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Abstract. We construct a class of one-dimensional diffusion processes on the par-
ticles of branching Brownian motion that are symmetric with respect to the limits
of random martingale measures. These measures are associated with the extended
extremal process of branching Brownian motion and are supported on a Cantor-like
set. The processes are obtained via a time-change of a standard one-dimensional
reflected Brownian motion on R+ in terms of the associated positive continuous
additive functionals.

The processes introduced in this paper may be regarded as an analogue of the
Liouville Brownian motion which has been recently constructed in the context of a
Gaussian free field.

1. Introduction

Over the last years diffusion processes in random environment, constructed by a
random time-change of a standard Brownian motion in terms of singular measures,
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appeared in several situations. One prime example is the so-called FIN-diffusion
(for Fontes, Isopi and Newman) introduced in Fontes et al. (2002) which appears for
instance as the annealed scaling limit for one-dimensional trap models (see Fontes
et al., 2002; Ben Arous and Černý, 2005, 2006) and for the one-dimensional random
conductance model with heavy-tailed conductances (see Černý, 2011, Appendix A).
Another example is the Liouville Brownian motion, recently constructed in Garban
et al. (2016); Berestycki (2015) as the natural diffusion process in the random
geometry associated with two-dimensional Liouville quantum gravity.

In this paper we add one more class of examples to the collection. We consider a
time change given by the right-continuous inverse of the positive continuous additive
functional whose Revuz measure is the limit of certain random martingale measures
that appear in the description of the extremal process of a branching Brownian
motion (BBM for short). As a result we obtain a pure jump diffusion process on
a Cantor-like set representing the positions of the BBM particles in the underlying
Galton-Watson tree.

Branching Brownian motion has already been introduced in Moyal (1957); Sko-
rohod (1964) in the late 1950s and early 1960s. It is a continuous-time Markov
branching process on a probability space (Ω,F ,P) which is constructed as follows.
We start with a continuous-time Galton-Watson process (see e.g. Athreya and Ney,
1972) with branching mechanism pk, k ≥ 1, normalised such that

∑∞
i=1 pk = 1,∑∞

k=1 kpk = 2 and K =
∑∞

k=1 k(k − 1)pk < ∞. At any time t we may label the
endpoints of the process i1(t), . . . , in(t)(t), where n(t) is the number of branches at
time t. Observe that by our choice of normalisation we have that En(t) = et. BBM
is then constructed by starting a Brownian motion at the origin at time zero, run-
ning it until the first time the GW process branches, and then starting independent
Brownian motions for each branch of the GW process starting at the position of
the original BM at the branching time. Each of these runs again until the next
branching time of the GW occurs, and so on.

We denote the positions of the n(t) particles at time t by x1(t), . . . , xn(t)(t). Note
that, of course, the positions of these particles do not reflect the position of the
particles “in the tree”.

Remark 1.1. By a slight abuse of notation, we also denote by xk(s) for s < t the
particle position of the ancestor of the particle ik(t) at time s.

Setting m(t) :=
√
2t − 3

2
√
2
log(t), Bramson (1978, 1983), and Lalley and Sellke

(1987) showed that

lim
t↑∞

P

(
max
k≤n(t)

xk(t)−m(t) ≤ x

)
= E

[
e−CZe−

√
2x
]
, (1.1)

for some constant C, where Z := limt↑∞ Zt is the P-a.s. limit of the derivative
martingale

Zt :=
∑

j≤n(t)

(
√
2t− xj(t))e

√
2(xj(t)−

√
2t), t ≥ 0. (1.2)

For 0 < r < t a truncated version of the derivative martingale

Zr,t(v) :=
∑

j≤n(t)

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t)1l{γ(xj(r))≤v}, v ∈ R+, (1.3)

has been introduced in Bovier and Hartung (2017). Here we denote by γ an em-
bedding of the particles {1, . . . , n(t)} into R+, which encodes the positions of the
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particles in the underlying Galton-Watson tree respecting the genealogical distance
(see Section 2.2 below for the precise definition). In a sense, the embedding γ
is a natural continuous-time analogue of the well-established encoding of binary
branching processes in discrete time, where the leaves of tree are identified with
binary numbers. The random measure on R+ associated with Zr,t is given by

Mr,t :=
∑

j≤n(t)

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t)δγ(xj(r)). (1.4)

In Bovier and Hartung (2017) it has been shown that the vague limit

M = lim
r↑∞

lim
t↑∞

Mr,t exists P-a.s. (1.5)

Furthermore, in Bovier and Hartung (2017, Theorem 3.1) an extended convergence
result of the extremal process has been proven, namely

n(t)∑

k=1

δ(γ(xk(t),xk(t)−m(t)) ⇒
∑

i,j

δ
(qi,pi)+(0,∆

(i)
j

)
, on R+ × R, as t ↑ ∞, (1.6)

where (qi, pi)i∈N are the atoms of a Cox process on R+ ×R with intensity measure

M(dv) × Ce−
√
2xdx and (∆

(i)
j )i,j are the atoms of independent and identically

distributed point processes ∆(i) with

∆(1) D
= lim

t↑∞

n(t)∑

i=1

δx̃i(t)−maxj≤n(t) x̃j(t), (1.7)

where x̃(t) is a BBM conditioned on maxj≤n(t) x̃j(t) ≥
√
2t. Recall that in Arguin

et al. (2013); Aı̈dékon et al. (2013) it was already shown that
∑n(t)

k=1 δxk(t)−m(t)

converges to the Poisson cluster process given by the projection of the limit in (1.6)
onto the second coordinate.

1.1. Results. Let (Ω′, (Bs)s≥0,G, (Gs)s≥0, (Px)x∈R+) denote a one-dimensional re-
flected standard Brownian motion B on R+. Recall that B is reversible w.r.t.
the Lebesgue measure dx on R+. Then, the positive continuous additive functional
(PCAF) of B having Revuz measure Mr,t (see Appendix 2.1 for definitions) is given
by Fr,t : [0,∞) → [0,∞) defined as

Fr,t(s) :=

∫

R+

La
s Mr,t(da) =

n(t)∑

j=1

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t)Lγ(xj(r))

s , (1.8)

where {La, a ∈ R} denotes the family of local times of B. Further, we define

F (s) :=

∫

R+

La
s M(da), s ≥ 0. (1.9)

Theorem 1.2. P-a.s., the following hold.

(i) There exist a set Λ ⊂ Ω′ with Px[Λ] = 1 for all x ∈ R+ on which

F = lim
r↑∞

lim
t↑∞

Fr,t, in sup-norm on [0, S], (1.10)

for any S > 0. In particular, F is continuous, increasing and satisfies
F (0) = 0 and lims→∞ F (s) = ∞.
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(ii) The functional F is the (up to equivalence) unique PCAF of B with Revuz
measure M .

Definition 1.3. We define the process B as the time-changed Brownian motion

B(s) := BF−1(s), s ≥ 0, (1.11)

where F−1 denotes the right-continuous inverse of the PCAF F in (1.9).

By the general theory of time changes of Markov processes, in particular cf.
Fukushima et al. (2011, Theorem 6.2.1), B is a right-continuous strong Markov pro-
cess on suppM , which is M -symmetric and induces a strongly continuous transition
semigroup. Note that the empty set is the only polar set for the one-dimensional
Brownian motion, so the measure M does trivially not charge polar sets. Further,
for any 0 < r < t set

Br,t(s) := BF−1
r,t (s)

, s ≥ 0, (1.12)

where F−1
r,t denotes the right-continuous inverse of Fr,t. Then, as r and t tend

to infinity, the processes Br,t converge in law towards B on the Skorohod space
D((0,∞),R+) equipped with L1

loc-topology (see Theorem 4.1 below). In a sense
Br,t may be regarded as a random walk on the leaves of the underlying Galton-
Watson tree. In addition, we also provide an approximation result for B in terms
of random walks on a lattice (see Theorem 4.5 below).

Similarly to the above procedure, for any σ ∈ (0, 1), one obtains a measure Mσ

from a truncation of the McKean martingale

Y σ
t :=

n(t)∑

i=1

e
√
2σxk(t)−(1+σ2)t, t ≥ 0. (1.13)

Then one can define the process Bσ as Bσ(s) := B(Fσ)−1(s) with F σ being the
PCAF associated with Mσ. We refer to Section 5 for further details.

A diffusion process being similar to but different from B is the FIN-diffusion
introduced in Fontes et al. (2002). It is a one-dimensional singular diffusion in
random environment given by a random speed measure ρ =

∑
i viδyi

, where (yi, vi)
is an inhomogeneous Poisson point process on R × (0,∞) with intensity measure
dy αv−1−α dv for α ∈ (0, 1). Let FFIN be the PCAF

FFIN(s) :=

∫

R

La
s(W ) ρ(da) (1.14)

with {La(W ), a ∈ R} denoting the family of local times of a one-dimensional Brow-
nian motion W . Then, the FIN-diffusion {FIN(s), s ≥ 0} is the diffusion process
defined as the time change FIN(s) := W(FFIN)−1(s) of the Brownian motion W . At
first sight the measure ρ and the process FIN resemble strongly M and B, respec-
tively. However, one significant difference is that ρ is a discrete random measure
with a set of atoms being dense in R, so that ρ has full support R and FIN has
continous sample paths (see Fontes et al., 2002 or Ben Arous and Černý, 2006,
Proposition 3.2), while the measure M is concentrated on a Cantor-like set and the
sample paths of B have jumps.

Another prominent example for a log-correlated process is the Gaussian Free
Field (GFF) on a two-dimensional domain. In a sense the processes B or Bσ intro-
duced in this paper can be regarded as the BBM-analogue of the Liouville Brownian
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motion (LBM) recently constructed in Garban et al. (2016) and in a weaker form
in Berestycki (2015). More precisely, let X denote a (massive) GFF on a domain
D ⊆ R

2, then in the subcritical case the analogue of the martingale measure Mσ

can be constructed by using the theory of Gaussian multiplicative chaos established
in Kahane (1985) (see also Rhodes and Vargas, 2014 for a review). On a formal
level the resulting so-called Liouville measure on D is given by

eγX(z)−γ2

2 E[X(z)2] dz, γ ∈ (0, 2). (1.15)

The associated PCAF FLBM, which can formally be written as

FLBM(s) =

∫ s

0

eγX(Wr)− γ2

2 E[X(Wr)
2] dr, (1.16)

where W denotes a two-dimensional standard Brownian motion on the domain D,
has been constructed in Garban et al. (2016) (cf. also Andres and Kajino, 2016,
Appendix A). Then, the Liouville Brownian motion {LBM(s), s ≥ 0} is defined as
LBM(s) := WF−1

LBM(s).

In the critical case γ = 2 the corresponding analogue of the derivative martingale
measure M can be interpreted as being given by

−
(
X(z)− 2E[X(z)2]

)
e2(X(z)−E[X(z)2]) dz, (1.17)

which has been introduced in Duplantier et al. (2014a,b). The corresponding PCAF
and the critical Liouville Brownian motion have been constructed in Rhodes and
Vargas (2015). In the context of a discrete GFF such measures have been studied
in Biskup and Louidor (2014, 2016, 2018), where in Biskup and Louidor (2016) an
analogue of the extended convergence result in (1.6) has been established.

However, a major difference between the processes B and LBM is that for the
LBM the functional FLBM and the planar Brownian motion W are independent (cf.
Garban et al., 2016, Theorem 2.21), while in the present paper the functional F
and the Brownian motion B are dependent since L is the local time of B. A similar
phenomenon can be observed in the context of trap models, where in dimension
d = 1 the underlying Brownian motion and the clock process of the FIN diffusion
are dependent and in dimension d ≥ 2 the Brownian motion and the clock process of
the scaling limit, known as the so-called fractional kinetics motion, are independent.

In Croydon et al. (2017) time-changes of stochastic processes and their discrete
approximations are considered in a quite general framework for the case when the
underlying process is point recurrent, meaning that it can be described in terms
of its resistance form (examples include the one-dimensional standard Brownian
motion or Brownian motion on tree-like spaces and certain low-dimensional frac-
tals). The results cover the FIN-diffusion and a one-dimensional version of the
LBM. However, the results of the present paper do not immediately follow from
the approximation result in Croydon et al. (2017) since the required convergence
of the measures Mr,t towards M in the Gromov-Hausdorff-vague topology on the
non-compact space R+ needs to be verified.

The rest of the paper is organised as follows. In Section 2 we first recall the
definitions of a PCAF and its Revuz measure and we provide the precise definition
of the embedding γ and the (truncated) critical martingale measures. Then we
prove Theorem 1.2 in Section 3 and we specify some properties of the process B,
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in particular we describe its Dirichlet form. In Section 4 we show random walk
approximations of B. In Section 5 we sketch the construction of the process Bσ

associated with the martingale measure obtained from the McKean martingale.
Finally, in the appendix we collect some properties of Brownian local times needed
in the proofs.

2. Preliminaries

2.1. Additive functionals and Revuz measures. First we briefly recall the definition
of an additive functional of a symmetric Markov process and some of its main
properties, for more details on this topic see e.g. Fukushima et al. (2011); Chen
and Fukushima (2012). Let E be a locally compact separable metric space and
let m be a positive Radon measure on E with supp(m) = E. We consider an m-
symmetric conservative Markov process (Ω′,G, (Gt)t≥0, (Xt)t≥0, (Px)x∈E) and de-
note by {θt}t≥0 be the family of shift mappings on Ω′, i.e. Xt+s = Xt ◦ θs for
s, t ≥ 0.

Definition 2.1. i) A [0,∞]-valued stochastic process A = (At)t≥0 on (Ω′,G) is
called a positive continuous additive functional (PCAF) of X (in the strict sense),
if At is Gt-measurable for every t ≥ 0 and if there exists a set Λ ∈ G, called a
defining set for A, such that

a) for all x ∈ E, Px[Λ] = 1,
b) for all t ≥ 0, θt(Λ) ⊂ Λ,
c) for all ω ∈ Λ, [0,∞) ∋ t 7→ At(ω) is a [0,∞)-valued continuous function

with A0(ω) = 0 and

At+s(ω) = At(ω) +As ◦ θt(ω), ∀s, t ≥ 0. (2.1)

ii) Two such functionals A1 and A2 are called equivalent if Px[A
1
t = A2

t ] = 1 for
all t > 0, x ∈ E, or equivalently, there exists a defining set Λ ∈ G∞ for both A1

and A2 such that A1
t (ω) = A2

t (ω) for all t ≥ 0, ω ∈ Λ.
iii) For any such A, a Borel measure µA on E satisfying

∫

E

f(y)µA(dy) = lim
t↓0

1

t

∫

E

Ex

[∫ t

0

f(Bs) dAs

]
m(dx) (2.2)

for any non-negative Borel function f : E → [0,∞] is called the Revuz measure of
A, which exists uniquely by general theory (see e.g. Chen and Fukushima, 2012,
Theorem A.3.5).

We recall that for a given a Borel measure µA charging no polar sets a PCAF
A satisfying (2.2) exists uniquely up to equivalence (see e.g. Fukushima et al.,
2011, Theorem 5.1.3). Observe that in the present setting where m is invariant the
measure µA is already characterised by the simpler formula

∫

E

f(y)µA(dy) =

∫

E

Ex

[∫ 1

0

f(Bs) dAs

]
m(dx). (2.3)

2.2. Definition of the embedding. We start by recalling the definition of the embed-
ding γ given in Bovier and Hartung (2017) which is a slight variant of the familiar
Ulam-Neveu-Harris labelling (see e.g. Hardy and Harris, 2006). We denote the set
of (infinite) multi-indices by I ≡ Z

N
+, and let F ⊂ I be the subset of multi-indices
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Figure 2.1. Construction of T̃ : The green nodes were introduced
into the tree ‘by hand’.

that contain only finitely many entries different from zero. Ignoring leading zeros,
we see that

F = ∪∞
k=0Z

k
+, (2.4)

where Z0
+ is either the empty multi-index or the multi-index containing only zeros.

We encode a continuous-time Galton-Watson process by the set of branching
times, {t1 < t2 < · · · < tW (t) < . . . }, where W (t) denotes the number of branching
times up to time t, and by a consistently assigned set of multi-indices for all times
t ≥ 0. To do so, (for a given tree) the sets of multi-indices, τ(t) at time t, are
constructed as follows.

• {(0, 0, . . . )} = {u(0)} = τ(0).
• for all j ≥ 0, for all t ∈ [tj , tj+1), τ(t) = τ(tj).
• If u ∈ τ(tj) then u + (0, . . . , 0︸ ︷︷ ︸

W (tj)×0

, k, 0, . . . ) ∈ τ(tj+1) if 0 ≤ k ≤ lu(tj+1) − 1,

where

lu(tj) = #{ offsprings of the particle corresponding to u at time tj}. (2.5)

We use the convention that, if a given branch of the tree does not “branch” at time
tj , we add to the underlying Galton-Watson at this time an extra vertex where

lu(tj) = 1 (see Figure 2.1). We call the resulting tree T̃t.
One relates the assignment of labels in the following backward consistent way.

For u ≡ (u1, u2, u3, . . . ) ∈ Z
N
+, we define the function u(r), r ∈ R+, through

uℓ(r) ≡
{
uℓ, if tℓ ≤ r,

0, if tℓ > r.
(2.6)

Clearly, if u(t) ∈ τ(t) and r ≤ t, then u(r) ∈ τ(r). This allows to define the boundary
of the tree at infinity by ∂T ≡ {u ∈ I : ∀t < ∞, u(t) ∈ τ(t)}. In this way we identify
each leaf of the Galton-Watson tree at time t, ik(t) with k ∈ {1, . . . , n(t)}, with
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some multi-label uk(t) ∈ τ(t). We define the embedding γ by

γ(u(t)) ≡
W (t)∑

j=1

uj(t)e
−tj . (2.7)

For a given u, the function (γ(u(t)), t ∈ R+) describes a trajectory of a particle in
R+, which converges to some point γ(u) ∈ R+, as t ↑ ∞, P-a.s. Hence also the sets
γ(τ(t)) converge, for any realisation of the tree, to some (random) set γ(τ(∞)).

Recall that in BBM there is also the position of the Brownian motion xk(t) of
the k-th particle at time t. Thus to any “particle” at time t we can now associate
the position (γ(uk(t)), xk(t)), in R+ × R. Hoping that there will not be too much
confusion, we will identify γ(uk(t)) with γ(xk(t)).

2.3. The critical martingale measure. A key object is the derivative martingale Zt

defined in (1.2). Recall the following result proven in Lalley and Sellke (1987).

Lemma 2.2. The limit Z := limt→∞ Zt exists P-a.s. and mini≤n(t)(
√
2t−xi(t)) →

∞ as t → ∞ P-a.s.

For 0 < r < t the truncated version

Zr,t(v) :=
∑

j≤n(t)

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t)1l{γ(xj(r))≤v}, v ∈ R+, (2.8)

has been recently introduced in Bovier and Hartung (2017). In particular, by Bovier
and Hartung (2017, Lemma 3.2) for every v ∈ R+ the limit

Z(v) := lim
r↑∞

lim
t↑∞

Zr,t(v) (2.9)

exists P-a.s. Consider now the associated measures on R+ given by

Mr,t :=
∑

j≤n(t)

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t)δγ(xj(r)), (2.10)

and denote by M the Borel measure on R+ defined via M([0, v]) = Z(v) for all
v ∈ R+. Then, (2.9) implies that P-a.s.

M = lim
r↑∞

lim
t↑∞

Mr,t vaguely. (2.11)

By Bovier and Hartung (2017, Proposition 3.2) M is P-a.s. non-atomic. Moreover,
due to the recursive structure of the underlying GW-tree M is supported on some
Cantor-like set X .

3. Approximation of the PCAF and properties of B

3.1. Proof of Theorem 1.2. Let Ω′ := C([0,∞),R) and let W = (Wt)t≥0 be the
coordinate process on Ω′ and set G0

∞ := σ(Ws; s < ∞) and G0
t := σ(Ws; s ≤ t),

t ≥ 0. Further, let {Px}x∈R be the family of probability measures on (Ω′,G0
∞)

such that for each x ∈ R, W = (Wt)t≥0 under Px is a one-dimensional Brownian
motion starting at x. We denote by {Gt}t∈[0,∞] the minimum completed admissible
filtration for W and by L(W ) = {La

t (W ), t ≥ 0, a ∈ R} the random field of local
times of W .
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Now we set Bt := |Wt|, t ≥ 0, so that (Ω′,G, (Gt)t≥0, (Bt)t≥0, (Px)x∈R+) is a
reflected Brownian motion on R+. Then, the family L ≡ L(B) = {La

t (B), t ≥
0, a ∈ R+} of local times of B is given by

La
t ≡ La

t (B) = La
t (W ) + L−a

t (W ), t ≥ 0, a ∈ R+ (3.1)

(cf. Revuz and Yor, 1999, Exercise VI.1.17).

Proposition 3.1. For P-a.e. ω, there exists τ0 = τ0(ω) such that for all t ≥ τ0 and
0 ≤ r < t the following hold.

(i) The unique PCAF of B with Revuz measure Mr,t is given by

Fr,t : [0,∞) → [0,∞) s 7→
n(t)∑

j=1

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t)Lγ(xj(r))

s . (3.2)

(ii) There exist a set Λ ⊂ Ω′ with Px[Λ] = 1 for all x ∈ R+, on which Fr,t is
continuous, increasing and satisfies Fr,t(0) = 0 and lims→∞ Fr,t(s) = ∞.

Proof : Recall that mini≤n(t)(
√
2t − xi(t)) → ∞ P-a.s. as t → ∞ by Lemma 2.2.

Then, the statement follows immediately from Lemma A.3 and Lemma A.1. �

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2 (i): Fix any environment ω ∈ Ω such that Proposition 3.1
holds and (Mr,t) converges vaguely to M on R+. In particular,

lim
r↑∞

lim
t↑∞

∫

R+

f(a)Mr,t(da) =

∫

R+

f(a)M(da) (3.3)

for all continuous functions f on R+ with compact support.
By Lemma A.1 there exists a set Λ ⊂ Ω′ with Px[Λ] = 1 for all x ∈ R+ such

that (a, t) 7→ La
t (ω

′) is jointly continuous for all ω′ ∈ Λ. In particular, for any
fixed s ∈ [0, S] we have that a 7→ La

s(ω
′) is continuous with compact support[

0, supr≤sBr(ω
′)
]
. Now, by choosing f(a) = La

s(ω
′) in (3.3) we obtain

lim
r↑∞

lim
t↑∞

∫

R+

La
s(ω

′)Mr,t(da) =

∫

R+

La
s(ω

′)M(da), (3.4)

and therefore pointwise convergence of Fr,t towards F on [0, S]. Recall that by
Proposition 3.1 the functionals Fr,t are increasing for t ≥ τ0(ω). Since pointwise
convergence of continuous increasing functions towards a continuous function on a
compact set implies uniform convergence, the claim follows. �

Remark 3.2. Alternatively, Theorem 1.2 (i) can also be derived from the result in
Stone (1963, Theorem 1 (3)).

For the identification of F as the unique PCAF with Revuz measure M we need
a preparatory lemma.

Lemma 3.3. For P-a.e. ω, there exists r0 = r0(ω) such that the following holds.
For any x ∈ R+, S > 0 and any bounded Borel measurable function f : R+ → [0,∞)

the family {
∫ S

0
f(Bs) dFr,t(s)}t≥r≥r0 is uniformly Px-integrable.
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Proof : Recall that P-a.s. Zt → Z (cf. Lemma 2.2), so for P-a.e. ω there exists
r0 = r0(ω) such that Zt ≤ 2Z for all t ≥ r0. It suffices to prove that P-a.s. for any
x ∈ R+,

sup
t≥r≥r0

Ex

[∣∣∣
∫ S

0

f(Bs) dFr,t(s)
∣∣∣
]
< ∞. (3.5)

Note that

∫ S

0

f(Bs) dFr,t(s) =
∑

j≤n(t)

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t)f(γ(xj(r)))L

γ(xj(r))
S , (3.6)

so that

Ex

[∣∣∣
∫ S

0

f(Bs) dFr,t(s)
∣∣∣
]
≤ ‖f‖∞ |Zt|Ex

[
sup
a∈R+

La
S

]
≤ 2‖f‖∞Z Ex

[
sup
a∈R+

La
S

]
,

(3.7)

and (3.5) follows from Lemma A.2. �

Proof of Theorem 1.2 (ii): Recall that only the empty set is polar for B. In partic-
ular, the measure M does trivially not charge polar sets, so by general theory (see
e.g. Chen and Fukushima, 2012, Theorem 4.1.1) the PCAF with Revuz measure M
is (up to equivalence) unique. Thus, we need show that the limiting functional F
is P-a.s. in Revuz correspondence with M . In view of (2.3) it suffices to prove that
P-a.s.

∫

R+

f(a)M(da) =

∫

R+

Ex

[∫ 1

0

f(Bs) dF (s)
]
dx (3.8)

for any non-negative Borel function f : R+ → [0,∞]. By a monotone class argument
it is enough to consider continuous functions f with compact support in R+. Note

that Ex[
∫ 1

0 f(Bs) dL
a
s ] = f(a)Ex[L

a
1 ] for any a ∈ R+ and therefore

Ex

[ ∫ 1

0

f(Bs) dFr,t(s)
]
=

∫

R+

f(a)Ex[L
a
1 ]Mr,t(da). (3.9)

By Lemma A.2 we have supa∈R+
Ex[L

a
1] < ∞ and together with Lemma A.1 this

implies that the mapping a 7→ f(a)Ex[L
a
1] is bounded and continuous on R+. Fur-

thermore, by (i) P-a.s. the sequence (dFr,t) converges weakly to dF on [0, 1], Px-a.s.
for any x ∈ R+. We take limits in t and r on both sides of (3.9), where we use
Lemma 3.3 for the left hand side and the vague convergence of Mr,t towards M for
the right hand side, and obtain

Ex

[ ∫ 1

0

f(Bs) dF (s)
]
=

∫

R+

f(a)Ex[L
a
1]M(da). (3.10)

Finally, by integrating both sides over x ∈ R+ and using Fubini’s theorem and
Lemma A.4 we get (3.8). �
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3.2. First properties of B. Recall that the process B is defined as the time-changed
Brownian motion

B(s) := BF−1(s), s ≥ 0, (3.11)

where F is the PCAF in (1.9). First, we observe that the continuity of F ensures
that the process B does not get stuck anywhere in the state space, and B does
not explode in finite time since, P×Px-a.s., lims→∞ F (s) = ∞. However, F is not
strictly increasing so that jumps occur.

More precisely, by the general theory of time changes of Markov processes we
have the following properties of B. First, in view of Fukushima et al. (2011, The-
orems A.2.12) B is a right-continuous strong Markov process on X := suppM and
by Chen and Fukushima (2012, Proposition A.3.8) we have P-a.s.

Px

[
B(s) ∈ X̃ , ∀s ≥ 0

]
= 1, ∀x ∈ X , (3.12)

where X̃ denotes the support of the PCAF F , i.e.

X̃ :=
{
x ∈ R+ : Px[R = 0] = 1

}
with R := inf{s > 0 : Fs > 0}. (3.13)

By general theory (cf. Fukushima et al., 2011, Section 5.1) we have X̃ ⊆ X (recall

that only the empty set is polar) and X \ X̃ has M -measure zero.
Furthermore,by Fukushima et al. (2011, Theorem 6.2.3) the process B is recur-

rent and by Fukushima et al. (2011, Theorem 6.2.1 (i)) the transition function
(Ps)s>0 of B given by

Psf(x) := Ex[f(B(s))], s > 0, x ∈ X , f ∈ L2(X ,M), (3.14)

determines a strongly continuous semigroup and is M -symmetric, i.e. it satisfies
∫

X
Psf · g dM =

∫

X
f · Psg dM (3.15)

for all Borel measurable functions f, g : X → [0,∞].

3.3. The Dirichlet form. We can apply the general theory of Dirichlet forms to
obtain a more precise description of the Dirichlet form associated with B. For
D = (0,∞) denote by H1(D) the standard Sobolev space, that is

H1(D) =
{
f ∈ L2(D, dx) : f ′ ∈ L2(D, dx)

}
, (3.16)

where the derivatives are in the distributional sense. On H1(D) we define the form

E(f, g) = 1

2

∫

R+

f ′ · g′ dx. (3.17)

Recall that (E , H1(D)) can be regarded as a regular Dirichlet form on L2(R+) and
the associated process is the reflected Brownian motion B on R+. By H1

e (R+)
we denote the extended Dirichlet space, that is the set of dx-equivalence classes
of Borel measurable functions f on R+ such that limn→∞ fn = f ∈ R dx-a.e. for
some (fn)n≥1 ⊂ H1(R+) satisfying limk,l→∞ E(fk − fl, fk − fl) = 0. By Chen and
Fukushima (2012, Theorem 2.2.13) we have the following identification of H1

e (D):

H1
e (D) =

{
f ∈ L2

loc(D, dx) : f ′ ∈ L2(D, dx)
}
. (3.18)
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Recall that X denotes the support of the random measure M . We define the
hitting distribution

HX f(x) := Ex

[
f(BσX )

]
, x ∈ R+, (3.19)

with σX := inf{t > 0 : Bt ∈ X} for any non-negative Borel function f on R+. Note
that the function HX f is uniquely determined by the restriction of f to the set X .
Further, by Chen and Fukushima (2012, Theorem 3.4.8), we have HX f ∈ H1

e (D)
and by Fukushima et al. (2011, Lemma 6.2.1) HX f = HX g whenever f = g M -a.e.

for any f, g ∈ H1
e (D). Therefore it makes sense to define the symmetric form (Ê , F̂)

on L2(X ,M) by
{
F̂ :=

{
ϕ ∈ L2(X ,M) : ϕ = f M -a.e. for some f ∈ H1

e (D)
}
,

Ê(ϕ, ϕ) := E(HX f,HX f), ϕ ∈ F̂ , ϕ = f M -a.e., f ∈ H1
e (D).

(3.20)

By Fukushima et al. (2011, Theorem 6.2.1) (Ê , F̂) is the regular Dirichlet form on
L2(X ;M) associated with the process B. Since X has Lebesgue measure zero,

it follows from the Beurling-Deny representation formula for Ê (see Chen and
Fukushima, 2012, Theorem 5.5.9) that B has no diffusive part and is therefore
a pure jump process.

4. Random walk approximations

4.1. Approximation by a random walk on the leaves. For any 0 < r < t we define

Br,t(s) := BF−1
r,t (s)

, s ≥ 0, (4.1)

where F−1
r,t denotes the right-continuous inverse of Fr,t. The process Br,t is taking

values in {γ(xj(r)), j ≤ n(t)} and it may therefore be regarded as a random walk on
the leaves of the underlying Galton-Watson tree represented by their values under
the embedding γ.

Let D([0,∞),R+) (or D((0,∞),R+), D([0, S],R+)) be the the space of R+-
valued càdlàg paths on [0,∞) (or (0,∞), [0, S]). We denote by dJ1 and dM1 the
metric w.r.t. Skorohod J1- and M1-topology, respectively. We refer to Whitt (2002,
Chapter 3) for the precise definitions. Further, let

D↑([0,∞),R+) :=
{
w ∈ D([0,∞),R+) : w non-decreasing, w(0) = 0

}
. (4.2)

Finally, we set

L1
loc :=

{
w ∈ D((0,∞),R+) :

∫ S

0

|w(s)| ds < ∞ for all S ≥ 0
}
, (4.3)

equipped with the topology induced by supposing

wn → w if and only if

∫ S

0

|wn(s)− w(s)| ds → 0 for all S ≥ 0. (4.4)

Note that the L1
loc-topology extends both the J1- and the M1-topology since it

allows excursions in the approximating processes which are not present in the limit
process provided they are of negligible L1-magnitude (cf. Croydon and Muirhead,
2015, Remark 1.3).
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Theorem 4.1. P-a.s., for every x ∈ R+ we have under Px,

lim
r↑∞

lim
t↑∞

Br,t = B (4.5)

in distribution on L1
loc, that is, P-a.s., for every x ∈ R+ and for all bounded con-

tinuous functions f on L1
loc,

lim
r↑∞

lim
t↑∞

Ex[f(Br,t)] = Ex[f(B)]. (4.6)

Remark 4.2. Since the measures Mr,t and M do not have full support and F−1
r,t and

F−1 have discontinuities, the locally uniform convergence of the functionals Fr,t

only implies the M1-convergence of their inverses. In such a situation the composi-
tion mapping is only continuous in the L1

loc-topology (see Lemma 4.3 below), which
is why we obtain the approximation in Theorem 4.1 in the coarser L1

loc-topology
only. We refer to Croydon et al. (2017, Corollary 1.5 (b)) for a similar result and to
Croydon and Muirhead (2015); Fontes and Mathieu (2014); Mathieu and Mourrat
(2015) for examples of convergence results for trap models in the L1

loc-topology (or
slight modifications of it).

Before we prove Theorem 4.1 we recall some facts about the continuity of the
inverse and the composition mapping on the space of càdlàg paths.

Lemma 4.3. (i) For any w1, w2 ∈ D([0, S],R+),

dM1(w1, w2) ≤ dJ1(w1, w2) ≤ sup
s∈[0,S]

|w1(s)− w2(s)|. (4.7)

(ii) Let (an) be a sequence in D↑([0,∞),R+) such that an → a in M1-topology
for some a ∈ D↑([0,∞),R+). Then, a−1

n → a−1 in D((0,∞),R+) equipped
with M1-topology, where a−1

n and a−1 denote the right-continuous inverses
of an and a, respectively.

(iii) Let (an) ⊂ D↑([0,∞),R+) and (wn) ⊂ D([0,∞),R+) such that an → a in
M1-topology for some a ∈ D↑([0,∞),R+) and wn → w in J1-topology for
some w ∈ C([0,∞),R+). Then, wn ◦ an → w ◦ a in L1

loc-topology.

Proof : For the first inequality in (4.7) we refer to Whitt (2002, Theorem 12.3.2) and
the second inequality is immediate from the definition of the J1-metric. Statement
(ii) follows from the continuity of the inverse mapping in D((0,∞),R+), see Whitt
(2002, Corollary 13.6.5). For (iii) see Croydon and Muirhead (2015, Lemma A.6).

�

Proof of Theorem 4.1: Fix an environment ω ∈ Ω such that Theorem 1.2 holds
giving that for any x ∈ R+, Px-a.s., Fr,t → F locally uniformly as first t ↑ ∞ and
then r ↑ ∞. In particular, using Lemma 4.3 (i) we have that Fr,t → F in M1-
topology Px-a.s. In particular, for all bounded ϕ acting on D([0,∞),R+) which
are continuous in M1-topology on a set with full Px-measure,

lim
r↑∞

lim
t↑∞

Ex

[
ϕ(Fr,t)

]
= Ex

[
ϕ(F )

]
. (4.8)

Now, observe that for any bounded continuous f on L1
loc,

Ex

[
f(Br,t)− f(B)

]
= Ex

[
f ◦ π(Fr,t, B)− f ◦ π(F,B)

]
, (4.9)



1390 S. Andres and L. Hartung

where

π :
(
D↑([0,∞),R+), dM1

)
×
(
D([0,∞),R+), dJ1

)
→ L1

loc (a, w) 7→ w ◦ a−1.
(4.10)

Thus Lemma 4.3 (ii) and (iii) ensure the continuity of the mapping π inM1-topology
on a set with full Px-measure. Hence, (4.6) follows from (4.8). �

Remark 4.4. In the special case x = 0 the convergence result in Theorem 4.1 can
be extended to D([0,∞),R+) equipped with L1

loc-topology. This is because the
continuity of the inverse map stated in Lemma 4.3 (ii) also holds in D([0,∞),R+)
under the additional assumption that a−1(0) = 0 (cf. Whitt, 2002, Chapter 13.6).
Note that by construction the origin is contained in X so that F−1(0) = 0 under
P0. However, an arbitrary x > 0 might not be contained in the support X of the
random measure M , in which case F−1(0) = 0 does not hold.

4.2. Approximation by random walks on a lattice. Next we provide approximation
results for B in terms of random walks on the lattice (1rZ+), r > 0. For any

0 < r < t let M̃r,t be the random measure

M̃r,t :=

∞∑

k=0

δ k
r

∑

j≤n(t)

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t) 1l{

γ(xj(t)∈[ kr ,
k+1
r )

} (4.11)

with the associated PCAF F̃r,t : [0,∞) → [0,∞) given by

F̃r,t(s) :=

∫

R+

La
s M̃r,t(da)

=

∞∑

k=0

L
k
r
s

∑

j≤n(t)

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t) 1l{

γ(xj(t))∈[ kr ,
k+1
r )

}. (4.12)

Then B̃r,t(s) := BF̃−1
r,t (s)

, s ≥ 0, defines a random walk on (1rZ+). Further, let P
rw
0

be the probability measure on D([0,∞),R+), under which the coordinate process
(Xs)s≥0 is a simple random walk on Z+ in continuous time with independent exp(1)-
distributed holding times. Define Xr,t(s) :=

1
rXr2F̃−1

r,t (s)
, s ≥ 0.

Theorem 4.5. (i) For every x ∈ R+, under the annealed law
∫
Px() dP,

lim
r↑∞

lim
t↑∞

B̃r,t = B, in distribution on L1
loc, (4.13)

that is for all bounded continuous functions f on L1
loc we have

lim
r↑∞

lim
t↑∞

E
[
Ex[f(B̃r,t)]

]
= E

[
Ex[f(B)]

]
. (4.14)

(ii) Under
∫
P rw
0 () dP, limr↑∞ limt↑∞ Xr,t = B in distribution on L1

loc, that is
for all bounded continuous functions f on L1

loc,

lim
r↑∞

lim
t↑∞

Erw
0

[
f(Xr,t)

]
= E0

[
f(B)

]
. (4.15)

Remark 4.6. The proof of Theorem 4.5 relies on the locally uniform convergence
of F̃r,t towards F in P×Px-probability, see Proposition 4.9 below. Similarly, by
using Theorem 1.2 instead, one can show that P-a.s., under P rw

0 , the processes(
1
rXr2F−1

r,t (s)

)
s≥0

converge towards B in distribution on L1
loc.
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The proof of Theorem 4.5 requires some preparations. For 0 ≤ r < t < ∞ set

Zγ
r,t :=

n(t)∑

k=1

(√
2t− xk(t)

)
e
√
2(xk(t)−

√
2t) 1l∆k

r,t
, (4.16)

where ∆k
r,t := {|γ(xk(t)− γ(xk(r))| ≤ e−r/2}. Next we show that this thinned Zγ

r,t,
which only keeps track of particles whose values under γ do not change much over
time, is close to the original measure Zr,t in probability.

Lemma 4.7. For any ε, δ > 0 there exist r0 = r0(ε) and t0 = t0(ε) such that for
any r > r0 and t > 3r ∨ t0,

P
[
|Zt − Zγ

r,t| > δ
]
< ε. (4.17)

Proof : For d ∈ R and 0 ≤ r < t ≤ u < ∞ we define the event

Ar,t,u(d) :=
{
∀k ≤ n(u) with xk(u)−m(u) > d : |γ(xk(t)) − γ(xk(r))| ≤ e−r/2

}
.

(4.18)

Let Ft := σ
{
(xk(s))1≤k≤n(s), s ≤ t

}
and for A,A ∈ R with A < A we set φ(x) :=

1l[A,A](x). We observe that for any t > 0 the martingale Zt appeared in Arguin

et al. (2012) (see Eq. (3.25) therein) in the P-a.s. limit of

lim
u↑∞

E

[
E

[
exp

(
−

n(u)∑

i=1

φ
(
xi(u)−m(u)

)) ∣∣∣Ft

]]

= ct E

[
exp

(
− C

(
e−

√
2A − e−

√
2A

)
Zt

)]
, (4.19)

where limt↑∞ ct = 1 and C is the same constant as in (1.1). Similarly, for any
0 < r < t we can consider

lim
u↑∞

E

[
exp

(
−

n(u)∑

i=1

1l∆i
r,t

φ
(
xi(u)−m(u)

))]
. (4.20)

Note that 1l∆i
r,t

is measurable with respect to Ft. Then, the limit in (4.20) can

be treated similarly as the one in Arguin et al. (2012, Eq. (3.17)). More precisely,
by repeating the analysis therein (where the sum in the analogue to Arguin et al.
(2012, Eq. (3.19)) runs over particles with |γ(xi(t)) − γ(xi(r))| ≤ e−r/2 only) we
obtain

lim
u↑∞

E

[
E

[
exp

(
−

n(u)∑

i=1

1l∆i
r,t
φ
(
xi(u)−m(u)

)) ∣∣∣Ft

]]

= c′t E
[
exp

(
− C

(
e−

√
2A − e−

√
2A

)
Zγ
r,t

)]
, (4.21)
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where limt↑∞ c′t = 1. Moreover, the expectations in (4.19) and (4.21) can be related
as follows,

E

[
exp

(
−

n(u)∑

i=1

1l∆i
r,t
φ
(
xi(u)−m(u)

))]

≥E

[
exp

(
−

n(u)∑

i=1

φ(xi(u)−m(u))
)]

≥ E

[
exp

(
−

n(u)∑

i=1

φ
(
xi(u)−m(u)

))
1lAr,t,u(A)

]

=E

[
exp

(
−

n(u)∑

i=1

1l∆i
r,t
φ
(
xi(u)−m(u)

))
1lAr,t,u(A)

]

≥E

[
exp

(
−

n(u)∑

i=1

1l∆i
r,t
φ
(
xi(u)−m(u)

))]
− P

[
(Ar,t,u(A))c

]
. (4.22)

Let ε > 0. By Bovier and Hartung (2017, Lemma 4.2) there exist r0(ε) and t0(ε)
such that for all t ≥ t0(ε) and r > r0(ε),

lim
u↑∞

P

[
(Ar,t,u(A))c

]
< ε. (4.23)

Hence, by combining (4.22) with (4.19) and (4.21) we get

c′t E
[
exp

(
− C

(
e−

√
2A − e−

√
2A

)
Zγ
r,t

)]
− ε

≤ ct E
[
exp

(
− C

(
e−

√
2A − e−

√
2A

)
Zt

)]

≤ c′t E
[
exp

(
− C

(
e−

√
2A − e−

√
2A

)
Zγ
r,t

)]
. (4.24)

Recall that Zt → Z P-a.s. as t → ∞ (cf. Lalley and Sellke, 1987), where Z is P-a.s.
positive, and limt↑∞ ct = limt↑∞ c′t = 1. Hence, for all t and r sufficiently large,

P

[∣∣∣exp
(
− C

(
e−

√
2A − e−

√
2A

)
Zγ
r,t

)
− exp

(
− C

(
e−

√
2A − e−

√
2A

)
Zt

)∣∣∣ > δ
]
< ε.

(4.25)
The claim now follows from the continuous mapping theorem since exp is injective
and continuous. �

In the next lemma we lift the statement of Lemma 4.7 on the level of the PCAFs,
meaning that with high probability the PCAFs Fr,t and F̃r,t are close to their

thinned versions F γ
r,t and F̃ γ

r,t defined by

F γ
r,t(s) :=

n(t)∑

j=1

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t)1l∆j

r,t
Lγ(xj(r))
s , (4.26)

F̃ γ
r,t(s) :=

∞∑

k=0

L
k
r
s

∑

j≤n(t)

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t) 1l∆j

r,t
1l{

γ(xj(t))∈[kr ,k+1
r )

}.

(4.27)

Lemma 4.8. For any ε, δ > 0 and any S > 0 there exist r1 = r1(ε, δ, S) and
t1 = t1(ε, δ, S) such that for all r > r1 and t > 3r ∨ t1 the following holds. There



Diffusion processes on BBM 1393

exists a set Λ1 = Λ1(ε, δ, S, r, t) ⊂ Ω× Ω′ with Px[Λ
c
1] < ε for all x ∈ R+ such that

on Λ1,

sup
s≤S

∣∣Fr,t(s)− F γ
r,t(s)

∣∣ ≤ δ, sup
s≤S

∣∣∣F̃r,t(s)− F̃ γ
r,t(s)

∣∣∣ ≤ δ. (4.28)

Proof : Recall that by Lemma 2.2 for P-a.e. ω there exists τ0 = τ0(ω) such that

mini≤n(t)

(√
2t− xi(t)

)
> 0 for all t > τ0. Further, Lemma A.2 gives that for any

ε > 0 there exists λ = λ(ε, S) such that for all x ∈ R+,

Px

[
sup
a∈R+

La
S > λ

]
< ε. (4.29)

Together with Lemma 4.7 this implies that there exist r1 = r1(ε, δ, S) and t1 =
t1(ε, δ, S) such that for all r > r1 and t > 3r ∨ t1 there is a set Λ1 = Λ1(ε, δ, S, r, t)
with Px[Λ

c] < ε for all x ∈ R+ on which

• t > τ0,
• supa∈R+

La
S ≤ λ,

• |Zt − Zγ
r,t| ≤ δ/λ.

Note that on the set Λ1,

sup
s≤S

∣∣Fr,t(s)− F γ
r,t(s)

∣∣ ≤ |Zt − Zγ
r,t| sup

s≤S
max
k≤n(t)

Lγ(xk(r))
s

≤ |Zt − Zγ
r,t| sup

a∈R+

La
S ≤ δ, (4.30)

which completes the proof of the first statement. The second statement can be
shown by similar arguments. �

In the following we will write Px := P×Px, x ∈ R+ for abbreviation.

Proposition 4.9. For every x ∈ R+ and any S > 0,

lim
r↑∞

lim
t↑∞

sup
s≤S

∣∣F̃r,t(s)− F (s)
∣∣ = 0, in Px-probability. (4.31)

Proof : In view of Theorem 1.2(i) and Lemma 4.8 it suffices to show that

lim
r↑∞

lim
t↑∞

sup
s≤S

∣∣F̃ γ
r,t(s)− F γ

r,t(s)
∣∣ = 0, in Px-probability. (4.32)

By Lemma 2.2, P-a.s., there exists τ0 such that minj≤n(t)(
√
2t − xi(t)) > 0 for all

t ≥ τ0, and for such t and any x ∈ R+ we get

sup
s≤S

∣∣F̃ γ
r,t(s)− F γ

r,t(s)
∣∣

≤
∞∑

k=0

∑

j≤n(t)

(√
2t− xj(t)

)
e
√
2(xj(t)−

√
2t) sup

s≤S

∣∣∣L
k
r
s − Lγ(xj(r))

s

∣∣∣1l∆j
r,t∩{γ(xj(t))∈[kr ,

k+1
r )}.

(4.33)

Note that on the event ∆j
r,t ∩ {γ(xj(t)) ∈

[
k
r ,

k+1
r

)
} we have

γ(xj(r)) ∈
[
k
r − e−r/2, k+1

r + e−r/2
)
, (4.34)

which implies
∣∣k
r − γ(xj(r))

∣∣ ≤ 1
r + e−r/2. Hence, by Lemma A.1(ii), Px-a.s.,

sup
s≤S

∣∣F̃ γ
r,t(s)− F γ

r,t(s)
∣∣ ≤ C1

(
1
r + e−r/2

)α
Zt. (4.35)

Recall that P-a.s. Zt → Z as t → ∞ again by Lemma 2.2, and we obtain (4.32). �
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Proof of Theorem 4.5: (i) By Proposition 4.9, F̃r,t → F locally uniformly in Px-
probability as first t ↑ ∞ and then r ↑ ∞. In particular, using Lemma 4.3 (i) we

have that F̃r,t → F in M1-topology in Px-distribution, that is for all bounded ϕ
acting on D((0,∞),R+) which are continuous in M1-topology on a set with full
Px-measure,

lim
r↑∞

lim
t↑∞

E
[
Ex[ϕ(Fr,t)]

]
= E

[
Ex[ϕ(F )]

]
. (4.36)

The claim follows now similarly as in the proof of Theorem 4.1 above.
(ii) Recall that (1rXr2s)s≥0 converges towards B ∈ C([0,∞),R+) in distribution

on D([0,∞),R+) in J1-topology. The statement now follows from Proposition 4.9
and Lemma 4.3 similarly as in the proof of (i) and Theorem 4.1 (cf. Croydon et al.,
2017, Corollary 1.5). �

5. The subcritical case

Recall that the McKean-martingale is defined as

Y σ
t :=

n(t)∑

i=1

e
√
2σxk(t)−(1+σ2)t, σ ∈ (0, 1), (5.1)

which is normalised to have mean 1. By Bovier and Hartung (2014, Theorem 4.2)
the limit

Y σ := lim
t↑∞

Y σ
t (5.2)

exists P-a.s. and in L1(P). For v, r ∈ R+ and t > r, we define a truncated version
of the McKean-martingale Y σ

t by

Y σ
r,t(v) :=

∑

j≤n(t)

e
√
2σxj(t)−(1+σ2)t1l{γ(xi(r))≤v}. (5.3)

Proposition 5.1. For each v ∈ R+ the limit

Y σ(v) := lim
r↑∞

lim
t↑∞

Y σ
r,t(v) (5.4)

exists P-a.s. In particular, 0 ≤ Y σ(v) ≤ Y σ. Moreover, Y σ(v) is increasing in v
and the corresponding Borel measure Mσ on R+, defined via Mσ([0, v]) = Y σ(v)
for all v ∈ R+, is P-a.s. non-atomic.

Proof : This follows by the same arguments as in Bovier and Hartung (2017, Propo-
sition 3.2). Observe that Y σ

r,t(v) is non-negative by definition. �

Our goal is to state an analogue to Theorem 1.2 for the subcritical case. This
will be done in Subsection 5.2 below. First we notice that in the subcritical case the
martingales Y σ with σ < 1 appear in the description of the limiting extremal process
of two speed branching Brownian motion and that the extended convergence result
can be transferred to this class of models. This is the purpose of Subsection 5.1.
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5.1. The extremal process of two-speed branching Brownian motion. Next we recall
the characterisation of the extremal process for a two-speed branching Brownian
motion established in Bovier and Hartung (2014). For a fixed time u, a two-speed
BBM is defined similarly as the ordinary BBM but at time t′ the particles move as
independent Brownian motions with variance

σ2(t′) =

{
σ2
1 , 0 ≤ t′ < bu,

σ2
2 , bu ≤ t′ ≤ u,

0 < b ≤ 1, (5.5)

where the total variance is normalised by assuming bσ2
1 + (1 − b)σ2

2 = 1. Then, if
σ1 < σ2 the limit Y σ1 of the McKean-martingale appears in the extremal process of
the two-speed BBM. More precisely, we have the following result proven in Bovier
and Hartung (2014, Theorem 1.2).

Theorem 5.2. Let x̃k(u) be a branching Brownian motion with variable speed
σ2(t′) as given in (5.5). Assume that σ1 < σ2. Then,

(i) limu↑∞ P
(
maxk≤n(u) x̃k(u)− m̃(u) ≤ y

)
= E

[
exp

(
− C(σ2)Y

σ1e−
√
2y
)]
,

where m̃(u) =
√
2u− 1

2
√
2
log u and C(σ2) is a constant depending on σ2.

(ii) The point process
∑

k≤n(u)

δx̃k(u)−m̃(u) ⇒
∑

i,j

δ
ηi+σ2Λ

(i)
j

as u ↑ ∞ in law. (5.6)

Here ηi denotes the i-th atom of a mixture of Poisson point process with

intensity measure C(σ2)Y
σ1e−

√
2ydy with C(σ2) as in (i), and Λ

(i)
j are the

atoms of independent and identically distributed point processes Λ(i), which
are the limits in law of

∑

k≤n(u)

δx̄k(u)−maxj≤n(u) x̄j(u), (5.7)

where x̄(u) is a BBM of speed 1 conditioned on maxj≤n(u) x̄j(u) ≥
√
2σ2t.

Using the embedding γ the convergence result in Theorem 5.2 can be extended
as follows.

Theorem 5.3. The point process

n(t)∑

k=1

δ(γ(uk(u)),x̃k(u)−m̃(u)) ⇒
∑

i,j

δ
(qi,pi)+(0,Λ

(i)
j

)
(5.8)

in law on R+ × R, as u ↑ ∞, where (qi, pi)i∈N are the atoms of a Cox process on

R+ × R with intensity measure Mσ1(dv) × C(σ2)e
−
√
2xdx, where Mσ1(dv) is the

random measure on R+ characterised in Proposition 5.1, and Λ
(i)
j are the atoms of

independent and identically distributed point processes Λ(i) as in Theorem 5.2 (ii).

Proof : The proof goes along the lines of the proof of Bovier and Hartung (2017,
Theorem 3.1). Note that by the localisation of the path of extremal particles given
in Bovier and Hartung (2014, Proposition 2.1) the thinning can be applied in the
same way using Bovier and Hartung (2014, Proposition 3.1) which provides the right
tail bound on the maximum. This gives an alternative way to get the convergence
of the local maxima to a Poisson point process. There the McKean-martingale Y σ1

t
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appears naturally instead of the derivative martingale and one proceeds as in the
proof of Bovier and Hartung (2017, Theorem 3.1). �

5.2. Approximation of the PCAF and the process. Similarly as in the critical case,
for any fixed σ ∈ (0, 1) we define the measure Mσ

r,t on R+ associated with Y σ
r,t by

Mσ
r,t :=

∑

j≤n(t)

e
√
2σxj(t)−(1+σ2)tδγ(xj(r)). (5.9)

Then Theorem 5.3 implies that P-a.s.

Mσ = lim
r↑∞

lim
t↑∞

Mσ
r,t vaguely. (5.10)

Again we are aiming to lift this convergence on the level of the associated PCAFs.

Proposition 5.4. Let σ ∈ (0, 1) be fixed. Then, P-a.s., for any 0 ≤ r < t the
following hold.

(i) The unique PCAF of B with Revuz measure Mσ
r,t is given by

F σ
r,t : [0,∞) → [0,∞) s 7→

n(t)∑

j=1

e
√
2σxj(t)−(1+σ2)tLγ(xj(r))

s . (5.11)

(ii) There exists a set Λ ⊂ Ω′ with Px[Λ] = 1 for all x ∈ R+, on which F σ
r,t is

continuous, increasing and satisfies F σ
r,t(0) = 0 and lims→∞ F σ

r,t(s) = ∞.

Proof : This is again a direct consequence from the properties of Brownian local
times in Lemma A.3 and A.1. Note that in this setting the positivity is clear since
exp is a positive function. �

Next we define

F σ(s) :=

∫

R+

La
s M

σ(da), s ≥ 0. (5.12)

Theorem 5.5. Let σ ∈ (0, 1) be fixed. Then P-a.s. the following hold.

(i) There exists a set Λ ⊂ Ω′ with Px[Λ] = 1 for all x ∈ R+ on which

F σ = lim
r↑∞

lim
t↑∞

F σ
r,t, in sup-norm on [0, S], (5.13)

for any S > 0. In particular, F σ is continuous, increasing and satisfies
F σ(0) = 0 and lims→∞ F σ(s) = ∞.

(ii) The functional F σ is the (up to equivalence) unique PCAF of B with Revuz
measure Mσ.

Proof : This follows by similar arguments as in the proof of Theorem 1.2 above. �

Now we define the process Bσ(s) := B(Fσ)−1(s), s ≥ 0. Similarly as explained in
Section 3.2 above for B, by the general theory of time changes of Markov processes
the process Bσ is a recurrent, Mσ-symmetric pure jump diffusion on the support
of Mσ and its Dirichlet form can be abstractly described. For 0 < r < t let

Bσ
r,t(s) := Bσ

F−1
r,t (s)

, s ≥ 0. (5.14)

Then, from Theorem 5.5 we obtain as in the critical case the convergence of the
associated process.
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Theorem 5.6. P-a.s., for every x ∈ R+ we have under Px,

lim
r↑∞

lim
t↑∞

Bσ
r,t = Bσ (5.15)

in distribution on L1
loc.

Proof : This can be shown by the same arguments as Theorem 4.1. �

Similarly as discussed for the critical case in Theorem 4.5 above, an approxima-
tion of Bσ in terms of a random walk on a lattice is also possible.

Appendix A. Brownian local times

In this section we consider Brownian local times as an example for a PCAF on
the Wiener space and recall some of their properties needed in the present paper.
Let (Ω′,G, (Gt)t≥0, (Px)x∈R) be the Wiener space as introduced in Section 2 with
coordinate process W , so that B := |W | becomes a reflected Brownian motion on
R+ with a field of local times denoted by {La

t , t ≥ 0, a ∈ R+}.
Lemma A.1. There exists a set Λ ⊂ Ω′ with Px[Λ] = 1 for all x ∈ R+ such that
for all ω′ ∈ Λ the following hold.

(i) For every a ∈ R+ the mapping t 7→ La
t is continuous, increasing and satis-

fies La
0(ω

′) = 0 and limt→∞ La
t (ω

′) = ∞. The measure dLa
t (ω

′) is carried
by the set {t ≥ 0 : Bt(ω) = a}.

(ii) The mapping (a, t) 7→ La
t (ω

′) is jointly continuous and for every α < 1/2
and T > 0 there exists C1 = C1(ω

′, α, T ) satisfying supx∈R+
Ex[C1] < ∞

such that

sup
t≤T

∣∣La
t (ω

′)− Lb
t(ω

′)
∣∣ ≤ C1 |a− b|α. (A.1)

Proof : These properties are immediate from (3.1) since the Brownian local time
L(W ) satisfies them. We refer to Revuz and Yor (1999, Chapter VI) for details,
in particular Revuz and Yor (1999, Corollary VI.2.4) for (i) and Revuz and Yor
(1999, Theorem VI.1.7 and Corollary VI.1.8)) for (ii) (cf. also Fukushima et al.,
2011, Example 5.1.1). �

Lemma A.2. For any t > 0 there exists λ0 = λ0(t) > 0 and a positive constant
C2 such that

Px

[
sup
a∈R+

La
t > λ

]
≤ C2

λ√
t
e−λ2/2t, ∀x ∈ R+, λ ≥ λ0. (A.2)

In particular, supa∈R+
La
t ∈ L2(Px) for any x ∈ R+.

Proof : In view of (3.1) it suffices to consider the local times La
t (W ) of the standard

Brownian motion W . Note that the event
{
supa∈R La

t (W ) > λ
}
does not depend

on the starting point of W . Under P0 the tail estimate in (A.2) for supa∈R L
a
t (W )

has been shown in Csáki (1989, Lemma 1). The fact that supa∈R+
La
t ∈ L2(Px)

follows from (A.2) by integration. �

Recall that in dimension one only the empty set is polar for W or B, so trivially
any σ-finite measure µ on R does not charge polar sets and by general theory
(see e.g. Chen and Fukushima, 2012, Theorem 4.1.1) there exist unique (up to
equivalence) PCAF A of W or B with µA = µ. In particular, for any a ∈ R
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the unique PCAF of W having the Dirac measure δa as Revuz measure is given
by La(W ), see Fukushima et al. (2011, Example 5.1.1) or Revuz and Yor (1999,
Proposition X.2.4). This can be easily transferred to the reflected Brownian motion.

Lemma A.3. For any a ∈ R+, the local time La is the PCAF of B with Revuz
measure δa.

Proof : We need to show that for any for any non-negative Borel function f on R+,

f(a) = lim
t↓0

1

t

∫

R+

Ex

[∫ t

0

f(Bs) dL
a
s

]
dx. (A.3)

We extend f to a function f̃ on R by setting f̃(x) := f(|x|), x ∈ R. Using that
La(W ) is the unique PCAF of W with µLa(W ) = δa and that for any x ∈ R the
measure dLa(W ) is Px- a.s. carried by the set {t : Wt = a} we have

f(a) = f̃(a) = lim
t↓0

1

t

∫

R

Ex

[∫ t

0

f̃(Ws) dL
a
s(W )

]
dx (A.4)

= lim
t↓0

1

t

∫

R+

Ex

[∫ t

0

f(Bs) dL
a
s(W )

]
dx+ lim

t↓0

1

t

∫ 0

−∞
Ex

[∫ t

0

f̃(Ws) dL
a
s(W )

]
dx.

Since La(−W ) = L−a(W ) (cf. Revuz and Yor, 1999, Exercise VI.1.17) we get

∫ 0

−∞
Ex

[∫ t

0

f̃(Ws) dL
a
s(W )

]
dx =

∫ 0

−∞
E−x

[∫ t

0

f̃(−Ws) dL
a
s(−W )

]
dx

=

∫

R+

Ex

[∫ t

0

f(Bs) dL
−a
s (W )

]
dx (A.5)

and combining this with (A.4) and (3.1) we obtain (A.3). �

Lemma A.4. For any a ∈ R+,
∫

R+

Ex[L
a
1] dx = 1. (A.6)

Proof : Recall that

Ex

[
La
1

]
= Ex

[
La
1(W )

]
+ Ex

[
L−a
1 (W )

]
= Ea

[
Lx
1(W )

]
+ Ea

[
L−x
1 (W )

]
. (A.7)

Hence, by the occupation times formula we obtain
∫

R+

Ex[L
a
1 ] dx = Ea

[ ∫ ∞

−∞
Lx
1(W ) dx

]
= 1 (A.8)

(cf. Revuz and Yor, 1999, proof of Proposition X.2.4). �

Acknowledgements

We thank Anton Bovier, Zhen-Qing Chen and Takashi Kumagai for useful dis-
cussions and valuable comments. We are grateful to an anonymous referee for very
constructive suggestions.



Diffusion processes on BBM 1399

References
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