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Abstract. We prove a conditional decoupling inequality for the model of random
interlacements in dimension d ≥ 3: the conditional law of random interlacements
on a box (or a ball) A1 given the (not very “bad”) configuration on a “distant” set
A2 does not differ a lot from the unconditional law. The main method we use is a
suitable modification of the soft local time method of Popov and Teixeira (2015),
that allows dealing with conditional probabilities.

1. Introduction and results

Random interlacements were introduced by Sznitman (2010), to model the trace
of the simple random walk on the discrete torus Zdn := Zd/nZd or the discrete
cylinder Z × Zd−1, in dimension d ≥ 3. Detailed treatments and reviews of recent
results can be found in the recent books Černý and Teixeira (2012); Drewitz et al.
(2014); Sznitman (2012c). Loosely speaking, the model of random interlacements
in Zd, d ≥ 3, is a stationary Poissonian soup of bi-infinite simple random walk
trajectories on the integer lattice. There is a parameter u > 0 entering the intensity
measure of the Poisson process, the larger u is the more trajectories are thrown in.
The sites of Zd that are not touched by the trajectories constitute the vacant set Vu,
and the union of all trajectories constitutes the interlacement set Iu = Zd \ Vu.
The random interlacements are constructed simultaneously for all u > 0 in such a
way that Iu1 ⊂ Iu2 if u1 < u2. In fact, the law of the vacant set at level u can be
uniquely characterized by the following identity:

P[A ⊂ Vu] = exp
(

− u cap(A)
)

, (1.1)
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where cap(A) is the capacity of a finite set A ⊂ Zd. Informally, the capacity
measures how “big” is the set from the point of view of the walk, see Section 6.5
of Lawler and Limic (2010) for formal definitions, or Section 2 below.

The model of random interlacements naturally has more independence built
in than just one random walk on the torus or the cylinder (because on a fixed
set one observes traces of independent trajectories). Still, the analysis of random
interlacements is difficult because of the long-range dependencies present there. For
example, in (1.68) from Sznitman (2010) we can see that

Cov(1x∈Iu,1y∈Iu) ∼ cdu

‖x− y‖d−2
as ‖x− y‖ → ∞, (1.2)

which means that the “degree of dependence” decreases polynomially in the dis-
tance.

Naturally, one is interested in “decoupling” the events supported on distant
regions; that is, to argue that they are approximately independent to a certain
degree. One possible approach to quantify that degree is the following: given finite
sets A1, A2 ⊂ Zd and functions f1 : {0, 1}A1 → [0, 1] and f2 : {0, 1}A2 → [0, 1]
depending on the interlacements set intersected with A1 and A2 respectively, we
have

Covu(f1, f2) ≤ cdu
cap(A1) cap(A2)

dist(A1, A2)d−2
, (1.3)

as proved in formula (2.15) of Sznitman (2010), see also (8.1.1) in Drewitz et al.
(2014). However, the polynomial error term in (1.3) can complicate one’s life in
many applications (and, e.g. in the case when the diameters of these sets are of the
same order as the distance between them, (1.3) is simply of no use); on the other
hand, while (1.3) can be improved to some degree (de Bernardini et al., 2018+), the
error term there should always be at least polynomial, as (1.2) shows. To circumvent
this difficulty, one first may note that usually the “interesting” events/functions are
monotone (i.e., increasing or decreasing). For e.g. increasing events, we know that
their probabilities increase as the parameter u increases. Note also that the FKG
inequality (see Teixeira, 2009, Theorem 3.1) gives us

Eu[g1g2] ≥ Eu[g1]E
u[g2], (1.4)

for any increasing functions g1, g2 with finite second moments. To complement
the FKG inequality, we use sprinkling, i.e., we slightly change the intensity of
random interlacements in order to decrease the error term; this approach was used
in Sznitman (2010) and Sznitman (2012a). Then, in particular, in Popov and
Teixeira (2015) it was proved that

Eu[f1f2] ≤ E(1+ε)u[f1]E
(1+ε)u[f2] + cd(r + s)d exp(−c′dε2usd−2); (1.5)

with f1 : {0, 1}A1 → [0, 1] and f2 : {0, 1}A2 → [0, 1] both increasing functions in
the interlacements set, r = min(diam(A1), diam(A2)), and s = dist(A1, A2). The
same bound was also obtained for decreasing functions.

It is important to observe, however, that the decoupling in the above form may
not always be useful for one’s needs. Intuitively, one is tempted to understand
inequalities like (1.3) as “what happens in one set does not influence a lot what
happens in the other set”. Now, consider the following situation. Suppose that
on top of the random interlacements we have some additional stochastic process
(e.g., a random walk) that “explores” the interlacement set in some way. Assume



Conditional decoupling of random interlacements 1029

that this process has already explored the interlacements in a given area, reveal-
ing a lot of information about it; think, for definiteness, that it simply revealed
the interlacement set exactly. The probability of a particular configuration of the
interlacement set is usually very small; so, (1.3) (even (1.5)!) will blow up when
one divides by that probability, because of the error term. In fact, in the end of
Section 2 we discuss a particular model of the random walk on the interlacement
set, where our main results turn out to be useful.

This justifies the need for conditional decoupling, i.e., show that, given the con-
figuration on some set, the law of the interlacement configuration on a distant set
is still in some sense close to the unconditional law. This is what we are doing in
this paper. To prove our results, the main method we use is a suitable modification
(that allows dealing with conditional probabilities) of the soft local time method
of Popov and Teixeira (2015). We hope that this modification will be useful in
other contexts, for instance, for dealing with the decoupling properties of the loop
measures Chang and Sapozhnikov (2016).

Another important observation is the following. There are strong connections
between random interlacements and the Gaussian free field, see e.g. Sznitman
(2012b,c). In particular, there are decoupling inequalities similar to (1.3) and (1.5)
for the Gaussian free field as well, see Popov and Ráth (2015). Notice, however,
that the decoupling-with-sprinkling result for the Gaussian free field (Theorem 1.2
of Popov and Ráth, 2015) is already conditional (the unconditional decoupling is
obtained as a simple consequence, just by integration). On the other hand, note
that the error terms in the conditional decoupling in the main result of this paper
(Theorem 1.1) are much worse than that of (1.5); related to this is the fact that in
the conditional setting the minimal distance between sets that permits the result
to work is much bigger. A comparison with the situation for the Gaussian free
field suggests that, hopefully, there is still much room for improvement for the
conditional decoupling for random interlacements.

Let us briefly introduce a bit of notation in order to state our main result.
Let r > 0 be sufficiently big, and let s := s(r) > 0, with s = o(r). We define
A#

1 := A#

1 (r) to be the discrete Euclidean ball of radius r and center at the origin,
that is

A#

1 := {x ∈ Zd; dist(x, 0) ≤ r},
where dist(·, ·) denotes de Euclidean distance. We also define A2

1 := A2

1 (r) as a
d-dimensional hypercube with side-length 2r + 1 and center at the origin, that is

A2

1 := {x ∈ Zd; ‖x‖∞ ≤ r},
where ‖ · ‖∞ denotes the ℓ∞ norm. We then define the sets

A#

2 = A#

2 (r, s) := {x ∈ Zd; dist(x, 0) > r + 2s},
A2

2 = A2

2 (r, s) := {x ∈ Zd; ‖x‖∞ > r + 2s}.
When there is no risk of confusion, or when the arguments presented work for
both balls and smoothed hypercubes (which will be often so), we will omit the
super-indexes #, 2.

We will now state our main result. Heuristically, it says the following: Let s
be bounded from below by a power of r with an explicit given coefficient (strictly
smaller than 1, depending only on the dimension d and whether A1 is a ball or a
hypercube). Let A3 be a subset of A2 with finite boundary, that is, A3 is either
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A1
V

A2 \ A3

A3

Figure 1.1. Our main result says that if the interlacements con-
figuration in a set A3 ⊆ A2 is not too weird, that is, it does not
belong to a set with stretched exponentially small probability (in s,
as s → ∞), then with high probability (1 minus stretched expo-
nential in s) the distribution of the interlacements set intersected
with A1 conditioned on the state of Iu ∩ A3 can be well approxi-
mated by the unconditional distribution.

finite or has finite complement. If we pay a stretched exponentially small price
(in s) to guarantee that the interlacements configuration of Iu ∩ A3 is not too
weird, then the distribution of Iu ∩ A1 conditioned on this configuration is well
approximated by the unconditional distribution, with high probability (1 minus a
stretched exponential function of s).

Theorem 1.1. Let the real numbers b#, b2 be such that

1 ≤ b# <
2d− 2

d
, (1.6)

1 ≤ b2 <
4d− 4

3d− 2
. (1.7)

Then, define

a# = 2d− 2− db# > 0, (1.8)

a2 = 4d− 4− 3db2 + 2b2 > 0. (1.9)

From now on we will again omit the indexes #, 2. Recall that r is of the same order
as the diameter of A1, and that s has the same order as the distance between A1

and A2. Assume s = s(r) ≍ r
1
b , let r be sufficiently big. Let ε > 0 be smaller

than 1/4. Let A3 be a subset of A2 such that |∂A3| < ∞. Define IuAj
:= Iu ∩ Aj,

for j = 1, 2, 3.
Then there are positive constants c, c′ depending only on the dimension d, and a

measurable (according to a suitably constructed σ-field) set G ∈ {0, 1}A3 such that

Pu
[

IuA3
∈ G

]

≥ 1− exp
(

− c′

2
ε2usa

)

,
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and for any increasing function f on the interlacements set intersected with A1,
with ‖f‖∞ ≤ 1, we have

(

Ef(Iu(1−ε)A1
)− c exp

(

− c′ε2usa
))

1Iu
A3

∈G ≤ E
(

f(IuA1
) | IuA3

)

1Iu
A3

∈G

≤
(

Ef(Iu(1+ε)A1
) + c exp

(

− c′ε2usa
))

1Iu
A3

∈G .

(1.10)

We also obtain a result analogous to Theorem 1.1, but this time we allow the
sprinkling factor to be arbitrarily big. This decreases the “precision” (in the result

below, Ef(Iu+u′

A1
) can be very different from Ef(IuA1

)), but, in compensation, the
size of the complement of the “good” set as well as the “error term” become smaller.

Theorem 1.2. Let u′ > u > 0. We use the same definitions as in Theorem 1.1.
There are positive constants c, c′ depending only on the dimension d, and a mea-
surable (according to the random interlacements σ-field) set Gu′ ∈ {0, 1}A3 such
that

Pu
[

IuA3
∈ Gu′

]

≥ 1− exp
(

− c′u′sa
)

,

and for any increasing function f on the interlacements set intersected with A1,
with ‖f‖∞ ≤ 1, we have

E
(

f(IuA1
) | IuA3

)

1Iu
A3

∈Gu′ ≤
(

Ef(Iu+u′

A1
) + c exp

(

− c′u′sa
))

1Iu
A3

∈Gu′ . (1.11)

Remark 1.3. We have to explain why we need to consider A3 ⊂ A2. Indeed, at first
sight it seems that conditioning on a configuration on A3 does not add generality to
our results, since any fixed configuration on A3 corresponds to a set of configurations
on A2. However, the problem with always setting A3 = A2 is the following: the
“exceptional set” Gc will then be supported on the whole A2, and this can be
inconvenient for applications. For example, assume that we successively apply
the conditional decoupling results to a process (such as the one of Section 1.1) that
“explores” the interlacement environment. If that process has explored only a finite
chunk of A2, we would not be able to say if the configuration is “good” (i.e., belongs
to G) by only observing that finite chunk. This would force us to condition on the
(configuration on the) whole A2, which would mean that a subsequent application
of a conditional decoupling may be difficult, since we already “revealed” some
information about the configuration on a set which is “too big” (i.e., when we
apply the decoupling result for the next time, the “new” A1 may be inside the
“previous” A2)

Remark 1.4. In the course of the proof of the above theorems we actually prove a
stronger result: the same conditional decoupling inequality holds true if we replace
the sets IuA1

⊂ A1 and IuA3
⊂ A3 by sets of random walk excursions in A1 and

A3 (we also have to replace the function f by an increasing function on the set
of excursions). That is, the conditional decoupling continues to work when we
replace the ranges of the excursions (which constitute the random interlacements
set) by the actual excursions themselves. We chose to state the results in the above
manner for the sake of clarity and brevity. Note that this remark also applies to
the decoupling obtained by Popov and Teixeira (2015).

Remark 1.5. The above theorems can be proved in the same way if we replace the
hypercube A2

1 by a box [0, a1]×· · ·× [0, ad], with c
−1r < ai < cr for all i = 1, . . . , d,
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and some constant c > 1, and then replace the set A2

2 accordingly. We chose to
prove the theorems for A2

1 only to simplify the notation. We also note that we
prove the theorem for both balls and boxes because the error term obtained in the
decoupling for balls is much smaller than the error obtained in the decoupling for
boxes, but at the same time the decoupling between boxes tends to be more useful
because boxes cover the space in a much more efficient manner.

Remark 1.6. For d = 3, the only way to obtain an exponentially small (instead of a
stretched exponentially small) error term in equations (1.10) and (1.11) is to allow
the distance ∼ s between the sets A1 and A2 to be of the same order of the minimal
diameter ∼ r.

Here is an overview of the paper. In Subsection 1.1, we discuss an application of
some of our results. Section 2 is devoted to establish the notation and state further
definitions. In Section 3 we show how we simulate the interlacements set IuA1

conditioned on the information given by IuA2
using a suitable version of the soft

local times method. Finally, in Section 4, we prove the main theorem using a large
deviations estimate for the soft local times associated with IuA1

. The Appendix is
then used to collect and derive the technical estimates we need.

Now, let us comment on how this paper relates to Popov and Teixeira (2015).
As observed above, the present results neither imply nor follow from those of Popov
and Teixeira (2015). The very main idea of the proof remains the same: construct
the processes on the same probability space using the soft local times method,
and then prove that one soft local time lies completely above the other with high
probability. However, carrying this program out for the conditional decoupling is
a much more nontrivial task, for the following reasons:

• There are some fundamental differences in the construction of the condi-
tioned process itself. The unconditional excursion process was a Markov
chain, with a lot of regenerations. On the other hand, here, given a spe-
cific configuration of the clothesline process defined in (3.7), the excursions
of the conditioned process are independent, but not identically distributed
(using a RWRE analogy, one may think of the conditioned excursion pro-
cess as a process in a quenched random environment, where the realization
of the random environment is a instance of the aforementioned clothesline
process, whose law depends on the interlacements configuration on A3).

• To control the soft local times, in Popov and Teixeira (2015) one basically
only needed to control the entrance measures (given the starting point, the
excursion was “free”, i.e., just a simple random walk). Here, however, the
excursion space has a more complicated base measure µ (cf. the definitions
in Section 3): we have to take both the entrance and exit point into account,
and the excursions’ law is conditional. There is an additional problem
that the estimates on the soft local time increment depend on the relative
position of the two points, as well as on the domain’s shape itself.

• Due to the above, the task of controlling the first two moments and the
tails of soft local times becomes more complicated as well (as the reader
may have inferred from the size of this paper). Also, it is probable that
the final results are not sharp: we were not able to obtain the sd−2-factor
in the exponents (as in Popov and Teixeira, 2015), the distance between
the sets needs to be polynomial with respect to the diameter, and also the
results for balls and boxes are different (as contrasted to those of Popov and
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Teixeira, 2015, where it was possible to obtain the result for fairly general
sets).

1.1. An application: biased random walk on the interlacement set. Let G be some
(possibly random) subset of Zd, d ≥ 2. Fix a parameter β > 0, which accounts for
the bias; also, fix some non-zero vector ℓ ∈ Zd. Let us define the conductances on
the edges of Zd in the following way:

C(x, y) =
{

eβ(x+y)·ℓ, if x, y are neighbors and belong to G,

0, otherwise,

and we call the collection of all conductances ω =
{

C(x, y), x, y ∈ Zd
}

the ran-
dom environment. Consider a random walk (Xn, n ≥ 0) in this environment of
conductances; i.e., its transition probabilities are given by

Pω[Xn+1 = y | Xn = x] =
C(x, y)

∑

z C(x, z)
(the superscript in Pω indicates that we are dealing with the “quenched” probabil-
ities, i.e., when the underlying random graph / conductancies are already fixed).

There have been significant interest towards this model in recent years, mainly in
the case when G is the infinite cluster of supercritical Bernoulli percolation model,
see e.g. Berger et al. (2003); Sznitman (2003); Fribergh (2013). In particular, one
remarkable fact is the following: the walk is ballistic (transient and with positive
speed) in the direction of the drift if β > 0 is small enough; however, it moves only
sublinearly fast (its displacement is only of order ta by time t with a ∈ (0, 1), as
proved in Fribergh and Hammond, 2014) for large values of β.

In the work Fribergh and Popov (2018) the case G = Iu was considered. It
turned out that in dimension d = 3, for any value of β > 0, although still transient
in the direction of the drift, the walk is not only sub-ballistic, but has also sub-
polynomial speed, in the sense that its distance to the origin grows slower than tε

for any ε > 0. This is also in contrast with the result that the walk on Iu without
any drift is diffusive (so, loosely speaking, its “speed” is

√
t), as shown in Procaccia

et al. (2016).
We will not describe all the details of Fribergh and Popov (2018) here, but

the main idea is the following. As in the case of the biased walk on the infinite
percolation cluster, to prove zero speed one needs to show that the walk frequently
gets caught in traps. These traps are “dead ends” of the environment looking in
the direction of the bias, see Figure 1.2. When the walk enters such a trap, the bias
prevents it from goint out, so there is a good chance that the walk will spend quite
a lot of time there, and this effectively leads to zero speed. Now, the crucial fact
is that, specifically in three dimensions, it is much cheaper to have a trap in the
interlacement set than in the (Bernoulli) percolation cluster. Indeed, it is possible
to show that the capacity of the dotted set on Figure 1.2 is of order ln t

ln ln t for any
fixed α < 1. The formula (1.1) then shows that having a trap as above has only a
subpolynomial (in t) cost; also, it turns out that “forcing” a trajectory to create a
“dead end” as shown on the picture is not too costly as well.

So, when the walk advances in the direction of the bias, from time to time it will
encounter a trap and be trapped. However, to make such an argument rigorous, one
has to face the following difficulty. When the walk already explored some parts of
the environment and then came to an unexplored area, we can no longer use (1.1)
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c ln t

(ln t)α

Figure 1.2. A trap for the random walk on the interlacement
set (on this picture, the bias is directed along the first coordinate
vector). Only the interlacements are shown; the trajectory of the
RWRE X is not present on the picture.

to estimate the probability that there is a trap in front of it, due to the lack of
independence. It is here that the conditional decoupling enters the scene: it is
possible to use the main results of this paper to show that probability of having
a trap in front of the particle (when it comes to an unexplored area) is not very
small. As mentioned above, the detailed argument can be found in Fribergh and
Popov (2018).

2. Definitions and notation

In this section we will introduce the basic definitions, conventions and notation
used in this paper. We start by stating our convention regarding constants: c, c′,
c1, c2, c3,. . . are always defined as strictly positive constants depending only on the
dimension d. Constants can also change value from line to line, unless when the
text explicitly states the contrary.

We let ‖ · ‖ and ‖ · ‖∞ denote the Euclidean and ℓ∞ norms in Zd respectively.
For x, y ∈ Zd, we also let dist(x, y) ≡ ‖x− y‖. We say that two vertices x, y ∈ Zd

are neighbors when ‖x− y‖ = 1, this notion introduces the usual nearest-neighbor
graph structure in Zd. For x ∈ Zd and r ∈ R+, we define

B(x, r) :=
{

y ∈ Zd; ‖y − x‖ ≤ r
}

,

the discrete ball in the Euclidean norm centered on x with radius r, and

B∞(x, r) :=
{

y ∈ Zd; ‖y − x‖∞ ≤ r
}

,

the discrete ball in the ℓ∞-norm centered on x with radius r. Given a set A ⊆ Zd

we denote by

AC := {x ∈ Zd;x /∈ A}
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its complement and by

∂A :=
{

x ∈ A; there exists y ∈ AC such that ‖x− y‖ = 1
}

its (internal) boundary.
For any set Z and any two functions f, g : Z → R, we write f(z) ≍ g(z) to

denote the fact that there exist two strictly positive constants, c1 and c2, such
that c1f(z) ≤ g(z) ≤ c2f(z) for all z ∈ Z. When Z is equal to R we say that

f(z) = o(g(z)) when f(z)
g(z) goes to 0 as z → ∞.

Given x ∈ Zd, we let Px denote the probability measure associated with the
simple random walk in Zd started at x. We will also let (Xk, k ≥ 0) denote the
simple random walk process in Zd. Given a set A ⊂ Zd, we define the entrance
time for the set A

HA := inf
{

k ≥ 0;Xk ∈ A
}

.

We also let the hitting time for A be defined as

H̃A := inf
{

k ≥ 1;Xk ∈ A
}

.

When A is finite we denote its harmonic measure by

eA(x) = 1x∈APx
[

H̃A = ∞
]

for x ∈ Zd.

We are then able to define the capacity of the set A

cap(A) :=
∑

x∈A
eA(x),

and the normalized harmonic measure

eA(x) := eA(x) cap(A)
−1.

We now write down the definition of the Green function for the simple random walk
in Zd: for x, y ∈ Zd, we let

G(x, y) :=
∑

k≥0

Px
[

Xk = y
]

.

Theorem 1.5.4 of Lawler (2013) provides us with the following estimate on the
Green function:

G(x, y) ≍ 1

1 + ‖x− y‖d−2
. (2.1)

An application of the optional stopping theorem then gives us the following ele-
mentary result:

Lemma 2.1. Let 0 < ρ1 < ρ2 be sufficiently large real numbers, and let x ∈
B(0, ρ2) \B(0, ρ1). Then

Px
[

H∂B(0,ρ1) < H∂B(0,ρ2)

]

=
|x|−(d−2) − (ρ2)

−(d−2) +O((ρ1)
−(d−1))

(ρ1)−(d−2) − (ρ2)−(d−2)
. (2.2)

Let us briefly discuss the definition of the measure associated with the random
interlacements process intersected with a given finite set A ⊂ Zd. Assume we have
constructed a probability space where, for every i ≥ 1, there exists a simple random

walk process (X
(i)
k , k ≥ 0) with starting distribution given by eA(·), and such that

(X
(i)
k , k ≥ 0) is independent from (X

(j)
k , k ≥ 0) for i 6= j. We also assume that in

this space we can construct an independent Poisson process (Ju)u≥0 on the positive
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real line with intensity u · cap(A). The law of the random interlacements process
(Iu)u≥0 intersected with the set A can then be characterized by

(Iu ∩A)u≥0
d
=

(

A ∩
⋃

i≤Ju

⋃

k≥0

X
(i)
k

)

u≥0
, (2.3)

as can be seen in Sznitman (2010), Proposition 1.3, or in the paragraph before (2.6)
in Černý and Teixeira (2016). This definition gives rise to compatible measures in
the following sense: Given two finite sets K1 ⊂ K2 ⊂ Zd, we have that ((Iu ∩
K2)u≥0) ∩K1 has the same law as (Iu ∩K1)u≥0.

We now introduce the concept of the “smoothed hypercube”. Throughout this
paper we will need to use estimates on the hitting measure of a simple random walk
on the sets A1 and A2. However, the sharp edges present on A2

1 and A2

2 greatly
complicate such estimates. Instead we will prove our main results in the context of
“smoothed” versions of these sets, that is, we let

A2

1 := {x ∈ Zd;B(x, s) ⊂ B∞(0, r)}, A2

2 :=
(

{x ∈ Zd;B(x, s) ⊂ B∞(0, r + 2s)}
)C
.

We will later explain how to obtain our main results for the unsmoothed versions
of these sets.

To finish the section, we define V # := V #(r, s) to be the boundary set

V # := ∂{x1 ∈ Zd, dist(x1, x2) ≤ s for some x2 ∈A#

1 },
and we define V 2 := V 2(r, s) in an analogous way. Since s = o(r), we have

cap(V ) = cap(AC2 )(1 + o(1)) = cap(A1)(1 + o(1)),

and also, by Proposition 2.2.1 and equation (2.16) of Lawler (2013),

cap(V ) ≍ rd−2. (2.4)

3. Simulating excursions with soft local times

We begin the present section with a short recapitulation of the technique intro-
duced in Popov and Teixeira (2015), the Soft Local Times method. This review
will also be important in order to reformulate the results of Popov and Teixeira
(2015) in a more general setting (the original paper was written with a Markovian
setting in mind).

The method essentially allows us to simulate any number of random variables
taking values in a state space Σ using a realization of a Poisson point process
in Σ× R+.

Let Σ be a locally compact Polish metric space, and let B(Σ) be its Borel σ-
algebra. Let µ be a Radon measure over B(Σ), so that every compact set has finite
µ-measure.

Such measure space (Σ,B(Σ), µ) is the usual setup for the construction of a
Poisson point process on Σ. We consider the space of Radon point measures in Σ×
R+

L =
{

η =
∑

λ∈Λ

δ(zλ,vλ); zλ ∈ Σ, vλ ∈ R+ and η(K) <∞ for all compact K
}

, (3.1)

endowed with the σ-algebra D generated by the evaluation maps

η 7→ η(D), D ∈ B(R+)⊗ B(Σ).
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We are then able to construct a Poisson point process η in the space (L,D,Q) with
intensity measure given by µ ⊗ dv, where dv is the Lebesgue measure on R+, see
Resnick (2008), Proposition 3.6 on p.130.

Let X1, X2, . . . , Xn be random variables on Σ such that X1’s distribution is
absolutely continuous with respect to µ and, for all i = 2, . . . , n, the law of Xi con-
ditioned on the values taken by X1, . . . , Xi−1 is absolutely continuous with respect
to µ. Using the process η constructed above, we define

g1 : Σ 7→ R+, the density function of X1 with respect to µ,

ξ1 := inf
{

t ≥ 0; there exists λ ∈ Λ such that tg1(zλ) ≥ vλ
}

,

G1(z) := ξ1 g1(z), for z ∈ Σ,

(zλ1 , vλ1 ), the unique pair in {(zλ, vλ)}λ∈Λ with G1(zλ1) = vλ1 .

(3.2)

Then, recursively, for 2 ≤ k ≤ n we define gk : Σ 7→ R+ to be the density function
of Xk conditioned on the event {X1 = zλ1 , . . . , Xk−1 = zλk−1

},
ξk := inf

{

t ≥ 0; there exists λ ∈ Λ such that tgk(zλ) +Gk−1(zλ) ≥ vλ
}

,

Gk(z) := ξk gk(z) +Gk−1(z), for z ∈ Σ,

(zλk
, vλk

), the unique pair in {(zλ, vλ)}λ∈Λ with Gk(zλk
) = vλk

.

(3.3)

Using Proposition 4.1 of Popov and Teixeira (2015), we are able to state the fol-
lowing proposition:

Proposition 3.1. The vector (zλ1 , . . . , zλn
) has the same law as (X1, . . . , Xn).

We call the function Gn(z) the soft local time of the vector (X1, . . . , Xn) up to
time n with respect to the measure µ, or more usually simply the soft local time.
If T is a stopping time with respect to the canonical filtration generated by the
variables Xi, it is simple to define GT (z), the soft local time up to time T .

Note that by controlling the value of the soft local times function we will au-
tomatically control the values our random variables take, as the next corollary
summarizes:

Corollary 3.2. For any measurable function h : Σ → R+ we have, using the same
notation as above,

Q

[

{z1, . . . , zT } ⊆ {zλ; vλ ≤ h(zλ)}
]

≥ Q
[

GT (z) ≤ h(z), for µ-a.e. z ∈ Σ
]

, (3.4)

for any finite stopping time T ≥ 1.

We will now use the above result in our random interlacements context. More
specifically, we will show a way of simulating the intersection of the random in-
terlacements set with a given subset of Zd in such a way as to make explicit the
dependence each random walk excursion has with its entrance and exit points on
the subset. We refer the reader to Figure 3.3 for a brief overview of the arguments
used in this section.

It is clear from (2.3) that in order to simulate the random interlacements set at

level u in a bounded subset K of Zd we need only to pick Nu
K

d
= Poisson(u cap(K))

points in ∂K, each point chosen according to the measure eK(·), and from each
point start a simple random walk.

We intend to study IuA1
= Iu ∩ A1, showing that this set is not that much

influenced by the random interlacements set intersected with A2, IuA2
= Iu ∩ A2.
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W1

Y1

W2

Y2

W3

Y3

W1

Y1

W2

Y2

W3

Y3

R+

Σ

ξ1g(W1,Y1) := G1

ξ2g(W2,Y2) +G1 := G2

ξ3g(W3,Y3) +G2 := G3

A1

V

A2

Figure 3.3. The figure shows how we use the soft local times
technique to simulate the range of a simple random walk trajectory
intersected with A1. We first simulate a process of pairs of points
((Wk, Yk), k ≥ 0) denoting the entrance at V and exit at ∂A2 of a
simple random walk trajectory that starts at V . We then use the
soft local times method to simulate the pieces of trajectory that
lie between each of the pairs (Wk, Yk).

We will later clarify what we mean by “influence”. For now, we observe that the
only “information” IuA1

receives from IuA2
is the location of the entrance and exit

points of the excursions on ∂A2 of the random walks that constitute IuA2
.

Let us now describe how the process is constructed. We first generate the points
of entrance at V and exit from AC2 of each excursion on V of a random walk
trajectory. These points will be the clothesline onto which we will hang the pieces
of trajectory that meet A1, we will do so using the soft local times method.
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Let us define the successive return and departure times between V and A2. Given
a trajectory that starts at V , we define

D0 = 0, R1 = H∂A2 ,

D1 = HV ◦ θR1 + R1, R2 = H∂A2 ◦ θD1 +D1, (3.5)

D2 = HV ◦ θR2 + R2 and so on.

We also define the random time

T∆ = inf{k ≥ 1;Rk = ∞}, (3.6)

which is almost surely finite, as the walk is transient.
Let (Xn, n ≥ 0) be the simple random walk with initial distribution given by

eV (·). Let ∆ be an artificial cemetery state. We construct a random sequence
of elements of (V × ∂A2) ∪ {∆} in the following way: Conditioned on the event
{T∆ = m}, we let
(

(W1, Y1), . . . , (Wm−1, Ym−1), (Wm, Ym), (Wm+1, Ym+1), . . .
)

(3.7)

=
(

(XD0 , XR1), . . . , (XDm−2 , XRm−1),∆,∆, . . .
)

.

It is then elementary to prove that the process ((Wk, Yk))k≥1 inherits the Markov
property from the simple random walk. We call ((Wk, Yk))k≥1 the clothesline pro-
cess started at W1. When there is no risk of confusion we will also denote by Pw0

the probability measure associated with the clothesline process started at a given
point w0 ∈ V .

A2V
A1

W1

Y1

W2

Y2

W3

Figure 3.4. An example of the process ((Wk, Yk))k≥1.

Let us now use the soft local times method to generate the trajectories inside A1,
given the entrance and exit points ((Wk, Yk))k≥1. We first define the underlying
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space Σ where our pieces of trajectories will live. We let K be the set of nearest-
neighbor paths in AC2 with one endpoint in ∂A1 and the other in V ,

K :=
{

(x0, x1, . . . , xn);n ∈ N, xi ∈ AC2 for 1 ≤ i ≤ n, x0 ∈ ∂A1, xn ∈ V
}

. (3.8)

We introduce yet another artificial state Θ for reasons that will be made clear in

A2V
A1

w

y

σw,y

Ξ(w, y)

Figure 3.5. The definition of σ(w, y) and Ξ(w, y).

a few moments. We let Σ := K ∪ {Θ} and let µ be a measure on Σ defined in the
following way: given A ⊆ Σ,

µ(A) :=
∑

(x0,...,xn)∈A
P̃(x0,xn)[X0 = x0, . . . , Xn = xn] + 1{Θ∈A}, (3.9)

where P̃(x0,xn) is the simple random walk measure conditioned on the event where
x0 is the walk’s initial point and xn is its last point on V before reaching ∂A2.
Notice that µ({Θ}) = 1.

Given (w, y) ∈ V × ∂A2 we let P̂w,y be the measure associated with simple
random walk starting at w conditioned on the event where y is the first point the
walk hits in ∂A2, that is:

P̂w,y[·] := Pw[ · | XH∂A2
= y] (3.10)

We want to randomly select (according to the conditional simple random walk
measure above) a piece of trajectory in A1 given a starting point in V and an
ending point in ∂A2. Given w ∈ V and y ∈ ∂A2 we define the random element
σw,y ∈ Σ in the following way:

• Let Bw,y be a Bernoulli random variable with parameter P̂w,y[H∂A1 <
H∂A2 ].

• If Bw,y = 0 we let σw,y ≡ Θ.
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• If Bw,y = 1 we let, for A ⊆ K:

P[σw,y ∈ A] =
∑

(a0,...,an)∈A

P̂w,y

[

XHA1
= a0, XHA1+1 = a1, . . . , XHA1+n

= an,
Xk /∈ V for every k = HA1 + n+ 1, . . . , HA2

]

.

(3.11)

In other words, the random element σw,y ∈ Σ will either be Θ, on the event where
a random walk starting at w and exiting at y fails to reach A1, or a simple random
walk trajectory (x0, x1, . . . , xk) ∈ K distributed so that x0 is the first point in A1

after the start at w and xk is the last point in V before reaching y ∈ ∂A2. We then
define g(w,y) : Σ 7→ R+ to be the µ-density of σw,y. We refer to Figure 3.5.

Given z = (x0, . . . , xn) ∈ K we denote by Ξ(z) the pair (x0, xn), the path’s
starting and ending points. We also let Ξ(Θ) = Θ so that Ξ(z) is defined for
all z ∈ Σ. For (w, y) ∈ V ×∂A2 we define Ξ(w, y) to be the random element Ξ(σw,y).

Let us calculate g(w,y) using the above notation. For A ⊆ Σ we want to express
the probability P[σw,y ∈ A] as a µ-integral over A.

P[σw,y ∈ A]=
∑

a∈A

P[σw,y = a]

= 1{Θ∈A}P̂w,y[Ξ(w, y) = Θ]

+
∑

a∈A

a 6=Θ

P̂w,y[Ξ(w, y) = Ξ(a)]P̂w,y[a | Ξ(w, y) = Ξ(a)]

= 1{Θ∈A}P̂w,y[Ξ(w, y) = Θ] +
∑

a∈A

a 6=Θ

P̂w,y[Ξ(w, y) = Ξ(a)]P̃Ξ(a)[a]

=
∑

a∈A

P̂w,y[Ξ(w, y) = Ξ(a)]µ(a)

=

∫

A

P̂w,y[Ξ(w, y) = Ξ(z)]µ(dz),

(3.12)

so that g(w,y)(z) = P̂w,y[Ξ(w, y) = Ξ(z)]. Notice that the function g(w,y)(z) only
depends on the pair Ξ(z), the path’s initial and ending points.

Let (L,D,Q) be the measure space of the Poisson point process on Σ×R+ with
intensity measure µ ⊗ dv, where dv is the Lebesgue measure on R+. A weighted
sum of functions g(·,·) indexed by clothesline processes ((Wk, Yk))k≥1 will be the
soft local time used to simulate the pieces of trajectory we need. This way we will
be able to simulate the intersection of a simple random walk trajectory with A1.
As we have seen in the random interlacements process’s definition, to simulate the

interlacements set inside V we need a number Nu
V

d
= Poisson(u cap(V )) of inde-

pendent random walks. We will need the same number of independent clothesline
processes. For such task we will need a much bigger probability space, easily defin-
able as a product between the Poisson point process space and an infinite product
of independent simple random walk spaces starting on V . We call this bigger space
the global probability space, and denote by P its distribution. Abusing the nota-
tion slightly, we will also write E to denote the expectation associated with this
probability space.
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Given a clothesline process ((Wk, Yk))k≥1, we define the trajectory’s soft local
time:

G(z) =

T∆
∑

k=1

ξkg(Wk,Yk)(z). (3.13)

We will also need to consider the soft local time up to a random time T ≤ T∆:

GT (z) =

T
∑

k=1

ξkg(Wk,Yk)(z). (3.14)

Analogously, we define for any deterministic time n ≥ 1

Gn(z) =

n
∑

k=1

ξkg(Wk,Yk)(z). (3.15)

We denote by zk the piece of trajectory randomly selected by the k-th soft local
time, Gk.

As we have seen before, in order to simulate the random interlacements set at
level u in A1, we actually need a

Nu
V

d
= Poisson(u cap(V ))

number of random walk trajectories, each started at a point in V distributed as
eV (·). For j = 1, . . . , Nu

V we let ((W j
k , Y

j
k ))k≥1 be a clothesline process started

at W j
1 , so that ((W j

k , Y
j
k ))k≥1 is independent from ((W i

k, Y
i
k ))k≥1 for i 6= j, and

so that W j
1 is distributed as eV (·). Let T j∆ be the killing time associated with

((W j
k , Y

j
k ))k≥1. We denote by

Gj(z) =

T j
∆

∑

k=1

ξjkg(W j
k
,Y j

k
)(z) (3.16)

the soft local time associated with the j-th clothesline process. It should be clear
from Proposition 3.1 that we can simulate all the random elements (σW j

k
,Y j

k
)j,k≥1

at the same time using only one realization of a Poisson point process in Σ× R+.
As the Corollary 3.2 shows, in order to control the values our random elements take
we only need to control the function

GΣ
u (z) =

Nu
V

∑

j=1

Gj(z), (3.17)

the soft local time associated with the whole process. With such objective in mind
we for now set our goals at estimating the soft local time’s moments. We first show
an easier way to express the expectation of G(z).

Proposition 3.3. Using the same notation as above, we have

E(G(z)) = E

(

T∆
∑

k=1

1{Ξ(XDk−1
,XRk

)=Ξ(z)}
)

. (3.18)
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Proof : In fact,

E(G(z)) =E

(

T∆
∑

k=1

g(Wk,Yk)(z)
)

= E

(

T∆
∑

k=1

P̂Wk,Yk
[Ξ(Wk, Yk) = Ξ(z)]

)

=E

(

T∆
∑

k=1

1{Ξ(Wk,Yk)=Ξ(z)}
)

= E

(

T∆
∑

k=1

1{Ξ(XDk−1
,XRk

)=Ξ(z)}
)

.

(3.19)

�

We have shown that the expectation of G(z), for z 6= Θ, is the same as the
expectation of how many times a random walk started at W1 will do an excursion
on AC2 with starting and ending points given by Ξ(z).

The next proposition gives a bound on the second moment E(G(z)2). It is a
straightforward adaptation of Theorem 4.8 of Popov and Teixeira (2015) to our
context and therefore we omit its proof. In what follows, we let Ew(G(z)) denote
the expectation of the soft local time G(z) when the associated clothesline process
is conditioned on starting at w ∈ V .

Proposition 3.4. For any w0 ∈ V ,

Ew0

(

G(z)2
)

≤ 2Ew0

(

G(z)
)(

sup
w′∈V

Ew′G(z) + sup
w,y

g(w,y)(z)
)

. (3.20)

For this paper’s results, an estimate on the exponential moments of G will be
essential. The next proposition, again adapted from Popov and Teixeira (2015)
(Propositions 3.5 and 3.4 are proved in the context of Markov chains in the original
paper), gives us such an estimate. Since the proof of the following result is essen-
tially the same as the proof of Theorem 4.9 of Popov and Teixeira (2015), we will
omit it.

Proposition 3.5. Given ẑ ∈ Σ and a measurable set Γ ⊂ Σ, let

α = inf
{g(w,y)(z

′)

g(w,y)(ẑ)
; (w, y) ∈ V × ∂A2, z

′ ∈ Γ
}

,

N(Γ) = #{k ≤ T∆; zk ∈ Γ}, and

ℓ ≥ sup
(w,y)∈V×∂A2

g(w,y)(ẑ).

(3.21)

Then, for any v ≥ 2,

P [G(ẑ) ≥ vℓ]

≤ P [G(ẑ) ≥ ℓ]
(

exp
{

−
(

v
2 − 1

)}

+ sup
w′

Pw′

[

η(Γ× [0, 12vℓα]) ≤ N(Γ)
]

) (3.22)

(note that η(Γ × [0, 12vℓα]) is a random variable with distribution

Poisson
(

1
2vℓαµ(Γ)

)

).

4. Conditional decoupling

We begin with an overview of the main argument presented in this section. We
will sample the random interlacements set intersected with A1 in two ways. In
the first way we will sample IuA1

using GΣ
u , that is, we will sample IuA1

using the
soft local times indexed by a collection of independent clothesline processes. In the
second way, we will construct a set made up from random walk trajectories in A1

in a similar way to the construction of IuA1
, the only difference will be that the soft
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local times used in this second construction will be indexed by a given nonrandom

sequence ζ̂ of pairs of points belonging V ×∂A2. We will denote this second random
set by Iu

A1|ζ̂
, and we will show using the soft local times method that Iu

A1|ζ̂
and IuA1

are usually very similar to each other. We then prove a similar result when the
pairs of points that constitute the nonrandom sequence all belong to the boundary
of a set contained in A2.

Throughout this section we will again only differentiate between A#

1 and A2

1

when the need arises.
For û > 0, δ ∈ (0, 1) and z ∈ K, we define the interval

Iδû,z :=
[

(1− δ)û cap(V )E[G(z)], (1 + δ)û cap(V )E[G(z)]
]

and the event

Dδ
û := {GΣ

û (z) ∈ Iδû,z for all z ∈ K}.
The main technical goal of this section is to prove the following result:

Proposition 4.1. Recall the definition of a#, a2. Using the notation above defined,
we have that, for u > 0 and ε ∈ (0, 1/4), there exist constants c, c′ > 0 depending
only on the dimension and on whether of the set A1 is an Euclidean ball or a
hypercube such that

P
[

Dε/4
u , D

ε/4
u(1−ε), D

ε/4
u(1+ε)

]

≥ 1− c exp
(

− c′ε2usa
)

. (4.1)

We will prove the above proposition later, after establishing some preliminary
results about large deviations for the soft local times we defined. We will first show
how we obtain the Theorems 1.1 and 1.2 from (4.1).

Proposition 4.1 implies that each of the soft local times associated to the pro-

cesses IuA1
, Iu(1−ε)A1

and Iu(1+ε)A1
stay confined between the graphs of two explicit

deterministic functions (as can partially be seen in Figure 4.6). This happens when
we let the points of entrance at V and exit at ∂A2 of the excursions on A1 of the
simple random walk trajectories of the interlacements process at level u be dis-
tributed according to the “right” law, that is, the law of the clothesline processes.
That is, when we “average” these points according to this law we obtain a good
concentration for the whole function GΣ

u . Nevertheless, our goal is to obtain a sim-
ilar concentration when these points are deterministic. The heuristic argument is
that when something happens with high probability in the “annealed” law, then
most of the times it will also happen with high probability in the “quenched” law.
Therefore, for “many” of these deterministic entrance and exit points, we will also
have a strong concentration inequality result similar to Proposition 4.1. We will
introduce some new notation to make this argument rigorous and prove our main
theorem.

We let
(

Cu(V, ∂A2),Bu(V, ∂A2),P
u
V,∂A2

)

be a probability subspace in which the collection of clothesline processes

{(W j
k , Y

j
k )
T j
∆

k=1}
NV

u

j=1 is defined, where each ζ̂ ∈ Cu(V, ∂A2) can be written as a fi-
nite collection of finite sequences of points belonging to V and ∂A2:

ζ̂ :=
{

ζ̂1, . . . , ζ̂K
}

,
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where for each j = 1, . . . ,K; ζ̂j is a finite sequence alternating between points of V
and ∂A2. We write

ζ̂j =
(

ζj0 , . . . , ζ
j
n(j)

)

,

where n(j) is odd, every even entry belongs to V and every odd entry belongs
to ∂A2.

We then define the soft local times associated with ζ̂. Using the same realization
of the Poisson point process on Σ× R+ defined in Section 3, we construct the soft
local times

Gζ̂j (z) :=

n(j)−1
2

∑

k=0

ξ̃jkg(ζj2k,ζ
j
2k+1)

(z),

where ξ̃jk is an exponential random variable defined in the manner of (3.13). We
then define

Gζ̂(z) :=

K
∑

j=1

Gζ̂j (z).

This function should be viewed as a quenched version of the soft local times GΣ
u ,

when the collection of clothesline processes {(W j
k , Y

j
k )
T j
∆

k=1}
NV

u

j=1 is given by the de-

terministic element ζ̂. We denote by Iu
A1|ζ̂

the interlacements process inside A1

determined by the ranges of the excursions of Σ bellow Gζ̂ . Iu
A1|ζ̂

is distributed

as the random interlacements process inside A1 when its associated random walks

excursions have entrance points at V and exit points at ∂A2 given by ζ̂. The

next proposition implies that Gζ̂ is usually between GΣ
u(1−ε) and G

Σ
u(1+ε) with high

probability.

Proposition 4.2. There exists a set A ∈ Bu(V, ∂A2) such that

PuV,∂A2

[

A
]

≥ 1− exp
(

− c′

2
ε2usa

)

,

and for all fixed ζ̂ ∈ A,

P
[

GΣ
u(1−ε)(z) ≤ Gζ̂(z) ≤ GΣ

u(1+ε)(z) for all z ∈ K
]

≥ 1− c exp
(

− c′

2
ε2usa

)

.

Proof : Observe that (4.1) implies
∫

P
[

GΣ
u(1−ε)(z) ≤ Gζ̂(z) ≤ GΣ

u(1+ε)(z) for all z ∈ K
]

PuV,∂A2

[

dζ̂
]

≥ 1− c exp
(

− c′ε2usa
)

.
(4.2)

Let

A :=
{

ζ̂ ∈ Cu(V, ∂A2) such that:

P
[

GΣ
u(1−ε)(z) ≤ Gζ̂(z) ≤ GΣ

u(1+ε)(z) for all z ∈ K
]

≥ 1− c exp
(

− c′

2
ε2usa

)}

.

Then (4.2) implies

PuV,∂A2

[

A
]

+
(

1− c exp
(

− c′

2
ε2usa

))(

1− PuV,∂A2

[

A
]

)
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≥ 1− c exp
(

− c′ε2usa
)

,

so that

PuV,∂A2

[

A
]

≥ 1− exp
(

− c′

2
ε2usa

)

.

This finishes the proof of the proposition. �

R+

Σ

Gζ̂

GΣ
u(1+ε)

GΣ
u(1−ε)

(1− ε)(1 + ε
4 )ϕ

(1− ε)(1− ε
4 )ϕ

(1 + ε)(1− ε
4 )ϕ

(1 + ε)(1 + ε
4 )ϕ

Figure 4.6. When the sequence ζ̂ belongs to a well behaved

set A, the decoupling probability is greater than 1 − c exp
(

−
c′

2 ε
2usa

)

. The symbol ϕ in the figure stands for the function

u cap(V )π(Ξ(z)). The figure shows the decoupling event, where

GΣ
u(1−ε)(z) ≤ Gζ̂(z) ≤ GΣ

u(1+ε)(z) for all z ∈ K.

Proposition 4.2 implies that, for ζ̂ ∈ A, there exists a process (ÎuA1
, u ≥ 0)

distributed as the random interlacements set intersected with A1, and a coupling
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P such that, for all ε > 0 sufficiently small and r > 0 sufficiently big, we have

P
[

Îu(1−ε)A1
⊆ Iu

A1|ζ̂ ⊆ Îu(1+ε)A1

]

≥ 1− c exp
(

− c′

2
ε2usa

)

. (4.3)

To complete the proof of our main theorem we need to show that a result similar
to Proposition 4.2 remains valid under a different conditioning.

Let A3 ⊂ A2 be such that |∂A3| < ∞. We enlarge our global probability space
in order to make room for two new random elements. The first is Ψ = Ψ(A3),
which is a random collection of points of ∂A3 distributed as the intersection of ∂A3

with the random walk trajectories that constitute the interlacements process Iu.
Given some possible realization ψ̂ of Ψ, we define the second new random element

to be M(ψ̂) ∈ Cu(V, ∂A2), which is distributed as the clothesline process between V
and ∂A2 generated by the interlacements trajectories at level u conditioned on the

fact that Ψ = ψ̂. We can then construct a process Iu
A1|ψ̂

which has the law of the

the random interlacements process at level u intersected with A1 conditioned on
the event where the intersections of the interlacements’ random walk trajectories

with ∂A3 are given by ψ̂. We obtain

P
[

Îu(1−ε)A1
⊆ Iu

A1|ψ̂ ⊆ Îu(1+ε)A1

]

=
∑

ζ̂∈Cu(V,∂A2)

P
[

Îu(1−ε)A1
⊆ Iu

A1|ψ̂ ⊆ Îu(1+ε)A1
| M(ψ̂) = ζ̂

]

(4.4)

× P
[

M(ψ̂) = ζ̂
]

=
∑

ζ̂∈Cu(V,∂A2)

P
[

Îu(1−ε)A1
⊆ Iu

A1|ζ̂ ⊆ Îu(1+ε)A1

]

P
[

M(ψ̂) = ζ̂
]

≥
(

1− c exp
(

− c′

2
ε2usa

))

P
[

M(ψ̂) ∈ A
]

.

Let E be the set of all the ψ̂’s such that

P
[

M(ψ̂) ∈ AC
]

≥
√

PuV,∂A2

[

AC
]

.

Since

PuV,∂A2

[

AC
]

=

∫

P
[

M(ψ̂) ∈ AC
]

P
[

dψ̂
]

≥ P
[

E
]

√

PuV,∂A2

[

AC
]

,

we have

P
[

E
]

≤
√

PuV,∂A2

[

AC
]

.

We have proved the following theorem, which implies Theorem 1.1:

Theorem 4.3. Using the same notation as above, we have that, for constants
c, c′ > 0, there exists a set E made of possible values of Ψ such that

P
[

Ψ ∈ E
]

≥ 1− exp
(

− c′

4
ε2usa

)

,

and for all ψ̂ ∈ E,

P
[

Îu(1−ε)A1
⊆ Iu

A1|ψ̂ ⊆ Îu(1+ε)A1

]

≥ 1− c exp
(

− c′

2
ε2usa

)

. (4.5)

We now present a brief proof of Theorem 1.2.
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Proof of Theorem 1.2: Note that, on equation (4.15), δ can be any real number
greater than 0, whereas in equation (4.16), we need to have 0 < δ < 1. Recall that
u′ > u > 0. We have, by substituting the appropriate δ in (4.17) and ignoring the
union bound term cr2d−2,

P
[

GΣ
u (z) < GΣ

u+u′ (z)
]

≥ 1− P
[

GΣ
u (z) > (u+ u′4−1) cap(V )π(Ξ(z))

]

(4.6)

− P
[

GΣ
u+u′(z) < 2−1(u+ u′) cap(V )π(Ξ(z))

]

≥ 1− exp
(

− c

4
(u+ u′)sa

)

− exp

(

− c

16

(u′)2

u2
usa

)

≥ 1− exp (−c′u′sa) .
Now, proceeding in the same manner as we did in the proof of Theorem 4.3, we are
able to prove Theorem 1.2. �

Remark 4.4. As we previously stated, the above theorems are also valid for the
unsmoothed versions of the sets A2

1 and A2

2 . This result follows after employing
the same argument present in the above proofs, where one considers the law of the
entrance and exit point of the interlacements’ trajectories in the smaller set (the
smoothed version of A2

2 ) generating a law of entrance and exit points in the larger
set (the unsmoothed version of A2

2 ), and then performing a computation similar
to (4.4) in order to obtain good concentration inequalities for the “quenched” law.
One then obtains in the same way the result for A3 ⊂ A2

2 .

The remainder of the section is devoted to proving Proposition 4.1. We begin
by stating the following bound

sup
w′∈V
y′∈∂A2

P̂w′,y′
[

Ξ(w′, y′) = (w0, y0)
]

≤ cs−2(d−1), (4.7)

for which the proof is technical and we thus postpone it to subsection A.1 of the
appendix.

Let z ∈ Σ be such that Ξ(z) = (w0, y0) ∈ ∂A1×V , and let h := dist(w0, y0). We
let F (w0, y0) stand for G(z), making explicit the dependence of the soft local time
on the endvertices Ξ(z). We define

π(w0, y0) := E(F (w0, y0)). (4.8)

We define fA1(w0, y0) to be the probability that the simple random walk started
at w0 visits y0 before hitting A2. We will prove in the appendix (see Section A.1,
propositions A.1 and A.2) the following bounds for these probabilities:

(i) Given (w0, y0) ∈ A#

1 × V #, there are constants c1, c2 > 0 such that

c1
s2

hd
≤ f

A#
1
(w0, y0) ≤ c2

s2

hd
. (4.9)

(ii) Let (w0, y0) ∈ A2

1 × V 2, and recall that B∞(0, r + 2s) is the unsmoothed

version of A2

2
C . Let H

d−1
i ; i = 1, . . . , 2d; denote the (d − 1)-dimensional

hyperfaces of B∞(0, r + 2s), and let lw0

i := min{dist(w0,H
d−1
i ), h}, and

ly0i := min{dist(y0,Hd−1
i ), h}. Then there are constants c1, c2 > 0 such

that

c1
lw0
1 . . . lw0

2d

h2d
· 1

hd−2
· l
y0
1 . . . ly02d
h2d

≤ fA2
1
(w0, y0) ≤ c2

lw0
1 . . . lw0

2d

h2d
· 1

hd−2
· l
y0
1 . . . ly02d
h2d

. (4.10)



Conditional decoupling of random interlacements 1049

The following lemma, whose proof we also postpone to the appendix (Sec-
tion A.2), gives us an estimate on π(w0, y0).

Lemma 4.5. Using the notation defined above we have, for constants c1, c2, c3, c4 >
0:

(i) c1 cap(V )−1s−1fA1(w0, y0) ≤ π(w0, y0) ≤ c2 cap(V )−1s−1fA1(w0, y0),

(ii) E(F (w0, y0)
2) ≤ c3 cap(V )−1s−2d+2fA1(w0, y0).

Moreover, since dist(w0, y0) ≥ s, we have

(iii) supw0,y0 π(w0, y0) ≤ c4 cap(V )−1s−(d−1).

We now provide a large deviation bound for F (w0, y0).

Lemma 4.6. There are constants c, c1, c2 > 0 such that for every (w0, y0) ∈ ∂A1×
V , we have

P
[

F (w0, y0) > vcs−2(d−1)
]

≤ c1s
2d−3fA1(w0, y0) cap(V )−1e−c2v (4.11)

for any v ≥ 2 (we can also assume c2 ≤ 1 without loss of generality).

Proof : In the proof of this particular result it will be important for us to distinguish
between the constants. We will use Proposition 3.5 for F (w0, y0), with

Γw0,y0 := {(w′
0, y

′
0) ∈ ∂A1 × V ; max{‖w′

0 − w0‖, ‖y′0 − y0‖} ≤ c4s},
with 0 < c4 < 1 defined in Section A.3 of the appendix.

Using the same notation as in Proposition 3.5, we note that (4.7) implies

ℓ ≤ cs−2(d−1)

and observe that µ(Γw0,y0) ≥ c5s
2(d−1) for some constant c5 > 0. Also, as can be

seen in Section A.3 of the appendix, we have

α ≥ c3 > 0.

Chebyshev’s inequality and Lemma 4.5 then imply

P
[

Tl <∞
]

≤ P
[

F (w0, y0) > cs−2(d−1)
]

≤ π(w0, y0)

cs−2(d−1)

≤ c1s
2d−3fA1(w0, y0) cap(V )−1.

(4.12)

We denote by N(Γw0,y0) the number of times the simple random walk trajec-
tory associated with F (w0, y0) makes an excursion of the form z′ ∈ Σ on AC2
such that Ξ(z′) = (w′, y′) ∈ Γw0,y0 . We also let ηw0,y0 stand for the number
of points of the Poisson process associated with our soft local times that belong
to Γw0,y0 ×

[

0, 12vcc3s
−2(d−1)

]

. We note that both definitions are consistent with
Proposition 3.5 and write

P
[

ηw0,y0 ≤ N(Γw0,y0)
]

≤ P
[

ηw0,y0 ≤ cc3c5v

4

]

+ P
[

N(Γw0,y0) ≥
cc3c5v

4

]

.

We claim that both terms in the right side of the above inequality are exponentially
small in v. To see why this is true, observe that:

• ηw0,y0 has Poisson distribution with parameter at least cc3c5v
2 , and
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• every time the simple random walk associated with F (w0, y0) hits ∂A2,
with uniform positive probability the walk never reaches Γw0,y0 again. This
way N(Γw0,y0) is dominated by a Geometric(c6) random variable, for some
constant c6 < 1.

Together with (4.12) and Proposition 3.5, this finishes the proof of the lemma. �

We are now able to complete the proof of Proposition 4.1, that in turn implies
our main results:

Proof of Proposition 4.1: Let Ψw0,y0(λ) = E(eλF (w0,y0)) be the moment generating
function of F (w0, y0). We are going to use the bounds above to estimate Ψw0,y0 . It
is elementary to obtain that et − 1 ≤ t+ t2 for t ∈ [0, 1]. With this observation in

mind, we write for 0 ≤ λ ≤ c2s
2(d−1)

2c , where c and c2 are the same as in the theorem
above:

Ψw0,y0(λ) − 1 =

= E(eλF (w0,y0) − 1)1λF (w0,y0)≤1 + E(eλF (w0,y0) − 1)1λF (w0,y0)>1

≤ E(λF (w0, y0) + λ2F (w0, y0)
2) + E(eλF (w0,y0) − 1)1λF (w0,y0)>1

≤ λπ(w0, y0) + c1λ
2 cap(V )−1s−2d+2fA1(w0, y0) + E(eλF (w0,y0) − 1)1λF (w0,y0)>1

≤ λπ(w0, y0) + c′λ2 cap(V )−1s−2d+2fA1(w0, y0) + λ

∞
∫

λ−1

eλyP
[

F (w0, y0) > y
]

dy

≤ λπ(w0, y0)

+ fA1(w0, y0) cap(V )−1
(

c′λ2s−2d+2 + λc′s2d−3

∞
∫

λ−1

exp
(−c2s2(d−1)y

2c

)

dy
)

≤ λπ(w0, y0)

+ fA1(w0, y0) cap(V )−1
(

c′λ2s−2d+2 + c′λs−1 exp
(−c2s2(d−1)λ−1

2c

))

≤ λπ(w0, y0) + c′λ2 cap(V )−1s−2d+2fA1(w0, y0), (4.13)

where we used Lemma 4.5 and Lemma 4.6. Now since e−t − 1 ≤ −t + t2 for all
t ≥ 0, we obtain for λ ≥ 0

Ψw0,y0(−λ)− 1 ≤ −λπ(w0, y0) + cλ2 cap(V )−1s−2d+2fA1(w0, y0), (4.14)

(the large deviation bound of Lemma 4.6 is not necessary is this case).
Observe that if (χj , j ≥ 1) are i.i.d. random variables with common moment

generating function Ψ and N is an independent Poisson random variable with pa-
rameter θ, then

E exp
(

λ

N
∑

j=1

χj
)

= e(θ(Ψ(λ)−1)).

We let Fj(w0, y0) denote the expectation E(Gj(z)) defined in (3.16), when z ∈ Σ

is such that Ξ(z) = (w0, y0). Using Lemma 4.5 and (4.13), we have, for NV
û

d
=
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Poisson(û cap(V )) and any δ > 0

P
[

GΣ
û (z) ≥ (1 + δ)û cap(V )π(w0, y0)

]

=

=P
[

NV
û

∑

j=1

Fj(w0, y0) ≥ (1 + δ)û cap(V )π(w0, y0)
]

≤
E(exp

(

λ
∑NV

û

j=1 Fj(w0, y0)
)

)

exp
(

λ(1 + δ)û cap(V )π(w0, y0)
)

≤ exp
(

− λ(1 + δ)û cap(V )π(w0, y0) + û cap(V )(Ψw0,y0(λ)− 1)
)

≤ exp
(

− (λδû cap(V )π(w0, y0)− c′λ2ûs−2d+2fA1(w0, y0))
)

≤ exp
(

− (λδûcs−1fA1(w0, y0)− c′λ2ûs−2d+2fA1(w0, y0))
)

.
(4.15)

Analogously, with (4.14) instead of (4.13), we obtain

P
[

GΣ
û (z) ≤ (1− δ)û cap(V )π(w0, y0)

]

≤ exp
(

− (λδûcs−1 − c′λ2ûs−2d+2)fA1(w0, y0)
)

.
(4.16)

We choose λ = c7δs
2d−3 with c7 small enough so that λ ≤ c2s

2(d−1)

2c , and observe
that the bounds for fA1(w0, y0) given in (4.9) and (4.10) imply

inf
w0,y0

fA2
1
(w0, y0) ≥ cs2dr−3d+2,

inf
w0,y0

f
A#

1
(w0, y0) ≥ cs2r−d.

Recall the definition of b#, a number such that

1 ≤ b# <
2d− 2

d
,

and the definition of b2, a number such that

1 ≤ b2 <
4d− 4

3d− 2
.

Recall that s = s(r) ≍ r
1
b . Then, since a# := 2d − 2 − db# > 0 and a2 :=

4d− 4− 3db2 + 2b2 > 0, we have

P
[

GΣ
û (z) ≥ (1 + δ)û cap(V )π(w0, y0)

]

≤ exp
(

− cδ2ûsa
)

.

Using the union bound (note that ∂A1 × V has O(r2(d−1)) elements),

P
[

(1− δ)û cap(V )π(Ξ(z)) ≤ GΣ
û (z) ≤ (1 + δ)û cap(V )π(Ξ(z)), for all z ∈ K

]

≥ 1− cr2(d−1) exp
(

− c′δ2ûsa
)

. (4.17)

Observe that we can suppose c′ ≤ 1 without loss of generality. Using (4.17) and
the union bound we obtain, for ε ∈ (0, 1/4),

P
[

Dε/4
u , D

ε/4
u(1−ε), D

ε/4
u(1+ε)

]

≥ 1− cr2(d−1) exp
(

− c′ε2usa
)

.

Since s = s(r) ≍ r
1
b , by replacing the constants c and c′ in the above equation we

obtain (4.1) and finish the proof of Proposition 4.1. �
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Appendix A. Technical estimates

A.1. Bounding the relevant probabilities. For w0 ∈ ∂A1 and y0 ∈ V we want to
study the supremum

sup
w′∈V
y′∈∂A2

P̂w′,y′
[

Ξ(w′, y′) = (w0, y0)
]

. (A.1)

Furthermore, we need to bound the “hanging” probability P̂w,y
[

Ξ(w, y) = (w0, y0)
]

for arbitrary w ∈ V and y ∈ ∂A2 from above and from bellow.
Given a finite nearest neighbor path γ, we denote by |γ| its length. We will say

that a path γ belongs to an event E if E occurs every time the simple random walk
(Xk, k ≥ 0) first |γ| steps coincide with γ. We also let Px

[

γ
]

denote the probability
that the first |γ| steps of the simple random walk started at x coincide with γ.

In order to avoid a cumbersome notation we now introduce what, hopefully, will
be a simpler way to denote our events of interest. For w, y0 ∈ V , w0 ∈ ∂A1 and
y ∈ ∂A2 we define:

• w
1−→ w0: The collection of all finite nearest-neighbor trajectories starting

at w that do not reach neither ∂A1 nor ∂A2, except at its ending point
w0 ∈ ∂A1. Note that this collection can be thought of as the event where
the simple random walk started at w hits ∂A1 for the first time at w0 before
reaching ∂A2.

• w0
2−→ y0: The collection of all finite nearest-neighbor trajectories starting

at w0 and ending at y0 without reaching ∂A2.

• y0
3−→ y: The collection of all finite nearest-neighbor trajectories starting at

y0 that hit ∂A2 for the first time at y before returning to V . Note that this
collection can be thought of as the event where the simple random walk
started at y0 hits ∂A2 before returning to V and its entrance point in ∂A2

is y.

• w
4−→ y: The event where the entrance point in ∂A2 of the simple random

walk started at w is y. This event can also be regarded as a collection of
simple random walk trajectories starting at w and hitting ∂A2 for the first
time at y.

We also let w
1−→ w0

2−→ y0
3−→ y be the “concatenation” of the first three col-

lections, where the first trajectory’s ending point becomes the second trajectory’s

starting point and so on. That is, if γ ∈ w
1−→ w0

2−→ y0
3−→ y then γ is the concate-

nation of three distinct paths: γ1 ∈ w
1−→ w0, γ2 ∈ w0

2−→ y0, γ3 ∈ y0
3−→ y. With

our new notation the hanging probability becomes

P̂w,y
[

Ξ(w, y) = (w0, y0)
]

= Pw
[

w
1−→ w0

2−→ y0
3−→ y | w 4−→ y

]

=
Pw

[

w
1−→ w0

2−→ y0
3−→ y

]

Pw
[

w
4−→ y

]

.
(A.2)
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A2V
A1

w
w0

y0

y

γ1

γ2

γ3

Figure A.7. γ as the concatenation of the three paths γ1, γ2 and γ3.

We have

Pw
[

w
1−→ w0

2−→ y0
3−→ y

]

=
∑

γ∈w 1−→w0
2−→y0

3−→y

1

(2d)|γ|

=
∑

γ1∈w
1−→w0

1

(2d)|γ1|

∑

γ2∈w0
2−→y0

1

(2d)|γ2|

∑

γ3∈y0
3−→y

1

(2d)|γ3|
.

(A.3)
Let us focus on the second sum,

∑

γ2∈w0
2−→y0

1
(2d)|γ2| , for a moment. Each γ2 ∈

w0
2−→ y0 can be seen as the concatenation of one path γ02 responsible for the walk’s

first visit to y0 and a sequence of paths γ12 , . . . , γ
k
2 associated with the returns the

walk makes to y0 before hitting ∂A2, see Figure A.8. So
∑

γ2

Pw0

[

γ2
]

=
∑

γ0
2

Pw0

[

γ02
]

∑

k≥1

∑

γ1
2 ,...,γ

k
2

Py0
[

γ12
]

. . .Py0
[

γk2
]

. (A.4)

But for a fixed k0 > 0, the last sum
∑

k≥k0
∑

γ1
2 ,...,γ

k0
2

Py0
[

γ12
]

. . .Py0
[

γk02
]

equals

the probability that the simple random walk started at y0 returns to y0 at least k0
times before hitting ∂A2. Since the walk is transient, we can use the strong Markov
property to show that there exists a constant 0 < c < 1 such that

∑

k≥k0

∑

γ1
2 ,...,γ

k0
2

Py0
[

γ12
]

. . .Py0
[

γk02
]

< ck0 . (A.5)
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A1

V

A2

w0

y0

γ0

2

γ1

2
, . . . , γk

2

Figure A.8. γ2 as the concatenation of the paths γ02 , γ
1
2 , . . . , γ

k
2 .

We have thus shown the existence of a constant c > 0 such that
∑

γ0
2

Pw0

[

γ02
]

≤
∑

γ2

Pw0

[

γ2
]

≤ c
∑

γ0
2

Pw0

[

γ02
]

(A.6)

where γ02 represents any nearest neighbor path that starts at w0 and ends at its only
visit to y0, without ever reaching ∂A2. Let us update our collection’s definition in
view of this last computation. We denote by

• w0
2′−→ y0: The collection of all finite nearest-neighbor paths starting at w0

and ending at their first visit to y0, without hitting ∂A2. This collection
now can be thought of as the event where the simple random walk started
at w0 makes a visit to y0 before hitting ∂A2.

Combining (A.3) with (A.6) we get

Pw
[

w
1−→ w0

2−→ y0
3−→ y

]

≤ cPw
[

w
1−→ w0

]

Pw0

[

w0
2′−→ y0

]

Py0
[

y0
3−→ y

]

. (A.7)

Our work will now reside in giving upper bounds for these probabilities.
Using standard techniques from simple random walk theory, such as exit and

entrance measure estimates, the Green function’s estimate (2.1) and Lemma 2.1,
one can prove the following result:

Proposition A.1. Recall that h := dist(w0, y0) and define

h1 := dist(w,w0) (A.8)

h3 := dist(y, y0)

h4 := dist(w, y)

Regarding the sets A#

1 , V
# and A#

2 , we have that there exist constants ck > 0,
k = 1, . . . , 9, such that

c1e
−c2h1

s s−(d−1) ≤ Pw
[

w
1−→ w0

]

≤ c2e
−c2h1

s s−(d−1), (A.9)

c3e
−c4h3

s s−(d−1)s−1 ≤ Pw
[

y
3−→ y0

]

≤ c4e
−c4h3

s s−(d−1)s−1, (A.10)
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c5
s2

hd
≤ Pw0

[

w0
2′−→ y0

]

≤ c6
s2

hd
, (A.11)

c7
s

hd4
≤ Pw0

[

w
4−→ y

]

≤ c8
s

hd4
. (A.12)

sup
w∈V
y∈∂A2

Pw
[

w
1−→ w0

2−→ y0
3−→ y | w 4−→ y

]

≤ c9s
−2(d−1). (A.13)

We will briefly describe how the random walk trajectories should behave in order
to satisfy the conditions in each of the above events, which should give a general
idea about how to prove the above result rigorously. We will omit the details for
the sake of brevity.

Sketch of the proof: In (A.9) the walk started at w has to cross ∼ h1s
−1 subsets

of AC2 \ A1 with diameter ∼ s without reaching either ∂A2 or ∂A1, which implies
the exponential factor; and then after coming within distance ∼ s of w0 it has to
enter ∂A1 though w0, from which the ∼ s−(d−1) term comes from.

The bound (A.10) follows from similar reasoning as in (A.9), but now the walk
started at y0 pays a price ∼ s−1 in order to reach y without returning to V .

In (A.11), the walk started at w0 has to escape the proximity with ∂A2, which
it does with probability ∼ sh−1, then reach a ball with radius ∼ s centered at y0
without ever reaching ∂A2, which costs ∼ sd−1h−(d−1), before finally reaching y0
from this ball, which has a cost of s−(d−2).

In (A.12), the random walk started at w escapes the proximity with ∂A2 with

probability∼ sh−1
4 and then hits ∂A2 for the first time at y with probability h

−(d−1)
4 .

Finally, (A.13) is implied by the above bounds in an elementary way. �

We will now focus on sets A2

1 , V
2 and A2

2 , and the related simple random walk
probabilities. We will continue to use the notation introduced in (A.8) in this new
context.

w
1

−→ w0, y0

3

−→ y: The bounds for the probabilities of these events have the
same order as the bounds for the corresponding events when the underlying sets
are Euclidean balls, and their proofs are essentially the same.

w0

2
′

−→ y0: If h < 100s, an application of a Green’s function estimate gives the
desired result. We then assume h > 100s. Define B̃x to be the discrete ball in the
ℓ∞-norm centered in x with radius h

4
√
d
.

We will break up the path γ02 ∈ w0
2′−→ y0 into pieces that are easier to work

with. Let w4 ∈ ∂B̃w0 ∩ AC2 , y4 ∈ ∂B̃y0 ∩ AC2 . We define the collection of finite
paths:

• w0
5−→ w4: The collection of all finite nearest-neighbor paths starting at

w0 whose only intersection with ∂B̃w0 ∪ ∂A2 is at its ending point w4 ∈
∂B̃w0 ∩ AC2 .

• w4
6−→ y4: The collection of finite nearest-neighbor paths starting at w4 and

ending at y4, without intersecting ∂A2.

• y4
7−→ y0: The collection of all finite nearest-neighbor paths that start at

y4, never return to ∂B̃y0 ∩AC2 , and end at y0 without ever reaching ∂A2.
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V

A2

w0

w4

y4

y0

γ5

γ6

γ7
∂B̃w0 ∂B̃y0

A1

Figure A.9. Definition of the paths γ5, γ6 and γ7.

As before, we denote by w0
5−→ w4

6−→ y4
7−→ y0 the concatenation of these three

collections.
Analogously to what we noted at the start of this section, we observe that γ02 ∈

w0
2′−→ y0 if and only if there exists w4 ∈ ∂B̃w0 ∩ AC2 and y4 ∈ ∂B̃y0 ∩ AC2 such

that γ02 is the concatenation of three paths: γ5 ∈ w0
5−→ w4, γ6 ∈ w4

6−→ y4, and

γ7 ∈ y4
7−→ y0.

We also define

• w4
6′−→ y4 The collection of finite simple random walk trajectories starting

at w4 and ending at its first visit to y4 without intersecting ∂A2. This
collection can also be seen as the event where the simple random walk
started at w4 visits y4 before it hits ∂A2.

Using the same argument used to obtain the bound (A.6), we can find a constant
c > 1 such that

Pw4

[

w4
6−→ y4

]

≤
∑

γ6∈w4
6−→y4

1

(2d)|γ6|
≤ cPw4

[

w4
6′−→ y4

]

. (A.14)

We then have

Pw0

[

w0
2′−→ y0

]

=
∑

w4∈∂B̃w0∩A
C
2

γ5∈w0
5−→w4

1

(2d)|γ5|

∑

y4∈∂B̃y0∩A
C
2

γ6∈w4
6−→y4

1

(2d)|γ6|

∑

γ7∈y4
6−→y0

1

(2d)|γ7|

≤ c
∑

w4

Pw0

[

w0
5−→ w4

]

∑

y4

Pw4

[

w4
6′−→ y4

]

Py4
[

y4
7−→ y0

]

. (A.15)

We then use the Green’s function estimate (2.1) to bound Pw4

[

w4
6′−→ y4

]

by chd−2

(note that dist(w4, y4) = O(h)). Using this bound on the above inequality, we
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obtain

Pw0

[

w0
2′−→ y0

]

≤ chd−2
∑

w4

Pw0

[

w0
5−→ w4

]

∑

y4

Py4
[

y4
7−→ y0

]

. (A.16)

Note that
∑

w4

Pw0

[

w0
5−→ w4

]

= Pw0

[

H∂B̃w0
≤ H∂A2

]

, (A.17)

and using the simple random walk’s reversibility, we also have
∑

y4

Py4
[

y4
5−→ y0

]

= Py0
[

H∂B̃y0
≤ H∂A2

]

, (A.18)

so that we obtain the following bound

Pw0

[

w0
2′−→ y0

]

≤ c

hd−2
Pw0

[

H∂B̃w0
≤ H∂A2

]

Py0
[

H∂B̃y0
≤ H∂A2

]

. (A.19)

We still have to obtain bounds for these last two probabilities. Since they are
similarly defined, the bound for both of them follows from the same arguments,
and thus we will only provide a bound for Pw0

[

H∂B̃w0
≤ H∂A2

]

.

We will do so by looking at the projections of the random walk trajectory in
each of the d orthogonal axes. Since we will need to look at these projections
independently, we will change our object of study from the simple random walk on
Zd to the continuous time simple random walk on Zd with waiting times between
steps distributed as Exp(1) random variables. Since we will be studying properties
of the random walk’s trajectories, this change of framework will in no way impact
the probabilities of interest.

We recall that B∞(0, r + 2s) is the unsmoothed version of AC2 . To simplify our
notation we will work with the following translate of B∞(0, r + 2s):

Hr+2s :=
{

(x1, . . . , xd) ∈ Zd : 0 ≤ xi ≤ 2r + 4s+ 1, for all i = 1, . . . , d
}

.

Without loss of generality we assume that 0 ∈ Zd is the point belonging to

{0, 2r+ 4s+ 1}d

which is closest to w0. We denote w0 ≡ (w1
0 , . . . , w

d
0). The projection of the simple

random walk in the jth coordinate axis is itself a continuous time random walk
started at wj0 with waiting time between jumps given by a Exp(d) random variable,
and, as we already noted, these projected random walks are independent from each
other.

Given w0, we divide the d directions of Zd in two kinds. The first kind will
be such that wj0 ≤ h(4

√
d)−1, the second will be such that wj0 > h(4

√
d)−1. We

assume without loss of generality the first d0 directions to be of the first kind and
the remaining directions to be of the second kind. Our goal now is establishing the
following bound:

P
[

H∂B̃w0
≤ H∂A2

]

≤ c
∏

1≤i≤d0

wi0
h
. (A.20)

This inequality can be proved using the independence of the random walk projec-
tions on the coordinate axes and rather standard techniques, and therefore we will
omit its proof. It can be interpreted as a version of the gambler’s ruin estimate
(see Section 5.1 of Lawler and Limic, 2010) where each of the walk’s projections
has to reach distance ∼ h from ∂A2 without ever hitting the associated projections
of ∂A2 in the process.
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We will change the notation so that we are able to express (A.20) in a way that
does not uses the fact that {0}d is the vertex of {0, r+2s}d which is closest to w0.

Recall the definition of Hd−1
i , i = 1, . . . , 2d; the (d − 1)- dimensional hyperfaces

of Hr+2s, of l
w0

i := min{dist(w0,H
d−1
i ), h}, and of ly0i := min{dist(y0,Hd−1

i ), h}.
We have that (A.20) implies

Pw0

[

H∂B̃w0
≤ H∂A2

]

≤ c
lw0
1 . . . lw0

2d

h2d
.

Together with (A.19), this shows

Pw0

[

w0
2′−→ y0

]

≤ ch−(d−2) l
w0
1 . . . lw0

2d

h2d
ly01 . . . ly02d
h2d

. (A.21)

We need a matching lower bound. Again we assume h > 100s, since otherwise
the lower bound follows immediately from using (2.1). We define

w5 :=
(

w1
0 +

h

4
√
d
, . . . , wd00 +

h

4
√
d
, wd0+1

0 , . . . , wd0

)

, (A.22)

We analogously define y5: Let eid1 , . . . , eidk be the vectors in the orthonormal basis

of Rd corresponding to the directions in which the ball B∞
(

y0,
h

4
√
d

)

passes the

limits of the hypercube Hr+2s. y5 is defined to be the point in AC2 such that

l = d1, . . . , dk =⇒ |〈y5 − y0, eil〉| =
h

4
√
d
,

n 6= d1, . . . , dk =⇒ |〈y5 − y0, ein〉| = 0

and

B∞
(

y5,
h

4
√
d

)

⊆ Hr+2s.

Our plan is to describe an event contained in w0
2′−→ y0 with probability matching

that of the right side of (A.21). We let

B̂w5 := B̂∞
(

w5,
h

16
√
d

)

,

and

B̂y5 := B̂∞
(

y5,
h

16
√
d

)

,

For w6 ∈ ∂B̂w5 and y6 ∈ ∂B̂y5, we define the events

• w0
8−→ w6: The event where the random walk started at w0 hits ∂B̂w5 before

hitting ∂A2 and its entrance point in ∂B̂w5 is w6.

• w6
9−→ y6: The event where the random walk started at w6 visits y6 ∈ ∂B̂y5

before reaching ∂A2.

• y6
10−→ y0: The event where the simple random walk started at y6 hits y0

before returning to ∂B̂y5 .
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V

A2

w0

y0

A1

w5 y5

γ8
γ9

γ10

∂Bw5
∂By5

w6
y6

Figure A.10. Definition of the paths γ8, γ9 and γ10.

And we denote by w0
8−→ w6

9−→ y6
10−→ y0 the “concatenation” of these three

events, that is, the path γ belongs to the event w0
8−→ w6

9−→ y6
10−→ y0 if and

only if γ is the concatenation of three paths: γ8 ∈ w0
8−→ w6, γ9 ∈ w6

9−→ y6 and

γ10 ∈ y6
10−→ y0. It is then clear that

⋃

w6

⋃

y6

w0
8−→ w6

9−→ y6
10−→ y0 ⊂ w0

2′−→ y0,

so that; summing over γ8 ∈ w0
8−→ w6, γ9 ∈ w6

9−→ y6 and γ10 ∈ y6
10−→ y0; we have

Pw0

[

w0
2′−→ y0

]

≥
∑

w6

∑

γ8

1

(2d)|γ8|

∑

y6

∑

γ9

1

(2d)|γ9|

∑

γ10

1

(2d)|γ10|

=
∑

w6

Pw0

[

w0
8−→ w6

]

∑

y6

Pw6

[

w6
9−→ y6

]

Py6
[

y6
10−→ y0

]

≥ c

hd−2

∑

w6

Pw0

[

w0
8−→ w6

]

∑

y6

Py6
[

y6
10−→ y0

]

,

(A.23)

where we bounded Pw6

[

w6
9−→ y6

]

from below by chd−2 using a Green’s function
estimate and the fact that the distance of both w6 and y6 from ∂A2 has order h.

Due to the simple random walk’s reversibility, we obtain

Pw0

[

w0
2′−→ y0

]

≥ c

hd−2
Pw0

[

H∂B̂w5
< H∂A2

]

Py0
[

H∂B̂y5
< H∂A2

]

. (A.24)
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The bound for Pw0

[

H∂B̂w5
< H∂A2

]

and the bound for Py0
[

H∂B̂y5
< H∂A2

]

are

obtained in the same way. All we need is the following inequality:

Pw0

[

H∂B̂w5
< H∂A2

]

≥ c
∏

1≤i≤d0

wi0
h
, (A.25)

but again this bound follows from standard arguments from random walk theory,
where we essentially use the independence of the random walk projections, the
gambler’s ruin estimate (Section 5.1 of Lawler and Limic, 2010) and the central
limit theorem in order to construct an event where all random walk projections hit
the respective projections of ∂B̂w5 at around the same time without ever hitting
the projections of ∂A2. We will therefore omit the details.

Together with (A.24), (A.25) implies, using the general notation,

ch−(d−2) l
w0
1 . . . lw0

2d

h2d
· l
y0
1 . . . ly02d
h2d

≤ Pw0

[

w0
2′−→ y0

]

≤ c′h−(d−2) l
w0
1 . . . lw0

2d

h2d
· l
y0
1 . . . ly02d
h2d

.

(A.26)

w
4

−→ y: We suppose h4 > 100s, since (2.1) implies the case when h4 < 100s.
We will start with the lower bound. Let B1 be a discrete Euclidean ball of radius
s contained in AC2 such that ∂A2 ∩ B1 = {y}. Let B2 be a discrete Euclidean ball
of radius s

4 concentric with B1. Then, the probability that the walk started at y
hits B2 before returning to ∂A2 is bigger than the probability that it hits B2 before
returning to B1, and has order s−1. Now, for every point ỹ ∈ ∂B2, we bound

Pw
[

w
2′−→ ỹ

]

from below in exactly the same way as we bounded Pw0

[

w0
2′−→ y0

]

. So
that, using the walk’s reversibility, the fact that h4 > 100s, and the same notation
introduced above, we have

Pw
[

w
4−→ y

]

≥
∑

ỹ∈∂B2

Pw
[

w
2′−→ ỹ

]

Py
[

H∂B2 < H∂A2 , XH∂B2
= ỹ

]

≥ cs−1 inf
ỹ∈∂B2

Pw
[

w
2′−→ ỹ

]

≥ cs−1h
−(d−2)
4 inf

ỹ∈∂B2

lw0
1 . . . lw0

2d

h2d4
· l
ỹ
1 . . . l

ỹ
2d

h2d4
.

For the upper bound, let B′
1 be a discrete Euclidean ball of radius s contained in

A2 ∪ ∂A2 such that ∂A2 ∩B′
1 = {y}. Let B′

2 be a discrete Euclidean ball of radius
2s concentric with B′

1. Then

Pw
[

w
4−→ y

]

≤
∑

ŷ∈∂B′
2

Pw
[

w
2′−→ ŷ

]

Py
[

H∂B′
2
< H∂A2 , XH∂B′

2
= ŷ

]

≤ cs−1 inf
ŷ∈∂B′

2

Pw
[

w
2′−→ ŷ

]

≤ cs−1h
−(d−2)
4 sup

ŷ∈∂B′
2

lw0
1 . . . lw0

2d

h2d4

lŷ1 . . . l
ŷ
2d

h2d4
.

We have proved the following proposition:

Proposition A.2. Regarding the sets A2

1 , V
2 and A2

2 , we have that, using the
notation defined above, for some constants c1, c2, c3, c4, c5, c6, c7, c8, c9 > 0, the
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following bounds are valid:

c1e
−c2h1

s s−(d−1) ≤ Pw
[

w
1−→ w0

]

≤ c2e
−c2h1

s s−(d−1),

c3e
−c4h3

s s−(d−1)s−1 ≤ Pw
[

y
3−→ y0

]

≤ c4e
−c4h3

s s−(d−1)s−1,

c5h
−(d−2) l

w0
1 . . . lw0

2d

h2d
ly01 . . . ly02d
h2d

≤ Pw0

[

w0
2′−→ y0

]

≤ c6h
−(d−2) l

w0
1 . . . lw0

2d

h2d
ly01 . . . ly02d
h2d

,

c7s
−1h

−(d−2)
4 inf

ỹ∈∂B2

lw0
1 . . . lw0

2d

h2d4

lỹ1 . . . l
ỹ
2d

h2d4
≤ Pw0

[

w
4−→ y

]

≤ c8s
−1h

−(d−2)
4 sup

ŷ∈∂B′
2

lw0
1 . . . lw0

2d

h2d4

lŷ1 . . . l
ŷ
2d

h2d4
.

sup
w∈V
y∈∂A2

Pw
[

w
1−→ w0

2−→ y0
3−→ y | w 4−→ y

]

≤ c9s
−2(d−1).

A.2. Proof of Lemma 4.5. Let z ∈ Σ be such that Ξ(z) = (w0, y0), and again let h
stand for the Euclidean distance between w0 and y0. We let π(w0, y0) be defined
in the same way as in (4.5). Given a simple random walk trajectory ̺ started in a
set B containing V , we define CBw0,y0(̺) to be the function that counts how many

times the random walk trajectory ̺ makes an excursion on AC2 that enters A1 at
w0, and y0 is the last point such excursion visits on V before reaching ∂A2. We let
CBw0,y0 denote the random variable CBw0,y0(¯̺) when ¯̺’s first point is chosen according
to ēB. Proposition 3.3 then implies

π(w0, y0) = E(CVw0,y0).

Define Ṽ := ∂B(0, 3(r + s)), the discrete sphere of radius 3(r + s). We define

π̃(w0, y0) := E(CṼw0,y0).

From the compatibility of the laws defined in (2.3), one can see that (see also the
proof of Lemma 6.2 of Popov and Teixeira, 2015):

u cap(Ṽ )E(CṼw0,y0) = u cap(V )E(CVw0,y0).

Since cap(Ṽ ) ≍ cap(V ), if we successfully estimate π̃(w0, y0) we will automatically
be provided with an estimate for π(w0, y0). We changed the problem from esti-
mating π(w0, y0) to estimating π̃(w0, y0) so that the distance between the simple
random walk’s starting point and w0 does not affect our calculations.

First we note that CṼw0,y0 is dominated by a Geometric (c1) random variable, for
some 0 < c1 < 1. This follows from the fact that every time the simple random walk
exits AC2 , with probability uniformly greater than some constant 1 − c1 > 0, the
walk never returns to w0. This way, it will be sufficient to estimate the probability

P [CṼw0,y0 ≥ 1] for our purposes.

So, for a walk started at Ṽ to reach w0, it first has to hit a discrete sphere ∂B1

of radius s
2 centered on w0. The probability of such event is of order sd−2

rd−2 , by
Proposition 6.4.2 of Lawler and Limic (2010).

Let B2 be a discrete Euclidean ball of radius s contained in A1 such that B2 ∩
A1 = {w0}. We also let B3 be a discrete Euclidean ball of radius 2s lying outside
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A1 such that B3 ∩A1 = {w0}. Using Proposition 6.5.4 of Lawler and Limic (2010)
we have, for any x′ ∈ ∂B1 ∩ AC! and some constant c2 > 0:

Px′

[

XHA1
= w0

]

≤ Px′

[

XHB2
= w0

]

≤ c2s
−(d−1).

Then, recalling the notation fA1(w0, y0) := Pw0

[

w0
2′−→ y0

]

and the fact that

cap(V ) ≍ r(d−2), and using the strong Markov property, we get, for constants
c, c1 > 0:

π(w0, y0) ≤ cP [CṼw0,y0 ≥ 1] ≤ c1 cap(V )−1s−1fA1(w0, y0). (A.27)

For the lower bound, we let B4 be a discrete Euclidean ball of radius s
4 contained

in AC2 \ B(0, r + s) such that for every x ∈ B4, dist(x,w0) ≤ 2s. Using the strong
Markov property, we get

P
[

CṼw0,y0 ≥ 1
]

≥ inf
x∈Ṽ

Px
[

HB4 <∞
]

inf
x′′∈B4

Px
[

XB3 = w0

]

fA1(w0, y0),

so that, using Proposition 6.4.2 of Lawler and Limic (2010) we have, for some
constant c3 > 0,

π(w0, y0) ≥ c3 cap(V )−1s−1fA1(w0, y0).

The part (ii) then follows from (i) and Proposition 3.4.

A.3. A lower bound for α. Let z ∈ Σ be such that Ξ(z) = (w0, y0), let c4 > 0 be
some positive real number. For

Γw0,y0 := {(w′
0, y

′
0) ∈ V × ∂A2; max{||w′

0 − w0||, ||y′0 − y0||} ≤ c4s}
and

α := inf
{g(w,y)(z

′)

g(w,y)(ẑ)
; (w, y) ∈ V × ∂A2, z

′ ∈ Γw0,y0 , ẑ ∈ K
}

,

we need to find a constant lower bound for α. But this is just a consequence of the
bounds obtained in Propositions A.1 and A.2.
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(2012c). ISBN 978-3-03719-109-5. MR2932978.

A. Teixeira. Interlacement percolation on transient weighted graphs. Electron. J.
Probab. 14, no. 54, 1604–1628 (2009). MR2525105.

http://www.ams.org/mathscinet-getitem?mr=MR3477785
http://www.ams.org/mathscinet-getitem?mr=MR3308116
http://www.ams.org/mathscinet-getitem?mr=MR3161466
http://www.ams.org/mathscinet-getitem?mr=MR3149843
http://www.ams.org/mathscinet-getitem?mr=MR3825884
http://www.ams.org/mathscinet-getitem?mr=MR2985195
http://www.ams.org/mathscinet-getitem?mr=MR2677157
http://www.ams.org/mathscinet-getitem?mr=MR3325312
http://www.ams.org/mathscinet-getitem?mr=MR3420516
http://www.ams.org/mathscinet-getitem?mr=MR3568036
http://www.ams.org/mathscinet-getitem?mr=MR2364939
http://www.ams.org/mathscinet-getitem?mr=MR2004982
http://www.ams.org/mathscinet-getitem?mr=MR2680403
http://www.ams.org/mathscinet-getitem?mr=MR2891880
http://www.ams.org/mathscinet-getitem?mr=MR2892408
http://www.ams.org/mathscinet-getitem?mr=MR2932978
http://www.ams.org/mathscinet-getitem?mr=MR2525105

	1. Introduction and results
	1.1. An application: biased random walk on the interlacement set

	2. Definitions and notation
	3. Simulating excursions with soft local times
	4. Conditional decoupling
	Appendix A. Technical estimates
	A.1. Bounding the relevant probabilities
	A.2. Proof of Lemma  4.5
	A.3. A lower bound for alpha 

	Acknowledgments
	References

