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Abstract. We consider the Fleming–Viot particle system associated with a contin-
uous-time Markov chain in a finite space. Assuming irreducibility, it is known that
the particle system possesses a unique stationary distribution, under which its em-
pirical measure converges to the quasistationary distribution of the Markov chain.
We complement this Law of Large Numbers with a Central Limit Theorem. Our
proof essentially relies on elementary computations on the infinitesimal generator
of the Fleming–Viot particle system, and involves the so-called π-return process in
the expression of the asymptotic variance. Our work can be seen as an infinite-time
version, in the setting of finite space Markov chains, of results by Del Moral and
Miclo (2003) and Cérou et al. (2016, 2017).

1. Introduction

1.1. Quasistationary distribution. Let E be a finite set, and P be a stochastic matrix
on E with coefficients p(x, y), x, y ∈ E. Denote by (xt)t≥0 the continuous-time
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Markov chain in E with infinitesimal generator

∀x ∈ E, ∀f : E → R, Lf(x) :=
∑

y∈E

p(x, y)[f(y) − f(x)]. (1.1)

For any nonempty subset D of E, define the random time τD by

τD := inf{t ≥ 0 : xt 6∈ D}.
A probability measure π on D is called a quasistationary distribution (QSD) for
(xt)t≥0 in D if for any t ≥ 0,

Pπ(xt ∈ ·|τD > t) = π(·).
Here and throughout the paper, we use the notation Pµ, Eµ (respectively Px, Ex) to
indicate that x0 is distributed according to the probability measure µ (respectively
equal to x almost surely).

As soon as the restriction of the matrix P to the set D is irreducible, there exists
a unique QSD in D, which possesses a natural spectral characterisation, recalled in
Proposition 2.1 below. Furthermore, Darroch and Seneta (1967) proved that the
QSD is the so-called Yaglom limit

lim
t→+∞

Pµ(xt ∈ ·|τD > t) = π(·),

for any initial distribution µ in the set of probability measures on D. We refer
to Collet et al. (2013) for a standard reference on QSDs.

1.2. Fleming–Viot particle system. Consider n particles evolving independently in
E according to the infinitesimal generator L, with the supplementary condition that
as soon as one particle attempts to jump to a point y ∈ E \D, it is instantly moved
to the location of one the n − 1 remaining particles, picked uniformly at random.
Clearly, this dynamics induces a Markov chain (x1

t , . . . , x
n
t )t≥0 in D

n, which is called
the Fleming–Viot particle system1 (Asselah et al., 2011).

Assume that the particles are initially iid according to some probability measure
µ on D. Asselah et al. (2011) proved that, for any t ≥ 0, the empirical distribution
ηn
t of (x1

t , . . . , x
n
t ), defined by

∀x ∈ D, ηn
t (x) :=

1

n

n∑

i=1

1{xi

t
=x},

converges, when n→ +∞, to the probability measure Pµ(xt ∈ ·|τD > t).
On the other hand, the process (x1

t , . . . , x
n
t )t≥0 is irreducible in D

n, and therefore
it possesses a unique stationary distribution. Let (x1

∞, . . . , x
n
∞) be a random vector

in D
n distributed according to this stationary distribution, and consider the random

probability measure ηn
∞ defined on D by

∀x ∈ D, ηn
∞(x) :=

1

n

n∑

i=1

1{xi
∞

=x}.

1The terminology Fleming–Viot particle system for such processes, with a finite number of
particles and space-inhomogeneous exit rate, was popularised by Burdzy et al. (1996, 2000) — the
second reference specifically addressing the case of d-dimensional Brownian motions. A discussion
of the differences between the evolution of the empirical measure of this n-particle model and the
original Fleming–Viot superprocess Etheridge (2000, Chapter 1) can be found in the introduction
of Grigorescu and Kang (2004).
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It was also proved by Asselah et al. (2011) that ηn
∞ converges, when n→ +∞, to the

QSD π. We refer to Burdzy et al. (2000); Del Moral and Miclo (2003); Grigorescu
and Kang (2004); Rousset (2006); Ferrari and Marić (2007); Löbus (2009); Ville-
monais (2014); Cloez and Thai (2016b); Oçafrain and Villemonais (2017) for general
approximation results for either the conditional distribution Pµ(xt ∈ ·|τD > t) or
the QSD π by Fleming–Viot-like particle systems, in various contexts.

In particular, the convergence of ηn
∞ to π provides an effective numerical pro-

cedure to approximate the QSD, by simulating the Fleming–Viot particle system
over sufficiently long time intervals, and with a sufficiently large number of particles
(see Aldous et al., 1988; Groisman and Jonckheere, 2013; Benäım and Cloez, 2015;
Benäım et al., 2018 for some alternative methods). To assess the quality of this
approximation, it is necessary to obtain error estimates, both on the time needed
for the Fleming–Viot particle system to reach its equilibrium, and on the rate of
convergence of ηn

∞ to π. In this article, we address the latter question by proving
a Central Limit Theorem for ηn

∞, stated in Theorem 2.4.

2. Notation and main results

2.1. Functions and measures. We denote by C(D) the set of functions D → R and
by M(D) the set of finite signed measures on D (both sets can be identified with
R

D, but we introduce distinct notations to make our statements more clear). The
duality bracket between M(D) and C(D) is written

∀ρ ∈ M(D), ∀f ∈ C(D), 〈ρ, f〉 :=
∑

x∈D

ρ(x)f(x).

Let H and K be subspaces of C(D) or M(D), with respective dual spaces H′

and K′ for the bracket 〈·, ·〉. The adjoint of an operator R : H → K is denoted
by R∗ : K′ → H′. If H ⊂ C(D) and K ⊂ M(D) (or alternatively H ⊂ M(D) and
K ⊂ C(D)) are each other’s dual, the operator R is called symmetric if it coincides
with R∗.

The identity of a space H is denoted by IH.
We denote by P(D) the set of probability measures on D, namely the set of

measures η ∈ M(D) such that η(x) ≥ 0 for all x ∈ D and 〈η,1〉 = 1, where
1 ∈ C(D) is defined by 1(x) := 1 for all x ∈ D.

2.2. Quasistationary distribution. Let us write pD(x, y) := p(x, y), x, y ∈ D, and
define PD : C(D) → C(D) by

∀f ∈ C(D), ∀x ∈ D, PDf(x) :=
∑

y∈D

pD(x, y)f(y),

and q ∈ C(D) by

∀x ∈ D, q(x) :=
∑

y∈E\D

p(x, y) = 1 −
∑

y∈D

pD(x, y). (2.1)

Throughout the article, we work under the following assumption, which we shall
not recall in the statement of our results.

(Irr) The substochastic matrix PD is irreducible on the finite space D.
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The following result is a consequence of the Perron–Frobenius Theorem (Seneta
(2006, Theorem 1.5, p. 22)), and its proof is omitted. We recall that (xt)t≥0 is the
continuous-time Markov chain with infinitesimal generator L introduced in (1.1).

Proposition 2.1 (Existence and uniqueness of the QSD). The following properties
hold.

(i) There exists λ ∈ [0, 1) such that 1 − λ is the spectral radius of PD.
(ii) The eigenvalue 1 − λ of PD is simple, and any other eigenvalue σ satisfies

Reσ < 1 − λ.
(iii) There is a unique π ∈ P(D) such that P ∗

D
π = (1 − λ)π.

(iv) For all x ∈ D, π(x) > 0.
(v) π is the unique QSD of (xt)t≥0 in D.
(vi) π and q satisfy the relation 〈π, q〉 = λ.

2.3. Fleming–Viot particle system. For all n ≥ 1, let Pn(D) be the subset of proba-
bility measures η ∈ P(D) with atoms of mass proportional to 1/n; namely such that
for all x ∈ D, there exists k(x) ∈ {0, . . . , n} such that η(x) = k(x)/n. Of course,∑

x∈D
k(x) = n.

For all x, y ∈ D, let us define the measure θx,y ∈ M(D) by

∀z ∈ D, θx,y(z) := 1{y=z} − 1{x=z}. (2.2)

Definition 2.2 (Empirical distribution of the Fleming–Viot particle system). Let
n ≥ 2. The empirical distribution of the Fleming–Viot particle system with n
particles is the continuous-time Markov chain (ηn

t )t≥0 in Pn(D) with infinitesimal
generator

Lnφ(η) :=
∑

x,y∈D

nη(x)

(
pD(x, y) + q(x)

nη(y)

n− 1

)[
φ

(
η +

θx,y

n

)
− φ(η)

]
,

for any function φ : Pn(D) → R.

That the measure-valued process (ηn
t )t≥0 actually describes the evolution of the

empirical distribution of the particle system introduced in Subsection 1.2 is imme-
diate. Indeed, in the configuration η ∈ Pn(D), there are nη(x) particles located at
x ∈ D, each of which can jump ‘directly’ to y ∈ D at rate pD(x, y), or try to exit
D at rate q(x) and be moved to y with probability nη(y) (the number of particles
located at y) divided by n− 1 (the total number of remaining particles).

2.4. Statement of the main result. By Assumption (Irr), the process (ηn
t )t≥0 intro-

duced in Definition 2.2 is irreducible in the finite space Pn(D), therefore it possesses
a unique stationary distribution. Let ηn

∞ be a random variable in P(D) distributed
according to this stationary distribution. The following Law of Large Numbers was
obtained by Asselah et al. (2011, Theorem 2).

Proposition 2.3 (LLN for ηn
∞). Let ‖ · ‖ be any norm on M(D). Then

lim
n→+∞

E[‖ηn
∞ − π‖] = 0.

Our main result is a Central Limit Theorem complementing Proposition 2.3. For
any f ∈ C(D), we denote

Varπ(f) :=
∑

x∈D

π(x) (f(x) − 〈π, f〉)2 .
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For all t ≥ 0 and f ∈ C(D), we also define

∀x ∈ D, Qtf(x) := Ex

[
f(xt)1{τD>t}

]
= et(PD−IC(D))f(x). (2.3)

Theorem 2.4 (CLT for ηn
∞). The fluctuation field

√
n(ηn

∞−π) converges in distri-
bution, in M(D), to a centered Gaussian random variable with covariance operator
K : C(D) → M(D) defined by

〈Kf, f〉 := Varπ(f) + 2λ

∫ +∞

s=0

e2λsVarπ (Qsf) ds,

for any f ∈ C(D) such that 〈π, f〉 = 0.

In the course of the proof, we shall provide an equivalent formulation of the
covariance operator K, which involves the semigroup of the so-called π-return pro-
cess (Groisman and Jonckheere, 2013), see Lemma 5.4. Through a spectral ar-
gument on this semigroup, we shall in particular check that the integral in the
right-hand side above is finite.

Remark 2.5 (Case λ = 0). By Proposition 2.1, λ = 0 if and only if q(x) = 0 for
all x ∈ D, in which case the Markov chain (xt)t≥0 never leaves D. In this case,
π is in fact the stationary distribution of the chain in D. This case is formally
covered by the results of this article, but it is actually trivial because the Fleming–
Viot particle system merely consists in n independent copies of the Markov chain
(xt)t≥0, to which the standard Central Limit Theorem immediately applies and
yields the covariance operator K characterised by 〈Kf, f〉 = Varπ(f).

In a much more general framework, Del Moral and Miclo (2003), and more
recently Cérou et al. (2016, 2017), established a Central Limit Theorem for ηn

t ,
t ∈ [0,+∞). In the particular case of Markov chains with a finite space, and
assuming for the sake of simplicity that in the Fleming–Viot particle system, the
particles are initially iid according to π, the corresponding asymptotic variance for
ηn
t reads

〈Ktf, f〉 = Varπ(f) + 2λ

∫ t

s=0

e2λsVarπ (Qsf) ds,

for any f ∈ C(D) such that 〈π, f〉 = 0 (see Del Moral and Miclo, 2003, Proposi-
tion 3.7 and Cérou et al., 2016, Corollary 2.2). It is immediate to check that in the
t→ +∞ limit, one recovers the covariance operator K from Theorem 2.4.

Owing to the remark that the Central Limit Theorem for ηnt , t ∈ [0,+∞), holds
for quite a large class of continuous-time Markov processes in general state spaces
(see Cérou et al. (2017, Theorem 2.6)), it is natural to ask whether our approach
can be generalised to such cases. Although our arguments can heuristically be
formulated in an abstract enough setting, we expect their practical implementation
to become much more technical, in particular because of the infinite-dimensional
nature of ηnt . For the sake of clarity, we therefore chose to focus on finite space
Markov chains and keep the formalism elementary.

Proposition 2.3 naturally raises the question of determining a rate of convergence
for ηn

∞ to π, and Theorem 2.4 indicates that, at least asymptotically,
√
n is the

correct answer. At the nonasymptotic level, an inequality of the form

∀n ≥ 2, E
[
‖ηn

∞ − π‖2
]
≤ C

n
, (2.4)
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for some norm ‖ · ‖ on M(D), may therefore be expected to hold. In the terms
of Ferrari and Marić (2007) and Asselah et al. (2011), such a control essentially
amounts to asserting that, under the stationary distribution of the Fleming–Viot
particle system, ‘the correlations between the particles are of order 1/n’. At finite
time t, this estimate was proved by Asselah et al. (2011, Proposition 2) and is
an important ingredient of the proof of Proposition 2.3. However, to the best of
our knowledge, the control of the correlations under the stationary distribution is
known to hold only under specific mixing conditions (Ferrari and Marić, 2007; Cloez
and Thai, 2016b). It also appears in Rousset (2006) for the case of diffusions with
soft killing. Our proof relies on a weaker form of (2.4), further comments on this
aspect are provided in Remark 4.3.

2.5. Sketch of the proof and outline of the article. In Section 3, we introduce
the π-return process, which describes the trajectorial behaviour of the stationary
Fleming–Viot particle system in the n→ +∞ limit, and with which several of the
notions that we shall manipulate are related.

The proof of Theorem 2.4 follows the standard approach of: (i) proving the
tightness of the fluctuation field

√
n(ηn

∞ − π); (ii) identifying the law of its limits.
The first step is detailed in Section 4. It rests on a moment estimate derived
from algebraic manipulations on the infinitesimal generator Ln, and the use of an
appropriate Lyapunov equation. The second step is detailed in Section 5, where
the law of any limit of

√
n(ηn

∞ − π) is shown to be the stationary distribution
of a linear diffusion process, for which uniqueness and identification follow from
standard arguments.

Elementary linear algebra results, which are suited to our framework, are col-
lected in Appendix A.

Apart from the use of Proposition 2.3 made in the proof of our tightness result,
we emphasise that our arguments are entirely static, in the sense that they merely
involve estimates on the law of ηn

∞, which stem from elementary manipulations
of the infinitesimal generator Ln. At the technical level, we thereby avoid resort-
ing to graphical constructions of the process (Asselah et al., 2011; Groisman and
Jonckheere, 2013), coupling techniques (Cloez and Thai, 2016b,a) or martingale
arguments (Cérou et al., 2016, 2017).

Throughout the article, we take the convention to call ‘Theorem’ and ‘Lemma’
the results which are proper to our arguments, while we call ‘Proposition’ the results
which are either proved elsewhere or essentially standard.

3. The π-return process

3.1. Definition. By exchangeability, the convergence of the empirical distribution
ηn
∞ to π stated in Proposition 2.3 is known to be equivalently formulated as a

chaoticity result (Sznitman, 1991); namely, under the stationary distribution of the
Fleming–Viot particle system, any finite subset of particles asymptotically behaves,
when n→ +∞, like independent realisations of π. Groisman and Jonckheere (2013)
provided a trajectorial description of this chaoticity phenomenon (see also Grig-
orescu and Kang, 2006; Löbus, 2009 for related results), based on the following
process.
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Definition 3.1 (π-return process). The π-return process is the continuous-time
Markov chain (xπ

t )t≥0 in D with jump rates

∀x, y ∈ D, pπD(x, y) := pD(x, y) + q(x)π(y).

The process (xπ
t )t≥0 can be simply described as a copy of (xt)t≥0 in which the

transitions to points in E \ D are replaced with transitions to points in D indepen-
dently drawn according to π. By Assumption (Irr) and Proposition 2.1, the QSD π
is the unique stationary distribution of (xπ

t )t≥0. In Groisman and Jonckheere (2013,
Theorem 2.10), it was proved that if the Fleming–Viot particle system is started
under its stationary distribution, then when n → +∞, the marginal evolution of
each particle converges in distribution, in the space of sample-paths, to the process
(xπ

t )t≥0 with initial distribution π.
We denote by P π

D
: C(D) → C(D) the operator defined by

∀x ∈ D, ∀f ∈ C(D), P π
D f(x) :=

∑

y∈D

pπD(x, y)f(y),

so that

P π
D
f = PDf + 〈π, f〉q. (3.1)

The infinitesimal generator Lπ
D

: C(D) → C(D) of the π-return process writes Lπ
D

=
P π
D
− IC(D), and the associated semigroup is denoted by

∀t ≥ 0, ∀x ∈ D, ∀f ∈ C(D), P π
t,Df(x) := Ex[f(xπ

t )] = etL
π

Df(x). (3.2)

Finally, the Dirichlet form of the π-return process is the quadratic form Aπ
D

on
C(D) defined by

Aπ
D(f) :=

1

2

∑

x,y∈D

π(x)pπD(x, y) [f(y) − f(x)]
2

= −
∑

x∈D

π(x)f(x)Lπ
Df(x).

3.2. Spectral estimates. In this subsection, we describe some spectral properties of
the π-return process. We first introduce the spectral gap of the operator PD, which
by Proposition 2.1 is positive.

Definition 3.2 (Spectral gap of PD). The spectral gap of PD is defined by

γ := 1 − λ− max
σ 6=1−λ

Reσ > 0,

where the max is taken over the eigenvalues σ of PD.

Since π is the unique stationary distribution of the π-return process, 1 is a single
eigenvalue for P π

D
, and

P π
D1 = 1, (P π

D )∗π = π. (3.3)

As a consequence, we have the direct sum decomposition

C(D) = R1⊕ C0(D), C0(D) := {f ∈ C(D) : 〈π, f〉 = 0}, (3.4)

where both subspaces R1 and C0(D) are stable by P π
D

. Likewise,

M(D) = Rπ ⊕M0(D), M0(D) := {ξ ∈ M(D) : 〈ξ,1〉 = 0}, (3.5)

and both subspaces Rπ and M0(D) are stable by (P π
D

)∗.

Remark 3.3 (Dual spaces of M0(D) and C0(D)). Throughout the article, we identify
the spaces M0(D) and C0(D) as each other’s dual.
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We may now state some useful properties of P π
D

. We recall the definition (2.3)
of the semigroup of operators (Qt)t≥0.

Lemma 3.4 (Spectral properties of the π-return process). The operator P π
D

pos-
sesses the following properties.

(i) Any complex eigenvalue σ 6= 1 of P π
D

satisfies Reσ ≤ 1 − λ− γ.
(ii) For any δ > 0, for any norm ‖ · ‖ on C(D), there exists Cδ ∈ [0,+∞) such

that, for any f ∈ C0(D),

∀t ≥ 0, max
x∈D

P π
t,Df(x) ≤ Cδe−t(λ+γ−δ)‖f‖.

(iii) For any f ∈ C(D), x ∈ D and t ≥ 0, P π
t,Df(x) = Qt(f −〈π, f〉1)(x)+ 〈π, f〉.

Proof : All three assertions of the lemma follow from the observation that, by (3.4)
and (3.1), the restriction of P π

D
to the stable subspace C0(D) coincides with PD.

Then any eigenvalue of P π
D

which is not equal to 1 is necessarily an eigenvalue of
PD and thus satisfies Assertion (i) as a consequence of Definition 3.2. The latter
assertion implies that, for any δ > 0, the family of operators {et(λ+γ−δ)P π

t,D, t ≥
0} is bounded on C0(D) and thereby yields Assertion (ii). One finally obtains
Assertion (iii) by noting that the operators Qt = et(PD−IC(D)) and P π

t,D = et(P
π

D
−IC(D))

coincide on C0(D). �

3.3. Two related operators. To prove Theorem 2.4, we shall show that
√
n(ηn

∞−π)
converges to the stationary distribution of a linear diffusion process in M0(D), with
drift and diffusion operators expressed in terms of quantities related to the π-return
process. We introduce these operators in the present subsection and will use them
in Sections 4 and 5.

3.3.1. The drift operator. We recall that by (3.3) and (3.5), the subspace M0(D) of
M(D) is stable by the adjoint (P π

D
)∗ : M(D) → M(D) of the operator P π

D
: C(D) →

C(D).

Definition 3.5 (Drift operator). The drift operator is the operator B0 : M0(D) →
M0(D) defined by

B0 := (P π
D

)∗ − (1 − λ)IM0(D) = (Lπ
D

)∗ + λIM0(D).

Remark 3.6 (Spectrum). By Lemma 3.4, any eigenvalue τ of B0 satisfies Re τ ≤ −γ.

3.3.2. The diffusion operator. Recall the definition of the Dirichlet form Aπ
D

of
the π-return process in Subsection 3.1. Since, by Remark 3.3, the dual of C0(D)
is identified with M0(D), by Riesz’ Theorem, there exists a symmetric operator
Aπ

D
: C0(D) → M0(D) such that, for any f ∈ C0(D),

〈Aπ
D
f, f〉 = Aπ

D
(f).

We call Aπ
D

the diffusion operator ; notice that it can be expressed as the restriction
to C0(D) of the symmetric part of −Lπ

D
in L2(π).

The irreducibility of the π-return process implies the following result (elementary
material on symmetric and positive definite operators is gathered in Appendix A).

Lemma 3.7 (On the operator Aπ
D

). The operator Aπ
D

is positive definite, in the
sense that it satisfies 〈Aπ

D
f, f〉 > 0, for all f ∈ C0(D) \ {0}.



CLT for stationary Fleming–Viot particle systems in finite spaces 1171

4. Tightness of the fluctuation field

In this section, we prove the following result.

Lemma 4.1 (Tightness of the fluctuation field). Let ‖ · ‖ be any norm on M(D).
For all ǫ > 0, there exists rǫ ∈ (0,+∞) such that, for all n ≥ 2,

P(
√
n‖ηn

∞ − π‖ > rǫ) ≤ ǫ.

An auxiliary moment estimate is established in Subsection 4.1. The proof of
Lemma 4.1 is detailed in Subsection 4.2.

4.1. Moment estimate. We first state a moment estimate for ηn
∞. We recall the

Definition 3.5 of the drift operator B0 : M0(D) → M0(D), and the definition (2.1)
of q ∈ C(D).

Lemma 4.2 (Moment estimate). Let R : M0(D) → C0(D) be a symmetric operator.
There exists C(R) ∈ [0,+∞) such that, for all n ≥ 2,

|E [〈B0(ηn
∞ − π) + 〈ηn

∞ − π, q〉(ηn
∞ − π), R(ηn

∞ − π)〉]| ≤ C(R)

n
.

Proof : In the proof, we shall employ the operator Q : M(D) → M(D) defined by

∀ρ ∈ M(D), ∀x ∈ D, Qρ(x) := q(x)ρ(x).

Let R : M0(D) → C0(D) be a symmetric operator. Let us define the function
φ : P(D) → R by

∀η ∈ P(D), φ(η) :=
1

2
〈η − π,R(η − π)〉.

For all x, y ∈ D, for all η ∈ P(D),

φ

(
η +

θx,y

n

)
− φ(η) =

1

n
〈θx,y, R(η − π)〉 +

1

2n2
〈θx,y, Rθx,y〉,

where we recall the definition (2.2) of θx,y.
Since the definition of ηn

∞ implies that E[Lnφ(ηn
∞)] = 0, we get the identity

0 = E




∑

x,y∈D

ηn
∞(x)

(
pD(x, y) + q(x)

nηn
∞(y)

n− 1

)
〈θx,y, R(ηn

∞ − π)〉




+
1

2n
E




∑

x,y∈D

ηn
∞(x)

(
pD(x, y) + q(x)

nηn
∞(y)

n− 1

)
〈θx,y, Rθx,y〉



 .

(4.1)
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We first make explicit the value of the first expectation in the right-hand side
of (4.1). By (2.2) and (2.1), for all η ∈ P(D), for all z ∈ D,

∑

x,y∈D

η(x)

(
pD(x, y) + q(x)

nη(y)

n− 1

)
θx,y(z)

=
∑

x∈D

η(x)

(
pD(x, z) + q(x)

nη(z)

n− 1

)
−

∑

y∈D

η(z)

(
pD(z, y) + q(z)

nη(y)

n− 1

)

= P ∗
D
η(z) +

n

n− 1
〈η, q〉η(z) − η(z)(1 − q(z)) − n

n− 1
η(z)q(z)

=

(
P ∗
D − IM(D) −

Q

n− 1

)
η(z) +

n

n− 1
〈η, q〉η(z)

=
(
P ∗
D
− IM(D)

)
η(z) + 〈η, q〉η(z) +

1

n− 1
{−Qη(z) + 〈η, q〉η(z)} ,

so that

E




∑

x,y∈D

ηn
∞(x)

(
pD(x, y) + q(x)

nηn
∞(y)

n− 1

)
〈θx,y, R(ηn

∞ − π)〉




= E
[〈(

P ∗
D − IM(D)

)
ηn
∞ + 〈ηn

∞, q〉ηn
∞, R(ηn

∞ − π)
〉]

+
1

n− 1
{E [〈−Qηn

∞ + 〈ηn
∞, q〉ηn

∞, R(ηn
∞ − π)〉]} .

(4.2)

Using Proposition 2.1, we now rewrite, for all η ∈ P(D),

(P ∗
D−IM(D))η+ 〈η, q〉η = (P ∗

D− (1−λ)IM(D))(η−π)+ 〈η−π, q〉(η−π)+ 〈η−π, q〉π,

so that

〈(
P ∗
D − IM(D)

)
η + 〈η, q〉η,R(η − π)

〉
= 〈B0(η − π) + 〈η − π, q〉(η − π), R(η − π)〉 ,

where we have used the Definition 3.5 of B0 as well as the fact that R(η − π) ∈
C0(D) to justify that 〈〈η − π, q〉π,R(η − π)〉 vanishes. As a consequence, the first
expectation in the right-hand side of (4.2) rewrites

E
[〈(

P ∗
D − IM(D)

)
ηn
∞ + 〈ηn

∞, q〉ηn
∞, R(ηn

∞ − π)
〉]

= E [〈B0(ηn
∞ − π) + 〈ηn

∞ − π, q〉(ηn
∞ − π), R(ηn

∞ − π)〉] . (4.3)

Combining (4.1), (4.2) and (4.3), we finally get the identity

E [〈B0(ηn
∞ − π) + 〈ηn

∞ − π, q〉(ηn
∞ − π), R(ηn

∞ − π)〉]

= − 1

n− 1
E [〈−Qηn

∞ + 〈ηn
∞, q〉ηn

∞, R(ηn
∞ − π)〉]

− 1

2n
E




∑

x,y∈D

ηn
∞(x)

(
pD(x, y) + q(x)

nηn
∞(y)

n− 1

)
〈θx,y, Rθx,y〉



 ,

the right-hand side of which is bounded in modulus by C(R)/n for some constant
C(R) ∈ [0,+∞) depending on R. �
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4.2. Proof of Lemma 4.1. We are now ready to present the proof of Lemma 4.1.

Proof of Lemma 4.1: Let us fix a norm ‖ · ‖ on M(D), and ǫ > 0. The proof is
divided into 3 steps.

Step 1. Recall the Definition 3.2 of the spectral gap γ > 0 of PD. By Proposi-
tion 2.3, there exists n0 ≥ 2 depending on ǫ such that, for any n ≥ n0,

P(|〈ηn
∞ − π, q〉| ≥ γ/2) ≤ ǫ/2.

As a consequence, using Markov’s inequality, we get that for any r ∈ (0,+∞), for
any n ≥ n0,

P(
√
n‖ηn

∞ − π‖ ≥ r) ≤ 1

r2
E
[
n‖ηn

∞ − π‖21{|〈ηn
∞

−π,q〉|<γ/2}

]
+
ǫ

2
.

In the next step, we use Lemma 4.2 and Proposition A.3 to control the expectation
in the right-hand side.

Step 2. Let us rewrite the result of Lemma 4.2 as

∣∣E
[〈(

B0 + 〈ηn
∞ − π, q〉IM0(D)

)
(ηn

∞ − π), R(ηn
∞ − π)

〉]∣∣ ≤ C(R)

n
, (4.4)

for any symmetric operator R : M0(D) → C0(D). Now, for any η ∈ P(D),

B0 + 〈η − π, q〉IM0(D) = B̃0 −
(γ

2
− 〈η − π, q〉

)
IM0(D), (4.5)

with B̃0 := B0 + (γ/2)IM0(D). By Remark 3.6, all eigenvalues of B̃0 have a neg-
ative real part, therefore applying Proposition A.3 for any choice of a symmetric
and positive definite operator A : C0(D) → M0(D), we obtain that there exists a

symmetric and positive definite operator K̃ : C0(D) → M0(D) such that

B̃0K̃ + K̃B̃∗
0 + 2A = 0.

By Proposition A.2, K̃ is invertible and R := K̃−1 is symmetric and positive
definite. We thus get, for any η ∈ P(D),

〈B̃0(η − π), R(η − π)〉 = −〈AR(η − π), R(η − π)〉.
Let ‖ · ‖C0(D) be a norm on C0(D), and let ‖ · ‖M0(D) be the norm induced by ‖ · ‖ on
M0(D). Since A is symmetric and positive definite, by Proposition A.2 there exists
cA ∈ (0,+∞) such that for all f ∈ C0(D), 〈Af, f〉 ≥ cA‖f‖2C0(D). As a consequence,

〈AR(η − π), R(η − π)〉 ≥ cA‖R(η − π)‖2
C0(D) ≥

cA

|||K̃|||2
‖η − π‖2

M0(D),

where we denote by ||| · ||| the operator norm between the spaces (C0(D), ‖ · ‖C0(D))
and (M0(D), ‖ · ‖M0(D)). We deduce that

〈B̃0(η − π), R(η − π)〉 ≤ − cA

|||K̃|||2
‖η − π‖2

M0(D). (4.6)

On the other hand, if η ∈ P(D) is such that |〈η − π, q〉| < γ/2, then
(γ

2
− 〈η − π, q〉

)
〈η − π,R(η − π)〉 ≥ 0, (4.7)

where we have used the fact that R is symmetric and positive definite. Combin-
ing (4.5), (4.6) and (4.7), we deduce that, for all η ∈ P(D),

‖η − π‖21{|〈η−π,q〉|<γ/2} ≤ −|||K̃|||2
cA

〈(
B0 + 〈η − π, q〉IM0(D)

)
(η − π), R(η − π)

〉
.
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Evaluating this inequality for η = ηn
∞, taking the expectation and applying (4.4),

we get

E
[
n‖ηn

∞ − π‖21{|〈ηn
∞

−π,q〉|<γ/2}

]
≤ C′ :=

|||K̃|||2
cA

C(K̃−1).

Step 3. The final estimates of Steps 1 and 2 show that any choice of r ≥√
2C′/ǫ implies P(

√
n‖ηn

∞ − π‖ ≥ r) ≤ ǫ for all n ≥ n0. On the other hand, it is
known that any finite family of random variables in M(D) is tight (Billingsley, 1999,
Theorem 1.3, p. 8), therefore there exists r′ǫ ∈ (0,+∞) such that P(

√
n‖ηn

∞ − π‖ ≥
r′ǫ) ≤ ǫ, for all n < n0. Taking rǫ as the maximum between r′ǫ and

√
2C′/ǫ

completes the proof. �

Remark 4.3 (Variance estimates). Assume that q and γ satisfy the condition

α := max
x∈D

q(x) − min
x∈D

q(x) < γ. (4.8)

Then employing the decomposition

B0 + 〈η − π, q〉IM0(D) = B̃0 − (α− 〈η − π, q〉) IM0(D), B̃0 := B0 + αIM0(D),

in Step 2 of the proof of Lemma 4.1 leads to the variance estimate (2.4), which
holds without any smallness condition on ‖ηn

∞ − π‖. Such an estimate was also
obtained by Cloez and Thai (2016b, Theorem 1.3), under an assumption similar
to (4.8). The latter assumption is in particular satisfied if q(x) = λ for any x ∈ D,
that is to say, the rate at which the Markov chain (xt)t≥0 exits D does not depend
on its current position. An example of such a chain is studied by the same authors
in Cloez and Thai (2016b, Section 3.1) and Cloez and Thai (2016a, Section 2).

5. Asymptotic normality of the fluctuation field

In this section, we complete the proof of Theorem 2.4 by identifying the law
of any limit of

√
n(ηn

∞ − π). Let us sketch our argument. In Subsection 5.1, we
interpret the law of

√
n(ηn

∞−π) as the stationary distribution of a continuous-time
Markov chain (ξnt )t≥0 in M0(D). In Subsection 5.2, we describe the n → +∞
limit of the infinitesimal generator of (ξnt )t≥0. In Subsection 5.3, we show that this
limit is the infinitesimal generator of a linear diffusion process in M0(D), the unique
stationary distribution of which is the Gaussian measure introduced in Theorem 2.4.
The proof of the latter theorem is completed in Subsection 5.4.

5.1. The process (ξnt )t≥0. Let Φn : Pn(D) → M0(D) be defined by

∀η ∈ P
n(D), Φn(η) :=

√
n(η − π),

and let Mn
0 (D) ⊂ M0(D) denote the range of Φn. For all t ≥ 0, we define

ξnt := Φn(ηn
t ) =

√
n (ηn

t − π) .

Since Φn is a one-to-one map between Pn(D) and Mn
0 (D), (ξnt )t≥0 is a continuous-

time Markov chain, with infinitesimal generator

Mnψ(ξ) := Ln(ψ ◦ Φn)((Φn)−1(ξ)) =
∑

x,y∈D

ϑn(x, y, ξ)

[
ψ

(
ξ +

θx,y√
n

)
− ψ(ξ)

]
,

where

ϑn(x, y, ξ) := n

(
π(x) +

ξ(x)√
n

)(
pD(x, y) + q(x)

n

n− 1

(
π(y) +

ξ(y)√
n

))
.
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Besides, the law of the random variable

ξn∞ := Φn(ηn
∞) =

√
n (ηn

∞ − π) (5.1)

is the unique stationary distribution of (ξnt )t≥0, so that Theorem 2.4 reduces to
proving the convergence in distribution, in M0(D), of ξn∞.

5.2. Convergence of Mn. For any smooth function ψ : M0(D) → R, the gradient
∇ψ(ξ) ∈ C0(D) and the Hessian matrix ∇2ψ(ξ) : M0(D) → C0(D) are defined by
the Taylor expansion

∀ξ, ζ ∈ M0(D), ψ(ξ + ǫζ) = ψ(ξ) + ǫ〈ζ,∇ψ(ξ)〉 +
ǫ2

2
〈ζ,∇2ψ(ξ)ζ〉 + o(ǫ2).

Besides, for any symmetric operator R : M0(D) → C0(D), we introduce the
notation

Aπ
D :: R :=

1

2

∑

x,y∈D

π(x)pπD(x, y)〈θx,y, Rθx,y〉, (5.2)

where we recall the definition (2.2) of θx,y ∈ M0(D).

Lemma 5.1 (Convergence of Mn). Let ψ : M0(D) → R be a C∞ function with
compact support. We have

lim
n→+∞

sup
ξ∈M0(D)

∣∣Mnψ(ξ) −Mψ(ξ)
∣∣ = 0,

where

Mψ(ξ) := 〈B0ξ,∇ψ(ξ)〉 +Aπ
D

:: ∇2ψ(ξ).

Proof : Let ψ : M0(D) → R be a C∞ function with compact support. There exists
a compact set K ⊂ M0(D) such that for any ξ ∈ M0(D) \K, for all n ≥ 2,

Mnψ(ξ) = Mψ(ξ) = 0.

Thus, we restrict our attention to ξ ∈ K and define

rx,yn (ξ) := ψ

(
ξ +

θx,y√
n

)
− ψ(ξ) − 1√

n
〈θx,y,∇ψ(ξ)〉 − 1

2n
〈θx,y,∇2ψ(ξ)θx,y〉,

for x, y ∈ D. By the Taylor–Lagrange inequality,

sup
n≥2

sup
ξ∈K

max
x,y∈D

n3/2|rx,yn (ξ)| < +∞. (5.3)

On the other hand, for any ξ ∈ K, we write

Mnψ(ξ) =
√
nA(1)

n (ξ) +A(2)
n (ξ) +

1√
n
A(3)

n (ξ),

where, letting

pπ,n
D

(x, y) := pD(x, y) +
n

n− 1
q(x)π(y),
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we write

A(1)
n (ξ) :=

∑

x,y∈D

π(x)pπ,n
D

(x, y)〈θx,y,∇ψ(ξ)〉,

A(2)
n (ξ) :=

∑

x,y∈D

(
n

n− 1
π(x)q(x)ξ(y) + ξ(x)pπ,n

D
(x, y)

)
〈θx,y,∇ψ(ξ)〉

+
1

2

∑

x,y∈D

π(x)pπ,n
D

(x, y)〈θx,y,∇2ψ(ξ)θx,y〉,

A(3)
n (ξ) :=

1

2

∑

x,y∈D

(
n

n− 1
π(x)q(x)ξ(y) + ξ(x)pπ,n

D
(x, y)

)
〈θx,y,∇2ψ(ξ)θx,y〉

+ n3/2
∑

x,y∈D

(
π(x) +

ξ(x)√
n

)(
pπ,n
D

(x, y) +

√
n

n− 1
π(x)q(x)ξ(y)

)
rx,yn (ξ).

A short computation shows that, for any z ∈ D,

∑

x,y∈D

π(x)pπ,n
D

(x, y)θx,y(z) =
1

n− 1
(λπ(z) − q(z)π(z)),

so that

lim
n→+∞

sup
ξ∈K

|
√
nA(1)

n (ξ)| = 0.

Likewise, it follows from (5.3) and the compactness of K that |A(3)
n (ξ)| is bounded

uniformly in n ≥ 2 and ξ ∈ K, so that

lim
n→+∞

sup
ξ∈K

∣∣∣∣
1√
n
A(3)

n (ξ)

∣∣∣∣ = 0.

Thus, it remains to show that

lim
n→+∞

sup
ξ∈K

∣∣∣A(2)
n (ξ) −Mψ(ξ)

∣∣∣ = 0.

Using the convergence of pπ,n
D

(x, y) to pπ
D

(x, y), we may first observe that

lim
n→+∞

∑

x,y∈D

(
n

n− 1
π(x)q(x)ξ(y) + ξ(x)pπ,n

D
(x, y)

)
〈θx,y,∇ψ(ξ)〉

=
∑

x,y∈D

(π(x)q(x)ξ(y) + ξ(x)pπ
D

(x, y)) 〈θx,y,∇ψ(ξ)〉,

and that the limit is uniform in ξ ∈ K. For any z ∈ D,
∑

x,y∈D

(π(x)q(x)ξ(y) + ξ(x)pπ
D

(x, y)) θx,y(z)

=
∑

x∈D

(π(x)q(x)ξ(z) + ξ(x)pπ
D

(x, z)) −
∑

y∈D

(π(z)q(z)ξ(y) + ξ(z)pπ
D

(z, y))

= λξ(z) + (P π
D

)∗ξ(z) − ξ(z),

where we have used Proposition 2.1 to write 〈π, q〉 = λ, the fact that ξ ∈ M0(D) to
make the first sum over y vanish, and the fact that P π

D
is a stochastic matrix. By
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the Definition 3.5 of B0, we therefore conclude that
∑

x,y∈D

(π(x)q(x)ξ(y) + ξ(x)pπD(x, y)) θx,y = B0ξ,

so that the first term in the definition of A
(2)
n (ξ) converges to 〈B0ξ,∇ψ(ξ)〉, uni-

formly in ξ ∈ K. With similar arguments, it is immediate to show that the second
term converges, uniformly in ξ ∈ K, to Aπ

D
:: ∇2ψ(ξ) defined by (5.2), which com-

pletes the proof. �

5.3. Identification of M. Combining the results of Lemma 3.7 and Propositions A.1
and A.2, we deduce that there exist ζ1, . . . , ζk−1 ∈ M0(D) and c1, . . . , ck−1 > 0 such
that

∀f ∈ C0(D), 〈Aπ
Df, f〉 =

k−1∑

l=1

cl〈ζl, f〉2,

where k ≥ 1 is the cardinality of D (see Appendix A).

Let (w1
t )t≥0, . . . , (w

k−1
t )t≥0 be independent Brownian motions, and let us con-

sider the linear stochastic differential equation

dξt = B0ξtdt+

k−1∑

l=1

√
2clζldwl

t,

which defines a diffusion process (ξt)t≥0 in M0(D).

Lemma 5.2 (Infinitesimal generator of (ξt)t≥0). The infinitesimal generator of

(ξt)t≥0 is the operator M defined in Lemma 5.1.

Proof : Applying Ito’s Formula to ψ(ξt) for a smooth function ψ : M0(D) → R, we
observe that the claimed result reduces to checking the identity

∀ξ ∈ M0(D),
k−1∑

l=1

cl〈ζl,∇2ψ(ξ)ζl〉 = Aπ
D

:: ∇2ψ(ξ).

For a fixed ξ ∈ M0(D), Proposition A.1 shows that there exist g1, . . . , gk−1 ∈ C0(D)
and d1, . . . , dk−1 ∈ R such that

∀l = 1, . . . , k − 1, 〈ζl,∇2ψ(ξ)ζl〉 =

k−1∑

m=1

dm〈ζl, gm〉2.

As a consequence,

k−1∑

l=1

cl〈ζl,∇2ψ(ξ)ζl〉 =

k−1∑

l,m=1

cldm〈ζl, gm〉2 =

k−1∑

m=1

dm〈Aπ
D
gm, gm〉.

Using the definition of the operator Aπ
D

and of the measure θx,y, we now write, for
m ∈ {1, . . . , k − 1},

〈Aπ
Dg

m, gm〉 = Aπ
D(gm) =

1

2

∑

x,y∈D

π(x)pπD(x, y) [gm(y) − gm(x)]
2

=
1

2

∑

x,y∈D

π(x)pπ
D

(x, y)〈θx,y, gm〉2,
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so that, by the definition of gm and dm,

k−1∑

m=1

dm〈Aπ
Dg

m, gm〉 =
1

2

∑

x,y∈D

π(x)pπD(x, y)

k−1∑

m=1

dm〈θx,y, gm〉2

=
1

2

∑

x,y∈D

π(x)pπ
D

(x, y)〈θx,y,∇2ψ(ξ)θx,y〉 = Aπ
D

:: ∇2ψ(ξ),

where we have used (5.2) to obtain the last identity. �

Lemma 5.3 (Stationary distribution of (ξt)t≥0). The unique stationary distribu-

tion of (ξt)t≥0 is the centered Gaussian measure on M0(D) with the covariance
operator K : C0(D) → M0(D) defined by

K := 2

∫ +∞

s=0

esB0Aπ
D

esB
∗

0 ds.

Proof : Lemma 3.7 and Proposition A.2 show that the diffusion process (ξt)t≥0 is

uniformly elliptic on M0(D), which implies that transition semigroup of (ξt)t≥0

has a positive density with respect to the Lebesgue measure on M0(D) (Abou-
Kandil et al., 2003, Corollary 1.1.6, p. 6 and Pavliotis, 2014, Eq. (3.108), p. 82).
This ‘irreducibility’ condition ensures uniqueness of stationary distributions (see
for instance the arguments in Pagès, 2001, Section 3.1).

On the other hand, Pavliotis (2014, Proposition 3.5, p. 80) shows that a Gaussian
measure on M0(D) is stationary for (ξt)t≥0 if and only if it is centered and its
covariance operator K : C0(D) → M0(D) satisfies the Lyapunov equation

B0K +KB∗
0 + 2Aπ

D
= 0,

which by Remark 3.6 and Proposition A.3 completes the proof. �

Lemma 5.4 (Identification of the variance). For any f ∈ C0(D),

〈Kf, f〉 = Varπ(f) + 2λ

∫ +∞

s=0

e2λsVarπ(P π
s,Df)ds

= Varπ(f) + 2λ

∫ +∞

s=0

e2λsVarπ(Qsf)ds.

Proof : Let us fix f ∈ C0(D) and write

〈Kf, f〉 = 2

∫ +∞

s=0

〈Aπ
D

esB
∗

0 f, esB
∗

0 f〉ds.

For any s ≥ 0, it follows from Definition 3.5 and (3.2) that

esB
∗

0 f = es(P
π

D
−(1−λ)IC0(D))f = eλsP π

s,Df,

whence

〈Kf, f〉 = 2

∫ +∞

s=0

e2λsAπ
D

(P π
s,Df)ds.

On the other hand, it follows from the definition of Aπ
D

that for any s ≥ 0,

Aπ
D(P π

s,Df) = −
∑

x∈D

π(x)P π
s,Df(x)

d

ds
P π
s,Df(x)

= −1

2

d

ds

∑

x∈D

π(x)
(
P π
s,Df(x)

)2
= −1

2

d

ds
Varπ

(
P π
s,Df

)
,
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where in the last equality we used the fact that 〈π, P π
s,Df〉 = 〈π, f〉 = 0. As a

consequence,

〈Kf, f〉 = −
∫ +∞

s=0

e2λs
d

ds
Varπ

(
P π
s,Df

)
ds,

and using Lemma 3.4 (ii) to integrate the right-hand side by parts leads to the
first claimed expression. The second expression follows from the fact that by
Lemma 3.4 (iii), the operators P π

s,D and Qs coincide on C0(D). �

5.4. Proof of Theorem 2.4. We may now complete the proof of Theorem 2.4.

Proof of Theorem 2.4: We recall from (5.1) that the fluctuation field
√
n(ηn

∞ − π)
is denoted by ξn∞ .

By Lemma 4.1, the sequence (ξn∞)n≥2 is tight in M0(D). Therefore by Prohorov’s
Theorem (Billingsley, 1999, Theorem 5.1, p. 59), any subsequence possesses a fur-
ther subsequence, which we shall index by nm, which converges in distribution to
a random variable ξ∞ in M0(D). In particular, for any C∞ function with compact
support ψ : M0(D) → R,

0 = E [Mnmψ(ξnm

∞ )] = E
[
(Mnm −M)ψ(ξnm

∞ )
]

+ E
[
Mψ(ξnm

∞ )
]
→ E

[
Mψ(ξ∞)

]
,

where we have used Lemma 5.1 to get that E[(Mnm −M)ψ(ξnm

∞ )] converges to 0.
Thus, we deduce from Lemma 5.2 that the law of ξ∞ is a stationary distribution

for (ξt)t≥0, which by Lemma 5.3 entails its identification and yields the convergence

of the whole sequence (ξn∞)n≥2 to ξ∞, with the asymptotic covariance given by
Lemma 5.4. �

Appendix A. Complements on operators and Lyapunov equations

In this appendix, we recall some elementary results of linear algebra which are
useful in our framework. We denote by k ≥ 1 the cardinality of D, so that M0(D)
and C0(D) are linear spaces of dimension k − 1.

A.1. Diagonalisation of symmetric operators. Following Remark 3.3, recall that the
spaces M0(D) and C0(D) are identified with each other’s dual. In this framework,
the operators N : C0(D) → M0(D) and R : M0(D) → C0(D) are called symmetric if
they coincide with their adjoint operators N∗ : C0(D) → M0(D) and R∗ : M0(D) →
C0(D).

Proposition A.1 (Diagonal form of symmetric operators). Let N : C0(D) →
M0(D) and R : M0(D) → C0(D) be symmetric operators.

(i) There exist a basis (ζ1, . . . , ζk−1) of M0(D) and c1, . . . , ck−1 ∈ R such that,

for any f ∈ C0(D), 〈Nf, f〉 =
∑k−1

l=1 c
l〈ζl, f〉2.

(ii) There exist a basis (g1, . . . , gk−1) of C0(D) and d1, . . . , dk−1 ∈ R such that,

for any ξ ∈ M0(D), 〈ξ, Rξ〉 =
∑k−1

l=1 d
l〈ξ, gl〉2.

A.2. Positive definite operators. A symmetric operator N : C0(D) → M0(D) is
called positive definite if it satisfies 〈Nf, f〉 > 0 for any f ∈ C0(D) \ {0}. A similar
definition holds for operators R : M0(D) → C0(D).

Proposition A.2 (On symmetric and positive definite operators). Let N : C0(D) →
M0(D) be a symmetric operator. The following conditions are equivalent.
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(i) N is positive definite.
(ii) The numbers c1, . . . , ck−1 provided by Proposition A.1 are positive.
(iii) For any norm ‖ · ‖C0(D) on C0(D), there exists cN ∈ (0,+∞) such that for

all f ∈ C0(D), 〈Nf, f〉 ≥ cN‖f‖2
C0(D).

Besides, under any of these conditions, N is invertible and its inverse N−1 :
M0(D) → C0(D) is a symmetric and positive definite operator.

With obvious adjustments, a similar statement holds for symmetric and positive
definite operators R : M0(D) → C0(D).

A.3. Lyapunov equation. In this section, we recall a standard result regarding Lya-
punov equations, see for instance Abou-Kandil et al. (2003, Theorem 1.1.7, p. 6).

Proposition A.3 (Solution to Lyapunov equations). Let B̃0 : M0(D) → M0(D)
be an operator of which all the eigenvalues have a negative real part, and let A :
C0(D) → M0(D) be a symmetric operator.

(i) The integral

K̃ := 2

∫ +∞

s=0

esB̃0AesB̃
∗

0 ds

is finite and defines a symmetric operator C0(D) → M0(D).

(ii) K̃ is the unique symmetric solution to the Lyapunov equation

B̃0K̃ + K̃B̃∗
0 + 2A = 0.

(iii) If A is positive definite, then so is K̃.
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M. Benäım, B. Cloez and F. Panloup. Stochastic approximation of quasi-stationary
distributions on compact spaces and applications. Ann. Appl. Probab. 28 (4),
2370–2416 (2018). MR3843832.

http://www.ams.org/mathscinet-getitem?mr=MR1997753
http://dx.doi.org/10.1017/S026996480000084X
http://www.ams.org/mathscinet-getitem?mr=MR2840302
http://www.ams.org/mathscinet-getitem?mr=MR3352332
http://www.ams.org/mathscinet-getitem?mr=MR3843832


CLT for stationary Fleming–Viot particle systems in finite spaces 1181

P. Billingsley. Convergence of probability measures. Wiley Series in Probability and
Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second
edition (1999). ISBN 0-471-19745-9. MR1700749.

K. Burdzy, R. Ho lyst, D. Ingerman and P. March. Configurational transition in
a Fleming–Viot-type model and probabilistic interpretation of Laplacian eigen-
functions. Journal of Physics A: Mathematical and General 29 (11), 2633 (1996).

K. Burdzy, R. Ho lyst and P. March. A Fleming-Viot particle representation of the
Dirichlet Laplacian. Comm. Math. Phys. 214 (3), 679–703 (2000). MR1800866.

F. Cérou, B. Delyon, A. Guyader and M. Rousset. A central limit theorem for
Fleming–Viot particle systems with soft killing. ArXiv Mathematics e-prints
(2016). arXiv: 1611.00515.

F. Cérou, B. Delyon, A. Guyader and M. Rousset. A central limit theorem for
Fleming–Viot particle systems with hard killing. ArXiv Mathematics e-prints
(2017). arXiv: 1709.06771.

B. Cloez and M.-N. Thai. Fleming-Viot processes: two explicit examples. ALEA
Lat. Am. J. Probab. Math. Stat. 13 (1), 337–356 (2016a). MR3487076.

B. Cloez and M.-N. Thai. Quantitative results for the Fleming-Viot particle system
and quasi-stationary distributions in discrete space. Stochastic Process. Appl.
126 (3), 680–702 (2016b). MR3452809.

P. Collet, S. Mart́ınez and J. San Mart́ın. Quasi-stationary distributions. Prob-
ability and its Applications (New York). Springer, Heidelberg (2013). ISBN
978-3-642-33130-5; 978-3-642-33131-2. MR2986807.

J. N. Darroch and E. Seneta. On quasi-stationary distributions in absorbing
continuous-time finite Markov chains. J. Appl. Probability 4, 192–196 (1967).
MR0212866.

P. Del Moral and L. Miclo. Particle approximations of Lyapunov exponents con-
nected to Schrödinger operators and Feynman-Kac semigroups. ESAIM Probab.
Stat. 7, 171–208 (2003). MR1956078.

A. M. Etheridge. An introduction to superprocesses, volume 20 of University Lecture
Series. American Mathematical Society, Providence, RI (2000). ISBN 0-8218-
2706-5. MR1779100.
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