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Abstract. We modify the global Skorokhod topology, on the space of cadlag paths,
by localising with respect to space variable, in order to include the eventual explo-
sions. The tightness of families of probability measures on the paths space endowed
with this local Skorokhod topology is studied and a characterization of Aldous type
is obtained. The local and global Skorokhod topologies are compared by using a
time change transformation.

1. Introduction

The study of cadlag Lévy-type processes has been an important challenge during
the last twenty years. This was due to the fact that phenomena like jumps and
unbounded coefficients of characteristic exponent (or symbol) should be taken in
consideration in order to get more realistic models.

To perform a systematic study of this kind of trajectories one needs, on one
hand, to consider the space of cadlag paths with some appropriate topologies, e.g.
Skorokhod’s topologies. On the other hand, it was a very useful observation that
a unified manner to tackle a lot of questions about large classes of processes is
the martingale problem approach. Identifying tightness is an important step when
studying sequences of distributions of processes solving associated martingale prob-
lems and the Aldous criterion is one of the most employed.

The martingale problem approach was used for several situations: diffusion pro-
cesses, stochastic differential equations driven by Brownian motion, Lévy processes,
Poisson random measures (see, for instance, Stroock, 1975, Stroock and Varadhan,
2006, Kurtz, 2011...). Several technical hypotheses (for instance, entire knowledge
of the generator, bounded coefficients hypothesis, assumptions concerning explo-
sions...) provide some limitation on the conclusions of certain results, in particular,
on convergence results.
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The present paper constitutes our first step in studying Markov processes with
explosion and, in particular in the martingale problem setting. It contains the study
of the so-called local Skorokhod topology and of a time change transformation of
cadlag paths. The detailed study of the martingale problem, of Lévy-type processes
and several applications will be presented elsewhere (see Gradinaru and Haugomat,
2017b and Gradinaru and Haugomat, 2017a).

One of our motivations is that we wonder whether the solution of a well-posed
martingale problem is continuous with respect to the initial distribution. The
classical approach when one needs to take into consideration the explosion of the
solution is to compactify the state space by one point, say A, and to endow the
cadlag paths space by the Skorokhod topology (see, for instance, Ethier and Kurtz,
1986, Kallenberg, 2002). Unfortunately, this usual topology is not appropriate when
we relax hypotheses on the martingale problem setting.

The simplest example is provided by the differential equation

i, = b(t,x;), t>0, startingfrom zy € RY,

where b : Ry x R? — R is a locally Lipschitz function. The unique maximal
solution exists by setting z; = A, after the explosion time. In general, for some
t > 0, the mapping x¢ — x; is not continuous, and in particular zy + z, is not
continuous for the usual (global) Skorokhod topology. As an illustration, let us
consider

ip=(1—t)z{, t>0, wz€R.
For any initial condition zg, the unique maximal solution is given by

.2 1\t 00, if zg € [0,2),
o (5 —t+ —) before tmax =4 1—+/1—=2/x9, ifxg>2,
1+\/1—2/$0, if xg <0,

and x; := A, after ta.c. Indeed, this trajectory is not continuous with respect to
the initial condition in the neighbourhood of zyp = 2. To achieve the continuity
of the mapping z¢ +— x, our idea will be to localise the topology on the paths
space, not only with respect to the time variable but also with respect to the space
variable. More precisely, we need to consider uniform convergence until the exit
time from some compact subset of R, x R

We adapt this idea to cadlag paths by following a similar approach as in Billings-
ley (1999) and we get the local Skorokhod topology which is weaker than the usual
(global) Skorokhod topology. Then, we describe the compactness and the tightness
in connection with this topology. Furthermore, we state and prove a version of the
Aldous criterion, which is an equivalence, as in Rebolledo (1979).

As in Ethier and Kurtz (1986), pp. 306-311, we introduce a time change trans-
formation of the cadlag path x by the positive continuous function g. Roughly
speaking, it is defined by (g - z); := z,, with 74 the unique solution starting from 0
of the equation 74 = g(x,,). Another novelty of our paper is the employ of the time
change transformation to compare the local Skorokhod topology with the usual
(global) Skorokhod topology.

Our paper is organised as follows: the following section is mainly devoted to the
study of the local Skorokhod topology on spaces of cadlag paths: the main result
is a tightness criterion. Properties of the time change mapping, in particular the
continuity, and the connection between the local and global Skorokhod topologies
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are described in Section 3. The last section contains technical proofs, based on
local Skorokhod metrics, of results stated in Section 2.

2. Paths spaces

2.1. Local spaces of cadlag paths. Let S be a locally compact Hausdorff space with
countable base. This topological feature is equivalent with the fact that S is sep-
arable and can be endowed by a metric for which the unit balls are compact, so,
S is a Polish space. Take A ¢ S, and we will denote by S2 O S the one-point
compactification of S, if S is not compact, or the topological sum S U {A}, if S
is compact (so, A is an isolated point). Clearly, S® is a compact Hausdorff space
with countable base which could be also endowed with a metric. This latter metric
will be used to construct various useful functions, compact and open subsets.

For any topological space A and any subset B C R, we will denote by C(A4, B)
the set of continuous functions from A to B, and by C,(A, B) its subset of bounded
continuous functions. We will abbreviate C(A) := C(A,R) and Cy(A4) := Cp(A,R).
All along the paper we will denote C' € A for a subset C' which is compactly
embedded in A. Similarly, C & A means either that C is not a subset of A or C is
not compactly embedded in A.

We start with the definition of our spaces of trajectories:

Definition 2.1 (Spaces of cadlag paths). Define the space of exploding cadlag
paths

0 <¢(z) < oo
Dexp(S) := 1 x : [0,&(x)) = S Vg € [0,&(x )) Ty = %I;xt,
Vio € (0,&(x)) @x4— := lima; exists in S

tTto

When £(z) = 0, we assume that z is the empty subset of [0,0) x S. For a path
x from Dexp(S), &(z) is its lifetime or explosion time. We identify Doy, (S) with a
subset of (S2)®+ by using the mapping

Dexp(S) = (57) with =z :=A if ¢>&(x).
xT —> (:Et)tzo

We define the local cadlag space as the subspace
Dioe(S) = {@ € Dexp (S ‘ &(z) € (0,00) and {@s}scg(z) € S imply @g(y)— exists} .
(2.1)
We also introduce the global cadlag space as the subspace of D¢ (.5)
D(S) := {x € Dioe(S) | £(x) = 00} C SF+.

We will always denote by X the canonical process on Dexp(S), Dioc(S) and D(S)
without danger of confusion. We endow each of Dexp (S5), Dioc(S) and D(S) with a
o-algebra F := 0(X,, 0 < s < 00) and a filtration F; := o(X,, 0 < s < t). We will
always skip the argument X for the explosion time £(X) of the canonical process.

The following result provides a useful class of measurable mappings:

Proposition 2.2. For ty € R, the mapping

Desp(S) x [0,80] — SA
(z,t) —oay
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is Fi, ® B([0, to])-measurable. For ty € R, the set
A= {(2,t) € Deap(S) x (0,t0o] | w4 emists in SA}
belongs to Fi,— @ B((0,t0]) and the mapping
A - 84

(x,t) — @y

is Fro— @ B((0,t0])-measurable. For U an open subset of S and for to € Ry, the set
B :={(z,5,t) € Degp(S) x [0,t0]* | {zu}snt<ucsve €U}
belongs to Fy,— © B([0,t0])®? and the mapping
BxCU) —

(x,s,t,h) |—>/ (24)d

is Fro— @ B([0,10])®% @ B(C(U))-measurable.

Before proving this proposition we state a corollary which give a useful class of
stopping times:

Corollary 2.3. For any (F;)-stopping time 1o, U an open subset of S?, h €
CU,R4) a continuous function and M : Degy(S) — [0, 00] a Fr-measurable map,
the mapping

t
— inf {t > 70 | {( X, Xs) brg<oct & U oF / h(X sy, Xs)ds > M}

To

is a (Fy)-stopping time. In particular, £ is a stopping time. Furthermore, if U C S
is an open subset,

Vi=inf{t>0| Xy ¢U or X, g U} <¢ (2.2)
18 a stopping time.
Proof of Corollary 2.5: For each t > 0, using Proposition 2.2 it is straightforward
to obtain that
if 79 > ¢,
Y = f X7, Xs)ds if 70 <t and {(Xry, Xs)}ro<s<t €U,
otherwise.
is Fi-measurable. Hence
{r<t}={Y>M}={Y >M}n{nn <t} € F,
so, T is a (F)-stopping time. O

Proof of Proposition 2.2: Let d be a complete metric for the topology of S, note

that
N U N {q1,q2 € [t — 6,1) = d(xq,, 74,) < €}

e€Q} 3€QY ¢1,92€Q+N[0,t0)
so, A belongs to Fy,— ® B((0,10]). It is clear that for each n € N

A = SA
(z,t) = @4 2]

ntl | g
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is Fiy—®B((0, to])-measurable, where || denotes the integer part of the real number
r. Letting n — oo we obtain that (x,t) — x:— is Fr,— @ B((0, to])-measurable. The
proof is similar for (z,t) — ;. To prove that B is measurable, let (K,,),en be an
increasing sequence of compact subsets of U such that U = J,, K. Then

B = U {(I,S,t) € DCXP(S) X [07t0]2 ‘ {xu}sAt§u<th C Kn}
neN
U ﬂ {(2,5,1) € Dexp(S) x [0,20)* | sAt<g<sVi=a,€ Ky},
neN geQ4
q<to
so, B € Fyy— @ B([0,t0])®2. To verify the last part, let us note that for n € N* the
mapping from B x C(U)

sign(t — s)
(z, 5,8, h) = E:h i) s/\tg“T°<svt

is Fio— ® B([0,t0])®? @ B(C(U))-measurable. Here and elsewhere we denote by
N* = N\ {0} the set of positive entire numbers. Letting n — oo, the same thing is

true for the mapping
BxC{U) —

(x,s,t,h) >—>/ (24)d

2.2. Local Skorokhod topology. To simplify some statements, in this section we will
consider a metric d on S. To describe the convergence of a sequence (z*)reny C
Dioc(S) for our topology on Dy (S), we need to introduce the following two spaces:
we denote by A the space of increasing bijections from R4 to Ry, and by AcCA
the space of increasing bijections A with A and A~! locally Lipschitz. For A € A
and ¢t € Ry we denote

IA—id||s := sup |[As —s| = [|A" —id]|x,. (2.3)
0<s<t

O

For A € A, let A € Ly (ds) be the density of d\ with respect to the Lebesgue
measure. This density is non-negative and locally bounded below, and for t € R

denote
o dr;t
& ds

The proofs of the following theorems use the strategy developed in §12, pp.
121-137 from Billingsley (1999), and are postponed to Section 4.

Asy — As
10g 2 1
S9 — 81

[l log /\Ht = eSSSUPogsgtH log )\S|| = sup
0<s1<s52<t

At

Theorem 2.4 (Local Skorokhod topology). There exists a unique Polish topology
on Diee(S), such that a sequence (z¥)ren converges to x for this topology if and
only if there exists a sequence (\F)ren in A such that

e cither §(x) < 00 and {Ts}sce(z) € S: /\lg(m) < &(2%) for k large enough and
sup d(:vs,x”) — 0, ahe — A, [N —id||¢z) — 0,  as k — o0,
s<&(x) &()
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o or §(x) = 00 or {Ts}scemy € S: for all t < &(x), for k large enough
A< ¢(2%) and
supd(zs, ©5,) — 0, [A* —id|l — 0, as k — occ.
s<t s
This topology is also described by a similar characterisation with \* € A and || \* —

id|| replaced, respectively, by \F € A and [l log )\kH Moreover, the Borel o-algebra
B(Dje(S)) coincides with the o-algebra F.

Definition 2.5. The topology on Dj..(S) whose existence is stated in the latter
theorem will be called the local Skorokhod topology. The trace topology from
Dioc(S) to D(S) will be called the global Skorokhod topology.

Remark 2.6. 1) We point out that these topologies do not depend on the metric d
of S and this is a consequence of the fact that two metrics on a compact set are
uniformly equivalent (cf. Lemma 4.3 below).
2) The convergence conditions of Theorem 2.4 may be summarised as: a sequence
(zx)r converges to x for the local Skorokhod topology if and only if there exists a
sequence (A\¥), in A satisfying that for any ¢ € R, such that {z;},<; € S, for k
large enough A\F < ¢(z%) and
supd(zs,25,) — 0, 25, — x, N —id[l — 0, ask— cc.
s<t s t
3) A sequence (z*); from D(S) converges to x € D(S) for the global Skorokhod
topology if and only if there exists a sequence (A¥); in A such that for all ¢ > 0
sup d(zs, 25 ) — 0, [A* —id||; — 0, ask — oo.

s<t s
In fact, we recover the usual Skorokhod topology on D(S), which is described, for
instance, in §16 pp. 166-179 from Billingsley (1999).

We are now interested to characterise the sets of Djo.(S) which are compact and
also to obtain a criterion for the tightness of a subset of probability measures in
P (D1oc(S)). For & € Dexp(S), t > 0, K C S compact and ¢ > 0, define

NeN 0=ty < - <ty <&(x)
Wi g (0) == inf sup d(zs,,7s,) | (En,xey) €10,8] X K

0<i<N . A
ti<s1,82<ti+1 VO<i<N: tig1 —t; > )

(2.4)
We give some properties of w’.
Proposition 2.7.
i) Consider x € Degp(S). Then x belongs to Dioe(S) if and only if

Vt >0, VK C S compact, wj j ,(9) 0
B —

i) For allt >0, K C S compact and 6 > 0, the mapping

Dioe(S) — [0, 400]
T = wg,K,m((S)

1S upper semi-continuous.
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Proof: Suppose that © € Dje.(S) and let ¢ > 0 be and consider a compact set
K C S. There exists T < £(x) such that (T,27) € [0,t] x K and the limit xp_
exists in S. Let € > 0 be arbitrary and consider I the set of times s < T for which
there exists a subdivision

O=ty<---<ty=s
such that

sup d(zs,,xs,) < €.
0<i<N
t;<s1,52<tit1
It is clear that I is an interval of [0,T] containing 0: set t* := sup I. Since there
is existence of the limit x«_, then t* € I, and, since z is right-continuous, t* =T
Hence, T' € I and there exists ¢ > 0 such that w; . ,.(6) <e.
Conversely, let’s take & € Deyp(S) such that {(z) < 0o, {Zs}sce(z) € S and
vVt >0, VK C S compact, w; g .(9) " 0.

Y —
We need to prove that the limit ¢,y exists in S. Let y1,y2 be any two limits
points of z,, as s — &(x). We will prove that y; = y2. Let € > 0 be arbitrary. By

taking ¢t = {(z) and K = {zs},_¢(,) in (2.1) there exists a subdivision,
0=t0<'-'<t]\]:€($),

such that

sup d(zs,,xs,) < €.
0<i<N
ti<s1,82<tit1
Replacing in the latter inequality the two sub-sequences tending toward yi, y2, we
can deduce that d(y1,y2) < ¢, and letting £ — 0 we get y; = yo.

We proceed with the proof of part ii). Let (z%); C Djoc(S) be such that z*
converges to = € Dioe(S) and let (\*), C A be such in Theorem 2.4. We need to
prove that,

limsupw; g .« (6) < wi g, (9).

k—o00 o Y

We can suppose that wi x ,.(6) < oo. Let ¢ > 0 be arbitrary and consider a
subdivision 0 =t¢ < --- < ty < &(z) such that

sup  d(s,, s,) S Wi (0) +e,

0<i<N
t;<s1,52<tit1

tiy1 >t + 6 and (tn,x4y) € [0,t] x K. If ty = §(x) and {xs}scezy € S, then
we can find ¢y such that ty_1 + 6 < ty < &(z) and z7

tn

¢ K. We can suppose,
possibly by replacing ¢ by tn, that

ty = &(x) implies {xs}sce@) € S.
Hence, for k large enough, )\,’fN < ¢&(2%) and

sup d(zs, z5,) — 0, ahe — myy, [A¥ —id|l;y — 0, as k — oco.
s<tn s tN
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We deduce that, for k large enough, we have 0 = )\fo < - < )\fN < (ak),

)\,’le > AP+, ()\fN,x’;?N) ¢ [0,t] x K, and moreover,
sup d(x?l,xfz) < sup d(xs,,xs,) + 2 sup d(a:s,xi,?)
0<i<N 0<i<N s<tn :
)\figsl,sg<)\fi+l ti<s1,52<tit1
< w£1K11(5) + &+ 2 sup d(zs, a:];\k) — w£1K11(5) +e.
s<tn 57 k—oo
Therefore,
limsupw; g .« (0) < w) g (8) +e,
k— o0 o T
and we conclude by letting € — 0. O

We can give now a characterisation of the relative compactness for the local
Skorokhod topology:

Theorem 2.8 (Compact sets of Djoe(S)). For any subset D C Dy,.(S), D is
relatively compact if and only if

vVt >0, K C S compact, supwj g ,(6) — 0. (2.5)
zeD Y §—0
The proof follows the strategy developed in §12 pp. 121-137 from Billingsley
(1999) and it is postponed to Section 4.
We conclude this section with a version of the Aldous criterion of tightness:

Proposition 2.9 (Aldous criterion). Let P be a subset of P (Doc(S)). If for all
t>0,e>0, and an open subset U € S, we have:

inf P = A Xy, Xo )i ooy =€) — 0, (2.6
BhplRe B Pln<m=gondhn Xlineg 2¢) 530 (20
T2§(7'1+5)/\t/\‘rU

then P is tight. Here the infimum is taken on all finite subsets F' C P and the
supremum s taken on all stopping times ;.

Remark 2.10. As in Billingsley (1999), Theorem 16.9, p. 177, an equivalent condi-
tion for tightness can be obtained by replacing (2.6) by

inf P(r < ATV = A( X7, X(rasyprv ) freer =€) — 0,
By 2R S0, Pl (H D ATE = Cor dr Ko<t 2 ) i3

by taking infimum on all finite subsets F' C P and the supremum on all stopping
times 7.

In fact we will state and prove a version of the of the Aldous criterion, which is
a necessary and sufficient condition, similarly as in Rebolledo (1979):

Theorem 2.11 (Tightness for Djoc(S)). For any subset P C P (Dioe(S)), the fol-
lowing assertions are equivalent:

(1) P is tight,

(2) forallt >0, e >0 and K a compact set we have

P (w; 6) > 0
5D P (), icx(0) 2 €) 750,
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(3) for allt >0, e >0, and open subset U € S we have:

a(e, t,U,0) := sup sup P(R>¢e) — 0,
PcP T1<72<73 60
T3< (148 AtATY

where the supremum is taken on T; stopping times and with

d(X7'17X7'2)/\d(XT27XT3) if0<7—1 <7-2<7-3<§7
XTz—v 7'2) /\d(XTzvXTs) ifo <71 =T2 <73 < 57

d(
R d( X, X:,) fo0=m <m<forl<m <m<13=E¢,
T (Xm,, ) if0<7-1:7-2<7-3:€7
ifrn =€ or0<m <719=r73,
o0 if0:T1<T2:§.

Remark 2.12. 1) If d is obtained from a metric on S2, then if ¢ < d(A,U) the
expression of a(e, t, U, d) may be simplified as follows:

ale, t,U,d) = sup sup P(E >e) — 0,
PeP T1<72<7T3 60
m3< (148 AtATY

where the supremum is taken on 7; stopping times and with

B d(Xr X)) Ad(Xry, Xoy) G0 <7y < 7o,
R:=< d(X,—, X ) Nd(Xry, Xry) 0 <1 =72,
d(X,,, X,) if0=m.

2) Tt is straightforward to verify that a subset D C D(S) is relatively compact for
D(S) if and only if D is relatively compact for Dy, (S) and

Vt>0, {zs|zeD, s<t}eSs.

Hence we may recover the classical characterisation of compact sets of D(S) and
the classical Aldous criterion. Moreover, we may obtain a version of Theorem 2.11
for D(S).

3) The difficult part of Theorem 2.11 is the implication 3=-2, and its proof is
adapted from the proof of Theorem 16.10 pp. 178-179 from Billingsley (1999).
Roughly speaking the assertion 3 uses

wr(8) == sup d(Tsy,Tsy) Nd(Tsy,Ts5),
51<s52<s3<s1+0

while the Aldous criterion uses

Wy (5) = sup d(‘r81 ) Is2)'
51<s2<s1+4d
The term d(X,,—,X,,) appears because, in contrary to the deterministic case,
some stopping time may not be approximate by the left. We refer to the proof
of Theorem 12.4 pp. 132-133 from Billingsley (1999) for the relation between w”
and w'.

Proof of Theorem 2.11:

2=1 Consider (t,)n>1 a sequence of times tending to infinity and (K,)p,>1 an
increasing sequence of compact subsets of S such that S =J,, K,,. Let n > 0 be a
real number, and for n > 1 define §,, such that

sup P (w; i x(0n) =n7") <27,
PcP
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Set
D = {Vn S N*, w;nmeX((Sn) < n_l}

By Theorem 2.8, D is relatively compact and moreover

sup P (D°) < 27"y =mn
S,

so, P is tight.
1=-3 Consider €,n two arbitrary positive real numbers. There exists a compact set
D C Dyoc(S) such that

sup P(D¢) <.
PecP

By Theorem 2.8, there exists § > 0 such that
D C{w, 7 (6) < e}
Since for all 71 < 79 < 73 < (71 + ) At ATV we have
{w 7 x00) <e} C{R<¢},

we conclude that

sup sup P(R>¢)<n.
PcP T1<72<73
r3<(Ti4+8)AtATY

3=2 For all ¢ > 0, t > 0 and open subset U € S, up to consider 7; := 7; A (11 +
§) ANt ATV we have a new expression of a(e,t, U, d):

ale,t,U,0) =sup sup PR>e, m<(n+d)atanr’)—o. (2.7)
PeP 11 <72<13<¢ 6—0

Consider g9 > 0, t > 0 and K a compact subset of S. We need to prove that
. /
lgrelgpp(wt,K,X(é) < €o) oo L.
Choose 0 < 1 < €¢/4 such that
Ui={yeS|dy,K)<e}€es.

For n € N and & > 0, define inductively the stopping times (see Corollary 2.3)

70 =0,

mo=inf {s > 7| d(Xr,, Xs) VA(Xy,, Xeo) Z e} At +2)ATY,
— €1

Tn+1 = Ty,

It is clear that 7 increases to 7,41 when € increases to £;. If we choose 0 < g3 < €1,
then for all P € P,

limsup P(X, € K, 75 <&, d(X,,, Xpe) Sep, 75 <t+1) (2.8)
E—E1
e<er

<P limsup{XTn €K, sz <, d(XTanTfl) < &g, 7-2 <t+ 1} = P(@) =0.
E—E7
e<er
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For al P € P, 6 <1 and 0 < € < & we have using the expression (2.7) with
stopping times 0 < 75 < 75 =7
P(Xoe K, 75 <6) =P(Xo € K, X;¢ ¢ B(Xo,e2), 75 <9)
+P(Xo € K, 15 <&, d(Xo, Xre) <e2, 75 <9)
< afeq,t+2,U,0)
+P(Xo € K, 15 <, d(Xo, Xrg) <2, 75 <t+1)

s0, letting € — €1, since 7§ 1T 71, by (2.8) we obtain
P(X()EK, T1 S(S)SO[(SQ,f-F2,U,5). (29)

ForallP e P, <1,neNand0< e <e; we have also using the expression (2.7)
with stopping times 7, < 7; <741 and 7, <7, <7
P(rpy1 <t, X7, X, €K, 75 — T <)
<P(X;, €K, 7, <& d(X,,,X;:) <eg, T, <t+1)
+P(X eK, 1, <§, d(XTn+1,XTs+1)<€2, Ty <t+1)

Tn+1 n

Tn+1

d(XTfl7XTn+1) Z %7Tn+l — Tn S 5)

€K, d(XTn’XTfL) 2 €2, XTfl+1 ¢ B(X‘Fﬁ’ 6_22)7

T;‘;+1—Tn§5)

Tn+1

+ P(Tn+l S ta XTan

<P(X;, €K, 75 <& d(X;,, Xre) <eg, 7, <t+1)
+P(X7'n+1 € Ka TfH—l < 55 d(XTn+1;X‘rfl ) S €2, 7-7514_1 S t"‘ 1)

+1
120 (%,t—i—Q,U,é)

so, letting € — €1, since 7,1 T 742, by (2.8) we obtain

P(TnJrl S t, X‘rn;X‘r

n+1

€K, Tuyo — 0 < 0) < 20 (%,H 2,U, 5) . (2.10)
ForallP e P, §d <1,n € N* and 0 < € < g1 we can write using the expression
(2.7) with stopping times 7, < 7, < 78
P(r, <t, X;, € K, d(X,,-,X:,) > €2, 7o — Ty <0)
< P(XTn € Ka 7_:;; < 55 d(XTanTfl) < é&g, 7_:;; <t+ 1)
+P(T’n S t7 XTn € K7 d(XTn—7XTn) 2 827 XTfL ¢ B(XTn7€2)7 T’rEL — Tn S 5)
<P(X;, €K, 1, <& d(X,,,X;:) < ey, 7, <t+1)+a(et+2,U,0)
so, letting € — €1, since 75 1 741, by (2.8) we obtain

P(Tn <t, X-,—n eK, d(XTn_,XTn) > €9, Tntl — Tn < 6) < a(Eg,t+ 2,U, 6)
(2.11)

Let m € 2N and 0 < ¢’ <1 be such that m > 2¢/¢" and denote the event

A={r,<tandVn<m, X, € K}.
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Then for all 0 <4 < m, thanks to (2.10)

20 (%,t+2,U,8
E[Ti+2_Ti|A]25/P(Ti+2—ﬂ‘25’|A)25l(1— o(F.t+ )>

P(A4)
Hence
(m—2)/2 / £ /
mé 200 (%, +2,U,5")
t>E[n, | A = E [roi40 — T2; | 4] > 1— 2’ L
> E[mn | 4] ; [Toiv2 — T2i | Al > ) ( PA) )
S0,
200 (22, t+2,U, ¢
P(A) < (3,1 +2,U,9) (2.12)

- 1-—2t/(md")
Taking 0 < § < 1 and setting

(Tm,XTov"'vXTm)g[Ovt]XKm+1a
B Xoe K =1 >,
mETANVO< n <m =2, Ty <tand Xp, X, € K = Typo — o >0, ’

VO<n<m, 7 <t, X,;, €K, dX;, -, X;,)>ea=Tpy1—Tn >0
by (2.9), (2.10), (2.11) and (2.12) we obtain that

200 (&2, +2,U,0'
inf P(Bpng)>1— (3 )
PeP ’ 1—2t/(md’)

—2(m -1« (%,t—l—lU,é) —ma (g2, t+2,U,0).

— a(EQ,t+2,U,5)

Hence

sup inf P(B — 1.
sup 825 P(Bro) 723

Recalling that 1 < 4eg, a straightforward computation gives

We conclude that
. /
lgrelgpp(wt,K,X(é) < €o) oo L.

3. Time change and Skorokhod topologies

3.1. Definition and properties of time change. First we give the definition of the
time change mapping (see also §6.1 pp. 306-311 from Ethier and Kurtz, 1986, §V.26
pp. 175-177 from Rogers and Williams, 2000).

Definition 3.1 (Time Change). Let us introduce
C7%(S,R,):={g:S - R,y | {g=0} is closed and g is continuous on {g # 0}},
and for g € C79(S,Ry), € Dexp(S) and ¢t € [0, 00] we denote

, ift € [0, 71970} (2)],

t _du
() :=inf {s > 0| Ad(z) > t}, where A (z) := {gg g(w) otherwise

(3.1)
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For g € C79(S, R, ), we define a time change mapping, which is F-measurable,

g X Dexp(S) — Dexp(S)
x = g-,

as follows: for t € Ry
X, o _ ift>A%, X
(g . X)t = { e =7

X9 otherwise.
For g € C7%(S,Ry) and P € P(Dexp(S)), we also define g - P the pushforward of
Pbyx—g-x.

s _ exists and belongs to {g = 0},

(3.2)

The fact that this mapping is measurable will be proved in the next section.

Remark 3.2. Let us stress that, by using Corollary 2.3, 7/ is a stopping time. In
particular, the following stopping time will play a crucial role:

I = o700} . ENIf{t >0 | g(Xi—) Ag(X:) =0}. (3.3)
The time of explosion of g - X is given by
xyo | @ if 79 < & or X¢_ exists and belongs to {g = 0},
gg-X) = A otherwise.

Roughly speaking, g- X is given by (g- X); := X9 where ¢ +— 7/ is the solution
of 7{ = g(X,s), on the time interval [0, 7).
Proposition 3.3.
(1) For U C S an open subset, by identifying
C(URy) = {ge C*(S,Ry) |{g # 0} C U and g is continuous on U},
the time change mapping
CURL) X Degp(S) = Degp(S)
(9, ) = g,
is measurable between B(C(U,Ry)) @ F and F.
(2) If g1, 92 € C7O(S,Ry) and = € Deyy(S), then g1 - (g2 - ) = (g192) - @.

(3) If g is bounded and belongs to C7°(S,Ry), and v € D(S), then g-x € D(S).
(4) Define

(N];éO(S, Ry):={ge€ C7%(S,Ry)|VK C S compact, g(K) is bounded}.
If g € C*O(S,R,) and x € Dye(S), then g -z € Dype(S).

Proof: The first point is straightforward by using Proposition 2.2, while the second
point is a direct consequence of the time change definition and, in particular, of the
first part of (3.2). The third point can be easily deduced because,

*© ds * ds
5(9'33)2/0 mZ/O m—oo

To prove the fourth point we suppose that £(g - ) < 0o and {g - Zs}sce(ga) € S.
Then7 {xs}s<5(z) = {g : xs}s<£(g-z) 50,
ds _ &)

( ) &(x)
o >€&(g-x)= / > .
0 g(s) H9||{zs}s<§(m>

Hence £(x) < 0o and 80, g - T¢(g.p)— = Tg(q)— €Xists. O
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Remark 3.4. Tt can be proved that if g € C79(S,Ry) and (Pg).cs is a strong
Markov family, then (g - Py)qes is a Markov family. Furthermore, if (P,)qcs is a
Fi-strong Markov family, then (g-Pg)qes is a Fiq-strong Markov family. We will
not use these properties here hence we skip the proofs of these statements.

Another interesting fact is the following:

Theorem 3.5 (Continuity of the time change). For couples (g,z) € C*°(S,R,) x
Dioc(S) consider the following two conditions:

2.(2) < £ . 3.0
I (x) < &(x) tmplies / = 00, 3.4
0 g(zs)
and
Aigo(m)(:z) < 00, Tpg (z)— exists in S and g(x,9 (m)—) = 0 imply T19 (1)— = T19 (2)-
(3.5)

Introduce the set
Bic = {(g,2) € C*O(S,Ry) x Dioe(S) | conditions (3.4) and (3.5) hold }. (3.6)
Then the time change
C#O>S,Ry) X Die(S) = Dyoe(S)
(9,2) = g
is continuous on Bi. when we endow respectively (Nﬁéo(S, Ry) with the topology of

uniform convergence on compact sets and D,.(S) with the local Skorokhod topology.
In particular
C(S, R*Jr) X ]D)loc(S) — DlOC(S)
(gv ,T) = g-x
is continuous for the topologies of uniform convergence on compact sets and local
Skorokhod topology. Here and elsewhere we denote by R = R, \ {0} the set of
positive real numbers.

Remark 3.6. 1) It is not difficult to prove that Bi. is the continuity set.

2) If (g,z) € By and h € C?°(S,R,) is such that {h = 0} = {g = 0} and h < Cyg
for a constant C' € Ry, then (h,x) € Byc.

3) More generally, let By be the set of (g,z) € (Nﬁéo(S, Ry) X Djpe(S) such that

I (z) < 00 =Vt >0, 78 (2) 4t = Tl (z)s
Trg (z)— exists in S and g(:Z?TogO(z),) =0= Trg (z)— = g (z)-
Then
{(9.9-2) | (9,2) € T¥O(S,Ry) x Dioe() } © Bo © Byc. (3.7)

To simplify the proof of the theorem we use a technical result containing a
construction of a sequence of bi-Lipschitz bijections (A¥); useful when proving
the convergence. Before stating this result let us note that, for any (g,z) €
C#0(S, Ry ) X Dioe(S) and any t < 79 (x) such that {z,}s<¢ € {g # 0}, by us-
ing (3.1), A (x) < 0.

Lemma 3.7. Take a metric d of S. Let z,a% € Dyo(S) and g, gr € C*°(S,Ry)
be such that (gi, ") converges to (g,7), as k — oo. Let t < 79 (x) be such that

{zs}s<t € {g #0}. Then,
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i) there ewists a sequence (\F);, € AN such that, for k large enough )\’Zg(z) <
E(gr - *) and

[ log A¥|| — 0, sup  d(g-Ty, ge-Thi) = 0, greak.  — 9T 9(e), aS k— o0
v<A{(x) v A{ (@)

it) Moreover, if 79 (x) < &(z) and fOTg"(IH q(‘i) = 00, (A\F), may be chosen

such that for any v > 0 and k large enough )‘Zf(m)ﬂ < &(gr - o) and

lim sup sup d (Qk ~aky v{xs}tSssfé’o(w)) =0.
k—oo  AY(z)<w<AY(z)+v ¥

We postpone the proof of the lemma, and we give the proof of the continuity of
time change:

Proof of Theorem 5.5: We remark first that

BtC = B1 U By U B3 U By,
with
B = {Af_go(m)(x) =00 OF {Ts}ocrs (2) & S},

By = {78 (x) = () < 00 and {z} st () € {0 # 0}}

% @) g
Bs :—{Tgo(x) < (), Trg,(z)— = ‘Trgo(m)aAf—g (m)(‘r) <0 and/ g OO},
= 0

@ g
By = {rgo(a:) <&(x), 9(xrg,2)-) # 0 and /0 g(d:vs) - OO} '

Let z, 2% € Dioe(S) and g, gr, € C#°(S, R, ) be such that (gx,2*) converge to (g, z)
and (g,x) € B. We need to prove that
gr - " Dioc(9), g-z, (3.8)

k—o0

and we will decompose the proof with respect to values of ¢ such that (g, z) € B;.

e If (g,2) € By, we use the first part of Lemma 3.7 for all ¢ < 79 (z). We
obtain that AY(z) < £(g- ). Since AY(x) tends to £(g-x), when t tends to
79 (z), by a diagonal extraction procedure we deduce (3.8).

e If (g,x) € By, it suffices to apply the first part of Lemma 3.7 to ¢t := £(x)
and Af(z) = £(g - z).

o If (g,x) € Bs, let t < 79,(x) be. Then, by the third part of Lemma 3.7
there exists A¥ € A such that, for any v > 0, for k large enough, )‘ﬁxg <

&(gk - 2*) and

(z)+v
|| 1Og >‘k|| k—> 05 lim sup sup d(g"rwa gkxl)c\fu) <2d (I'rgo(;ﬂ)v {xs}tgsgrgo(m)) :
—00 k—oo w<AY(z)+v

Since « is continuous at 7 (), we conclude by a diagonal extraction pro-
cedure, by letting ¢ tends to 74 (z) and v — 0.
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o If (g,x) € By, let t = 79 (x) be. By the second part of Lemma 3.7 there

exists A¥ € A such that, for any v > 0, for k large enough )\’Zg(sz <
&(gr - %), and
| log A¥|| — 0, sup  d(g - T, gr - 2Ny ) — 0.
k—o0 w< AY (z)+v w’ k—oo
We conclude by a diagonal extraction procedure and letting v — co.
O

Proof of Lemma 5.7: Let M € A be as in Theorem 2.4 and to simplify notations
define, for s > 0

75 =1 (2), As = Ad(z),

TF = 19 (gF), AR = A9k (2F),

and u := A;. Since 7, =t < {(z) and {xs}s<: € S we have, for k large enough Xf <
£(z*), and HlogikHt — 0, sup,, d(a:s,x;g) — 0 and x% — 1y, as k — oo.
Since {xs}s<1 € {g # 0}, we deduce that for k large enough {xf}KX? € {gr # 0}.
Define then \* € A by

v ok
PUNE A;k = / 9(337?)/\%(11” if v <,
. v 0 gk(x}ﬁw)
A =1 if v > u.

Since Xf < 7k we have
k k k
X< Ab < (g2,
now we obtain

supd(g - v, gi - 2%y) = sup d(ar,, 2, ) =supd(ws,25,) — 0,

v<u v<u s<t )
ko Lk B
It Ny R S T 9
<k ik
S A x 2
” log /\kH = eSSSup,, <, log M = esssup,<,, log sg(zS) 0.
N gk(xxk ) - gk(.f—)v\k) k—oo

For the second part of the proposition we keep the same construction as previously.

For any v > 0 we have that
/f ds 1 &
> T° .
Ak gr(2h) >

_ Tk
M)t ds Tt X ds Tt (s

lim inf ——~ =lim inf = > / —_—
k—o0 Ak gk(xs) k—oo Jy gk(x)\lsc) t g(xS)

Ty =inf {t > Ak

Using Fatou’s lemma

: k
so, limsupy,_, T

so, Ak < &(gk - 2*) and

limsup sup d (g~ ok {wbicocr ) = 0.

k—oo u<w<u+twv



Local Skorokhod topology on the space of cadlag processes 1199

O

3.2. Connection between local and global Skorokhod topologies. Generally to take
into account the explosion, one considers processes in ID(S?), the set of cadlag
processes described in Definition 2.1, associated to the space S*, and endowed
with the global Skorokhod topology (see Definition 2.5). More precisely, the set of
cadlag paths with values in S is given by

(SA) {x € (SA) Vit >0, xy = limgy x5, and }

YVt >0, xy— :=limgy x5 exists in SA
A sequence (zF); in D(S?) converges to z for the global Skorokhod topology if and
only if there exists a sequence (A\*)z of increasing homeomorphisms on R, such
that

VE>0, lim supd(xs,x’;k) =0 and klim |A* —id]|; = 0.
—00

k—o0 s<t

In this section we give the connection between D(S?) with the global Skorokhod
topology and Dy, (.S) with the local Skorokhod topology.
We first identify these two measurable subspaces

Dioe(S) ND(S2) = {z € Die(S) | 0 < £(x) < 00 = wg(y)— exist in SA}
= {z e D(S?) ‘VtZTS, xp = A},
We can summarise our trajectories spaces by
D(S) € Dioc(S) ND(S?)  C Dioc(S) C Dexp(S).
N
D(S4)

Hence Dy, (S) N D(S?) will be endowed with two topologies, the local topology
from Do (S) and the global topology from D(S?).

Remark 3.8. 1) On Dy, (S)ND(S2) the trace topology from Do.(S) is weaker than
the trace topology from D(S%). Eventually, these two topologies coincide on D(.S).
Indeed, this is clear using a metric d on S* and the characterisations of topologies
given in Remark 2.6. The result in Corollary 3.10 below is a converse sentence of

the present remark.
2) If 2 € Dipe(S) ND(SA) then g - x is well-defined in DloC(S’) ND(SA) for

g€ Cp(S,RY) C {g € C7S2,Ry) | g(A) = 0}.
We deduce from Theorem 3.5 and the third point of Remark 3.6 that the mapping
Cp(S,R%) X Dioe(S) ND(S2) = Diee(S) ND(S2)
(9,7) > g-x
is continuous between the topology of the uniform convergence and the global Sko-

rokhod topology.

The following result is stated in a very general form because it will be useful
when studying, for instance, the martingale problems.

Proposition 3.9 (Connection between Dj..(S) and D(S?)). Let E be an arbitrary
locally compact Hausdorff space with countable base and consider

P: E — PDy(9))
a > P,
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a weakly continuous mapping for the local Skorokhod topology. Then for any open
subset U of S, there exists g € C(S,Ry) such that {g # 0} = U, for alla € E

g-Po(0<€<o00= Xe_ existsinU) =1,
and the application

g-P: E - PHO<{<o00o= X existsinU})
a g':Pa

is weakly continuous for the global Skorokhod topology from D(S?).

Before giving the proof of Proposition 3.9 we point out a direct application: we
take E := NU{oo}, U = S and a sequence of Dirac probability measures Py, = 0,
P = 6. Then we deduce from Proposition 3.9 the following:

Corollary 3.10 (Another description of Djoc(S)). Let z,a',22,... € De(9).
Then the sequence x* converges to x in Dje(S), as k — oo, if and only if there
exists g € C(S,R*) such that g-x,g-2',g-2%,... € D(S?), and g-x* converges to
g-z inD(S?), as k — oo.

We proceed with the proof of Proposition 3.9 and, firstly we state a important
result which will be our main tool:

Lemma 3.11. Let D be a compact subset of Dy,c(S) and U be an open subset of
S. There exists g € C(S,Ry) such that:

D (g #0)=U
ii) for all z € D, (g,x) is in the set By. given by (3.6) in Theorem 3.5 and

g-x€{0<§<ooéX§, e:m'stsinU}.

iii) the trace topologies of Dioe(S) and D(S?) coincide on {g-x|x € D}.
Furthermore, if ¢ € C(S,Ry) satisfies i)-ii1) and if h € C(S,Ry) is such that
{h #£ 0} = U and h < Cg with a non-negative constant C, then h also satisfies
i)-ii).

Proof of Proposition 3.9: Let (IN(n)neN* be an increasing sequence of compact sub-
set of £ such that E' = (J,, Ky, then {Po}, 5 is tight, for all n € N*. So, there

exist subsets D,, C Djoc(S) which are compacts for the topology of Dj.(S), and
such that

sup Po(Dy) <
ael?n

Sl

For any n € N* consider g, satisfying i)-iii) of Lemma 3.11 associated to the
compact set D,,. It is no difficult to see that there exists g € C(S,R;) such that
{g #0} =U and for all n € N*, g < C,,g,, for non-negative constants C,,. Hence,
g satisfies 1)-iii) for all D,,, n € N*. Hence, for all a € E

g-Pu(0<&<o00= Xe_ existsinU) > P, ( U D)
neN*

Let ag,a € E such that ay —> a. For n large enough {ax}r C K,. Then, if F
is a subset of {0 < £ < oo é Xg, exists in U} which is closed for the topology of
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D(S2),
limsup g - Pq, (F) — g Pao(F)

k—o00

1
<limsupP, (X €Dy, g- X €F)-Py(X €D, g- Xe€F)+—.
n

k— o0

But thanks to iii) in Lemma 3.11, {X € D,,, g- X € F} is a subset of Djo¢(S) which
is closed for the topology of Dj..(S). Hence, by using the Portmanteau theorem
(see for instance Theorem 2.1 from Billingsley, 1999, p. 16)

limsupP,, (X €D,, g- X € F)<P,(X€D,, g-XeF)

k—o0

and so, letting n — oo,

limsupg - Py, (F) < g-Py(F).

k—o0
By using the Portmanteau theorem, the proof of the proposition is complete, except
for the proof of Lemma 3.11. (]

Proof of Lemma 35.11: Let d be a metric on S and denote
Kn:={a€S|d(aS*\U)>2"}.

By using Theorem 2.8 there exists a sequence (1), € (0,1) decreasing to 0 such
that

SUD Whn p(A,2-n-2)e 2 (1) < 27" 7% (3.9)
zeD

Moreover, there exists g € C(S2,[0,1]) such that {g # 0} = U and gjxe < 27"y
For instance, we can define
9(a) = sup ((27"ma) Ad(a, S\K.,)) a € 52,
n>0
Let x € D be. We consider the following two situations:

o If 74 (z) < 0o and {5}, 9 (5) is nOt a compact of U, take m € N such
that 2™ > 79 (x), denote

t:—min{sZO

Ts & Km+1} <7 (x)

and let n > m be such that 2y € K, 2\K,1+1. Using (3.9) there exist
t1,t2 € Ry such that ¢, <t <ty <74 (x), ta —t1 > 0y, and x5 € K, for all
s € [tl,tg). SO7

to
Ay () > /
Too(z)( ) t g(;ps

1

~—

hence, letting m goes to infinity,
Aigo(m)(a:) = oo0.

o If 79 (z) < &(x) and g(w,g (n)—) # O, then g(x,9(,)) = 0. Let m € N
be such that 2™ > 79 (z) and {zs}< g () C B(A,27"72)¢. Using (3.9),
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there exist t1,t2 € Ry such that t1 < 7L (z) < ta < &(x), ta — t1 > Ny and
xs & K, for all s € [t1,12). So

75, (2)+1m ds titnm g
[ [ e
0 g(ws) t1 g(s)

hence letting m tend to infinity

/Ti’o(ﬂﬂ)+ ds
= 00.
0 g(zs)

Hence, we obtain that (g,z) € Bi. and g-z € {0 < £ < co = X¢_ exists in U}
and ii) is verified.

We proceed by proving iii). Thanks to Remark 3.8, to get the equivalence of the
topologies it is enough to prove that if ¥, 2 € D are such that ¢g-z* — ¢ - for the
topology from Djoe(S) and £(g - ) < oo, then the convergence also holds for the
topology from D(S?). Let \F € A be such that

sup d(g-xs,9- ki) — 0, I log /.\k||£(q,m) — 0, ask — oo
s<E(g-x) : o

We may suppose that )\’; =0, for s > &(g - x). Denote tj := )\]g( ) and choose

gz
m € N be such that {g- 2s}sce(ga) € Io(m and £(g - x) < 2™. Then, for k large
enough {g- 2%}, € Io(m, g- asz Z K1 and t, < 2™.
e Either g~3:fk ¢ U and so g~373§,§ =g-ak forall s > ¢(g-z).
e Or g-zf €U and let n > m be such that g-zf, = Trs (ak) € KnJrg\Io(nH.
Using (3.9), d(zs,2f) < 27"7%, and so, z; € U\K,, for all s €
[, (zF), ah (%) + n,]. Hence, Af >t + 2", s0d(g-xs,9- :vfk) <

27772 for all s € [tg, tx + 27].

fk (@*)+nn

Hence we obtain that, for k£ large enough,

sup d(g-xs,g-x];?)g sup d(g-xs,g-x§§)+2_m_2

s<&(g-x)+2m s<&(g-x)

)

so letting m goes to the infinity we obtain that g-2* converge to ¢ - for the global
Skorokhod topology from D(S?). Hence, the proof of iii) is done.

Finally, to prove the last part of the lemma let g € C(S,R.) be such that i)-iii)
are satisfied and let h € C(S,R;) be such that {h # 0} = U and h < Cg with
a non-negative constant C. Thanks to Remark 3.6, (h,x) belongs to the set Bi.
given by (3.6), it is also clear that h-z € {0 < § < 00 = X¢_ exists in U}. We
have that % € Cp(U,R%), so using (3.7) for S and S2, the bijection

{g-z|lzreD} — {h-z|zeD}

€T — T

Qs

is continuous for the topology of Djoc (), but also of D(S4). But since {g-x |z € D}
is compact, this application is bi-continuous, and we obtain the result. Now the
proof of lemma is complete. O
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4. Proofs of main results on local Skorokhod metrics

In this section we will prove Theorem 2.4 and Theorem 2.8, by following the
strategy developed in §12, pp. 121-137 from Billingsley (1999). To construct metrics
on Dy (S), we will consider a metric d on S. To begin with, we define two families
of pseudo-metrics:

Lemma 4.1 (Skorokhod metrics). For 0 <t < oo and K C S a compact subset,
the following two expressions on Degp(S):

ptﬁK(IEl,IEQ) = inf  sup d(xi,a:is) VA =id]¢,
t;<&(z") s<ty
AEAXs, =ta ; .
\ ig{lﬁi} (d(%iaK )A(t— ti)+]lti<£(mi)>,
pri(at,2®) = inf  supd(zl,23)) VI[logAlly, V A —id]ls,
t;<&(z') s<ty
AEA N, =t2

% (d COKO) A (t—t) 41, z)
ig{l?é} (Itl )A( )+ t;<E(x?)

define two pseudo-metrics.

Proof: Let us perform the proof for p; i, the proof being similar for p; x. The
non-trivial part is the triangle inequality. Let x',2% 23 € Deyxp(S) and € > 0 be

then there are t; < £(z1), ta, b2 < £(22), T3 < £(23) and A! € A, A2 € A such that
pu(xta®) + e = sup d(ay,a%,) V| log A, V [IA" = id]le,

s<t1 .
V max (d PO KON (=) 1, zi),
iel12) (Itl )A( )+ t;<&(x?)

Pic(@®,a®) + ¢ > sup d(a?,23) V | log A2][5, v A2 — id]l;,

s<to 7 c n
V Zér{lg?;} (d((Ea,K ) A (t — t1)+]la<§(wl)> .

Define o := to A ta, £1 := ()\1)?_1 1y = /\§ and X := A2 o \!l. Then
2 2

sup d(x!, 3:?/{) < sup d(x}, zi;) + sup d(z?, azig),
S<%/1 s<t1 S<?2 :

[log Ally, < [[og A'lls, + [[log A7, 1A —idlly, < [IA" = id|[s, + [[A* —id]l,-

Moreover, for instance, if 71 # t1, then #; < t; < &(21), ty =1y <ty < &(z2) and
A KO A (= T)s < d(ad a2 )V [l — Bl +d(a2 KO A (¢~ o)

< sup d(xi,xi;) VAL —id|l, + d(xt%,KC) At —t2).

s<t1
Hence
pric(xh,2%) < Pk (2t 2%) + pr i (22, 27) + 2e,
so letting € — 0, we obtain the triangular inequality. O

We prove that these pseudo-metrics are in somehow equivalent:

Lemma 4.2. Take x,y € Dye(S), t > 0 and a compact subset K C S, if
prsc(y) < 3 then

pe i (2,y) <61/ pe (2, y) VW;,K@ (\/Pt,K($uy)) .



1204 M. Gradinaru and T. Haugomat

Proof: Let € > 0 be arbitrary. There exist u € A and T > 0 such that T < &(z),
pr < €(y) and

sup d(xsayus) \ ||/J‘ - 1d”T S pt,K(xay) + g,
s<T

d(xp, K)N(t =T) 1 Lpce@) < prr(2,y) + ¢,
AWpr, KN (= pr)+Lpur<e(y) < prr(@,y) +e.
Let 6 > 2p: k(,y) + 2¢ be arbitrary, there exist 0 = 5 < -+ < ty < &(x) such
that
sup d(xsl ’ IS2) S w;,K,x (6) + g,
0<i<N
ti<s1,52<tit1
§ <tip1—t; <26 and (tn,xty) € [0,8] X K. Set ng :=max{0<i< N |t; <T}
and T :=t,,. Define A € A by
Vi < no, )\ti = Ht;,
Vi < mng, Ais affine on [t;,t;41],
Vs>T, A =1.
Then

[A=idl| = sup [[pe, —tll <[l —idlr < prx(z,y) +e.
0<i<ng

For 0 <i < ng we have

Htipr — Ht; — liv1 + < 2”# - ldHT < 2pt,K(:E7y) + 2¢

<1,
tit1 —t; - 0 - 0
so, by the classical estimate:
[log(1+7)| < I for |r| < 1.
1—{r|
we deduce
. R 2 2
[[log Al = sup [log Htipa = Pt < pri(@,y) +2¢ )
0<i<no tiy1 —ti d —2py k(x,y) — 2

Since for s < Az, A; ' and p; ! lies in the same interval [¢;,¢;41). Therefore,

sup d(vy-1,ys) < sup (d(:z:#:1,ys) + d(xﬂs—l,z)\s—l)) < pri(2,y) +wi g . (0) 4 2¢.
S<>\f S<>\f N

For the two last terms in p: x we may consider only the case were T #T. If
no = N: d(xzz, K°) A (t = T)4 = 0, otherwise:
d(zz, KA (t —T)4 < d(zr, KA (t = T)s +d(zz,27) V(T —T)
< e (,y) + W g 2 (0) V (20) + 2¢.
By using Az = u7, we also have
d(yAfwKC) A (t - )‘T)Jr < d(va KC) A (t - T)+ + d(xfa yll«rf) \ |T - :uf|
< 21 (2, y) + .0 (6) V (26) + 3e.
Letting € — 0 we obtain that for all § > 2p, x(z,y),

20k (,Y)

~ < / '
pt,K(:Eu y) = (2pt,K(‘T7 y) + wt,K,x((S) \ (25)) \ §— 2pt,K($7 y)
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Finally, by taking § := /pi i (z,y) we have for p; x(z,y) < %

_ , 2pt,K(Ia y)
P (@.y) < (200k(0,9) + 600 (0) V (26)) V 5201k (2,y)

< (g, [ pe.ic(x,y) +w£1K,z( pt,K(xay)) v (2\/ pt,K(:v,y))) v 6\/ prxc (2, y)
<6-1/pir(T,y) Vw;,K,m(\/ Pt,K(xay))- .

At this level it can be pointed out that we obtain the definition of the local
Skorokhod topology. Indeed, by using Proposition 2.7, Lemma 4.2 and the fact
that p,,x < P, K, the two families of pseudo-metrics (py, i )i,k and (py, i )ik define
the same topology on Dy (S), the local Skorokhod topology.

If (K, )nen is an exhaustive sequence of compact sets of S, then the mapping

D]oC(S)2 — R+
(‘Tvy) = ZneN 2inﬁn7Kn (‘Tvy) A1
is a metric for the local Skorokhod topology. By using a diagonal extraction pro-
cedure, it is not difficult to prove that a sequence (z*); converges to z for this
topology if and only if there exists a sequence (A*); in A such that
e cither {(x) < co and {x,},<¢() € S: for k large enough )\’g(z) < ¢&(2%) and

(4.1)

sup d(zg,2h) — 0, xik( S A, |l log )'\k||5(m) — 0, as k— oo,
s<&(z) HC

e or {(z) = o0 or {Tslscem) € S: for all t < {(z), for k large enough
i < €(2%) and

sup d(zs, 25, ) — 0, | log \¥|ly — 0, as k — oo.

s<t °
The local Skorokhod topology can be described by a similar characterisation with
M € A replaced by A¥ € A and respectively, || log A¥|| replaced by [|A — id||. The
fact that the local Skorokhod topology does not depend on the distance d is a
consequence of the following lemma, which states essentially that two metrics on a
compact set are uniformly equivalent:

Lemma 4.3. Let T be a set and x, 2% € ST be such that {x;}ier € S, then

supd(zs, z¥) — 0, as k — oo,
teT

if and only if
YU C S? open subset containing {(y,y)}yes, ko Vk > ko, Vt € T, (x4,2F) € U.

So the topology of the uniform convergence on {3: e sT ‘ {zi}ter € S} depends
only of the topology of S.

Proof: Suppose that sup,cq d(zi, 2F) — 0 as k — oo and take an open subset

U C S? containing {(y,y)}yes. By compactness there exists € > 0 such that

{01.92) € 8 |y € {ach, dlyr,pe) < C U,

so, for k large enough and for all ¢, (x;,2¥) € U. To get the converse property it
suffices to consider, for each ¢ > 0, the open set U := {(y1,y2) € 5?|d(y1,y2) < &}
which clearly contains {(y,¥)}yes. O
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In the next lemma we discuss the completeness :

Lemma 4.4. Suppose that (S,d) is complete. Then any sequence (z¥); €
(Dioe(S)N satisfying

vVt >0, VK C S compact, ﬁt)K($k1,$k2) — 0,

k71,k72—)00

admits a limit for the local Skorokhod topology.

The proof of this lemma follows from the same reasoning as the proof of the
triangular inequality, the proof of Theorem 12.2 pp. 128-129 from Billingsley (1999)
and the proof of Theorem 5.6 pp. 121-122 from Ethier and Kurtz (1986).

Proof: Tt suffices to prove that (2*); have a converging subsequence. By taking,
possibly, a subsequence we can suppose that

Vt >0, VK C S compact, Zﬁt,K(:vk,:ka) < 0. (4.2)
k>0

We split our proof in five steps. B N
Step 1: we construct a sequence (A\F), C A. Let u* € A and £, > 0 be such that
for all t > 0 and K C S compact, we have for k large enough

ftvkr S g(xk)u M%@k S g(xk-‘rl)u

sup d(af, &) v | log fi*|lg, v 4" —id|lg, < 26k (a*, 2",

T : 43
(d(t’ﬂtﬁkac) At = ka)+]1€k<£(mk>) < 2k (¥, M), 4
(d(xﬁg,KC) A=)+ <eerrn)) < 20 (a®,abH).
For all £ > 0 define
= /\(u’“)* oo (T T (Er), (4.4)

i>0
so, tp <ty and pf < tji1. For k,i >0

d . k4+i—1
log — (™ oo ()l < Y Illogi |z,
=k

_ ki1
[F ook —id]y, < D uf —id|l,
t=k
and for j >4
||uk+j71 0---0 Mk _ Mk‘i’i*l 0.0 Mk”tk < ||uk+jfl 0---0 ukJri _ id”tk“
k+j—1
< >t —idlg,.

f=k+i

Using (4.2) and (4.3) we obtain

St —idlly, <o, > [Hog iz, < oo,
>0 >0
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k+i—1

so, the restriction to [0,t;] of continuous functions p o --- o uF converges

uniformly to a continuous function. Set

A= limy oo pF i oo pF(s),  if s <ty
A=, if s > ty.

Clearly for s < ti, AF = \*+1 o 1/*(s). We have

X = )| <sup [+ o0 — i, < 3t il < oo, (15)
i20 >k
. k _ k d .
[log \*[| = sup  |log —2 < sup [|log — (1 o0 () fa,
0<s1<s2<ty 59 — 81 i>0 ds
<> log iz, < oo, (4.6)
>k
so, \F € A.
Step 2: we construct a path @ € Degy(S). For all k > 0: Af, = )\Z%L: )\,’f;;ll and
moreover for all 0 < k1 < ko
ko—1
o k ¢ 01
sup d( (Ak1)o1 ()2\162) 1) = Ss<11p d( K ’I,ﬁcl Lo opkt S)) Z supd x5, + )
<)\’k1 k1 =k, s<t;z

By using (4.2) and (4.3) we get > _,-sup,_g, d(zt, xfj{l) < 00. By using the com-

pleteness of (S, d), we deduce that, for each m € N, the sequence 3:’(3,6),1 converges
uniformly on [0, A}" ). We can define 2 € Deyp(S) by setting:

&(x) = khﬁrgo )\fk and Vs < &(z), xs:= hm :E()\k),

We see that, for all £ > 0
sup d( ) 1, x5) = sup d(z% L7k Zsupd ) (4.7)

s<>\’C s<tg 0>k s<te

Step 3: we prove that the infimum in (4.4) is a minimum. Suppose that there exists
ko > 0 such that

Vi >0, ko < (:U‘ko)il 0---0 (/LkojLiil)il(/{koJri)

and we will show that one get a contradiction. Firstly, note that for all £ > kg
we necessarily have pf = ti41 and t, < t so, A is constant equal to £(z) and
furthermore
ko k+1 k
d(xtk,xt:;l) < sup d(xi,x
s<tp

k
ugl)'

Since > ;5o Sup, 7, d(zk, xﬁf{l) < 00, . converges to an element a € S. Let € > 0

be arbitrary such that K := B(a,3¢) C S is compact. Let k; > ko be such that
d(.Ifkl ) ) <eg, Z ﬁﬁ(m)+4€,K(IkaIk+1) <

K>k
and such that (4.3) holds for all & > ky with ¢ = {(x) + 4e. Set

ser= [\ (W) Lo o (WY T E, ).
0<i<¥

€
2
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It is clear that s, > tx, and s, is a decreasing sequence converging to tx, so, the set
{€>0]s; < sg_1} is infinite. Let £ > 0 be such that sy < sy—1 and sy — tg, < &,
then

se=(uF) " oo (PN T (H, 1),

Therefore,
t~k1+£ =ph oot (sg) < P T oo Rty 4 €) (4.8)
k1+£4—1 k1+£—1
< Y e —idllg, e A< Y et —idlg + A —id], +E@) + e
i:k1 i:k1
<@ +e+2) u—idlg @) +e+4 ) Pe(oyrae (@ 2t < £(z) + 3.
i>ky i>k1
Furthermore ty, 1/ < ,ule < ¢(zh+t) and
k1+£—-1
ki+e ~
d(x tkll—:e KC)/\(g(x)+4‘€_tk1+f)+11t~h+[<g(xk1+f) < 2p£(w)+4€)K($k1+l7$k1+6+1) <e,
so, by (4.8),
k1+E c
d(x Toe? VK¢ <e,
and
ki+0—1
k1 c k1 k1+£ k144 c i H—l
dlany KO < dlay o T+ dag T K < 3 supdla, ) e < 2
1=R1 K

Hence we have d(a,z%!) > ¢ and d(a, ;vt ) <e. Letting £ — oo we get a contradic-
tion.

Step 4: firt >0 and K C S a compact set: we prove that limg_, oo ﬁt,K(xk, x) = 0.
Taking k large enough (4.3) holds and by using (4.5), (4.6) and (4.7),

sup d(z¥ :E)\k Zsupd ztx “1 <22ptK zt 2,

s<ti >k s<te >k
[N —id] < lIuf —idlly, <2 (a2,

>k >k
[log \¥|| < Z [ log /1|7, < QZﬁt,K(xz,iEeﬂ)-

>k >k

Moreover by the previous step we know that the infimum in (4.4) is a minimum
and so, in the present step, we set

m=min{¢>Fk | (u¥) oo () () =t} €N,
M:=sup {£>Fk| () oo (u ) (E) = tr} € NU {oo}.

Then
m—1

Ak, KA (E = 1)+ Ly ceory < S sup d(afa )V [ —id]l,
=k s<te )

+d@f KO A (t—tn) 41

<2 Zﬁt,K(xg, :1:“1).
>k

T <E(z™)
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It is clear that )\fk =¢(z) if and only if M =oc0. If M < 0
dleyg KA (= M) = dlzgge KA (=AM,

< d(ani KON (= i) + ) supd(al, 2t v et —id]g,
Hen 0> M $<ts

<2ZptK ,zfth) (4.9)
>k

We have proved that

~ k ~ ¢ 041
prr(x”, x) < 2Z>kat,1<($ )T )kjo 0.

Step 5: we prove that x € Dy,c(x). Suppose that {(x) < oo and that {2s},<¢(z) € S.
Let &€ > 0 be such that K := {y € S | d(y,{ws}s<e(x)) <€} is compact and set
t =&(x) 4+ €. By using (4.9) we have, for k large enough,

d(wys KA (t = /\tk)+]1wc<£ <2 prx(f 2t <e

>k
Then &(z) = Af and we deduce that
sup d(z{ye)1,7s) <2 pr(a ™) — 0
s<&(x) (A5)= E>Zk k—>oo

and that the limit x¢(,)_ exists in S. Therefore, x € Dyoc(S) and zF converges to
x for the local Skorokhod topology. O

To prove the separability and the criterion of compactness we will use the fol-
lowing technical result:

Lemma 4.5. Let RC S, 6 >0 and N € N be. Define

EroN = {x € Dioe(9) | €(x) < N6, Vk €N, x is a constant in RU{A}
on [k6, (k+1)0)}.

Then for any x € Dj,.(S)
oo (o) < (5D d(a, B) + wis s, (6)) V 6.

aceK

Proof: For arbitrary € > 0 , there exist 0 =ty < - -+ < tps < &(x) such that

/
sup d(IS1 ) xsz) < wNé,K,m(a) +e,
0<i<M
ti<s1,82<tit1

such that for all 0 < ¢ < M, t;41 > t; + 0 and (tar, 2y, ) € [0,N6] x K. De-
note t* = min{s > 0|s > No or d(zs, K¢) = O} < tp and define M :=
min{0 <i< M | t; >t*}. Define ?ﬁ = {%—‘ 0 where [r] denotes the smallest

integer larger or equal than the real number r. Moreover, for 0 < i < M define
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t; = L%J 0 where we recall that |r] denotes the integer part of the real number r,
$0 0=ty < ... <ty Finally, we define 7 € Eg s n by

f(i) ::ZJ\ZL
V0 <i< M: wechoose 7z, in R such that d(zy,,77,) < d(zt,, R) + ¢,
VO<i<M, Vi <s<tiyr: Ts:=7ag,
and A € A given by
VO<i<M: Aeones = i,
VO <i< M: M\isaffine on [t;,t;41 At*],
Vs >t*: As=1.

We can write

PN,k (2, Ers,N) < pns,k (2, T) < sup d(zs,Tx,) V [|A —id||

s<t*
< (sup d(a, R) + wj g ,(9) + 25) V4,
acK
so, letting € — 0 we obtain the result. ([l

The separability is an easy consequence:
Lemma 4.6. The local Skorokhod topology on D,.(S) is separable.

Proof: Let R be a countable dense part of S and introduce the countable set
E = U gR,l,N'
n,NeN*

Consider z € Dyoc(S), t > 0, K C S a compact set and let € > 0 be. We choose
n € N* such that n=! <& and wj,, g ,(n') < e and set N := [nt]. We can write

1 1
(o €y ) < oy sy ) < (suplas )+ oy g (2)) V
' n ‘mo acK nomn n
1 1
< wz/f—i-l,K,m(E) Vo se
We deduce that F is dense, hence Dy, (S) is separable. O

We have now all the ingredients to prove the characterisation of the compactness:

Proof of Theorem 2.5: First, notice that, similarly as in the proof of Lemma 4.3,
the condition (2.5) is equivalent to: for all ¢ > 0, all compact subset K C S and
all open subset U C S? containing the diagonal {(y, y) |y e S}, there exists 6 > 0
such that for all z € D there exist 0 =t < --- < ty < &(z) such that

V0§i<N, Sl,SQE[ti,tH_l), (,Tsl,l'SQ)EU,

forall 0 < i < N, t;41 —t; > 9, and (tn, 2y ) € [0,t] x K. Hence, the condition
(2.5) is independent to d, and we can suppose that (S, d) is complete. Suppose that
D satisty condition (2.5), then, by using Lemma 4.4, we need to prove that for all
t >0, K C S acompact set and € > 0 arbitrary, D can be recovered by a finite
number of p g-balls of radius €. Let 0 <7 < % be such that

6V supwy g, (V) <€,
xeD
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and let § < 7 be such that

sup w£+1,K,x (6) S
zeD

N s

Since K is compact we can choose a finite set R C S such that

sup d(a, R) <
acK

take N := [t6~1]. Then by using Lemma 4.5,

)

NS

sup pt, ik (2, Er5,8) < sup pns,x (2, ERrs,N)
D

xeD re
< <sup d(a, R) + sup w§v57K7m(5)) Vi<n
acK xeD

and by using Lemma 4.2,
sup pt, i (2, Er,s,N) < 6 sup ( Pk (2, ERSN) V Wi ¢ o ( pe.x (T, 5R,5,N))> <e.
xeD zeD

Since £g s, is finite we can conclude that D is relatively compact.

To prove the converse sentence, thanks to the first part of Proposition 2.7 it is
enough to prove that if 2,z € Djo(S) with 2 converging to x, then for all ¢t > 0
and all compact subset K C S,

lim sup w/, §) — 0.
k—)oop t,K,wk( )6—>O

This is a direct consequence of Proposition 2.7. Let us stress that although we cite
Theorem 2.4 in the proof of Proposition 2.7, in reality we only need the sequential
characterisation of the convergence. ([

We close this section by the study of the Borel o-algebra B(Dioc(S)).
Lemma 4.7. Borel o-algebra B(Dyo.(S)) coincides with F.

Proof: Let f € C(S?) and 0 < a < b < 0o be. Consider z* € Djo.(S) converging
to € Dioe(S), with () > b, and take A\* € A as in Theorem 2.4. Then, for k
large enough bV A} < &(z*) and by dominated convergence,

b Ak b ] b b
[ tabas= [ pahas+ [ pakodtas+ [ s = | faas

Hence, the set {x € Dioc(S) | b < &(z)} is open and on this set the function

b
T~ / flxs)ds
is continuous so, for ¢ > 0 and € > 0 the mapping from Dj,.(S) to R

1 t+e .
JRND -3 f(zs)ds, 1ft—|—£.< &(x),
f(Aa), otherwise,

is measurable for the Borel o-algebra B(Djo.(S)) and, the same is true for the
mapping = — f(z:), by taking the limit. Since f is arbitrary, x — a; is also
measurable and so, F C B(Djc(5)).
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Conversely, since the space is separable, it is enough to prove that for each
20 € Dipe(S), t > 0, K C S compact and € > 0 there exists V C Djoc(S), F-
measurable, such that

{2 € Dioe(9) | pr.x(2,2°) <e} CV C {& €Dioc(S) | pr.x(2,2°) < 3e}. (4.10)
Proposition 2.7 allows to get the existence of 0 = tJ < --- < % < £(2Y) such that

0 .0
sup d(z,,,x,,) <e,
0<i<N
t)<s1,52<t9,

and (t,2% ) € [0,1]x € K. If we define
N

=ty < <ty <E&(x), M < N such that:
Vo <1i< M, |ti—t?|§5
V=< z € Dioe(5) VO <i< M, Vteltitiy1), dze,ah) < 2e
d(x%)w,Kc) A (t — t%/[)+ﬂtf]{/1<§(m0) < 2¢
d(xtM—7 Kc) N d(xtMch) N (t - tM)-i-]ltM<§(m) <3e
it is straightforward to obtain (4.10). Since

V6 >0, 30=qo < < qu <&(x) =6, M < N such that:
VO<i<M, |gi—t)|<e+d
V ={ 2 € Dpe(S) V0 < i< M, Vg € lgi+0,gim1 — 0], dlwg,al) <2
d(x?%l,Kc) A(t— t9\4)+]1t(]w<5(10) <2
A(@qp, KA (t = qrr) 11 gy <) <36+ 6

where ¢, ¢; and & are chosen to be rational, V belongs F. The proof is now
complete. ([l

Acknowledgements

The authors are grateful to the anonymous referee for his/her careful reading of
the manuscript and useful suggestions.

References

P. Billingsley. Convergence of probability measures. Wiley Series in Probability and
Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second
edition (1999). ISBN 0-471-19745-9. MR 1700749.

S. N. Ethier and T. G. Kurtz. Markov processes. Wiley Series in Probability and
Mathematical Statistics: Probability and Mathematical Statistics. John Wiley &
Sons, Inc., New York (1986). ISBN 0-471-08186-8. MR838085.

M. Gradinaru and T. Haugomat. Lévy-type processes: convergence and discrete
schemes. ArXiv Mathematics e-prints (2017a). arXiv: 1707.02889.

M. Gradinaru and T. Haugomat. Locally Feller processes and martingale local
problems. ArXiv Mathematics e-prints (2017b). arXiv: 1706.04880.

0. Kallenberg. Foundations of modern probability. Probability and its Applications
(New York). Springer-Verlag, New York, second edition (2002). ISBN 0-387-
95313-2. MR1876169.

T. G. Kurtz. Equivalence of stochastic equations and martingale problems. In Sto-
chastic analysis 2010, pages 113-130. Springer, Heidelberg (2011). MR2789081.


http://www.ams.org/mathscinet-getitem?mr=MR1700749
http://www.ams.org/mathscinet-getitem?mr=MR838085
http://arxiv.org/abs/1707.02889
http://arxiv.org/abs/1706.04880
http://www.ams.org/mathscinet-getitem?mr=MR1876169
http://www.ams.org/mathscinet-getitem?mr=MR2789081

Local Skorokhod topology on the space of cadlag processes 1213

R. Rebolledo. Sur les temps d’arrét et la topologie étroite. C. R. Acad. Sci. Paris
Sér. A-B 289 (14), A7T07-A709 (1979). MR560339.

L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales.
Vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cam-
bridge (2000). ISBN 0-521-77593-0. MR 1780932.

D. W. Stroock. Diffusion processes associated with Lévy generators. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete 32 (3), 209-244 (1975). MR0433614.

D. W. Stroock and S. R. S. Varadhan. Multidimensional diffusion processes. Classics
in Mathematics. Springer-Verlag, Berlin (2006). MR2190038.


http://www.ams.org/mathscinet-getitem?mr=MR560339
http://www.ams.org/mathscinet-getitem?mr=MR1780932
http://www.ams.org/mathscinet-getitem?mr=MR0433614
http://www.ams.org/mathscinet-getitem?mr=MR2190038

	1. Introduction
	2. Paths spaces
	2.1. Local spaces of cadlag paths
	2.2. Local Skorokhod topology

	3. Time change and Skorokhod topologies
	3.1. Definition and properties of time change
	3.2. Connection between local and global Skorokhod topologies

	4. Proofs of main results on local Skorokhod metrics
	Acknowledgements
	References

