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Abstract. Markov Additive Processes are bi-variate Markov processes of the form
(ξ, J) =

(
(ξt, Jt), t > 0

)
which should be thought of as a multi-type Lévy process:

the second component J is a Markov chain on a finite space {1, . . . ,K}, and the
first component ξ behaves locally as a Lévy process with dynamics depending on J .
In the subordinator-like case where ξ is nondecreasing, we establish several results
concerning the moments of ξ and of its exponential functional Iξ =

∫∞

0 e−ξtdt,
extending the work of Carmona et al. (1997), and Bertoin and Yor (2001).

We then apply these results to the study of multi-type self-similar fragmentation
processes: these are self-similar transformations of Bertoin’s homogeneous multi-
type fragmentation processes, introduced in Bertoin (2008). Notably, we encode the
genealogy of the process in an R-tree as in Haas and Miermont (2004), and under
some Malthusian hypotheses, compute its Hausdorff dimension in a generalisation
of our previous results in Stephenson (2013).

1. Introduction

A Markov Additive Process (ξ, J) =
(
(ξt, Jt), t > 0

)
is a (possibly killed) Markov

process on R× {1, . . . ,K} for some K ∈ Z+ such that, calling Px,i its distribution
starting from some point (x, i) ∈ R× {1, . . . ,K}, we have for all t > 0:

under P(x,i), ((ξt+s − ξt, Jt+s), s > 0) | (ξu, Ju), u 6 t) has distribution P(0,Jt).

MAPs should be thought of as multi-type Lévy processes, whose local dynamics
depend on an additional discrete variable.
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In this paper, we focus on the case where the position component ξ is nonin-
creasing, and we are interested in computing various moments of variables related
to (ξ, J). Most importantly, we study the so-called exponential functional

Iξ =

∫ ∞

0

e−ξtdt.

In the classical one-type case (not always restricted to the case where ξ is non-
increasing), motivations for studying the exponential functional stem from math-
ematical finance, self-similar Markov processes, random processes in random en-
vironment, and more, see the survey paper Bertoin and Yor (2005). Here in the
multi-type setting, we are most of all interested in the power moments of Iξ, see
Propositions 2.8 and 2.10. This generalises results of Carmona et al. (1997) for the
positive (and exponential) moments, and Bertoin and Yor (2001) for the negative
moments.

Our main interest in MAPs here lies in their applications to fragmentation pro-
cesses. Such processes describes the evolution of an object which continuously
splits in smaller fragments, in a branching manner. Several kinds of fragmentation
processes have been studied, notably by Jean Bertoin, who introduced the ho-
mogeneous, self-similar and homogeneous multi-type kinds in respectively Bertoin
(2001, 2002, 2008). Motivations for studying multi-type cases stem from the fact
that, in some physical processes, particles can not be completely characterised by
their mass alone, and we need some additional information such as their shape, or
their environment. See also Norris (2000) for a model of multi-type coagulation.

We look here at fragmentations which are both multi-type and self-similar: this
means that, on one hand, the local evolution of a fragment depends on its type,
which is an integer in {1, . . . ,K}, and that a fragment with size x ∈ (0, 1] evolves
xα times as fast as a fragment with size 1, where α ∈ R is a parameter called the
index of self-similarity.

Many pre-existing results which exist for self-similar fragmentations with only
one type have counterparts in this multi-type setting. Of central importance is
Bertoin’s characterisation of the distribution of a fragmentation via three sets of
parameters. Additionally to the index of self-similarity α, there are K dislocation

measures (νi, i ∈ {1, . . . ,K}), which are σ-finite measures on the set S
↓
of K-type

partitions of 1 (an element of this set can be written as s̄ = (sn, in)n∈Z+ , where
(sn)n∈Z+ is a nonincreasing sequence of nonnegative numbers adding to at most
one, while (in)n∈Z+ gives a type to each fragment sn with sn = 0, see Section 3.1
for a precise definition) which satisfy some integrability conditions. These encode
the splittings of particles, in the sense that a particle with mass x and type i will,
informally, split into a set of particles with masses (xsn, n ∈ Z+) and types (in, n ∈
Z+) at rate x

αdνi(s̄). Moreover, there are also K erosion rates (ci, i ∈ {1, . . . ,K})
which encode a continuous, deterministic shaving of the fragments.

Amongst other results which generalise from the classical to multi-type setting is
the appearance of dust : when α < 0, even if there is no erosion and each individual
splitting preserves total mass, we observe that this total mass decreases and the
initial object is completely reduced to zero mass in finite time. This phenomenon
was first observed by Filippov (1961) in a slightly different setting, and then in
the classical self-similar fragmentation setting by Bertoin (2003). Here we will
extend a result of Haas (2003) to establish that the time at which all the mass
has disappeared has some finite exponential moments. Using this, we then to show
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that the genealogy of the fragmentation can be encoded in a compact continuum
random tree, called multi-type fragmentation tree, as in Haas and Miermont (2004)
and Stephenson (2013). One important application of these trees will be found in
our upcoming work Haas and Stephenson (2018+), where we will show that they
naturally appear as the scaling limits of various sequences of discrete trees.

An interesting subclass of fragmentations is those which are called Malthusian.
A fragmentation process is called Malthusian if there exists a number p∗ ∈ [0, 1]
called the Malthusian exponent such that the K ×K matrix whose (i, j)-th entry
is

p∗ci1{i=j} +

(∫

S
↓

(
1{i=j} −

∞∑

n=1

sp
∗

n 1{in=j}

)
νi(ds̄)

)

has 0 as its smallest real eigenvalue. This is implies that, as shown in Section 3.3, if
α = 0, there exists positive numbers (b1, . . . , bK) such that, calling

(
Xn(t), n ∈ Z+

)

the sizes of the particles of the fragmentation process at time t, and
(
in(t), n ∈ Z+

)

their respective types, the process
( ∑

n∈Z+

bin(t)Xn(t)
p∗ , t > 0

)

is a martingale (in fact a generalisation of the classical additive martingale of
branching random walks). In particular, if the system is conservative in the sense
that there is no erosion and each splitting preserves total mass, then, as in the
one-type case, we have p∗ = 1. In the Malthusian setting, the additive martingale
can then be used to study the fragmentation tree in more detail, culminating with
Theorem 5.1: under a slightly stronger Malthusian assumption, either the set of
leaves of the fragmentation tree is countable, or its Hausdorff dimension is equal to
p∗

|α| .

The paper is organised as follows. In Sections 1 to 3 we introduce and study
respectively MAPs and their exponential functionals, multi-type fragmentation pro-
cesses, and multi-type fragmentation trees. At the end, Section 4 focuses on the
Hausdorff dimension of the leaves of the fragmentation tree: Theorem 5.1 and its
proof.

An important remark : several of the results presented here are generalisations
of known results for the monotype case which were obtained in previous papers (in
particular Bertoin, 2001, Bertoin, 2002, Bertoin, 2008, Haas, 2003, Haas and Mier-
mont, 2004, and Stephenson, 2013). At times, the proofs of the generalised results
do not differ from the originals in a significant manner, in which case we might not
give them in full detail and instead refer the reader to the original papers. However,
we also point out that our work is not simply a straightforward generalisation of
previous results, and the multi-type approach adds a linear algebra dimension to
the topic which is interesting in and of itself.

Some points of notation: Z+ is the set of positive integers {1, 2, 3, . . . , }, while
Z+ is the set of nonnegative integers Z+ ∪ {0}. Throughout the paper, K ∈ Z+

is fixed and is the number of types of the studied processes. We use the notation
[K] = {1, . . . ,K} for the set of types.

Vectors in R
K , sometimes interpreted as row matrices and sometimes as column

matrices, will be written in bold: v = (vi)i∈[K]. K × K matrices will be written
in capital bold: A = (Ai,j)i,j∈[K]. If a matrix does not have specific names for its
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entries, we put the indexes after bracketing the matrix, for example (eA)i,j is the
(i, j)-th entry of eA. 1 is the column matrix with all entries equal to 1, and I is the
identity matrix.

If X is a real-valued random variable and A and event, we use E[X,A] to refer to
E[X1A] in a convenient fashion. Moreover, we use the convention that ∞× 0 = 0,
so in particular, X being infinite outside of A does not pose a problem for the above
expectation.

2. Markov Additive Processes and their exponential functionals

2.1. Generalities on Markov additive processes. We give here some background on
Markov additive processes and refer to Asmussen (2003, Chapter XI) for details
and other applications.

Definition 2.1. Let ((ξt, Jt), t > 0) be a Markov process on R × {1, . . . ,K} ∪
{(+∞, 0)}, where K ∈ N, and write P(x,i) for its distribution when starting at a
point (x, i). It is called a Markov additive process (MAP) if for all t ∈ R+ and all
(x, i) ∈ R× {1, . . . ,K},

under P(x,i), ((ξt+s − ξt, Jt+s), s > 0) | (ξu, Ju), u 6 t, ξt <∞)

has distribution P(0,Kt), and (+∞, 0) is an absorbing state.

MAPs can be interpreted as multi-type Lévy processes: when K = 1, ξ is simply
a standard Lévy process, while in the general case, (Jt, t > 0) is a continuous-time
Markov chain, and on its constancy intervals, the process ξ behaves as a Lévy
process, whose dynamics depend only on the value of J . Jumps of J may also
induce jumps of ξ. In this paper, we always consider MAPs such that ξ is non-

decreasing, that is, the MAP analogue of subordinators. The distribution of such
a process is then characterised by three groups of parameters:

• the transition rate matrix Λ = (λi,j)i,j∈[K] of the Markov chain (Jt, t > 0).
• a family (Bi,j)i,j∈[K] of probability distributions on [0,+∞): for i 6= j,
Bi,j is the distribution of the jump of ξ when J jumps from i to j. If
i = j, we let Bi,i be the Dirac mass at 0 by convention. We also let

B̂i,j(p) =
∫∞

0
e−pxBi,j(dx).

• triplets (k(i), c(i),Π(i)), where, for each i ∈ [K], k(i) > 0, c(i) > 0 and Π(i)

is a σ-finite measure on (0,∞) such that
∫
(0,∞)(1 ∧ x)Π

(i)(dx) < ∞. The

triplet (k(i), c(i),Π(i)) corresponds to the standard parameters (killing rate,
drift and Lévy measure) of the subordinator which ξ follows on the time
intervals where J = i. We call (ψi)i∈{1,...,K} the corresponding Laplace
exponents, that is, for i ∈ [K], p > 0

ψ(i)(p) = k(i) + c(i)p+

∫ ∞

0

(1− e−px)Π(i)(dx).

All these parameters can then be summarised in a generalised version of the
Laplace exponent for the MAP, which we call the Bernstein matrix Φ(p) for p > 0,
which is a K ×K matrix defined by

Φ(p) =
(
ψi(p)

)
diag

−Λ ◦ B̂(p). (2.1)
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Here ◦ denotes the entrywise product of matrices, and B̂(p) =
(
B̂i,j∈[K](p)

)
i,j
. We

then have, for all t > 0, p > 0 and all types i, j, by Proposition 2.2 in Asmussen
(2003, Chapter XI),

Ei

[
e−pξt , Jt = j

]
=
(
e−tΦ(p)

)
i,j
. (2.2)

Note that this can be extended to negative p. Specifically, let

p = inf
{
p ∈ R : ∀i,

∫ ∞

0

(e−px − 1)Π(i)(dx) <∞ and

∀i, j ∈ [K], λi,j

∫ ∞

0

e−pxBi,j(dx) <∞.
} (2.3)

Then, Φ can be analytically extended to (p,∞), and then (2.2) holds for p > p.
Note that, when considering (2.2) with p < 0, the restriction to the event {Jt = j}
for j ∈ [K] precludes killing, thus e−pξt cannot be infinite.

We will always assume that the Markov chain of types is irreducible, and

that the position component isn’t a.s. constant (that is, one of the Laplace
exponents ψi is not trivial, or one of the Bi,j charges (0,∞)).

2.2. Some linear algebra. We give in this section some tools which will let us study
the eigenvalues and eigenvectors of the Bernstein matrix of a MAP.

Definition 2.2. We say that a matrix A = (Ai,j)i,j∈[K] is an ML-matrix if its
off-diagonal entries are all nonnegative. We then say that it is irreducible if, for
all types i and j, there exists a sequence of types i1 = i, i2, . . . , in = j such that∏n−1
k=1 Aik,ik+1

> 0.

Notice that, for all p > 0, −Φ(p) is an ML-matrix.
The following proposition regroups most properties of ML-matrices which we will

need. For an ML-matrix A, we let λ(A) be the maximal real part of the eigenvalues
of A.

Proposition 2.3. Let A and B be two ML-matrices, A being irreducible. Assume
that Ai,j > Bi,j for all i, j, and assume also that their there exists k and l such that
Ak,l > Bk,l. We then have the following:

(i) λ(A) is a simple eigenvalue of A, and there is a corresponding eigenvector
with strictly positive entries.

(ii) Any nonnegative eigenvector of A corresponds to the eigenvalue λ(A).
(iii) For any eigenvalue µ of A, we have Re(µ) < λ(A).
(iv) λ(A) is a continuous function of the entries of A.
(v) For all i and j, (eA)i,j > (eB)i,j.
(vi) λ(A) > λ(B).

Note that (iv) implies that eA only has strictly positive entries.

Proof : Points (i), (ii), (iii) and (iv) are classical for nonnegative matrices ((i), (ii),
and (iii) are just part of the Perron-Frobenius theorem, while an elementary proof
of (iv) can be found in Meyer (2015), and are readily generalised to any ML-matrix
by adding a sufficiently large multiple of the identity matrix.

For (v), take x > 0 large enough so that both xI + A and xI + B are both
non-negative. A trivial induction shows that (xI +A)ni,j > (xI + B)ni,j for all i, j,
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implying by the series expression of the exponential that ex(eA)i,j > ex(eB)i,j .
Moreover, by irreducibility of A, we can chose i1, . . . , in such that i1 = i, in = j,
im = k and im+1 = l for some 1 6 m 6 n−1 and Aip,ip+1 > 0 for all 1 6 m 6 n−1.

This implies
(
(xI+A)n

)
i,j
>
(
(xI+B)n

)
i,j
, hence ex(eA)i,j > ex(eB)i,j .

To prove (vi), we use the Collatz-Wielandt formula, see for example Seneta
(1973, Exercise 1.6), which, applied to eA, states that

eλ(A) = sup
v∈R

K
>0

inf
i:vi 6=0

(eAv)i
vi

.

Taking v such that Bv = λ(B)v, we have by (v) that (eAv)i > (eBv)i = eλ(B)vi
for all i such that vi 6= 0, implying eλ(A) > eλ(B). �

Corollary 2.4. For all p > p such that −λ(−Φ(p)) > 0, Φ(p) is invertible. In

particular, Φ(p) is invertible for p > 0, and Φ(0) there is at least one i ∈ [K] such
that k(i) > 0.

2.3. Moments at the death time. Assume that the MAP dies almost surely, that is
k(i) > 0 for at least one i ∈ [K]. Let

T = inf{t > 0 : ξt = ∞}

be the death time of ξ. Then, for i ∈ [K], and p ∈ R, let

fi(p) = Ei[e
−pξ

T− ].

Proposition 2.5. Take p > p such that −λ(−Φ(p)) > 0. Let, for notational

purposes, F(p) = (fi(p), i ∈ [K]) and K = (k(i), i ∈ [K]) in column matrix form.
We then have

F(p) = (Φ(p))−1K

We start with a lemma which is essentially a one-type version of Proposition 2.5.

Lemma 2.6. Let (ξt, t > 0) be a non-killed subordinator with Laplace exponent
ψ : R → R ∪ {−∞}. Let T be an independent exponential variable with parameter
k, we then have, for p ∈ R such that k + ψ(p) > 0. We then have

E[e−pξT ] =
k

k + ψ(p)

Proof : By independence, we can write

E[e−pξT ] =

∫ ∞

0

ke−ktE[e−pξt ]dt =

∫ ∞

0

ke−kte−tψ(p)dt =
k

k + ψ(p)
.

�

Proof of Proposition 2.5. We start by considering p > 0 only. Let τ be the time of
first type change of the MAP. We use the strong Markov property at time τ ∧ T
and get

fi(p) = Ei[e
−pξ

T− , T 6 τ ] +
∑

j 6=i

Ei[e
−pξτ , τ < T, Jτ = j]fj(p)

Note that, until τ ∧ T , ξ behaves as a non-killed subordinator ξ̃(i) with Laplace
exponent ψ̃(i) given by ψ̃(i)(p) = ψ(i)(p) − k(i), while τ and T can be taken as
two independent exponential variables with respective parameters k(i) and |λi,i|.
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Moreover, if jumping to type j at time τ , then there is a jump with distribution
Bi,j . Hence we can write

fi(p) = Pi[T 6 τ ]E[e−ξ̃
(i)(T∧τ)] +

∑

j 6=i

Pi[τ < T ]Pi[Jτ = j]E[e−pξ̃
(i)
τ∧T ]B̂i,j(p)fj(p).

Since p > 0, ψ̃(i)(p) + k(i) + |λi,i| > 0 and we can apply Lemma 2.6:

fi(p) =
k(i)

|λi,i|+ k(i)
|λi,i|+ k(i)

ψ̃(i)(p) + |λi,i|+ k(i)

+
∑

j 6=i

|λi,i|

|λi,i|+ k(i)
λi,j
|λi,i|

|λi,i|+ k(i)

ψ̃(i)(p) + |λi,i|+ k(i)
B̂i,j(p)fj(p)

=
k(i)

ψ(i)(p) + |λi,i|
+
∑

j 6=i

λi,j
ψ(i)(p) + |λi,i|

B̂i,j(p)fj(p).

Recalling that λi,i < 0, we have

ψ(i)(p)fi(p) = k(i) +
K∑

j=1

B̂i,j(p)λi,jfj(p).

This can be rewritten in matrix form as(
ψi(p)

)
diag

F(p) = K+
(
Λ ◦ B̂(p)

)
F(p)

where we recall that ◦ indicates the entrywise product of matrices. Recalling the
expression of Φ(p) from 2.1, we then see that

Φ(p)F(p) = K.

And since Φ(p) is invertible, we do end up with

F(p) = (Φ(p))−1K. (2.4)

Now we want to extend this to negative p such that −λ(−Φ(p)) > 0. Since the
coefficients of Φ(p) have an analytic continuation to (p,∞), those of (Φ(p))−1 have
such a continuation on the domain where Φ(p) is invertible. By classical results,
this implies that equation (2.4) extends to such p. �

2.4. The exponential functional. We are interested in the random variable Iξ called
the exponential functional of ξ, defined by

Iξ =

∫ ∞

0

e−ξtdt.

The fact that it is well-defined and finite a.s. is a consequence of this law of large
numbers-like lemma.

Lemma 2.7. As t→ ∞, the random variable t−1ξt has an almost–sure limit, which
is strictly positive (and possibly infinite).

Proof : Note that, if any k(i) is nonzero, by irreducibility, the process will be killed
a.s. and the wanted limit is +∞. We can thus assume that there is no killing.
Let i be any type for which ψi is not trivial, or at least one Bi,j gives positive
mass to (0,∞). Let then (Tn, n ∈ Z+) be the successive return times to i. It
follows from the definition of a MAP that (Tn, n ∈ Z+) and (ξ(Tn), n ∈ Z+) are
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both random walks on R, in the sense that the sequences (Tn+1 − Tn, n ∈ Z+) and
(ξ(Tn+1)− ξ(Tn), n ∈ Z+) are both i.i.d). For t > 0, we then let n(t) be the unique
integer such that Tn(t) 6 t < Tn(t)+1, and writing

ξTn(t)

Tn(t)+1
6
ξt
t
6
ξTn(t)+1

Tn(t)
,

we can see by the strong law of large numbers that both bounds converge to the
same limit, ending the proof. �

We are interested in the power moments of Iξ, which are most easily manipulated
in column matrix form: for appropriate p ∈ R, we let N(p) be the column vector
such that (

N(p)
)
i
= Ei[I

p
ξ ]

for all i ∈ [K]. We mention that some work on this has already been done, see
notably Proposition 3.6 in Kuznetsov et al. (2014).

2.4.1. Positive and exponential moments.

Proposition 2.8.

(i) For an integer k > 0, we have

N(k) = k!

(
k−1∏

l=0

(
Φ(k − l)

)−1

)
1. (2.5)

(ii) For all a < ρ
(
lim
k→∞

(Φ(k))−1
)
, (where ρ denotes the spectral radius of a

matrix), we have
Ei[e

aIξ ] <∞

for all i.

Equation (2.5) is a consequence of the following recursive lemma.

Lemma 2.9. We have, for p > 1,

N(p) = p
(
Φ(p)

)−1
N(p− 1)

Proof : We combine the strategy used in Bertoin and Yor (2005) with some matrix
algebra. Let, for t > 0,

It =

∫ ∞

t

e−ξsds.

By integrating the derivative of Ipt , we get

Ip0 − Ip1 = p

∫ 1

0

e−ξsIp−1
s ds.

Note that, since ((ξt, Jt), t > 0) is a MAP, we can write for all t > 0 It = e−ξtIξ′

where (ξ′, J ′) is, conditionally on Jt, a MAP with same distribution, with initial
type Jt and independent from ξt. Thus we can write

Ei[I
p
1 ] =

K∑

j=1

Ei[e
−pξ1 , Jt = j]Ej [I

p
ξ ] =

(
e−Φ(p)N(p)

)
i

and similarly

Ei[e
−ξsIp−1

s ] =
(
e−sΦ(p)N(p− 1)

)
i
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We then end up with

N(p)− e−Φ(p)N(p) = p
(∫ 1

0

e−sΦ(p)ds
)
N(p− 1)

= p
(
Φ(p)

)−1(
I− e−Φ(p)

)
N(p− 1).

The use of the integration formula for the matrix exponential is justified by the fact
that Φ(p) is invertible by Corollary 2.4. Similarly, note that by Proposition 2.3,
the real parts of the eigenvalues of −Φ(p) are strictly less than λ(Λ) = 0, and thus
the spectral radius of e−Φ(p) is strictly less than 1, and I − e−Φ(p) is invertible.
Crossing it out, we end up with

N(p) = pΦ(p)
−1

N(p− 1).

�

Proof of Proposition 2.8. Point (i) is proved by a straightforward induction, starting
at N(0) = 1. (ii) requires more work. Let a > 0, we are interested in the nature of
the matrix-valued series

∞∑

k=0

ak
k∏

l=1

(
Φ(k − l)

)−1
.

For ease of notation, we let Ak = a
(
Φ(k)

)−1
and Bk =

∏k
l=1 Ak−i, so that the

series reduces to
∑∞

k=0 Bk. By monotonicity, the matrix Φ(k) converges as k tends
to infinity, and by monotonicity of its smallest eigenvalue (by Proposition 2.3), its
limit is invertible. Thus Ak converges as k tends to infinity to M = a lim

k→∞
(Φ(k))−1

and, for a < ρ
(
lim
k→∞

(Φ(k))−1
)
, we have ρ(M) < 1. Considering any subordinate

norm || · || on the space of K ×K matrices, we have by Gelfand’s formula ρ(M) =
lim
n→∞

||Mn||1/n, and thus there exists n such that ||Mn|| < 1. By continuity of the

product of matrices, we can find ε > 0 and l0 ∈ Z+ such that

∀l > l0, ||Al+n−1 . . .Al|| 6 1− ε.

Now, for l > l0 + k − 1, let Cl = Al . . .Al−n+1, and notice that ||Cl|| 6 1− ε. For
k ∈ Z+ and m ∈ {0, . . . , n− 1}, write

Bl0+kn+m(Bl0+m)−1 =

k−1∏

p=0

Cl0+(k−p)n+m,

thus getting ||Bl0+kn+m(Bl0+m)−1|| 6 (1 − ε)n. Thus, for all m ∈ {0, . . . , n − 1},
the series

∞∑

k=0

Bl0+kn+m(Bl0+m)−1

converges absolutely, and hence the series

∞∑

k=0

Bk

also converges. �
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2.4.2. Negative moments. In this section, we assume that there is no killing: ki = 0
for all i. We also assume p < 0, where p was defined in (2.3).

Proposition 2.10.

(i) We have

N(−1) = Φ′(0)1+ΛN′(0).

Where
(
Φ′(0)

)
i,j

= Ei[ξ1, J1 = j] and
(
N′(0)

)
i
= Ei[ln Iξ] for all i, j.

(ii) For an integer k < 0 with k > p− 1, we then have

N(k) =
(−1)k+1

(|k| − 1)!

(
−1∏

l=k+1

Φ(l)

)
N(−1).

As in the case of positive moments, the results come mostly from a recursion
lemma.

Lemma 2.11. For p ∈ (p, 0), the entries of N(p− 1) and N(p) are finite, and we
have the recursion relation

N(p− 1) =
Φ(p)

p
N(p).

Proof : The proof of Lemma 2.9 does not apply directly and needs some modifica-
tion. First, we check that the entries of N(p) are finite: for all i,

Ei[I
p
ξ ] 6 Ei

[(∫ 1

0

e−ξtdt
)p]

6 Ei[e
pξ1 ] <∞.

The same steps as in the proof of Lemma 2.9 lead to

(
I− e−tΦ(p)

)
N(p) = p

(∫ t

0

e−sΦ(p)ds
)
N(p− 1)

for t > 0. We deduce from this that the entries of N(p−1) are also finite: if at least
one entry was infinite, then the right hand side would be infinite since e−sΦ(p) has
positive entries for all s > 0, and we already know that the left-hand side is finite.

We cannot compute the integral this time, so instead we take the derivative of
both sides at t = 0, and get

−Φ(p)N(p) = −pN(p− 1),

thus ending the proof. �

Proof of Proposition 2.10. Recalling thatΦ(0) = −Λ (because of the lack of killing),
N(0) = 1, and Λ1 = 0, write

N(p− 1) =
Φ(p)N(p)−Φ(0)N(0)

p
.

Since N(p − 1) is finite for at least some negative p, it is continuous when we let
p tend to 0, and we end up with N(−1) = (ΦN)′(0) = Φ′(0)N(0) + Φ(0)N′(0),
which is what we need. Note that both Φ and N are both differentiable at 0, with
derivatives being those mentioned in the statement of Proposition 2.10, because,
respectively, ξ1 has small exponential moments and Ei[Iξ] and Ei[(Iξ)

−1] are both
finite for all i ∈ [K]. �
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2.5. The Lamperti transformation and multi-type positive self-similar Markov pro-
cesses. In Lamperti (1962, 1972), Lamperti used a now well-known time-change to
establish a one–to–one correspondence between Lévy processes and non–negative
self–similar Markov processes with a fixed index of self–similarity. It was generalised
in Chaumont et al. (2013) and Alili et al. (2017) to real-valued and even R

d-valued
self-similar processes. We give here a variant adapted to our multi-type setting,
which in fact coincides with the version presented in Chaumont et al. (2013) when
K = 2. Let ((ξt, Jt), t > 0) be a MAP and α ∈ R be a number we call the index of
self–similarity. We let τ be the time–change defined by

τ(t) = inf

{
u,

∫ u

0

eαξrdr > t

}
,

and call Lamperti transform of ((ξt, Jt), t > 0) the process ((Xt, Lt), t > 0)) defined
by

Xt = e−ξρ(t) , Lt = Jρ(t). (2.6)

Note that, when α < 0, then τ(t) = ∞ for t > I|α|ξ. In this case, we let by
convention Xt = 0 and Lt = 0. Note that, while L is càdlàg on [0, I|α|ξ), it does
not have a left limit at I|α|ξ) in general.

When K = 1 and ξ is a standard Lévy process, X is a non-negative self-similar
Markov process, and reciprocally, any such Markov process can be written in this
form, see Lamperti (1972). In general, for anyK, one readily checks that the process
((Xt, Lt), t > 0)) is Markovian and α-self-similar, in the sense that ((Xt, Lt), t > 0),
started from (x, i), has the same distribution as

(
(xX ′

x−αt, J
′
x−γt), t > 0

)
, where

((X ′
t, L

′
t), t > 0) is a version of the same process which starts at (1, i). This is

justifies calling ((Xt, Lt), t > 0)) a multi-type positive self-similar Markov process
(mtpssMp). Since its distribution is completely characterised by α and the distri-
bution of the underlying MAP, we will say that ((Xt, Lt), t > 0)) is the mtpssMp
with characteristics (α,Φ).

3. Multi-type fragmentation processes

Multi-type partitions and homogeneous multi-type fragmentations were intro-
duced by Bertoin (2008). We refer to this paper for more details on most of the
definitions and results of Sections 3.1 and 3.2.

3.1. Multi-type partitions. We will be looking at two different kinds of partitions:
mass partitions, which are simply partitions of the number 1, and partitions of Z+

and its subsets. In both cases, a type, that is an element of {1, . . . ,K}, is attributed
to the blocks.

Let

S↓ =
{
s = (sn)n∈Z+ : s1 > s2 > . . . > 0,

∑
sn 6 1

}

be the set of nonnegative sequences which add up to at most 1. This is the set of

partitions used in the monotype setting, however here we will look at the set S
↓

which is formed of elements of the form s̄ = (sn, in)n∈Z+ ∈ S↓ × {0, 1, . . . ,K}Z+

which are nonincreasing for the lexicographical ordering on [0, 1] × {0, 1, . . . ,K}
and such that, for any n ∈ Z+, in = 0 if and only if sn = 0.

We interpret an element of S
↓
as the result of a particle of mass 1 splitting into

particles with respective sizes (sn, n ∈ Z+) and types (in, n ∈ Z+). If sn = 0 for
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some n, we do not say that it corresponds to a particle with mass 0 but instead
that there is no n-th particle at all, and thus we give it a placeholder type in = 0.
We let s0 = 1 −

∑
m sm be the mass which has been lost in the splitting, and call

it the dust associated to s̄.
The set S

↓
is compactly metrised by letting, for two partitions s̄ and s̄′, d(s̄, s̄′)

be the Prokhorov distance between the two measures s0δ0 +
∑∞

n=1 snδsneik
and

s′0δ0 +
∑∞
n=1 s

′
nδs′nei′n

on the K-dimensional unit cube (where (ei, i ∈ [K]) is the

canonical basis of RK).

For s̄ ∈ S
↓
and p ∈ R we introduce the row vector notation

s̄{p} =

∞∑

n:sn 6=0

spn ein ∈ R
K . (3.1)

Note that this is well-defined, since the set of summation is made to avoid negative
powers of 0.

We call block any subset of Z+. For a block B, we let PB be the set of elements
of the type π̄ = (π, i) = (πn, in)n∈Z+ , where π is a classical partition of B, its blocks
π1, π2, . . . being listed in increasing order of their least element, and in ∈ {0, . . . ,K}
is the type of n-th block for all n ∈ Z+, with in = 0 if and only if πn is empty or a
singleton.

A partition π̄ of B naturally induces an equivalence relation on B which we call
∼
π̄

by saying that, for two integers n and m, n ∼
π̄
m if an only if they are in the

same block of π. The partition π without the types can then be recovered from ∼
π̄
.

It will be useful at times to refer to the block of a partition containing a specific
integer n. We call it π(n), and its type i(n).

If A ⊆ B, then a partition π̄ of B can be made into a partition of A by restricting
its blocks to A, and we call π̄∩A the resulting partition. The blocks of π̄∩A inherit
the type of their parent in π̄, unless they are empty or a singleton, in which case
their type is 0.

The space PZ+ is classically metrised by letting, for two partitions π̄ and π̄′,

d(π̄, π̄′) =
1

sup{n ∈ Z+ : π̄ ∩ [n] = π̄′ ∩ [n]}
.

This is an ultra-metric distance which makes PZ+ compact.
A block B is said to have an asymptotic frequency if the limit

|B| = lim
n→∞

#(B ∩ [n])

n

exists. A partition π̄ = (π, i) of Z+ is then said to have asymptotic frequencies if
all of its blocks have an asymptotic frequency. In this case we let |π̄| = (|π|, i) =
(|πn|, in)n∈Z+ and |π̄|↓ be the lexicographically decreasing rearrangement of |π̄|,

which is then an element of S
↓
.

For any bijection σ from Z+ to itself and a partition π̄, we let σπ̄ be the partition
whose blocks are the inverse images by σ of the blocks of π̄, each block of σπ̄ inher-
iting the type of the corresponding block of π̄. We say that a random partition Π is
exchangeable if, for any bijection σ from Z+ to itself, σΠ has the same distribution
as Π.
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It was proved in Bertoin (2008) that Kingman’s well-known theory for monotype
exchangeable partitions (see Kingman, 1982) has a natural extension to the multi-
type setting. This theory summarily means that, for a mass partition s̄ = (s, i),
there exists an exchangeable random partition Πs̄, which is unique in distribution,
such that |Πs̄|

↓ = s̄, and inversely, any exchangeable multi-type partition Π has
asymptotic frequencies a.s., and, calling S = |Π|↓, conditionally on S, the partition
Π has distribution κS̄.

3.2. Basics on multi-type fragmentations.

3.2.1. Definition. Let Π = (Π(t), t > 0) be a càdlàg PZ+ -valued Markov process.

We denote by (FΠ
t , t > 0) its canonical filtration, and, for π̄ ∈ PZ+ , call Pπ̄ the

distribution of Π when its initial value is π̄. In the special case where π̄ = (Z+, i)
has only one block, which has type i ∈ [K], we let Pi = P(Z+,i). We also assume

that, with probability 1, for all n ∈ Z+, |
(
Π(t)

)
(n)

| exists for all t > 0 and is a

right-continuous function of t. Let also α ∈ R.

Definition 3.1. We say that Π is an α-self-similar (or homogeneous if α = 0)
fragmentation process if Π is exchangeable as a process (i.e. for any permutation
σ, the process σΠ = (σΠ(t), t > 0) has the same distribution has Π) and satisfies
the following α-self-similar fragmentation property: for π̄ = (π, i) ∈ PZ+ , under

Pπ̄, the processes
(
Π(t) ∩ πn, t > 0

)
for n ∈ Z+ are all independent, and each one

has the same distribution as
(
Π(|π|αnt) ∩ πn, t > 0

)
has under Pin .

We will for the sake of convenience exclude the degenerate case where the first
component (Π(t), t > 0) is constant a.s, and only the type changes.

We will make a slight abuse of notation: for n ∈ Z+ and t > 0, we will write
Πn(t) for (Π(t))n, and other similar simplifications, for clarity.

It will be convenient to view Π as a single random variable in the space D =
D( [0,+∞),PZ+) of càdlàg functions from [0,∞) to PN , equipped with its usual

Skorokhod topology. We also let, for t > 0, Dt = D([0, t],PZ+), which will come of
use later.

The Markov property can be extended to random times, even different times
depending on which block we’re looking at. For n ∈ Z+, let Gn be the canonical
filtration of the process

(
|Π(n)(t)|, i(n)(t), t > 0

)
, and consider a Gn-stopping time

Ln. We say that L = (Ln, n ∈ Z+) is a stopping line if, moreover, for all n and
m, m ∈ Π(n)(Ln) implies Ln = Lm, and use it to define a partition Π(L) which

is such that, for all n, (Π(L))(n) = (Π(Ln))(n). We then have the following strong

fragmentation property: conditionally on
(
Π(L∧t), t > 0

)
, the process

(
Π(L+t), t >

0
)
1 has distribution PΠ(L). We refer to Bertoin (2006, Lemma 3.14) for a proof in

the monotype case.

1It is straightforward to check that, if L is a stopping line, then (Ln ∧ t, n ∈ Z+) and (Ln ∧

t, n ∈ Z+) also are stopping lines for all t > 0, justifying the definition of
(

Π(L ∧ t), t > 0
)

and
(

Π(L+ t), t > 0
)

.
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3.2.2. Changing the index of self-similarity with Lamperti time changes.

Proposition 3.2. Let Π be an α-self-similar fragmentation process, and let β ∈ R.
For n ∈ Z+ and t > 0, we let

τ (β)n (t) = inf

{
u,

∫ u

0

|Π(n)(r)|
−βdr > t

}
.

For all t >, τ (β)(t) =
(
τ
(β)
n (t), n ∈ Z+

)
is then a stopping line. Then, if we let

Π
(β)

(t) = Π
(
τ (β)(t)

)
, (3.2)

Π
(β)

is a self-similar fragmentation process with self-similarity index α+ β.

For a proof of this proposition, we refer to the monotype case in Bertoin (2006,
Theorem 3.3).

As a consequence, the distribution of Π is characterised by α and the distribution

of the associated homogeneous fragmentation Π
(−α)

.

3.2.3. Poissonian construction. The work Bertoin (2008) shows that a homogeneous
fragmentation has its distribution characterised by some parameters: a vector of
non-negative erosion coefficients (ci)i∈[K], and a vector of dislocation measures

(νi)i∈[K], which are sigma-finite measures on S
↓
such that, for all i,

∫

S
↓
(1− s11{i1=i})dνi(s̄) <∞.

Specifically, given a homogeneous fragmentation process Π, there exists a unique
set of parameters

(
ci, νi, i ∈ [K]

)
such that, for any type i, the following construc-

tion gives a version of Π under Pi. For all j ∈ [K], let κνj =
∫
S

↓ κs̄dνj(s̄) (recalling

that κs̄ is the paintbox measure on PZ+ associated to s̄), and, for n ∈ Z+, we let

(∆
(n,j)

(t), t > 0) =
(
(∆(n,j)(t), δ(n,j)(t)), t > 0

)
be a Poisson point process with

intensity κνj , which we all take independent. Recall that this notation means that

δ
(n,j)
m (t) is the type given to the m-th block of the un-typed partition ∆(n,j)(t).
Now build Π under Pi thus:

• Start with Π(0) = 1Z+,i.

• For t > 0 such that there is an atom ∆
(n,j)

(t) with in(t
−) = j, replace

Πn(t
−) by its intersection with ∆

(n,j)
(t).

• Send each integer n into a singleton at rate ci(n)(t).

This process might not seem well-defined, since the set of jump times can have
accumulation points. However the construction is made rigorous in Bertoin (2008)
by noting that, for n in Z+, the set of jump times which split the block Π ∩ [n] is
discrete, thus Π(t)∩ [n] is well-defined for all t > 0 and n ∈ Z+, and thus Π(t) also
is well-defined for all t > 0.

As a consequence, the distribution of any self-similar fragmentation process Π is
characterised by its index of self-similarity α, the erosion coefficients (ci)i∈[K] and

dislocation measures (νi)i∈[K] of the homogeneous fragmentation Π
(−α)

. This jus-

tifies saying from now on that Π is a self-similar fragmentation with characteristics(
α, (ci)i∈[K], (νi)i∈[K]

)
.
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3.2.4. The tagged fragment process. For t > 0, we call tagged fragment of Π(t) its
block containing 1. We are interested in its size and type as t varies, i.e. the process(
(|Π1(t)|, i1(t)), t > 0

)
. It is in fact a mtpssMp, with characteristics (α,Φ), where

Φ is given by

Φ(p) =
(
ci(p+ 1)

)
diag

+

(∫

S
↓

(
1{i=j} −

∞∑

n=1

s1+pn 1{in=j}

)
νi(ds̄)

)

i,j∈[K]

. (3.3)

This is proven in Bertoin (2008) when α = 0 and ci = 0 for all i by using
the Poissonian construction, however, after taking into account the Lamperti time-
change, the proof does not differ significantly in the general case.

One consequence of exchangeability is that, for any t > 0, conditionally on the
mass partition |Π(t)|↓, the tagged fragment is a size-biased pick amongst all the
fragments of |Π(t)|↓. We thus have, for any non-negative measurable function f on
[0, 1] and j ∈ [K],

Ei

[
f
(
|Π1(t)|

)
, i1(t) = j

]
=
∑

n∈Z+

Ei

[
|Πn(t)|f

(
|Πn(t)|

)
, in(t) = j

]
. (3.4)

(recall that the blocks in the right-hand side of (3.4) are ordered in increasing order
of their smallest element.)

We end this section with a definition: we say that the fragmentation process Π is
irreducible if the Markov chain of types in MAP associated to the tagged fragment
is irreducible in the usual sense.

3.3. Malthusian hypotheses and additive martingales. In this section and the next,
we focus on the homogeneous case: we fix α = 0 until Section 3.5. Recall, for

s̄ ∈ S
↓
and p ∈ R, the notation s̄{p} from (3.1).

Proposition 3.3. For all p > p+ 1, the row matrix process
(
M(t), t > 0

)
defined

by

M(t) = |Π(t)|{p}etΦ(p−1)

is a martingale.

Proof : Let t > 0 and s > 0, and i, j be two types. Calling Π
′
an independent version

of Π, we have, by the fragmentation property at time t, and then exchangeability,

Ei

[
∑

n

|Πn(t+ s)|p1{in(t+s)=j} | Ft

]
=
∑

n

|Πn(t)|
p
Ein(t)

[
∑

m

|Π′
m(s)|p1{i′m(s)=j}

]

=
∑

n

|Πn(t)|
p
Ein(t)

[
|Π′

1(s)|
p−11{i′1(s)=j}

]

=
∑

n

|Πn(t)|
p
(
e−sΦ(p−1)

)
in(t),j

.

Hence

Ei

[
|Π(t+ s)|{p} | Ft

]
= |Π(t)|{p}e−sΦ(p−1),

and thus M(t) is a martingale. �

Corollary 3.4. Assume that the fragmentation is irreducible. We can then let

λ(p) = −λ(−Φ(p− 1)),
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where we use in the notation of Proposition 2.3 in the right-hand side (i.e λ(p) is
the smallest eigenvalue of Φ(p − 1))). Let b(p) = (bi(p))i∈[K] be a corresponding
positive eigenvector (which is unique up to constants). Then, for i ∈ [K], under Pi,
the process

(
M(t), t > 0

)
defined by

M(t) =
1

bi(p)
etλ(p)M(t)b(p) =

1

bi(p)
etλ(p)

K∑

i=1

(
M(t)

)
i
bi(p)

=
1

bi(p)
etλ(p)

∞∑

n=1

|Πn(t)|
pbin(t)(p)

is also a martingale, which we call the additive martingale associated to p.

Definition 3.5. We say that the fragmentation process (or the characteristics(
(ci)i∈[K], (νi)i∈[K]

)
) is Malthusian if it is irreducible and there exists a number

p∗ ∈ (0, 1] called the Malthusian exponent such that

λ(p∗) = 0.

Remark 3.6. (i) This definition, while fairly complex, is indeed the approriate
generalisation of the Malthusian hypothesis for monotype fragmentations (see for
example Bertoin, 2006). In particular, typical Malthusian cases are those where
ci = 0 for all i and the measures (νi) are all conservative, that is νi

(
{s0 > 0}

)
= 0

for all i. In this case, the MAP underlying the tagged fragment process is not killed,
and thus p∗ = 1 by Corollary 2.4.

(ii) Note that λ is strictly increasing and continuous on (p+1, 1]. In particular,
p∗ must be unique.

Here are two examples of Malthusian cases.

Example 3.7. Assume that there exists q ∈ (0, 1] such that, for all i ∈ [K],

ciq +

∫

S
↓

(
1−

∞∑

n=1

sqi
)
dνi(s̄) = 0.

Then the characteristics
(
(ci)i∈[K], (νi)i∈[K]

)
) are Malthusian, with Malthusian ex-

ponent equal to q.

Example 3.7 says that, if, when we forget the types of the children of a particle,
the corresponding monotype Malthusian exponent is informally q independently of
the type of the parent, then the multi-type fragmentation process also has Malthu-
sian exponent q.

Example 3.8. Assume for all j ∈ [K] that cj = 0 and νj has total mass 1, and is
fully supported by

{
s̄ ∈: ∀n, in = 0 or j + 1, and

N∑

n=1

sn = 1

}
.

(j + 1 is taken modulo K, the the sense that K + 1 = 1.) In words, each splitting
preserves total mass, only has at most N blocks, and the types evolve in a cyclic
fashion.
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For each j ∈ [K], assume that νj is Malthusian “if we forget the types”, in the
sense that there exists p∗j ∈ [0, 1] such that

∫

S
↓

(
1−

∞∑

n=1

sp
∗

n

)
dνj(s̄) = 0.

The multi-type fragmentation process with characteristics
(
(0)i∈[K], (νi)i∈[K]

)
)

is then also Malthusian, and its Malthusian exponent p∗ satisfies min p∗j 6 p∗ 6

max p∗j .

Note that our assumptions do not exclude that, for some (but not all) j ∈ [K],
νj = δ1,j+1, in which case we let p∗j = 0.

We postpone the proofs of these examples to Appendix A.

We will now restrict ourselves to p = p∗, and let bj = bj(p
∗) for all j ∈ [K]. In

particular, the additive martingale can be rewritten as

M(t) =
1

bi

∞∑

n=1

|Πn(t)|
p∗bin(t). (3.5)

This non-negative martingale has an a.s. limitW = lim
t→∞

M(t). This convergence

however is not strong enough for our purposes here, so, for q > 1, we introduce the
stronger Malthusian assumption (Mq), that for all i ∈ [K],

∫

S
↓

∣∣∣∣∣1−
∞∑

n=1

sp
∗

n

∣∣∣∣∣

q

dνi(s̄) <∞. (Mq)

Proposition 3.9. Assume (Mq) for some q > 1. Then the martingale
(
M(t), t >

0
)
converges to W in Lq.

Proof : By the same arguments as in Stephenson (2013, Proposition 4.4), we only
need to show that the sum of the q-th powers of the jumps of

(
M(t), t > 0

)
has

finite expectation:

Ei

[∑

t>0

|M(t)−M(t−)|q
]
<∞.

We compute this expectation with the Master formula for Poisson point processes
(see Revuz and Yor, 1999, page 475). Recalling the Poissonian construction of the
fragmentation process in Section 3.2.3, we can write

Ei

[∑

t>0

|M(t)−M(t−)|q
]

= Ei




∞∑

n=1

∑

t>0

|Πn(t
−)|qp

∗

(
|1−

∞∑

m=1

|∆n,in(t
−)

m (t)|p
∗

|

)q


= Ei

[∫ ∞

0

∞∑

n=1

|Πn(t
−)|qp

∗

∫

S
↓
|1−

∞∑

m=1

sp
∗

m |qdνin(t−)(̄s)dt

]

6 Ei

[∫ ∞

0

∞∑

n=1

|Πn(t
−)|qp

∗

dt

]
sup
j∈[K]

∫

S
↓
|1−

∞∑

m=1

sp
∗

m |qdνj (̄s)
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= Ei

[∫ ∞

0

∞∑

n=1

|Πn(t)|
qp∗dt

]
sup
j∈[K]

∫

S
↓
|1−

∞∑

m=1

sp
∗

m |qdνj (̄s).

Recall that, by Corollary 3.4 applied to p = qp∗, we have, for all t > 0,
Ei[
∑∞
n=1 bin(t)(qp

∗)|Πn(t)|
qp∗ ] = bi(qp

∗)e−tλ(qp
∗), and so there exists a constant

C > 0 (depending on q) such that, for t > 0,

Ei[

∞∑

n=1

|Πn(t)|
qp∗ ] 6 Ce−tλ(qp

∗).

Since q > 1, we have λ(qp∗) > 0 by monotonicity of λ, hence by Fubini’s theorem

Ei

[∫ ∞

0

∞∑

n=1

|Πn(t)|
qp∗dt

]
6 C

∫ ∞

0

e−tλ(qp
∗)dt <∞,

ending the proof. �

Lemma 3.10. Assume that the additive martingale converges to W in L1. Then,
a.s., if W 6= 0, then Π does not get completely reduced to dust in finite time.

Proof : This kind of result is well-known, but not in multi-type settings, so we will
give the details. For n ∈ Z+, and j ∈ [K], let Z(j)(n) be the number of blocks of
Π(n) with type j. Calling Z(n) = (Z(j)(n), j ∈ [K]), the process (Z(n), n ∈ Z+)
is then a multi-type Galton-Watson process, see Harris (1963, Chapter II) for an
introduction. By irreducibility of Π, (Z(n), n ∈ Z+) is positive in the sense that
Pi[Z

(j)(1) > 0] is positive for all i, j ∈ [K]. Assume that it is supercritical (otherwise
W = 0 a.s. and there is nothing to do). Let, for i ∈ [K], f (i) be the generating

function defined by f (i)(x) = Ei

[∏K
j=1 x

Z(j)(1)
j

]
for x = (x1, . . . , xk) ∈ (R+)

K , and

pi = Pi[W = 0], and group these in f = (f (i), i ∈ [K]) and p = (pi, i ∈ [K]). One
then readily has

p = f(p),

which implies by Harris (1963, Corollary 1 of Theorem 7.2) that Pi[W = 0] is
either equal to 1 or equal to the probability of extinction starting from type i. But
since Ei[W ] > 0 by L1-convergence, Pi[W = 0] 6= 1, and thus W 6= 0 a.s. on
nonextinction of (Zn, n ∈ Z+). �

3.4. Biasing. For t > 0, we let P∗
i,t be the probability measure onDt = D([0, t],PZ+)

with corresponding expectation operator E∗
i,t be defined by

E
∗
i,t

[
F (Π(s), 0 6 s 6 t)

]
=

1

bi
Ei

[
bi1(t)|Π1(t)|

p∗−1F
(
Π(s), 0 6 s 6 t

)]

for a nonnegative measurable function F on Dt. One classically checks that, because
of the martingale property of bi1(t)|Π1(t)|

p∗−1, these measures are compatible, and
by Kolmogorov’s extension theorem, there exists a unique probability measure P

∗
i

on D such that, for all t > 0 and F a nonnegative measurable function on Dt,

E
∗
i

[
F (Π(s), 0 6 s 6 t)

]
= E

∗
i,t

[
F (Π(s), 0 6 s 6 t)

]
.

Let us give another way of interpreting Pi,t. For n ∈ Z+ and s 6 t, let Ψ
n
(s)

be the same partition as Π(s), except that, for n > 2, the integer 1 has changed
blocks: it is put in Πn(t). We then define a new measure P

•
i,t by
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E
•
i,t

[
F
(
Π(s), 0 6 s 6 t)

]
=

1

bi
E



∑

n∈Z+

bin |Πn(t)|
p∗F

(
Ψ
n
(s), 0 6 s 6 t

)

 .

Proposition 3.11. The two distributions P
∗
i,t and P

•
i,t are equal.

The proof is elementary but fairly heavy, so we refer the reader to Stephenson
(2013) for the monotype case, which is easily generalised.

As with Pi, there is a way of using Poisson point processes to construct the
measure P∗

i . The method is the same as in Section 3.2.3, with one difference: for all

j ∈ [K], the point process (∆(1,j)(t), t > 0) has intensity κ∗νj instead of κνj , where
the measure κ∗νj is defined by

dκ∗νj (π̄) =
1

bj
bi1 |π1|

p∗−11{|π1|6=0}dκνj (π̄).

The construction is still well defined, because, for any k ∈ Z+,

κ∗νj ({[k] is split into two or more blocks})

=
1

bj

∫

S
↓
(1−

∞∑

n=1

skn)
∞∑

n=1

bins
p∗

n dνj(s̄)

=
1

bj

(
cjp

∗ +

∫

S
↓
(1−

∞∑

n=1

skn

∞∑

n=1

bins
p∗

n )dνj(s̄)

)

6
1

bj

(
cjp

∗ +

∫

S
↓
(1−msp

∗+k
1 )dνj(s̄)

)
<∞,

where m = min
i∈[K]

bi is positive.

We omit the proof that this modified Poisson construction does produce the
distribution P

∗
i . The reader can check the proof of Theorem 5.1 in Stephenson

(2013) for the monotype case.

This biasing procedure also changes the distribution of the tagged fragment
process. It is still a MAP, but has a modified Bernstein matrix.

Proposition 3.12. Under P
∗
i , the process

(
(− log |Π1(t)|, i1(t)), t > 0

)
is a MAP

with Bernstein matrix Φ∗, defined by
(
Φ∗(p)

)
=
(
(bi)diag

)−1(
Φ(p+ p∗ − 1)

)(
(bi)diag

)
(3.6)

for p > 0.

Proof : That we have the correct moments is straightforward to check. Let p > 0
and j ∈ [K], we have by definition

E
∗
i

[
|Π1(t)|

p, i1(t) = j
]
=
bj
bi
Ei

[
|Π1(t)|

p∗−1|Π1(t)|
p, i1(t) = j

]
=
(
Φ∗(p)

)
i,j
.

The same definition is also enough to prove that
(
(− log |Π1(t)|, i1(t)), t > 0

)
is

indeed a MAP. Let s < t and let F be a function on D taking the form F (π̄) =

f
(

|π1(t)|
|π1(s)|

)
G
(
π̄(r), 0 6 r 6 s

)
1{i1(t)=j}, and write
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E
∗
i

[
f
( |Π1(t)|

|Π1(s)|

)
G
(
Π(r), 0 6 r 6 s

)
, i1(t) = j

]

=
bj
bi
Ei

[
|Π1(t)|

p∗f
( |Π1(t)|

|Π1(s)|

)
G(Π(r), 0 6 r 6 s), i1(t) = j

]

=
bj
bi
Ei

[( |Π1(t)|

|Π1(s)|

)p∗
f
( |Π1(t)|

|Π1(s)|

)
|Π1(s)|

p∗G(Π(r), 0 6 r 6 s), i1(t) = j

]

=
bj
bi
Ei

[
|Π1(s)|

p∗G(Π(r), 0 6 r 6 s)

× Ei1(s)

[
|Π′

1(t− s)|p
∗

f(|Π′
1(t− s)|), i′1(t− s) = j

]]

= Ei

[
bi1(s)
bi

|Π1(s)|
p∗G(Π(r), 0 6 r 6 s)

× Ei1(s)

[ bj
bi1(s)

|Π′
1(t− s)|p

∗

f(|Π′
1(t− s)|), i′1(t− s) = j

]]

= E
∗
i

[
G(Π(r), 0 6 r 6 s)E∗

i1(s)
[f(|Π′

1(t− s)|), i′1(t− s) = j]
]
.

Note that the third equality comes the fact that
(
(− log |Π1(t)|, i1(t)), t > 0

)
is

a MAP under Pi, while the last one is what we are looking for: it shows that(
(− log |Π1(t)|, i1(t)), t > 0

)
is a MAP under P∗

i . �

Remark 3.13. This can be seen as a spine decomposition of the fragmentation
process: the fragment containing 1 is the spine, and dislocates with a special biased
rate, and all the other fragments evolve with the usual branching mechanism.

3.5. Extinction when the index of self-similarity is negative. In this section, Π is
an α-self-similar fragmentation with α < 0. In this case, we already know from
Section 2.5 that the size of the tagged fragment will reach 0 in finite time. However,
a much stronger result is true:

Proposition 3.14. Let ζ = inf
{
t > 0 : Π(t) =

{
{1}, {2}, . . .

}}
. Then ζ is finite

a.s. and has some finite exponential moments.

Proof : We follow the idea of the proof of Proposition 14 in Haas (2003), our main
tool being the fact that the death time of the tagged fragment in a self-similar frag-
mentation with index of similarity α/2 also has exponential moments by Proposi-
tion 2.8, since it is the exponential functional of a MAP.

Fix a starting type i ∈ [K]. For t > 0, let

X(t) = max
n∈Z+

|Π(−α/2)
n (t)|

be the largest asymptotic frequency of a block of Π
(−α/2)

(t), where Π
(−α/2)

is the
α/2-self-similar fragmentation obtained by Section 3.2.2 with β = −α/2. Doing
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the time-change which transforms Π
(−α/2)

into Π, we obtain

ζ 6

∫ ∞

0

X(r)−α/2dr.

We then can write, for t > 0,

Pi[ζ > 2t] 6 Pi

[ ∫ ∞

0

X(r)−α/2dr > 2t
]
= Pi

[ ∫ ∞

0

X(rt)−α/2dr > 2
]

6 Pi

[ ∫ ∞

1

X(rt)−α/2dr > 1
]
6

∫ ∞

1

Ei[X(rt)−α/2]dr.

If α 6 −2, then using (3.4), we get

Ei[X(rt)−α/2] 6 Ei[X(rt)] 6 Ei

[ ∑

n∈Z+

|Π(−α/2)
n |(t)

]
= Pi

[
|Π

(−α/2)
1 (t)| 6= 0

]

where |Π1(t)
(−α/2)| is the mass of tagged fragment of Π

(−α/2)
at time t.

If α > −2, then by Jensen’s inequality, and (3.4) again,

Ei[X(rt)−α/2] 6
(
Ei[X(rt)]

)−α/2
6


Ei

[ ∑

n∈Z+

|Π(−α/2)
n |(rt)

]



−α/2

=
(
Pi

[
|Π

(−α/2)
1 (rt)| 6= 0

])−α/2
.

Since Π
(−α/2)

is a self-similar fragmentation with negative index α/2, the death time
of |Π1(t)

(−α/2)| has exponential moments by Proposition 2.8. As a consequence,
both for α 6 −2 and α > −2, there exists constants A and B such that, for all
t > 0,

Ei[X(rt)−α/2] 6 Ae−Brt.

Integrating with respect to r from 1 to infinity then yields

Pi[ζ > 2t] 6 A

∫ ∞

1

e−Brtdr 6
A

Bt
e−Bt,

which is enough to conclude.
�

4. Multi-type fragmentation trees

In this section, we will go back an forth between homogeneous and self-similar
fragmentations, so we use adapted notations: Π will be a homogeneous fragmenta-

tion process, and Π
(α)

will be the α-self-similar process obtained using Section 3.2.2.

4.1. Vocabulary and notation concerning R-trees. Basic definitions

Definition 4.1. Let (T , d) be a metric space. We say that it is an R-tree if it
satisfies the following two conditions:

• For all x, y ∈ T , there exists a unique distance-preserving map φx,y from
[0, d(x, y)] into T such φx,y(0) = x and φx,y(d(x, y)) = y.

• For all continuous and one-to-one functions c: [0, 1] → T , we have
c([0, 1]) = φx,y([0, d(x, y)]), where x = c(0) and y = c(1).
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For any x and y in T , we will denote by [[x, y]] the image of φx,y, i.e. the path
between x and y.

We usually consider trees which are rooted and measured, that is which have a
distinguished vertex ρ called the root, and are equipped with a Borel probability
measure µ. The root being fixed, this lets us define a height function on T as
ht(x) = d(ρ, x) for x ∈ T .

A leaf of T is any point x different from the root, such that T \{x} is connected.
When there is no ambiguity, we usually drop the metric, root and measure from

the notation, just writing T for (T , d, ρ, µ). For a > 0, we let aT be the rescaled
R-tree (T , ad).

We introduce some more notation to easily refer to some subsets and points of
T : for x ∈ T , we let Tx = {y ∈ T : x ∈ [[ρ, y]]} be the subtree of T rooted at x. If
y ∈ T , we also let x ∧ y be the infimum of x and y for the natural order on T , i.e.
the point at which the paths [[ρ, x]] and [[ρ, y]] separate from one another.

Gromov-Hausdorff-Prokhorov topology. Two compact rooted and measured
R-trees (T , d, ρ, µ) and (T ′, d′, ρ′, µ′) can be compared using the well-known
Gromov-Hausdorff-Prokhorov metric dGHP defined by

dGHP (T , T
′) = inf[max(dZ,H(φ(T ), φ′(T ′)), dZ(φ(ρ), φ

′(ρ′)), dZ,P (φ∗µ, φ
′
∗µ

′)],

where the infimum is taken over all pairs of isometric embeddings φ and φ′ of T and
T ′ in the same metric space (Z, dZ), dZ,H is the Hausdorff distance between closed
subsets of Z, dZ,P is the Prokhorov distance between Borel probability measures
on Z, and φ∗µ and φ′∗µ

′ are the respective image measures of µ and µ′ by φ and
φ′.

It is well-known that dGHP makes the space TW of equivalence classes of com-
pact, rooted and measured trees (up to metric isomorphisms which preserve the
roots and measures) a compact metric space, see Evans et al. (2006) and Abraham
et al. (2013).

Defining a measure on an R-tree using nonincreasing functions. In
Stephenson (2013) was given a useful tool to define a Borel measure on a com-
pact rooted tree T . Let m be a nonincreasing function from T to [0,∞). For
x ∈ T \ {ρ}, we let,

m(x−) = lim
t→ht(x)−

m(φρ,x(t))

be the left limit of m at x. Similarly, we let

∑
m(x+) =

∑

i∈S

lim
t→ht(x)+

m(φρ,xi
(t))

be the additive right limit ofm at x, where (Ti, i ∈ S) are the connected components
of Tx \ {x} (S being a countable index set), and xi being any point of Ti for i in S.
The following was then proven in Stephenson (2013):

Proposition 4.2. Assume that, for all x ∈ T , m(x−) = m(x) >
∑
m(x+). Then

there exists a unique Borel measure µ on T such that

∀x ∈ T , µ(Tx) = m(x).
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4.2. The fragmentation tree. We can build a tree which represents the genealogy
of Π(α), as was done originally in Haas and Miermont (2004) in the monotype and
conservative case. The idea is that the lifetime of each integer n is represented by a
segment with length equal to the time it takes for this integer to be in a singleton,
and for two different integers n and m, these segments coincide up to a height equal
to the time t at which the blocks Π(n)(t) and Π(m)(t) split off. We formalise this
with this proposition:

Proposition 4.3. There exists a unique compact rooted R-tree (T , ρ, µ) equipped
with a set of points (Qn)n∈Z+ such that:

• For all n, ht(Qn) = inf{t > 0 : {n} is a block of Π(α)(t)}.

• For all n 6= m, ht(Qn ∧Qm) = inf{t > 0 : n /∈ Π
(α)
(m)(t)}.

• The set
⋃

n∈Z+

[[ρ,Qn]] is dense in T .

The construction and proof of uniqueness of T is fairly elementary and identical
to the one in the monotype case, and we refer the interested reader to sections 3.2
and 3.3 of Stephenson (2013). We will just focus on compactness here.

Lemma 4.4. For t > 0 and ε > 0, let Nε
t be the number of blocks of Π(α)(t) which

are not completely reduced to singletons by time t+ ε. Then Nε
t is finite a.s.

Proof : For all n ∈ Z+, let ζn = inf{s > 0 : Π(α)(t) ∩ Π
(α)
n (t + s) is made of

singletons}. By self-similarity, conditionally on FΠ
(α)

t , ζn has the same distribution

as |Π
(α)
n (t)|−αζ̃, where ζ̃ is an independent copy of ζ, under P

i
(α)
n (t)

. By Proposi-

tion 3.14, we know that there exist two constants A > 0 and B > 0 such that, for
all j ∈ [K] and t > 0

Pj[ζ > t] 6 Ae−Bt

We can then bound the conditional expectation of Nε
t :

Ei[N
ε
t | FΠ

(α)

t ] = Ei

[ ∑

n∈Z+

1
{|Π

(α)
n (t)|−αζ̃>ε}

| FΠ
(α)

t

]

6
∑

n∈Z+

Pin(t)

[
ζ̃ > ε|Π(α)

n (t)|α | FΠ
(α)

t

]

6 A
∑

n:|Π
(α)
n (t)|>0

e−Bε|Π
(α)
n (t)|α .

Letting C = sup
x>0

Ax−1/αe−Bx, which is finite since α < 0, we have

Ei[N
ε
t | Ft] 6 Cε1/α

∑

n

|Π(α)
n (t)| 6 Cε1/α,

which implies that Nε
t is a.s. finite. �

Proof that T is compact. We follow the idea of the proof of Haas and Miermont
(2004, Lemma 5). Let ε > 0, we will provide a finite covering of the set {Qn, n ∈
Z+} by balls of radius 4ε, of which the compactness of T follows. For n ∈ Z+,
take k ∈ Z+ such that kε < ht(Qn) 6 (k + 1)ε. Then, for any m such that
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kε < ht(Qm) 6 (k+1)ε and m ∈ Π(n)

(
(k− 1)ε∨0

)
, we have d(Qn, Qm) 6 4ε. This

lets us define our covering : for k ∈ Z+, consider the set

Bεk = {n ∈ Z+ : kε < ht(Qn) 6 (k + 1)ε}

of integers which are not yet in a singleton by time kε, but which are by time (k+1)ε.
By Lemma 4.4, we know that, for k > 1, the number of blocks of Π(α)((k−1)ε))∩Bεk
is finite, and less than or equal toNε

(k−1)ε. Considering one integerm per such block,

taking the ball of center Qm and radius 4ε yields a covering of {Qn, n ∈ Bεk}. We
then repeat this for all k with 1 6 k 6 ζ/ε (noticing that Bεk is empty for higher
k), and finally for k = 0, add the ball centered at Qm for any k ∈ Bε0 if it is
nonempty. �

For k ∈ Z+ and t 6 ht(Qk), we let Qk(t) = φρ,Qk
(t) be the unique ancestor of

Qk with height t.

Proposition 4.5. There exists a unique measure µ on T such that (T , µ) is a
measurable random compact measured R-tree and, a.s., for all n ∈ Z+ and t > 0,

µ(TQk(t)) = |Π
(α)
(k) (t

−)|. (4.1)

Proof : The existence of a measure which satisfies (4.1) is assured by Proposition 4.2.
The fact that (T , µ) is then measurable for the Borel σ-algebra associated to the
Gromov-Hausdorff-Prokhorov topology comes from writing it as the limit of discre-
tised versions, see Stephenson (2013). �

4.3. Consequences of the Malthusian hypothesis. In this section we assume the ex-
istence of a Malthusian exponent p∗, as well as the stronger assumption (Mq) for
some q > 1.

4.3.1. A new measure on T . For all n ∈ Z+ and t, s > 0, let

Mn,t(s) =
1

bi

∑

m:Πm(t+s)⊆Π(n)(t)

bim(t+s)|Πm(t+ s)|p
∗

.

By the Markov and fragmentation properties, we now that, conditionally on FΠ
t ,

Π(t+ ·)∩Π(n)(t) is a homogeneous fragmentation of the block Π(n)(t) with the same

characteristics
(
α, (ci)i∈[K], (νi)i∈[K]

)
. With this point of view, the process Mn,t(·)

is, its additive martingale, multiplied by the FΠ
t -measurable constant

bin(t)

bi
|Πn(t)|

p∗.
As such it converges a.s. and in Lq to a limit Wn,t. By monotonicity, we can also
define the left limit Wn,t− .

Proposition 4.6. On an event with probability one, Wn,t and Wn,t− exist for all
n ∈ Z+ and t > 0, and there exists a.s. a unique measure µ∗ on T , fully supported
by the leaves of T , such that, for all n ∈ Z+ and t > 0,

µ∗(TQn(t)) =W
n,τ

(−α)
n (t)−

This is proved as Theorem 4.1 of Stephenson (2013) in the monotype case, and
the same proof applies to our case without modifications, so we do not reproduce
it here.
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Note that the total mass of µ∗, which is the limit of the additive martingale, is
not necessarily 1, but its expectation is equal to 1. Thus we can use it to create
new probability distributions.

4.3.2. Marking a point with µ∗. It was shown in Stephenson (2013) that, in the
monotype case, the measure µ∗ is intimately linked with the biasing described in
Section 3.4. As expected, this also generalises here.

Proposition 4.7. For a leaf L of the fragmentation tree T and t > 0, let Π
(α)

L (t)

be the K-type partition such that (Z+ \ {1})∩Π
(α)

L (t) = (Z+ \ {1})∩Π
(α)

(t), and 1
is in the same block as an integer n if and only if ht(L ∧Qn) > t. Then let ΠL(t)
be the partition such that (Z+ \ {1}) ∩ ΠL(t) = (Z+ \ {1}) ∩ Π(t), and 1 is put in

the block of any n such that 1 is also in (ΠαL)(n)(r) with t = τ
(α)
n (r).

We then have, for any non-negative measurable function F on D,

Ei

[∫

T

F (ΠL)dµ
∗(L)

]
= E

∗
i [F (Π)],

where the measure P
∗
i was defined in Section 3.4.

Proof : Assume first that the function F can be written as F (π̄) = K
(
π̄(s), 0 6 s 6

t
)
, for a certain t > 0 and K a function on Dt. For n ∈ Z+ and s 6 t, let Ψ

n
(s) be

the same partition as Π(s), except that 1 is put in the same block as any integer
m with m ∈ Πn(t). We can then write

∫

T

F (ΠL)dµ
∗(L) =

∑

n

Wn,t F
(
Ψ
n
(s), 0 6 s 6 t)

)
.

Recall that we can write Wn,t =
bin(t)

bi
|Πn(t)|

p∗Xn,t, where, conditionally on

in(t), Xn,t is the limit of the additive martingale for an independent version of the
process under Pin(t). Hence for any j ∈ [K], Ei[Xn,t | Ft, in(t) = j] = 1, implying
Ei[Xn,t | Ft] = 1, and thus

Ei

[ ∫

T

F (ΠL)dµ
∗(L)

]
= E

[∑

n

bin(t)
bi

|Πn(t)|
p∗Xn,t F

(
Ψ
n
(s), 0 6 s 6 t)

)]

=
1

bi
E

[∑

n

bin(t)|Πn(t)|
p∗F

(
Ψ
n
(s), 0 6 s 6 t

)]

= E
•
i

[
F
(
Ψ
n
(s), 0 6 s 6 t

)]

= E
∗
i

[
F
(
Ψ
n
(s), 0 6 s 6 t

)]
.

A measure theory argument then extend this to any D-measurable function F ,
as done in the proof of Proposition 5.3 in Stephenson (2013).

�

Corollary 4.8. For any p ∈ R, we have

Ei

[ ∫

T

(ht(L))pdµ∗(L)
]
= Ei[I

p
|α|ξ],

where
(
ξt, Jt), t > 0

)
a MAP with Bernstein matrix Φ∗ and I|α|ξ is the exponential

functional of |α|ξ.
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Proof : Apply Proposition 4.7 to the function F defined by

F (π̄) =
(
inf{t > 0 : |π1(t)| = 0}

)p
.

Recalling that, under P∗
i ,
(
|Π1(t), i1(t)), t > 0

)
is the α-self-similar Lamperti trans-

form of a MAP with Bernstein matrix Φ∗. We then know from Section 2.5 that its
death time has the distribution of I|α|ξ, ending the proof. �

4.3.3. The biased tree. We give here a few properties of the tree built from Π under
the distribution P

∗
i .

• The spine decomposition obtained at the end of Section 3.4 helps give a sim-
ple description of the tree. Keeping in line with the Poisson point process

notation from that section, as well as the time-changes τ
(α)
n for n ∈ Z+, the

tree is first made of a spine, which represents the lifetime of the integer 1,

and has length (τ
(α)
1 )−1(∞). The leaf at the edge of this segment is the point

Q1 from Section 4.2. On this spine are then attached many rescaled inde-

pendent copies of T . Specifically, for t > 0 such that |Π
(α)
1 (t)| < |Π

(α)
1 (t−)|,

the point of height t of the spine is (usually) a branchpoint: for all n > 2

such that |
(
∆(1,i

(α)
1 (t−))(t)

)
n
| 6= 0, we graft a subtree T ′

n,t which can be writ-

ten as
(
|Π

(α)
1 (t−)||

(
∆(1,i1(t

−))(τ1(t))
)
n
|
)−α

T ′, where T ′ is an independent

copy of T under P
δ
(1,i1(t−))
n (τ1(t))

.

• Under P∗
i , T is still compact. This is because the result of Lemma 4.4 still

holds: of all the blocks of Π(α) present at a time t, only the one containing
the integer 1 will behave different from the case of a regular fragmentation
process, and so all but a finite number of them will have been completely
reduced to dust by time t + ε a.s. for a ε > 0. From this, the proof of
compactness is identical.

• We can use the spine decomposition to define µ∗. For each pair (t, n) such
that T ′

n,t is grafted on the spine, the subtree comes with a measure µ∗
n,t

which can be written as |Π1(t
−)|p

∗

|
(
∆(1,i1(t

−))(t)
)
n
|p

∗

(µ∗)′, where (µ∗)′ is
an independent copy of µ∗ under P

δ
(1,i1(t−))
n (τ1(t))

. We then let

µ∗ =
∑

n,t

µ∗
n,t.

4.3.4. Marking two points. We will be interested in knowing what happens when
we mark two points “independently” with µ∗, specifically we care about the distri-
bution of the variable ∫

T

∫

T

F (T , L, L′)dµ∗(L)dµ∗(L′),

where F is a nonnegative measurable function on the space of compact, rooted,
measured and 2-pointed trees (equipped with an adapted GHP metric - see for
example Miermont (2009), Section 6.4).

The next proposition shows that, in a sense, marking two leaves with µ∗ under
Pi is equivalent to taking the tree under P∗

i and marking the leaf at the end of the
spine as well as another chosen according to µ∗.



On the exponential functional of MAPs 1283

Proposition 4.9. We have

Ei

[ ∫

T

∫

T

F (T , L, L′)dµ∗(L)dµ∗(L′)
]
= E

∗
i

[ ∫

T

F (T , Q1, L
′)dµ∗(L′)

]

Proof : Start by defining the processes Π
(α)

L and ΠL under Pi, as in the proof
of Proposition 4.7. We know that ΠL fully encodes T and L, and with a little
extra information, it can also encode the other leaf L′ : for all t 6 ht(L′), let

n
(α)
L′ (t) be the smallest n 6= 1 such that L′ ∈ TQn(t), and for any t > 0, nL′(t) =

n
(α)
L′

(
(τ

(α)

n(α)(t)
)−1(t)

)
. Then (T , L, L′) is the image of

(
(ΠL(t), nL′(t)), t > 0

)
by a

measurable function.
Thus, up to renaming functions, we are reduced to proving that

Ei

[ ∫

T

∫

T

F
(
(ΠL(t), nL′(t)), t > 0

)
dµ∗(L)dµ∗(L′)

]

= E
∗
i

[ ∫

T

F
(
(Π, nL′(t)), t > 0

)
dµ∗(L′)

]

From there we can proceed similarly as in the proof of Proposition 4.7. Assume
that F

(
(π̄(s), n(s)), s > 0

)
can be written as K

(
(π̄(s), n(s)), s 6 t

)
for some t > 0

and a measurable function K on the appropriate space, then we split the integral
with respect to dµ∗(L′) according to which block of ΠL(t) the integer nL′(t) is in:

∫

T

∫

T

F
(
(ΠL(s), nL′(s)), s > 0

)
dµ∗(L)dµ∗(L′)

=

∫

T

∑

n∈Z+

Wn(t),tK
(
(ΠL(s), n(s)), s 6 t

)
dµ∗(L).

In the right-hand side, n(s) is defined as the smallest integer of the block of
ΠL(s) which contains the n-th block of ΠL(t). Now, Proposition 4.7 tells us that
the expectation of the right-hand side is equal to

E
∗
i

[ ∑

n∈Z+

Wn(t),tK
(
(Π(s), n(s)), s 6 t

)]
,

and hence is also equal to

E
∗
i

[ ∫

T

K
(
(Π(s), nL′(s)), s 6 t

)
dµ∗(L′)

]
,

which is what we wanted. Another measure theory argument then generalizes this
to all functions F . �

5. Hausdorff dimension of T

Let (M,d) be a compact metric space. For F ⊆M and γ > 0, we let

mγ(F ) = sup
ε>0

inf
∑

i∈I

diam(Ei)
γ ,

where the infimum is taken over all the finite or countable coverings (Ei, i ∈ I) of
F by subsets with diameter at most ε. The Hausdorff dimension of F can then be
defined as

dimH(F ) = inf{γ > 0 : mγ(F ) = 0} = sup{γ > 0 : mγ(F ) = ∞}.
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We refer to Falconer (2003) for more background on the topic.
The aim of this section is to establish the following theorem, which gives the

exact Hausdorff dimension of the set of leaves of the fragmentation tree, which we
call L(T ).

Theorem 5.1. Assume that there exists p ∈ [0, 1] such that λ(p) < 0. Then there
exists a Malthusian exponent p∗ and, a.s., if Π does not die in finite time, then

dimH(L(T )) =
p∗

|α|
.

We recall that, in the conservative cases where ci = 0 for all i and νi preserves
total mass for all i, we have p∗ = 1 and so the dimension is 1

|α| .

The proof of Theorem 5.1 will be split in three parts: first we show that

dimH(L(T )) is upper-bounded by p∗

|α| , then we show the lower bound in some

simpler cases, and finally get the general case by approximation.

5.1. Upper bound. Recall that, for p > 0, we have defined λ(p) = −λ(−Φ(p − 1))
and that it is a strictly increasing and continuous function of p. The following
lemma then implies the upper-bound part of Theorem 5.1.

Proposition 5.2. Let p > 0 such that λ(p) > 0. Then we have, a.s.,

dimH(L(T )) 6
p

|α|
.

Proof : We will exhibit a covering of the set of leaves by small balls such that the
sum of the p

|α| -th powers of their radiuses has bounded expectation as the covering

gets finer. Fix ε > 0, and for n ∈ Z+, let

tεn = inf{t > 0 : |Π
(α)
(n)(t)| < ε}.

We use these times to define another exchangeable partition Π
ε
, such that the block

of Π
ε
containing an integer n is Π

(α)

(n)(t
ε
n). Consider also, still for an integer n, the

time

ζεn = inf{t > 0 : Πε(n) ∩ Πα(tεn + t) is made of singletons}.

We can now define our covering: for one integer n per block of Πε, take a closed
ball centered at point Qn(t

ε
n) and with radius ζεn.

Let us check that this indeed a covering of the leaves of T . Let L be a leaf, and,
for t < ht(L), let n(t) be the smallest integer n such that the point of height t of
the segment [0, L] is Qn(t). If L = Qn for some n then n(t) is eventually constant,
and then L is trivially in the ball centered at Qn(t

ε
n) with radius ζεn. If not, then

n(t) tends to infinity as t tends to ht(L), and |Π(n(t))(t)| reaches 0 continuously.
Thus we take the first time t such that |Π(n(t))(t)| < ε, then t = tεn(t) and L is in

the ball centered at Qn(t)(t) with radius ζεn(t).

The covering is also fine in the sense that supn ζ
ε
n goes to 0 as ε goes to 0. Indeed,

if that wasn’t the case, one would have a sequence (nl)l∈Z+ and a positive number η

such that ζ2
−l

nl
> η for all n. By compactness, one could then take a limit point x of

the sequence (Qnl
(t2

−l

nl
))l∈Z+ . x would not be a leaf (by compactness, the subtree

rooted at x has height at least η), so we would have x = Qm(t) for some m ∈ Z+

and t < ht(Qm), hence |Π
(α)
(m)(t)| > 0, a contradiction since |Π

(α)
(nl)

(t2
−l

nl
)| tends to 0.
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By the extended fragmentation property at the stopping line (tεn, n ∈ Z+), con-

ditionally on Π
ε
, the various ζεn are independent, and for each n, ζεn is equal in

distribution to |Πε(n)|
|α| times an independent copy of ζ (under Piε

(n)
). Thus we can

write, summing in the following only one integer n per block of Πε,

Ei

[
∑

n

(ζε(n))
p

|α|

]
6 Ei

[
∑

n

Eiεn

[
ζp/|α|

]
|Πε(n)|

p

]

6 sup
j∈[K]

Ej

[
ζp/|α|

]
Ei

[
∑

n

|Πε(n)|
p

]
.

We know from Proposition 3.14 that sup
j∈[K]

Ej

[
ζp/|α|

]
is finite, so we only need to

check that the other factor is bounded as ε tends to 0. Since Πε is exchangeable,
we have

Ei

[
∑

n

|Πǫn|
p

]
= Ei

[
|Πǫ1|

p−11{|Πǫ
1|6=0}

]

= Ei

[
|Π1(Tǫ)|

p−11{|Π1(Tǫ)|6=0}

]

6 Ei

[
|Π1(T

−
0 )|p−1

]
,

where Tǫ = inf{t, |Π1(t)| 6 ǫ} and T0 = inf{t, |Π1(t)| = 0}. We have thus reduced
our problem to a question about moments of a MAP - recall that |Π1(T

−
0 )| = e−ξT− ,

where
(
(ξt, Jt), t > 0

)
is a MAP with Bernstein matrix Φ defined in (3.3), and T is

its death time. Proposition 2.5 then says that, for p such that −λ(−Φ(p− 1)) > 0,
i.e. such that λ(p) > 0, Ei[e

−ξ
T− ] is finite, and this ends our proof.

�

5.2. The lower bound in a simpler case. We prove the lower bound for dislocation
measures such that splittings occur at finite rates, and splittings are at most N -ary
for some N ∈ Z+.

Proposition 5.3. Assume that:

• The fragmentation is Malthusian, with Malthusian exponent p∗.

• For all i ∈ [K], νi

({
s2 > 0

})
<∞.

• There exists N ∈ Z+ such that, for all i ∈ [K], νi

({
sN+1 > 0

})
= 0.

(Mq) is then automatically satisfied for all q > 1. Moreover, a.s., if Π does not die
in finite time, we have

dimH(L(T )) >
p∗

|α|

Proof : Before doing the main part of the proof, let us check (Mq): that
∣∣∣1 −

∑N
1 sp

∗

i

∣∣∣
q

is νi-integrable for all i. Write

1−
N∑

n=1

sp
∗

n 6 1− sp
∗

1 6 Cp∗(1 − s1)
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where Cp∗ = sup
x∈[0,1)

1−xp∗

1−x , and also

1−

N∑

n=1

sp
∗

n > (1−N)1{s2>0}.

This gives us an upper and a lower bound of 1−
∑N

1 sp
∗

n , and so we can write

∣∣∣1−
N∑

1

sp
∗

n

∣∣∣
q

6 Cqp∗(1− s1)
q + (N − 1)q1{s2>0} 6 Cqp∗(1 − s1) + (N − 1)q1{s2>0},

and this is νi-integrable for all i ∈ [K], by assumption. (note that 1 − s1 6

1− s11{i1=i})

Now for the lower bound on the Hausdorff dimension. We want to use Frostman’s
lemma (Falconer (2003, Theorem 4.13)) for the measure µ∗: we will show that, for

γ < p∗

|α| ,

Ei

[ ∫

T

∫

T

d(L,L′)−γdµ∗(L)dµ∗(L′)
]
<∞,

which does imply that, on the event where µ∗ is not the zero measure (which is the
event where Π does not die in finite time), the Hausdorff dimension of the support

of µ∗ is larger than p∗

|α| .

By Proposition 4.9, we have

Ei

[ ∫

T

∫

T

d(L,L′)−γdµ∗(L)dµ∗(L′)
]
= E

∗
i

[ ∫

T

d(Q1, L)
−γdµ∗(L)

]
.

We can give an upper bound the right-hand side of this equation by using the
spine decomposition of T under P

∗
i given in Section 4.3.3: for appropriate n > 2

and t > 0, T ′
n,t is the n-th tree attached to the spine at the point Q1(t). If we let

Zn,t =

∫

T ′
n,t

d(L,Q1(t))
−γ

(∣∣Π1(τ1(t)−)
∣∣ ∣∣∆(1,i1(τ(t)−))

n (τ1(t))
∣∣
)p∗+αγ dµ∗(L),

we then have

E
∗
i

[ ∫

T

d(Q1, L)
−γdµ∗(L)

]
= E

∗
i

[∑

t>0

∑

n>2

∫

T ′
n,t

d(Q1, L)
−γdµ∗(L)

]

6 E
∗
i

[∑

t>0

∑

n>2

∫

T ′
n,t

d(Q1(t), L)
−γdµ∗(L)

]

= E
∗
i

[∑

t>0

∑

n>2

(
|Π1(t

−)||∆n(t)|
)p∗+αγ

Zn,t

]
.

Notice then that, by the fragmentation property, conditionally on FΠ
(α)

t , Zn,t has

the same distribution as
∫
T
ht(L)−γdµ∗(γ) under Pj , where j = δ

(1,i1(t
−))

n (t). This

is why we extend, for all j ∈ [K], the Poisson point processes (∆
(1,j)

(t), t > 0)

into
((

∆
(1,j)

(t), (Y
(j,k)
n,t )(k,n)∈[K]×{2,3,...}

)
, t > 0

)
, where, conditionally on ∆

(1,j)
(t),

the
(
Y

(j,k)
n,t

)
(k,n)∈[K]×{2,3,...}

are independent, and for each k and n, Y
(j,k)
n,t has the
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distribution of the exponential function I|α|ξ of |α|ξ where (ξ, J) is a MAP starting
at (0, k) with Bernstein matrix Φ∗. We can then write

E
∗
i

[ ∫

T

d(Q1, L)
−γdµ∗(L)

]
6 E

∗
i

[∑

t>0

∑

n>2

(
|Π1(t

−)||∆n(t)|
)p∗+αγ

Y
(i1(t

−),δn(t))
n,t

]
.

Having rewritten this in terms of a Poisson point process, and since |Π1(t
−)| and

i1(t
−) are predictable, we can directly apply the Master Formula:

E
∗
i

[ ∫

T

d(Q1, L)
−γdµ∗(L)

]

6 Ei

[ ∫ ∞

0

dt

∫

S
↓
|Π1(t

−)|p
∗+αγ

∑

n∈Z+

bins
p∗

n

∑

m 6=n

sp
∗+αγ
m Eim [I−γ|α|ξ]dνi1(t−)(s̄)

]

6 Ei

[ ∫ ∞

0

|Π1(t
−)|p

∗+αγdt
]
sup
j∈[K]

Ej [I
−γ
|α|ξ] sup

j∈[K]

∫

S
↓

∑

n∈Z+

bins
p∗

n

∑

m 6=n

sp
∗+αγ
m dνj(s̄)

6 sup
j∈[K]

bj sup
j∈[K]

Ej

[ ∫ ∞

0

e−(p∗+αγ)ξtdt
]
sup
j∈[K]

Ej [I
−γ
|α|ξ] sup

j∈[K]

∫

S
↓

∑

n∈Z+

sp
∗

n

∑

m 6=n

sp
∗+αγ
m dνj(s̄).

All that is left is to check that all the factors are finite for γ < p∗

|α| . Fix j ∈ [K]:

• By (2.2), we have Ej [e
−(p∗+αγ)ξt ] =

∑
k

(
e−tΦ

∗(p∗+αγ)
)
j,k
. Recalling from

(3.6) the definition of Φ∗, we see that the smallest real part of an eigen-

value of Φ∗(q) is positive for q > 0, thus for γ < p∗

|α| , the matrix integral∫∞

0
e−tΦ

∗(p∗+αγ)dt is well defined, and Ej [e
−(p∗+αγ)ξt ] <∞.

• Note that
(
(|α|ξt, Jt), t > 0

)
is a MAP with Berstein matrix Φ∗(|α|·). Thus,

by Proposition 2.10, Ej [I
−γ
|α|ξ] will be finite if |α|(−γ+1) > p+1−p∗, where

p = inf{p ∈ R : ∀k, l, (Φ(p))k,l > −∞}. However, with our assumptions
that the dislocation measures are finite and N -ary, p 6 −1. Indeed, for any
p > −1, we can write, fixing k ∈ [K],

( K∑

l=1

Φ(p)
)
k,l

>

∫

S
↓

(
1−

N∑

n=1

s1+pn

)
dνk (̄s)

> −

∫

S
↓

N∑

n=2

s1+pn dνk (̄s)

> −(N − 1)νk

({
s2 > 0

})

> −∞.

The fact that |α|(−γ + 1) > p + 1 − p∗ then follows readily from p 6 −1
and p∗ + αγ > 0.

• The last factor works similarly: since p∗ + αγ > 0, we can simply write
∫

S
↓

∑

n∈Z+

sp
∗

n

∑

m 6=n

sp
∗+αγ
m dνj(s̄) 6 N2νj

({
s2 > 0

})
<∞,

which ends our proof.

�
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5.3. General case of the lower bound by truncation. Most families of dislocation
measures satisfying the assumptions of Theorem 5.1 do not satisfy the stronger
ones of Proposition 5.3, however a simple truncation procedure will allow us to

bypass this problem. Fix N ∈ Z+ and ε > 0, and let GN,ε : S
↓
7→ S

↓
be defined by

GN,ǫ(s) =

{(
(s1, i1), . . . , (sN , iN), (0, 0), (0, 0), . . .

)
if s1 6 1− ǫ(

(s1, i1), (0, 0), (0, 0), . . .
)

if s1 > 1− ǫ.

Then if we let, for all i ∈ [K], νN,εi = (GN,ε)∗νi be the image measure of νi
by GN,ε, then the

(
(ci, ν

N,ε
i ), i ∈ [K]

)
, if Malthusian, satisfy the assumptions of

Proposition 5.3. To properly use this, we need some additional setup. First, we
define a natural extension of GN,ε to PN . For π̄ ∈ PZ+ which does not have

asymptotic frequencies for all its blocks, let GN,ε(π̄) = π̄ (this doesn’t matter, this
measurable event has measure 0). Otherwise, call

(
(π↓
n, i

↓
n), n ∈ Z+

)
the blocks

of π̄ with their types, ordered such that the asymptotic frequencies paired with
the types are lexicographically decreasing (if there are ties, pick another arbitrary
ordering rule, for example by least smallest element). Let then

GN,ǫ(π) =

{(
(π↓

1 , i
↓
1) . . . , (π

↓
N , i

↓
N), singletons

)
if |π↓

1 | 6 1− ǫ(
(π↓

1 , i
↓
1), singletons

)
if |π↓

1 | > 1− ǫ.

One can then easily couple a homogeneous fragmentation process Π with dislo-

cation measures (νi, i ∈ [K]) with a homogeneous fragmentation process Π
N,ε

with

dislocation measures (νN,εi , i ∈ [K]): simply build the first one from Poisson point

processes (∆
(n,j)

(t), t > 0) (for n ∈ Z+, j ∈ [K]) as usual, and the second one from

the GN,ε(∆
(n,j)

(t), t > 0). Calling the respective α-self-similar fragmentation trees

T and T N,ε, we clearly have T N,ε ⊆ T , L(T N,ε) ⊆ L(T ) and even T N,ε ⊆ T N ′,ε′

for N ′ > N, ε′ 6 ε. This implies in particular that dimH(L(T N,ε)) 6 dimH(L(T )).
Proving Theorem 5.1 can then be done by establishing two small lemmas which
show that the truncation procedure provides a good approximation.

Let ΦN,ε(p) be the Bernstein matrix corresponding to the tagged fragment of
ΠN,ε:

ΦN,ε(p) =
(
ci(p+ 1)

)
diag

+

(∫

S
↓

(
1{i=j} −

N∑

n=1

s1+pn 1{in=j}

)
1{s161−ε}νi(ds̄)

)

i,j∈[K]

+

(∫

S
↓

(
1{i=j} − s1+p1 1{i1=j}

)
1{s1>1−ε}νi(ds̄)

)

i,j∈[K]

.

It is straightforward to see that, for fixed p this decreases with N , increases with
ε, and that its infimum (i.e. limit as N goes to infinity and ε to 0) is Φ(p). By
Proposition 2.3, if we let λN,ε(p) = −λ(−ΦN,ε(p − 1)), then λN,ε(p) also with N ,
decreases with ε, and its supremum is λ(p).

Lemma 5.4. (i) For N large enough and ε small enough, ΠN,ε is Malthusian,
and we call its Malthusian exponent p∗N,ε.

(ii) p∗N,ε is an increasing function of N and a decreasing function of ε.

(iii) p∗ = sup
N∈Z+

ε>0

p∗N,ε
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Proof : For (i), take p such that λ(p) < 0, which exists by the main assumption of
Theorem 5.1. Then, for N large enough and ε small enough, we have λN,ε(p) < 0.
Since λN,ε(1) > 0 (a fact which is true for any fragmentation), continuity of the
eigenvalue guarantees that there exists p∗n,ε such that λn,ε(p

∗
N,ε) = 0.

For (ii), takeN ′ > N and ε′ 6 ε, we have by (v) of Proposition 2.3 λN ′,ε′(p
∗
N,ε) 6

0, hence p∗N ′,ε′ > p∗N,ε.

To prove (iii), take p < p∗, then since λN,1/N (p) converges to λ(p) < 0, we have
λN,ε(p) < 0 for N large enough and ε small enough, implying p < p∗N,ε. This shows
that p∗ = sup

N∈Z+

ε>0

p∗N,ε. �

Lemma 5.5. Almost surely, if Π does not die in finite time, then, for N large
enough and ε small enough, the same holds for ΠN,ε.

Proof : For i ∈ [K], N ∈ Z+ and ε > 0, let q
(i)
N,ε be the probability that ΠN,ε

reduces to dust in finite time when starting from type i, and let q(i) be the same

for Π. Showing that q
(i)
N,1/N converges to q(i) will prove the lemma.

As with Lemma 3.10, this is a basic result on Galton-Watson processes which
easily extends to the multi-type setting. For N ∈ Z+, ε > 0, n ∈ Z+ and j ∈ [K],

let Z
(j)
N,ε(n) be the number of blocks of type j of Π

N,ε
(n). Letting ZN,ε(n) =

(
Z

(1)
N,ε(n), . . . , Z

(K)
N,ε (n)

)
, we have defined a multi-type Galton-Watson process, of

which we call fN,ε the generating function and its probabilities of extinction are

qN,ε = (q
(1)
N,ε, . . . , q

(K)
N,ε ). One easily sees that fN,1/N is nonincreasing in N and

converges to f on [0, 1]K , where f is the generating function corresponding to the
non-truncated process, as in the proof of Lemma 3.10. By compactness, this con-
vergence is in fact uniform on [0, 1]K .

Assume supercriticality for (Z(n), n ∈ Z+) (otherwise the lemma is empty).
This implies supercriticality of (ZN,1/N (n), n ∈ Z+) for N large enough. In-
deed, shortly, supercriticality means that the Perron eigenvalue of the matrix
M =

(
Ei[Z(1)

(j)]
)
i,j∈[K]

is strictly greater than 1, and by monotonicity and con-

tinuity of this eigenvalue (Proposition 2.3), this will also be true for MN,ε =(
Ei[Z(1)

(j)
N,ε]

)
i,j∈[K]

. This implies q
(i)
N,1/N < 1 for N large enough, and since the

sequence is non-increasing, it stays bounded away from 1. Taking the limit in the
relation fN,1/N(qN,1/N ) = qN,1/N then yields that, for any subsequential limit q′,
we have f(q′) = q′, and thus q′ = q by Harris (1963, Corollary 1 of Theorem
7.2). �

Appendix A. Proofs of examples of the Malthusian hypothesis

A.1. Proof of Example 3.7. Notice that, for i ∈ [K],

(
Φ(q − 1)1

)
i
= ciq +

∫

S
↓

(
1−

∑

n∈Z+

sqn
)
dνi(s̄) = 0.

Thus 1 is an eigenvector of Φ(q− 1) for the eigenvalue 0. By Proposition 2.3, point
(ii), this implies λ(q) = 0. �
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A.2. Proof of Example 3.8. Let p ∈ [0, 1]. For i ∈ [K], let

fi(p) =

∫

S
↓

N∑

n=1

spndνi(s̄).

By assumption, fi is continuous and nonincreasing, and we have fi(1) 6 1 6 fi(0).
In fact, by our non-degeneracy assumption at the start of Section 3.2, there is at
least one i such that fi is strictly decreasing. Also by assumption, we have, for
i, j ∈ [K]:

(
Φ(p− 1)

)
i,j

=





1 if j = i

−fi(p) if j = i+ 1

0 otherwise

Studying Φ(p− 1) is then straightforward: (I−Φ(p− 1))K =
(∏K

i=1 fi(p)
)
I, which

implies that Φ(p− 1) is diagonalisable and

λ(p) = 1−
( K∏

i=1

fi(p)
)1/K

.

One then readily obtains λ(0) 6 0 6 λ(1), and thus there exists p∗ such that
λ(p∗) = 0 by the intermediate value theorem. More precisely, if p > max p∗i , then
fi(p) 6 1 for all i, and the inequality is strict for at least one i, which implies
p∗ 6 max p∗i . A similar argument shows that p∗ > min p∗i . �
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2, 191–212 (2005). ISSN 1549-5787. MR2178044.

P. Carmona, F. Petit and M. Yor. On the distribution and asymptotic results
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