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Abstract. We consider a class of effective models on Z
d called Gaussian membrane

models with square-well pinning or δ-pinning. It is known that when d = 1 this
model exhibits a localization/delocalization transition that depends on the strength
of the pinning. In this paper, we show that when d ≥ 2, once we impose weak
pinning potentials the field is always localized in the sense that the corresponding
free energy is always positive. We also discuss the case that both square-well
potentials and repulsive potentials are acting in high dimensions.

1. Introduction

The study of the many equilibrium/non-equilibrium phenomena taking place
at interfaces and membranes is an important and fascinating field in statistical
mechanics. In particular, the probabilistic study of the effective interface model
has been an active area of research for several decades. Yet, in spite of its physical
and mathematical importance, the study of the effective membrane model has been
hindered by the lack of analytic tools. The main purpose of this paper is to study
the localization of the Gaussian membrane model under the effect of weak pinning
potentials. First, we introduce our model. Let d ≥ 1. For a configuration φ =

{φx}x∈Zd ∈ R
Z
d

, consider the following formal Hamiltonian:

H(φ) =
1

2

∑

x∈Zd

(∆φx)
2, (1.1)
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where ∆ = {∆(x, y)}x,y∈Zd is a discrete Laplacian on Z
d, namely,

∆(x, y) =






1
2d if |x− y| = 1,

−1 if x = y,

0 otherwise,

and ∆f(x) =
∑

y∈Zd

∆(x, y)f(y) for f : Zd → R. The configuration φ is considered an

effective model of a (discretized) random membrane embedded in d+1-dimensional
space, and the spin φx denotes the height at the position x ∈ Z

d. This model is
also called a ∆φ model and is a model of a (tension-less) semiflexible membrane.
More precisely, in the model of a membrane such as a lipid bilayer, the energy of
the surface separating the water phase and the lipid phase is given by

H(φ) =
∑

x∈Zd

{
κ1(∇φx)2 + κ2(∆φx)

2
}
, (1.2)

where κ1 and κ2 are the lateral tension and the bending rigidity, respectively
(see Leiber, 2004; Lipowsky, 1995, etc.). When κ1 > 0 and κ2 = 0, the result-
ing model is called the ∇φ model, and it describes the phase-separating interface.
Roughly speaking, the energy of the interface in the ∇φ model is determined from
the surface area of the microscopic interface φ. The ∆φ model captures the sit-
uation where the surface area of the membrane is preserved, and the energy is
determined from the curvature of φ. For every Λ ⋐ Z

d, the finite-volume Gibbs
measure on R

Λ corresponding to the Hamiltonian (1.1) with 0-boundary conditions
is defined by

PΛ(dφ) =
1

ZΛ
exp

{
−H∆

Λ (φ)
}∏

x∈Λ

dφx,

where

H∆
Λ (φ) =

1

2

∑

x∈Λ

(∆φx)
2
∣∣∣
φ≡0 on ∂

+
2 Λ
, (1.3)

and

ZΛ =

∫

RΛ

exp
{
−H∆

Λ (φ)
}∏

x∈Λ

dφx.

Here, dφx denotes the Lebesgue measure on R. We denote the outer and inner
boundaries of Λ ⊂ Z

d with width k ∈ N by

∂+k Λ := {x /∈ Λ; ‖y − x‖1 ≤ k for some y ∈ Λ},
∂−k Λ := {x ∈ Λ; ‖y − x‖1 ≤ k for some y /∈ Λ},

respectively, where ‖ · ‖1 denotes the l1-norm on Z
d. For ease of notation, we

write ∂+Λ for ∂+1 Λ, ∂−Λ for ∂−1 Λ and define Λ = Λ ∪ ∂+Λ.
We recall some basic properties of the model. First, we have

1

2

∑

x∈Zd

(∆φx)
2
∣∣∣
φ≡0 on Λc

= H∆
Λ (φ) =

1

2

∑

x∈Λ

(∑

y∈Λ

∆(x, y)φy

)(∑

z∈Λ

∆(x, z)φz

)

=
1

2

∑

y∈Λ

∑

z∈Λ

∆2(y, z)φyφz (1.4)

=
1

2
〈φ, ∆2

Λφ〉Λ,
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where 〈 · , · 〉Λ denotes the l2(Λ)-inner product. We define ∆2 = ∆∆ as a matrix
product and use ∆2

Λ to represent its restriction to Λ, namely, ∆2
Λ = {∆2

Λ(x, y)}x,y∈Zd

with

∆2
Λ(x, y) =

{
∆2(x, y) if x, y ∈ Λ,

0 otherwise.

Similarly, ∆Λ represents the restriction of ∆ to Λ. (1.4) shows that the measure PΛ

coincides with the law of a centered Gaussian field on R
Λ with the covariance matrix

(∆2
Λ)

−1. Note that ∆2
Λ 6= (∆Λ)

2. The model is not a ferromagnetic spin system
because ∆2(x, y) can be both positive and negative for x, and y with x different
from y. This means that the basic analytic tools for spin systems or Gaussian fields
such as useful correlation inequalities (FKG, Griffith, etc.) and the random walk
representation of the covariance, do not hold (see Georgii, 1988; Giacomin, 2001,
and the references therein). Therefore, from the mathematical point of view, the
membrane model is much less tractable than the ∇φ model. However, it is well-
known that (∆Λ)

−1 can be represented by the Green function of a simple random
walk on Z

d, and by comparing (∆2
ΛN

)−1 with (∆ΛN
)−2, the following estimate on

the variance of the field is obtained (see Kurt, 2012, Section 4 and the references
therein):

VarPΛN
(φ0) = (∆2

ΛN
)−1(0, 0) =





O(N4−d) if d ≤ 3,

O(logN) if d = 4,

O(1) if d ≥ 5,

(1.5)

as N → ∞ where ΛN := [−N,N ]d ∩ Z
d. The field is said to be delocalized if d ≤ 4

because, in this case, the variance diverges as N → ∞. It is said to be localized if
d ≥ 5 because the variance remains finite. In particular, the corresponding infinite-
volume Gaussian measure Q∞ ∼ N (0, (−∆)−2) exists only for d ≥ 5. One of the
important properties of is that the field has long-range correlations: Q∞[φxφy] ∼
C|x− y|−d+4 as |x− y| → ∞ for some constant C > 0 (see Sakagawa, 2003, Section
2). We denote expectation with respect to a measure P by P [ · ]. When d ≥ 3,
the asymptotics of the variance (1.5) correspond to those for the ∇φ model in
dimension d − 2. When d ≤ 2, the model exhibits huge fluctuations known as
membrane undulations.

We are now in a position to state the problems and the results of this paper.
One problem related to interfaces and membranes is the study of the behavior of
the field under the effect of various external potentials. See review articles Funaki
(2005); Velenik (2006) for a background on the development of the study for the
∇φ model. For a self-potential U : R → R, the corresponding model is generally
defined as follows:

PU
Λ (dφ) =

1

ZU
Λ

exp
{
−H∆

Λ (φ) −
∑

x∈Λ

U(φx)
}∏

x∈Λ

dφx,

where

ZU
Λ =

∫

RΛ

exp
{
−H∆

Λ (φ)−
∑

x∈Λ

U(φx)
} ∏

x∈Λ

dφx. (1.6)

To begin with, we consider the effect of weak pinning potentials called square-well
pinning. In this case, the self-potential is given by U1(r) = −bI(|r| ≤ a), a ≥ 0,

b ≥ 0. We denote the corresponding Gibbs measure PU1

Λ and partition function
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ZU1

Λ as P a,b
Λ and Za,b

Λ , respectively. We also define the model with δ-pinning by the
following:

P̃ ε
Λ(dφ) =

1

Z̃ε
Λ

exp
{
−H∆

Λ (φ)
}∏

x∈Λ

(εδ0(dφx) + dφx),

where

Z̃ε
Λ =

∫

RΛ

exp
{
−H∆

Λ (φ)
} ∏

x∈Λ

(εδ0(dφx) + dφx). (1.7)

Denoted by δ0 a Dirac mass at zero, and let ε > 0 represent the strength of the

pinning. The measure P̃ ε
Λ is obtained as a weak limit of P a,b

Λ as a→ 0 and b→ ∞
while maintaining the relation 2a(eb − 1) = ε. For the corresponding ∇φ model,
detailed properties of the field have been studied and it is known that the field is
always localized by the pinning effect for every d ≥ 1 (see Funaki, 2005, Section 7,
Velenik, 2006, Section 5, and the references therein).

The main result of this paper is Theorem 1.1 for the membrane model described
therein. Throughout this paper, in the case of Λ = ΛN := [−N,N ]d∩Z

d we always
use subscript N instead of ΛN and denote as PN , ZN , ∆N etc..

Theorem 1.1. Let d ≥ 1. For every a ≥ 0, b ≥ 0 and ε ≥ 0 the free energies

F (a, b) := lim
N→∞

1

|ΛN | log
Za,b
N

ZN

, F̃ (ε) := lim
N→∞

1

|ΛN | log
Z̃ε
N

ZN

,

exist, and the following hold.

(1) When d = 1, for every a > 0 there exists bc = bc(a) > 0 such that F (a, b) >
0 for every b > bc and F (a, b) = 0 for every 0 ≤ b ≤ bc.

(2) When d ≥ 2, if a > 0 and b > 0 then F (a, b) > 0. Also, if ε > 0 then

F̃ (ε) > 0.

We note that the model with δ-pinning for d = 1 has been studied in Caravenna
and Deuschel (2008), and a phase transition occurs that depends on the strength

of the pinning. Namely, when d = 1 there exists εc > 0 such that F̃ (ε) > 0 holds

for every ε > εc and F̃ (ε) = 0 holds whenever 0 ≤ ε ≤ εc is satisfied. In Sakagawa
(2012), the model with δ-pinning was studied, and a result analogous to Theorem 1.1
was obtained for d ≥ 4. Combining Theorem 1.1 with the results in Caravenna and
Deuschel (2008), we can characterize the existence of the localization/delocalization
transition by weak pinning potentials in terms of the free energy for all dimensions.
For both the model with δ-pinning and the one with square-well pinning, a phase
transition occurs only when d = 1. When d ≥ 2, the field is always localized once
we put pinning potentials.

When d ≥ 3, the asymptotics of the variance given in (1.5) for the membrane
model correspond to those for the ∇φ model in dimension d − 2. Therefore, with
the result for the ∇φ model, we can guess the localization of the membrane model.
The most interesting part of Theorem 1.1 is the case d = 2. In spite of the large
fluctuation, the field is localized by pinning potentials however small the positive
parameters a, b, and ε are chosen to be.

Next, let ρN (a, b) := 1
|ΛN |P

a,b
N

[
|{x ∈ ΛN ; |φx| ≤ a}|

]
and ρ̃N (ε) := 1

|ΛN | P̃
ε
N

[
|{x ∈

ΛN ;φx = 0}|
]
be densities of the pinned sites. Then, Theorem 1.1 yields the

localization of the field by pinning potentials in the following sense.
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Corollary 1.2. (1) When d = 1, for every a > 0 there exists bc = bc(a) > 0
such that lim inf

N→∞
ρN (a, b) > 0 holds for every b > bc and lim

N→∞
ρN (a, b) = 0

holds for every 0 ≤ b < bc.
(2) When d ≥ 2, for every a > 0, b > 0 and ε > 0, both lim inf

N→∞
ρN (a, b) > 0

and lim inf
N→∞

ρ̃N(ε) > 0 hold.

Remark 1.3. One of the next steps is to give a pathwise description of the lo-
calization of the field by pinning potentials such as uniform bounds on variances
and exponential decay of correlations. In the one-dimensional case, the membrane
model corresponds to the law of an integrated random walk and a renewal-type
argument works well. In particular, its scaling limits have been studied in detail
(see Adams et al., 2016; Caravenna and Deuschel, 2009).

However, when d ≥ 2, there is no known suitable graphical representation of the
correlations for the membrane model, and without this crucial tool, the state of
knowledge is quite limited. To the best of our knowledge, the only recent relevant
result Bolthausen et al. (2017) is that when d ≥ 5, the membrane model with
δ-pinning exhibits exponentially decaying correlations.

The next theorem of the paper pertains to the case when the self-potential is
given by U2(r) = −bI(0 ≤ r ≤ a) + lI(r < 0), a ≥ 0, b ≥ 0, l ≥ 0. We denote the

corresponding Gibbs measure and partition function PU2

Λ and ZU2

Λ by P a,b,l
Λ and

Za,b,l
Λ , respectively. This describes the system that both of weak pinning potentials

to height 0 and repulsive potentials from height 0 are imposed. Then, we have the
following theorem.

Theorem 1.4. For every a ≥ 0, b ≥ 0 and l ≥ 0 the free energy

F (a, b, l) := lim
N→∞

1

|ΛN | log
Za,b,l
N

ZN

,

exists, and when d ≥ 5, if a > 0 and b > 0 then F (a, b, l) > 0 for every l ≥ 0.

Therefore, when d ≥ 5, the wetting transition does not occur under the competi-
tion between square-well pinning and the soft wall condition of bounded repulsive
potentials from (−∞, 0). The field is always localized by weak pinning.

Remark 1.5. For the ∇φ model, it has been shown in Giacomin and Lacoin (2018)
that the conclusion of Theorem 1.4 yields positivity of the free energy for the case
with square-well pinning together with the following hard wall condition: {φx ≥
0 for every x ∈ ΛN}. For technical reasons, including lack of monotonicity, we have
not been able to prove the corresponding result for the membrane model.

As a strategy for the proof of Theorem 1.1, we modify the original model to con-
struct the “massive” membrane model by inserting proper potentials that localize
the field. Variances of the massive model can be compared with those for a centered
Gaussian field on R

ΛN with the covariance matrix (m2IN − ∆N )−2, which has a
nice random walk representation. Then, the lower bound on the free energy for the
massive model is given by Jensen’s inequality and Gaussian computations. We can
also show that when d ≥ 2, the cost of the above modification of the measure is
small enough. Hence, we obtain the positivity of the free energy for the original
model when d ≥ 2. For the proof of Theorem 1.4, we modify the original model
to a Gaussian field on R

ΛN with mean h ∈ R and covariance matrix (−∆N )−2.



1128 H. Sakagawa

Then, an argument similar to the proof of Theorem 1.1 and optimization about the
mean height yield the result. We note that these types of arguments have recently
been used to study the discrete Gaussian free field with pinning (see Giacomin and
Lacoin, 2018). One advantage of these arguments is that we do not need to expand
the pinning potential parts of (1.6) and (1.7), and therefore we do not need a ran-
dom walk representation of the covariance under PN . The key ingredients of our
proof are the Gaussian property and the spatial Markov property of the field. In
the case of ∆φ model, the field has the Markov property with distance two: that is,
if A,B ⊂ Λ satisfies dist(A,B) > 2, then {φx}x∈A and {φx}x∈B are independent
under the conditional measure PΛ( · |σ({φx;x /∈ A ∪B})).

The proofs of Theorems 1.1 and 1.4 apply to the model with both gradient
interactions and Laplacian interactions, which correspond to the Hamiltonian (1.2).
Let κ1 > 0 and κ2 > 0 be fixed and consider a Hamiltonian

HΛ(φ) = κ1H
∇
Λ (φ) + κ2H

∆
Λ (φ), (1.8)

for Λ ⋐ Z
d where H∆

Λ (φ) is given by (1.3). We define

H∇
Λ (φ) =

1

8d

∑

{x,y}∩Λ6=∅
|x−y|=1

(φx − φy)
2
∣∣∣
φ≡0 on ∂+Λ

.

For U : R → R and ε ≥ 0, we define the partition function of the corresponding
Gibbs measure with self-potentials and δ-pinning, respectively, by

ZU
N =

∫

R
ΛN

exp
{
−HN (φ)−

∑

x∈ΛN

U(φx)
} ∏

x∈ΛN

dφx,

Z̃ε
N =

∫

R
ΛN

exp
{
−HN (φ)

} ∏

x∈ΛN

(εδ0(dφx) + dφx).

Denote the partition function of the finite-volume Gibbs measure on R
ΛN without

self-potentials by ZN := Z0
N = Z̃0

N . Then, we have the following theorem.

Theorem 1.6. Let U1(r) = −bI(|r| ≤ a) and U2(r) = −bI(0 ≤ r ≤ a) + lI(r < 0),
a ≥ 0, b ≥ 0, l ≥ 0, ε ≥ 0. The free energies

F(a, b) := lim
N→∞

1

|ΛN | log
ZU1

N

ZN

, F̃(ε) := lim
N→∞

1

|ΛN | log
Z̃ε

N

ZN

,

F(a, b, l) := lim
N→∞

1

|ΛN | log
ZU2

N

ZN

,

exist and the following hold.

(1) When d ≥ 1, F(a, b) > 0 holds for every a > 0, b > 0 and F̃(ε) > 0 holds

for every ε > 0.
(2) When d ≥ 3, if a > 0 and b > 0 then F(a, b, l) > 0 for every l ≥ 0.

We note that for the case d = 1 with δ-pinning, the above result was presented
in Borecki and Caravenna (2010). Intuitively, if the energy determined from gra-
dient interactions is small then the energy determined from Laplacian interactions
automatically turns out to be small. Hence, the gradient interactions term should
dominate over the Laplacian interactions term under the Gibbs measure. For the
∇φ model, we know that if we impose only pinning potentials, then localization
occurs for every d ≥ 1 and the wetting transition does not occur when d ≥ 3.
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Therefore, Theorem 1.6 does not come as a surprise. Of course, there are similar
technical difficulties in the proof as in the case of κ1 = 0.

The rest of the paper is organized as follows. We provide the proofs of Theorems
1.1 and 1.4 in Sections 2 and 3 and the proof of Theorem 1.6 in Section 4. Through-
out the paper, C represents a positive constant that does not depend on the size
of the system N , but may depend on other parameters. The particular positive
constant denoted by C in various estimates may change from place to place in the
paper.

2. Proofs of Theorems 1.1 and 1.4

To provide an understanding of the large picture, we outline the proofs of The-
orems 1.1 and 1.4 in this section while postponing the proofs of all the technical
lemmas to the next section. The first step of the proof is to show the existence of
free energy.

Lemma 2.1. Let d ≥ 1. Assume that the function U : R → R is bounded from

above. Then, lim
N→∞

1
|ΛN | logZ

U
N exists. Also, lim

N→∞
1

|ΛN | log Z̃
ε
N exists for every ε ≥

0.

Proof of Theorem 1.1 : We introduce the finite-volume “massive” membrane model.
For m ≥ 0, consider the following Hamiltonian on ΛN with 0-boundary conditions:

HN,m(φ) := H∆
N (φ) + 2m2H∇

N (φ) +
1

2
m4

∑

x∈ΛN

(φx)
2.

We also define the corresponding finite-volume Gibbs measure on R
ΛN with self-

potential U : R → R and 0-boundary conditions by

PU
N,m(dφ) =

1

ZU
N,m

exp
{
−HN,m(φ)−

∑

x∈ΛN

U(φx)
} ∏

x∈ΛN

dφx,

where

ZU
N,m =

∫

R
ΛN

exp
{
−HN,m(φ) −

∑

x∈ΛN

U(φx)
} ∏

x∈ΛN

dφx.

The cases without self-potentials are denoted by PN,m and ZN,m. Note that both
the φ-field and the ∇φ-field are penalized under this measure, and ZU

N,m ≤ ZU
N

holds for every m ≥ 0.
Now, we take U to be U1(r) = −bI(|r| ≤ a), a ≥ 0, b ≥ 0. We have the following

inequalities for every m ≥ 0:

F (a, b) := lim
N→∞

1

|ΛN | log
ZU1

N

ZN

≥ lim inf
N→∞

1

|ΛN | log
ZU1

N,m

ZN

≥ lim inf
N→∞

1

|ΛN | log
ZU1

N,m

ZN,m

+ lim inf
N→∞

1

|ΛN | log
ZN,m

ZN

. (2.1)
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The first term of (2.1) is the free energy of the massive model with square-well
pinning. By Jensen’s inequality, the following holds:

log
ZU1

N,m

ZN,m

= logPN,m

[
exp

{
−

∑

x∈ΛN

U1(φx)
}]

≥ b
∑

x∈ΛN

PN,m(|φx| ≤ a). (2.2)

For the estimate on the right hand side, we use the following simple but useful
equalities:

H∆
N (φ) =

1

2

∑

x∈ΛN

(∆φx)
2
∣∣∣
φ≡0 on ∂+

2 ΛN

=
1

2

∑

x∈ΛN

( ∑

y∈ΛN

∆(x, y)φy

)( ∑

z∈ΛN

∆(x, z)φz

)

+
1

2

∑

x∈∂+ΛN

( ∑

y∈ΛN

∆(x, y)φy

)( ∑

z∈ΛN

∆(x, z)φz

)

=
1

2
〈φ, (−∆N )2φ〉N +BN (φ), (2.3)

where 〈 · , · 〉N denotes the l2(ΛN )-inner product,

BN (φ) =
1

2

∑

x∈∂+ΛN

( 1

2d

∑

y∈ΛN

|x−y|=1

φy

)2

=
∑

x∈∂−ΛN

rN (x)

8d2
(φx)

2,

and rN (x) = |{y ∈ ∂+ΛN ; |y− x| = 1}|. Also, by summation by parts, we have the
identity

H∇
N (φ) =

1

8d

∑

{x,y}∩ΛN 6=∅
|x−y|=1

(φx − φy)
2
∣∣∣
φ≡0 on ∂+ΛN

=
1

2
〈φ, (−∆N )φ〉N .

Then, the equalities

HN,m(φ) =
1

2
〈φ, (−∆N )2φ〉N +BN (φ) +m2〈φ, (−∆N )φ〉N +

1

2
m4〈φ, φ〉N

=
1

2
〈φ, (m2IN −∆N )2φ〉N +BN(φ), (2.4)

holds, where IN denotes the ΛN × ΛN identity matrix. (2.4) means that PN,m

is obtained by adding convex self-potentials at the inner boundary ∂−ΛN to a
centered Gaussian field on R

ΛN with the covariance (m2IN − ∆N )−2. We define
the corresponding Gaussian measure as follows:

QN,m(dφ) =
1

ΞN,m

exp
{
−1

2
〈φ, (m2IN −∆N )2φ〉N

} ∏

x∈ΛN

dφx,

where

ΞN,m =

∫

R
ΛN

exp
{
−1

2
〈φ, (m2IN −∆N )2φ〉N

} ∏

x∈ΛN

dφx.

Also, Q∞,m denotes the law of a centered Gaussian field on R
Z
d

with the covariance
(m2I − ∆)−2 where I denotes Z

d × Z
d identity matrix. Note that when m > 0,

infinite-volume measure Q∞,m exists for every d ≥ 1. On the other hand, when
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m = 0, Q∞,0 exists only for d ≥ 5. Then, by the Brascamp-Lieb inequality (see
Brascamp and Lieb, 1976, Theorem 5.1) and Lemma 2.2 (2) below, we have that

VarPN,m
(φx) ≤ VarQN,m

(φx) ≤ VarQ∞,m
(φ0),

holds for every x ∈ ΛN . Combining this variance estimate with (2.2), we obtain
the estimate

lim inf
N→∞

1

|ΛN | log
ZU1

N,m

ZN,m

≥ bQ∞,m(|φ0| ≤ a).

The second term of (2.1) is non-positive, which corresponds to the cost for adding
mass terms. For this estimate we compare PN,m with QN,m as follows:

lim inf
N→∞

1

|ΛN | log
ZN,m

ZN

≥ lim inf
N→∞

1

|ΛN | log
ΞN,m

ΞN,0
+ lim inf

N→∞
1

|ΛN | log
ΞN,0

ZN,0
+ lim inf

N→∞
1

|ΛN | log
ZN,m

ΞN,m

. (2.5)

It is well-known that (m2IN − ∆N )−1 is equal to the Green function of a simple

random walk on Z
d with killing rate m2

m2+1 and Dirichlet boundary conditions out-
side ΛN . Therefore, QN,m has a nice random walk representation of the covariance
and we can show the following asymptotics.

Lemma 2.2. There exist constants Cd, C̃d > 0 depending only on the dimension d
such that the following hold as m ↓ 0.

(1)

lim sup
N→∞

{
− 1

|ΛN | log
ΞN,m

ΞN,0

}
≤ Jd(m) :=






Cdm(1 + o(1)) if d = 1,

Cdm
2| logm|(1 + o(1)) if d = 2,

Cdm
2(1 + o(1)) if d ≥ 3.

(2)

max
x∈ΛN

VarQN,m
(φx) ≤ VarQ∞,m

(φ0)

= σ2
d(m) :=





C̃dm
−4+d(1 + o(1)) if d = 1, 2, 3,

C̃d| logm|(1 + o(1)) if d = 4,

C̃d(1 + o(1)) if d ≥ 5.

By (2.4) and the fact that BN (φ) ≥ 0, we have that

lim inf
N→∞

1

|ΛN | log
ΞN,0

ZN,0
= lim inf

N→∞
1

|ΛN | log
1

QN,m

[
e−BN (φ)

] ≥ 0,

trivially. Also, by Jensen’s inequality, the definition of BN (φ), and uniform bounds
on variances under QN,m we have that

lim inf
N→∞

1

|ΛN | log
ZN,m

ΞN,m

≥ − lim sup
N→∞

1

|ΛN |QN,m

[
BN (φ)

]
= 0,

holds for every m > 0. Hence, (2.5) and Lemma 2.2 yield that

lim inf
N→∞

1

|ΛN | log
ZN,m

ZN

≥ −Jd(m),

holds for every m > 0.
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As a result, we obtain the following estimate on the free energy:

F (a, b) := lim
N→∞

1

|ΛN | log
ZU1

N

ZN

≥ bQ0
∞,m(|φ0| ≤ a)− Jd(m)

≥ 2ab√
2πσ2

d(m)
e
− a2

2σ2
d
(m) − Jd(m). (2.6)

By Lemma 2.2, we know that 1√
σ2
d
(m)

≫ Jd(m) as m ↓ 0 when d ≥ 2. Hence, by

taking m > 0 small enough, we have F (a, b) > 0 for every a > 0, b > 0 when d ≥ 2.
Also, when d = 1 if we fix m > 0 then we can see that for every a > 0 there exists
bc = bc(a) > 0 such that F (a, b) > 0 holds for every b > bc.

For the proof of the remaining cases of Theorem 1.1, we use the following compar-

ison estimate. Recall that F (a, b) := lim
N→∞

1
|ΛN | log

Z
U1
N

ZN
, U1(r) = −bI(|r| ≤ a) de-

notes the free energy for the square-well pinning case and F̃ (ε) := lim
N→∞

1
|ΛN | log

Z̃ε
N

ZN

denotes the free energy for the δ-pinning case.

Lemma 2.3. Let d ≥ 1. We have F (a, b) ≤ F̃ (ε(a, b)) for every a ≥ 0, b ≥ 0 where

ε(a, b) := 2a(eb − 1).

Once we have this lemma, Theorem 1.1 for the δ-pinning case when d ≥ 2 directly
follows from the result for the square-well potential case. Also, by the results in

Caravenna and Deuschel (2008), we know that there exists εc such that F̃ (ε) = 0
for every 0 ≤ ε ≤ εc when d = 1. Therefore, the above comparison estimate shows
that for every a > 0 there exists b′c = b′c(a) > 0 such that F (a, b) = 0 holds for
every b < b′c. Finally, it is easy to see that F (a, · ) is convex, and hence continuous,
and this completes the proof of the square-well potential case when d = 1. �

Proof of Corollary 1.2 : For the case of square-well pinning, it is easy to compute
that

∂

∂b
logZa,b

N = |ΛN |ρN (a, b),

and
∂2

∂b2
logZa,b

N = Var
P

a,b
N

( ∑

x∈ΛN

I(|φx| ≤ a)
)
≥ 0.

Hence, we have

1

|ΛN | log
Za,b
N

ZN

=
1

|ΛN |

∫ b

0

∂

∂b′
logZa,b′

N db′ =

∫ b

0

ρN (a, b′)db′,

and ρN (a, · ) is non-decreasing for every a > 0. Corollary 1.2 follows from these
facts and Theorem 1.1. For the case of δ-pinning, by expanding the δ-pinning part
of (1.7) we have

Z̃ε
N =

∑

A⊂ΛN

ε|A|
∫

R
ΛN

e−H∆
N (φ)

∏

x∈ΛN\A
dφx

∏

x∈A

δ0(dφx) =
∑

A⊂ΛN

ε|A|ZΛN\A. (2.7)

Then, we can compute that

d

dt
log Z̃et

N = |ΛN |ρ̃N (et),
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and
d2

dt2
log Z̃et

N = Var
P̃ et

N

( ∑

x∈ΛN

I(φx = 0)
)
≥ 0.

Hence, we have

1

|ΛN | log
Z̃ε
N

ZN

=
1

|ΛN |

∫ ε

0

d

dε′
log Z̃ε′

Ndε
′ =

∫ ε

0

1

ε′
ρ̃N (ε′)dε′,

and ρ̃N ( · ) is non-decreasing. Then, an application of Theorem 1.1 yields Corollary
1.2. �

Proof of Theorem 1.4 : Let d ≥ 5 and Qh
N denote the law of a Gaussian field on

R
ΛN with mean h ∈ R and covariance (−∆N )−2. We compare PN with Qh

N as
follows:

1

2

〈
(φ− h), (−∆N )2(φ− h)

〉
N

=
1

2

〈
φ, (−∆N )2φ

〉
N
+ 〈∆Nh,∆Nφ〉N +

1

2
〈∆Nh,∆Nh〉N

=
1

2

〈
φ, (−∆N )2φ

〉
N
+ hTN(φ) +

1

2
h2γN , (2.8)

where TN(φ) := 〈∆N1,∆Nφ〉N and γN := 〈∆N1,∆N1〉N . 1 denotes a function
that is always equal to 1. Because (∆N1)x = 0 holds for every x ∈ ΛN \ ∂−ΛN ,
TN is a Gaussian random variable with mean O(Nd−1) under the law Qh

N and we
have γN = O(Nd−1). Then, by (2.3) and (2.8), we have the following:

ZU
N =

∫

R
ΛN

e−H∆
N (φ)−UN (φ)

∏

x∈ΛN

dφx = e
1
2h

2γNΞNQ
h
N

[
ehTN (φ)−BN (φ)−UN (φ)

]
,

where we set UN(φ) :=
∑

x∈ΛN

U(φx) and ΞN := ΞN,0.

Now, we take U to be U2(r) = −bI(0 ≤ r ≤ a) + lI(r < 0), a ≥ 0, b ≥ 0, l ≥ 0.
Jensen’s inequality yields that

F (a, b, l) := lim
N→∞

1

|ΛN | log
ZU2

N

ZN

≥ lim inf
N→∞

1

|ΛN |
{1

2
h2γN + log

ΞN

ZN

+Qh
N

[
hTN(φ)−BN (φ) − UN (φ)

]}

≥ lim inf
N→∞

1

|ΛN |
∑

x∈ΛN

{
bQh

N (0 ≤ φ0 ≤ a)− lQh
N(φ0 < 0)

}
,

for every h ∈ R. Note that when d ≥ 5, we have uniform bounds on variances
under Qh

N and lim
N→∞

1
|ΛN |Q

h
N [BN (φ)] = 0. Also, Qh

N weakly converges to Qh
∞ as

N → ∞ where Qh
∞ denotes the law of a Gaussian field on R

Z
d

with mean h ∈ R

and covariance (−∆)−2. Therefore,

F (a, b, l) ≥ bQh
∞(0 ≤ φ0 ≤ a)− lQh

∞(φ0 < 0)

≥ b
C1

√
σ2
d√

2πh
e
− (h−a)2

2σ2
d − l

C2

√
σ2
d√

2πh
e
− h2

2σ2
d ,

for every h > 0 large enough, where the last inequality follows from the Gaussian

tail estimate P (N > t) ∼ 1√
2πr

e−
1
2 r

2

as r → ∞. N is a standard normal random
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variable. By this estimate, if a > 0 and b > 0 then for every l > 0 by choosing
h > 0 large enough we have F (a, b, l) > 0. �

3. Proofs of the lemmas

In this section we prove all the lemmas presented in Section 2.

Proof of Lemma 2.1 : Assume that U : R → R satisfies the condition sup
r∈R

U(r) ≤ L

for some L ∈ R. For the existence of the limit lim
N→∞

1
|ΛN | logZ

U
N , we first show that

there exists C0 = C0(d) > 0 such that for every x0 ∈ Λ ⋐ Z
d, it holds that

∫

R

e
−HΛ(φ)−

∑
x∈Λ

U(φx)

dφx0 ≥ C0e
−HΛ\{x0}

(φ)− ∑
x∈Λ\{x0}

U(φx)

. (3.1)

Define F (t) := HΛ(φ)
∣∣∣
φx0=t

, t ∈ R. F is a sum of quadratic functions of t and

|F ′′(t)| is bounded above by some constant C = C(d) > 0. Then, for fixed t0 ∈ R

we have that

F (t)− F (t0) ≤ F ′(t0)(t− t0) + C(t− t0)
2,

holds for every t ∈ R. This yields the inequality
∫

R

e
−HΛ(φ)− ∑

x∈Λ

U(φx)

dφx0 ≥ e−Le
−F (t0)−

∑
x∈Λ\{x0}

U(φx)
∫

R

e−F ′(t0)(t−t0)−C(t−t0)
2

dt.

By restricting the integral of the right-hand side to (−∞, t0] or [t0,∞) depend-
ing on whether F ′(t0) is positive or negative, the integral is bounded below by∫∞
0
e−Ct2dt <∞. Hence we obtain the inequality

∫

R

e
−HΛ(φ)− ∑

x∈Λ

U(φx)

dφx0 ≥ C′e
−F (t0)−

∑
x∈Λ\{x0}

U(φx)

,

for some C′ > 0. Because HΛ(φ)
∣∣∣
φx0=0

is equal to HΛ\{x0}(φ), if we choose t0 to

be zero then we obtain the inequality (3.1).
Now, we use a super-additivity argument. Let n ∈ N be fixed and divide ΛN

into disjoint small boxes with side-length 2n+1 by imposing 0-boundary conditions
on the layer with width two. Explicitly, given ΓN := ΛN \

( ⋃
x∈(2n+3)Zd

(x + Λn)
)
,

then ΛN \ ΓN consists of K :=
[
2N+1
2n+3

]d
disjoint small boxes with the same size

as Λn, where the distance between each small box is more than 2. Repeated use

of the inequality (3.1) yields the inequality ZU
Λ ≥ C

|Γ|
0 ZU

Λ\Γ for every Γ ⊂ Λ ⋐

Z
d and using this inequality for Λ = ΛN and Γ = ΓN , we have that ZU

N ≥
C

(CKnd−1+C′nNd−1)
0 (ZU

n )K holds for some C,C′ > 0 by the Markov property of
the field. Therefore, we have

lim inf
N→∞

1

|ΛN | logZ
U
N ≥ C

n
+
(2n+ 1

2n+ 3

)d 1

|Λn|
logZU

n ,

and by taking lim sup
n→∞

we obtain that

lim inf
N→∞

1

|ΛN | logZ
U
N ≥ lim sup

n→∞

1

|Λn|
logZU

n .
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This means that the limit lim
N→∞

1
|ΛN | logZ

U
N exists.

Next, for the proof of the existence of the limit lim
N→∞

1
|ΛN | log Z̃

ε
N , we restrict the

sum in (2.7) to sets that include ΓN . Then, by the Markov property of the field we
have that

Z̃ε
N =

∑

A⊂ΛN

ε|A|ZΛN\A ≥
∑

A⊂ΛN\ΓN

ε|A|+|ΓN |ZΛN\(A∪ΓN ) = ε|ΓN |(Z̃ε
n)

K ,

holds. The rest of the proof is the same as in the case with self-potentials. �

Proof of Lemma 2.2 : (1) Since

ΞN,m = (2π)
|ΛN |

2

√
det((m2IN −∆N )−2) = (2π)

|ΛN |

2

(
det(m2IN −∆N )

)−1
,

we can use the following random walk representation (see Bolthausen and Ioffe,
1997, Section 4.1):

log ΞN,m =
1

2
|ΛN | log(2π)− |ΛN | log(m2 + 1)

+
∑

x∈ΛN

∞∑

n=1

1

n
(

1

m2 + 1
)nPx(Sn = x, n < τΛN

),

where {Sn}n≥0 is a simple random walk on Z
d, and Px denotes its law starting

at x ∈ Z
d. τA := inf{n ≥ 0;Sn /∈ A} denotes the first exit time from A ⊂ Z

d.
Therefore,

lim sup
N→∞

{
− 1

|ΛN | log
ΞN,m

ΞN,0

}
≤ m2 +

∞∑

n=1

1

n

{
1−

( 1

m2 + 1

)n}
P0(Sn = 0)

≤ m2 + C
∞∑

n=1

n−1− d
2

{
1−

( 1

m2 + 1

)n}

≤ m2 + C

[m−2]∑

n=1

m2n− d
2 + C

∞∑

n=[m−2]+1

n−1− d
2 ,

holds for some constant C = C(d) > 0, where we used the local central limit the-

orem P0(Sn = 0) ∼ Cn− d
2 to obtain for the second inequality. The last inequality

follows from an estimate (1+ a)−n ≥ 1−na for n ≥ 1 and a > 0. Hence, we obtain
the estimate

lim sup
N→∞

{
− 1

|ΛN | log
ΞN,m

ΞN,0

}
≤ Jd(m) :=






Cdm(1 + o(1)) if d = 1,

Cdm
2| logm|(1 + o(1)) if d = 2,

Cdm
2(1 + o(1)) if d ≥ 3,

as m ↓ 0. �
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(2) By the random walk representation of (m2IN −∆N )−1, we have that

VarQN,m
(φx) = (m2IN −∆N )−2(x, x)

=
∑

y∈ΛN

(m2IN −∆N )−1(x, y)(m2IN −∆N )−1(y, x)

=
∑

y∈ΛN

{ 1

m2 + 1

∞∑

k=0

( 1

m2 + 1

)k
Px(Sk = y, k < τΛN

)
}

×
{ 1

m2 + 1

∞∑

l=0

( 1

m2 + 1

)l
Py(Sl = x, l < τΛN

)
}

=
1

(m2 + 1)2

∞∑

k=0

∞∑

l=0

( 1

m2 + 1

)k+l
Px(Sk+l = x, k + l < τΛN

)

≤ 1

(m2 + 1)2

∞∑

k=0

∞∑

l=0

( 1

m2 + 1

)k+l
Px(Sk+l = x)

=
1

(m2 + 1)2

∞∑

n=0

(n+ 1)
( 1

m2 + 1

)n
Px(Sn = x) = VarQ∞,m

(φ0).

For the asymptotics of VarQ∞,m
(φ0), we use the local central limit theorem and the

asymptotics of the polylogarithm:
∞∑
k=1

(eµ)k

ks ∼ Γ(1 − s)(−µ)s−1 as µ ↑ 0 if s < 1

when d ≤ 3 and the expansion
∞∑
k=1

xk

k
= − log(1−x), 0 < x < 1 when d = 4. Then,

we can obtain

VarQ∞,m
(φ0) = σ2

d(m) :=





C̃dm
−4+d(1 + o(1)) if d = 1, 2, 3,

C̃d| logm|(1 + o(1)) if d = 4,

C̃d(1 + o(1)) if d ≥ 5,

as m ↓ 0. �

Proof of Lemma 2.3 : By expanding the pinning part, we have

Za,b
N

ZN

= PN

[
exp

{ ∑

x∈ΛN

bI(|φx| ≤ a)
}]

=
∑

A⊂ΛN

(eb − 1)PN

(
|φx| ≤ a for every x ∈ A

)
,

Z̃ε
N

ZN

=
∑

A⊂ΛN

ε|A|ZN(A)

ZN

,

where

ZN (A) =

∫

R
ΛN

e−H∆
N (φ)

∏

x∈ΛN\A
dφx

∏

x∈A

δ0(dφx).

If we can show that

PN

(
|φx| ≤ a for every x ∈ A

)
≤ (2a)|A|ZN (A)

ZN

, (3.2)

for every A ⊂ ΛN , then we have

Za,b
N

ZN

≤
∑

A⊂ΛN

(eb − 1)|A|(2a)|A|ZN (A)

ZN

=
Z̃

ε(a,b)
N

ZN

,
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with ε(a, b) = 2a(eb − 1), and this yields F (a, b) ≤ F̃ (ε(a, b)). Now, we prove the
inequality (3.2). For a given {φx}x∈A, let φ

∗ be a solution of the following Dirichlet
boundary problem:





∆2φ∗(x) = 0 for every x ∈ ΛN \A,
φ∗(x) = φ(x) for every x ∈ A,

φ∗(x) = 0 for every x ∈ Λc
N .

Then, for every configuration φ̃ ∈ R
ΛN that coincides with φ on A, we have

H∆
N (φ̃) = H∆

N (φ̃− φ∗) +H∆
N (φ∗) ≥ H∆

N (φ̃− φ∗),

where the equality follows from the fact that
∑

x∈ΛN

(∆ψx)ηx =
∑

x∈ΛN

ψx(∆ηx) for

every η ∈ R
ΛN∪∂

+
2 ΛN and ψ ∈ R

ΛN∪∂
+
2 ΛN which satisfies ψx = 0 for every x ∈ ∂+2 ΛN

combining with ∆2φ∗ = 0 on ΛN \A and φ̃− φ∗ = 0 on A. By this estimate,

ZNPN

(
|φx| ≤ a for every x ∈ A

)

=

∫

RA

I
(
|φx| ≤ a for every x ∈ A

)(∫

R
ΛN\A

e−H∆
N (φ)

∏

x∈ΛN\A
dφx

) ∏

x∈A

dφx

≤
∫

RA

I
(
|φx| ≤ a for every x ∈ A

)(∫

R
ΛN\A

e−H∆
N (φ̃−φ∗)

∏

x∈ΛN\A
dφ̃x

) ∏

x∈A

dφx

= (2a)|A|ZN (A),

and we obtain the inequality (3.2), as desired. �

4. Proof of Theorem 1.6

In this section we consider the model with both gradient interactions and Lapla-
cian interactions. By a simple change of variables, we may assume that κ1 = κ > 0
and κ2 = 1 in Hamiltonian (1.8), and we may further define HΛ,κ(φ) := κH∇

Λ (φ) +
H∆

Λ (φ) for Λ ⋐ Z
d. We insert mass terms for this model as follows:

HN,κ,m(φ) := HN,κ(φ) +m2H∇
N (φ) +

1

2
m2κ

∑

x∈ΛN

(φx)
2.

The corresponding Gibbs measure is defined by

PN,κ,m(dφ) =
1

ZN,κ,m

exp
{
−HN,κ,m(φ)

} ∏

x∈ΛN

dφx,

where ZN,κ,m denotes the normalization factor.
Now, we have

HN,κ,m(φ) =
1

2
κ〈φ, (−∆N )φ〉N +

1

2
〈φ, (−∆N )2φ〉N +BN (φ)

+
1

2
m2〈φ, (−∆N )φ〉N +

1

2
m2κ〈φ, φ〉N

=
1

2
〈φ, (m2IN −∆N )(κIN −∆N )φ〉N +BN (φ).
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Then, we define a Gaussian measure QN,κ,m as follows:

QN,κ,m(dφ) =
1

ΞN,κ,m

exp
{
−1

2
〈φ, (m2IN −∆N )(κIN −∆N )φ〉N

} ∏

x∈ΛN

dφx,

where

ΞN,κ,m =

∫

R
ΛN

exp
{
−1

2
〈φ, (m2IN −∆N )(κIN −∆N )φ〉N

} ∏

x∈ΛN

dφx.

The law of the corresponding centered Gaussian field on R
Z
d

with the covariance
(m2I − ∆)−1(κI − ∆)−1 is denoted by Q∞,κ,m. As for PN,m, the finite-volume
Gibbs measure PN,κ,m has the Markov property with distance two and an argument
similar to that in the proofs of Theorem 1.1 and 1.4 works well. Differences are
only the way of adding the mass term and asymptotic behaviors as m ↓ 0. These
are given by Lemma 4.1 below.

Lemma 4.1. There exist constants C′
d, C̃

′
d > 0 such that the following hold:

(1)

lim sup
N→∞

{
− 1

|ΛN | log
ΞN,κ,m

ΞN,κ,0

}
≤ J ′

d(m) :=






C′
dm(1 + o(1)) if d = 1,

C′
dm

2| logm|(1 + o(1)) if d = 2,

C′
dm

2(1 + o(1)) if d ≥ 3.

(2)

max
x∈ΛN

VarQN,κ,m
(φx) ≤ VarQ∞,κ,m

(φ0)

≤ σ′2
d (m) :=





C̃′
dm

−1(1 + o(1)) if d = 1,

C̃′
d| logm|(1 + o(1)) if d = 2,

C̃′
d(1 + o(1)) if d ≥ 3.

Proof : (1) Since ΞN,κ,m = (2π)
|ΛN |

2

√
det((m2IN −∆N )−1(κIN −∆N )−1), we have

log
ΞN,κ,m

ΞN,κ,0
= 1

2 log
ΞN,m

ΞN,0
. Hence the same estimate as given for Lemma 2.2 (1) holds.

(2) Similar to the proof of Lemma 2.2 we can compute that

max
x∈ΛN

VarQN,κ,m
(φx) ≤ VarQ∞,κ,m

(φ0)

= ((m2I −∆)−1(κI −∆)−1)(0, 0)

=
∑

x∈Zd

(m2I −∆)−1(0, x)(κI −∆)−1(x, 0)

=
1

(m2 + 1)(κ+ 1)

∞∑

k=0

∞∑

l=0

( 1

m2 + 1

)k( 1

κ+ 1

)l
P0(Sk+l = 0).

By the local central limit theorem we have that the estimate

P0(Sk+l = 0) ≤ C(k + l)−
d
2 ≤ Ck−

d
2 ,

holds for every k ≥ 1 and l ≥ 1. These estimates yield the bound

VarQ∞,κ,m
(φ0) ≤

C

m2 + 1

∞∑

k=0

1

k
d
2

( 1

m2 + 1

)k
,
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for some C = C(κ, d) > 0. Hence we obtain the variance

VarQ∞,κ,m
(φ0) ≤ σ′2

d (m) :=






C̃′
dm

−1(1 + o(1)) if d = 1,

C̃′
d| logm|(1 + o(1)) if d = 2,

C̃′
d(1 + o(1)) if d ≥ 3,

as m ↓ 0. �

For the case of square-well potentials, we have 1√
σ′2
d
(m)

≫ J ′
d(m) as m ↓ 0 for every

d ≥ 1 in the argument of the inequality (2.6) by Lemma 4.1 and we can see that the
field is always localized for every d ≥ 1. Also, if d ≥ 3 then the law Q∞,κ,0 exists,
and the argument of the proof of Theorem 1.4 works for the case of square-well
potentials and repulsive potentials. �
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