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1. Introduction

Free probability was introduced by Voiculescu (1986) 30 years ago in order to
solve some problems in von Neumann algebras of free groups and has since de-
veloped into a new field of mathematics with numerous connections to established
fields such as classical probability, combinatorics and analysis, in particular to ran-
dom matrices (see Voiculescu, 1991), non-crossing partitions (see Speicher, 1998),
and operator algebras.

The study of free analogues of classical theorems in probability has witnessed
increasing interest recently, see Arizmendi and Jaramillo (2014); Bożejko and Bryc
(2006); Ejsmont et al. (2017); Ejsmont and Lehner (2017); Pardo et al. (2017);
Hasebe (2016); Ejsmont (2014); Szpojankowski (2015, 2017); Szpojankowski and
Weso lowski (2014). Many properties of free random variables are analogous to
those of their classical counterparts, in particular when they are picked according
to the Bercovici-Pata bijection. There are, however, exceptions, too. Our focus
in this article lies on some results related to the characterization of Gaussian vari-
ables in classical probability and investigate whether analogous results are true for
free Gaussian variables. We consider the following three well known results from
classical probability.

1. Application of Basu’s theorem. One of the most famous results in statistics,
known as Basu’s theorem (see Basu, 1955), says that a complete sufficient statis-
tic and any ancillary statistic are stochastically independent. Perhaps its most
important application is the following. For random variables Xi, 1 ≤ i ≤ n, let

Xk :=
1

k

k∑
i=1

Xi and Sk :=
1

k

k∑
i=1

(
Xi −Xk

)2
for 2 ≤ k ≤ n.

Theorem 1.1 (Application of Basu’s theorem, see Basu, 1955). Suppose Xi, 1 ≤
i ≤ n are i.i.d. N(µ, σ2). Then Xn is independent of {S2, S3, . . . , Sn}.

2. Seneta and Szekely theorem (see Seneta and Szekely, 2006).

Theorem 1.2. Suppose Xi, i = 1, . . . , n are independent and identically distributed
random variables for some n ≥ 2 with E(X1) = µ, V ar(X1) = σ2 and finite (k+2)-
th moment for some integer k > 1. Then

Cov((Xn − µ)j , Sn) = 0, j = 1, 2, . . . , k, (1.1)

implies that the first k + 2 moments of X1 coincide with those of an N(µ, σ2)-
distributed random variable. In particular if all moments of X1 are finite and (1.1)
holds for all k ≥ 1, then X1 has the N(µ, σ2) distribution.

Note that Theorem 1.2 provides a sort of converse to Theorem 1.1 under the
additional assumption that all moments are finite.

3. Zero correlation and independence.

Theorem 1.3. Suppose that the random vector [X,Y ] has a bivariate normal dis-
tribution. If Cov(X,Y ) is zero, then X and Y are independent.

In non-commutative (free) probability, the analogues of classical independence,
Gaussian family of random variables, and Gaussian distribution, are respectively,
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free independence, free Gaussian family (semicircular family) of non-commutative
random variables, and the semicircle distribution. A natural question is if analogues
of the above results are true in the free world. The goal of this paper is to investigate
these issues.

We show that the free analogues of Theorems 1.1 and 1.2 hold. Then we give an
example to show that the natural free analogue of Theorem 1.3 is false. Neverthe-
less, an appropriate non-commutative (quantum) version of this result is true.

2. Preliminaries

A tracial non-commutative probability space is a pair (A, τ) where A is a von
Neumann algebra, and ϕ : A → C is a normal, faithful, tracial state, i.e. ϕ is linear
and continuous in the weak-* topology, and for all X,Y ∈ A, ϕ(XY ) = ϕ(Y X),
ϕ(I) = 1, ϕ(XX∗) ≥ 0 and ϕ(XX∗) = 0 implies X = 0.

The self-adjoint elements in A are called non-commutative random variables. The
distribution of any random variable X (in the state ϕ) is the collection of its mo-
ments ϕ(Xn), n ≥ 1, or equivalently, the unique probability measure µX on R
(given by the spectral theorem) which satisfies ϕ(Xn) =

∫
R λ

n dµX(λ) for n ∈ N.

A family of von Neumann sub-algebras (Ai)i∈I of A is called free if ϕ(X1 · · ·Xn) =
0, whenever ϕ(Xj) = 0 for all j = 1, . . . , n and Xj ∈ Ai(j) for some indices
i(1) 6= i(2) 6= · · · 6= i(n). Random variables X1, . . . , Xn are said to be freely
independent (in short free) if the sub-algebras they generate are free.

The joint distribution of any collection of random variables is the set of moments
of all monomials formed from this collection. It is well known (see Mingo and
Speicher, 2017, Ch.1, Prop. 13, or Nica and Speicher, 2006, Lemma 5.13) that
the joint distribution of free random variables {Xi} is uniquely determined by the
distributions of the individual random variables Xi and therefore the operation of
free convolution is well defined. Let µ and ν be probability measures on R, and let
X, Y be self-adjoint, free random variables with respective distributions µ and ν.
The distribution of X + Y is called the free additive convolution of µ and ν, and is
denoted by µ� ν.

Let π = {V1, ..., Vp} be a partition of the linearly ordered set 1, . . . , n, i.e. the
Vi 6= ∅ are ordered and disjoint sets whose union is {1, . . . , n}. Then π is called
non-crossing if a, c ∈ Vi and b, d ∈ Vj with a < b < c < d implies i = j. The set of
all non-crossing partitions of the set {1, ..., n} is denoted by NC(n). The maximal

element of NC(n) under this order is the partition 1̂n consisting of only one block.
The subset NC2(n) of NC(n) denotes the set of all non-crossing pair partitions,
i.e. partitions where every block has size 2. Let

Cn = (n+ 1)−1

(
2n

n

)
be the n-th Catalan number.

The following fact will be used repeatedly.

Fact 1. For every integer n ≥ 1, NC(n) and NC2(2n) are in bijection and
|NC(n)| = Cn.
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The free cumulants are multilinear maps κr : Ar → C defined implicitly by the
relation (connecting them uniquely with mixed moments)

ϕ(X1X2 · · ·Xn) =
∑

π∈NC(n)

κπ(X1, X2, . . . , Xn), (2.1)

where

κπ(X1, X2, . . . , Xn) := ΠB∈πκ|B|(Xi : i ∈ B). (2.2)

Relation (2.1), upon inversion, means that for π ∈ NC(n),

κn(X1, . . . , Xn) =
∑

π∈NC(n)

MöbNC(π, 1̂n)ϕπ(X1, X2, . . . , Xn), (2.3)

where MöbNC is the Möbius function on the lattice of non-crossing partitions and
ϕπ denotes the multiplicative extension of the moments, as in (2.2). Sometimes
we will write κr(X) = κr(X, . . . ,X). Using these relations it is easy to prove the
following fact. We shall use this repeatedly.

Lemma 2.1. For any variable X, all its odd moments up to order k are zero if
and only if all its odd free cumulants up to order k are zero.

It follows immediately from above that

κ1(X) = ϕ(X) and Cov(X,Y ) := κ2(X,Y ) = ϕ(XY )− ϕ(X)ϕ(Y ).

The numbers κ2(X) = ϕ(X2) − [ϕ(X)]2 and κ2(X,Y ) are known as the variance
of X and covariance of X, Y , respectively. Free cumulants are called mixed, if they
involve at least two different variables, else they are called pure.

Free cumulants provide the most important technical tool to investigate free ran-
dom variables. Free independence of X1, . . . , Xn is equivalent to saying that all
their mixed free cumulants are zero. By this we mean that

κj(Xi1 , Xi2 , . . . , Xij ) = 0,

for j ≥ 2, whenever at least two indices are different. A non-commutative ran-
dom variable X is said to be (standard) free Gaussian, or equivalently (standard)
semicircle, if its moments are given by the formula

ϕ(Xk) =

{
Cn, if k = 2n,

0, if k is odd.
(2.4)

The free cumulants of this distribution satisfies κi(X) = 0 for i > 2. Recall that
for a standard Gaussian variable, the classical cumulants of order greater than 2
vanish.

A set of self-adjoint variables X1, . . . , Xn will be called a semicircular family
if all mixed free cumulants of order three or higher are zero, and each Xi is free
Gaussian.

We define [n] := {1, . . . , n}. Following [8, Section 2.1, p.35], we define for a
multi-index i = (i1, i2, ..., im) ∈ [n]m, ker i to be that partition π ∈ P (m) (the set

of all partitions of [m]) such that ik = ip if and only if k
π∼ p i.e. k and l are

in the same block of π. We denote by i ◦ j ∈ [n]m+m′ the concatenation of the

multi-indices i ∈ [n]m and j ∈ [n]m
′
.
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3. Main results

3.1. Free analogue of Theorem 1.1.

Theorem 3.1. Fix an integer n ≥ 2. Let X1, . . . , Xn be a semicircular family where
κ2(Xi, Xi) = σ2 for all 1 ∈ {1, . . . , n} and κ2(Xi, Xj) = c for 1 ≤ i 6= j ≤ n. Then

Xn is free from {S2, . . . , Sn}.

Proof : The line of argument given below, would also suffice as a proof for the
classical case. First note that∑

1≤i 6=j≤r

(Xi −Xj)
2 = 2r

r∑
i=1

(Xi −Xr)
2 = 2r2Sr. (3.1)

Hence, it suffices to demonstrate that Xn and the set of variables {Xi −Xj : i 6=
j} are free. Since X1, . . . , Xn is a semicircular family, every collection of linear
transformations, in particular {Xn, Xi −Xj : i 6= j}, is also a semicircular family.
Thus any mixed free cumulant of order 3 or higher is zero. It remains to be shown
that any mixed free cumulant of order 2 of Xn and Xi − Xj is zero. But this is
easy to see, since by multilinearity of free cumulants and by traciality of ϕ

κ2(Xn, Xi −Xj)

=
1

n

κ2(Xi, Xi)− κ2(Xj , Xj) +
∑
k 6=i

κ2(Xk, Xi)−
∑
k 6=j

κ2(Xk, Xj)

 = 0.

Thus, Xn is free from {Xi −Xj , i 6= j} and the theorem is proved. �

3.2. Free analogue of Theorem 1.2. Note that the Seneta-Szekely result needs only
a few moments. However, by default in our setup all moments are assumed to be
finite. With this caveat, our next theorem is a converse to Theorem 3.1 and is a
free analogue of Theorem 1.2.

Theorem 3.2. Let X1, . . . , Xn be self-adjoint freely independent identically dis-
tributed random variables on (A, ϕ) with µ = ϕ(X1), V ar(X1) = σ2, such that

Cov((X − µ)r, Sn) = 0, ∀ r ∈ N. (3.2)

Then σ−1(X1 − µ) has standard semicircular distribution.

Proof : Without loss of generality we assume that µ = 0, σ = 1. We just need to
prove that the moments of X1 satisfy (2.4). The proof proceeds by induction on
k. Note that ϕ(X1) = 0, ϕ(X2

1 ) = 1 and hence, (2.4) holds for k = 1, 2. In view of
(3.1), (3.2) can be rewritten as

κ2

([ n∑
i=1

Xi

]r
,
∑

1≤i6=j≤r

(
Xi −Xj

)2)
= 0, ∀ r ∈ N.

Hence, using the identical distribution property of Xi’s and the multilinearity of
κ2, we get

κ2

([ n∑
i=1

Xi

]r
,
(
X1 −X2

)2)
= 0, ∀ r ∈ N.
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This yields

ϕ
([ n∑

i=1

Xi

]r(
X2

1 −X1X2 −X2X1 +X2
2

))
= ϕ

([ n∑
i=1

Xi

]r)
ϕ
(
X2

1 −X1X2 −X2X1 +X2
2

)
.

By hypothesis,

ϕ(X2
1 ) = ϕ(X2

2 ) = 1 and ϕ(X1X2) = ϕ(X2X1) = 0.

Thus

ϕ(X2
1 −X1X2 −X2X1 +X2

2 ) = 2,

and therefore,

ϕ
([ n∑

i=1

Xi

]r(
X2

1 −X1X2 −X2X1 +X2
2

))
= 2ϕ

([ n∑
i=1

Xi

]r)
, (3.3)

for all positive integers r.

We shall use the above relation to first show that the odd moments of X1 are
zero, and then we will evaluate the even moments. Suppose that ϕ(X2r−1

1 ) = 0 for
1 ≤ r ≤ m. We intend to show that ϕ(X2m+1

1 ) = 0. It follows from freeness and
Lemma 2.1, that

ϕ
([ n∑

i=1

Xi

]2m−1)
=

∑
π∈NC(2m−1)

κπ

( n∑
i=1

Xi, . . . ,

n∑
i=1

Xi

)
=

∑
π∈NC(2m−1)

∑
i1,...,i2m−1∈[n]

κπ
(
Xi1 , . . . , Xi2m−1

)
= 0.

Also note that

ϕ(Xi1 · · ·Xi2m−1
) =

∑
π∈NC(2m−1)

κπ
(
Xi1 , . . . , Xi2m−1

)
= 0.

Inserting these identities into (3.3), with r = 2m− 1 we obtain

0 = ϕ
([ n∑

i=1

Xi

]2m−1(
X2

1 −X1X2 −X2X1 +X2
2

))
= 2ϕ

([ n∑
i=1

Xi

]2m−1

X2
1

)
− 2ϕ

([ n∑
i=1

Xi

]2m−1

X1X2

)
.

(3.4)

Let us observe that

ϕ
([ n∑

i=1

Xi

]2m−1

X2
1

)
=ϕ(X2m+1

1 ) +
∑
i∈[n]
i6=1

ϕ(X2m−1
i X2

1 )

+
∑

ker i<1̂2m−1

ϕ(Xi1 · · ·Xi2m−1
X2

1 ).

(3.5)

Note that for i 6= 1, using freeness and induction hypothesis,

ϕ(X2m−1
i X2

1 ) = ϕ(X2m−1
1 )ϕ(X2

1 ) = 0. (3.6)
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Now consider the term ϕ(Xi1 · · ·Xi2m−1
X2

1 ) in (3.5) for ker i < 1̂2m−1. Let us
express this moment as a sum of products of free cumulants using (2.1). Then each
summand always has an odd free cumulant of order strictly smaller than 2m+ 1 as
a factor. If this is a mixed free cumulant, then it is zero by freeness. If it is a pure
free cumulant, then it vanishes by using Lemma 2.1, because all odd moments of
order smaller than 2m+ 1 are assumed to be zero. Therefore, this moment is zero.
Hence (3.5) reduces to

ϕ
([ n∑

i=1

Xi

]2m−1

X2
1

)
= ϕ(X2m+1

1 ). (3.7)

By similar arguments, one can demonstrate that

ϕ
([ n∑

i=1

Xi

]2m−1

X1X2

)
= 0. (3.8)

Using (3.5)—(3.8) in (3.4) we conclude ϕ(X2m+1
1 ) = 0.

Now we consider the even moments. Suppose that

ϕ(X2r
1 ) = Cr, for 1 ≤ r ≤ m.

We wish to show that

ϕ(X2m+2
1 ) = Cm+1.

Equation (3.3), with r = 2m yields

ϕ
([ n∑

i=1

Xi

]2m(
X1 −X2

)2)
= 2ϕ

([ n∑
i=1

Xi

]2m)
. (3.9)

Note that by induction hypothesis, the 2r-th moment equals Cr for r ≤ m. Thus
the right side of (3.9) is

2ϕ
([ n∑

i=1

Xi

]2m)
= 2nϕ(X2m

1 ) + 2
∑

ker i<1̂2m

ϕ(Xi1 · · ·Xi2m)

= 2nCm + 2
∑

ker i<1̂2m

ϕ(Xi1 · · ·Xi2m).

The left-hand side of (3.9) can be expanded as

2ϕ(X2m+2
1 ) + 2

∑
i 6=1

ϕ(X2m
i X2

1 ) + 2
∑

ker i<1̂2m

ϕ(Xi1 · · ·Xi2mX
2
1 )

− 2
∑

ker i<1̂2m

ϕ(Xi1 · · ·Xi2mX1X2).

Observe, by freeness of X1 and Xi, i 6= 1, ϕ(X2m
i X2

1 ) = ϕ(X2m
i )ϕ(X2

1 ) = Cm. So,
we get that

ϕ(X2m+2
1 )

= Cm +
∑

ker i<1̂2m

[ϕ(Xi1 · · ·Xi2m)− ϕ(Xi1 · · ·Xi2mX
2
1 ) + ϕ(Xi1 · · ·Xi2mX1X2)].
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Thus in order to prove ϕ(X2m+2
1 ) = Cm+1, we have to show that

Cm+1 − Cm =∑
ker i<1̂2m

[
ϕ(Xi1 · · ·Xi2m)− ϕ(Xi1 · · ·Xi2mX

2
1 ) + ϕ(Xi1 · · ·Xi2mX1X2)

]
. (3.10)

Note that by induction hypothesis, the 2r-th moment equals Cr for r ≤ m. We also
know from the earlier discussion that all odd free cumulants (mixed or pure) are
zero. As a consequence, in view of the one-to-one correspondence between moments
and free cumulants given in (2.1)–(2.3), we conclude that κ2(X1) = 1 and all higher
free cumulants as well as the mixed free cumulants up to order 2m vanish.

Now we compute the right hand side of equation (3.10) in terms of free cumulants
via equation (2.1).∑

ker i<1̂2m

[
ϕ(Xi1 · · ·Xi2m)− ϕ(Xi1 · · ·Xi2mX

2
1 ) + ϕ(Xi1 · · ·Xi2mX1X2)

]
=

∑
ker i<1̂2m

[ ∑
π∈NC2(2m)

κπ(Xi1 , . . . , Xi2m)

︸ ︷︷ ︸
(I)

−
∑

π∈NC2(2m+2)

κπ(Xi1 , . . . , Xi2m , X1, X1)

︸ ︷︷ ︸
(II)

+
∑

π∈NC2(2m+2)

κπ(Xi1 , . . . , Xi2m , X1, X2)

︸ ︷︷ ︸
(III)

]
.

(3.11)

We split (II) from (3.11) into two parts:∑
π∈NC2(2m+2)

κπ(Xi1 , . . . , Xi2m , X1, X1) =
∑
π∈N1

κπ(Xi1 , . . . , Xi2m , X1, X1)

+
∑
π∈N2

κπ(Xi1 , . . . , Xi2m , X1, X1),

where

N1 = {π ∈ NC2(2m+ 2) | 2m+ 1
π∼ 2m+ 2},

N2 = {π ∈ NC2(2m+ 2) | 2m+ 1
π

6∼ 2m+ 2}.

Recall that the contribution of each partition is either 0 or 1, and κ2(X1) = 1. Since
by Fact 1, N1 is in bijection with NC2(2m), we conclude that the contributions of
N1 and part (I) cancel out and we can rewrite (3.11) as

∑
ker i<1̂2m

 ∑
π∈NC2(2m+2)

κπ(Xi1 , . . . , Xi2m , X1, X2)−
∑
π∈N2

κπ(Xi1 , . . . , Xi2m , X1, X1)

 .
We want to show that this equals Cm+1 − Cm. First note that∑

π∈NC2(2m+2)

κπ(Xi1 , . . . , Xi2m , X1, X2) =
∑
π∈N2

κπ(Xi1 , . . . , Xi2m , X1, X2),
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since any π ∈ N1 will contribute 0 due to free independence of X1 and X2. Inter-
changing the sums, we have to show∑

π∈N2

∑
ker i<1̂2m

[κπ(Xi1 , . . . , Xi2m , X1, X2)− κπ(Xi1 , . . . , Xi2m , X1, X1)]

= Cm+1 − Cm.
(3.12)

Now note that

|N2| = Cm+1 − Cm.
This is because N1 ∩N2 = ∅ and N1 ∪N2 = NC2(2m+ 2). By Fact 1, |NC2(2m+
2)| = Cm+1 and |N1| = |NC2(2m)| = Cm. So, it is enough to show that the inner
sum in (3.12) equals 1 for every π ∈ N2.

Now write {i | ker i < 1̂2m} = B1 ∪ B2, where B1 contains only those multi-
indices whose components are either 1 or 2, and B2 contains the remaining multi-
indices. Fix π ∈ N2. The inner sum on the left-hand side of (3.12) can there-
fore be written as a sum over indices in B1 and a sum over indices in B2. Both
κπ(Xi1 , ..., Xi2m , X1, X2) and κπ(Xi1 , ..., Xi2m , X1, X1) cannot contribute for the
same multi-index. This is because, in the first one, the (2m + 2)-th element X2

should be paired with another X2 in π, while in the second, the (2m + 2)-th ar-
gument X1 should be paired with X1, but both cannot happen simultaneously.
Henceforth, for fixed π we call a multi-index ker i < 1̂2m contributing if

κπ(Xi1 , ..., Xi2m , X1, X2) = 1 or κπ(Xi1 , ..., Xi2m , X1, X1) = 1.

For π ∈ N2, let

Iπ,1 := {i ∈ 1̂2m | ker i ◦ (1, 1) ≥ π} and Iπ,2 := {i ∈ 1̂2m | ker i ◦ (1, 2) ≥ π}.

Let j be the index matched to 2m+ 2, i.e (j, 2m+ 2) ∈ π. Let us look at B2 first.
Let i ∈ B2 be a contributing multi-index. If π pairs the (2m+ 2)-th component of
Iπ,1 and Iπ,2 with ij = 1 (respectively 2), then

κπ(Xi1 , ..., Xi2m , X1, X1) = 1 (resp. 0) and κπ(Xi1 , ..., Xi2m , X1, X2) = 0 (resp. 1).

But then we also get another (unique) contributing multi-index, say, k ∈ B2 whose
j-th component is 2 (respectively 1), while all other components are same as those
in Iπ,1 or Iπ,2. For this k we have

κπ(Xk1 , ..., Xk2m , X1, X1) = 0 (resp. 1) and κπ(Xk1 , ..., Xk2m , X1, X2) = 1 (resp. 0).

So for each fixed π ∈ N2,∑
i∈B2

[κπ(Xi1 , ..., Xi2m , X1, X2)− κπ(Xi1 , ..., Xi2m , X1, X1)] = 0.

Next we look at B1. For the contributing i ∈ B1, with only one component 2,

κπ(Xi1 , ..., Xi2m , X1, X2) = 1 and κπ(Xi1 , ..., Xi2m , X1, X1) = 0.

Observe that this multi-index has no corresponding counter-term in B1, as to get
the counter-term we need to change the 2 to 1, but then all indices in the multi-
index become 1, contradicting the fact that B1 is a subset of {i | ker i < 1̂2m}.
So for this particular multi-index, the contribution happens positively to (3.12).
Any other contributing multi-index i ∈ B1 must have at least two 2’s, and thus on
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inverting one of these 2’s to 1, we still get a contributing multi-index in B1, but
with the opposite sign, leading to a cancellation. Thus for fixed π ∈ N2,∑

i∈B1

[κπ(Xi1 , ..., Xi2m , X1, X2)− κπ(Xi1 , ..., Xi2m , X1, X1)] = 1. (3.13)

Therefore, for fixed π ∈ N2,∑
ker i<1̂2m

[κπ(Xi1 , ..., Xi2m , X1, X2)− κπ(Xi1 , ..., Xi2m , X1, X1)] = 1.

This completes the proof. �

3.3. Zero correlation and free independence. In this section we first give a coun-
terexample which shows that the free probability analogue of Theorem 1.3 is false.
However, a “quantum” analogue, if we admit matrix coefficients, is indeed valid.

3.3.1. A counterexample to the scalar free analogue. As mentioned earlier, in clas-
sical probability, if a random vector [X,Y ] has a bivariate normal distribution and
Cov(X,Y ) = 0, then X and Y are independent. We now give an example where
the above is not true if we replace “Gaussian” by “semicircular”, and “indepen-
dence” by “freeness”. We need some basic concepts from bi-freeness for systems of
non-commutative random variables (see Voiculescu, 2014 for more details). Let HR
be a separable real Hilbert space and let H be its complexification with inner prod-
uct 〈·, ·〉 that is linear in its first argument and anti-linear in its second argument.
When considering elements in HR, it holds true that 〈x, y〉 = 〈y, x〉. Let Ffin(H)
be the (algebraic) full Fock space over H:

Ffin(H) :=

∞⊕
n=0

H⊗n, (3.14)

with the convention that H⊗0 = CΩ is a one-dimensional normed space along a
unit vector Ω (called the vacuum vector). Note that elements of Ffin(H) are finite
linear combinations of the elements from H⊗n, n ∈ N∪{0}, and we do not take the
completion. We equip Ffin(H) with the direct sum of the canonical inner products

〈x1 ⊗ · · · ⊗ xm, y1 ⊗ · · · ⊗ yn〉 := δm,n

n∏
i=1

〈xi, yi〉.

For f ∈ H the left (resp. right) creation and annihilation linear operators l∗(f)
and l(f) (resp. r∗(f) and r(f))are defined on elementary tensors by

l∗(f)(f1 ⊗ · · · ⊗ fn) := f ⊗ f1 ⊗ · · · ⊗ fn,
l∗(f)Ω = f,

l(f)(f1 ⊗ · · · ⊗ fn) := 〈f, f1〉f2 ⊗ · · · ⊗ fn,
l(f)f1 := 〈f, f1〉Ω,
l(f)Ω = 0,

r∗(f)(f1 ⊗ · · · ⊗ fn) := f1 ⊗ · · · ⊗ fn ⊗ f,
r∗(f)Ω = f,

r(f)(f1 ⊗ · · · ⊗ fn) := 〈f, fn〉 f1 ⊗ · · · ⊗ fn−1,

r(f)f1 := 〈f, f1〉Ω,
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r(f)Ω = 0,

and linearly extended to Ffin(H). Consider the algebra generated by the above-
defined operators on the left and on the right as a subalgebra of B(Ffin(H)), the
space of all bounded linear operators on Ffin(H). When equipped with the vac-
uum expectation state 〈·Ω,Ω〉, that is, τ(x) = 〈xΩ,Ω〉, it becomes a rich non-
commutative probability space. For example, Lf := l∗(f) + l(f) ∈ B(Ffin(H)) is a
model for the semicircle law (see Voiculescu et al., 1992).

We now present the counterexample. The bounded self-adjoint operator

Gf := l∗(f) + l(f) + r∗(f) + r(f) for f ∈ HR,

plays a crucial role in that.
Let us take f, g ∈ HR, f, g 6= 0 and 〈f, g〉 = 0. We claim that for all a, b ∈ R

aGf + bGg is a semicircle variable. Indeed, aGf + bGg = Gaf+bg and observe that
the actions of the left and right creation/annihilation operators have the same effect
on the vacuum vector Ω. That is,

Gnaf+bgΩ = Ln2(af+bg)Ω for all n ∈ N.

But we know that Laf+bg has semicircle distribution with respect to the vacuum
state. Thus

〈Gkaf+bgΩ,Ω〉 = 〈Lk2(af+bg)Ω,Ω〉 =

{
4n(a2||f ||2 + b2||g||2)nCn if k = 2n,

0 if k is odd,

and hence Gaf+bg follows the semicircle law. In particular, τ(Gf ) = 〈GfΩ,Ω〉 =
0, τ(Gg) = 〈GgΩ,Ω〉 = 0. Now we compute

κ2(Gf , Gg) = τ(GfGg) = 〈GfGgΩ,Ω〉.

Note that

GgΩ = l∗(g)Ω + l(g)Ω + r∗(g)Ω + r(g)Ω = 2g.

Thus

GfGgΩ = 2Gf (g) = 2(f ⊗ g + g ⊗ f + 2〈f, g〉Ω) = 2(f ⊗ g + g ⊗ f),

since we assumed 〈f, g〉 = 0. Thus

κ2(Gf , Gg) = 〈2(f ⊗ g + g ⊗ f),Ω) = 0.

Finally, it suffices to show that Gf and Gg are not free. This is supported by direct
calculation of the fourth mixed moments, i.e. τ(GfGgGfGg) = 〈GfGgGfGgΩ,Ω〉 =
8||f ||2||g||2, but 〈GfΩ,Ω〉 = 〈GgΩ,Ω〉 = 0, which contradicts the definition of free
independence.

We outline this last computation. We have already observed that GfGgΩ =
2(f ⊗ g + g ⊗ f). Thus

GgGfGgΩ = 2(g ⊗ f ⊗ g + g ⊗ g ⊗ f + 2||g||2f + 2f ⊗ g ⊗ g).

Since we finally take inner product between GfGgGfGgΩ and Ω, the only term
that would contribute from GgGfGgΩ is easily seen to be 4||g||2f and so

〈GfGgGfGgΩ,Ω〉 = 4||g||2〈Gf (f),Ω〉 = 4||g||2 × 2||f ||2 = 8||f ||2||g||2.
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3.3.2. Polynomial matrix identities. Let Mn(C) be the algebra of n × n matrices
over C and Msa

n (C) := {A | A = A∗, A ∈Mn(C)}. We say that a subset A ⊂Mn(C)
satisfies a polynomial identity if there exists a polynomial f 6= 0 in non-commuting
variables x1, . . . , xd for some d ∈ N, such that f(x1, . . . , xd) = 0 for all x1, . . . , xd ∈
A. For example, the ring of 2× 2 matrices over C satisfies the Hall identity

f(x1, x2, x3) = (x1x2 − x2x1)2x3 − x3(x1x2 − x2x1)2 = 0.

In the following lemma we show that there is no universal polynomial iden-
tity which holds for all self-adjoint matrices. This extends a well-known result of
Herstein (1968, Lemma 6.2.1) (the sets Msa

n (C), n ∈ N do not form an algebra,
therefore we cannot directly apply this result). However the idea of our proof is
germane in the arguments of Herstein (1968, Lemma 6.2.4). We provide the details
for completeness.

Lemma 3.3. Suppose d is a positive integer and f 6= 0 is a polynomial in non-
commuting variables x1, . . . , xd. Then there exists an n such that f is not a poly-
nomial identity of Msa

n (C).

Proof : For a proof by contradiction, suppose there exists a polynomial f 6= 0 such
that

f(x1, . . . , xd) = 0 for all x1, . . . , xd ∈Msa
n (C).

By definition, a multilinear polynomial is a polynomial that is linear in each of
its variables. In other words, no variable occurs to a power of 2 or higher; or
alternatively, each monomial is a constant times a product of distinct variables.
Now we observe that Msa

n (C) satisfies a multilinear identity of degree smaller than
or equal to d. Indeed, Msa

n (C) also satisfies the identity

g(x1, . . . , xd, xd+1) =f(x1 + xd+1, x2, . . . , xd)

− f(x1, x2, . . . , xd)− f(xd+1, x2 . . . , xd) = 0.

Note that g has a lower degree in x1 and xd+1 compared to f . Proceeding in this
way, we can reduce our identity where only the first degree of x1 is present. Now
we go on to x2 and repeat the procedure above. As we proceed through all the
variables, we end up with a multilinear identity ω. It is worth mentioning that the
degree of the new polynomial is at most as large as that of f .

Now for any arbitrary c1, . . . , cm ∈Mn(C), and their decomposition cj = aj+ibj ,
aj , bj ∈Msa

n (C), we have

ω(c1, . . . , cm) =
∑

dj1∈{aj1 ,bj1},...,djm∈{ajm ,bjm}

i#{p:djp=bjp}ω (dj1 , . . . , djm) = 0.

Thus we have constructed a non-zero polynomial identity which holds for all Mn(C).
But this contradicts the result given in Herstein (1968, Lemma 2.6.1) that such an
identity cannot exist. �

3.3.3. Generalization to the case with amalgamation. Freeness with amalgamation
was introduced by Voiculescu (1995) as an extension of non-commutative probabil-
ity spaces where matrices over a non-commutative probability space are considered.

Let (A, ϕ) be a non-commutative probability space as introduced in Section 2,
and let n be a positive integer. The algebra Mn(A) of n × n matrices over A is a
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non-commutative probability space with canonical expectation

EB := id⊗ ϕ : Mn(A)→Mn(C)

A 7→ [ϕ(ai,j)]
n
i,j=1,

(3.15)

where A = [ai,j ]
n
i,j=1 is a matrix in Mn(A). Then (Mn(A), EB) is itself a non-

commutative probability space. Observe that if we take n = 1, then we are back
to the scalar valued framework, discussed in Section 2.

We refer to Mingo and Speicher (2017, Ch. 9) for details. For A1, A2, . . . , Ar ∈
Mn(A), its joint distribution is given by all joint moments of the form

EB(A′1B1A
′
2 · · ·Bk−1A

′
k)

where A′i ∈ {A1, A2, . . . , Ad}, Bi ∈Mn(C) and k ∈ N.

We define the operator-valued free cumulants κBr : Mn(A)r → Mn(C) in the same
way as in the scalar case:

EB(A1A2 · · ·Ar) :=
∑

π∈NC(r)

κBπ (A1, A2, . . . , Ar),

but now cumulants are nested inside each other according to the nesting of blocks
of π (see Mingo and Speicher, 2017, Ch. 9 for more details).

A self-adjoint element A ∈ Mn(A) is called an operator-valued semicircular ele-
ment if its operator-valued moments EB(Ar) have contributing terms in the above
formula only through π ∈ NC2(r). This is equivalent to saying that κBr (A) = 0 for
r ≥ 3.

Some special notations and facts. For X ∈ A we denote by [X 0
0 X ]

n
the element

in Mn(A) where the diagonal elements are equal to X and the off-diagonal elements
are equal to zero. The shift coefficient technique will be useful to us (this is in some
sense the module property of the expectation and the cumulants; see Speicher,
1998). It implies that for Bi ∈Mn(C) and Ai ∈Mn(A), we have

κBr (B1A1, B2A2, . . . , Br−1Ar−1, BrAr)

= B1κ
B
r (A1B2, A2, . . . , Ar−2Br−1, Ar−1Br, Ar),

and by induction if Bi’s commute with all Ai’s, then this equals

B1B2 . . . Brκ
B
r (A1, A2, . . . , Ar). (3.16)

Moreover, let us note that

κBr

([
X1 0
0 X1

]
n
, . . . ,

[
Xr 0
0 Xr

]
n

)
= [ 1 0

0 1 ]n κr(X1, . . . , Xr). (3.17)

The last fact follows from the observation that EB
([

X1 0
0 X1

]
n
. . .
[
Xr 0
0 Xr

]
n

)
=

[ 1 0
0 1 ]n ϕ(X1 · · ·Xr).

We conclude with a matrix valued free version of Problem 3, which can be for-
mulated as below. We would like to emphasize that now we have more information
available because A,B run through all of Msa

n (C).
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Theorem 3.4. Assume that we have two random variables X,Y ∈ A, with the
property that

(a) Cov(X,Y ) = 0;
(b) A⊗X+B⊗Y is an operator-valued semicircular element, for any pair A,B ∈

Msa
n (C).

Then X and Y are free independent.

Proof : First we note that it suffices to show that mixed free cumulants of X and
Y vanish. Our assumptions imply that

κBr (A⊗X +B ⊗ Y ) = 0, (3.18)

for all r ≥ 3, and self-adjoint matrices A, B ∈Mn(C). First, observe that

D ⊗ Z = D [ Z 0
0 Z ]

n
= [ Z 0

0 Z ]
n
D, for Z ∈ A and D ∈Mn(C).

Thus by expanding equation (3.18) and using (3.16), (3.17) we may write, for r ≥ 3,

0 =
∑

Ci1 ,...,Cir∈{A,B}
Zi1

,...,Zir∈{X,Y }

Ci1 . . . Cirκ
B
r

([
Zi1

0

0 Zi1

]
, . . . ,

[
Zir 0
0 Zir

])

=
∑

Ci1
,...,Cir∈{A,B}

Zi1
,...,Zir∈{X,Y }

Ci1 . . . Cirκr (Zi1 , . . . , Zir ) . (3.19)

Now if we fix r ≥ 3, then equation (3.19) holds for all A,B ∈ Msa
n (C), which by

Lemma 3.3 implies that κr (Zi1 , . . . , Zir ) = 0. Therefore, we conclude that all mixed
free cumulants of at least third degree disappear. Now taking into account that
κ2(X,Y ) = Cov(X,Y ) = 0, we conclude that X and Y are free independent. �
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