
∑2

i=0〈Pi(t), D
iJ〉H⊗i ∈ D∞ for some Pi(t) ∈ D∞(H⊗i), i = 0, 1, 2

which are polynomials in w(t), its derivatives and ‖Dw(t)‖−2
H = t−1. Since we have

‖w(t) log |w(t)|‖pp =

∫

R

∣∣(
√
tx) log(

√
t|x|)

∣∣p e
−x2/2

√
2π

dx

6 2p|
√
t log

√
t|p

∫

R

|x|p e
−x2/2

√
2π

dx+ 2ptp/2
∫

R

∣∣x log |x|
∣∣p e

−x2/2

√
2π

dx,

which tends to zero as t ↓ 0, and hence lim supt↓0 ‖
(
p.v. 1x

)
(w(t))‖p,−2 < +∞ for

p > 2. This proves that (0, T ] ∋ t 7→
(
p.v. 1x

)
(w(t)) ∈ D

−2
2 is Bochner integrable.

On the other hand, it is clear that
∫ T

0
‖ log |w(t)|‖22dt < +∞.

Now, by Theorem 4.10, we have

w(T ) log |w(T )| =
∫ T

0

log |w(t)|dw(t) + 1

2

∫ T

0

(
p.v.

1

x

)
(w(t))dt. (4.14)

The chaos expansion of log |w(1)| is given by

log |w(1)| = E[log |w(1)|] +
∞∑

n=1

1

n!
lim
ε↓0

∫

|x|>ε

1

x
Hn−1(x)

e−x2/2

√
2π

dxHn(w(1)).
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Put µ(dx) := (2π)−1/2 exp(−x2/2)dx. It is clear that limε↓0
∫
|x|>ε

1
xH1(x)µ(dx) =∫

R
µ(dx) = 1. For n > 2, by using Lemma A.1–(ii), we have

lim
ε↓0

∫

|x|>ε

1

x
Hn(x)µ(dx)

= lim
ε↓0

∫

|x|>ε

1

x
{xHn−1(x) − (n− 1)Hn−2(x)}µ(dx)

=

∫

R

Hn−1(x)µ(dx) − (n− 1) lim
ε↓0

∫

|x|>ε

1

x
Hn−2(x)µ(dx)

= −(n− 1) lim
ε↓0

∫

|x|>ε

1

x
Hn−2(x)µ(dx).

Therefore if n = 2k + 1, then

lim
ε↓0

∫

|x|>ε

1

x
Hn(x)µ(dx)

= (−2k)(−(2k − 2))(−(2k − 4)) · · · (−2) · lim
ε↓0

∫

|x|>ε

1

x
H1(x)µ(dx)

= (−1)k(2k)!!.

Similarly, if n is even, limε↓0
∫
|x|>ε x

−1Hn(x)µ(dx) = 0. Thus we get

log |w(1)| = E[log |w(1)|] +
∞∑

n=0

(−1)n
(2n)!!

(2n+ 2)!
H2n+2(w(1)),

from which, we find that

‖ log |w(t)/
√
t|‖22,s = ‖ log |w(1)|‖22,s

= E[log |w(1)|]2 +
∞∑

n=0

(1 + n)s
((2n)!!)2

(2n+ 2)!
.

Noting (2n)!! = 2nn!, the Stirling formula tells us

◦ ‖ log |w(t)/
√
t|‖2,s = ‖ log |w(1)|‖2,s < +∞ iff s < 1

2 .
◦ A similar computation shows that

‖(p.v. 1
x
)(w(1))‖2,s < +∞ iff s < −1

2
.

Now, for s < 1/2, we have
∫ T

0

‖ log |w(t)|‖22,sdt 6 4
(∫ T

0

(log
√
t)2dt+ T ‖ log |w(1)|‖22,s

)
< +∞,

so that
∫ T

0 log |w(t)|dw(t) ∈ D
(1/2)−
2 by Theorem 4.3–(ii). Hence by (4.14),

∫ T

0

(
p.v.

1

x

)
(w(t))dt ∈ D

(1/2)−
2 .

Example 4.19. Let d > 2 and x, y ∈ Rd. Suppose (H1), (H3) and (H4). Since
δy ∈ Hs

p(R
d) if s < −(p− 1)d/p (Lemma A.6), we find from Corollary 1.6,

∫ T

t0

δy(Xt)dt ∈ D
(1− (p−1)d

p
)−

p for t0 > 0 and p > 2,
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where Xt = X(t, x, w).
Assume that x 6= y, and then we shall further investigate the class to which∫ T

0
δy(Xt)dt belongs. Let f := (1 − L)−1δy and let φ : Rd → R be a C∞-function

such that (1) x /∈ suppφ, (2) φ ≡ 1 on a neighbourhood of y, and (3) suppφ is
compact. By Theorem 4.10, we have

(φf)(XT )− (φf)(x) =

d∑

i,j=1

∫ T

0

(σi
j∂i(φf))(Xt)dw

j(t) +

∫ T

0

(L(φf))(Xt)dt,

in which we note that

L(φf) = (Lφ)f + 〈σ∇φ, σ∇f〉Rd + φf − δy

and (Lφ)f, 〈σ∇φ, σ∇f〉Rd ∈ S (Rd). By Lemma A.7–(ii),
{
p ∈ (1,∞);
− d

2 < s < min{ p
p−1 − d, 0} ⇒

{
limt↓0 ‖(φf)(Xt)‖p,s = 0;
limt↓0 ‖∂i(φf)(Xt)‖p,s = 0,

and then we have limt↓0 ‖(σi
j∂i(φf))(Xt)‖p,s = 0 since limt↓0 σi

j(Xt) = σi
j(x) in

D∞ and ‖(σi
j∂i(φf))(Xt)‖p,s 6 const.‖σi

j(Xt)‖q,−s′‖∂i(φf)(Xt)‖r,s′ (this follows by
taking the dual of Watanabe, 1993, inequality (1.6)), where q, r ∈ (1,∞) and s′ ∈ R

are such that 1/p = 1/q + 1/r and s < s′ < min{ p
p−1 − d, 0} (6 min{ q

q−1 − d, 0}).
Now by Theorem 4.3, we obtain

∫ T

0 (σi
j∂i(φf))(Xt)dw

j(t) ∈ Ds
p for p > 2, so that

∫ T

0

δy(Xt)dt ∈ D
( p
p−1−d)−

p for any d > 2 and p > 2.

Remark 4.20. In Examples 4.16 and 4.19, the conclusions seem not the best possible

given p > 2, because recalling that
∫ T

t0
δ′y(Xt)dt and

∫ T

t0
δy(Xt)dt belong to D

( 1
p
−1)−

p

and D
(1− (p−1)d

p
)−

p respectively for each t0 > 0 (Note that Xt’s in each case are

different though we are using the same symbol), it is natural to ask that
∫ T

0 δ′y(Xt)dt

and
∫ T

0 δy(Xt)dt also do. To get further results for p ∈ (1, 2), one would have to
investigate Theorem 4.3 for p ∈ (1, 2), which we could not.

Appendix A. Auxiliary Lemmas

A.1. Some knowledge of Hermite polynomials. The Hermite polynomials Hn, n ∈
Z>0 is defined by H0(x) = 1 and Hn(x) := ∂∗n1(x) for n ∈ N and x ∈ R, where

∂∗f(x) := −f ′(x) + xf(x), x ∈ R

for any differentiable function f : R → R. The Hermite functions are now defined
by

φn(x) := Hn(
√
2x)e−

x2

2 , x ∈ R and n ∈ Z>0.

Some facts about {Hn}∞n=0 and {φn}∞n=0 are summarized as follows.

Lemma A.1. (i) For each n ∈ Z>0,

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 =
(−1)ne

x2

2

√
2π

∫ +∞

−∞
(iξ)ne−

ξ2

2 eiξxdξ.

(ii) H ′
n = nHn−1 and Hn(x) = xHn−1(x)− (n− 1)Hn−2(x).

(iii) { 1√
n!
Hn}n>0 is a complete orthonormal basis of L2(R, (2π)

−1/2e−x2/2dx).
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(iv) {(√πn!)−1/2φn}n>0 is a complete orthonormal system of L2(R, dx).

(v) (1 + x2 −△)φn = 2(n+ 1)φn for n ∈ Z>0, where △ = d2

dx2 .

A.2. Some knowledge of Heaviside function. We begin with introducing some re-
sults by Bongioanni and Torrea (2006). Let H := x2 − △, A := d

dx + x and

B := − d
dx + x. From the point of view of Lemma A.1–(iii), (iv), A family of

linear operators (λ + H)s, s ∈ R and λ > 0 can also be defined by the relation
(λ+H)sφn = (2(n+ λ+1

2 ))sφn for n ∈ Z>0.

Then for s < 0, the operatorHs/2 has an integral representation (see Bongioanni
and Torrea, 2006, Proposition 2)

(Hs/2f)(x) =

∫

R

Ks/2(x, y)f(y)dy for f ∈ S (R), (A.1)

where the kernel Ks/2(x, z) has an estimate Ks/2(x, y) 6 cΦs/2(|x − y|) for some
constant c > 0 and

Φs/2(x) =





|x|−(1+s)1{|x|<1} + e−x2/41{|x|>1} if s > −1,

(1− log |x|)1{|x|<1} + e−x2/41{|x|>1} if s = −1,

1{|x|<1} + e−x2/41{|x|>1} if s < −1.

Lemma A.2. If s ∈ (−1,− 1
2 ) and p ∈ (1, 1

1+s ), H
s/2δy(x) ∈ Lp(R, dx).

Proof : Since s > −1, we have

(Hs/2δy)(x) = Ks/2(x, y)

6 c
(
|x− y|−(1+s)1{|x−y|<1} + e−

|x−y|2

4 1{|x−y|>1}
)
.

Hence we can easily conclude the result. �

By using Bongioanni and Torrea (2006, Theorem 4, Lemma 4, Theorem 7) and
Lp-multiplier theorem (see Thangavelu, 1993, Chapter 4, Section 4.2, Theorem

4.2.1) for operators [H−1(H + 2)]s/2, s ∈ R, we can deduce that for each s ∈ R,
there exists a constant c1 = c1(s) > 0 such that

‖H(s+1)/2f‖Lp(R,dx)

6 c1

(
‖Hs/2φ‖Lp(R,dx) + ‖xHs/2f‖Lp(R,dx) + ‖Hs/2f‖Lp(R,dx)

) (A.2)

for all f = f(x) ∈ S (R), where φ := Af . By a standard argument, this inequality
extends and is still valid for f = f(x) ∈ S ′(R) such that (Hs/2Af), (Hs/2f),
(xHs/2f) ∈ Lp(R, dx).

Proposition A.3. Let y ∈ R. For each s < 1/2 and p ∈ (1, 1/s), we have

(i) Hs/21(−∞,y) ∈ Lp(R, dx),

(ii) limy→−∞ ‖Hs/21(−∞,y)‖Lp(R,dx) = 0 and

(iii) supy∈R ‖Hs/21(−∞,y)‖Lp(R,dx) <∞.
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Proof : Let f(x) := 1(−∞,y)(x) and φ(x) := Af(x) = δy(x) +x1(−∞,y)(x). Then by
(A.2), we have

‖Hs/21(−∞,y)‖Lp(R,dx)

6 2c1

(
‖H(s−1)/2δy‖Lp(R,dx) + ‖H(s−1)/2(x1(−∞,y))‖Lp(R,dx)

+ ‖xH(s−1)/21(−∞,y)‖Lp(R,dx) + ‖H(s−1)/21(−∞,y)‖Lp(R,dx)

)
,

which is finite by virtue of Lemma A.2 and by a similar argument in Lemma A.2
with using the integral expression (A.1). Furthermore again by (A.1), we find also
that the last four terms converge to zero as y → −∞, and uniformly bounded in
y ∈ R. �

A.3. Fractional inequalities. Let {Fε}ε∈I ⊂ D∞ be a bounded and uniformly non-
degenerate family (see Definition 2.1). Here, the boundedness is used in the sense
of {Fε}ε∈I is bounded in Dk

p for each p ∈ (1,∞) and k ∈ Z>0.

Lemma A.4. For any s ∈ R, p ∈ (1,∞) and p′ > p, there exists c =
c(s, p, p′, {Fε}ε∈I) > 0 such that

‖Λ(Fε)‖p,s 6 c‖(x2 −△)s/2Λ‖Lp′(R,dx)

for every ε ∈ I and Λ ∈ S ′(R) with (x2 −△)s/2Λ ∈ Lp′(R, dx).

See also Remark A.5. The following proof is based on the technique in Watanabe
(1991).

Proof : We show in the case of −2 6 s 6 1. Other cases are similarly proved.
Define a linear operator Tα(ε) for −2 6 α 6 1 and ε ∈ I by

Tα(ε)φ := (I − L)α/2
[
(x2 −△)−α/2φ

]
(Fε)

for φ = φ(x) ∈ S (R). Since {Fε}ε∈I is uniformly non-degenerate, the density
function pFε

(x) is uniformly bounded in (ε, x) ∈ I × R:

c0 := sup
ε∈I

sup
x∈R

pFε
(x) <∞.

Take p′ > p > 1 arbitrary. We divide the proof into five steps.
(a) In the first place, when α = −2, we shall show that T−2(ε) : Lp′(R, dx) →

D0
p = Lp and is a continuous linear operator with an estimate

‖T−2(ε)‖Lp′(R,dx)→Lp
6 c1 for any ε ∈ I

for some constant c1 > 0. Let φ ∈ S (R) be arbitrary. Then

‖T−2(ε)φ‖p = ‖(I − L)−1
[
(x2 −△)φ

]
(Fε)‖p = ‖(Hφ)(Fε)‖p,−2,

where H := x2 −△, and for each J ∈ D∞ and p′′ ∈ (p, p′), we have

E[(Hφ)(Fε)J ] = E[((x2 −△)φ)(Fε)J ] 6 ‖φ(Fε)‖p′′‖lε(J)‖q′′ ,

where 1/p′′ + 1/q′′ = 1 and lε(J) is of the form lε(J) =
∑2

i=0〈Pi(ε, w), D
iJ〉H⊗i

for some Pi(ε, w) ∈ D∞(H⊗i), i = 0, 1, 2, all of which are polynomials in Fε, its
derivatives up to the second order and ‖DFε‖−2

H . Since {Fε}ε∈I is uniformly non-
degenerate, there exists c′0 > 0 such that ‖lε(J)‖q′′ 6 c′0‖J‖q,2. Hence we have

E[(Hφ)(Fε)J ] 6 c′0‖φ(Fε)‖p′′‖J‖q,2 6 c0c
′
0‖φ‖Lp′(R,dx)

‖J‖q,2
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for each J ∈ D∞, which implies ‖T−2(ε)φ‖p 6 c1‖φ‖Lp′(R,dx)
, where c1 := c0c

′
0.

Since S (R) is dense in Lp′(R, dx), we obtain the desired estimate.
(b) Next, we focus on the case of α = 1. We shall show that this operator

actually defines a continuous linear mapping T1(ε) : Lp′(R, dx) → D0
p = Lp with an

estimate

‖T1(ε)‖Lp′(R,dx)→Lp
6 c2 for any ε ∈ I,

for some constant c2 > 0. Let φ = φ(x) ∈ S (R) be arbitrary. Then

‖T1(ε)φ‖Lp
=

∥∥(I − L)1/2
[
(x2 −△)−1/2φ

]
(Fε)

∥∥
Lp

= ‖(H−1/2φ)(Fε)‖p,1.

By Meyer’s inequality, there exists a positive constant c′2 > 0 such that ‖J‖p,1 6

c′2(‖J‖Lp
+ ‖DJ‖Lp(H)) for every J ∈ D1

2. Hence we have

‖(H−1/2φ)(Fε)‖p,1 6 c′2

(
‖(H−1/2φ)(Fε)‖Lp

+ ‖(H−1/2φ)′(Fε)DFε‖Lp(H)

)
.

We easily have ‖(H−1/2φ)(Fε)‖Lp
6 c0‖(x2 −△)−1/2φ‖Lp′(R,dx)

. Take q′ ∈ (1,∞)

so that 1/p′ + 1/q′ = 1/p. Then there exists c′′2 = c′′2(p
′, q′) > 0 such that

‖J1J2‖Lp(H) 6 c′′2‖J1‖Lp′
‖J2‖Lq′ (H) for all (J1, J2) ∈ Lp′ × Lq′(H). Hence we

have

‖(H−1/2φ)′(Fε)DFε‖Lp(H)

6 c′′2‖[(x2 −△)−1/2φ]′(Fε)‖Lp′
‖DFε‖Lq′(H)

6 c′′2c0
(
sup
ε∈I

‖DFε‖Lq′ (H)

)
‖[(x2 −△)−1/2φ]′‖Lp′(R,dx)

.

By a result by Bongioanni and Torrea (2006, Lemma 3 and Theorem 4), there exists
a constant c′′′2 = c′′′2 (p′) > 0 such that

‖[(x2 −△)−1/2φ]′‖Lp′(R,dx)
+ ‖(x2 −△)−1/2φ‖Lp′(R,dx)

6 ‖
( d

dx
+ x

)
(x2 −△)−1/2φ‖Lp′(R,dx)

+ ‖(x2 −△)−1/2φ‖Lp′(R,dx)

+ ‖x(x2 −△)−1/2φ‖Lp′(R,dx)

6 c′′′2 ‖φ‖Lp′(R,dx)
,

and hence we have obtained

‖T1(ε)φ‖Lp
6 c2‖φ‖Lp′(R,dx)

for all ε ∈ I

as desired, where c2 := c0c
′
2(1 + c′′2 supε∈I ‖DF̃ε‖Lq′(H))c

′′′
2 .

(c) For each ε ∈ I, z ∈ C and φ ∈ S (R), we define

Tz(ε)φ := (I − L)z/2[(x2 −△)−z/2φ](Fε), φ ∈ S (R)

(the operators (I − L)z/2 and (x2 − △)−z/2 are defined by the same definition
formulae for the real-exponent case). For any φ ∈ S (R) and ψ ∈ D

∞, we shall
show z 7→ E[(Tz(ε)φ)ψ] is analytic. For this, we note that

E[(Tz(ε)φ)ψ] = E[(H−z/2φ)(Fε)(I − L)z/2ψ]

=
∞∑

m=0

(1 +m)z/2E
[
(H−z/2φ)(Fε)Jm[ψ]

]
.

(A.3)
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Letting {φn}n∈Z>0
be as in Lemma A.1, we have H−z/2φn = (2n + 1)−z/2φn for

n ∈ Z>0 and {φ̃n := (
√
πn!)−1/2φn}n∈Z>0

is a complete orthonormal system of

L2(R, dx). Then we have φ =
∑∞

n=0〈φ, φ̃n〉L2(R,dx)φ̃n in L2(R, dx). Therefore

E[(H−z/2φ)(Fε)Jm[ψ]] =

∞∑

n=0

(2n+ 1)−z/2〈φ, φ̃n〉L2(R,dx)E[φ̃n(Fε)Jm[ψ]]

is an infinite sum of analytic functions in z. Furthermore, this series converges abso-
lutely and locally-uniformly in z. In fact, with recalling that c0 =
supε∈I supx∈R pFε

(x) < ∞ where pFε
is the probability density function of Fε,

and by using the Cauchy-Schwartz inequality,

∞∑

n=0

∣∣(2n+ 1)−z/2〈φ, φ̃n〉L2(R,dx)E[φ̃n(Fε)Jm[ψ]]
∣∣

6 c0‖Jm[ψ]‖L2

∞∑

n=0

∣∣(2n+ 1)−1〈φ,H1−Re(z/2)φ̃n〉L2(R,dx)

∣∣

6 c0‖Jm[ψ]‖L2

( ∞∑

n=0

(2n+ 1)−2
)1/2

‖H1−Re(z/2)φ‖L2(R,dx),

is finite because φ ∈ S (R). Therefore, E
[
(H−z/2φ)(Fε)Jm[ψ]

]
is indeed an analytic

function in z. Thus each term in the summation in (A.3) is analytic in z. We see
further that the each term has the estimate

|E
[
(H−z/2φ)(Fε)Jm[ψ]

]
|

6 ‖(H−z/2φ)(Fε)‖L2‖Jm[ψ]‖L2

6 c0‖H−z/2φ‖L2(R,dy)‖Jm[ψ]‖L2 .

Therefore

∞∑

m=0

|(1 +m)z/2E
[
(H−z/2φ)(Fε)Jm[ψ]

]
| 6 c0‖H−z/2φ‖L2(R,dy)‖ψ‖2,Re(z).

Here, the two quantities ‖H−z/2φ‖L2(R,dy) and ‖ψ‖2,Re(z) are continuously depend-
ing on z because φ ∈ S (R) and ψ ∈ D

∞. Hence the infinite sum in (A.3) converges
absolutely and locally-uniformly in z, so that E[(Tz(ε)φ)ψ] is analytic in z.

(d) For φ ∈ S (R) and ψ ∈ D∞, Φ(z) := E[(Tz(ε)φ)ψ] is analytic on C. By the
Marcinkiewicz Lp-multiplier theorem (see e.g. Thangavelu, 1993, Chapter 4, Sec-
tion 4.2, Theorem 4.2.1), one gets supτ∈R ‖(x2−△)iτ‖Lp′(R,dx)→Lp′(R→C;dx) < +∞,

where Lp′(R → C; dx) is the space of all complex-valued measurable functions that
are p′-th order integrable. On the other hand, by Meyer’s Lp-multiplier theorem
(see e.g. Ikeda and Watanabe, 1989, Chapter V, Section 8, Lemma 8.2) gives
supτ∈R ‖(I −L)iτ‖Lp→D0

p(C)
< +∞. By using these, we can conclude the following:

(1) the complex function Φ has the estimate

sup
τ∈R

sup
−26α61

|Φ(α+ iτ)| < +∞

for each φ and ψ (see Hirschman’s Lemma in Stein, 1956).
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(2) for τ ∈ R, the operators T−2+iτ (ε) and T1+iτ (ε) uniquely extends to a
bounded linear operators Lp′(R, dx) → D0

p(C) with estimates

sup
τ∈R

‖T−2+iτ (ε)‖Lp′(R,dx)→D0
p(C)

< +∞,

sup
τ∈R

‖T1+iτ (ε)‖Lp′(R,dx)→D0
p(C)

< +∞

(Note that one can take these upper bounds independent of ε since the bounds
c1 and c2 obtained in steps (a) and (b) are independent of ε). Then by Stein’s
interpolation theorem2 (see Stein, 1956, Theorem 1), we can conclude that the
operators Tz(ε) for −2 6 Re(z) 6 1 uniquely extends to a bounded linear operator
Lp′(R, dx) → D0

p(C) and

sup
ε∈I

sup
−26α61

‖Tα(ε)‖Lp′(R,dx)→Lp
< +∞.

(e) Now, for each φ ∈ S (R), we have

‖φ(Fε)‖p,s = ‖(I − L)s/2[(x2 −△)−s/2(x2 −△)s/2φ](Fε)‖Lp

= ‖Ts(ε)[(x2 −△)s/2φ]‖Lp

6 ‖Ts(ε)‖Lp′(R,dx)→Lp
‖[(x2 −△)s/2φ]‖Lp′(R,dx)

.

Again by denseness of S (R), this inequality extends to Λ ∈ S
′(R) such that

(x2 −△)s/2Λ ∈ Lp′(R, dx). �

Remark A.5. In Lemma A.4 and Lemma 4.12, one can take p′ = p when Fε =
ε−1w(ε2T ), where ε ∈ (0, T ] =: I, T > 0 and w = (w1, · · · , wd) is the canonical pro-
cess, i.e., the d-dimensional Wiener process starting at zero (assume d = 1 if consid-
ering Lemma A.4), because then DFε = ε−1Dw(ε2T ) = ε−1(1[0,ε2T ], · · · , 1[0,ε2T ])

and 〈DF i
ε , DF

j
ε 〉H = δijT are non-random.

A.4. Regularity of something related to resolvent kernel associated with elliptic op-
erators. Suppose (H1), (H3) and (H4). We set, for f ∈ S (Rd) and x ∈ Rd,

Lf(x) =
1

2

d∑

i,j=1

(σσ∗)ij(x)
∂2f

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂f

∂xi
(x).

The fractional power (1−△)s/2 is defined as a pseudo-differential operator:

(1−△)s/2φ(x) =

∫

Rd

(1 + |ξ|2)s/2φ̂(ξ)ei〈ξ,x〉dξ, φ ∈ S (Rd),

where φ̂(ξ) = (2π)−d/2
∫
Rd φ(y)e

−i〈ξ,y〉dy is the Fourier transform of φ, and is also
given by

(1−△)s/2φ(x) =
1

Γ(−s/2)

∫ ∞

0

t−
s
2−1e−t(et△φ)(x)dt, φ ∈ S (Rd)

2Strictly speaking, this theorem was stated in the case where φ and ψ are simple functions
in Stein (1956, Theorem 1). This is because just that his argument is based on general σ-finite
measure spaces where we can not speak about ‘smoothness’. The same arguments apply to our
case.
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for −d < s < 0, where et△ is the heat semigroup associated to △. Actually,

formulae φ(y) =
∫
Rd φ̂(ξ)e

i〈ξ,y〉dξ and
∫
Rd e

− |y|2

4t ei〈ξ,y〉dy = (4πt)d/2e−|ξ|2t give the
above equivalence.

Before entering the following series of estimates, we recall that
∫

|x|<1

|x|−sdx < +∞ iff s < d,

where the integral is over Rd and |x| = |x|Rd .

Lemma A.6. For every p ∈ (1,∞) and s ∈ (−d,−(p − 1)d/p), we have (1 −
△)s/2δy ∈ Lp(R

d, dx) for each y ∈ R
d.

Proof : The transition density associated to the semigroup generated by △ is given
by pt(x, y) = (4πt)−d/2 exp(−|y − x|2/(4t)). Hence we have

(1−△)s/2δy(x) =
1

Γ(−s/2)

∫ ∞

0

t−
s
2−1e−tpt(x, y)dt

=
(4π)−d/2

Γ(−s/2)

∫ ∞

0

t−
s+d
2 −1e−t exp

{
− |x− y|2

4t

}
dt

=
(4π)−d/2

4−
s+d
2 Γ(−s/2)

|x− y|−(d+s)

∫ ∞

0

u
d+s
2 −1e−u exp

{
− |x− y|2

4u

}
du,

which behaves, up to a multiplicative constant, as |x − y|−(d+s) when |x − y| → 0
and rapidly decreasing as |x− y| → ∞. In fact, by using the identity

e−u exp
{
− |x− y|2

4u

}
= exp

{
− (|x− y| − 2u)2

4u

}
e−|x−y|,

and putting a := |x− y|, the last integral can be written as
∫ ∞

0

u
d+s
2 −1e−u exp

{
− a2

4u

}
du = e−a(I + II)

where

I :=

∫ a

0

u
d+s
2 −1 exp

{
− (a− 2u)2

4u

}
du,

II :=

∫ ∞

a

u
d+s
2 −1 exp

{
− (a− 2u)2

4u

}
du.

Since d+s > 0, we have I 6
∫ a

0
u

d+s
2 −1du = 2

d+sa
d+s
2 . On the other hand, by using

the change of variable u = a
2v, one has II = (a/2)

d+s
2

∫ +∞
2

v
d+s
2 −1 exp(− (1−v)2

2v a)dv.

For a > 1 and v > 2, we have exp(− (1−v)2

2v a) = exp(−a
2 (v − 2)) exp(− a

2v ) 6

exp(−a
2 (v−2)) 6 exp(− 1

2 (v−2)) = e·exp(−v/2). Thus we obtain II 6 c0e(a/2)
d+s
2

if a > 1, where c0 :=
∫ +∞
2

v
d+s
2 −1 exp(−v/2)dv < +∞. The arguments above shows

that
∫∞
0 u

d+s
2 −1e−u exp(− a2

4u )du decreases rapidly when a→ +∞, as claimed.

Therefore, (1−△)s/2δy ∈ Lp(R
d, dx) if (d+ s)p < d, i.e., s < −(p− 1)d/p. �

Let x ∈ Rd. Under the conditions (H1), (H3) and (H4), we denote by Xt =
X(t, x, w) a unique strong solution to the stochastic differential equation (4.10). In
the sequel, we fix y ∈ Rd such that y 6= x and define

fy(z) := (1 − L)−1δy(z), z ∈ R
d.
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Let φ : Rd → R be a C∞-function such that (1) x /∈ suppφ, (2) φ ≡ 1 on a
neighbourhood of y, and (3) suppφ is compact.

Lemma A.7. Assume (H1), (H3) and (H4). Let p ∈ (1,∞) be arbitrary.

(i) For each s < min{1 − (p−1)d
p , 0} and t > 0, we have (∇fy)(Xt) ∈ Ds

p(R
d)

and (0, T ] ∋ t 7→ (∇fy)(Xt) ∈ Ds
p(R

d) is continuous.

(ii) Assume d > 2. Then for each − d
2 < s < min{ p

p−1 − d, 0}, we have

limt→0 ‖(∇(φfy))(Xt)‖p,s = 0 and limt→0 ‖(φfy)(Xt)‖p,s = 0.

Proof : Let p ∈ (1,∞) and t0 > 0 be arbitrary. In the following, we write f := fy.

(i) Take p′ > p such that s < min{1 − (p′−1)d
p′ , 0}. Since {Xt}t06t6T is uni-

formly non-degenerate, the assertion follows by Lemma 4.12 once we show (1 −
△)s/2(∂f/∂zk) ∈ Lp′(Rd, dz).

Denote by pt(z, z
′) the transition density associated to L. By a standard estimate

(see e.g., Friedman, 1964, Chapter 9, Section 6, Theorem 7), there exist c, C > 0
such that

pt(z, z
′) 6 C(2πct)−d/2 exp

{
− |z − z′|2

2ct

}
,

∣∣ ∂pt
∂zk

(z, z′)
∣∣ 6 Ct−1/2(2πct)−d/2 exp

{
− |z − z′|2

2ct

}

for every k = 1, 2, · · · , d and z, z′ ∈ Rd. We may assume c > 2 by rearranging
C > 0. Then we have

∣∣ ∂f
∂zk

(z)
∣∣ 6 1

Γ(1)

∫ ∞

0

e−t
∣∣ ∂pt
∂zk

(z, y)
∣∣dt

6 C

∫ ∞

0

t−1/2e−t(2πct)−d/2 exp
{
− |z − y|2

2ct

}
dt,

(A.4)

so that
∣∣∣
[
(1−△)s/2

∂f

∂zk

]
(z)

∣∣∣

6
1

Γ(−s/2)

∫ ∞

0

t−
s
2−1e−t

∫

Rd

e−
|z−z′|2

4t

√
4πt

d

∣∣ ∂f
∂zk

(z′)
∣∣dz′dt

6
C′

Γ(−s/2)Γ(1/2)

∫ ∞

0

∫ ∞

0

t−
s
2−1u−1/2e−(t+u) e−

|z−y|2

2c(t+u)

(2πc(t+ u))d/2
dudt

=
C′

Γ(1−s
2 )

∫ ∞

0

v
1−s
2 −1e−v e−

|z−y|2

2cv

(2πcv)d/2
dv,

for some constant C′ > 0. Hence (1−△)s/2(∂kf)(z) ∈ Lp′(Rd, dz).
(ii) Suppose that s < min{ p

p−1−d, 0}. Take δ > 0 so that {z ∈ Rd : |z−x| < δ} ⊂
(suppφ)c. Note that ∂k(φfy) = (∂kφ)fy+φ(∂kfy), (∂kφ)(x)fy(x) = 0 and (∂kφ)fy ∈
S (Rd). Therefore by bounded convergence theorem, limt↓0 ‖[(∂kφ)fy ](Xt)‖p,s 6

limt↓0 ‖[(∂kφ)fy](Xt)‖p = 0. So in the following, we investigate the behaviour of
(φ(∂kfy))(Xt) and (φfy)(Xt). For this, we divide the proof into four steps.



746 T. Amaba and Y. Ryu

(a) Since s 6 0, we notice that

|(I − L)s/2F | =
∣∣ 1

Γ(− s
2 )

∫ ∞

0

u−
s
2−1e−uTuFdu

∣∣

6
1

Γ(− s
2 )

∫ ∞

0

u−
s
2−1e−uTu|F |du = (I − L)s/2|F |

for any F ∈ L2, where Tu = exp(uL), u > 0 is the Ornstein-Uhlenbeck semigroup
on the Wiener space. Then, taking p′, q, r > 1 so that 1

p′ +
1
q + 1

r < 1 and with

putting F := (φ∂kf)(Xt) = (φ∂kf)(Xt)1{|Xt−x|>δ}, we have

‖(φ∂kf)(Xt)‖pp,s = ‖(I − L)s/2F‖pp

6 E
[∣∣∣(I − L)s/2F

∣∣∣
p−1

(I − L)s/2|F |
]

= E
[
|(φ∂kf)(Xt)|

{
(I − L)s/2

∣∣(I − L)s/2F
∣∣p−1

}
1{|Xt − x| > δ}

]

6 c0‖(φ∂kf)(Xt)‖p′

∥∥|(I − L)s/2F |p−1
∥∥
q,s

P
(
|Xt − x| > δ

)1/r
,

where c0 = c0(p
′, q, r) > 0 is a constant independent of t. We easily have

‖(φ∂kf)(Xt)‖p′ 6 |φ|∞‖(∂kf)(Xt)‖p′ and
∥∥|(I − L)s/2F |p−1

∥∥
q,s

6 ‖{(I − L)s/2F}p−1‖q
= ‖(I − L)s/2F‖p−1

q(p−1) = ‖(I − L)s/2(φ∂kf)(Xt)‖p−1
p′′ ,

where p′′ := q(p− 1). Thus we have obtained

‖(φ∂kf)(Xt)‖pp,s
6 c0|φ|∞‖(∂kf)(Xt)‖p′‖(I − L)s/2(φ∂kf)(Xt)‖p−1

p′′

×P
(
|Xt − x| > δ

)1/r
.

(A.5)

Similarly, we have

‖(φf)(Xt)‖pp,s
6 c′0‖f(Xt)‖p′‖(I − L)s/2(φf)(Xt)‖p−1

p′′

×P
(
|Xt − x| > δ

)1/r
(A.6)

for some constant c′0 > 0, independent of t.
(b) We will write ε :=

√
t in the sequel. We shall give estimates for each factors

in (A.5) and (A.6), though the proof is presented in the next step. Note that for
the last factors in (A.5) and (A.6), there exists c3, c

′
3,K > 0 such that

P
(
|Xt − x| > δ

)
6 c3 exp

(
− δ2

c′3ε
2

)
for t = ε2 ∈ (0,K]. (A.7)

Let p ∈ (1,∞) anew be arbitrary. To see (A.5), we shall prove

lim
ε↓0

εd‖(∂kf)(Xt)‖pp = 0 if p <
d

d− 1
, (A.8)

lim
ε↓0

εd−sp‖(I − L)s/2(φ∂kf)(Xt)‖pp = 0 if p <
d

d+ s− 1
. (A.9)
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On the other hand, for (A.6), we shall prove

lim
ε↓0

εd‖f(Xt)‖pp = 0 if p <
d

d− 1
, (A.10)

lim
ε↓0

εd−sp‖(I − L)s/2(φf)(Xt)‖pp = 0

if p < min
{ d

d+ s− 1
,

2d

d− 2

}
=

d

d+ s− 1
,

(A.11)

where 2d
d−2 is understood as +∞ if d = 2 and the last equality follows from s > − d

2 .

(c) Take p′ > p arbitrary. First we shall prove (A.8). By using Proposition 3.7

and Lemma 4.12 (Recall that ε =
√
t and Xt = x+ εFε, where Fε = (Xε(1, x, w)−

x)/ε is uniformly non-degenerate), we have

‖(∂kf)(Xt)‖p
′

p = ‖(∂kf)(x+ εFε)‖p
′

p 6 c1‖(∂kf)(x+ εz)‖p
′

Lp′(R
d,dz)

6 c′1

∫

Rd

{∫ ∞

0

u−1/2e−u(2πcu)−d/2 exp
{
− |εz − (y − x)|2

2cu

}
du

}p′

dz

= c′1ε
−d

∫

Rd

{
|z − (y − x)|(1−d)

∫ ∞

0

v
d−1
2 −1e−ve−

|z−(y−x)|2
2cv dv

}p′

dz.

for some constants c1, c
′
1 > 0 independent of ε (In the last equality, we have applied

the change of variables v = |εz−(y−x)|2
2cu ). The last factor can be further computed

as follows:
∫

Rd

{
|z|(1−d)

∫ ∞

0

v
d−1
2 −1e−ve−

|z|2
2cv dv

}p′

dz

6

∫

|z|<1

{
|z|(1−d)

∫ ∞

0

v
d−1
2 −1e−vdv

}p′

dz

+

∫

|z|>1

{
|z|(1−d)

∫ ∞

0

v
d−1
2 −1e−

(|z|−
√
2cv)2

2cv e−
√

(2/c)|z|dv
}p′

dz.

(For getting the second term, note that e−ve−|z|2/(2cv) = e−
(|z|−

√
2cv)2

2cv e−
√

(2/c)|z|.)

The first term equals to (
∫
|z|<1

|z|p′(1−d)dz)(
∫∞
0
v

d−1
2 −1e−vdv)p

′

. The assumption

d > 2 assures
∫∞
0
v

d−1
2 −1e−vdv < +∞ and hence the first term is finite if p′ < d

d−1 .
For the second term, we have

∫

|z|>1

{
|z|(1−d)

∫ ∞

0

v
d−1
2 −1e−

(|z|−
√
2cv)2

2cv e−
√

(2/c)|z|dv
}p′

dz 6 c′′1 (I + II),

where c′′1 > 0 is a constant depending only on p′, and I, II are defined by

I :=

∫

|z|>1

{
|z|(1−d)e−

√
(2/c)|z|

∫ |z|

0

v
d−1
2 −1dv

}p′

dz,

II :=

∫

|z|>1

{
|z|(1−d)e−

√
(2/c)|z|

∫ ∞

|z|
v

d−1
2 −1e−

(|z|−
√
2cv)2

2cv dv
}p′

dz

The term I is estimated as I = ( 2
d−1 )

p′ ∫
|z|>1

{|z|−d−1
2 e−

√
(2/c)|z|}p′

dz 6

( 2
d−1)

p′ ∫
|z|>1 e

−p′
√

(2/c)|z|dz < +∞. On the other hand, by applying the change of
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variable v = |z|u and noting that |z| > 1,

II =

∫

|z|>1

{
|z|− d−1

2 e−
√

(2/c)|z|
∫ ∞

1

u
d−1
2 −1e−

|z|(1−
√
2cu)2

2cu du
}p′

dz

6

∫

|z|>1

e−p′
√

(2/c)|z|
{∫ ∞

1

u
d−1
2 −1e−

(1−
√

2cu)2

2cu du
}p′

dz.

Since exp(− (1−
√
2cu)2

2cu ) = e−
1

2cu e
√

2/c exp(−u) 6 e
√

2/c exp(−u), we get

II 6 ep
′
√

2/c
(∫

|z|>1

e−p′
√

2/c |z|dz
)(∫ ∞

1

u
d−1
2 −1e−udu

)p′

< +∞

(the arguments so far will be used repeatedly below). Putting all together, we have

obtained that for p′ ∈ (p, d
d−1), lim supε↓0 ε

d‖(∂kf)(Xt)‖p
′

p < +∞, which implies

(A.8).
For (A.9), with assuming ε ∈ (0, 1], we have

|(1 −△)s/2[(φ∂kf)(x+ ε•)](z)|

=
∣∣∣ 1

Γ(− s
2 )

∫ ∞

0

u−
s
2−1e−u

∫

Rd

e−
|z−z

′|2
4u

(4πu)d/2
(
φ∂kf

)
(x+ εz′)dz′du

∣∣∣
(A.12)

By using (A.4), change of variables εz′ = z′′ and the semigroup property of et△/2

(recall that c > 2), we have

∫

Rd

e−
|z−z

′|2
4u

(4πu)d/2
|
(
φ∂kf

)
(x+ εz′)|dz′

6 C

∫ +∞

0

v−1/2e−vdv

∫

Rd

e−
|z−z

′|2
4u

(4πu)d/2
e−

|(x+εz
′)−y|2

2cv

(2πcv)d/2
dz′

= Cεd
∫ +∞

0

v−1/2e−vdv

∫

Rd

e−
|εz−εz

′|2
4ε2u

(4πε2u)d/2
e−

|(x+εz
′)−y|2

2cv

(2πcv)d/2
dz′

= C

∫ +∞

0

v−1/2e−vdv

∫

Rd

e−
|εz−z

′′|2
4ε2u

(4πε2u)d/2
e−

|(x+z
′′)−y|2

2cv

(2πcv)d/2
dz′′

= C

∫ +∞

0

v−1/2e−v e
− |εz−(y−x)|2

2(2ε2u+cv)

(2π(2ε2u+ cv))d/2
dv

6 C(2−1c)d/2
∫ +∞

0

v−1/2e−v e
− |εz−(y−x)|2

2(cε2u+cv)

(2π(cε2u+ cv))d/2
dv,

where in the last inequality, we have used that

sup
u,v>0

(cε2 + cv)d/2

(2ε2 + cv)d/2
6 sup

u,v>0

(cε2 + cv)d/2

(2ε2 + 2v)d/2
= (2−1c)d/2.



Distributional Itô’s Formula and Regularization of Generalized Wiener Functionals 749

Substituting this estimate into (A.12), we get

|(1 −△)s/2[(φ∂kf)(x+ ε•)](z)|

6 c2

∫ ∞

0

∫ ∞

0

u−
s
2−1e−uv−1/2e−v e

− |εz−(y−x)|2
2c(ε2u+v)

(2πc(ε2u+ v))d/2
dudv

= c2ε
s

∫ ∞

0

∫ ∞

0

u−
s
2−1v−1/2e−(ε−2

u+ v) e
− |εz−(y−x)|2

2c(u+v)

(2πc(u+ v))d/2
dudv

6 c2ε
s

∫ ∞

0

∫ ∞

0

u−
s
2−1v−1/2e−(u+v) e

− |εz−(y−x)|2
2c(u+v)

(2πc(u + v))d/2
dudv

= c′2ε
s

∫ ∞

0

u
1−s
2 −1e−u e

− |εz−(y−x)|2
2cu

(2πcu)d/2
du,

for some constants c2, c
′
2 > 0 independent of ε, and so that, by using Lemma 4.12,

‖(I − L)s/2(φ∂kf)(Xt)‖p
′

p

6 c′′2‖(1−△)s/2[(φ∂kf)(x+ ε•)](z)‖p
′

Lp′(R
d,dz)

6 c′′′2 ε
sp′

∫

Rd

{∫ ∞

0

u
1−s
2 −1e−u e

− |εz−(y−x)|2
2cu

(2πcu)d/2
du

}p′

dz

= c′′′2 ε
sp′−d

∫

Rd

{
|z − (y − x)|−(d−(1−s))

×
∫ ∞

0

u
d−(1−s)

2 −1e−ue−
|z−(y−x)|2

2cu du
}p′

dz.

for some constants c′′2 , c
′′′
2 > 0. Here, note that d − (1 − s) > 0 because d > 2 and

s > − d
2 . Hence

∫∞
0
u

d−(1−s)
2 −1e−udu < +∞ and by repeating the above argument,

we see that if p < p′ < d
d+s−1 , lim supε↓0 ε

−(sp′−d)‖(I −L)s/2(φ∂kf)(Xt)‖p
′

p < +∞,
so that

lim sup
ε↓0

(
ε−(sp−d)‖(I − L)s/2(φ∂kf)(Xt)‖pp

)p′/p

= lim sup
ε↓0

εd(
p′

p
−1)

(
ε−(sp′−d)‖(I − L)s/2(φ∂kf)(Xt)‖p

′

p

)
= 0.

This is nothing but (A.9).
Next we prove (A.10). By virtue of Lemma 4.12, it suffices to show

‖f(x+ εz)‖p
′

Lp′(R
d,dz)

6 c3ε
−d

[ ∫

Rd

{
|z − (x− y)|1−d

∫ ∞

0

u
d
2−1e−ue−

|z−(x−y)|2
2cu du

}p′

dz

+

∫

Rd

{
|z − (x− y)|−(d−1)/2

∫ ∞

0

u−1/2e−ue−
|z−(x−y)|2

2cu du
}p′

dz
]

(A.13)

for some constant c3 > 0, independent of ε. Actually, then we have
lim supε↓0 ε

d‖f(Xt)‖p
′

p < +∞ if p < p′ < d
d−1 , from which we can conclude (A.10).
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To prove (A.13), we begin with the inequality

f(x+ εz) 6
C(2πc)−d/2

Γ(1)

∫ ∞

0

u−d/2e−ue−
|y−(x+εz)|2

2cu du.

We divide the integral as
∫ ∞

0

u−d/2e−ue−
|y−(x+εz)|2

2cu du

=

∫ |y−(x+εz)|

0

u−d/2e−ue−
|y−(x+εz)|2

2cu du+

∫ ∞

|y−(x+εz)|
u−d/2e−ue−

|y−(x+εz)|2
2cu du.

The first term in the last equation is estimated as

∫ |y−(x+εz)|

0

u−d/2e−ue−
|εz−(x−y)|2

2cu du

= (2c)
d
2−1|εz − (x− y)|2−d

∫ ∞

|y−(x+εz)|
2c

u
d
2−2e−ue−

|εz−(x−y)|2
2cu du

6 (2c)
d
2 |εz − (x− y)|1−d

∫ ∞

|y−(x+εz)|
2c

u
d
2−1e−ue−

|εz−(x−y)|2
2cu du

6 (2c)
d
2 |εz − (x− y)|1−d

∫ ∞

0

u
d
2−1e−ue−

|εz−(x−y)|2
2cu du.

On the other hand, the second term is
∫ ∞

|y−(x+εz)|
u−d/2e−ue−

|y−(x+εz)|2
2cu du

6 |εz − (x− y)|−(d−1)/2

∫ ∞

0

u−1/2e−ue−
|y−(x+εz)|2

2cu du.

Now a change of variable leads us to (A.13) and thus (A.10) is proved.
For (A.11), it is sufficient to prove

‖(1−△)s/2[(φf)(x + ε•)](z)‖p
′

Lp′(R
d,dz)

6 c4ε
sp′−d

[ ∫

Rd

{
|z − (x− y)|1−(s+d)

∫ ∞

0

u
d+s
2 −1e−ue−

|z−(x−y)|2

2cu du
}p′

dz

+

∫

Rd

{
|z − (x− y)| 2−d

2

∫ ∞

0

u−
s
2 e−ue−

|z−(x−y)|2

2cu du
}p′

dz
]

(A.14)

where c4 > 0 is a constant independent of ε. Note that d+s > 0 and −s > 0, so that

it is assured that
∫∞
0 u

d+s
2 −1e−udu < +∞ and

∫∞
0 u−

s
2 e−udu < +∞, respectively.

Note also that 1−(s+d) < 0. These imply lim supε↓0 ε
d−sp′‖(I−L)s/2(φf)(Xt)‖p

′

p <

+∞ if p < p′ < min{ d
d+s−1 ,

2d
d−2}}, and so (A.11).

To prove (A.14), we apply a similar argument, with assuming ε ∈ (0, 1], which
leads to

|(1 −△)s/2[(φf)(x + ε•)](z)|

6 const.εs
∫ ∞

0

u
2−(s+d)

2 −1e−ue−
|εz−(x−y)|2

2cu du.
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We divide the integral as
∫ ∞

0

u
2−(s+d)

2 −1e−ue−
|εz−(x−y)|2

2cu du

=

∫ |εz−(x−y)|

0

u
2−(s+d)

2 −1e−ue−
|εz−(x−y)|2

2cu du

+

∫ ∞

|εz−(x−y)|
u

2−(s+d)
2 −1e−ue−

|εz−(x−y)|2
2cu du.

We estimate the first term as follows.
∫ |εz−(x−y)|

0

u
2−(s+d)

2 −1e−ue−
|εz−(x−y)|2

2cu du

= (2c)1−
d+s−2

2 |εz − (x− y)|2−(s+d)

∫ ∞

|εz−(x−y)|
2c

u
d+s−2

2 −1e−ue−
|εz−(x−y)|2

2cu du

6 (2c)1−
d+s−3

2 |εz − (x− y)|1−(s+d)

∫ ∞

|εz−(x−y)|
2c

u
d+s
2 −1e−ue−

|εz−(x−y)|2
2cu du

6 (2c)1−
d+s−3

2 |εz − (x− y)|1−(s+d)

∫ ∞

0

u
d+s
2 −1e−ue−

|εz−(x−y)|2
2cu du.

The second term is estimated as
∫ ∞

|εz−(x−y)|
u

2−(s+d)
2 −1e−ue−

|εz−(x−y)|2
2cu du

6 |εz − (x− y)| 2−d
2

∫ ∞

0

u−
s
2 e−ue−

|εz−(x−y)|2
2cu du.

Combining these, and a change of variable, we reach the estimate (A.14), and hence
(A.11) is proved.

(d) In view of (A.8), (A.9), (A.10) and (A.11), what we have to do now is to find
p′, q, r > 1 such that

• 1
p′ +

1
q + 1

r < 1;

• p′ < d
d−1 and p′′ := q(p− 1) < d

d−(1−s) .

In fact, since s < p
p−1−d, we can take ε ∈ (0, 1d) such that s < p

p−1− d
1−εd <

p
p−1−d.

Then take p′, q > 1 so that

d− 1

d
<

1

p′
<
d− 1

d
+ ε and

1

q
=

1

d
− ε

(
<

1

d

)
.

These conditions imply 1/p′ + 1/q < d−1
d + 1

d = 1 and hence one can take r > 0

such that 1/p′ + 1/q + 1/r < 1. Finally, we have if p′′ − 1 > 0, then 1 − (p′′−1)d
p′′ =

1 − (p′′−1)d
(p−1)q > 1 − (p′′−1)d

(p−1)d = 1 − p′′−1
p−1 = p

p−1 − q = p
p−1 − d

1−εd > s, which

implies p′′ < d
d−(1−s) . If p′′ − 1 6 0, then 1 − (p′′−1)d

p′′ > 0 > s, which also implies

p′′ < d
d−(1−s) .

Therefore, by taking p′, q, r > 1 as above, we conclude from (A.5), (A.6) and
(A.7)–(A.11) that ‖(φ∂kf)(Xt)‖p,s and ‖(φf)(Xt)‖p,s converge to zero as t = ε2 ↓ 0.

�
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I. Kubo. Itô formula for generalized Brownian functionals. In Theory and applica-
tion of random fields (Bangalore, 1982), volume 49 of Lect. Notes Control Inf.
Sci., pages 156–166. Springer, Berlin (1983). MR799940.

S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 32 (1), 1–76 (1985). MR783181.

Z. Liang. Fractional smoothness for the generalized local time of the indefinite
Skorohod integral. J. Funct. Anal. 239 (1), 247–267 (2006). MR2258223.

S. Lou and C. Ouyang. Local times of stochastic differential equations driven
by fractional Brownian motions. Stochastic Process. Appl. 127 (11), 3643–3660
(2017). MR3707240.

http://www.ams.org/mathscinet-getitem?mr=MR2884718
http://www.ams.org/mathscinet-getitem?mr=MR1763917
http://www.ams.org/mathscinet-getitem?mr=MR3213598
http://www.ams.org/mathscinet-getitem?mr=MR1956473
http://www.ams.org/mathscinet-getitem?mr=MR2256010
http://www.ams.org/mathscinet-getitem?mr=MR1218273
http://www.ams.org/mathscinet-getitem?mr=MR612544
http://www.ams.org/mathscinet-getitem?mr=MR1354459
http://www.ams.org/mathscinet-getitem?mr=MR0181836
http://www.ams.org/mathscinet-getitem?mr=MR0131759
http://www.ams.org/mathscinet-getitem?mr=MR1011252
http://www.ams.org/mathscinet-getitem?mr=MR2435520
http://www.ams.org/mathscinet-getitem?mr=MR799940
http://www.ams.org/mathscinet-getitem?mr=MR783181
http://www.ams.org/mathscinet-getitem?mr=MR2258223
http://www.ams.org/mathscinet-getitem?mr=MR3707240
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