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Abstract. We modify the global Skorokhod topology, on the space of cadlag paths,
by localising with respect to space variable, in order to include the eventual explo-
sions. The tightness of families of probability measures on the paths space endowed
with this local Skorokhod topology is studied and a characterization of Aldous type
is obtained. The local and global Skorokhod topologies are compared by using a
time change transformation.

1. Introduction

The study of cadlag Lévy-type processes has been an important challenge during
the last twenty years. This was due to the fact that phenomena like jumps and
unbounded coefficients of characteristic exponent (or symbol) should be taken in
consideration in order to get more realistic models.

To perform a systematic study of this kind of trajectories one needs, on one
hand, to consider the space of cadlag paths with some appropriate topologies, e.g.
Skorokhod’s topologies. On the other hand, it was a very useful observation that
a unified manner to tackle a lot of questions about large classes of processes is
the martingale problem approach. Identifying tightness is an important step when
studying sequences of distributions of processes solving associated martingale prob-
lems and the Aldous criterion is one of the most employed.

The martingale problem approach was used for several situations: diffusion pro-
cesses, stochastic differential equations driven by Brownian motion, Lévy processes,
Poisson random measures (see, for instance, Stroock, 1975, Stroock and Varadhan,
2006, Kurtz, 2011...). Several technical hypotheses (for instance, entire knowledge
of the generator, bounded coefficients hypothesis, assumptions concerning explo-
sions...) provide some limitation on the conclusions of certain results, in particular,
on convergence results.
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The present paper constitutes our first step in studying Markov processes with
explosion and, in particular in the martingale problem setting. It contains the study
of the so-called local Skorokhod topology and of a time change transformation of
cadlag paths. The detailed study of the martingale problem, of Lévy-type processes
and several applications will be presented elsewhere (see Gradinaru and Haugomat,
2017b and Gradinaru and Haugomat, 2017a).

One of our motivations is that we wonder whether the solution of a well-posed
martingale problem is continuous with respect to the initial distribution. The
classical approach when one needs to take into consideration the explosion of the
solution is to compactify the state space by one point, say ∆, and to endow the
cadlag paths space by the Skorokhod topology (see, for instance, Ethier and Kurtz,
1986, Kallenberg, 2002). Unfortunately, this usual topology is not appropriate when
we relax hypotheses on the martingale problem setting.

The simplest example is provided by the differential equation

ẋt = b(t, xt), t > 0, starting from x0 ∈ R
d,

where b : R+ × R
d → R

d is a locally Lipschitz function. The unique maximal
solution exists by setting xt = ∆, after the explosion time. In general, for some
t > 0, the mapping x0 7→ xt is not continuous, and in particular x0 7→ x• is not
continuous for the usual (global) Skorokhod topology. As an illustration, let us
consider

ẋt = (1− t)x2
t , t > 0, x0 ∈ R.

For any initial condition x0, the unique maximal solution is given by

xt =

(
t2

2
− t+

1

x0

)−1

before tmax =





∞, if x0 ∈ [0, 2),

1−
√
1− 2/x0, if x0 ≥ 2,

1 +
√
1− 2/x0, if x0 < 0,

and xt := ∆, after tmax. Indeed, this trajectory is not continuous with respect to
the initial condition in the neighbourhood of x0 = 2. To achieve the continuity
of the mapping x0 7→ x• our idea will be to localise the topology on the paths
space, not only with respect to the time variable but also with respect to the space
variable. More precisely, we need to consider uniform convergence until the exit
time from some compact subset of R+ × R

d.
We adapt this idea to cadlag paths by following a similar approach as in Billings-

ley (1999) and we get the local Skorokhod topology which is weaker than the usual
(global) Skorokhod topology. Then, we describe the compactness and the tightness
in connection with this topology. Furthermore, we state and prove a version of the
Aldous criterion, which is an equivalence, as in Rebolledo (1979).

As in Ethier and Kurtz (1986), pp. 306-311, we introduce a time change trans-
formation of the cadlag path x by the positive continuous function g. Roughly
speaking, it is defined by (g · x)t := xτt with τt the unique solution starting from 0
of the equation τ̇t = g(xτt). Another novelty of our paper is the employ of the time
change transformation to compare the local Skorokhod topology with the usual
(global) Skorokhod topology.

Our paper is organised as follows: the following section is mainly devoted to the
study of the local Skorokhod topology on spaces of cadlag paths: the main result
is a tightness criterion. Properties of the time change mapping, in particular the
continuity, and the connection between the local and global Skorokhod topologies
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are described in Section 3. The last section contains technical proofs, based on
local Skorokhod metrics, of results stated in Section 2.

2. Paths spaces

2.1. Local spaces of cadlag paths. Let S be a locally compact Hausdorff space with
countable base. This topological feature is equivalent with the fact that S is sep-
arable and can be endowed by a metric for which the unit balls are compact, so,
S is a Polish space. Take ∆ 6∈ S, and we will denote by S∆ ⊃ S the one-point
compactification of S, if S is not compact, or the topological sum S ⊔ {∆}, if S
is compact (so, ∆ is an isolated point). Clearly, S∆ is a compact Hausdorff space
with countable base which could be also endowed with a metric. This latter metric
will be used to construct various useful functions, compact and open subsets.

For any topological space A and any subset B ⊂ R, we will denote by C(A,B)
the set of continuous functions from A to B, and by Cb(A,B) its subset of bounded
continuous functions. We will abbreviate C(A) := C(A,R) and Cb(A) := Cb(A,R).
All along the paper we will denote C ⋐ A for a subset C which is compactly
embedded in A. Similarly, C 6⋐ A means either that C is not a subset of A or C is
not compactly embedded in A.

We start with the definition of our spaces of trajectories:

Definition 2.1 (Spaces of cadlag paths). Define the space of exploding cadlag
paths

Dexp(S) :=




x : [0, ξ(x)) → S

∣∣∣∣∣∣∣

0 ≤ ξ(x) ≤ ∞,
∀t0 ∈ [0, ξ(x)) xt0 = lim

t↓t0
xt,

∀t0 ∈ (0, ξ(x)) xt0− := lim
t↑t0

xt exists in S





.

When ξ(x) = 0, we assume that x is the empty subset of [0, 0) × S. For a path
x from Dexp(S), ξ(x) is its lifetime or explosion time. We identify Dexp(S) with a
subset of (S∆)R+ by using the mapping

Dexp(S) →֒ (S∆)R+

x 7→ (xt)t≥0
with xt := ∆ if t ≥ ξ(x).

We define the local cadlag space as the subspace

Dloc(S) :=
{
x ∈ Dexp(S)

∣∣ ξ(x) ∈ (0,∞) and {xs}s<ξ(x) ⋐ S imply xξ(x)− exists
}
.

(2.1)
We also introduce the global cadlag space as the subspace of Dloc(S)

D(S) := {x ∈ Dloc(S) | ξ(x) = ∞} ⊂ SR+ .

We will always denote by X the canonical process on Dexp(S), Dloc(S) and D(S)
without danger of confusion. We endow each of Dexp(S), Dloc(S) and D(S) with a
σ-algebra F := σ(Xs, 0 ≤ s < ∞) and a filtration Ft := σ(Xs, 0 ≤ s ≤ t). We will
always skip the argument X for the explosion time ξ(X) of the canonical process.

The following result provides a useful class of measurable mappings:

Proposition 2.2. For t0 ∈ R+, the mapping

Dexp(S)× [0, t0] → S∆

(x, t) 7→ xt
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is Ft0 ⊗ B([0, t0])-measurable. For t0 ∈ R
∗
+, the set

A :=
{
(x, t) ∈ Dexp(S)× (0, t0]

∣∣ xt− exists in S∆
}

belongs to Ft0− ⊗ B((0, t0]) and the mapping

A → S∆

(x, t) 7→ xt−

is Ft0−⊗B((0, t0])-measurable. For U an open subset of S and for t0 ∈ R+, the set

B :=
{
(x, s, t) ∈ Dexp(S)× [0, t0]

2
∣∣ {xu}s∧t≤u<s∨t ⋐ U

}

belongs to Ft0− ⊗ B([0, t0])⊗2 and the mapping

B × C(U) → R

(x, s, t, h) 7→
∫ t

s

h(xu)du

is Ft0− ⊗ B([0, t0])⊗2 ⊗ B(C(U))-measurable.

Before proving this proposition we state a corollary which give a useful class of
stopping times:

Corollary 2.3. For any (Ft)-stopping time τ0, U an open subset of S2, h ∈
C(U ,R+) a continuous function and M : Dexp(S) → [0,∞] a Fτ0-measurable map,
the mapping

τ := inf
{
t ≥ τ0 | {(Xτ0 , Xs)}τ0≤s≤t 6⋐ U or

∫ t

τ0

h(Xτ0 , Xs)ds ≥ M
}

is a (Ft)-stopping time. In particular, ξ is a stopping time. Furthermore, if U ⊂ S
is an open subset,

τU := inf {t ≥ 0 | Xt− 6∈ U or Xt 6∈ U} ≤ ξ (2.2)

is a stopping time.

Proof of Corollary 2.3: For each t ≥ 0, using Proposition 2.2 it is straightforward
to obtain that

Y :=





−1 if τ0 > t,∫ t

τ0
h(Xτ0 , Xs)ds if τ0 ≤ t and {(Xτ0, Xs)}τ0≤s≤t ⋐ U ,

∞ otherwise.

is Ft-measurable. Hence

{τ ≤ t} = {Y ≥ M} = {Y ≥ M} ∩ {τ0 ≤ t} ∈ Ft,

so, τ is a (Ft)-stopping time. �

Proof of Proposition 2.2: Let d be a complete metric for the topology of S, note
that

A =
⋂

ε∈Q∗

+

⋃

δ∈Q∗

+

⋂

q1,q2∈Q+∩[0,t0)

{q1, q2 ∈ [t− δ, t) ⇒ d(xq1 , xq2) ≤ ε}

so, A belongs to Ft0− ⊗ B((0, t0]). It is clear that for each n ∈ N

A → S∆

(x, t) 7→ x t0
n+1

⌊
nt
t0

⌋
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is Ft0−⊗B((0, t0])-measurable, where ⌊r⌋ denotes the integer part of the real number
r. Letting n → ∞ we obtain that (x, t) 7→ xt− is Ft0−⊗B((0, t0])-measurable. The
proof is similar for (x, t) 7→ xt. To prove that B is measurable, let (Kn)n∈N be an
increasing sequence of compact subsets of U such that U =

⋃
n Kn. Then

B =
⋃

n∈N

{
(x, s, t) ∈ Dexp(S)× [0, t0]

2
∣∣ {xu}s∧t≤u<s∨t ⊂ Kn

}

=
⋃

n∈N

⋂

q∈Q+
q<t0

{
(x, s, t) ∈ Dexp(S)× [0, t0]

2
∣∣ s ∧ t ≤ q < s ∨ t ⇒ xq ∈ Kn

}
,

so, B ∈ Ft0− ⊗B([0, t0])⊗2. To verify the last part, let us note that for n ∈ N
∗ the

mapping from B × C(U)

(x, s, t, h) 7→ sign(t− s)

n

n−1∑

i=0

h(x it0
n

)1
s∧t≤

it0
n

<s∨t

is Ft0− ⊗ B([0, t0])⊗2 ⊗ B(C(U))-measurable. Here and elsewhere we denote by
N

∗ = N \ {0} the set of positive entire numbers. Letting n → ∞, the same thing is
true for the mapping

B × C(U) → R

(x, s, t, h) 7→
∫ t

s

h(xu)du.

�

2.2. Local Skorokhod topology. To simplify some statements, in this section we will
consider a metric d on S. To describe the convergence of a sequence (xk)k∈N ⊂
Dloc(S) for our topology on Dloc(S), we need to introduce the following two spaces:

we denote by Λ the space of increasing bijections from R+ to R+, and by Λ̃ ⊂ Λ
the space of increasing bijections λ with λ and λ−1 locally Lipschitz. For λ ∈ Λ
and t ∈ R+ we denote

‖λ− id‖t := sup
0≤s≤t

|λs − s| = ‖λ−1 − id‖λt
. (2.3)

For λ ∈ Λ̃, let λ̇ ∈ L∞
loc(ds) be the density of dλ with respect to the Lebesgue

measure. This density is non-negative and locally bounded below, and for t ∈ R+

denote

‖ log λ̇‖t := esssup0≤s≤t‖ log λ̇s‖ = sup
0≤s1<s2≤t

∣∣∣∣log
λs2 − λs1

s2 − s1

∣∣∣∣ =
∥∥∥∥log

(
dλ−1

s

ds

)∥∥∥∥
λt

.

The proofs of the following theorems use the strategy developed in §12, pp.
121-137 from Billingsley (1999), and are postponed to Section 4.

Theorem 2.4 (Local Skorokhod topology). There exists a unique Polish topology
on Dloc(S), such that a sequence (xk)k∈N converges to x for this topology if and
only if there exists a sequence (λk)k∈N in Λ such that

• either ξ(x) < ∞ and {xs}s<ξ(x) ⋐ S: λk
ξ(x) ≤ ξ(xk) for k large enough and

sup
s<ξ(x)

d(xs, x
k
λk
s
) −→ 0, xk

λk
ξ(x)

−→ ∆, ‖λk−id‖ξ(x) −→ 0, as k → ∞,
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• or ξ(x) = ∞ or {xs}s<ξ(x) 6⋐ S: for all t < ξ(x), for k large enough

λk
t < ξ(xk) and

sup
s≤t

d(xs, x
k
λk
s
) −→ 0, ‖λk − id‖t −→ 0, as k → ∞.

This topology is also described by a similar characterisation with λk ∈ Λ and ‖λk −
id‖ replaced, respectively, by λk ∈ Λ̃ and ‖ log λ̇k‖. Moreover, the Borel σ-algebra
B(Dloc(S)) coincides with the σ-algebra F .

Definition 2.5. The topology on Dloc(S) whose existence is stated in the latter
theorem will be called the local Skorokhod topology. The trace topology from
Dloc(S) to D(S) will be called the global Skorokhod topology.

Remark 2.6. 1) We point out that these topologies do not depend on the metric d
of S and this is a consequence of the fact that two metrics on a compact set are
uniformly equivalent (cf. Lemma 4.3 below).
2) The convergence conditions of Theorem 2.4 may be summarised as: a sequence
(xk)k converges to x for the local Skorokhod topology if and only if there exists a
sequence (λk)k in Λ satisfying that for any t ∈ R+ such that {xs}s<t ⋐ S, for k
large enough λk

t ≤ ξ(xk) and

sup
s<t

d(xs, x
k
λk
s
) −→ 0, xk

λk
t
−→ xt, ‖λk − id‖t −→ 0, as k → ∞.

3) A sequence (xk)k from D(S) converges to x ∈ D(S) for the global Skorokhod
topology if and only if there exists a sequence (λk)k in Λ such that for all t ≥ 0

sup
s≤t

d(xs, x
k
λk
s
) −→ 0, ‖λk − id‖t −→ 0, as k → ∞.

In fact, we recover the usual Skorokhod topology on D(S), which is described, for
instance, in §16 pp. 166-179 from Billingsley (1999).

We are now interested to characterise the sets of Dloc(S) which are compact and
also to obtain a criterion for the tightness of a subset of probability measures in
P (Dloc(S)). For x ∈ Dexp(S), t ≥ 0, K ⊂ S compact and δ > 0, define

ω′
t,K,x(δ) := inf





sup
0≤i<N

ti≤s1,s2<ti+1

d(xs1 , xs2)

∣∣∣∣∣∣∣

N ∈ N, 0 = t0 < · · · < tN ≤ ξ(x)
(tN , xtN ) 6∈ [0, t]×K
∀0 ≤ i < N : ti+1 − ti > δ





.

(2.4)

We give some properties of ω′.

Proposition 2.7.

i) Consider x ∈ Dexp(S). Then x belongs to Dloc(S) if and only if

∀t ≥ 0, ∀K ⊂ S compact, ω′
t,K,x(δ) −→

δ→0
0.

ii) For all t ≥ 0, K ⊂ S compact and δ > 0, the mapping

Dloc(S) → [0,+∞]
x 7→ ω′

t,K,x(δ)

is upper semi-continuous.
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Proof : Suppose that x ∈ Dloc(S) and let t ≥ 0 be and consider a compact set
K ⊂ S. There exists T ≤ ξ(x) such that (T, xT ) 6∈ [0, t] × K and the limit xT−

exists in S. Let ε > 0 be arbitrary and consider I the set of times s ≤ T for which
there exists a subdivision

0 = t0 < · · · < tN = s

such that

sup
0≤i<N

ti≤s1,s2<ti+1

d(xs1 , xs2) ≤ ε.

It is clear that I is an interval of [0, T ] containing 0: set t∗ := sup I. Since there
is existence of the limit xt∗−, then t∗ ∈ I, and, since x is right-continuous, t∗ = T .
Hence, T ∈ I and there exists δ > 0 such that ω′

t,K,x(δ) ≤ ε.

Conversely, let’s take x ∈ Dexp(S) such that ξ(x) < ∞, {xs}s<ξ(x) ⋐ S and

∀t ≥ 0, ∀K ⊂ S compact, ω′
t,K,x(δ) −→

δ→0
0.

We need to prove that the limit xξ(x)− exists in S. Let y1, y2 be any two limits
points of xs, as s → ξ(x). We will prove that y1 = y2. Let ε > 0 be arbitrary. By

taking t = ξ(x) and K = {xs}s<ξ(x) in (2.4) there exists a subdivision,

0 = t0 < · · · < tN = ξ(x),

such that

sup
0≤i<N

ti≤s1,s2<ti+1

d(xs1 , xs2) ≤ ε.

Replacing in the latter inequality the two sub-sequences tending toward y1, y2, we
can deduce that d(y1, y2) ≤ ε, and letting ε → 0 we get y1 = y2.

We proceed with the proof of part ii). Let (xk)k ⊂ Dloc(S) be such that xk

converges to x ∈ Dloc(S) and let (λk)k ⊂ Λ̃ be such in Theorem 2.4. We need to
prove that,

lim sup
k→∞

ω′
t,K,xk(δ) ≤ ω′

t,K,x(δ).

We can suppose that ω′
t,K,x(δ) < ∞. Let ε > 0 be arbitrary and consider a

subdivision 0 = t0 < · · · < tN ≤ ξ(x) such that

sup
0≤i<N

ti≤s1,s2<ti+1

d(xs1 , xs2) ≤ ω′
t,K,x(δ) + ε,

ti+1 > ti + δ and (tN , xtN ) 6∈ [0, t] × K. If tN = ξ(x) and {xs}s<ξ(x) 6⋐ S, then

we can find t̃N such that tN−1 + δ < t̃N < ξ(x) and xt̃N
6∈ K. We can suppose,

possibly by replacing tN by t̃N , that

tN = ξ(x) implies {xs}s<ξ(x) ⋐ S.

Hence, for k large enough, λk
tN ≤ ξ(xk) and

sup
s<tN

d(xs, x
k
λk
s
) −→ 0, xk

λk
tN

−→ xtN , ‖λk − id‖tN −→ 0, as k → ∞.
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We deduce that, for k large enough, we have 0 = λk
t0 < · · · < λk

tN ≤ ξ(xk),

λk
ti+1

> λk
ti + δ, (λk

tN , xk
λk
tN

) 6∈ [0, t]×K, and moreover,

sup
0≤i<N

λk
ti
≤s1,s2<λk

ti+1

d(xk
s1 , x

k
s2) ≤ sup

0≤i<N
ti≤s1,s2<ti+1

d(xs1 , xs2) + 2 sup
s<tN

d(xs, x
k
λk
s
)

≤ ω′
t,K,x(δ) + ε+ 2 sup

s<tN

d(xs, x
k
λk
s
) −→
k→∞

ω′
t,K,x(δ) + ε.

Therefore,

lim sup
k→∞

ω′
t,K,xk(δ) ≤ ω′

t,K,x(δ) + ε,

and we conclude by letting ε → 0. �

We can give now a characterisation of the relative compactness for the local
Skorokhod topology:

Theorem 2.8 (Compact sets of Dloc(S)). For any subset D ⊂ Dloc(S), D is
relatively compact if and only if

∀t ≥ 0, K ⊂ S compact, sup
x∈D

ω′
t,K,x(δ) −→

δ→0
0. (2.5)

The proof follows the strategy developed in §12 pp. 121-137 from Billingsley
(1999) and it is postponed to Section 4.

We conclude this section with a version of the Aldous criterion of tightness:

Proposition 2.9 (Aldous criterion). Let P be a subset of P (Dloc(S)). If for all
t ≥ 0, ε > 0, and an open subset U ⋐ S, we have:

inf
F⊂P

sup
P∈P\F

sup
τ1≤τ2

τ2≤(τ1+δ)∧t∧τU

P
(
τ1 < τ2 = ξ or d(Xτ1 , Xτ2)1{τ1<ξ} ≥ ε

)
−→
δ→0

0, (2.6)

then P is tight. Here the infimum is taken on all finite subsets F ⊂ P and the
supremum is taken on all stopping times τi.

Remark 2.10. As in Billingsley (1999), Theorem 16.9, p. 177, an equivalent condi-
tion for tightness can be obtained by replacing (2.6) by

inf
F⊂P

sup
P∈P\F

sup
τ≤t∧τU

P
(
τ < (τ + δ) ∧ τU = ξ or d(Xτ , X(τ+δ)∧τU )1{τ<ξ} ≥ ε

)
−→
δ→0

0,

by taking infimum on all finite subsets F ⊂ P and the supremum on all stopping
times τ .

In fact we will state and prove a version of the of the Aldous criterion, which is
a necessary and sufficient condition, similarly as in Rebolledo (1979):

Theorem 2.11 (Tightness for Dloc(S)). For any subset P ⊂ P (Dloc(S)), the fol-
lowing assertions are equivalent:

(1) P is tight,
(2) for all t ≥ 0, ε > 0 and K a compact set we have

sup
P∈P

P
(
ω′
t,K,X(δ) ≥ ε

)
−→
δ→0

0,
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(3) for all t ≥ 0, ε > 0, and open subset U ⋐ S we have:

α(ε, t, U, δ) := sup
P∈P

sup
τ1≤τ2≤τ3

τ3≤(τ1+δ)∧t∧τU

P(R ≥ ε) −→
δ→0

0,

where the supremum is taken on τi stopping times and with

R :=





d(Xτ1 , Xτ2) ∧ d(Xτ2 , Xτ3) if 0 < τ1 < τ2 < τ3 < ξ,
d(Xτ2−, Xτ2) ∧ d(Xτ2 , Xτ3) if 0 < τ1 = τ2 < τ3 < ξ,
d(Xτ1 , Xτ2) if 0 = τ1 ≤ τ2 < ξ or 0 < τ1 < τ2 < τ3 = ξ,
d(Xτ2−, Xτ2) if 0 < τ1 = τ2 < τ3 = ξ,
0 if τ1 = ξ or 0 < τ1 ≤ τ2 = τ3,
∞ if 0 = τ1 < τ2 = ξ.

Remark 2.12. 1) If d is obtained from a metric on S∆, then if ε < d(∆, U) the
expression of α(ε, t, U, δ) may be simplified as follows:

α(ε, t, U, δ) = sup
P∈P

sup
τ1≤τ2≤τ3

τ3≤(τ1+δ)∧t∧τU

P(R̃ ≥ ε) −→
δ→0

0,

where the supremum is taken on τi stopping times and with

R̃ :=





d(Xτ1 , Xτ2) ∧ d(Xτ2 , Xτ3) if 0 < τ1 < τ2,
d(Xτ2−, Xτ2) ∧ d(Xτ2 , Xτ3) if 0 < τ1 = τ2,
d(Xτ1 , Xτ2) if 0 = τ1.

2) It is straightforward to verify that a subset D ⊂ D(S) is relatively compact for
D(S) if and only if D is relatively compact for Dloc(S) and

∀t ≥ 0, {xs | x ∈ D, s ≤ t} ⋐ S.

Hence we may recover the classical characterisation of compact sets of D(S) and
the classical Aldous criterion. Moreover, we may obtain a version of Theorem 2.11
for D(S).
3) The difficult part of Theorem 2.11 is the implication 3⇒2, and its proof is
adapted from the proof of Theorem 16.10 pp. 178-179 from Billingsley (1999).
Roughly speaking the assertion 3 uses

ω′′
x(δ) := sup

s1≤s2≤s3≤s1+δ
d(xs1 , xs2 ) ∧ d(xs2 , xs3),

while the Aldous criterion uses

ωx(δ) := sup
s1≤s2≤s1+δ

d(xs1 , xs2).

The term d(Xτ2−, Xτ2) appears because, in contrary to the deterministic case,
some stopping time may not be approximate by the left. We refer to the proof
of Theorem 12.4 pp. 132-133 from Billingsley (1999) for the relation between ω′′

and ω′.

Proof of Theorem 2.11:
2⇒1 Consider (tn)n≥1 a sequence of times tending to infinity and (Kn)n≥1 an
increasing sequence of compact subsets of S such that S =

⋃
n Kn. Let η > 0 be a

real number, and for n ≥ 1 define δn such that

sup
P∈P

P
(
ω′
tn,Kn,X(δn) ≥ n−1

)
≤ 2−nη .
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Set

D := {∀n ∈ N
∗, ω′

tn,Kn,X(δn) < n−1}.
By Theorem 2.8, D is relatively compact and moreover

sup
P∈P

P (Dc) ≤
∑

n≥1

2−nη = η

so, P is tight.
1⇒3 Consider ε, η two arbitrary positive real numbers. There exists a compact set
D ⊂ Dloc(S) such that

sup
P∈P

P(Dc) ≤ η.

By Theorem 2.8, there exists δ > 0 such that

D ⊂ {ω′
t,U,X

(δ) < ε}.

Since for all τ1 ≤ τ2 ≤ τ3 ≤ (τ1 + δ) ∧ t ∧ τU we have

{ω′
t,U,X

(δ) < ε} ⊂ {R < ε},

we conclude that

sup
P∈P

sup
τ1≤τ2≤τ3

τ3≤(τ1+δ)∧t∧τU

P(R ≥ ε) ≤ η .

3⇒2 For all ε > 0, t ≥ 0 and open subset U ⋐ S, up to consider τ̃i := τi ∧ (τ1 +
δ) ∧ t ∧ τU we have a new expression of α(ε, t, U, δ):

α(ε, t, U, δ) = sup
P∈P

sup
τ1≤τ2≤τ3≤ξ

P(R ≥ ε, τ3 ≤ (τ1 + δ) ∧ t ∧ τU ) −→
δ→0

0. (2.7)

Consider ε0 > 0, t ≥ 0 and K a compact subset of S. We need to prove that

inf
P∈P

P(ω′
t,K,X(δ) < ε0) −→

δ→0
1.

Choose 0 < ε1 < ε0/4 such that

U := {y ∈ S | d(y,K) < ε1} ⋐ S.

For n ∈ N and ε > 0, define inductively the stopping times (see Corollary 2.3)

τ0 := 0,

τεn := inf
{
s > τn

∣∣ d(Xτn , Xs) ∨ d(Xτn , Xs−) ≥ ε
}
∧ (t+ 2) ∧ τU ,

τn+1 := τε1n ,

It is clear that τεn increases to τn+1 when ε increases to ε1. If we choose 0 < ε2 < ε1,
then for all P ∈ P ,

lim sup
ε→ε1
ε<ε1

P(Xτn ∈ K, τεn < ξ, d(Xτn , Xτε
n
) ≤ ε2, τεn ≤ t+ 1) (2.8)

≤ P


lim sup

ε→ε1
ε<ε1

{Xτn ∈ K, τεn < ξ, d(Xτn , Xτε
n
) ≤ ε2, τεn ≤ t+ 1}


 = P(∅) = 0.
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For all P ∈ P , δ ≤ 1 and 0 < ε < ε1 we have using the expression (2.7) with
stopping times 0 ≤ τε0 ≤ τε10 = τ1

P(X0 ∈ K, τε0 ≤ δ) = P(X0 ∈ K, Xτε
0
6∈ B(X0, ε2), τε0 ≤ δ)

+P(X0 ∈ K, τε0 < ξ, d(X0, Xτε
0
) < ε2, τε0 ≤ δ)

≤ α(ε2, t+ 2, U, δ)

+P(X0 ∈ K, τε0 < ξ, d(X0, Xτε
0
) < ε2, τε0 ≤ t+ 1)

so, letting ε → ε1, since τε0 ↑ τ1, by (2.8) we obtain

P(X0 ∈ K, τ1 ≤ δ) ≤ α(ε2, t+ 2, U, δ). (2.9)

For all P ∈ P , δ ≤ 1, n ∈ N and 0 < ε < ε1 we have also using the expression (2.7)
with stopping times τn ≤ τεn ≤ τn+1 and τn ≤ τεn ≤ τεn+1

P(τn+1 ≤ t, Xτn , Xτn+1 ∈ K, τεn+1 − τn ≤ δ)

≤ P(Xτn ∈ K, τεn < ξ, d(Xτn , Xτε
n
) < ε2, τεn ≤ t+ 1)

+P(Xτn+1 ∈ K, τεn+1 < ξ, d(Xτn+1 , Xτε
n+1

) < ε2, τεn+1 ≤ t+ 1)

+P
(
τn+1 ≤ t, Xτn , Xτn+1 ∈ K, d(Xτn , Xτε

n
) ≥ ε2,

d(Xτε
n
, Xτn+1) ≥

ε2
2
, τn+1 − τn ≤ δ

)

+P
(
τn+1 ≤ t, Xτn , Xτn+1 ∈ K, d(Xτn , Xτε

n
) ≥ ε2, Xτε

n+1
6∈ B(Xτε

n
,
ε2
2
),

τεn+1 − τn ≤ δ
)

≤ P(Xτn ∈ K, τεn < ξ, d(Xτn , Xτε
n
) ≤ ε2, τεn ≤ t+ 1)

+P(Xτn+1 ∈ K, τεn+1 < ξ, d(Xτn+1 , Xτε
n+1

) ≤ ε2, τεn+1 ≤ t+ 1)

+ 2α
(ε2
2
, t+ 2, U, δ

)

so, letting ε → ε1, since τεn+1 ↑ τn+2, by (2.8) we obtain

P(τn+1 ≤ t, Xτn , Xτn+1 ∈ K, τn+2 − τn ≤ δ) ≤ 2α
(ε2
2
, t+ 2, U, δ

)
. (2.10)

For all P ∈ P , δ ≤ 1, n ∈ N
∗ and 0 < ε < ε1 we can write using the expression

(2.7) with stopping times τn ≤ τn ≤ τεn

P(τn ≤ t, Xτn ∈ K, d(Xτn−, Xτn) ≥ ε2, τεn − τn ≤ δ)

≤ P(Xτn ∈ K, τεn < ξ, d(Xτn , Xτε
n
) < ε2, τεn ≤ t+ 1)

+P(τn ≤ t, Xτn ∈ K, d(Xτn−, Xτn) ≥ ε2, Xτε
n
6∈ B(Xτn , ε2), τεn − τn ≤ δ)

≤ P(Xτn ∈ K, τεn < ξ, d(Xτn , Xτε
n
) ≤ ε2, τεn ≤ t+ 1) + α (ε2, t+ 2, U, δ)

so, letting ε → ε1, since τεn ↑ τn+1, by (2.8) we obtain

P(τn ≤ t, Xτn ∈ K, d(Xτn−, Xτn) ≥ ε2, τn+1 − τn ≤ δ) ≤ α (ε2, t+ 2, U, δ) .
(2.11)

Let m ∈ 2N and 0 < δ′ ≤ 1 be such that m > 2t/δ′ and denote the event

A := {τm ≤ t and ∀n ≤ m, Xτn ∈ K} .
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Then for all 0 ≤ i < m, thanks to (2.10)

E [τi+2 − τi | A] ≥ δ′P (τi+2 − τi ≥ δ′ | A) ≥ δ′

(
1− 2α

(
ε2
2 , t+ 2, U, δ′

)

P(A)

)
.

Hence

t ≥ E [τm | A] =
(m−2)/2∑

i=0

E [τ2i+2 − τ2i | A] ≥
mδ′

2

(
1− 2α

(
ε2
2 , t+ 2, U, δ′

)

P(A)

)

so,

P(A) ≤ 2α
(
ε2
2 , t+ 2, U, δ′

)

1− 2t/(mδ′)
. (2.12)

Taking 0 < δ ≤ 1 and setting

Bm,δ :=





(τm, Xτ0 , . . . , Xτm) 6∈ [0, t]×Km+1,
X0 ∈ K ⇒ τ1 > δ,
∀0 ≤ n ≤ m− 2, τn+1 ≤ t and Xτn , Xτn+1 ∈ K ⇒ τn+2 − τn > δ,
∀0 ≤ n < m, τn ≤ t, Xτn ∈ K, d(Xτn−, Xτn) ≥ ε2 ⇒ τn+1 − τn > δ




,

by (2.9), (2.10), (2.11) and (2.12) we obtain that

inf
P∈P

P(Bm,δ) ≥ 1− 2α
(
ε2
2 , t+ 2, U, δ′

)

1− 2t/(mδ′)
− α(ε2, t+ 2, U, δ)

− 2(m− 1)α
(ε2
2
, t+ 2, U, δ

)
−mα (ε2, t+ 2, U, δ) .

Hence

sup
m∈N

inf
P∈P

P(Bm,δ) −→
δ→0

1.

Recalling that ε1 < 4ε0, a straightforward computation gives

Bm,δ ⊂
{
ω′
t,K,X(δ) < ε0

}
.

We conclude that

inf
P∈P

P(ω′
t,K,X(δ) < ε0) −→

δ→0
1.

�

3. Time change and Skorokhod topologies

3.1. Definition and properties of time change. First we give the definition of the
time change mapping (see also §6.1 pp. 306-311 from Ethier and Kurtz, 1986, §V.26
pp. 175-177 from Rogers and Williams, 2000).

Definition 3.1 (Time Change). Let us introduce

C 6=0(S,R+) := {g : S → R+ | {g = 0} is closed and g is continuous on {g 6= 0}} ,
and for g ∈ C 6=0(S,R+), x ∈ Dexp(S) and t ∈ [0,∞] we denote

τgt (x) := inf {s ≥ 0 | Ag
s(x) ≥ t} , whereAg

t (x) :=

{∫ t

0
du

g(xu)
, if t ∈ [0, τ{g 6=0}(x)],

∞ otherwise.

(3.1)
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For g ∈ C 6=0(S,R+), we define a time change mapping, which is F -measurable,

g ·X : Dexp(S) → Dexp(S)
x 7→ g · x,

as follows: for t ∈ R+

(g ·X)t :=

{
Xτg

∞− if t ≥ Ag
τg
∞

, Xτg
∞− exists and belongs to {g = 0},

Xτg
t

otherwise.
(3.2)

For g ∈ C 6=0(S,R+) and P ∈ P(Dexp(S)), we also define g · P the pushforward of
P by x 7→ g · x.

The fact that this mapping is measurable will be proved in the next section.

Remark 3.2. Let us stress that, by using Corollary 2.3, τgt is a stopping time. In
particular, the following stopping time will play a crucial role:

τg∞ = τ{g 6=0} := ξ ∧ inf {t ≥ 0 | g(Xt−) ∧ g(Xt) = 0} . (3.3)

The time of explosion of g ·X is given by

ξ(g ·X) =

{ ∞ if τg∞ < ξ or Xξ− exists and belongs to {g = 0},
Ag

ξ otherwise.

Roughly speaking, g ·X is given by (g ·X)t := Xτg
t
where t 7→ τgt is the solution

of τ̇gt = g(Xτg
t
), on the time interval [0, τg∞).

Proposition 3.3.

(1) For U ⊂ S an open subset, by identifying

C(U,R+) =
{
g ∈ C 6=0(S,R+) | {g 6= 0} ⊂ U and g is continuous on U

}
,

the time change mapping

C(U,R+)× Dexp(S) → Dexp(S)
(g, x) 7→ g · x,

is measurable between B(C(U,R+))⊗F and F .
(2) If g1, g2 ∈ C 6=0(S,R+) and x ∈ Dexp(S), then g1 · (g2 · x) = (g1g2) · x.
(3) If g is bounded and belongs to C 6=0(S,R+), and x ∈ D(S), then g ·x ∈ D(S).
(4) Define

C̃ 6=0(S,R+) :=
{
g ∈ C 6=0(S,R+) | ∀K ⊂ S compact, g(K) is bounded

}
.

If g ∈ C̃ 6=0(S,R+) and x ∈ Dloc(S), then g · x ∈ Dloc(S).

Proof : The first point is straightforward by using Proposition 2.2, while the second
point is a direct consequence of the time change definition and, in particular, of the
first part of (3.2). The third point can be easily deduced because,

ξ(g · x) ≥
∫ ∞

0

ds

g(xs)
≥
∫ ∞

0

ds

‖g‖ = ∞.

To prove the fourth point we suppose that ξ(g · x) < ∞ and {g · xs}s<ξ(g·x) ⋐ S.
Then, {xs}s<ξ(x) = {g · xs}s<ξ(g·x) so,

∞ > ξ(g · x) =
∫ ξ(x)

0

ds

g(xs)
≥ ξ(x)

‖g‖{xs}s<ξ(x)

.

Hence ξ(x) < ∞ and so, g · xξ(g·x)− = xξ(x)− exists. �
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Remark 3.4. It can be proved that if g ∈ C 6=0(S,R+) and (Pa)a∈S is a strong
Markov family, then (g · Pa)a∈S is a Markov family. Furthermore, if (Pa)a∈S is a
Ft+-strong Markov family, then (g ·Pa)a∈S is a Ft+-strong Markov family. We will
not use these properties here hence we skip the proofs of these statements.

Another interesting fact is the following:

Theorem 3.5 (Continuity of the time change). For couples (g, x) ∈ C̃ 6=0(S,R+)×
Dloc(S) consider the following two conditions:

τg∞(x) < ξ(x) implies

∫ τg
∞

(x)+

0

ds

g(xs)
= ∞, (3.4)

and

Ag
τg
∞(x)

(x) < ∞, xτg
∞(x)− exists in S and g(xτg

∞(x)−) = 0 imply xτg
∞(x)− = xτg

∞(x).

(3.5)

Introduce the set

Btc :=
{
(g, x) ∈ C̃ 6=0(S,R+)× Dloc(S)

∣∣ conditions (3.4) and (3.5) hold
}
. (3.6)

Then the time change

C̃ 6=0(S,R+)× Dloc(S) → Dloc(S)
(g, x) 7→ g · x

is continuous on Btc when we endow respectively C̃ 6=0(S,R+) with the topology of
uniform convergence on compact sets and Dloc(S) with the local Skorokhod topology.
In particular

C(S,R∗
+)× Dloc(S) → Dloc(S)
(g, x) 7→ g · x

is continuous for the topologies of uniform convergence on compact sets and local
Skorokhod topology. Here and elsewhere we denote by R

∗
+ = R+ \ {0} the set of

positive real numbers.

Remark 3.6. 1) It is not difficult to prove that Btc is the continuity set.

2) If (g, x) ∈ Btc and h ∈ C̃ 6=0(S,R+) is such that {h = 0} = {g = 0} and h ≤ Cg
for a constant C ∈ R+, then (h, x) ∈ Btc.

3) More generally, let B0 be the set of (g, x) ∈ C̃ 6=0(S,R+)× Dloc(S) such that

τg∞(x) < ∞ ⇒ ∀t ≥ 0, xτg
∞(x)+t = xτg

∞(x),

xτg
∞(x)− exists in S and g(xτg

∞(x)−) = 0 ⇒ xτg
∞(x)− = xτg

∞(x).

Then {
(g, g · x)

∣∣∣ (g, x) ∈ C̃ 6=0(S,R+)× Dloc(S)
}
⊂ B0 ⊂ Btc. (3.7)

To simplify the proof of the theorem we use a technical result containing a
construction of a sequence of bi-Lipschitz bijections (λk)k useful when proving
the convergence. Before stating this result let us note that, for any (g, x) ∈
C̃ 6=0(S,R+) × Dloc(S) and any t ≤ τg∞(x) such that {xs}s<t ⋐ {g 6= 0}, by us-
ing (3.1), Ag

t (x) < ∞.

Lemma 3.7. Take a metric d of S. Let x, xk ∈ Dloc(S) and g, gk ∈ C̃ 6=0(S,R+)
be such that (gk, x

k) converges to (g, x), as k → ∞. Let t ≤ τg∞(x) be such that
{xs}s<t ⋐ {g 6= 0}. Then,
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i) there exists a sequence (λk)k ∈ Λ̃N such that, for k large enough λk
Ag

t (x)
≤

ξ(gk · xk) and

‖ log λ̇k‖ → 0, sup
v<Ag

t (x)

d(g ·xv , gk ·xk
λk
v
) → 0, gk ·xk

λk

A
g
t (x)

→ g ·xAg
t (x)

, as k → ∞.

ii) Moreover, if τg∞(x) < ξ(x) and
∫ τg

∞
(x)+

0
ds

g(xs)
= ∞, (λk)k may be chosen

such that for any v ≥ 0 and k large enough λk
Ag

t (x)+v < ξ(gk · xk) and

lim sup
k→∞

sup
Ag

t (x)≤w≤Ag
t (x)+v

d
(
gk · xk

λk
w
, {xs}t≤s≤τg

∞
(x)

)
= 0.

We postpone the proof of the lemma, and we give the proof of the continuity of
time change:

Proof of Theorem 3.5: We remark first that

Btc = B1 ∪B2 ∪B3 ∪B4,

with

B1 :=
{
Ag

τg
∞(x)

(x) = ∞ or {xs}s<τg
∞(x) 6⋐ S

}
,

B2 :=
{
τg∞(x) = ξ(x) < ∞ and {xs}s<τg

∞(x) ⋐ {g 6= 0}
}
,

B3 :=

{
τg∞(x) < ξ(x), xτg

∞(x)− = xτg
∞(x), A

g
τg
∞(x)

(x) < ∞ and

∫ τg
∞

(x)+

0

ds

g(xs)
= ∞

}
,

B4 :=

{
τg∞(x) < ξ(x), g(xτg

∞(x)−) 6= 0 and

∫ τg
∞

(x)+

0

ds

g(xs)
= ∞

}
.

Let x, xk ∈ Dloc(S) and g, gk ∈ C̃ 6=0(S,R+) be such that (gk, x
k) converge to (g, x)

and (g, x) ∈ B. We need to prove that

gk · xk Dloc(S)−−−−→
k→∞

g · x, (3.8)

and we will decompose the proof with respect to values of i such that (g, x) ∈ Bi.

• If (g, x) ∈ B1, we use the first part of Lemma 3.7 for all t < τg∞(x). We
obtain that Ag

t (x) < ξ(g · x). Since Ag
t (x) tends to ξ(g · x), when t tends to

τg∞(x), by a diagonal extraction procedure we deduce (3.8).
• If (g, x) ∈ B2, it suffices to apply the first part of Lemma 3.7 to t := ξ(x)
and Ag

t (x) = ξ(g · x).
• If (g, x) ∈ B3, let t < τg∞(x) be. Then, by the third part of Lemma 3.7

there exists λk ∈ Λ̃ such that, for any v ≥ 0, for k large enough, λk
Ag

t (x)+v <

ξ(gk · xk) and

‖ log λ̇k‖ −→
k→∞

0, lim sup
k→∞

sup
w≤Ag

t (x)+v

d(g·xw , gk·xk
λk
w
) ≤ 2d

(
xτg

∞(x), {xs}t≤s≤τg
∞(x)

)
.

Since x is continuous at τg∞(x), we conclude by a diagonal extraction pro-
cedure, by letting t tends to τg∞(x) and v → ∞.
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• If (g, x) ∈ B4, let t = τg∞(x) be. By the second part of Lemma 3.7 there

exists λk ∈ Λ̃ such that, for any v ≥ 0, for k large enough λk
Ag

t (x)+v <

ξ(gk · xk), and

‖ log λ̇k‖ −→
k→∞

0, sup
w≤Ag

t (x)+v

d(g · xw , gk · xk
λk
w
) −→
k→∞

0.

We conclude by a diagonal extraction procedure and letting v → ∞.

�

Proof of Lemma 3.7: Let λ̃k ∈ Λ̃ be as in Theorem 2.4 and to simplify notations
define, for s ≥ 0

τs := τgs (x), As := Ag
s(x),

τks := τgks (xk), Ak
s := Agk

s (xk),

and u := At. Since τu = t ≤ ξ(x) and {xs}s<t ⋐ S we have, for k large enough λ̃k
t ≤

ξ(xk), and ‖ log ˙̃
λ
k

‖t −→ 0, sups<t d(xs, x
k
λ̃k
s

) −→ 0 and xk
λ̃k
t

−→ xt, as k → ∞.

Since {xs}s<t ⋐ {g 6= 0}, we deduce that for k large enough {xk
s}s<λ̃k

t
⋐ {gk 6= 0}.

Define then λk ∈ Λ̃ by




λk
v := Ak

λ̃k
τv

=

∫ v

0

g(xτw)

gk(xk
λ̃k
τw

)

˙̃
λ
k

τwdw if v ≤ u,

λ̇k
v = 1 if v > u.

Since λ̃k
t ≤ τk∞ we have

λk
u ≤ Ak

τk
∞

≤ ξ(gk · xk),

now we obtain

sup
v<u

d(g · xv, gk · xk
λk
v
) = sup

v<u
d(xτv , x

k
λ̃k
τv

) = sup
s<t

d(xs, x
k
λ̃k
s

) −→
k→∞

0,

gk · xk
λk
u
= xk

λ̃k
t

−→
k→∞

xt = g · xu

‖ log λ̇k‖ = esssupv≤u

∣∣∣∣∣∣
log

˙̃
λ
k

τvg(xτv )

gk(xk
λ̃k
τv

)

∣∣∣∣∣∣
= esssups≤τu

∣∣∣∣∣∣
log

˙̃
λ
k

sg(xs)

gk(xk
λ̃k
s

)

∣∣∣∣∣∣
−→
k→∞

0.

For the second part of the proposition we keep the same construction as previously.
For any v ≥ 0 we have that

τkλk
u+v

= inf

{
t ≥ λk

u

∣∣∣∣∣

∫ t

λk
u

ds

gk(xk
s )

≥ v

}
∧ τk∞.

Using Fatou’s lemma

lim inf
k→∞

∫ (λ̃k
τ∞

)+

λk
u

ds

gk(xk
s )

= lim inf
k→∞

∫ τ∞+

t

˙̃
λ
k

sds

gk(xk
λk
s
)
≥
∫ τ∞+

t

ds

g(xs)
= ∞

so, lim supk→∞ τk
λk
u+v

− λ̃k
τ∞ ≤ 0. Moreover, for k large enough, τk

λk
u+v

≥ τkλk
u
= λ̃k

t ,

so, λk
u+v < ξ(gk · xk) and

lim sup
k→∞

sup
u≤w≤u+v

d
(
gk · xk

λk
w
, {xs}t≤s≤τ∞

)
= 0.
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3.2. Connection between local and global Skorokhod topologies. Generally to take
into account the explosion, one considers processes in D(S∆), the set of cadlag
processes described in Definition 2.1, associated to the space S∆, and endowed
with the global Skorokhod topology (see Definition 2.5). More precisely, the set of
cadlag paths with values in S∆ is given by

D(S∆) =

{
x ∈ (S∆)R+

∣∣∣∣
∀t ≥ 0, xt = lims↓t xs, and
∀t > 0, xt− := lims↑t xs exists in S∆

}
.

A sequence (xk)k in D(S∆) converges to x for the global Skorokhod topology if and
only if there exists a sequence (λk)k of increasing homeomorphisms on R+ such
that

∀t ≥ 0, lim
k→∞

sup
s≤t

d(xs, x
k
λk
s
) = 0 and lim

k→∞
‖λk − id‖t = 0.

In this section we give the connection between D(S∆) with the global Skorokhod
topology and Dloc(S) with the local Skorokhod topology.

We first identify these two measurable subspaces

Dloc(S) ∩ D(S∆) =
{
x ∈ Dloc(S)

∣∣ 0 < ξ(x) < ∞ ⇒ xξ(x)− exist in S∆
}

=
{
x ∈ D(S∆)

∣∣ ∀t ≥ τS , xt = ∆
}
.

We can summarise our trajectories spaces by

D(S) ⊂ Dloc(S) ∩ D(S∆) ⊂ Dloc(S) ⊂ Dexp(S).
∩

D(S∆)

Hence Dloc(S) ∩ D(S∆) will be endowed with two topologies, the local topology
from Dloc(S) and the global topology from D(S∆).

Remark 3.8. 1) On Dloc(S)∩D(S∆) the trace topology from Dloc(S) is weaker than
the trace topology from D(S∆). Eventually, these two topologies coincide on D(S).
Indeed, this is clear using a metric d on S∆ and the characterisations of topologies
given in Remark 2.6. The result in Corollary 3.10 below is a converse sentence of
the present remark.
2) If x ∈ Dloc(S) ∩ D(S∆) then g · x is well-defined in Dloc(S) ∩ D(S∆) for

g ∈ Cb(S,R
∗
+) ⊂

{
g ∈ C 6=0(S∆,R+) | g(∆) = 0

}
.

We deduce from Theorem 3.5 and the third point of Remark 3.6 that the mapping

Cb(S,R
∗
+)× Dloc(S) ∩ D(S∆) → Dloc(S) ∩ D(S∆)

(g, x) 7→ g · x
is continuous between the topology of the uniform convergence and the global Sko-
rokhod topology.

The following result is stated in a very general form because it will be useful
when studying, for instance, the martingale problems.

Proposition 3.9 (Connection between Dloc(S) and D(S∆)). Let E be an arbitrary
locally compact Hausdorff space with countable base and consider

P : E → P(Dloc(S))
a 7→ Pa
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a weakly continuous mapping for the local Skorokhod topology. Then for any open
subset U of S, there exists g ∈ C(S,R+) such that {g 6= 0} = U , for all a ∈ E

g ·Pa (0 < ξ < ∞ ⇒ Xξ− exists in U) = 1,

and the application

g ·P : E → P({0 < ξ < ∞ ⇒ Xξ− exists in U})
a 7→ g ·Pa

is weakly continuous for the global Skorokhod topology from D(S∆).

Before giving the proof of Proposition 3.9 we point out a direct application: we
take E := N∪{∞}, U = S and a sequence of Dirac probability measures Pk = δxk ,
P∞ = δx. Then we deduce from Proposition 3.9 the following:

Corollary 3.10 (Another description of Dloc(S)). Let x, x1, x2, . . . ∈ Dloc(S).
Then the sequence xk converges to x in Dloc(S), as k → ∞, if and only if there
exists g ∈ C(S,R∗

+) such that g ·x, g ·x1, g ·x2, . . . ∈ D(S∆), and g ·xk converges to

g · x in D(S∆), as k → ∞.

We proceed with the proof of Proposition 3.9 and, firstly we state a important
result which will be our main tool:

Lemma 3.11. Let D be a compact subset of Dloc(S) and U be an open subset of
S. There exists g ∈ C(S,R+) such that:

i) {g 6= 0} = U ,
ii) for all x ∈ D, (g, x) is in the set Btc given by (3.6) in Theorem 3.5 and

g · x ∈
{
0 < ξ < ∞ ⇒ Xξ− exists in U

}
.

iii) the trace topologies of Dloc(S) and D(S∆) coincide on {g · x |x ∈ D}.
Furthermore, if g ∈ C(S,R+) satisfies i)-iii) and if h ∈ C(S,R+) is such that
{h 6= 0} = U and h ≤ Cg with a non-negative constant C, then h also satisfies
i)-iii).

Proof of Proposition 3.9: Let (K̃n)n∈N∗ be an increasing sequence of compact sub-

set of E such that E =
⋃

n K̃n, then {Pa}a∈K̃n
is tight, for all n ∈ N

∗. So, there

exist subsets Dn ⊂ Dloc(S) which are compacts for the topology of Dloc(S), and
such that

sup
a∈K̃n

Pa(D
c
n) ≤

1

n
.

For any n ∈ N
∗, consider gn satisfying i)-iii) of Lemma 3.11 associated to the

compact set Dn. It is no difficult to see that there exists g ∈ C(S,R+) such that
{g 6= 0} = U and for all n ∈ N

∗, g ≤ Cngn for non-negative constants Cn. Hence,
g satisfies i)-iii) for all Dn, n ∈ N

∗. Hence, for all a ∈ E

g ·Pa (0 < ξ < ∞ ⇒ Xξ− exists in U) ≥ Pa

( ⋃

n∈N∗

Dn

)
= 1.

Let ak, a ∈ E such that ak −→
k→∞

a. For n large enough {ak}k ⊂ K̃n. Then, if F

is a subset of {0 < ξ < ∞ ⇒ Xξ− exists in U} which is closed for the topology of
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D(S∆),

lim sup
k→∞

g ·Pak
(F )− g ·Pa(F )

≤ lim sup
k→∞

Pak
(X ∈ Dn, g ·X ∈ F )−Pa(X ∈ Dn, g ·X ∈ F ) +

1

n
.

But thanks to iii) in Lemma 3.11, {X ∈ Dn, g ·X ∈ F} is a subset of Dloc(S) which
is closed for the topology of Dloc(S). Hence, by using the Portmanteau theorem
(see for instance Theorem 2.1 from Billingsley, 1999, p. 16)

lim sup
k→∞

Pak
(X ∈ Dn, g ·X ∈ F ) ≤ Pa(X ∈ Dn, g ·X ∈ F )

and so, letting n → ∞,

lim sup
k→∞

g ·Pak
(F ) ≤ g ·Pa(F ).

By using the Portmanteau theorem, the proof of the proposition is complete, except
for the proof of Lemma 3.11. �

Proof of Lemma 3.11: Let d be a metric on S∆ and denote

Kn :=
{
a ∈ S

∣∣ d(a, S∆\U) ≥ 2−n
}
.

By using Theorem 2.8,there exists a sequence (ηn)n ∈ (0, 1)N decreasing to 0 such
that

sup
x∈D

ω′
2n,B(∆,2−n−2)c,x(ηn) < 2−n−2. (3.9)

Moreover, there exists g ∈ C(S∆, [0, 1]) such that {g 6= 0} = U and g|Kc
n
≤ 2−nηn.

For instance, we can define

g(a) := sup
n≥0

(
(2−nηn) ∧ d(a, S∆\Kn)

)
, a ∈ S∆.

Let x ∈ D be. We consider the following two situations:

• If τg∞(x) < ∞ and {xs}s<τg
∞

(x) is not a compact of U , take m ∈ N such
that 2m ≥ τg∞(x), denote

t := min

{
s ≥ 0

∣∣∣∣ xs 6∈
◦

Km+1

}
< τg∞(x)

and let n ≥ m be such that xt ∈ Kn+2\
◦

Kn+1. Using (3.9) there exist
t1, t2 ∈ R+ such that t1 ≤ t < t2 < τg∞(x), t2 − t1 > ηn and xs 6∈ Kn for all
s ∈ [t1, t2). So,

Ag
τg
∞(x)

(x) ≥
∫ t2

t1

ds

g(xs)
≥ 2m,

hence, letting m goes to infinity,

Ag
τg
∞(x)

(x) = ∞.

• If τg∞(x) < ξ(x) and g(xτg
∞(x)−) 6= 0, then g(xτg

∞(x)) = 0. Let m ∈ N

be such that 2m ≥ τg∞(x) and {xs}s≤τg
∞(x) ⊂ B(∆, 2−m−2)c. Using (3.9),
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there exist t1, t2 ∈ R+ such that t1 ≤ τg∞(x) < t2 < ξ(x), t2 − t1 > ηm and
xs 6∈ Km for all s ∈ [t1, t2). So

∫ τg
∞

(x)+ηm

0

ds

g(xs)
≥
∫ t1+ηm

t1

ds

g(xs)
≥ 2m

hence letting m tend to infinity

∫ τg
∞

(x)+

0

ds

g(xs)
= ∞.

Hence, we obtain that (g, x) ∈ Btc and g · x ∈ {0 < ξ < ∞ ⇒ Xξ− exists in U}
and ii) is verified.

We proceed by proving iii). Thanks to Remark 3.8, to get the equivalence of the
topologies it is enough to prove that if xk, x ∈ D are such that g ·xk → g ·x for the
topology from Dloc(S) and ξ(g · x) < ∞, then the convergence also holds for the

topology from D(S∆). Let λk ∈ Λ̃ be such that

sup
s≤ξ(g·x)

d(g · xs, g · xk
λk
s
) −→ 0, ‖ log λ̇k‖ξ(g·x) −→ 0, as k → ∞.

We may suppose that λ̇k
s = 0, for s ≥ ξ(g · x). Denote tk := λk

ξ(g·x) and choose

m ∈ N be such that {g · xs}s<ξ(g·x) ⋐
◦

Km and ξ(g · x) < 2m. Then, for k large

enough {g · xk
s}s<tk ⋐

◦

Km, g · xk
tk 6∈ Km+1 and tk < 2m.

• Either g · xk
tk 6∈ U and so g · xk

λk
s
= g · xk

tk for all s ≥ ξ(g · x).

• Or g · xk
tk ∈ U and let n ≥ m be such that g · xk

tk = xτg
tk

(xk) ∈ Kn+2\
◦

Kn+1.

Using (3.9), d(xs, x
k
tk
) < 2−n−2, and so, xs ∈ U\Kn, for all s ∈

[τgtk(x
k), τgtk(x

k) + ηn]. Hence, Ag
τg
tk

(xk)+ηn
≥ tk + 2n, so d(g · xs, g · xk

tk
) <

2−n−2 for all s ∈ [tk, tk + 2n].

Hence we obtain that, for k large enough,

sup
s≤ξ(g·x)+2m

d(g · xs, g · xk
λk
s
) ≤ sup

s≤ξ(g·x)

d(g · xs, g · xk
λk
s
) + 2−m−2,

so letting m goes to the infinity we obtain that g ·xk converge to g ·x for the global
Skorokhod topology from D(S∆). Hence, the proof of iii) is done.

Finally, to prove the last part of the lemma let g ∈ C(S,R+) be such that i)-iii)
are satisfied and let h ∈ C(S,R+) be such that {h 6= 0} = U and h ≤ Cg with
a non-negative constant C. Thanks to Remark 3.6, (h, x) belongs to the set Btc
given by (3.6), it is also clear that h · x ∈ {0 < ξ < ∞ ⇒ Xξ− exists in U}. We

have that h
g ∈ Cb(U,R

∗
+), so using (3.7) for S and S∆, the bijection

{g · x |x ∈ D} → {h · x |x ∈ D}
x 7→ h

g · x

is continuous for the topology of Dloc(S), but also of D(S
∆). But since {g ·x |x ∈ D}

is compact, this application is bi-continuous, and we obtain the result. Now the
proof of lemma is complete. �
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4. Proofs of main results on local Skorokhod metrics

In this section we will prove Theorem 2.4 and Theorem 2.8, by following the
strategy developed in §12, pp. 121-137 from Billingsley (1999). To construct metrics
on Dloc(S), we will consider a metric d on S. To begin with, we define two families
of pseudo-metrics:

Lemma 4.1 (Skorokhod metrics). For 0 ≤ t < ∞ and K ⊂ S a compact subset,
the following two expressions on Dexp(S):

ρt,K(x1, x2) := inf
ti≤ξ(xi)

λ∈Λ,λt1=t2

sup
s<t1

d(x1
s , x

2
λs
) ∨ ‖λ− id‖t1

∨ max
i∈{1,2}

(
d(xi

ti ,K
c) ∧ (t− ti)+1ti<ξ(xi)

)
,

ρ̃t,K(x1, x2) := inf
ti≤ξ(xi)

λ∈Λ̃,λt1=t2

sup
s<t1

d(x1
s , x

2
λs
) ∨ ‖ log λ̇‖t1 ∨ ‖λ− id‖t1

∨ max
i∈{1,2}

(
d(xi

ti ,K
c) ∧ (t− ti)+1ti<ξ(xi)

)
.

define two pseudo-metrics.

Proof : Let us perform the proof for ρ̃t,K , the proof being similar for ρt,K . The
non-trivial part is the triangle inequality. Let x1, x2, x3 ∈ Dexp(S) and ε > 0 be

then there are t1 ≤ ξ(x1), t2, t̂2 ≤ ξ(x2), t̂3 ≤ ξ(x3) and λ1 ∈ Λ̃, λ2 ∈ Λ̃ such that

ρ̃t,K(x1, x2) + ε ≥ sup
s<t1

d(x1
s, x

2
λ1
s
) ∨ ‖ log λ̇1‖t1 ∨ ‖λ1 − id‖t1

∨ max
i∈{1,2}

(
d(xi

ti ,K
c) ∧ (t− ti)+1ti<ξ(xi)

)
,

ρ̃t,K(x2, x3) + ε ≥ sup
s<t̂2

d(x2
s, x

3
λ2
s
) ∨ ‖ log λ̇2‖t̂2 ∨ ‖λ2 − id‖t̂2

∨ max
i∈{2,3}

(
d(xi

t̂i
,Kc) ∧ (t− t̂i)+1t̂i<ξ(xi)

)
.

Define

̂
t2 := t2 ∧ t̂2,

̂
t1 := (λ1)−1̂

t2
,

̂
t3 := λ2̂

t2
and λ := λ2 ◦ λ1. Then

sup
s<

̂
t1

d(x1
s, x

3
λs
) ≤ sup

s<t1

d(x1
s, x

2
λ1
s
) + sup

s<t̂2

d(x2
s, x

3
λ2
s
),

‖ log λ̇‖̂
t1

≤ ‖ log λ̇1‖t1 + ‖ log λ̇2‖t̂2 , ‖λ− id‖̂
t1

≤ ‖λ1 − id‖t1 + ‖λ2 − id‖t̂2 .

Moreover, for instance, if

̂
t1 6= t1, then

̂
t1 < t1 ≤ ξ(x1), t̂2 =

̂
t2 < t2 ≤ ξ(x2) and

d(x1̂
t1
,Kc) ∧ (t−

̂
t1)+ ≤ d(x1̂

t1
, x2̂

t2
) ∨ |

̂
t2 −

̂
t1|+ d(x2̂

t2
,Kc) ∧ (t−

̂
t2)+

≤ sup
s<t1

d(x1
s , x

2
λ1
s
) ∨ ‖λ1 − id‖t1 + d(x2

t̂2
,Kc) ∧ (t− t̂2)+.

Hence

ρ̃t,K(x1, x3) ≤ ρ̃t,K(x1, x2) + ρ̃t,K(x2, x3) + 2ε,

so letting ε → 0, we obtain the triangular inequality. �

We prove that these pseudo-metrics are in somehow equivalent:

Lemma 4.2. Take x, y ∈ Dloc(S), t ≥ 0 and a compact subset K ⊂ S, if
ρt,K(x, y) ≤ 1

9 then

ρ̃t,K(x, y) ≤ 6 ·
√
ρt,K(x, y) ∨ ω′

t,K,x

(√
ρt,K(x, y)

)
.
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Proof : Let ε > 0 be arbitrary. There exist µ ∈ Λ and T ≥ 0 such that T ≤ ξ(x),
µT ≤ ξ(y) and

sup
s<T

d(xs, yµs
) ∨ ‖µ− id‖T ≤ ρt,K(x, y) + ε,

d(xT ,K
c) ∧ (t− T )+1T<ξ(x) ≤ ρt,K(x, y) + ε,

d(yµT
,Kc) ∧ (t− µT )+1µT<ξ(y) ≤ ρt,K(x, y) + ε.

Let δ > 2ρt,K(x, y) + 2ε be arbitrary, there exist 0 = t0 < · · · < tN ≤ ξ(x) such
that

sup
0≤i<N

ti≤s1,s2<ti+1

d(xs1 , xs2) ≤ ω′
t,K,x(δ) + ε,

δ < ti+1 − ti ≤ 2δ and (tN , xtN ) 6∈ [0, t]×K. Set n0 := max {0 ≤ i ≤ N | ti ≤ T }
and T̃ := tn0 . Define λ ∈ Λ̃ by





∀i ≤ n0, λti = µti ,
∀i < n0, λ is affine on [ti, ti+1],

∀s ≥ T̃ , λ̇s = 1.

Then

‖λ− id‖ = sup
0<i≤n0

‖µti − ti‖ ≤ ‖µ− id‖T ≤ ρt,K(x, y) + ε.

For 0 ≤ i < n0 we have∣∣∣∣
µti+1 − µti − ti+1 + ti

ti+1 − ti

∣∣∣∣ ≤
2‖µ− id‖T

δ
≤ 2ρt,K(x, y) + 2ε

δ
< 1,

so, by the classical estimate:

| log(1 + r)| ≤ |r|
1− |r| for |r| < 1.

we deduce

‖ log λ̇‖ = sup
0≤i<n0

∣∣∣∣log
µti+1 − µti

ti+1 − ti

∣∣∣∣ ≤
2ρt,K(x, y) + 2ε

δ − 2ρt,K(x, y)− 2ε
.

Since for s < λT̃ , λ
−1
s and µ−1

s lies in the same interval [ti, ti+1). Therefore,

sup
s<λ

T̃

d(xλ−1
s
, ys) ≤ sup

s<λ
T̃

(
d(xµ−1

s
, ys) + d(xµ−1

s
, xλ−1

s
)
)
≤ ρt,K(x, y)+ω′

t,K,x(δ)+2ε.

For the two last terms in ρ̃t,K we may consider only the case were T̃ 6= T . If

n0 = N : d(xT̃ ,K
c) ∧ (t− T̃ )+ = 0, otherwise:

d(xT̃ ,K
c) ∧ (t− T̃ )+ ≤ d(xT ,K

c) ∧ (t− T )+ + d(xT̃ , xT ) ∨ (T − T̃ )

≤ ρt,K(x, y) + ω′
t,K,x(δ) ∨ (2δ) + 2ε.

By using λT̃ = µT̃ , we also have

d(yλ
T̃
,Kc) ∧ (t− λT̃ )+ ≤ d(xT̃ ,K

c) ∧ (t− T̃ )+ + d(xT̃ , yµT̃
) ∨ |T̃ − µT̃ |

≤ 2ρt,K(x, y) + ω′
t,K,x(δ) ∨ (2δ) + 3ε.

Letting ε → 0 we obtain that for all δ > 2ρt,K(x, y),

ρ̃t,K(x, y) ≤
(
2ρt,K(x, y) + ω′

t,K,x(δ) ∨ (2δ)
)
∨ 2ρt,K(x, y)

δ − 2ρt,K(x, y)
.
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Finally, by taking δ :=
√
ρt,K(x, y) we have for ρt,K(x, y) ≤ 1

9

ρ̃t,K(x, y) ≤
(
2ρt,K(x, y) + ω′

t,K,x(δ) ∨ (2δ)
)
∨ 2ρt,K(x, y)

δ − 2ρt,K(x, y)

≤
(2
3

√
ρt,K(x, y) + ω′

t,K,x

(√
ρt,K(x, y)

)
∨
(
2
√
ρt,K(x, y)

))
∨ 6
√
ρt,K(x, y)

≤ 6 ·
√
ρt,K(x, y) ∨ ω′

t,K,x

(√
ρt,K(x, y)

)
. �

At this level it can be pointed out that we obtain the definition of the local
Skorokhod topology. Indeed, by using Proposition 2.7, Lemma 4.2 and the fact
that ρt,K ≤ ρ̃t,K , the two families of pseudo-metrics (ρt,K)t,K and (ρ̃t,K)t,K define
the same topology on Dloc(S), the local Skorokhod topology.

If (Kn)n∈N is an exhaustive sequence of compact sets of S, then the mapping

Dloc(S)
2 → R+

(x, y) 7→ ∑
n∈N 2−nρ̃n,Kn

(x, y) ∧ 1
(4.1)

is a metric for the local Skorokhod topology. By using a diagonal extraction pro-
cedure, it is not difficult to prove that a sequence (xk)k converges to x for this

topology if and only if there exists a sequence (λk)k in Λ̃ such that

• either ξ(x) < ∞ and {xs}s<ξ(x) ⋐ S: for k large enough λk
ξ(x) ≤ ξ(xk) and

sup
s<ξ(x)

d(xs, x
k
λk
s
) −→ 0, xk

λk
ξ(x)

−→ ∆, ‖ log λ̇k‖ξ(x) −→ 0, as k → ∞,

• or ξ(x) = ∞ or {xs}s<ξ(x) 6⋐ S: for all t < ξ(x), for k large enough

λk
t < ξ(xk) and

sup
s≤t

d(xs, x
k
λk
s
) −→ 0, ‖ log λ̇k‖t −→ 0, as k → ∞.

The local Skorokhod topology can be described by a similar characterisation with

λk ∈ Λ̃ replaced by λk ∈ Λ and respectively, ‖ log λ̇k‖ replaced by ‖λ − id‖. The
fact that the local Skorokhod topology does not depend on the distance d is a
consequence of the following lemma, which states essentially that two metrics on a
compact set are uniformly equivalent:

Lemma 4.3. Let T be a set and x, xk ∈ ST be such that {xt}t∈T ⋐ S, then

sup
t∈T

d(xt, x
k
t ) −→ 0, as k → ∞,

if and only if

∀U ⊂ S2 open subset containing {(y, y)}y∈S, ∃k0 ∀k ≥ k0, ∀t ∈ T, (xt, x
k
t ) ∈ U.

So the topology of the uniform convergence on
{
x ∈ ST

∣∣ {xt}t∈T ⋐ S
}

depends
only of the topology of S.

Proof : Suppose that supt∈T d(xt, x
k
t ) −→ 0 as k → ∞ and take an open subset

U ⊂ S2 containing {(y, y)}y∈S. By compactness there exists ε > 0 such that
{
(y1, y2) ∈ S2 | y1 ∈ {xt}t, d(y1, y2) < ε

}
⊂ U,

so, for k large enough and for all t, (xt, x
k
t ) ∈ U . To get the converse property it

suffices to consider, for each ε > 0, the open set Uε :=
{
(y1, y2) ∈ S2 | d(y1, y2) < ε

}

which clearly contains {(y, y)}y∈S. �
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In the next lemma we discuss the completeness :

Lemma 4.4. Suppose that (S, d) is complete. Then any sequence (xk)k ∈
(Dloc(S))

N satisfying

∀t ≥ 0, ∀K ⊂ S compact, ρ̃t,K(xk1 , xk2 ) −→
k1,k2→∞

0,

admits a limit for the local Skorokhod topology.

The proof of this lemma follows from the same reasoning as the proof of the
triangular inequality, the proof of Theorem 12.2 pp. 128-129 from Billingsley (1999)
and the proof of Theorem 5.6 pp. 121-122 from Ethier and Kurtz (1986).

Proof : It suffices to prove that (xk)k have a converging subsequence. By taking,
possibly, a subsequence we can suppose that

∀t ≥ 0, ∀K ⊂ S compact,
∑

k≥0

ρ̃t,K(xk, xk+1) < ∞. (4.2)

We split our proof in five steps.

Step 1: we construct a sequence (λk)k ⊂ Λ̃. Let µk ∈ Λ̃ and t̃k ≥ 0 be such that
for all t ≥ 0 and K ⊂ S compact, we have for k large enough

t̃k ≤ ξ(xk), µk
t̃k

≤ ξ(xk+1),

sup
s<t̃k

d(xk
s , x

k+1
µk
s

) ∨ ‖ log µ̇k‖t̃k ∨ ‖µk − id‖t̃k ≤ 2ρ̃t,K(xk, xk+1),

(
d(xk

t̃k
,Kc) ∧ (t− t̃k)+1t̃k<ξ(xk)

)
≤ 2ρ̃t,K(xk, xk+1),

(
d(xk+1

µk

t̃k

,Kc) ∧ (t− µk
t̃k
)+1µk

t̃k
<ξ(xk+1)

)
≤ 2ρ̃t,K(xk, xk+1).

(4.3)

For all k ≥ 0 define

tk :=
∧

i≥0

(µk)−1 ◦ · · · ◦ (µk+i−1)−1(t̃k+i), (4.4)

so, tk ≤ t̃k and µk
tk

≤ tk+1. For k, i ≥ 0

‖ log d

ds
(µk+i−1 ◦ · · · ◦ µk(s))‖tk ≤

k+i−1∑

ℓ=k

‖ log µ̇ℓ‖t̃ℓ ,

‖µk+i−1 ◦ · · · ◦ µk − id‖tk ≤
k+i−1∑

ℓ=k

‖µℓ − id‖t̃ℓ

and for j ≥ i

‖µk+j−1 ◦ · · · ◦ µk − µk+i−1 ◦ · · · ◦ µk‖tk ≤ ‖µk+j−1 ◦ · · · ◦ µk+i − id‖tk+i

≤
k+j−1∑

ℓ=k+i

‖µℓ − id‖t̃ℓ .

Using (4.2) and (4.3) we obtain
∑

ℓ≥0

‖µℓ − id‖t̃ℓ < ∞,
∑

ℓ≥0

‖ log µ̇ℓ‖t̃ℓ < ∞,
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so, the restriction to [0, tk] of continuous functions µk+i−1 ◦ · · · ◦ µk converges
uniformly to a continuous function. Set

{
λk
s := limi→∞ µk+i−1 ◦ · · · ◦ µk(s), if s ≤ tk,

λ̇k
s := 1, if s ≥ tk.

Clearly for s ≤ tk, λ
k
s = λk+1 ◦ µk(s). We have

‖λk − id‖ ≤ sup
i≥0

‖µk+i−1 ◦ · · · ◦ µk − id‖tk ≤
∑

ℓ≥k

‖µℓ − id‖t̃ℓ < ∞, (4.5)

‖ log λ̇k‖ = sup
0≤s1<s2≤tk

∣∣∣∣∣log
λk
s2 − λk

s1

s2 − s1

∣∣∣∣∣ ≤ sup
i≥0

‖ log d

ds
(µk+i−1 ◦ · · · ◦ µk(s))‖tk

≤
∑

ℓ≥k

‖ log µ̇ℓ‖t̃ℓ < ∞, (4.6)

so, λk ∈ Λ̃.
Step 2: we construct a path x ∈ Dexp(S). For all k ≥ 0: λk

tk
= λk+1

µk
tk

≤ λk+1
tk+1

and

moreover for all 0 ≤ k1 ≤ k2

sup
s<λ

k1
tk1

d
(
xk1

(λk1 )−1
s

, xk2

(λk2 )−1
s

)
= sup

s<tk1

d
(
xk1
s , xk2

µk1−1◦···◦µk1 (s)

)
≤

k2−1∑

ℓ=k1

sup
s<t̃ℓ

d(xℓ
s, x

ℓ+1
µℓ
s
).

By using (4.2) and (4.3) we get
∑

ℓ≥0 sups<t̃ℓ
d(xℓ

s, x
ℓ+1
µℓ
s
) < ∞. By using the com-

pleteness of (S, d), we deduce that, for each m ∈ N, the sequence xk
(λk)−1 converges

uniformly on [0, λm
tm). We can define x ∈ Dexp(S) by setting:

ξ(x) := lim
k→∞

λk
tk and ∀s < ξ(x), xs := lim

k→∞
xk
(λk)−1

s
.

We see that, for all k ≥ 0

sup
s<λk

tk

d(xk
(λk)−1

s
, xs) = sup

s<tk

d
(
xk
s , xλk

s

)
≤
∑

ℓ≥k

sup
s<t̃ℓ

d(xℓ
s, x

ℓ+1
µℓ
s
). (4.7)

Step 3: we prove that the infimum in (4.4) is a minimum. Suppose that there exists
k0 ≥ 0 such that

∀i ≥ 0, tk0 < (µk0)−1 ◦ · · · ◦ (µk0+i−1)−1(t̃k0+i)

and we will show that one get a contradiction. Firstly, note that for all k ≥ k0
we necessarily have µk

tk = tk+1 and tk < t̃k so, λk
tk is constant equal to ξ(x) and

furthermore

d(xk
tk
, xk+1

tk+1
) ≤ sup

s<t̃k

d(xk
s , x

k+1
µk
s

).

Since
∑

k≥0 sups<t̃k
d(xk

s , x
k+1
µk
s

) < ∞, xk
tk

converges to an element a ∈ S. Let ε > 0

be arbitrary such that K := B(a, 3ε) ⊂ S is compact. Let k1 ≥ k0 be such that

d(xk1
tk1

, a) < ε,
∑

k≥k1

ρ̃ξ(x)+4ε,K(xk, xk+1) <
ε

2

and such that (4.3) holds for all k ≥ k1 with t = ξ(x) + 4ε. Set

sℓ :=
∧

0≤i≤ℓ

(µk1)−1 ◦ · · · ◦ (µk1+i−1)−1(t̃k1+i).
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It is clear that sℓ > tk1 and sℓ is a decreasing sequence converging to tk1 so, the set
{ℓ > 0 | sℓ < sℓ−1} is infinite. Let ℓ > 0 be such that sℓ < sℓ−1 and sℓ − tk1 < ε,
then

sℓ = (µk1 )−1 ◦ · · · ◦ (µk1+ℓ−1)−1(t̃k1+ℓ).

Therefore,

t̃k1+ℓ = µk1+ℓ−1 ◦ · · · ◦ µk1(sℓ) < µk1+ℓ−1 ◦ · · · ◦ µk1(tk1 + ε) (4.8)

≤
k1+ℓ−1∑

i=k1

‖µi − id‖t̃i + tk1 + ε ≤
k1+ℓ−1∑

i=k1

‖µi − id‖t̃i + ‖λk1 − id‖tk1 + ξ(x) + ε

≤ ξ(x) + ε+ 2
∑

i≥k1

‖µi − id‖t̃i ≤ ξ(x) + ε+ 4
∑

i≥k1

ρ̃ξ(x)+4ε,K(xi, xi+1) < ξ(x) + 3ε.

Furthermore t̃k1+ℓ < µk1+ℓ−1

t̃k1+ℓ−1
≤ ξ(xk1+ℓ) and

d(xk1+ℓ

t̃k1+ℓ
,Kc)∧(ξ(x)+4ε−t̃k1+ℓ)+1t̃k1+ℓ<ξ(xk1+ℓ) ≤ 2ρ̃ξ(x)+4ε,K(xk1+ℓ, xk1+ℓ+1) < ε,

so, by (4.8),

d(xk1+ℓ

t̃k1+ℓ
,Kc) < ε,

and

d(xk1
sℓ ,K

c) ≤ d(xk1
sℓ , x

k1+ℓ

t̃k1+ℓ
) + d(xk1+ℓ

t̃k1+ℓ
,Kc) <

k1+ℓ−1∑

i=k1

sup
s<t̃i

d(xi
s, x

i+1
µi
s
) + ε < 2ε.

Hence we have d(a, xk1
sℓ ) > ε and d(a, xk1

tk1
) < ε. Letting ℓ → ∞ we get a contradic-

tion.
Step 4: fix t ≥ 0 and K ⊂ S a compact set: we prove that limk→∞ ρ̃t,K(xk, x) = 0.
Taking k large enough (4.3) holds and by using (4.5), (4.6) and (4.7),

sup
s<tk

d
(
xk
s , xλk

s

)
≤
∑

ℓ≥k

sup
s<t̃ℓ

d(xℓ
s, x

ℓ+1
µℓ
s
) ≤ 2

∑

ℓ≥k

ρ̃t,K(xℓ, xℓ+1),

‖λk − id‖ ≤
∑

ℓ≥k

‖µℓ − id‖t̃ℓ ≤ 2
∑

ℓ≥k

ρ̃t,K(xℓ, xℓ+1),

‖ log λ̇k‖ ≤
∑

ℓ≥k

‖ log µ̇ℓ‖t̃ℓ ≤ 2
∑

ℓ≥k

ρ̃t,K(xℓ, xℓ+1).

Moreover by the previous step we know that the infimum in (4.4) is a minimum
and so, in the present step, we set

m := min
{
ℓ ≥ k

∣∣ (µk)−1 ◦ · · · ◦ (µℓ−1)−1(t̃ℓ) = tk
}
∈ N,

M := sup
{
ℓ ≥ k

∣∣ (µk)−1 ◦ · · · ◦ (µℓ−1)−1(t̃ℓ) = tk
}
∈ N ∪ {∞}.

Then

d(xk
tk ,K

c) ∧ (t− tk)+1tk<ξ(xk) ≤
m−1∑

ℓ=k

sup
s<t̃ℓ

d(xℓ
s, x

ℓ+1
µℓ
s
) ∨ ‖µℓ − id‖t̃ℓ

+ d(xm
t̃m

,Kc) ∧ (t− t̃m)+1t̃m<ξ(xm)

≤ 2
∑

ℓ≥k

ρ̃t,K(xℓ, xℓ+1).
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It is clear that λk
tk

= ξ(x) if and only if M = ∞. If M < ∞

d(xλk
tk

,Kc) ∧ (t− λk
tk
)+ = d(xλM

tM

,Kc) ∧ (t− λM
tM )+

≤ d(xM+1
µM
tM

,Kc) ∧ (t− µM
tM )+ +

∑

ℓ>M

sup
s<t̃ℓ

d(xℓ
s, x

ℓ+1
µℓ
s
) ∨ ‖µℓ − id‖t̃ℓ

≤ 2
∑

ℓ≥k

ρ̃t,K(xℓ, xℓ+1). (4.9)

We have proved that

ρ̃t,K(xk, x) ≤ 2
∑

ℓ≥k

ρ̃t,K(xℓ, xℓ+1) −→
k→∞

0.

Step 5: we prove that x ∈ Dloc(x). Suppose that ξ(x) < ∞ and that {xs}s<ξ(x) ⋐ S.

Let ε > 0 be such that K :=
{
y ∈ S

∣∣ d(y, {xs}s<ξ(x)) ≤ ε
}

is compact and set
t = ξ(x) + ε. By using (4.9) we have, for k large enough,

d(xλk
tk

,Kc) ∧ (t− λk
tk)+1λk

tk
<ξ(x) ≤ 2

∑

ℓ≥k

ρ̃t,K(xℓ, xℓ+1) < ε.

Then ξ(x) = λk
tk and we deduce that

sup
s<ξ(x)

d
(
xk
(λk)−1s, xs

)
≤ 2

∑

ℓ≥k

ρ̃t,K(xℓ, xℓ+1) −→
k→∞

0

and that the limit xξ(x)− exists in S. Therefore, x ∈ Dloc(S) and xk converges to
x for the local Skorokhod topology. �

To prove the separability and the criterion of compactness we will use the fol-
lowing technical result:

Lemma 4.5. Let R ⊂ S, δ > 0 and N ∈ N be. Define

ER,δ,N :=
{
x ∈ Dloc(S)

∣∣ ξ(x) ≤ Nδ, ∀k ∈ N, x is a constant in R ∪ {∆}
on [kδ, (k + 1)δ)

}
.

Then for any x ∈ Dloc(S)

ρNδ,K(x, ER,δ,N ) ≤
(
sup
a∈K

d(a,R) + ω′
Nδ,K,x(δ)

)
∨ δ.

Proof : For arbitrary ε > 0 , there exist 0 = t0 < · · · < tM ≤ ξ(x) such that

sup
0≤i<M

ti≤s1,s2<ti+1

d(xs1 , xs2) ≤ ω′
Nδ,K,x(δ) + ε,

such that for all 0 ≤ i < M , ti+1 > ti + δ and (tM , xtM ) 6∈ [0, Nδ] × K. De-

note t∗ := min
{
s ≥ 0

∣∣ s ≥ Nδ or d(xs,K
c) = 0

}
≤ tM and define M̃ :=

min {0 ≤ i ≤ M | ti ≥ t∗}. Define t̃
M̃

:=
⌈
t∗

δ

⌉
δ where ⌈r⌉ denotes the smallest

integer larger or equal than the real number r. Moreover, for 0 ≤ i < M̃ define
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t̃i :=
⌊
ti
δ

⌋
δ where we recall that ⌊r⌋ denotes the integer part of the real number r,

so 0 = t̃0 < . . . < t̃
M̃
. Finally, we define x̃ ∈ ER,δ,N by





ξ(x̃) := t̃
M̃
,

∀0 ≤ i < M̃ : we choose x̃t̃i
in R such that d(xti , x̃t̃i

) < d(xti , R) + ε,

∀0 ≤ i < M̃, ∀t̃i ≤ s < t̃i+1 : x̃s := x̃t̃i
,

and λ ∈ Λ given by




∀0 ≤ i ≤ M̃ : λti∧t∗ = t̃i,

∀0 ≤ i < M̃ : λ is affine on [ti, ti+1 ∧ t∗],

∀s ≥ t∗ : λ̇s = 1.

We can write

ρNδ,K(x, ER,δ,N ) ≤ ρNδ,K(x, x̃) ≤ sup
s<t∗

d(xs, x̃λs
) ∨ ‖λ− id‖

≤
(
sup
a∈K

d(a,R) + ω′
t,K,x(δ) + 2ε

)
∨ δ,

so, letting ε → 0 we obtain the result. �

The separability is an easy consequence:

Lemma 4.6. The local Skorokhod topology on Dloc(S) is separable.

Proof : Let R be a countable dense part of S and introduce the countable set

E :=
⋃

n,N∈N∗

ER, 1
n
,N .

Consider x ∈ Dloc(S), t ≥ 0, K ⊂ S a compact set and let ε > 0 be. We choose
n ∈ N

∗ such that n−1 ≤ ε and ω′
t+1,K,x(n

−1) ≤ ε and set N := ⌈nt⌉. We can write

ρt,K(x, ER, 1
n
,N) ≤ ρN

n
,K(x, ER, 1

n
,N ) ≤

(
sup
a∈K

d(a,R) + ω′
N
n
,K,x

(
1

n
)

)
∨ 1

n

≤ ω′
t+1,K,x(

1

n
) ∨ 1

n
≤ ε.

We deduce that E is dense, hence Dloc(S) is separable. �

We have now all the ingredients to prove the characterisation of the compactness:

Proof of Theorem 2.8: First, notice that, similarly as in the proof of Lemma 4.3,
the condition (2.5) is equivalent to: for all t ≥ 0, all compact subset K ⊂ S and
all open subset U ⊂ S2 containing the diagonal

{
(y, y) | y ∈ S

}
, there exists δ > 0

such that for all x ∈ D there exist 0 = t0 < · · · < tN ≤ ξ(x) such that

∀0 ≤ i < N, s1, s2 ∈ [ti, ti+1), (xs1 , xs2) ∈ U,

for all 0 ≤ i < N , ti+1 − ti > δ, and (tN , xtN ) 6∈ [0, t] ×K. Hence, the condition
(2.5) is independent to d, and we can suppose that (S, d) is complete. Suppose that
D satisfy condition (2.5), then, by using Lemma 4.4, we need to prove that for all
t ≥ 0, K ⊂ S a compact set and ε > 0 arbitrary, D can be recovered by a finite
number of ρ̃t,K-balls of radius ε. Let 0 < η ≤ 1

9 be such that

6 · √η ∨ sup
x∈D

ω′
t,K,x (

√
η) ≤ ε,
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and let δ ≤ η be such that

sup
x∈D

ω′
t+1,K,x (δ) ≤

η

2
.

Since K is compact we can choose a finite set R ⊂ S such that

sup
a∈K

d(a,R) ≤ η

2
,

take N := ⌈tδ−1⌉. Then by using Lemma 4.5,

sup
x∈D

ρt,K(x, ER,δ,N ) ≤ sup
x∈D

ρNδ,K(x, ER,δ,N )

≤
(
sup
a∈K

d(a,R) + sup
x∈D

ω′
Nδ,K,x(δ)

)
∨ δ ≤ η

and by using Lemma 4.2,

sup
x∈D

ρ̃t,K(x, ER,δ,N ) ≤ 6 sup
x∈D

(√
ρt,K(x, ER,δ,N) ∨ ω′

t,K,x

(√
ρt,K(x, ER,δ,N )

))
≤ ε.

Since ER,δ,N is finite we can conclude that D is relatively compact.
To prove the converse sentence, thanks to the first part of Proposition 2.7 it is

enough to prove that if xk, x ∈ Dloc(S) with xk converging to x, then for all t ≥ 0
and all compact subset K ⊂ S,

lim sup
k→∞

ω′
t,K,xk(δ) −→

δ→0
0.

This is a direct consequence of Proposition 2.7. Let us stress that although we cite
Theorem 2.4 in the proof of Proposition 2.7, in reality we only need the sequential
characterisation of the convergence. �

We close this section by the study of the Borel σ-algebra B(Dloc(S)).

Lemma 4.7. Borel σ-algebra B(Dloc(S)) coincides with F .

Proof : Let f ∈ C(S∆) and 0 ≤ a < b < ∞ be. Consider xk ∈ Dloc(S) converging

to x ∈ Dloc(S), with ξ(x) > b, and take λk ∈ Λ̃ as in Theorem 2.4. Then, for k
large enough b ∨ λk

b < ξ(xk) and by dominated convergence,

∫ b

a

f(xk
s )ds =

∫ λk
a

a

f(xk
s )ds+

∫ b

a

f(xk
λk
s
)λ̇k

sds+

∫ b

λk
b

f(xk
s )ds −→

k→∞

∫ b

a

f(xs)ds.

Hence, the set {x ∈ Dloc(S) | b < ξ(x)} is open and on this set the function

x 7→
∫ b

a

f(xs)ds

is continuous so, for t ≥ 0 and ε > 0 the mapping from Dloc(S) to R

x 7→
{

1
ε

∫ t+ε

t f(xs)ds, if t+ ε < ξ(x),
f(∆), otherwise,

is measurable for the Borel σ-algebra B(Dloc(S)) and, the same is true for the
mapping x 7→ f(xt), by taking the limit. Since f is arbitrary, x 7→ xt is also
measurable and so, F ⊂ B(Dloc(S)).
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Conversely, since the space is separable, it is enough to prove that for each
x0 ∈ Dloc(S), t ≥ 0, K ⊂ S compact and ε > 0 there exists V ⊂ Dloc(S), F -
measurable, such that
{
x ∈ Dloc(S)

∣∣ ρt,K(x, x0) ≤ ε
}
⊂ V ⊂

{
x ∈ Dloc(S)

∣∣ ρt,K(x, x0) ≤ 3ε
}
. (4.10)

Proposition 2.7 allows to get the existence of 0 = t00 < · · · < t0N ≤ ξ(x0) such that

sup
0≤i<N

t0i≤s1,s2<t0i+1

d(x0
s1 , x

0
s2) ≤ ε,

and (t0N , x0
t0N
) 6∈ [0, t]× ∈ K. If we define

V :=




x ∈ Dloc(S)

∣∣∣∣∣∣∣∣∣∣

∃0 = t0 ≤ · · · ≤ tM ≤ ξ(x), M ≤ N such that:
∀0 ≤ i ≤ M, |ti − t0i | ≤ ε
∀0 ≤ i < M, ∀t ∈ [ti, ti+1), d(xt, x

0
t0i
) ≤ 2ε

d(x0
t0
M

,Kc) ∧ (t− t0M )+1t0
M

<ξ(x0) ≤ 2ε

d(xtM−,K
c) ∧ d(xtM ,Kc) ∧ (t− tM )+1tM<ξ(x) ≤ 3ε





,

it is straightforward to obtain (4.10). Since

V =




x ∈ Dloc(S)

∣∣∣∣∣∣∣∣∣∣

∀δ > 0, ∃0 = q0 ≤ · · · ≤ qM < ξ(x) − δ, M ≤ N such that:
∀0 ≤ i ≤ M, |qi − t0i | ≤ ε+ δ
∀0 ≤ i < M, ∀q ∈ [qi + δ, qi+1 − δ], d(xq, x

0
t0i
) ≤ 2ε

d(x0
t0M

,Kc) ∧ (t− t0M )+1t0
M

<ξ(x0) ≤ 2ε

d(xqM ,Kc) ∧ (t− qM )+1qM<ξ(x) ≤ 3ε+ δ




,

where q, qi and δ are chosen to be rational, V belongs F . The proof is now
complete. �
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