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LTCI, Télécom ParisTech, Université Paris-Saclay
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Abstract. In this contribution we introduce weakly locally stationary time series
through the local approximation of the non-stationary covariance structure by a sta-
tionary one. This allows us to define autoregression coefficients in a non-stationary
context, which, in the particular case of a locally stationary Time Varying Au-
toregressive (TVAR) process, coincide with the generating coefficients. We provide
and study an estimator of the time varying autoregression coefficients in a general
setting. The proposed estimator of these coefficients enjoys an optimal minimax
convergence rate under limited smoothness conditions. In a second step, using a
bias reduction technique, we derive a minimax-rate estimator for arbitrarily smooth
time-evolving coefficients, which outperforms the previous one for large data sets.
In turn, for TVAR processes, the predictor derived from the estimator exhibits an
optimal minimax prediction rate.

1. Introduction

In many applications, one is interested in predicting the next values of an ob-
served time series. It is the case in various areas like finance (stock market, volatil-
ity on prices), social sciences (population studies), epidemiology, meteorology and
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network systems (Internet traffic). Autoregressive processes have been used suc-
cessfully in a stationary context for several decades. On the other hand, in a
context where the number of observations can be very large, the usual stationarity
assumption has to be weakened to take into account some smooth evolution of the
environment.

Several prediction methods developed in signal processing are well known to
adapt to a changing environment. This is the case of the wide spread recursive
least square algorithms. The initial goal of these methods is to provide an online
procedure for estimating a regression vector with low numerical cost. Such methods
usually rely on a forgetting factor or a gradient step size γ and they can be shown
to be consistent in a stationary environment when γ decreases adequately to zero
(see e.g. Duflo, 1997). Even when the environment is changing, that is, when the
regression parameter evolves along the time, a “small enough” γ often yields a good
tracking of the evolving regression parameter. In order to have a sound and compre-
hensive understanding of this phenomenon, an interesting approach is to consider
a local stationarity assumption, as successfully initiated in Dahlhaus (1996b) by
relying on a non-stationary spectral representation introduced in Priestley (1965);
see also Subba Rao et al. (2012) and the references therein for a recent overview.
The basic idea is to provide an asymptotic analysis for the statistical inference of
non-stationary time series such as time varying autoregressive (TVAR) processes
using local stationary approximations. The analysis of the Normalized Least Mean
Squares (NLMS) algorithm for tracking a changing autoregression parameter in
this framework is tackled in Moulines et al. (2005). Such an analysis is based on
the usual tools of non-parametric statistics. The TVAR parameter θ is seen as
the regular samples of a smooth Rd-valued function. An in-fill asymptotic allows
one to derive the rates of convergence of the NLMS estimator for estimating this
function within particular smoothness classes of functions. As shown in Moulines
et al. (2005), it turns out that the NLMS algorithm provides an optimal minimax
rate estimator of the TVAR parameter with Hölder smoothness index β ∈ (0, 1].
However it is no longer optimal for β > 1, that is, when the TVAR parameter
is smoother than a continuously differentiable function. An improvement of the
NLMS is proposed in Moulines et al. (2005) to cope with the case β ∈ (0, 2] but, to
the best of our knowledge, there is no available method neither for the θ minimax-
rate estimation nor for the minimax-rate prediction when β > 2, that is when the
TVAR parameter is smoother than a two-times continuously differentiable function.

In the present work, our main contribution is twofold. First we extend the
concept of time-varying linear prediction coefficients to a general class of weakly
locally stationary processes, which includes the class of locally stationary processes
as introduced in Dahlhaus (1996b). In the specific case of a TVAR process, these
coefficients correspond to the time-varying autoregression parameters. Second, we
show that the tapered Yule-Walker estimator introduced in Dahlhaus and Giraitis
(1998) for TVAR processes also applies to this general class and is minimax-rate for
Hölder indices up to β = 1 for asymmetric tapers and up to β = 2 for symmetric
ones. Moreover, by applying a bias reduction technique, we derive a new estimator
which is minimax-rate for any arbitrarily large Hölder index β. By achieving this
goal, we provide a theoretically justified construction of predictors that can be
chosen optimally, depending on how smoothly the time varying spectral density
evolves along the time. On the other hand, in practical situations, one may not
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have a clear view on the value of the smoothness index β and one should rely on
data driven methods that are therefore called adaptive. This problem was recently
tackled in Giraud et al. (2015) . More precisely, using aggregation techniques
introduced in the context of individual sequences prediction (see e.g. Cesa-Bianchi
and Lugosi, 2006) and statistical learning (see e.g. Barron, 1987), one can aggregate
sufficiently many predictors in order to build a minimax predictor which adapts to
the unknown smoothness β of the time varying parameter of a TVAR process.
However, a crucial requirement in Giraud et al. (2015) is to rely on β-minimax-
rate sequences of predictors for any β > 0. Our main contribution here is to fill
this gap, hence achieving to solve the problem of the adaptive minimax-rate linear
forecasting of locally stationary TVAR processes with coefficients of any (unknown,
arbitrarily large) Hölder smoothness index.

The paper is organized as follows. In Section 2, we introduce a definition of
weakly locally stationary time series, the regression problem investigated in this
work in relation with the practical prediction problem, and the tapered Yule-Walker
estimator under study. General results on this estimator are presented in Section 3
and a minimax rate estimator is derived. The particular case of TVAR processes is
treated in Section 4. Numerical experiments illustrating these results can be found
in Section 5. Postponed proofs and useful lemmas are provided in the appendices.

2. General setting

In the following, non-random vectors and sequences are denoted using boldface
symbols, ‖x‖ denotes the Euclidean norm of x, ‖x‖ = (

∑
i |xi|2)1/2, and ‖x‖1 its `1

norm, ‖x‖1 =
∑
i |xi|. If f is a function, ‖f‖∞ = supx |f(x)| corresponds to its sup

norm. If A is a matrix, ‖A‖ denotes its spectral norm, ‖A‖ = sup{‖Ax‖ , ‖x‖ ≤ 1}.
We moreover denote

`1(N) = {x ∈ RN s.t. ‖x‖1 <∞} and `1+(N) = {x ∈ RN
+ s.t. ‖x‖1 <∞} .

2.1. Main definitions. We consider a doubly indexed time series (Xt,T )t∈Z,T∈N∗ .
Here t refers to a discrete time index and T is an additional index indicating the
sharpness of the local approximation of the time series (Xt,T )t∈Z by a stationary one.
Coarsely speaking, (Xt,T )t∈Z,T∈N∗ is considered to be weakly locally stationary if, for
T large, given a set ST of sample indices such that t/T ≈ u over t ∈ ST , the sample
(Xt,T )t∈ST

can be approximately viewed as the sample of a weakly stationary time
series depending on the rescaled location u. Note that u is a continuous time
parameter, sometimes referred to as the rescaled time index. Following Dahlhaus
(1996b), T is usually interpreted as the number of available observations, in which
case all the definitions are restricted to 1 ≤ t ≤ T and u ∈ [0, 1]. However this is
not essential in our mathematical derivations and it is more convenient to set t ∈ Z
and u ∈ R for presenting our setting.

We use the following class of functions. For α ∈ (0, 1] the α−Hölder semi-norm
of a function f : R→ Cd is defined by

|f |α,0 = sup
0<|s−s′|<1

‖f(s)− f(s′)‖
|s− s′|α

.
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This semi-norm is used to build a norm for any β > 0 as it follows. Let k ∈ N and
α ∈ (0, 1] be such that β = k + α. If f is k times differentiable on R, we define

|f |β =
∣∣∣f (k)∣∣∣

α,0
+ max

0≤s≤k

∥∥∥f (s)∥∥∥
∞
,

and |f |β =∞ otherwise. For R > 0 and β > 0, the (β,R)− Hölder ball of dimension
d is denoted by

Λd(β,R) =
{
f : R→ Cd, such that |f |β ≤ R

}
.

We first introduce definitions for the time varying covariance and the local covari-
ance functions.

Definition 2.1 (Time varying covariance function). Let (Xt,T )t∈Z,T∈N∗ be an ar-
ray of random variables with finite variances. The local time varying covariance
function γ∗ is defined for all t ∈ Z, T ∈ N∗ and ` ∈ Z as

γ∗ (t, T, `) = cov (Xt,T , Xt−`,T ) . (2.1)

Definition 2.2 (Local covariance function and local spectral density). A local
spectral density f is a R2 → R+ function, (2π)-periodic and locally integrable with
respect to the second variable. The local covariance function γ associated with the
local spectral density f is defined on R× Z by

γ (u, `) =

∫ π

−π
ei`λf (u, λ) dλ . (2.2)

In (2.2), the variable u should be seen as rescaled time index (in R), ` as a
(non-rescaled) time index and λ as a frequency (in [−π, π]). Recall that, by the
Herglotz theorem (see Brockwell and Davis, 2002, Theorem 4.3.1), Equation (2.2)
guaranties that for any u ∈ R, (γ (u, `))`∈Z is indeed the autocovariance function
of a stationary time series. Now, we can state the definition of weakly locally
stationary processes that we use here.

Definition 2.3 (Weakly locally stationary processes). Let (Xt,T )t∈Z,T≥T0
be an

array of random variables with finite variances and T0, β, R > 0. We say that
(Xt,T )t∈Z,T≥T0 is (β,R)-weakly locally stationary with local spectral density f if, for
all λ ∈ R, we have f(·, λ) ∈ Λ1(β,R), and the time varying covariance function γ∗

of (Xt,T )t∈Z,T≥T0
and the local covariance function γ associated with f satisfy, for

all t ∈ Z and T ≥ T0,∣∣∣∣γ∗ (t, T, `)− γ
(
t

T
, `

)∣∣∣∣ ≤ RT−min(1,β) . (2.3)

Let us give some examples fulfilling this definition.

Example 2.4. Locally stationary processes were introduced in a general fashion by
Dahlhaus (1996b) using the spectral representation

Xt,T =

∫ π

−π
eitλA0

t,T (λ) ξ (dλ) , (2.4)

where ξ(dλ) is the spectral representation of a white noise and (A0
t,T )t∈Z,T∈N∗ is a

collection of transfer functions such that there exist a constant K and a (unique)
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2π− periodic function A : R × R → C with A(u,−λ) = A(u, λ) such that for all
T ≥ 1,

sup
t∈Z,λ∈R

∣∣∣∣A0
t,T (λ)−A

(
t

T
, λ

)∣∣∣∣ ≤ K

T
. (2.5)

Provided adequate smoothness assumptions on the time varying transfer function
A, this class of locally stationary processes satisfies Definition 2.3 (see Dahlhaus,

1996a, Section 1) for some β ≥ 1 and f(u, λ) = |A(u, λ)|2. The case β ∈ (0, 1] can
be obtained by raising T to the power β in (2.5).

Example 2.5 (Time-varying Causal Bernoulli Shift (TVCBS)). Let ϕ : R×RN → R.
Consider, for all T ≥ 1 and t ∈ Z, a mapping ϕ0

t,T : RN → R defining the random
variables

Xt,T = ϕ0
t,T ((ξt−k)k≥0) , (2.6)

where (ξt)t∈Z are i.i.d. We assume that E[|ξ0|2r] < ∞ for some r ≥ 1 and that
there exist β,K > 0 and (ψk)k≥0 ∈ `1+(N), such that, for all T ≥ 1, t ∈ Z, u, u′ ∈ R
and x ∈ RN,

∣∣ϕ0
t,T (x)

∣∣ ≤ K

(
1 +

∞∑
k=0

ψk |xk|

)r
, (2.7)

∣∣∣∣ϕ0
t,T (x)− ϕ

(
t

T
,x

)∣∣∣∣ ≤ K T−min(1,β)

(
1 +

∞∑
k=0

ψk |xk|

)r
, (2.8)

It is easy to see that (Xt,T )t∈Z,T≥T0
satisfies (2.3) with a constant R only depending

on K, β, (ψk)k∈N and E[|ξ0|2r], and with local covariance function γ(u, ·) defined as
the covariance function of the stationary causal Bernoulli shift process (Xt(u))t∈Z
defined by Xt(u) = ϕ(u, ((ξt−k)k≥0). To obtain that (Xt,T )t∈Z,T≥T0

is (β,R)-
weakly locally stationary, it thus only remains to check that (Xt(u))t∈Z admits a
spectral density f(u, ·) and that the resulting local spectral density satisfies f(·, λ) ∈
Λ1(β,R) for all λ ∈ R.

Example 2.6 (TVAR(p) model). Under suitable assumptions, the TVAR process
is a particular case both of Example 2.4 (see Dahlhaus, 1996b, Theorem 2.3) and
Example 2.5 (see Section 4). It is defined as the (unique) stable solution of the
recursive equation

Xt,T =

p∑
j=1

θj

(
t

T

)
Xt−j,T + σ

(
t

T

)
ξt , (2.9)

where θ = [θ1 . . . θp]
′ : R→ Rp are the time varying autoregressive coefficients and

(ξt)t∈Z are i.i.d. centred and with variance 1. This example is detailed in Section 4.

2.2. Statement of the problem. Consider a weakly locally stationary (Xt,T )t∈Z,T≥T0 ,
which we assume to have mean zero for convenience. Let d ∈ N∗. For each t =
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1, . . . , T , define the prediction vector of order d by

θ∗t,T = arg min
θ=[θ1 ... θd]′∈Rd

E

(Xt,T −
d∑
k=1

θk Xt−k,T

)2


= arg min
θ∈Rd

E
[
(Xt,T − θ′Xt−1,T )

2
]
, (2.10)

where A′ denotes the transpose of matrix A and Xs,T =
[
Xs,T . . . Xs−(d−1),T

]′
.

Let Γ∗t,T be the time varying covariances matrix Γ∗t,T = (γ∗(t− i, T, j − i); i, j =

1, . . . , d) where γ∗ is the time varying covariance function as defined in (2.1). Pro-
vided that Γ∗t,T is non-singular, the solution of (2.10) is given by

θ∗t,T =
(
Γ∗t,T

)−1
γ∗t,T , (2.11)

where γ∗t,T = [γ∗(t, T, 1) . . . γ∗(t, T, d)]′. Analogously to (2.11), and with the aim
of approximating the local solution of the stationary Yule-Walker equations, we set

θu = Γ−1u γu , (2.12)

where γu = [γ(u, 1) . . . γ(u, d)]′, Γu is the covariances matrix Γu = (γ(u, i −
j); i, j = 1, . . . , d) and γ is the local covariance function as defined in (2.2). To
ensure the above matrices to be non-singular, we assume a lower bound on the local
spectral density, yielding the main assumption used on the model which depends
on some positive constants β,R and f− and on a local spectral density f .

(M-1) The sequence (Xt,T )t∈Z,T≥T0
is a (β,R)–weakly locally stationary process with

local spectral density f in the sense of Definition 2.3. Assume moreover that
the spectral density f satisfies f(u, λ) ≥ f− for all u, λ ∈ R.

The following lemma allows us to control the error of the approximation of the opti-
mal linear prediction coefficients θ∗t,T by the local ones θt/T . Its proof is postponed
to appendix B.1 for convenience.

Lemma 2.7. Let d ∈ N∗, β > 0, R > 0 and f− > 0. Suppose that Assumption (M-
1) holds. Then, there exist two constants C1, T0 > 0 depending only on d, β, R and
f− such that, for all t ∈ Z and T ≥ T0,∥∥θ∗t,T − θt/T∥∥ ≤ C1 T

−min(1,β) . (2.13)

An estimator θ̂ of θ is studied in Dahlhaus and Giraitis (1998) for the model of
Example 2.4. In the following we improve these results by deriving minimax rate
properties of the estimator of Dahlhaus and Giraitis (1998) and extensions of it in
a more general setting.

In the following, the problem that we are interested is to derive a minimax rate

estimator θ̃ at a given smoothness index β > 0, which means that, for such a β, the

estimation risk, say the quadratic risk E[‖θ̃t,T −θ∗t,T ‖2], can be bounded uniformly

over all processes satisfying (M-1) (among with additional assumptions), and that
the corresponding rate of convergence as T →∞ cannot be improved by any other
estimator. The case β ≤ 2 is solved in Moulines et al. (2005) for the subclass of
TVAR models.
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2.3. Minimax estimation for adaptive prediction. Let X̂∗d,t,T denote the best linear

predictor of order d of Xt,T , which as a consequence of (2.10), reads

X̂∗d,t,T =
(
θ∗t,T

)′
Xt−1,T ,

We denote by X̂∗t,T the best predictor of Xt,T given its past, that is, the conditional
expectation

X̂∗t,T = E [Xt,T |Xs,T , s ≤ t− 1 ] . (2.14)

As explained before, the goal of this paper is to derive estimators, say θ̃t,T ∈ Rd, of

θt/T , which is a local approximation of θ∗t,T . In this section, we assume that θ̃t,T

is a function of the past Xs,T , s ≤ t− 1. Then θ̃′t,TXt−1,T is a legitimate predictor
of Xt,T and we have the following decomposition of the corresponding prediction
quadratic risk

E
[(
Xt,T − θ̃′t,TXt−1,T

)2]
= E

[(
Xt,T − X̂∗t,T

)2]
+ E

[(
θ̃′t,TXt−1,T − X̂∗t,T

)2]
.

The first term is the minimal prediction error that one would achieve with the
conditional expectation (which requires the true distribution of the whole pro-

cess). Furthermore, inserting X̂∗d,t,T =
(
θ∗t,T

)′
Xt−1,T and using the Minkowskii and

Cauchy-Schwartz inequalities, the square root of the second term can be bounded
as (

E
[(
θ̃′t,TXt−1,T − X̂∗t,T

)2])1/2

≤
(
E
[(
X̂∗d,t,T − X̂∗t,T

)2])1/2

+
(
E
[
‖Xt−1,T ‖4

])1/4 (
E
[∥∥∥θ̃t,T − θ∗t,T∥∥∥4])1/4

.

The first term in the upper bound is due to the approximation of the best predictor
by the best linear predictor of order d and can only be improved by increasing d.
Note that, in the case of the TVAR(p) model with p ≤ d, this error term vanishes.
The quantity E[‖Xt−1,T ‖4] is typically bounded by a constant independent of (t, T )
over the class of processes under consideration. Hence, for a given d, the control of

the prediction risk boils down to the control of the estimation risk E[‖θ̃t,T −θ∗t,T ‖4].
To do so, we can further decompose the loss as∥∥∥θ̃t,T − θ∗t,T∥∥∥ ≤ ∥∥∥θ̃t,T − θt/T∥∥∥+

∥∥θt/T − θ∗t,T∥∥ . (2.15)

Note that the second term is a deterministic error basically accounting for the
approximation precision of the non-stationary model by a stationary one, a bound
of which is provided in Lemma 2.7 stated above.

As a result of the successive error developments above, our efforts in the following

focus on controlling the estimation risk E[‖θ̃t,T − θt/T ‖4] uniformly over a class of
weakly locally stationary processes with given smoothness index β > 0.

2.4. Tapered Yule-Walker estimate. Following Dahlhaus and Giraitis (1998), a local
empirical covariance function is defined as follows. It relies on a real data taper
function h and a bandwidth M which may depend on T .
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Definition 2.8 (Local empirical covariance function). Consider a function h :
[0, 1]→ R and M ∈ 2N∗. The empirical local covariance function γ̂T,M with taper
h is defined in R× Z as

γ̂T,M (u, `) =
1

HM

M∑
t1,t2=1
t1−t2=`

h

(
t1
M

)
h

(
t2
M

)
XbuTc+t1−M/2,TXbuTc+t2−M/2,T ,

where HM =
∑M
k=1 h

2(k/M) ∼M
∫ 1

0
h2(x)dx is the normalizing factor. If HM = 0,

we set γ̂T,M (u, `) = 0, by convention.

For h ≡ 1 in Definition 2.8 we obtain the classical covariance estimate for a
centred sample {Xs, buT c −M/2 ≤ s ≤ buT c + ` + M/2}. For any d ≥ 1, based
on the local empirical covariance function γ̂T,M , the d-order local empirical Yule-
Walker prediction coefficients are then defined as

θ̂t,T (M) = Γ̂−1t,T,M γ̂t,T,M , (2.16)

where γ̂t,T,M = [γ̂T,M (t/T, 1) . . . γ̂T,M (t/T, d)]′, Γ̂t,T,M is the matrix of empirical

covariances Γ̂t,T,M = (γ̂T,M (t/T, i−j); i, j = 1, . . . , d). The only way Γ̂t,T,M can be
singular is when γ̂T,M (t/T, `) = 0 for all ` ∈ Z (see Lemma A.5), in which case we

just set θ̂t,T (M) := 0. Hence θ̂t,T (M) is always well defined and always satisfies
the following (see again Lemma A.5 for the bound)

Γ̂t,T,M θ̂t,T (M) = γ̂t,T,M , and ‖θ̂t,T (M) ‖ ≤ 2d − 1 . (2.17)

Using this trick, we do not find it necessary to add additional assumptions on the

model to guarantee that Γ̂t,T,M is non-singular a.s., as done for instance in Dahlhaus
and Giraitis (1998), where P(Xt,T = 0) = 0 for all t ∈ Z is assumed.

3. Main results in the general framework

3.1. Additional notation and assumptions. For convenience, we introduce the fol-
lowing notation. Let p > 0, q, r, s ∈ N∗, µ be a probability distribution on
R, u : R → R, a, b : Rr → R, c ∈ Rq and a collection of random matrices
{UM ∈ Rr×s,M ∈ N∗}. We write

(i) UM = OLp,c(u(M)) if there exists Cp,c > 0, depending continuously and at
most on (p, c′), such that for all M ∈ N∗

max
1≤i≤r,1≤j≤s

(E [|UMi,,j |p])
1/p ≤ Cp,c |u (M)| , (3.1)

where UM,i,j is the (i, j)-th entry of the matrix UM .
(ii) UM = OL•(µ),c(u(M)) if UM = OLp,mp,c(u(M)) for all p ∈ [1,∞), wheremp

is a constant only depending on the absolute moments of the distribution
µ,
∫
|x|q µ(dx), q ≥ 1.

(iii) a(x) = Oc(b(x)) if and only if there exists a constant Cc depending con-
tinuously and at most on the index c, such that for all x ∈ Rr

|a (x)| ≤ Cc |b (x)| .

Concerning the function h we have the following assumption.
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(H) The function h : [0, 1] → R is piecewise continuously differentiable, that is,
for 0 = u0 < u1 < . . . < uN = 1, h is C1 on (ui−1, ui], i = 1, . . . , N .

Moreover we assume
∫ 1

0
h2 = 1, ‖h‖∞ = supu∈[0,1] |h(u)| <∞ and ‖h′‖∞ =

max1≤i≤N supu∈(ui−1,ui] |h
′(u)| <∞.

Provided a piecewise continuously differentiable funtion h (as in (H)) and a local
spectral density function f continuously differentiable on its first argument, we also
consider the following assumption, which depends on a constant C > 0 and on a
probability distribution µ on R.

(C) For all ` ∈ Z and h satisfying (H), we have, for all t ∈ Z and T ≥ T0,

γ̂T,M (u, `)− E [γ̂T,M (u, `)] = OL•(µ),`,‖h‖∞,‖h′‖∞,C

(
M−1/2

)
.

Assumption (C) amounts to say that the tapered empirical covariance estimator
γ̂T,M from a sample of length M satisfies a standard deviation rate M−1/2 in all
Lq-norms. Locally stationary processes of Example 2.4 satisfy it under suitable
assumptions (see Dahlhaus and Giraitis, 1998, Eq. (4.4) in Theorem 4.1). We
conclude this section with a result that can be used for processes of Example 2.5.

Theorem 3.1. Let (Xt,T )t∈Z,T≥T0 be an array of random variables defined as
in (2.6) where (ξt)t∈Z are i.i.d. satisfying E[|ξ0|q] < ∞ for all q ≥ 1 and ϕ0

t,T

satisfies (2.7) for some (ψk)k∈N ∈ `1+(N), K > 0 and r ≥ 1. Assume moreover
that there exist k0 ∈ N, (ζk)k∈N ∈ `1+(N) such that for all t ∈ Z, T ≥ T0 and all

x,x′ ∈ RN satisfying xk = x′k for 1 ≤ k ≤ k0,

∣∣ϕ0
t,T (x)− ϕ0

t,T (x′)
∣∣ ≤ K (∑

k≥0

ζk|xk0+k − x′k0+k|

)(
1 +

∑
k≥0

ψk(|xk|+ |x′k|)

)r−1
.

(3.2)
Suppose moreover that ∑

k≥0

kζk <∞ . (3.3)

Then there exists a constant C only depending on r,K, k0, (ψk)k∈N, (ζk)k∈N and the
distribution of ξ0 such that (C) holds.

The proof is postponed to Appendix C.1.

3.2. Bound of the estimation risk. Our first result on the estimation risk is a uni-

form approximation for the estimation error of θ̂t,T (M).

Theorem 3.2. Suppose that Assumption (M-1) holds with some β > 0, f− > 0
and R > 0, and let h : [0, 1] → R satisfying (H). Let k ∈ N and α ∈ (0, 1] be
uniquely defined by the relation β = k + α. Suppose that Assumption (C) holds
for some constant C > 0 and distribution µ. Then, for any d ≥ 1, the estimator
θ̂t,T (M) defined by (2.16) satisfies

θ̂t,T (M)− θt/T =

k∑
`=1

ah,f,`

(
M

T

)`
+Od,f−,‖h‖∞,‖h′‖∞,β,R

(
1

M
+

(
M

T

)β)
+ vM ,

(3.4)
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where ah,f,` ∈ Rd depends only on h, f and ` and vM =

OL•(µ),d,f−,‖h‖∞,‖h′‖∞,β,R,C(M−1/2). Moreover, if h(x) = h(1 − x) for x ∈ [0, 1],
then ah,f,1 = 0.

The proof is postponed to Appendix B.3.

Remark 3.3. In (3.4), the choice of the taper may influence the rate of convergence
through the constant ah,f,1, which vanishes if the taper is symmetric, that is, if
h(x) = h(1 − x) for x ∈ [0, 1]. Other constants depend on the choice of the taper
but one cannot choose tapers that ensure a further systematic improvement of the
rate. The reason is given by the definition of the constant ch,2 appearing in the
proof of Theorem B.2, which implies ch,2 > 0 for all tapers h. Consequently, for
any taper h, one have that ah,f,2 6= 0, except perhaps for some particular local
density functions f . Hence, as far as rates of convergence are concerned, the only
important property of the taper is that of being symmetric.

Theorem 3.2 suggests to combine several θ̂t,T (M) to obtain a more accurate
estimation by canceling out the first k bias terms in (3.4). This technique was
already used for eliminate one term of bias in Moulines et al. (2005, Theorem 8).
It is inspired by the Romberg’s method in numerical analysis (see Baranger and
Brezinski, 1991). Let ω = [ω0 . . . ωk]′ ∈ Rk+1, be the solution of the equation

Aω = e1 , (3.5)

where e1 = [1 0 . . . 0]′ is the Rk+1- vector having a 1 in the first position and
zero everywhere else and A is a (k+ 1)× (k+ 1) matrix with entries Ai,j = 2i j for
0 ≤ i, j ≤ k.

Theorem 3.4. Under the same assumptions as Theorem 3.2, the estimator

θ̃t,T (M) =

k∑
j=0

ωj θ̂t,T (2jM) , (3.6)

with ω defined by (3.5), satisfies

θ̃t,T (M)− θt/T = Od,f−,‖h‖∞,‖h′‖∞,β,R

(
1

M
+

(
M

T

)β)
+OL•(µ),d,f−,‖h‖∞,‖h′‖∞,β,R,C(M−1/2) .

(3.7)

The proof is postponed to Appendix B.4.

Remark 3.5. If h(x) = h(1 − x) for x ∈ [0, 1] then the first order term of (3.4)
is zero; in this case we can remove the term j = k in (3.6) and define ω =
[ω0 . . . ωk−1]′ ∈ Rk by (3.5) with the second row and last column of A removed
and e1 = [1 0 . . . 0]′ ∈ Rk.

It is straightforward to check that the optimal bandwidth for minimizing the
order of the right term of Equation (3.7) is M ∝ T 2β/(2β+1), yielding the next
result.

Corollary 3.6. Let β,R, f− > 0 and h : [0, 1] → R. Let k ∈ N and ω ∈ (0, 1] be
uniquely defined such that β = k + ω and set M := 2bT 2β/(2β+1)c in the following.
Suppose that Assumptions (M-1), (H) and (C) hold. Let θ̃t,T (M) be obtained as
in Theorem 3.4. Then, for any q > 0 there exist a constant C0 only depending on
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h, q, d, f−, R, µ and β, and a T0 > 0 only depending on d,R, β, f− and C such that,
for all T ≥ T0 and all t ∈ Z,(

E
[∥∥∥θ̃t,T (M)− θt/T

∥∥∥q])1/q ≤ C0 T
−β/(2β+1) . (3.8)

It is interesting to note that in the decomposition (2.15), the bound of the error

term ‖θ̃t,T (M)− θt/T ‖ in (3.8) always has a slower decaying rate that that of the
bound of the (deterministic) error term ‖θt/T − θ∗t,T ‖ in Lemma 2.7.

4. Application to TVAR processes

TVAR processes (see Example 2.6) are a handful model to illustrate our results.
Under suitable assumptions, they have the specific property that, when d = p, the
linear predictor coefficients in θ∗t,T ∈ Rd as defined by Equation (2.10) coincide

with the time-varying autoregressive coefficients given by θ(t/T ) of the TVAR(p)
equation (2.9) and also with the local solution θt/T of the Yule-Walker equations
defined by (2.12), see (4.4) below.

In the following, we introduce some smoothness assumptions on the time-varying
parameters, similar to (and actually yielding) the one required on the local spec-
tral density in 2.3. Additional stability conditions are also required, based on the

following definitions. For θ : R→ Rp, u 7→
[
θ1(u) . . . θp(u)

]′
we define the time

varying autoregressive polynomial by

θ(z;u) := 1−
p∑
j=1

θj(u)zj .

Let us define, for any p ∈ N∗ and δ > 0,

s(p) (δ) :=

θ =
[
θ1 . . . θp

]′ ∈ Rp s.t. 1−
p∑
j=1

θjz
j 6= 0,∀|z| < δ−1

 , (4.1)

sp(δ) :=
{
θ : R→ s(p) (δ)

}
(4.2)

= {θ : R→ Rp s.t. θ(z;u) 6= 0,∀|z| < δ−1, u ∈ R} .

Define, for β > 0, R > 0, δ ∈ (0, 1), ρ ∈ [0, 1] and σ+ > 0, the class of parameters

C (β,R, δ, ρ, σ+) =
{

(θ, σ) : R→ Rp × [ρσ+, σ+] s.t. θ ∈ Λp(β,R) ∩ sp(δ),
σ ∈ Λ1(β,R)

}
.

The first result to provide sufficient conditions on the TVAR coefficients for the
existence of a stable solution of the TVAR equations goes back to Künsch (1995).
Here we use Giraud et al. (2015, Proposition 1), which guarantees the following:
given a centered i.i.d. sequence (ξt)t∈Z with unit variance and given the constants
δ ∈ (0, 1), ρ ∈ [0, 1], σ+ > 0, β > 0 and R > 0, there exists a large enough T0 only
depending on δ, β and R such that, for all (θ, σ) ∈ C (β,R, δ, ρ, σ+), there exists a
unique process (Xt,T )t∈Z,T≥T0

satisfying (2.9) for all t ∈ Z and T ≥ T0 and such
that, for all T ≥ T0, Xt,T0

is bounded in probability as t→ −∞. We use this result
as our definition of the TVAR process with time varying AR coefficients θ1, . . . , θp,
time varying standard deviation σ, and innovations (ξt)t∈Z. For later reference, we
summarize this in the following assumption.
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(M-2) Let (ξt)t∈Z be an i.id. sequence with zero mean and unit variance. Assume that
(θ, σ) ∈ C (β,R0, δ, ρ, σ+) with δ ∈ (0, 1), β > 0, R0 > 0 and ρ ∈ [0, 1]. The
array (Xt,T )t∈Z,T≥T0 is a TVAR process as previously defined with time varying
AR coefficients θ1, . . . , θp, time varying standard deviation σ, and innovations
(ξt)t∈Z.

In this assumption the constant T0 is set to have the existence and uniqueness of
the stable solution of the TVAR equation for all T ≥ T0. It may change hereafter
from line to line to guarantee additional properties of the solution but always in a
way where it depends at most on the constants β,R0, δ, ρ and σ+.

The following assumption can be used to control the moments of any order of
the TVAR process.

(I) For all q > 0 the innovations (ξt)t∈Z satisfy E [|ξ0|q] <∞.

Time varying autoregressive processes are well known to be locally stationary un-
der certain conditions on their parameters and moments, see Dahlhaus (1996b,
Theorem 2.3). Adapting these results to our context, we have the following.

Theorem 4.1. Assumption (M-2) implies the two following assertions.

(i) There exist constants R and T0 only depending on p, δ, σ+, β and R0 such
that (Xt,T )t∈Z,T≥T0 is (β,R)-weakly locally stationary in the sense of Defi-
nition 2.3 with local spectral density defined by

f (u, λ) =
σ2 (u)

2π

∣∣θ (e−iλ ; u
)∣∣−2 . (4.3)

Moreover, we have, for all T ≥ T0 and t ∈ Z,

θ(t/T ) = θ∗t,T = θt/T , (4.4)

where θ∗t,T and θt/T are the optimal and local prediction coefficients respec-

tively defined by (2.10) and (2.12) in the case d = p.
(ii) If ρ ∈ (0, 1], then Assumption (M-1) holds with the same β and some

constants R, T0 and f− > 0 only depending on p, δ, ρ, σ+, β and R0.
(iii) If P(ξ0 = x) = 0 for all x ∈ R, then P(Xt,T = 0) = 0 for all t ∈ Z and

T ≥ T0.
(iv) If (I) holds, then (Xt,T )t∈Z,T≥T0

satisfies Assumption (C) with C only de-
pending on R0, β, δ, σ+ and with µ defined as the distribution of ξ0.

The proof is postponed to Appendix C.2. Theorem 4.1 basically shows that the
results of Section 3 apply to TVAR processes, as defined by (M-2) provided that
ρ > 0 and (I) is assumed on the innovations. We specifically state the following
result which provides a useful complement to Moulines et al. (2005, Corollary 9)
where the same minimax rate is exhibited for a different estimator but only for
smoothness index β ≤ 2.

Corollary 4.2. Let δ ∈ (0, 1), β > 0, R > 0 and ρ ∈ (0, 1]. Suppose that Assump-
tions (M-2) and (I) hold. Let M = 2bT 2β/(2β+1)c and θ̃t,T (M) be the estimator
defined by (2.16) and (3.6) with p, the order of the TVAR process equal to d, the
order of the prediction vector. Then, for any q ∈ N there exists a constant C only
depending on q, h, p, δ, ρ, σ+, β, R0 and the moments of the distribution of ξ0 such
that, for all T ≥ T0 and t ∈ Z, we have(

E
[∥∥∥∥θ̃t,T (M)− θ

(
t

T

)∥∥∥∥q])1/q

≤ C T−β/(2β+1) . (4.5)
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Proof : By Theorem 4.1, we can apply Corollary 3.6. Recall that in the case of
the TVAR with order p equal to the prediction length, we have θ (t/T ) = θt/T =
θ∗t,T . �

The estimator θ̃ proposed in Corollary 4.2 achieves the β-minimax-rate for TVAR
processes according to the lower Moulines et al. (2005, Theorem 4). Hence, it is
also β-minimax-rate in the class of weakly locally stationary processes satisfying
Assumption (M-1). Giraud et al. (2015, Section A.1) explains how to construct
minimax-rate predictors from minimax-rate estimators of θ. Applying their ap-
proach, Corollary 4.2 also provides a crucial ingredient in building β-minimax-rate
predictors for any β > 0.

5. Numerical work

We test both methods on data simulated according to a TVAR process with
p = 3. The parameter function u 7→ θ(u) within sp(δ) for some δ ∈ (0, 1) is
chosen randomly as follows. First we pick randomly some smoothly time varying
partial autocorrelation functions up to the order p that are bounded between −1

and 1, θ̌k,k (u) ∝
∑F−1
j=1 aj,kj

2 cos (ju), where aj,k are random numbers in [−1, 1].

Here θ̌k,k (u) is defined up to a multiplicative constant; dividing, for example, by
F (F − 1)(2F − 1)/6 guarantees its values to remain within (−1, 1). Then, for
any required t, T , we use Algorithm 1 with input θ̌k,k (t/T ) and assign the output
to θ(t/T ). Based on the classical Levinson-Durbin recurrence (see for example
Brockwell and Davis (2006, Proposition 5.2.1)), the θ̌ in Algorithm 1 is in s(p)(1)
as defined in (4.1), and it follows that the output θ ∈ s(p)(δ). The randomly
obtained three components of our θ(t) are displayed in Figure 5.1, for t ∈ [0, 1].

For each T ∈ {22j , j = 5, . . . , 15} we generate 100 realizations of a TVAR process
from innovation sequences (ξt)t∈Z of i.i.d. centred Gaussian random variables with
unit variance by sampling the previous θ at a rate T−1, and taking σ ≡ 1.

Then we compare θ̂ and θ̃ for estimating θ(1/2) using h ≡ 1 and different values
of M . Recall that θ(1/2) = θ∗T/2,T . Figure 5.2 shows the boxplots corresponding
to this evaluation for two different T s. In Figure 5.2 we observe that for T = 220

the estimation error of θ̂ is minimized in M = 215 while that of θ̃ is minimized in
M = 217. The estimator θ̃ beats θ̂ for the two biggest values of M . In the case
T = 230, the error of θ̂ reaches its minimum in M = 223 and that of θ̃ in M = 226.
The estimator θ̃ beats θ̂ for the four biggest values of M . These experiences
illustrate the theoretical result established in Theorem 3.2 and Corollary 4.2 that
after optimizing in M , θ̃ outperforms θ̂ for T large enough.

To corroborate these conclusions over a wider range of T ’s, we refer to Figure 5.3.

The plot on the left-hand side shows the oracle errors minM ‖θ̂T/2,T (M)− θ(1/2)‖
and minM ‖θ̃T/2,T (M) − θ(1/2)‖ for all T ∈ {22j , 5 ≤ j ≤ 15}. The slope cor-
responding to θ̃ (in blue) is steeper than the one corresponding to θ̂ (in red),
meaning that, in average, θ̃ outperforms θ̂ by an increasing order of magnitude as
T increases. The boxplots on the right-hand side of Figure 5.3 represent the ra-
tios minM ‖θ̃T/2,T (M)− θ(1/2)‖/minM ‖θ̂T/2,T (M)− θ(1/2)‖ computed for each
T and realization of the TVAR process. Observe that for 214 ≤ T ≤ 218 the esti-
mator θ̃ beats θ̂ in at least half of the cases. For T ≥ 220, it happens in at least
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75% of the cases. We conclude that the estimator with reduced bias is of interest
when the length of the data set becomes very large.

Algorithm 1: Adapted Levinson-Durbin algorithm.

parameters the stability parameter δ > 0 and the time varying partial
autocorrelation functions θ̌k,k, k = 1, . . . , p;

for k = 2 to p do
for j = 1 to k − 1 do

θ̌j,k = θ̌j,k−1 − θ̌k,kθ̌k−j,k−1;

for j = 1 to p do

θj,p = δj θ̌j,p;

return θ = [θ1,p . . . θp,p]
′.
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Figure 5.1. Plots of θ1(t) (top), θ2(t) (middle) and θ3(t) (bottom)
on the interval t ∈ [0, 1].
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Appendix A. Useful lemmas

We gather here some useful lemmas that are (simple extensions of) standard
results for Yule-Walker estimation of the linear prediction coefficients. Most of
them are similar to those used in Dahlhaus and Giraitis (1998). Short proofs are
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width M) for estimating θ(1/2) using θ̂T/2,T (M) (red points) and
θ̃T/2,T (M) (blue points) for various values of T . The left-hand side
plot displays the losses over all the Monte Carlo simulations and
the two resulting log-log regression lines. The right-hand side plot
displays boxplots of the corresponding losses ratio.

provided for the sake of completeness. Different bounds can be found in Kley et al.
(2016), in order to better control the case d→∞.

Lemma A.1. Let d be a positive integer. Consider the d×d matrices Γ and Γ̂ and

vectors γ, γ̂,θ, θ̂ ∈ Rd satisfying the relations

Γθ = γ , (A.1)

Γ̂ θ̂ = γ̂ . (A.2)

Then, for any k ∈ N we have, if Γ is non-singular,

θ̂ − θ =

(
Γ−1 +

k∑
`=1

(
Γ−1

(
Γ− Γ̂

))`)
(γ̂ − γ) +

k+1∑
`=1

(
Γ−1

(
Γ− Γ̂

))`
θ

+
(

Γ−1
(

Γ− Γ̂
))k+1 (

θ̂ − θ
)
. (A.3)
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Proof : From Equations (A.1) and (A.2) we get

θ̂ − θ = Γ−1
[(

Γ− Γ̂
)
θ̂ + γ̂ − γ

]
.

The result follows by applying a recursion on k = 0, 1, . . . . �

Lemma A.2. Let γ be the autocovariance function associated with a spectral den-

sity function f , γ (s) =
∫ 2π

0
eisλ f(λ) dλ , for all s ∈ Z, and denote by Γd the

corresponding covariance matrix of size d× d,

Γd =

 γ (0) . . . γ (d− 1)
...

. . .
...

γ (d− 1) . . . γ (0)

 . (A.4)

Then the following assertions hold for any d ∈ N∗.
(i) If

∫ 2π

0
f > 0 then Γd is positive definite.

(ii) If f is valued in [f−, f+] with f− ≤ f+, then all the eigenvalues of Γd belong
to [2πf−, 2πf+].

Proof : These well known facts (see e.g. Brockwell and Davis, 2006, Proposi-

tion 4.5.3) follow from the identity a′Γda =

∫ π

−π

∣∣∣ d∑
j=1

aj eijλ
∣∣∣2f (λ) dλ , for all

a = [a1 . . . ad]
′ ∈ Rd. �

The next lemmas allow us to control the norms of θ̂t,T and θt/T .

Lemma A.3. Let p be a positive integer and δ > 0. The set s(p) (δ) defined in (4.1)
is a closed subset of the ball {θ ∈ Rp s.t. ‖θ‖ ≤ (1 + δ)p − 1}.

Proof : Hurwitz’s theorem (see Conway, 1973, Theorem 2.5 or Gamelin, 2001, Sec-
tion 3, Chapter VIII) implies that s(p) (δ) is a closed subset of Rp. It is also
bounded (see Moulines et al., 2005, Lemma 1). Hereafter we provide a slightly
different bound using Euclidean norm instead of the supnorm.

Take now θ ∈ s(p) (δ). Let z1, . . . , zp denote the complex roots of the polynomial

θ(z) := 1−
∑p
j=1 θjz

j . They satisfy |zj | ≥ δ−1 for any j. The following holds

1 + ‖θ‖2 =
1

2π

∫ π

−π

∣∣∣∣∣∣1−
p∑
j=1

θje
ijλ

∣∣∣∣∣∣
2

dλ =
1

2π

∫ π

−π

∣∣θ (eiλ)∣∣2 dλ . (A.5)

On the other hand we have θ (z) =
∏p
j=1

(
1− zz−1j

)
, so that for |z| = 1, since

|zj |−1 ≤ δ, we get |θ (z) | ≤ (1+δ)p. Putting this into (A.5) the proof is completed.
�

The next lemma is similar in flavor to the statistical result of Whittle (1963,
Section 3). It is also a classical property of orthogonal polynomials (see Grenander
and Szegő, 1984, Section 2.4). We provide an elementary proof.

Lemma A.4. Let γ be an autocovariance function. Let d ≥ 1 such that the co-
variance matrix Γd defined by Equation (A.4) is positive-definite. Let θ denote
the solution of the d-order Yule-Walker equation, θ = [θ1 . . . θd]

′ = Γ−1d γd with

γd = [γ(1) . . . γ(d)]′. Then we have θ ∈ s(d)(1) and ‖θ‖ ≤ 2d − 1.
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Proof : We only need to prove θ ∈ s(d)(1) since ‖θ‖ ≤ 2d − 1 is then implied by
Lemma A.3 with p = d and δ = 1.

For j = 1, . . . , d, let ej = [0 . . . 1 . . . 0]′ be the Rd- vector having a 1 in the
j-th position and zero everywhere else. Consider also the companion matrix A =[
θ e1 . . . ed−1

]′
. Since the roots of θ(z) are the inverses of the eigenvalues of

A, or A′, we only need to prove that the eigenvalues of A′ are inside the closed unit
disk. Observe that

Γd −AΓdA
′ = Γd −


θ′Γdθ θ′Γde1 . . . . . . θ′Γded−1
e′1Γdθ e′1Γde1 . . . . . . e′1Γded−1
e′2Γdθ e′2Γde1 . . . . . . e′2Γded−1

...
...

. . .
. . .

...
e′d−1Γdθ e′d−1Γde1 . . . . . . e′d−1Γded−1

 .

Because Γd is a Toeplitz matrix, its (i, j)-th entries, and those of AΓdA
′ are equal

for i, j ≥ 2. The definition of θ implies also the equality of the (i, j)-th entries
of both matrices when i = 1, j ≥ 2 and i ≥ 2, j = 1. Hence Γd − AΓdA

′ is a
d×d symmetric matrix with zero entries except at the top-left where it takes value
γ(0)−θ′γd. This value is non-negative since it is the variance of the prediction error
or order d. Hence we conclude that for v ∈ Cd, v′(Γd − AΓdA

′)v ≥ 0. Consider
now λ, an eigenvalue of A′ and the corresponding eigenvector v ∈ Cd \ {0}. We get

0 ≤ v̄′(Γd −AΓdA
′)v = v̄′(Γd −AΓdA

′)v = v̄′Γdv(1− |λ|2) .

We conclude that |λ| ≤ 1 since v̄′Γdv > 0. �

Lemma A.5. Let d ≥ 1, (Xt,T )t∈Z,T≥T0 be an array process and h : [0, 1] → R.
For any M ∈ N∗, define the local tapered empirical covariance function γ̂T,M as in

Definition 2.8 and let, for any t ∈ Z and T ≥ T0, Γ̂t,T,M = (γ̂T,M (t/T, i− j); i, j =

1, . . . , d) be the corresponding d×d empirical covariance matrix. Then, either Γ̂t,T,M
is non-singular, or γ̂T,M (t/T, `) = 0 for all ` ∈ Z. Moreover, in the case where

it is non-singular, the Yule-Walker estimate θ̂t,T (M) defined by (2.16) satisfies

‖θ̂t,T (M)‖ ≤ 2d − 1.

Proof : First note that for all u ∈ R, the sequence (γ̂T,M (u, `))`∈Z is the covariance
function associated with the spectral density

f̂M (u, λ) =
1

HM

∣∣∣∣∣
M∑
t=1

h

(
t

M

)
XbuTc+t−M/2,T e−iλ t

∣∣∣∣∣
2

We conclude by applying Lemmas A.2 (i) and A.4. �

Appendix B. Bounds of the estimation risk in the general setting

B.1. Proof of Lemma 2.7. Let us first bound the approximation error Γt/T − Γ∗t,T .∣∣∣∣γ ( t

T
, i− j

)
− γ∗ (t− i, T, j − i)

∣∣∣∣ ≤ ∣∣∣∣γ ( t− iT
, j − i

)
− γ

(
t

T
, i− j

)∣∣∣∣
+

∣∣∣∣γ ( t− iT
, j − i

)
− γ∗ (t− i, T, j − i)

∣∣∣∣ . (B.1)
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The second line term of Inequality (B.1) is upper bounded by RT−min(1,β) because
of Inequality (2.3). Using the local covariance expression (2.2), Cauchy-Schwartz
inequality and f(, λ) ∈ Λ1(β,R), the following holds for T ≥ d ≥ |i|,∣∣∣∣γ ( t− iT

, j − i
)
− γ

(
t

T
, i− j

)∣∣∣∣ =

∣∣∣∣∫ π

−π
ei(j−i)λ

(
f

(
t− i
T

, λ

)
− f

(
t

T
, λ

))
dλ

∣∣∣∣
≤ 2πdRT−min(1,β) . (B.2)

Inequality (2.3) implies that ‖γ∗t,T − γt/T ‖ ≤ d1/2RT−min(1,β) and inequalities
(B.1), (B.2) and again (2.3) imply that for T ≥ d,

‖Γt/T − Γ∗t,T ‖ ≤ d(2πdR+R)T−min(1,β) .

The smallest eigenvalue of the matrix Γt/T is greater or equal to 2πf− (see
Lemma A.2 (ii)). Observe that

inf
t

inf
‖a‖=1

a′Γ∗t,Ta = inf
t

inf
‖a‖=1

{
a′
(
Γ∗t,T − Γt/T

)
a+ a′Γt/Ta

}
≥ inf

t
inf
‖a‖=1

a′
(
Γ∗t,T − Γt/T

)
a+ inf

t
inf
‖a‖=1

a′Γt/Ta ≥ 2πf− − d3/2CT−min(1,β) .

Then, for T ≥ T0 = (dR(2πd+ 1)/(2πf−))1/min(1,β), we have that Γ∗t,T is invertible

and ‖(Γ∗t,T )−1‖ ≤ (πf−)−1. Now, from equations (2.11) and (2.12) we obtain that

θ∗t,T − θt/T =
(
Γ∗t,T

)−1 [(
Γt/T − Γ∗t,T

)
θt/T + γ∗t,T − γt/T

]
.

Applying matrix inequalities (specifically with the spectral norm) we get

‖θ∗t,T − θt/T ‖ ≤
∥∥∥(Γ∗t,T )−1∥∥∥ (∥∥Γt/T − Γ∗t,T

∥∥∥∥θt/T∥∥+
∥∥γ∗t,T − γt/T∥∥) .

Lemma A.4 ensures that ‖θt/T ‖ ≤ 2d and the result follows with C1 =

(πf−)−1(d(2πdR+R)2d +R).

B.2. Bias Approximation. The following elementary lemma will be useful.

Lemma B.1. Let h : [0, 1] → R satisfying (H). Then, for all ` = 0, 1, 2, . . . and
M ≥ j ≥ 0, we have

1

M

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)( s

M

)`
=

∫ 1

0

h2(u)u` du+Oj,`,‖h‖∞,‖h′‖∞
(
M−1

)
.

In particular, in the case j = ` = 0, HM = M +O‖h‖∞,‖h′‖∞ (1).

Proof : The proof is straightforward using, for M large enough, Riemann approx-
imations on the blocks defined by s/M ∈ (ui−1 + j/M, ui], for i = 1, . . . , N , and
neglecting the terms from the indices s such that s/M ∈ (ui−1, ui−1 + j/M ], the
number of which is bounded. �

We can now derive the following approximation of the bias.

Theorem B.2. Suppose that Assumption (M-1) holds with some β > 0 and R > 0,
and let h : [0, 1] → R satisfying (H). Let k ∈ N and α ∈ (0, 1] be uniquely defined
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such that β = k + α. Then, for all j ∈ Z and M ∈ 2N∗, we have

E
[
γ̂T,M

(
t

T
, j

)]
= γ

(
t

T
, j

)
+

k∑
`=1

ch,f,j,`

(
M

T

)`
+Oj,‖h‖∞,‖h′‖∞,β,R

(
1

M
+

(
M

T

)β)
,

where ch,f,j,` ∈ C only depends on h, the spectral density f , j and `. If h(x) =
h(1− x) for all x ∈ [0, 1], then ch,f,j,1 = 0.

Proof : Without loss of generality we let moreover assume M ≥ j ≥ 0, in which
case

E
[
γ̂T,M

(
t

T
, j

)]
=

1

HM

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)
γ∗
(
t+ s− M

2
, T, j

)
.

Since |h| is also piecewise continuously differentiable, Lemma B.1 gives that

1

|HM |

M∑
s=j+1

∣∣∣∣h( s

M

)
h

(
s− j
M

)∣∣∣∣ = Oj,‖h‖∞,‖h′‖∞(1) .

With Inequality (2.3), we obtain that

E
[
γ̂T,M

(
t

T
, j

)]
= γM,j +Oj,‖h‖∞,‖h′‖∞,R

(
T−min(1,β)

)
, (B.3)

where γM,j :=
1

HM

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)
γ

(
t+ s−M/2

T
, j

)
.

Since f(·, λ) ∈ Λ1(β,R), a Taylor expansion yields

f

(
t−M/2 + s

T
, λ

)
=

k∑
`=0

∂`1f (t/T, λ)

`!

(
−M/2 + s

T

)`
+ fk

(
t

T
,
−M/2 + s

T
, λ

)
,

with

sup
t∈Z,1≤s≤M

|fk(t/T, (−M/2 + s)/T, λ)| = Oβ,R((M/T )β) . (B.4)

Then

γM,j =
1

HM

∫ π

−π
eijλ

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)
f

(
t−M/2 + s

T
, λ

)
dλ =

k∑
`=0

∫ π

−π

∂`1f (t/T, λ)

`!
eijλ

1

HM

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)(
−M/2 + s

T

)`
dλ

+

∫ π

−π
eijλ

1

HM

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)
fk

(
t

T
,
−M/2 + s

T
, λ

)
dλ . (B.5)
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Lemma B.1 yields that for all ` = 1, . . . , k,

1

HM

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)(
−M/2 + s

T

)`

=

(
M

T

)`
M

HM

1

M

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)(
−1

2
+

s

M

)`

= ch,`

(
M

T

)`
+Oj,‖h‖∞,‖h′‖∞,`

(
1

M

)(
M

T

)`
,

with ch,` =

∫ 1

0

h2 (u)

(
u− 1

2

)`
du. Observe that ch,0 = 1 by assumption in (H),

and, if h(x) = h(1 − x) for all x ∈ [0, 1], then moreover ch,1 = 0. From this it
follows that∫ π

−π

∂`1f (t/T, λ)

`!

eijλ

HM

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)(
−M/2 + s

T

)`
dλ

=

(
M

T

)`(
ch,f,j,` +Oj,‖h‖∞,‖h′‖∞,β,R

(
1

M

))
,

where, in particular, ch,f,j,0 = γ(t/T, j) and ch,f,j,1 = 0 if h(x) = h(1− x). Finally,
by (B.4), and since |h| is also piecewise continuously differentiable, the reminder
term in (B.5) satisfies∫ π

−π
eijλ

1

HM

M∑
s=j+1

h
( s

M

)
h

(
s− j
M

)
fk

(
t−M/2 + s

T
, λ

)
dλ

= Oj,‖h‖∞,‖h′‖∞,β,R

((
M

T

)β)
.

We thus finally obtain that

γM,j = γ

(
t

T
, j

)
+

k∑
`=1

ch,f,j,`

(
M

T

)`
+Od,‖h‖∞,‖h′‖∞,β,R

(
1

M
+

(
M

T

)β)
.

This approximation and the bound (B.3) allow us to conclude the proof. �

B.3. Proof of Theorem 3.2. Gathering together Assumption (C) and Theorem B.2
yields, for any j = −d, . . . , d,

γ̂T,M

(
t

T
, j

)
= γ

(
t

T
, j

)
+

k∑
`=1

ch,f,j,`

(
M

T

)`
+Od,‖h‖∞,‖h′‖∞,β,R

(
1

M
+

(
M

T

)β)
+ uM

(
t

T
, j

)
, (B.6)

where uM (t/T, j) = OL•(µ),d,‖h‖∞,‖h′‖∞,C(M−1/2) and ch,f,j,1 = 0 if h(x) = h(1−x)
for all x ∈ [0, 1].
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For the sake of simplicity, we drop t, T in the notation and set γ = γt/T , γ̂M =

γ̂t,T,M , Γ := Γt/T and Γ̂M := Γ̂t,T,M . Using the expression (B.6), we obtain

Γ− Γ̂M =

k∑
`=1

Ch,f,`

(
M

T

)`
+Od,‖h‖∞,‖h′‖∞,β,R

(
1

M
+

(
M

T

)β)
+ UM , (B.7)

γ̂M − γ =

k∑
`=1

ch,f,`

(
M

T

)`
+Od,‖h‖∞,‖h′‖∞,β,R

(
1

M
+

(
M

T

)β)
+ uM , (B.8)

where the matrices Ch,f,` ∈ Rd×d and the vectors ch,f,` ∈ Rd only depend on d, h, f

and `. Furthermore UM and uM both are OL•(µ),d,‖h‖∞,‖h′‖∞,C(M−1/2). Again
Ch,f,1 = 0 and ch,f,1 = 0 if h(x) = h(1− x) for all x ∈ [0, 1].

Note now that Lemma A.2 with the assumption f− > 0 further says that Γt/T
is also non-singular with Γ−1t/T = Of−(1) and, with (2.17), we can thus apply

Lemma A.1, showing that (A.3) holds with θ = θt/T , θ̂ = θ̂t,T (M), γ = γt/T ,

γ̂ = γ̂M = γ̂t,T,M , Γ := Γt/T and Γ̂ = Γ̂M := Γ̂t,T,M . Next the bounds provided by

Lemmas A.4 and (2.17) further imply ‖θ‖ and ‖θ̂‖ to be less that 2d. This, with
the approximations (B.7) and (B.8), yields (3.4).

B.4. Proof of Theorem 3.4. For each j = 0, . . . , k replace M by M/2j in (3.4),
multiply the resulting expression by ωj and sum over j. Matrix A (definition below
Equation (3.5)) is a non singular Vandermonde matrix and ω is well defined.

Appendix C. Postponed proofs for TVCBS and TVAR processes

C.1. Proof of Theorem 3.1. Let us denote, for any Lp random variable Z, ‖Z‖p =

(E [|Z|p])1/p its Lp-norm. The proof relies on the Burkhölder inequality for non-
stationary dependent sequences. Namely, an immediate consequence of Dedecker
et al. (2007, Proposition 5.4) and the Hölder and Minkowskii inequalities is that if
p ≥ 2 and (Zt)t∈Z is a Lp process adapted to the filtration (Ft)t∈Z, then, for all
s ∈ Z and n ≥ 1

∥∥∥∥∥
s+n∑
t=s+1

(Zt − E[Zt])

∥∥∥∥∥
2

p

≤ 2pn

(
sup
t∈Z
‖Zt − E[Zt]‖p

) (
sup
t∈Z

∞∑
k=0

‖E [Zt+k|Ft]− E[Zt+k]‖p

)
.

Applying this inequality with s = |`|+ 1, n = M − |`| to

Zt = h

(
t

M

)
h

(
t− |`|
M

)
XbuTc+t−M/2,TXbuTc+t−|`|−M/2,T , Ft = FξbuTc+t−M/2 ,



1236 F. Roueff and A. Sánchez-Pérez

where Fξt = σ(ξs, s ≤ t) denotes the natural filtration of (ξt)t∈Z, we obtain that,
for any M > |`|,

‖γ̂T,M (u, `)− E [γ̂T,M (u, `)]‖p ≤
2(p(M − |`|))1/2

HM
‖h‖2∞ sup

s∈Z
‖Xs,T ‖2p

×

(
sup
t∈Z

∞∑
k=0

∥∥∥E [Xt+k,TXt−|`|+k,T | Fξt
]
− E[Xt+k,TXt−|`|+k,T ]

∥∥∥
p

)1/2

.

Under Assumption (H), HM/M ∈ (1/2, 3/2) for M large enough (see Lemma B.1)
and it is thus now sufficient to show that, for any p ≥ 2,

sup
s∈Z
‖Xs,T ‖2p = OK,r,(ψk)(1) (C.1)

sup
t∈Z

∞∑
k=0

∥∥∥E [Xt+k,TXt−|`|+k,T | Fξt
]
− E[Xt+k,TXt−|`|+k,T ]

∥∥∥
p

= OK,r,k0,`,(ψk),(ζk)(1)

(C.2)

The bound (C.1) is a direct consequence of (2.6) and (2.7) and the assumption on
(ξt)t∈Z. To prove (C.2), let us define, for all t ∈ Z, T ≥ T0 and x ∈ RN,

Φ0
t,T (x) = ϕ0

t,T (x)ϕ0
t−|`|,T ((xj+|`|)j≥0) .

It then follows that Xt,TXt−|`|,T = Φ0
t,T ((ξt−j)j≥0) and is then straightforward to

show that the assumptions on ϕ0 yields that there exists some constant K ′ only
depending on K and (ψj)j∈N and (ζj)j∈N such that, for all t ∈ Z, T ≥ T0 and all
x,x′ ∈ RN satisfying xj = x′j for 1 ≤ j ≤ k0 + |`|,

∣∣Φ0
t,T (x)

∣∣ ≤ K ′
1 +

∞∑
j=0

ψ̃j |xj |

2r

,

∣∣Φ0
t,T (x)− Φ0

t,T (x′)
∣∣ ≤ K ′(∑

j≥0

ζ̃j |xk0+j − x′k0+j |

)(
1 +

∑
j≥0

ψ̃j(|xj |+ |x′j |)

)2r−1

,

where ψ̃j = ψj and ζ̃j = ζj for 0 ≤ j < |`|, and ψ̃j = max(ψj−|`|, ψj) and ζ̃j =
ζj−|`| + ζj for j ≥ |`|. By Jensen’s inequality, we have that, for all k ≥ 0,∥∥∥E [Xt+k,TXt−|`|+k,T | Fξt

]
− E[Xt+k,TXt−|`|+k,T ]

∥∥∥
p

≤
∥∥Φ0

t+k,T ((ξt+k−j)j≥0)− Φ0
t+k,T ((ξ′t+k−j)j≥0)

∥∥
p
,

where (ξ′s)s∈Z is i.i.d. with same distribution as (ξs)s∈Z and such that ξt+k−j =
ξ′t+k−j for all j = 0, 1, . . . , k−1 and (ξ′t−j)j≥0 and (ξt−j)j≥0 are independent. With

the above bounds on Φ0 and using the Minkowskii and Hölder inequalities, we thus
get that, for all t ∈ Z and k ≥ 0,∥∥∥E [Xt+k,TXt−|`|+k,T | Fξt

]
− E[Xt+k,TXt−|`|+k,T ]

∥∥∥
p
≤ 2K ′(1 + ‖ψ̃‖1‖ξ0‖2rp)2r ,

and, if k > k0 + |`|, the same quantity is bounded from above by

2K ′‖ξ0‖2p
(

1 + 2‖ψ̃‖1‖ξ0‖2p(2r−1)
)2r−1 ∞∑

j=k−k0

ζ̃j

 .
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Summing these bounds over all k ≥ 0, we obtain

∞∑
k=0

∥∥∥E [Xt+k,TXt−|`|+k,T | Fξt
]
− E[Xt+k,TXt−|`|+k,T ]

∥∥∥
p

≤ 2K ′
(

1 + 2‖ψ̃‖1‖ξ0‖4rp
)2r k0 + |`|+

∑
k>k0+|`|

∞∑
j=k−k0

ζ̃j


= 2K ′

(
1 + 2‖ψ̃‖1‖ξ0‖4rp

)2r k0 + |`|+
∑
j>|`|

(j − |`|)ζ̃j

 .

By (3.3), the term between parentheses is a finite constant only depending on k0,
|`| and ζ. We thus have shown (C.2), which concludes the proof.

C.2. Proof of Theorem 4.1. We first need to recall some basic facts on the repre-
sentation of a TVAR process as a TVCBS. Let us set e1 = [1 0 . . . 0]′ ∈ Rp and
introduce the companion p× p matrices defined for all u ∈ R by

A(u) =


θ1(u) θ2(u) . . . . . . θp(u)

1 0 . . . . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0

 .

By Giraud et al. (2015, Proposition 1 and its proof), the TVAR process
(Xt,T )t∈Z,T≥T0

is a special case of TVCBS introduced in Example 2.5. Namely,
it satisfies a representation (2.6) with a linear form

ϕ0
t,T (x) =

∞∑
j=0

at,T (j)σ((t− j)/T ) xj , with at,T (j) = e′1

[
j∏
i=1

A

(
t− i
T

)]
e1 ,

and moreover, there exist some constants K̄ > 0 and δ1 ∈ (0, 1) only depending on
p, δ, β and R0 such that, for all T ≥ T0, t ∈ Z and j ∈ N∗,∥∥∥∥∥

j∏
i=1

A

(
t− i
T

)∥∥∥∥∥ ≤ K̄ δj1 . (C.3)

Hence in particular

|at,T (j)| ≤ K̄δj1 ,
implying that ϕ0 above satisfies (2.7) and (3.2) with r = 1, K = 1 and ψj = ζj =

K̄σ+δ
j
1.

We can now proceed with the proof of Theorem 4.1, starting with (i). To show
that it is weakly locally stationary with the local spectral density of the AR(p) with
local standard deviation σ(u) and autoregresive coefficients θ1(u), . . . , θp(u), it only
remains to show that (2.8) holds with r = 1 and

ϕ(u,x) = σ(u)

∞∑
j=0

e′1A
j (u) e1 xj .
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This is a simple consequence of (C.3) and the fact that σ ∈ Λ1(min(1, β), R0)
and θ ∈ Λp(min(1, β), R0) by assumption. Then (4.4) follows from the represen-
tation (2.6) : using that it is causal and (2.9), we get in the case d = p that
θ(t/T ) = θ∗t,T . On the other hand, the mere definition of the local spectral density

in (4.3) (being that of an AR(p) process at fixed u), the case d = p yields that
θu = θ(u). Finally, an additional consequence of the definition of f is that the
spectral density f(·, λ) belongs to Λ1(β,R) for any λ ∈ R with R only depending
on p, δ, β, σ+ and R0, provided that we can show that

∣∣θ (e−iλ;u
)∣∣ can be bounded

from below by a positive constant only depending on δ and p. By Lemma A.3 and
continuity of (λ,θ) 7→ 1−

∑p
j=1 θje

−ijλ, and since δ−1 > 1 we have that

0 < inf
θ∈s(p)(δ),λ∈R

∣∣∣∣∣∣1−
p∑
j=1

θje
−ijλ

∣∣∣∣∣∣ ≤ sup
θ∈s(p)(δ),λ∈R

∣∣∣∣∣∣1−
p∑
j=1

θje
−ijλ

∣∣∣∣∣∣ <∞ . (C.4)

Of course these two constants only depend on δ and p and the inf one can serve as
a lower bound of

∣∣θ (e−iλ;u
)∣∣, concluding the proof of (i).

Next, we prove (ii) and (iii), which respectively require the two add-on properties

(a) f(u, λ) ≥ f− for all u, λ ∈ R,
(b) if ξ0 has a diffuse distribution, then P(Xt,T = 0) = 0 for all t ∈ Z and

T ≥ T0.

The fact (a) follows from (4.3), σ(u) ≥ ρσ+ and the upper bounds in (C.4), which
shows that we can find such an f− > 0 only depending on p, δ, ρ and σ+. Fact (b)
is a consequence of the TVCBS representation above and the assumptions on (ξt)
which implies that for all t, T and j ∈ N, we can write Xt,T = at,T (j)ξt−j +Zt,T (j)
with Zt,T (j) independent of ξt−j . Hence, if ξ0 has a diffuse distribution, it only
remains to prove that for all T ≥ T0 and all t ∈ Z, there exists j ∈ N such that
at,T (j) 6= 0. Using again the TVCBS representation above, this is equivalent to
show that for all T ≥ T0 and all t ∈ Z, γ∗ (t, T, 0) = var(Xt,T ) > 0. Now observe
that by (a) and since (Xt,T )t∈Z,T≥T0 is (β,R)-weakly locally stationary, we have

γ∗ (t, T, 0) ≥ γ(t/T, 0)−RT−min(1,β) ≥ 2πf− −RT−min(1,β) > 0 ,

where the last inequality holds by taking T0 large enough (only depending on f−
and R and thus on p, δ, ρ, σ+ and R0.).

We conclude with the proof of (iv). We use the above TVCBS representation

which were mentioned to satisfy (3.2) with ζj = K̄σ+δ
j
1 for some δ1 < 1. Hence (3.3)

holds as well and we can apply Theorem 3.1, which shows that the TVAR process
satisfies (C).
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