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Abstract. Let r = r(n) be a sequence of integers such that r ≤ n and let
X1, . . . , Xr+1 be independent random points distributed according to the Gaussian,
the Beta or the spherical distribution on Rn. Limit theorems for the log-volume
and the volume of the random convex hull of X1, . . . , Xr+1 are established in high
dimensions, that is, as r and n tend to infinity simultaneously. This includes Berry-
Esseen-type central limit theorems, log-normal limit theorems, and moderate and
large deviations. Also different types of mod-φ convergence are derived. The re-
sults heavily depend on the asymptotic growth of r relative to n. For example, we
prove that the fluctuations of the volume of the simplex are normal (respectively,
log-normal) if r = o(n) (respectively, r ∼ αn for some 0 < α < 1).
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1. Introduction

In the last decades, random polytopes have become one of the most central
models studied in stochastic geometry. In particular, they have seen numerous ap-
plications to other branches of mathematics such as asymptotic geometric analysis,
compressed sensing, computational geometry, optimization or multivariate statis-
tics; see, for example, the survey articles of Bárány (2007), Hug (2013) and Reitzner
(2010) for further details and references. The focus in most works has been on mod-
els of the following type. First, we fix a space dimension n ∈ N and a probability
measure µ on Rn. Then, we let X1, . . . , Xr, where r ≥ n + 1, be independent
random points in Rn that are distributed according to µ. A random polytope Pr
now arises by taking the convex hull of the point set X1, . . . , Xr. Starting with
the seminal paper of Rényi and Sulanke (1963), the asymptotic behaviour of the
expectation and the variance of the volume or the number of faces of Pr has been
studied intensively, as r →∞, while keeping n fixed. Moreover, it has been investi-
gated whether these quantities satisfy a ’typical’ and ’atypical’ behaviour, i.e., fulfil
a central limit theorem, large or moderate deviation principles and concentration
inequalities, respectively, to name just a few topics of current research.

However, up to a few exceptions it has not been investigated what happens if
the space dimension n is not fixed, but tends to infinity. The only such exceptions
we were able to localize in the literature are the papers of Ruben (1977), Mathai
(1982), Anderson (1986) and Maehara (1980). It is shown in the first two of these
works that for any fixed r ∈ N the r-volume of the convex hull of r + 1 ≤ n + 1
independent and uniform random points of which some are in the interior of the
n-dimensional unit ball and the others on its boundary, is asymptotically normal,
as n → ∞. The third one establishes the same result in the situation where the
r points are distributed according to the so-called Beta-type distribution in the
n-dimensional unit ball. The fourth mentioned text generalizes the set-up to an
arbitrary underlying n-fold product distribution on Rn.

On the other hand, the regime in which r and n tend to infinity simultaneously
is not treated in these papers. The purpose of the present text is to close this
gap and to prove a collection of probabilistic limit theorems for the r-volume of
the convex hull of r + 1 ≤ n + 1 random points that are distributed according
to certain classes of probability distributions that allow for explicit computations,
especially focusing on different regimes of growths of the parameter r relative to
n. More precisely, we distinguish between the following three regimes. The first
one is the case where r grows like o(n) with the dimension n, which means that
r/n converges to zero, as n→∞. This of course includes the situations where r is
fixed – covering thereby the case considered in the four papers mentioned above –
or behaves like nα wir α ∈ (0, 1), to give just two examples (let us emphasize at this
point that we interpret expressions like

√
n or n/2 as b

√
nc and bn/2c, respectively,

in what follows). Secondly, the underlying situation might be the one where r is
asymptotically equivalent to αn for some α ∈ (0, 1). Lastly, we analyse the setting
where n − r = o(n), as n → ∞. In particular, for r = n we arrive in the situation
where we choose n + 1 random points and thus their convex hull is nothing but a
full-dimensional simplex in Rn.

Our paper and the results we are going to present (and which represent a ’com-
plete’ description of the high-dimensional probabilistic behaviour of the underlying
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random simplices) are organized as follows. In Section 2 we introduce the different
random point models we consider and state formulas for the moments of the volume
of the random simplices induced by the convex hulls of these point sets. By using
these moments, we are then able to derive the precise distributions of the previ-
ously mentioned volumes. In Section 3 we start with the first limit theorems. By
using the method of cumulants we give ’optimal’ Berry-Esseen bounds and moder-
ate deviation principles for the logarithmic volumes of our random simplices. Then,
we transfer the limit theorem from the log-volume to the volume itself and obtain
thereby a phase transition in the limiting behaviour depending on the choice of the
parameter r. Section 4 establishes results concerning so-called mod-φ convergence
and is also the starting point to prove the results presented in Section 5, where we
add large deviation principles to the moderate ones obtained earlier in Section 3.

2. Models, volumes and probabilistic representations

2.1. The four models. In this paper we consider convex hulls of random points
X1, X2, . . . We only consider the following four models which allow for explicit
computations. These models were identified in Miles (1971) and Ruben and Miles
(1980), respectively, see also Kabluchko et al. (2018, Section 3.4).

(a) The Gaussian model : X1, X2, . . . are i.i.d. with standard normal density

f(x) = (2π)−n/2 · e− 1
2 |x|

2

, x ∈ Rn.

(b) The Beta model with parameter ν > 0: X1, X2, . . . are i.i.d. points in the
ball of radius 1 with density

f(x) =
1

πn/2
Γ
(
n+ν

2

)
Γ
(
ν
2

) · (1− |x|2)(ν−2)/2
, x ∈ Rn, |x| < 1.

(c) The Beta prime model with parameter ν > 0: X1, X2, . . . are i.i.d. points
with density

f(x) =
1

πn/2
Γ
(
n+ν

2

)
Γ
(
ν
2

) · (1 + |x|2
)−(n+ν)/2

, x ∈ Rn.

(d) The spherical model : X1, X2, . . . are uniformly distributed on the sphere of
radius 1 centered at the origin of Rn.

Remark 2.1. Observe that in the Beta prime model the power is (n+ ν)/2 (which
depends on n) rather than just ν/2.

2.2. Moments for the volumes of random simplices and parallelotopes. Let 1 ≤ r ≤
n be an integer and X1, . . . , Xr+1 be independent random points in Rn that are
distributed according to one of the distributions introduced in Section 2.1. By Vn,r
we denote the r-dimensional volume of the simplex with vertices X1, . . . , Xr+1.
Moreover, we use the symbol Wn,r to indicate the r-dimensional volume of the
parallelotope spanned by the vectorsX1, . . . , Xr. Note that up to a factor r!,Wn,r is
the same as the r-dimensional volume of the simplex with vertices 0, X1, . . . , Xr. We
start by recalling formulas for the moments ofWn,r. Moments of integer orders can
directly be computed using the well-known linear Blaschke-Petkantschin formula
from integral geometry together with an induction argument.
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Theorem 2.2 (Moments for parallelotopes). Let Wn,r be the volume of the r-
dimensional parallelotope spanned by the vectors X1, . . . , Xr chosen according to
one of the above four models.

(a) In the Gaussian model we have, for all real k ≥ 0,

E[W2k
n,r] =

r∏
j=1

[
2k

Γ
(
n−r+j

2 + k
)

Γ
(
n−r+j

2

) ]
.

(b) In the Beta model with parameter ν > 0 we have, for all real k ≥ 0,

E[W2k
n,r] =

r∏
j=1

[
Γ
(
n−r+j

2 + k
)

Γ
(
n+ν

2

)
Γ
(
n−r+j

2

)
Γ
(
n+ν

2 + k
)].

(c) In the Beta prime model with parameter ν > 0 we have, for all real k ∈
(0, ν2 ],

E[W2k
n,r] =

r∏
j=1

[
Γ
(
n−r+j

2 + k
)

Γ
(
ν
2 − k

)
Γ
(
n−r+j

2

)
Γ
(
ν
2

) ]
.

(d) In the spherical model we have, for all real k ≥ 0,

E[W2k
n,r] =

r∏
j=1

[
Γ
(
n−r+j

2 + k
)

Γ
(
n
2

)
Γ
(
n−r+j

2

)
Γ
(
n
2 + k

)].
Proof : The formula in (a) can be concluded from Mathai (1999) or Ruben (1979).
Formula (b) is Theorem 19.2.5 from Mathai (2001), Formula (c) is Theorem 19.2.6
from Mathai (2001). Formula (d) is the limiting case of (c) for ν ↓ 0 but is actually
also contained both in Theorems 19.2.5 and 19.2.6 from Mathai (2001) because
these deal with a slightly more general model which allows for some points to be
chosen uniformly on the unit sphere. �

For simplices, the moments are very similar. The products appearing in the for-
mulas for simplices are the same as for parallelotopes, but certain additional factors
involving the Γ-function appear. Again, for moments of integer order, a direct proof
for these formulas can be carried out using the affine Blaschke-Petkantschin formula
and an induction argument (compare, for example, with the proof of Schneider and
Weil (2008, Theorem 8.2.3) for the special case of the Beta model with ν = 2 and
the spherical model.)

Theorem 2.3 (Moments for simplices). Let Vn,r be the volume of the r-dimensional
simplex with vertices X1, . . . , Xr+1 chosen according to one of the above four models.

(a) In the Gaussian model we have, for all real k ≥ 0,

E[(r!Vn,r)2k] = (r + 1)k
r∏
j=1

[
2k

Γ
(
n−r+j

2 + k
)

Γ
(
n−r+j

2

) ]
.
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(b) In the Beta model with parameter ν > 0 we have, for all real k ≥ 0,

E[(r!Vn,r)2k] =

r∏
j=1

[
Γ
(
n−r+j

2 + k
)

Γ
(
n−r+j

2

) Γ
(
n+ν

2

)
Γ
(
n+ν

2 + k
)]

×
Γ
(
n+ν

2

)
Γ
(
n+ν

2 + k
) Γ
(
r(n+ν−2)+(n+ν)

2 + (r + 1)k
)

Γ
(
r(n+ν−2)+(n+ν)

2 + rk
) .

(c) In the Beta prime model with parameter ν > 0 we have, for all real 0 ≤
k < ν

2 ,

E[(r!Vn,r)2k] =

r∏
j=1

[
Γ
(
n−r+j

2 + k
)

Γ
(
n−r+j

2

) Γ
(
ν
2 − k

)
Γ
(
ν
2

) ]

×
Γ
(
ν
2 − k

)
Γ
(
ν
2

) Γ
(

(r+1)ν
2 − rk

)
Γ
(

(r+1)ν
2 − (r + 1)k

) .
(d) In the spherical model we have, for all real k ≥ 0,

E[(r!Vn,r)2k] =

r∏
j=1

[
Γ
(
n−r+j

2 + k
)

Γ
(
n−r+j

2

) Γ
(
n
2

)
Γ
(
n
2 + k

)]

×
Γ
(
n
2

)
Γ
(
n
2 + k

) Γ
(
r(n−2)+n

2 + (r + 1)k
)

Γ
(
r(n−2)+n

2 + rk
) .

Proof : Formula (a) is Equation (70) in Miles (1971). Formula (b) is Equation (74)
in Miles (1971). Formula (c) is Equation (72) in Miles (1971). Finally, Formula
(d) is obtained from (b) by letting ν → 0. Note that the formula in Miles (1971)
contains a typo, which is corrected, for example, in Chu (1993). Also Miles (1971)
considers only integer moments. Extension to non-integer moments can be found
in Kabluchko et al. (2018+). �

Observe that the moments in the spherical case can be obtained from the mo-
ments in the Beta model by taking ν = 0 there. In fact, the uniform distribution
on the sphere is the weak limit of the Beta distribution as ν ↓ 0; see the proof of
Theorem 2.7, below. Since the proofs of our limit theorems are based on the above
formulas for the moments, we may and will consider the spherical and the Beta
models together, the former being the special case of the latter with ν = 0. We
refrain from stating the limit theorems in the Beta prime case because they are
very similar to the Beta case.

2.3. Distributions for the volumes of random simplices and parallelotopes. The pur-
pose of this section is to derive probabilistic representations for the random variables
W2
n,r and V2

n,r for the four models introduced in Section 2.1. For this, we need to
recall certain standard distributions. A random variable has a Gamma distribution
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with shape α > 0 and scale λ > 0 if its density is given by

g(t) =
λα

Γ(α)
tα−1e−λt, t ≥ 0.

Especially if α = d/2 for some d ∈ N and λ = 1/2, we speak about a χ2 distribu-
tion with d degrees of freedom. A random variable has a Beta distribution with
parameters α1 > 0, α2 > 0 if its density is

g(t) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
tα1−1(1− t)α2−1, t ∈ (0, 1).

Finally, a random variable has a Beta prime distribution with parameters α1 > 0,
α2 > 0 if its density is

g(t) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
tα1−1(1 + t)−α1−α2 , t > 0.

Note that the Beta prime distribution coincides, up to rescaling, with the Fisher F
distribution. We agree to denote by χ2

d, respectively Γα,λ, βα1,α2
, β′α1,α2

, a random

variable with χ2-distribution with d ∈ N degrees of freedom and the Gamma, Beta
or Beta prime distribution with corresponding parameters, respectively. We shall
also use the notation X ∼ Beta(α1, α2) or X ∼ Beta′(α1, α2) to indicate that a
random variable X has a Beta or a Beta prime distribution with parameters α1

and α2, respectively. Also, we agree that all such variables appearing below are
assumed to be independent. We recall that the moments (of real order k ≥ 0, as
long as they exist) of these distributions are given by:

E[χ2k
d ] = 2k

Γ
(
d
2 + k

)
Γ
(
d
2

) ,

E[βkα1,α2
] =

Γ(α1 + α2)Γ(α1 + k)

Γ(α1)Γ(α1 + α2 + k)
,

E[(β′α1,α2
)k] =

Γ(α1 + k)Γ(α2 − k)

Γ(α1)Γ(α2)
.

Using Theorem 2.2 we first obtain probabilistic representations for the volume of
random parallelotopes spanned by vectors whose distributions belong to one of the
classes introduced in Section 2.1.

Theorem 2.4 (Distributions for parallelotopes). Let Wn,r be the volume of the
r-dimensional parallelotope spanned by the vectors X1, . . . , Xr chosen according to
one of the above four models.

(a) In the Gaussian model we have W2
n,r

d
=

r∏
j=1

χ2
n−r+j.

(b) In the Beta model we have W2
n,r

d
=

r∏
j=1

βn−r+j
2 , ν+r−j2

.

(c) In the Beta prime model we have W2
n,r

d
=

r∏
j=1

β′n−r+j
2 , ν2

.
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(d) In the spherical model we have W2
n,r

d
=

r∏
j=1

βn−r+j
2 , r−j2

.

The random variables involved in the products are assumed to be independent.

The distribution of the volume of a random simplex generated by one of the four
models is more involved and can be derived from Theorem 2.3.

Theorem 2.5 (Distributions for simplices). Let Vn,r be the volume of the r-
dimensional simplex with vertices X1, . . . , Xr+1 chosen according to the one of the
above four models.

(a) In the Gaussian model we have

(r!Vn,r)2 d
= (r + 1)

r∏
j=1

χ2
n−r+j .

(b) In the Beta model we have

ξ(1− ξ)r(r!Vn,r)2 d
= (1− η)r

r∏
j=1

βn−r+j
2 , ν+r−j2

,

where ξ, η ∼ Beta(n+ν
2 , r(n+ν−2)

2 ) are random variables such that ξ is inde-
pendent of Vn,r, while η is independent of βn−r+j

2 , ν+r−j2
, j = 1, . . . , r.

(c) In the Beta prime model we have

(1 + η)r(r!Vn,r)2 d
= ξ−1(1 + ξ)r+1

r∏
j=1

β′n−r+j
2 , ν2

,

where ξ, η ∼ Beta′(ν2 ,
rν
2 ) are random variables such that η is independent

of Vn,r, while ξ is independent of β′n−r+j
2 , ν2

, j = 1, . . . , r.

(d) In the spherical model we have

ξ(1− ξ)r(r!Vn,r)2 d
= (1− η)r

r∏
j=1

βn−r+j
2 , r−j2

,

where ξ, η ∼ Beta(n2 ,
r(n−2)

2 ) are random variables such that ξ is indepen-
dent of Vn,r, while η is independent of βn−r+j

2 , r−j2
, j = 1, . . . , r.

Proof : The assertion in (a) follows directly from Theorem 2.3 (a) combined with
the fact that the kth moment of a χ2

n−r+j random variable is given by

2k
Γ(n−r+j2 + k)

Γ(n−r+j2 )
.

To prove (b) we define α1 := n+ν
2 and α2 := r(n+ν−2)

2 . Denoting by B(x, y) =
Γ(x)Γ(y)
Γ(x+y) , x, y > 0, the Beta function, we observe that, since ξ, η ∼ Beta(α1, α2),

E[(1− η)rk] =
1

B(α1, α2)

∫ 1

0

xα1−1(1− x)α2+rk−1 dx

=
B(α1, α2 + rk)

B(α1, α2)
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and

E[ξk(1− ξ)rk] =
1

B(α1, α2)

∫ 1

0

xα1+k−1(1− x)α2+rk−1 dx

=
B(α1 + k, α2 + rk)

B(α1, α2)
.

This implies that

E[(1− η)rk]

E[ξk(1− ξ)rk]
=

B(α1, α2 + rk)

B(α1 + k, α2 + rk)
=

Γ(α1 + α2 + (r + 1)k)Γ(α1)

Γ(α1 + k)Γ(α1 + α2 + rk)

=
Γ
(
r(n+ν−2)+(n+ν)

2 + (r + 1)k
)

Γ
(
n+ν

2

)
Γ
(
n+ν

2 + k
)

Γ
(
r(n+ν−2)+(n+ν)

2 + rk
)

and this is precisely the last factor in the formula for the moments, see Theo-
rem 2.3 (b).

Next, we consider (c). Since ξ, η ∼ Beta′(α1, α2) with α1 = ν
2 and α2 = rν

2 , we

apply the formula
∫∞

0
xα1−1(1 + x)−α1−α2dx = B(α1, α2) to obtain

E[(1 + η)rk] =
1

B(α1, α2)

∫ ∞
0

xα1−1(1 + x)−α1−(α2−rk)dx

=
B(α1, α2 − rk)

B(α1, α2)

and

E
[
ξ−k(1 + ξ)(r+1)k

]
=

1

B(α1, α2)

∫ ∞
0

xα1−k−1(1 + x)−α1−α2−(r+1)kdx

=
B(α1 − k, α2 − rk)

B(α1, α2)
.

It follows that

E
[
ξ−k(1 + ξ)(r+1)k

]
E[(1 + η)rk]

=
B(α1 − k, α2 − rk)

B(α1, α2 − rk)
=

Γ(α1 − k)Γ(α1 + α2 − rk)

Γ(α1 + α2 − (r + 1)k)Γ(α1)

=
Γ
(
ν
2 − k

)
Γ
(
ν
2

) Γ
(

(r+1)ν
2 − rk

)
Γ
(

(r+1)ν
2 − (r + 1)k

) ,
which is exactly the last factor in the formula for the moments given by Theo-
rem 2.3 (c).

The assertion in (d) follows as a limit case from that in (b), as ν ↓ 0. �

Remark 2.6. The distributional equality in Theorem 2.5 (a) has already been noted
by Miles (1971, Section 13). The other probabilistic representations in (b)–(d) seem
to be new.

2.4. Distance distributions. As in the previous sections let X1, . . . , Xr+1 be inde-
pendent random points that are distributed according to one of the four models
from Section 2.1. Our interest now lies in the distance from the origin to the
r-dimensional affine subspace spanned by X1, . . . , Xr+1.
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Theorem 2.7 (Distance distributions). Let X1, . . . , Xr+1 be chosen according to
one of the above four models and denote by Dn,r the distance from the origin to the
r-dimensional affine subspace spanned by X1, . . . , Xr+1.

(a) In the Gaussian model we have D2
n,r

d
= (r + 1)−1χ2

n−r.

(b) In the Beta model we have D2
n,r

d
= βn−r

2 ,
ν(r+1)+r(n−1)

2
.

(c) In the Beta prime model we have D2
n,r

d
= β′n−r

2 ,
ν(r+1)

2

.

(d) In the spherical model we have D2
n,r

d
= βn−r

2 ,
r(n−1)

2
.

Proof : The density of Dn,r in the cases (a)–(c) can be computed from a formula
on page 16 in Ruben and Miles (1980). In fact, for the Gaussian model we obtain
that Dn,r has density

h 7→ cn,r h
n−r−1 e−

h2(r+1)
2 , h > 0 ,

which implies (a). For the Beta model we obtain the density

h 7→ cn,r,ν h
n−r−1(1− h2)

r(n+1)
2 +

(r+1)(ν−2)
2 , 0 < h < 1 ,

for Dn,r and (b) follows. Next, for the Beta prime model the density of Dn,r is
given by

h 7→ cn,r,ν h
n−r−1(1 + h2)

r(n+1)
2 − (r+1)(n+ν)

2 , h > 0 ,

whence (c) follows. Finally, the spherical model follows from the Beta model in
the limit, as ν ↓ 0. In fact, since the centred ball of radius 1 can be regarded as
a compact metric space, the family of probability measures (Pν)ν>0 with densities
fν(|x|) := const(1 − |x|2)(ν−2)/2, ν > 0, is tight for each n ∈ N. Thus, (Pν)ν>0

is weakly sequentially compact, i.e., there exist weakly convergent subsequences
(Pνn)n∈N with νn ↓ 0. For each such sequence νn the limiting probability measure
is easily seen to have the following two properties: (i) it is rotation invariant and (ii)
it is concentrated on the boundary of the centred ball of radius 1, that is, the radius
1 sphere. In other words, the limit must coincide with the normalized spherical
Lebesgue measure on that sphere. Now, as ν ↓ 0 and since (x1, . . . , xr+1) 7→
dist(0, aff(x1, . . . , xr+1)) is a bounded continuous function on the (r+1)-st cartesian
power of the unit ball, the density in (d) is the limit of the density in (b). �

3. Cumulants, Berry-Esseen bounds and moderate deviations

In this section we shall concentrate on the Gaussian, the Beta and the spherical
model, for which the random variables Vn,r have finite moments of all orders for
any n ∈ N and r ≤ n.

3.1. Cumulants for logarithmic volumes. For a random variable X with E[|X|m] <
∞ for some m ∈ N, we write cm[X] for the mth order cumulant of X, that is,

cm[X] = (−i)m dm

dtm
logE[exp(itX)]

∣∣∣
t=0

, (3.1)
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where i stands for the imaginary unit. It is well known that sharp bounds for
cumulants lead to fine probabilistic estimates for the involved random variables.
For the volume of a random simplex with Gaussian or Beta distributed vertices
we shall establish the following cumulant bound. In what follows we shall write
an ∼ bn for two sequences (an)n∈N and (bn)n∈N if an/bn → 1, as n → ∞. Let us
define the random variable Ln,r := log(r!Vn,r).

Theorem 3.1. Let X1, . . . , Xr+1 be chosen according to one of the four models
presented in the previous section, and let α ∈ (0, 1).

(a) For the Gaussian model we have

ELn,r ∼
r

2
log n,

VarLn,r ∼


r

2n : r = o(n)
1
2 log 1

1−α : r ∼ αn
1
2 log n

n−r+1 : n− r = o(n)

and, for m ≥ 3,

|cm[Ln,r]| ≤

{
Cm(m− 1)!rn1−m : r = o(n) or r ∼ αn
2 (m− 1)! : for arbitrary r(n) ,

where C ∈ (0,∞) is a constant not depending on n and m.
(b) For the Beta model and the spherical model we have

VarLn,r ∼


r

2(r+1)n : r = const
r2

4n2 + 1
2n : r →∞ such that r = o(n)

1
2 log 1

1−α −
α
2 : r ∼ αn

1
2 log n

n−r+1 : n− r = o(n)

and, for all m ≥ 3 and n ≥ 3,

|cm[Ln,r]| ≤

{
Cmm!rn1−m : r = o(n) or r ∼ αn
2 · 6mm! : for arbitrary r(n) ,

where C ∈ (0,∞) is a constant not depending on n and m.

The proof of Theorem 3.1 is to some extent canonical and roughly follows Döring
and Eichelsbacher (2013a). In particular, it is based on an asymptotic analysis,
as |z| → ∞, of the digamma function ψ(z) = ψ(0)(z) := d

dz log Γ(z), and the
polygamma functions

ψ(m)(z) :=
dm

dzm
ψ(z) =

dm+1

dzm+1
log Γ(z), m ∈ N.

We start with the following lemma.

Lemma 3.2. Let m ∈ N. Then, as |z| → ∞ in | arg z| < π − ε,

ψ(z) = log z +O(1/z) and ψ(m)(z) = (−1)m−1 (m− 1)!

zm
+O(1/zm+1) . (3.2)

Moreover, for all z > 0,

|ψ(m)(z)| ≤ (m− 1)!

zm
+

m!

zm+1
. (3.3)
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Proof : The asymptotic relations can be found in Abramowitz and Stegun (1992,
pp. 259–260). To prove the inequality, note that

|ψ(m)(z)| =
∞∑
k=0

m!

(z + k)m+1
≤ m!

zm+1
+m!

∫ ∞
z

dx

xm+1
=

m!

zm+1
+

(m− 1)!

zm
,

where we estimated the sum by the integral because the function x 7→ x−(m+1),
x > 0, is decreasing. �

Lemma 3.3. As n→∞, one has

1

2

n∑
j=1

ψ

(
j

2

)
∼ n

2
log n,

1

4

n∑
j=1

ψ(1)

(
j

2

)
=

1

2
log n+ c1 + o(1), (3.4)

where c1 = 1
2 (γ + 1 + π2

8 ) with the Euler-Mascheroni constant γ. Moreover, for all
m ≥ 3,

1

2m

∣∣∣ n∑
j=1

ψ(m−1)

(
j

2

) ∣∣∣ ≤ 2(m− 1)! . (3.5)

Proof : The asymptotic relations (3.4) can essentially be found in
Döring and Eichelsbacher (2013a) (where the constant c1 has been computed ex-
plicitly). The first one follows from ψ(z) = log z +O(1/z) as z →∞ together with∑n
j=1 log j

2 ∼ n log n as n→∞. To prove the second one, write

1

4

n∑
j=1

ψ(1)

(
j

2

)
− 1

2
log n =

1

4

n∑
j=1

(
ψ(1)

(
j

2

)
− 2

j

)
+

1

2

 n∑
j=1

1

j
− log n


and observe that the series

∑∞
j=1(ψ(1)( j2 )− 2

j ) converges because ψ(1)(z)− 1
z = O( 1

z2 )

as z →∞. The claim follows since
∑n
j=1

1
j − log n converges to the Euler constant

γ.
To prove inequality (3.5), use Lemma 3.2 to get

1

2m

∣∣∣ n∑
j=1

ψ(m−1)

(
j

2

) ∣∣∣ ≤ 1

2m

∞∑
j=1

(
(m− 2)!

(j/2)m−1
+

(m− 1)!

(j/2)m

)

≤ (m− 1)!

(
1

4
ζ(2) + ζ(3)

)
for all m ≥ 3, where we used the inequality (m− 2)! ≤ 1

2 (m− 1)!. The constant in
the brackets is smaller than 2. �

Since the moments of Vn,r both, for the Gaussian and the Beta model, involve the
same product of fractions of Gamma functions, we prepare the proof of Theorem 3.1
with the following lemma. We define

Sn,r(z) :=

r∑
j=1

[
log Γ

(
n− r + j + z

2

)
− log Γ

(
n− r + j

2

)]
, z > 0.

Lemma 3.4. (a) If r = o(n) then, as n→∞,

dm

dzm
Sn,r(z)

∣∣∣
z=0
∼

{
r
2 log n : m = 1
(−1)m

2 (m− 2)! r n−(m−1) : m ≥ 2.
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(b) If r ∼ αn for some α ∈ (0, 1) then, as n→∞,

dm

dzm
Sn,r(z)

∣∣∣
z=0
∼


αn
2 log n : m = 1

1
2 log 1

1−α : m = 2
(−1)m(m−3)!

2·nm−2

(
1

(1−α)m−2 − 1
)

: m ≥ 3.

(c) If n− r = o(n) then, as n→∞,

dm

dzm
Sn,r(z)

∣∣∣
z=0
∼

{
n
2 log n : m = 1
1
2 log n

n−r+1 : m = 2.

(d) For m ≥ 2 and if r = o(n) or r ∼ αn, α ∈ (0, 1), then there is a constant
C which may depend on α (but does not depend on m,n) such that∣∣∣∣ dm

dzm
Sn,r(z)

∣∣∣
z=0

∣∣∣∣ ≤ Cm(m− 1)!rn1−m.

(e) Finally, for m ≥ 3 and without any conditions on r, we have∣∣∣∣ dm

dzm
Sn,r(z)

∣∣∣
z=0

∣∣∣∣ ≤ 2(m− 1)! .

Proof : Let us prove (a), (b), (c) for m = 1. We have

d

dz
Sn,r(z)

∣∣∣
z=0

=
1

2

r∑
j=1

ψ

(
n− r + j

2

)
=

1

2

n∑
j=1

ψ

(
j

2

)
− 1

2

n−r∑
j=1

ψ

(
j

2

)
,

and all three statements follow easily from the relation 1
2

∑n
j=1 ψ

(
j
2

)
∼ n

2 log n; see
Lemma 3.3.

Next we prove (a), (b), (c) for m ≥ 2. We have

dm

dzm
Sn,r(z)

∣∣∣
z=0

=
1

2m

r∑
j=1

ψ(m−1)

(
n− r + j

2

)
and again we can conclude (a) by using Equation (3.2) of Lemma 3.2. To prove (b)
for m = 2, apply the second asymptotics in (3.4) of Lemma 3.3 to get

d2

dz2
Sn,r(z)

∣∣∣
z=0

=
1

4

r∑
j=1

ψ(1)

(
n− r + j

2

)
=

1

2
log n+ c1 −

1

2
log(n− r)− c1 + o(1)

=
1

2
log

n

n− r
+ o(1) =

1

2
log

1

1− α
+ o(1).

To prove (b) for m ≥ 3, note that for r ∼ αn,

1

2m

r∑
j=1

ψ(m−1)

(
n− r + j

2

)
∼ 1

2m

n∑
k=n−r+1

(−1)m−2(m− 2)!

(k/2)m−1

=
(−1)m (m− 2)!

2

[ n∑
k=1

1

km−1
−
n−r∑
k=1

1

km−1

]
∼ (−1)m(m− 3)!

2 · nm−2

(
1

(1− α)m−2
− 1

)
,
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using the asymptotics for the tail of the Riemann zeta series. Finally, to prove
(c) for m = 2 use the formula 1

4

∑r
j=1 ψ

(1)
(
n−r+j

2

)
= 1

2 log n + O(1) following

from (3.4) to get

d2

dz2
Sn,r(z)

∣∣∣
z=0

=
1

4

r∑
j=1

ψ(1)

(
n− r + j

2

)
=

1

2
log n+O(1)− 1

2
log(n− r + 1)−O(1)

=
1

2
log

n

n− r + 1
+O(1) ∼ 1

2
log

n

n− r + 1

because n
n−r+1 →∞. We added the term +1 to make the formula work in the case

r = n.
Let us prove (d). Since the function |ψ(m−1)(z)| =

∑∞
k=0

(m−2)!
(z+k)m is decreasing,

we can write∣∣∣∣ dm

dzm
Sn,r(z)

∣∣∣
z=0

∣∣∣∣ =
1

2m

r∑
j=1

∣∣∣∣ψ(m−1)

(
n− r + j

2

)∣∣∣∣ ≤ r

2m

∣∣∣∣ψ(m−1)

(
n− r + 1

2

)∣∣∣∣ ,
and the claim follows from the estimates |ψ(m−1)(z)| ≤ 2 · (m − 1)!z1−m, z ≥ 1,
which is a consequence of Lemma 3.2, and n− r+ 1 > n/C for sufficiently large C.

Let us prove (e). If m ≥ 3 and r is arbitrary, we observe that the function
ψ(m−1)(z), z > 0, has the same sign as (−1)m and hence∣∣∣∣ dm

dzm
Sn,r(z)

∣∣∣
z=0

∣∣∣∣ =
1

2m

r∑
j=1

∣∣∣∣ψ(m−1)

(
n− r + j

2

)∣∣∣∣ ≤ 1

2m

n∑
j=1

∣∣∣∣ψ(m−1)

(
j

2

)∣∣∣∣ .
Then, the result follows in view of inequality (3.5) of Lemma 3.3. Thus, the proof
is complete. �

Proof of Theorem 3.1: Denote the moment generating function of Ln,r =
log(r!Vn,r) by

Mn,r(z) := E[exp(zLn,r)] = E[(r!Vn,r)z].
We start with the Gaussian model. Recalling the moment formula from Theo-
rem 2.3 (a), we see that

logMn,r(z) = Sn,r(z) +
z

2
log(r + 1) +

zr

2
log 2

and hence

dm

dzm
logMn,r(z) =

dm

dzm
Sn,r(z) + 1{m=1}

1

2
log(r + 1) + 1{m=1}

r

2
log 2

for all m ∈ N. By taking z = 0 it follows that

cm[Ln,r] =
dm

dzm
Sn,r(z)

∣∣∣
z=0

+ 1{m=1}
1

2
log(r + 1) + 1{m=1}

r

2
log 2.

Using Lemma 3.4 we immediately get the required asymptotic formulae for ELn,r =
c1[Ln,r] and VarLn,r = c2[Ln,r]. The estimates for the cumulants cm[Ln,r], m ≥ 3,
follow from Lemma 3.4 (d), (e).

Next, we consider the Beta model and prove part (b) of the theorem. Recalling
the moment formula from Theorem 2.3 (b) and denoting by Mn,r(z) again the
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moment generating function of Ln,r, we see that

logMn,r(z) = Sn,r(z) + log Γ
(r(n+ ν − 2) + (n+ ν)

2
+

(r + 1)z

2

)
+ (r + 1) log Γ

(
n+ ν

2

)
− log Γ

(r(n+ ν − 2) + (n+ ν)

2
+
rz

2

)
− (r + 1) log Γ

(
n+ ν

2
+
z

2

)
.

It follows that, for m ∈ N, dm

dzm logMn,r(z) equals

dm

dzm
Sn,r(z) +

(r + 1

2

)m
ψ(m−1)

(r(n+ ν − 2) + (n+ ν)

2
+

(r + 1)z

2

)
−
(r

2

)m
ψ(m−1)

(r(n+ ν − 2) + (n+ ν)

2
+
rz

2

)
− r + 1

2m
ψ(m−1)

(
n+ ν

2
+
z

2

)
.

(3.6)

Taking z = 0, we obtain

cm[Ln,r] =
dm

dzm
Sn,r(z)

∣∣∣
z=0

+
(r + 1

2

)m
ψ(m−1)

(r(n+ ν − 2) + (n+ ν)

2

)
−
(r

2

)m
ψ(m−1)

(r(n+ ν − 2) + (n+ ν)

2

)
− r + 1

2m
ψ(m−1)

(
n+ ν

2

)
.

(3.7)

Let us compute the asymptotics of VarLn,r = c2[Ln,r]. First we do this under
the assumption r = o(n) or r ∼ αn, where α ∈ (0, 1). The estimate n − r > εn,
which is valid for some ε > 0 and all sufficiently large n, allows us to replace all
terms of the form O( 1

n−r ) by O( 1
n ) in the following asymptotic computations. First

of all, using the formula ψ(1)(z) = 1/z +O(1/z2) as z →∞, we obtain

d2

dz2
Sn,r(z)

∣∣∣
z=0

=
1

4

r∑
j=1

ψ(1)

(
n− r + j

2

)

=
1

4

r∑
j=1

(
2

n− r + j
+O

(
1

(n− r + j)2

))
=
Hn −Hn−r

2
+O

( r
n2

)
,

where Hn =
∑n
k=1 1/k is the n-th harmonic number. Using the formula Hn =

log n + γ + 1/(2n) + O(1/n2), as n → ∞, and the similar relation for Hn−r, we
arrive at

d2

dz2
Sn,r(z)

∣∣∣
z=0

=
1

2
log

n

n− r
+

1

4

(
1

n
− 1

n− r

)
+O

(
1

n2

)
+O

( r
n2

)
=

1

2
log

n

n− r
+O

( r
n2

)
.
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Again using the formula ψ(1)(z) = 1/z +O(1/z2) as z →∞, we obtain

ψ(1)
(r(n+ ν − 2) + (n+ ν)

2

)
=

2

n(r + 1) +O(r)
+O

(
1

n2r2

)
=

2

n(r + 1)
+O

(
1

n2r

)
and

ψ(1)

(
n+ ν

2

)
=

2

n
+O

(
1

n2

)
.

Recalling (3.7) and taking everything together, we obtain

VarLn,r = c2[Ln,r] =
1

2
log

n

n− r
+

(r + 1)2 − r2

4

2

n(r + 1)
− r + 1

4

2

n
+O

( r
n2

)
=

1

2
log

n

n− r
− r2

2n(r + 1)
+O

( r
n2

)
(3.8)

= −1

2
log
(

1− r

n

)
− r

2n

1

1 + 1
r

+O
( r
n2

)
provided that r = o(n) or r ∼ αn with α ∈ (0, 1). Let us now consider some special
cases. If r ≥ 1 is constant, the Taylor expansion of the logarithm yields

VarLn,r =
r

2n
− r2

2n(r + 1)
+O

(
1

n2

)
=

r

2n(r + 1)
+O

(
1

n2

)
∼ r

2n(r + 1)
.

In the case when r →∞ but r = o(n), we use the expansions

− log
(

1− r

n

)
=
r

n
+

r2

2n2
+ o

(
r2

n2

)
and

1

1 + 1
r

= 1− 1

r
+ o

(
1

r

)
,

as n→∞, to obtain

VarLn,r =
r2

4n2
+ o

(
r2

n2

)
+

1

2n
+ o

(
1

n

)
+O

( r
n2

)
=

r2

4n2
+

1

2n
+ o

(
r2

4n2
+

1

2n

)
.

Finally, in the case when r ∼ αn with α ∈ (0, 1), (3.8) evidently implies that

lim
n→∞

VarLn,r =
1

2
log

1

1− α
− α

2
.

Let us now compute the asymptotics of VarLn,r = c2[Ln,r] in the case n− r =

o(n). Using the formula ψ(1)(z) = 1/z +O(1/z2) as z →∞, we obtain

d2

dz2
Sn,r(z)

∣∣∣
z=0

=
1

4

r∑
j=1

ψ(1)

(
n− r + j

2

)
=
Hn −Hn−r

2
+O

(
1

n

)
,

Using the formulas Hn = log n + O(1) and Hn−r = log(n − r + 1) + O(1) (where
+1 is needed to make the expression well-defined in the case r = n), we arrive at

d2

dz2
Sn,r(z)

∣∣∣
z=0

=
1

2
log

n

n− r + 1
+O(1).

By the formula ψ(1)(z) = O(1/z) as z →∞, we have

ψ(1)
(r(n+ ν − 2) + (n+ ν)

2

)
= O

(
1

n2

)
, ψ(1)

(
n+ ν

2

)
= O

(
1

n

)
.
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Plugging everything into (3.7) yields

VarLn,r = c2[Ln,r] =
1

2
log

n

n− r + 1
+O(1) ∼ 1

2
log

n

n− r + 1

because n
n−r+1 →∞, thus proving the required asymptotics of the variance.

Next we prove the bounds on the cumulants assuming that r = o(n) or r ∼ αn.
Recall from Lemma 3.4(d) the estimate∣∣∣∣ dm

dzm
Sn,r(z)

∣∣∣
z=0

∣∣∣∣ ≤ Cm(m− 1)!rn1−m.

Further, since ν ≥ 0, we have

r(n+ ν − 2) + (n+ ν)

2
≥ r(n− 2)

2
.

Since the function |ψ(m−1)(z)| is non-increasing, we have, using also the estimate
|ψ(m−1)(z)| ≤ 2 · (m− 1)!z1−m,∣∣∣∣ψ(m−1)

(r(n+ ν − 2) + (n+ ν)

2

)∣∣∣∣ ≤ ∣∣∣∣ψ(m−1)
(r(n− 2)

2

)∣∣∣∣
≤ 2m(m− 1)!r1−m(n− 2)1−m.

By the mean value theorem, we also have (r + 1)m − rm ≤ m(r + 1)m−1, hence

(r + 1)m − rm

2m

∣∣∣∣ψ(m−1)
(r(n+ ν − 2) + (n+ ν)

2

)∣∣∣∣
≤ m!

(
r + 1

r

)m−1

(n− 2)1−m

≤ 6mm!n1−m

because n − 2 ≥ n/3 for n ≥ 3. Similarly, by the non-increasing property of
|ψ(m−1)(z)| and the estimate |ψ(m−1)(z)| ≤ 2 · (m− 1)!z1−m, we have

r + 1

2m

∣∣∣∣ψ(m−1)

(
n+ ν

2

)∣∣∣∣ ≤ r + 1

2m

∣∣∣ψ(m−1)
(n

2

)∣∣∣ ≤ 2r(m− 1)!n1−m.

Recalling (3.7) and taking the above estimates together, we arrive at the required
estimate

|cm[Ln,r]| ≤ Cmm!rn1−m

for a sufficiently large constant C > 0 not depending on n and m. To prove the
bound |cm[Ln,r]| ≤ 2 · 6mm! without restrictions on r(n), we argue as above except
for using Lemma 3.4(e) to bound the derivative of Sn,r:

|cm[Ln,r]| ≤ 2(m− 1)! + 6mm!n1−m + 2r(m− 1)!n1−m ≤ 2 · 6mm!.

Finally, we consider the spherical model. Since the results for the Beta model
are independent of the parameter ν, they carry over to the spherical model which
appears as a limiting case, as ν ↓ 0. �

Remark 3.5. Let us argue that in the case when r = o(n),

VarLn,r ≥
r

2n(r + 1)
(1 + o(1)). (3.9)
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Recall (3.8). We have log n
n−r ≥

r
n , so that 1

2 log n
n−r −

r2

2n(r+1) ≥
r

2n(r+1) . Also,
r
n2 = o( r

2n(r+1) ) and we can conclude that (3.9) holds.

3.2. Berry-Esseen bounds and moderate deviations for the log-volume. We intro-
duce some terminology. One says that a sequence (νn)n∈N of probability measures
on a topological space E fulfils a large deviation principle (LDP) with speed an
and (good) rate function I : E → [0,∞], if I is lower semi-continuous, has compact
level sets and if for every Borel set B ⊆ E,

− inf
x∈int(B)

I(x) ≤ lim inf
n→∞

a−1
n log νn(B) ≤ lim sup

n→∞
a−1
n log νn(B) ≤ − inf

x∈cl(B)
I(x) ,

where int(B) and cl(B) stand for the interior and the closure of B, respectively. A
sequence (Xn)n∈N of random elements in E satisfies a LDP with speed an and rate
function I : E → [0,∞], if the family of their distributions does. Moreover, if the
rescaling an lies between that of a law of large numbers and that of a central limit
theorem, one usually speaks about a moderate deviation principle (MDP) instead
of a LDP with speed an and rate function I, see Dembo and Zeitouni (2010).

We shall say that a sequence of real-valued random variables (Xn)n∈N satisfying
E|Xn|2 <∞ for all n ∈ N fulfils a Berry-Esseen bound (BEB) with speed (εn)n∈N
if

sup
t∈R

∣∣∣P(Xn − E[Xn]√
VarXn

≤ t
)
− Φ(t)

∣∣∣ ≤ c εn ,
where c > 0 is a constant not depending on n and Φ( · ) denotes the distribution
function of a standard Gaussian random variable.

Theorem 3.6 (BEB and MDP for the log-volume). Let X1, . . . , Xr+1 be chosen
according to the Gaussian, the Beta or the spherical model.

(a) For the Gaussian model define

εn :=
1√
rn

if r = o(n) or r ∼ αn

and

εn :=
1√

log n
n−r+1

if n− r = o(n),

where α ∈ (0, 1). Then Ln,r satisfies a BEB with speed εn. Further, let
(an)n∈N be such that an →∞ and anεn → 0, as n→∞. Then Ln,r satis-

fies a MDP with speed an rate function I(x) = x2

2 .

(b) For the Beta model and the spherical model define

εn :=
1√
n

if r = c, εn :=
1

n
if r ∼ αn

and

εn :=
1√

log n
n−r+1

if n− r = o(n)

with α ∈ (0, 1) and c ∈ N. Then Ln,r satisfies a BEB with speed εn.
Further, let (an)n∈N be such that an →∞ and anεn → 0, as n→∞. Then

Ln,r satisfies a MDP with speed an rate function I(x) = x2

2 .
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Proof : Let us estimate the cumulants of the normalized random variables

L̃n,r := (Ln,r − E[Ln,r])/
√

VarLn,r.

In the Gaussian case, from Theorem 3.1 we conclude that, for m ≥ 3,

|cm[L̃n,r]| =
|cm[Ln,r]|

(VarLn,r)m/2
≤


cm1 (m−1)!

(
√
rn)m−2 : r = o(n) or r ∼ αn
cm2 (m−1)!

(
√

log n
n−r+1 )

m : n− r = o(n)

with constants c1, c2 > 0 not depending on m and n. For the Beta and the spherical
model we have the bounds

|cm[L̃n,r]| ≤


|cm[Ln,r]|

(r/(2(r+1)n))m/2
: r = o(n)

|cm[Ln,r]|
( 1
2 log( 1

1−α )−α2 )m/2
: r ∼ αn

|cm[Ln,r]|
( 1
2 log n

n−r+1 )m/2
: n− r = o(n)

≤


cm4 m! r

(
1√
n

)m−2
: r = o(n)

cm5 m!
(

1
n

)m−2
: r ∼ αn

cm6 m!

(
1√

log n
n−r+1

)m−2

: n− r = o(n)

with constants c1, . . . , c6 > 0 not depending onm and n (here, we used Remark 3.5 if
r = o(n)). The result follows now from Döring and Eichelsbacher (2013b, Theorem
1.1) and Saulis and Statulevičius (1991, Corollary 2.1) (notice, however, that in the
regime r = o(n) this argument only applies if r = c is constant). �

Remark 3.7. Starting with the cumulant bounds presented in Theorem 3.1 one can
also derive

(i) concentration inequalities,
(ii) bound for moments of all orders,

(iii) Cramér-Petrov type results concerning the relative error in the central limit
theorem,

(iv) strong laws of large numbers

for the random variables L̃n,r from the results presented in Saulis and Statulevičius
(1991, Chapter 2) (see also Grote and Thäle, 2018a,b).

Remark 3.8. Note that if in the Beta model r = o(n) we still have that L̃n,r satisfies
a central limit theorem. Indeed, the proof of Theorem 3.6 shows that in this case

we have the cumulant bound |cm[L̃n,r]| ≤ cmm!n
1
2 (2−m)+1 for all m ≥ 3 and a

constant c > 0. This implies that |cm[L̃n,r]| → 0, as n→∞, for all m ≥ 4 and so,
the central limit theorem follows.

While we were able in Theorem 3.6 to derive precise Berry-Esseen bounds by us-
ing cumulant bounds, we can state a ‘pure’ central limit theorem for the log-volume
in an even more general setup. The following result can directly be concluded by
extracting subsequences and then by applying the result of Theorem 3.6 and Re-
mark 3.8.

Corollary 3.9 (Central limit theorem for the log-volume). Let r = r(n) be an
arbitrary sequence of integers such that r(n) ≤ n for any n ∈ N. Further, let for
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each n ∈ N, X1, . . . , Xr+1 be independent random points chosen according to the
Gaussian, the Beta or the spherical model, and put Ln,r := log(r!Vn,r). Then,

Ln,r − E[Ln,r]√
VarLn,r

d−→
n→∞

Z,

where Z ∼ N (0, 1) is a standard Gaussian random variable.

3.3. Central and non-central limit theorem for the volume. After having investi-
gated asymptotic normality for the log-volume of a random simplex, we turn now
to its actual volume, that is, the random variable Vn,r.

Theorem 3.10 (Distributional limit theorem for the volume). Let X1, . . . , Xr+1

be chosen according to the Gaussian model, the Beta model or the spherical model,
and let α ∈ (0, 1). Let Z ∼ N (0, 1) be a standard Gaussian random variable.

(1) If r = o(n), then for suitable normalizing sequences an,r and bn,r the fol-
lowing convergence in distribution holds, as n→∞:

Vn,r − an,r
bn,r

d−→
n→∞

Z.

(2) If r ∼ αn for some α ∈ (0, 1), then for a suitable normalizing sequence bn,r
we have

Vn,r
bn,r

d−→
n→∞

{
e
√

1
2 log 1

1−α Z : in the Gaussian model

e
√

1
2 log 1

1−α−
α
2 Z : in the Beta or spherical model.

Remark 3.11. In the third case, i.e., if n − r = o(n), there is no non-trivial distri-
butional limit theorem for the random variable Vn,r under affine re-scaling. The
reason is that the variance of logVn,r tends to +∞ in this situation.

The main ingredient in the proof of Theorem 3.10 in the case where r = o(n) is
the so-called ’Delta-Method’, which is well known and commonly used in statistics,
cf. Bickel and Doksum (2015, Lemma 5.3.3).

Proof of Theorem 3.10: From Corollary 3.9 we know that with the sequences cn,r =

E logVn,r and dn,r =
√

Var logVn,r it holds that

logVn,r − cn,r
dn,r

d−→
n→∞

Z.

By the Skorokhod–Dudley lemma (Kallenberg, 2002, Theorem 4.30), we can con-
struct random variables V∗n,r and Z∗ on a different probability space such that

V∗n,r
d
= Vn,r, Z∗

d
= Z, and

Z∗n :=
logV∗n,r − cn,r

dn,r

a.s.−→
n→∞

Z∗.

So, we have V∗n,r = edn,rZ
∗
n+cn,r , where Z∗n → Z∗ a.s., as n→∞.

Consider first the Gaussian model in the case r ∼ αn. Then, by Theorem 3.1(a)
we have

dn,r =
√

Var logVn,r ∼
√

1

2
log

1

1− α
.
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With the aid of Slutsky’s lemma it follows that

V∗n,r
ecn,r

= edn,rZ
∗
n

a.s.−→
n→∞

e
√

1
2 log 1

1−α Z
∗
.

Passing back to the original probability space, we obtain the distributional conver-
gence

Vn,r
ecn,r

d−→
n→∞

e
√

1
2 log 1

1−α Z .

The proof for the Beta or spherical model in the case r ∼ αn is similar, only the
expression for the asymptotic variance being different.

Consider now the Gaussian model in the case r = o(n). Then, by Theorem 3.1(a),

dn,r =
√

Var logVn,r −→
n→∞

0.

Using the formula limx→0(ex − 1)/x = 1 and the Slutsky lemma, we obtain

V∗
n,r

ecn,r − 1

dn,r
=
edn,rZ

∗
n − 1

dn,rZ∗n
· Z∗n

a.s.−→
n→∞

Z∗.

Passing back to the original probability space and taking bn,r = ecn,rdn,r and
an,r = ecn,r , we obtain the required distributional convergence. The proof for the
Beta or spherical model in the case r = o(n) is similar, one only needs to take into
account that also in this case we have that

√
Var logVn,r −→

n→∞
0 by Theorem 3.1

(b). �

4. Mod-φ convergence

4.1. Definition. Mod-φ convergence is a powerful notion that was introduced and
studied in Delbaen et al. (2015); Féray et al. (2016); Jacod et al. (2011); Kowalski
et al. (2015); Kowalski and Nikeghbali (2010), to mention only some references.
Once an appropriate version of mod-φ convergence has been established, one gets
for free a whole collection of limit theorems including the central limit theorem, the
local limit theorem, moderate and large deviations, and a Cramér–Petrov asymp-
totic expansion Féray et al. (2016).

The aim of the present Section 4 is to establish mod-φ convergence for the log-
volumes of the random simplices. Note that the mod-φ convergence we establish
in the present section together with the general results from Féray et al. (2016)
also imply some of the results we proved in the previous section by means of the
cumulant method. On the other hand, we would like to emphasize that this is not
the case if r ∼ αn, for example.
There are many definitions of mod-φ convergence. Here, we use one of the strongest
ones, c.f. Féray et al. (2016, Definition 1.1). Consider a sequence of random vari-
ables (Xn)n∈N with moment generating functions ϕn(t) = E[etXn ] defined on some
strip S = {z ∈ C : c− < Re t < c+}. The sequence (Xn)n∈N converges in the mod-φ
sense, where φ is an infinite-divisible distribution with moment generating function∫∞
−∞ etxφ(dx) = eη(t), if

lim
n→∞

E[etXn ]

ewnη(t)
= ψ(t)

locally uniformly on S, where (wn)n∈N is some sequence converging to +∞, and
ψ(t) is an analytic function on S. As explained in references cited above, mod-φ
convergence roughly means that Xn has approximately the same distribution as the
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wn-th convolution power of the infinitely divisible distribution φ. The “difference”
between these distributions is measured by the “limit function” ψ that plays a
crucial role in the theory.

4.2. The Barnes G-function. The Barnes function is an entire function of the com-
plex argument z defined by the Weierstrass product

G(z) = (2π)z/2e−
1
2 (z+(1+γ)z2)

∞∏
k=1

(
1 +

z

k

)k
e
z2

2k−z,

where γ is the Euler constant. The Barnes G-function satisfies the functional equa-
tion

G(z + 1) = Γ(z)G(z).

By induction, one deduces that for all n ∈ N0,
n∏
k=1

Γ(k + z) =
G(z + n+ 1)

G(z + 1)
. (4.1)

We shall need the Stirling-type formula for G, see Barnes (1900, p. 285),

logG(z + 1) =
1

2
z2 log z − 3

4
z2 +

z

2
log(2π)− 1

12
log z + ζ ′(−1) +O(1/z), (4.2)

uniformly as |z| → +∞ such that | arg z| < π − ε, where ζ ′(−1) is the deriva-
tive of the Riemann ζ-function. The value of ζ ′(−1) can be expressed through
the Glaisher–Kinkelin constant, but it cancels in all our calculations because we
use (4.2) only via the following lemma.

Lemma 4.1. Let |z| → ∞ such that | arg z| < π− ε. Let also a = a(z) ∈ C be such
that a/z → 0. Then, we have

logG(z + a+ 1)− logG(z + 1) = a
(
z log z − z + log

√
2π
)

+
1

2
a2 log z +O

(
|a|3 + 1

z

)
.

Proof : Applying (4.2) we obtain that

logG(z + a+ 1)− logG(z + 1) =
1

2
An +Bn + Cn +Dn +O(1/z),

where

An = (z + a)2 log(z + a)− z2 log z

= (z2 + a2 + 2za)

(
log z +

a

z
− a2

2z2
+O

(
a3

z3

))
− z2 log z

= za− 1

2
a2 + a log z + 2za log z + 2a2 +O

(
a3

z

)
,

Bn = −3

4

(
(z + a)2 − z2

)
= −3

4
a2 − 3

2
za,

Cn =
1

2
a log(2π),

Dn = − 1

12
(log(z + a)− log z) = O

(a
z

)
.
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Taking everything together we get

logG(z + a+ 1)− logG(z + 1) = a
(
z log z − z + log

√
2π
)

+
1

2
a2 log z +O

(
|a|3 + 1

z

)
and complete the proof of the lemma. �

4.3. Mod-φ convergence for fixed r ∈ N. Recall that Vn,r denotes the volume of an
r-dimensional random simplex in Rn whose r+ 1 vertices are distributed according
to one of the four models presented in Section 1. We define, as usual, Ln,r :=
log(r!Vn,r). The next two propositions show that if r ∈ N is fixed, we have mod-φ
convergence.

Proposition 4.2. Fix some r ∈ N and consider the Gaussian model. Then, as
n→∞, the sequence n(Ln,r − r

2 log n− 1
2 log(r+ 1)) converges in the mod-φ sense

with η(t) = 1
2 ((t+ 1) log(t+ 1)− t) and parameter wn = rn, namely

lim
n→∞

Eetn(Ln,r− r2 logn− 1
2 log(r+1))

ernη(t)
= (t+ 1)−

r(r+1)
4

uniformly as long as t stays in any compact subset of C \ (−∞,−1).

Proof : An important formula we will often use describes the asymptotic behaviour
of the Gamma function; it can be found in Abramowitz and Stegun (1992, Eq. 6.1.39
on p. 257) or derived from the Stirling formula, and reads as follows. For fixed a > 0,
b ∈ R it holds that

Γ(az + b) ∼ (2π)1/2 exp(−az) (az)az+b−1/2, (4.3)

as |z| → ∞and | arg z| < π − ε. From the moment formula in Theorem 2.3(a) we
obtain

EetnLn,r = (r + 1)
tn
2 2

tnr
2

r∏
j=1

Γ
(

(t+1)n−r+j
2

)
Γ
(
n−r+j

2

) .

Using (4.3) we deduce that

r∏
j=1

Γ
(

(t+1)n−r+j
2

)
Γ
(
n−r+j

2

) ∼
r∏
j=1

e−
tn
2

(n
2

) tn
2

(t+ 1)
(t+1)n

2 + j−r−1
2

= e−
tnr
2

(n
2

) rtn
2

(t+ 1)

(
(t+1)n

2 − 1
2

)
r− r(r−1)

4 . (4.4)

Thus,

EetnLn,r ∼ (r + 1)
tn
2 e−

tnr
2 n

tnr
2 (t+ 1)

(
(t+1)n

2 − 1
2

)
r− r(r−1)

4 .

Taking the logarithm and subtracting r
2 log n and 1

2 log(r + 1), we conclude that

logEetn(Ln,r− r2 logn− 1
2 log(r+1)) =

nr

2

(
(t+ 1) log(t+ 1)− t

)
− r(r + 1)

4
log(t+ 1) + o(1)

(4.5)

and the result follows. �
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Remark 4.3. From the previous proof it easily follows that the asymptotic relation
(4.5) is still valid if r growths with n in such a way that r = o(n). This observation
will be used below in the context of large deviation principles.

Proposition 4.4. Fix some r ∈ N and consider the Beta or the spherical model.
Then, nLn,r converges in the mod-φ sense with

η(t) =
(r + 1)(t+ 1)

2
log((r + 1)(t+ 1))

− r(t+ 1) + 1

2
log(r(t+ 1) + 1)− t+ 1

2
log(t+ 1)

and parameter wn = n, namely

lim
n→∞

EetnLn,r
enη(t)

= (1 + t)
1−ν(r+1)

2 − r(r−1)
4

(
(r + 1)(t+ 1)

r(t+ 1) + 1

) ν(r+1)−2r−1
2

uniformly as long as t stays in any compact subset of C \ (−∞,−1).

Proof : From the moment formula in Theorem 2.3(b) we have

EetnLn,r =

r∏
j=1

[
Γ
(
n−r+j

2 + tn
2

)
Γ
(
n−r+j

2

) Γ
(
n+ν

2

)
Γ
(
n+ν

2 + tn
2

)]

×
Γ
(
n+ν

2

)
Γ
(
n+ν

2 + tn
2

) Γ
(
r(n+ν−2)+(n+ν)

2 + (r+1)tn
2

)
Γ
(
r(n+ν−2)+(n+ν)

2 + rtn
2

) .

First of all, by (4.3),

Γ
(
n+ν

2

)
Γ
(
n+ν

2 + tn
2

) ∼ (1 + t)
1
2−

ν
2−

(1+t)n
2

(n
2

)− tn2
e
tn
2 .

It follows from (4.4) that the first product in the moment formula asymptotically
behaves like

r∏
j=1

[
Γ
(
n−r+j

2 + tn
2

)
Γ
(
n−r+j

2

) Γ
(
n+ν

2

)
Γ
(
n+ν

2 + tn
2

)] ∼ (1 + t)−
rν
2 −

r(r−1)
4 .

Again using (4.3), we obtain

Γ
(
r(n+ν−2)+(n+ν)

2 + (r+1)tn
2

)
Γ
(
r(n+ν−2)+(n+ν)

2 + rtn
2

) ∼ ((r + 1)(t+ 1))
n(r+1)(t+1)

2 +
ν(r+1)−2r−1

2

(n
2

) tn
2

e−
tn
2

× (r(t+ 1) + 1)−
n(r(t+1)+1)

2 − ν(r+1)−2r−1
2 .
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Thus, as n→∞, we get

logEetnLn,r =

(
1− ν(r + 1)

2
− r(r − 1)

4
− (1 + t)n

2

)
log(1 + t)

+

(
n(r + 1)(t+ 1)

2
+
ν(r + 1)− 2r − 1

2

)
log((r + 1)(t+ 1))

−
(
n(r(t+ 1) + 1)

2
+
ν(r + 1)− 2r − 1

2

)
log(r(t+ 1) + 1) + o(1)

and the result follows. �

4.4. Mod-φ convergence for the ExpGamma distribution. Many examples of mod-φ
convergence are known in probability, number theory, statistical mechanics and ran-
dom matrix theory. The most basic cases are probably the mod-Gaussian and mod-
Poisson convergence, which can be found in Féray et al. (2016); Jacod et al. (2011);
Kowalski and Nikeghbali (2010), but there are also examples of mod-Cauchy (Del-
baen et al., 2015; Kowalski et al., 2015) and even mod-uniform (Féray et al., 2016,
§7.4) convergence. The aim of the present section is to add one more item to this
list by proving a convergence modulo a tilted 1-stable totally skewed distribution.

Let Xn be a random variable having a Gamma distribution with shape n and
rate 1, that is the probability density of Xn is 1

Γ(n)x
n−1e−x, x > 0. The distribution

of logXn is called the ExpGamma distribution. The probability density of − logXn

is given by

1

Γ(n)
e−e−xe−xn, x ∈ R,

and is the limiting probability density of the n-th order upper order statistic in
an i.i.d. sample of size N →∞ from the max-domain of attraction of the Gumbel
distribution, or, equivalently, the density of the n-th upper order statistic in the
Poisson point process with intensity e−xdx, x ∈ R; see Leadbetter et al. (1983,
Theorem 2.2.2). It is easy to check that E logXn = Γ′(n)/Γ(n) = ψ(n) is the
digamma function.

Theorem 4.5. The sequence of random variables n(logXn − ψ(n)) converges in
the mod-φ sense with η(t) = (t+ 1) log(t+ 1)− t and parameter wn = n, namely

lim
n→∞

Eetn(logXn−ψ(n))

en((t+1) log(t+1)−t) =
et/2√
t+ 1

uniformly as long as t stays in any compact subset of C\(−∞,−1).

Proof : By the properties of the Gamma distribution, we have

Eetn(logXn−ψ(n)) = e−tnψ(n)EXtn
n = e−tnψ(n) Γ(tn+ n)

Γ(n)
.

The Stirling formula states that Γ(z) ∼
√

2π/z (z/e)z uniformly as |z| → ∞ in such
a way that | arg z| < π−ε. Using the Stirling formula together with the asymptotics
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ψ(n) = log n− 1
2n + o( 1

n ), we obtain

e−tnψ(n) Γ(tn+ n)

Γ(n)
∼ e−tn(logn− 1

2n )

√
2π
tn+n

(
tn+n

e

)n√
2π
n

(
n
e

)n
=

et/2√
t+ 1

en((t+1) log(t+1)−t),

which proves the claim. �

Remark 4.6. Consider an α-stable random variable Z1 ∼ S1(π/2,−1, 0) with α = 1,
skewness β = −1, and scale σ = π/2, where we adopt the parametrization used
in the book of Samorodnitsky and Taqqu (1994). It is known Samorodnitsky and
Taqqu (1994, Proposition 1.2.12) that the cumulant generating function of this
random variable is given by

logEetZ1 = t log t, Re t ≥ 0.

Note that EeZ1 = 1 and consider an exponential tilt of Z1, denoted Z2, whose
probability density is

P[Z2 ∈ dx] = exP[Z1 ∈ dx], x ∈ R.

Finally, observe that EZ2 = E[eZ1Z1] = (tt)′|t=1 = 1 and consider the centered
version Z := Z2 − 1. The cumulant generating function of Z is given by

logEetZ = (t+ 1) log(t+ 1)− t, Re t ≥ −1.

As an exponential tilt of an infinitely divisible distribution, Z is itself infinitely
divisible. Thus, in Theorem 4.5 and Proposition 4.2 we have a mod-φ convergence
modulo a tilted totally skewed 1-stable distribution.

4.5. Mod-φ convergence in the full dimensional case. In this section we consider
the full-dimensional case r = n, i.e., we are interested in the random variable Ln,n.

Proposition 4.7. Consider the Gaussian model and let mn = 1
2 (n log n − n +

1
2 log n+log(23/2π)). Then, Ln,n−mn converges in the mod-Gaussian sense (mean-

ing that η(t) = 1
2 t

2) with parameter wn = 1
2 log n

2 , namely

lim
n→∞

Eet(Ln,n−mn)

e
1
4 t

2 log n
2

=
G
(

1
2

)
G
(

1
2 + t

2

)
G
(
1 + t

2

) ,
uniformly as long as t stays in any compact subset of C\{−1,−2, . . .}.

Proof : In view of Theorem 2.3 (a) and (4.1), we can express the moment generating
function of Ln,n in terms of the Barnes G-function as

EetLn,n = E[(n!Vn,n)t]

= (n+ 1)
t
2 2

tn
2

G
(

1
2

)
G
(
n+1

2

) · G(1)

G
(
n+2

2

) · G (n+1
2 + t

2

)
G
(

1
2 + t

2

) · G (n+2
2 + t

2

)
G
(
1 + t

2

) ,
(4.6)

where G(1) = 1. For the function

ψ(t) :=
G
(

1
2

)
G
(

1
2 + t

2

)
G
(
1 + t

2

) (4.7)
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we have

logEetLn,n =
t

2
log(n+ 1) +

tn

2
log 2 + logψ(t) + logG

(
n− 1

2
+
t

2
+ 1

)
− logG

(
n− 1

2
+ 1

)
+ logG

(
n

2
+
t

2
+ 1

)
− logG

(n
2

+ 1
)
.

Applying Lemma 4.1 two times and using the formula

((n+ b) log(n+ b)− (n+ b))− (n log n− n) = b log n+ o(1),

where b is any constant, we obtain

logEetLn,n = logψ(t) +
t

2

(
n log n− n+

1

2
log n+ log(23/2π)

)
+

1

4
t2 log

n

2
+ o(1).

(4.8)

This completes the argument. �

Remark 4.8. We notice that in the full dimensional, Gaussian case r = n our
random variables are equivalent to those considered in Dal Borgo et al. (2017) and
one can follow our result also from their Theorem 5.1. Nevertheless, we decided to
include our independent and much shorter proof.
Their paper deals with the determinant of certain random matrix models and has
a completely different focus. On the other hand, let us emphasize that even in
this special case the distributions appearing in Dal Borgo et al. (2017) are in fact
different from (but very close to) those we obtain.

Proposition 4.9. Consider the Beta model with parameter ν > 0 or the spherical
model (in which case ν = 0) and let m̃n = 1

2 ( 1
2 log n − n + 1 − ν + log(23/2π)).

Then, Ln,n − m̃n converges in the mod-Gaussian sense (meaning that η(t) = 1
2 t

2)

with parameter wn = 1
2 log n

2 −
1
2 , namely

lim
n→∞

Eet(Ln,n−m̃n)

e
1
4 t

2(log n
2−1)

=
G
(

1
2

)
G
(

1
2 + t

2

)
G
(
1 + t

2

) ,
uniformly as long as t stays in any compact subset of C\{−1,−2, . . .}.

Proof : For the purposes of this proof let LG
n,n denote the Gaussian analogue of

Ln,n. In view of the connection between the Gaussian and the Beta model, see
Theorem 2.3(a),(b), the moment generating function of Ln,n is given by

logEetLn,n = logEetL
G
n,n − t

2
log(n+ 1)− tn

2
log 2

+ (n+ 1) log

 Γ
(
n+ν

2

)
Γ
(
n
2 + ν+t

2

)
+ log

Γ
(
n(n+ν−1)+nt+t+ν

2

)
Γ
(
n(n+ν−1)+nt+ν

2

)
 .

Using a second-order Stirling approximation for the logarithms of the Gamma func-
tions, we obtain

(n+ 1) log

 Γ
(
n+ν

2

)
Γ
(
n
2 + ν+t

2

)
 =

(n+ 1)t

2
log

2

n
− t

4
(t− 2 + 2ν) + o(1)
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and similarly

log

Γ
(
n(n+ν−1)+nt+t+ν

2

)
Γ
(
n(n+ν−1)+nt+ν

2

)
 = t log n− t

2
log 2 + o(1).

Denoting by ψ(t) the function defined at (4.7) and using (4.8) we conclude that,
after simplification of the resulting terms,

logEetLn,n = logψ(t) + tm̃n +
t2

4

(
log

n

2
− 1
)

+ o(1)

from which the result follows. �

4.6. Case of fixed codimension. Consider the case in which the codimension of the
simplex n − r stays fixed, while n → ∞. Of course, if n − r = 0, we recover the
full-dimensional case.

Proposition 4.10. Consider the Gaussian model and let mn be the same as in
Proposition 4.7. Let d ∈ N be fixed and take r = n − d, where n → ∞. Then,
Ln,r − mn converges in the mod-Gaussian sense (meaning that η(t) = 1

2 t
2) with

parameter wn = 1
2 log n

2 , namely

lim
n→∞

Eet(Ln,r−mn)

e
1
4 t

2 log n
2

=
G
(
d+1

2

)
·G
(
d+2

2

)
2
td
2 G

(
d+1

2 + t
2

)
·G
(
d+2

2 + t
2

) .
The convergence is uniform as long as t stays in any compact subset of C\{−d −
1,−d− 2, . . .}.

Proof : First, we observe that Theorem 2.5 implies the distributional representation

Ln,n −
1

2
log(n+ 1)

d
=
(
Ln−r,n−r −

1

2
log(n− r + 1)

)
+
(
L′n,r −

1

2
log(r + 1)

)
,

(4.9)

where L′n,r is a copy of Ln,r independent of Ln−r,n−r. Since n− r = d, this implies
that

Eet(Ln,r−mn) =
Eet(Ln,n−mn)

EetLd,d
e
t
2 log(d+1) e

t
2 log

(
n−d+1
n+1

)
.

Applying Proposition 4.7 to the numerator and (4.6) to the denominator, we con-
clude that

Eet(Ln,r−mn) ∼
e

1
4 t

2 log n
2

G( 1
2 )

G( 1
2 + t

2 )G(1+ t
2 )

(d+ 1)
t
2 2

td
2

G( 1
2 )

G( d+1
2 )
· G(1)

G( d+2
2 )
· G( d+1

2 + t
2 )

G( 1
2 + t

2 )
· G( d+2

2 + t
2 )

G(1+ t
2 )

· (d+ 1)
t
2 ,

which implies the claim. �

Proposition 4.11. Consider the Beta model with parameter ν > 0 or the spherical
model (in which case ν = 0) and let m̃n be the same as in Proposition 4.9. Let
d ∈ N be fixed and take r = n − d, where n → ∞. Then, Ln,r − m̃n − d−1

2 log n
2
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converges in the mod-Gaussian sense (meaning that η(t) = 1
2 t

2) with parameter

wn = 1
2 log n

2 −
1
2 , namely

lim
n→∞

Eet(Ln,r−m̃n−
d−1
2 log n

2 )

e
1
4 t

2(log n
2−1)

=
G
(
d+1

2

)
·G
(
d+2

2

)
2
td
2 G

(
d+1

2 + t
2

)
·G
(
d+2

2 + t
2

) .
The convergence is uniform as long as t stays in any compact subset of C\{−d −
1,−d− 2, . . .}.

Proof : The computations are similar to those in the proof of Proposition 4.9, but
slightly more involved. Again we let LG

n,r to be the Gaussian analogue of Ln,r. By
Theorem 2.3 (a), (b), the moment generating function of Ln,r is given by

logEetLn,r = logEetL
G
n,r − t

2
log(r + 1)− tr

2
log 2

+ (r + 1) log

 Γ
(
n+ν

2

)
Γ
(
n
2 + ν+t

2

)
+ log

Γ
(
r(n+ν−2)+n+ν

2 + (r+1)t
2

)
Γ
(
r(n+ν−2)+n+ν

2 + rt
2

)
 . (4.10)

Using the Stirling series for the logarithm of the Gamma function, we obtain

(r + 1) log

 Γ
(
n+ν

2

)
Γ
(
n
2 + ν+t

2

)


=
(n+ 1)t

2
log

2

n
− t

4
(t− 2 + 2ν) +

d− 1

2
t log

n

2
+ o(1)

and

log

Γ
(
r(n+ν−2)+n+ν

2 + (r+1)t
2

)
Γ
(
r(n+ν−2)+n+ν

2 + rt
2

)
 = t log n− t

2
log 2 + o(1).

Using the behavior of LG
n,r stated in Proposition 4.10, we obtain, after some trans-

formations,

logEetLn,r = log

(
G
(
d+1

2

)
·G
(
d+2

2

)
2
td
2 G

(
d+1

2 + t
2

)
·G
(
d+2

2 + t
2

))

+ tm̃n +
t2

4

(
log

n

2
− 1
)

+
d− 1

2
t log

n

2
+ o(1),

which yields the claim. �

4.7. Case of diverging codimension. In this section we consider the case when the
codimension of the simplex goes to +∞.

Proposition 4.12. Consider the Gaussian model and let mn be the same as in
Proposition 4.7. If r = r(n) is such that n− r →∞ as n→∞, then

lim
n→∞

Eet
(
Ln,r−(mn−mn−r)− 1

2 log
(

(r+1)(n−r)
n

))
e

1
4 t

2 log n
n−r

= 1.

If, additionally, n − r = o(n), then we have mod-Gaussian convergence (mean-
ing that η(t) = 1

2 t
2) with parameter wn = 1

2 log n
n−r → ∞ and limiting function

identically equal to 1.
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Proof : From Proposition 4.7 we know that

lim
n→∞

Eet(Ln,n−mn)

e
1
4 t

2 log n
2

= lim
n→∞

Eet(Ln−r,n−r−mn−r)

e
1
4 t

2 log n−r
2

=
G
(

1
2

)
G
(

1
2 + t

2

)
G
(
1 + t

2

) .
Using the distributional identity (4.9) it follows that

Eet
(
Ln,r−(mn−mn−r)− 1

2 log
(

(r+1)(n−r+1)
n+1

))
=

Eet(Ln,n−mn)

Eet(Ln−r,n−r−mn−r)

∼ e
1
4 t

2 log n
2

e
1
4 t

2 log n−r
2

∼ e
1
4 t

2 log n
n−r ,

which implies the claim after observing that log(n+ 1) = log n+ o(1) and log(n−
r + 1) = log(n − r) + o(1). Observe also that if n − r = o(n), then wn → ∞, as
n→∞, which is otherwise not the case. �

Proposition 4.13. Consider the Beta model with parameter ν > 0 or the spherical
model (in which case ν = 0) and let mn be the same as in Proposition 4.7. If
r = r(n) is such that n− r = o(n) as n→∞, then,

lim
n→∞

Eet
(
Ln,r−(mn−mn−r− r+1

4n (t−2+2ν))− 1
2 log

(n−r)(1+r)
n1+r

)
e

1
4 t

2 log n
n−r

= 1.

That is, we have mod-Gaussian convergence (meaning that η(t) = 1
2 t

2) with param-

eter wn = 1
2 log n

n−r and limiting function identically equal to 1.

Proof : Denote by LG
n,r the Gaussian analogue of Ln,r. Observe that relation (4.10)

still holds. Regarding the first term in this relation, we know from Proposition 4.12
that

logEetL
G
n,r = t(mn −mn−r) +

t

2
log

(
(r + 1)(n− r)

n

)
+

1

4
t2 log

n

n− r
+ o(1).

Again, a second-order Stirling expansion yields

(r + 1) log

 Γ
(
n+ν

2

)
Γ
(
n
2 + ν+t

2

)
 = (r + 1)

t

2
log

2

n
− r + 1

n

t

4
(t− 2 + 2ν) + o(r/n2)

and

log

Γ
(
r(n+ν−2)+n+ν

2 + (r+1)t
2

)
Γ
(
r(n+ν−2)+n+ν

2 + rt
2

)
 =

t

2
log

(
r(n+ ν − 2) + n+ ν

2
+
rt

2

)
+ o(1)

=
t

2
log

(
(r + 1)n

2

)
+ o(1).

Taking everything together, we obtain

logEetLn,r = t
(
mn −mn−r −

r + 1

4n
(t− 2 + 2ν)

)
+
t

2
log

(n− r)(1 + r)

n1+r

+
1

4
t2 log

(
n

n− r

)
+ o(1).
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This yields the claim, since wn = 1
2 log n

n−r → ∞, as n → ∞ by the assumption

that n− r = o(n). �

Remark 4.14. In Eichelsbacher and Knichel (2017) a wide class of random variables
with gamma-type moments is studied, which especially comprises the random vari-
ables Vn,r considered in this paper. For this general class of random variables
mod-φ convergence is proved using different methods on the technical side. Hence,
the limit theorems presented in this section also follow from these general results
as special cases, see Eichelsbacher and Knichel (2017, Section 7).

5. Large deviations

The purpose of this section is to derive large deviation principles, recall the
definition at the beginning of Section 3.2. Again, we restrict to the Gaussian, the
Beta and the spherical model, which admit finite moments of all orders.

5.1. The Gaussian model. We start with the Gaussian model and recall the notation
Ln,r := log(r!Vn,r). Using the Gärtner–Ellis theorem we derive large deviation
principles from the following Proposition.

Proposition 5.1. (a) Let r = o(n), as n→∞. Then, we have

j1(t) := lim
n→∞

1

rn
logEetn(Ln,r− r2 logn− 1

2 log(r+1))

=

{
1
2 ((t+ 1) log(t+ 1)− t) : t ≥ −1

+∞ : otherwise.

(b) If r ∼ αn, α ∈ (0, 1), we have

j2(t) := lim
n→∞

1

αn2
logEetn(Ln,r−αn2 (logn+log(1−α)))

=

{
2+2t−α

4 log
(

1+t−α
1−α

)
− t

2 : t ≥ α− 1

+∞ : otherwise.

(c) Let d ∈ N and assume that d = n − r, as n → ∞, and mn = 1
2 (n log n −

n+ 1
2 log n+ log(23/2π)) as in Proposition 4.10. Then, we have

lim
n→∞

1
1
2 log n

2

logEet(Ln,r−mn) =
1

2
t2.

(d) Let r = r(n) be such that n− r = o(n), as n→∞. Then, we have

lim
n→∞

1
1
2 log n

n−r
logEet

(
Ln,r−(mn−mn−r)− 1 log

(
(r+1)(n−r+1)

n+1

))
=

1

2
t2.

Proof : Part (a) is a consequence of Remark 4.3. The proofs of the (c) and (d)
directly follow from the proofs of Propositions 4.10 and 4.12 in the previous section,
respectively.



Limit theorems for random simplices 171

We turn now to the case that r ∼ αn. Due to the asymptotic formula (4.3) we
obtain for all α ∈ (0, 1), t ≥ 0 and j ∈ N that

log

(
Γ
( (1+t−α)n+j

2

)
Γ
( (1−α)n+j

2

) )

∼ log

exp(− (1+t−α)n
2 )

(
(1+t−α)n

2

) (1+t−α)n
2 + j−1

2

exp(− (1−α)n
2 )

(
(1−α)n

2

) (1−α)n
2 + j−1

2


= log

(
exp

(
− tn

2

)(n
2

) tn
2 (1 + t− α)

(1+t−α)n
2

(1− α)
(1−α)n

2

(
1 + t− α

1− α

) j−1
2

)

= − tn
2

+
tn

2
log
(n

2

)
+

(1 + t− α)n

2
log (1 + t− α)

− (1− α)n

2
log (1− α) +

j − 1

2
log

(
1 + t− α

1− α

)
,

as n→∞, and thus

1

αn2
logEetnLn,r

=
1

αn2

 tn
2

log(αn+ 1) +
tαn2

2
log 2 +

αn∑
j=1

log

(
Γ
( (1+t−α)n+j

2

)
Γ
( (1−α)n+j

2

) )


∼ − t
2

+
t

2
log (n) +

1 + t− α
2

log (1 + t− α)

− 1− α
2

log (1− α) +
α

4
log

(
1 + t− α

1− α

)
= − t

2
+
t

2
log (n) +

2 + 2t− α
4

log (1 + t− α)− 2− α
4

log (1− α) .

This directly yields the result in the case r ∼ αn in view of the moment formula
for Gaussian simplices stated in Section 2.1. �

We turn now to the large deviation principles for the log-volume of Gaussian
simplices.

Theorem 5.2 (LDP for Gaussian simplices). (a) Let r = o(n), as n → ∞.
Then, 1

r (Ln,r − r
2 log n − 1

2 log(r + 1)) satisfies a LDP with speed rn and
rate function

I(x) =
1

2
(e2x − 1)− x , x ∈ R .

(b) If r ∼ αn, α ∈ (0, 1), then, 1
αn (Ln,r − αn

2 (log n + log(1 − α))) satisfies a

LDP with speed αn2 and rate function

I(x) = sup
t≥α−1

{tx− j2(t)} , x ∈ R ,

where j2(t) is the function from Proposition 5.1 (b).
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(c) Let d ∈ N and assume that d = n−r, as n→∞, and mn = 1
2 (n log n−n+

1
2 log n+ log(23/2π)). Then, 1

1
2 log n

2

(Ln,r −mn) satisfies a LDP with speed
1
2 log n

2 and rate function

I(x) =
1

2
x2 , x ∈ R .

(d) Let r = r(n) be such that n−r →∞, as n→∞. If n−r = o(n), as n→∞,

then, 1
1
2 log n

n−r

(
Ln,r − (mn−mn−r)− 1

2 log
( (r+1)(n−r+1)

n+1

))
satisfies a LDP

with speed 1
2 log n

n−r and rate function

I(x) =
1

2
x2 , x ∈ R .

Proof of Theorem 5.2: Let r = o(n), as n → ∞. Then, by the Gärtner–Ellis theo-
rem (cf. Section 2.3 in Dembo and Zeitouni, 2010) and Proposition 5.1, the random
variables 1

r (Ln,r − r
2 log n − 1

2 log(r + 1)) satisfy a LDP with speed rn and rate
function

I(x) = sup
t≥−1

[
tx− 1

2
((t+ 1) log(t+ 1)− t)

]
,

i.e., the Legendre-Fenchel transform of the function 1
2 ((t + 1) log(t + 1) − t). For

each x ∈ R the supremum is attained at t = e2x − 1, which yields the result of (a).
The same argument implies the LDP for the other regimes of r as well. �

5.2. The Beta and the spherical model. Now, we turn to the Beta model with
parameter ν > 0 and the spherical model, i.e., ν = 0, and recall that Ln,r :=
log(r!Vn,r), where Vn,r is the volume of the r-dimensional simplex with vertices
X1, . . . , Xr+1 chosen according to the Beta or the spherical distribution, respec-
tively. Similar to the Gaussian case, we start with the following proposition that
will imply the large deviation principles.

Proposition 5.3. (a) Let r ∈ N be fixed. Then, we have

j3(t) := lim
n→∞

1

n
logEetnLn,r =

{
η(t) : t ≥ −1

+∞ otherwise,

where η is the function from Proposition 4.4.

(b) If r ∼ αn, α ∈ (0, 1), we have

j4(t) := lim
n→∞

1

αn2
logEetnLn,r =

{
η(t) : t ≥ −1

+∞ : otherwise,

where η(t) is the function given by

η(t) :=
2 + 2t− α

4
log (1 + t− α)

− 2− α
4

log (1− α)− 1 + t

2
log(1 + t) .
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(c) Let d ∈ N and assume that d = n− r, as n→∞, and let m̃n = 1
2 ( 1

2 log n−
n+ 1− ν + log(23/2π)) as in Proposition 4.9. Then, we have

lim
n→∞

1
1
2 (log n

2 − 1)
logEet(Ln,r−m̃n−

d−1
2 log n

2 ) =
1

2
t2.

(d) Let r = r(n) be such that n − r = o(n), and let mn = 1
2 (n log n − n +

1
2 log n+ log(23/2π)) be as in Proposition 4.10. Then

lim
n→∞

1
1
2 log n

n−r

× logEet
(
Ln,r−(mn−mn−r− r+1

4n (t−2+2ν))− 1
2 log

(n−r)(1+r)
n1+r

)
=

1

2
t2.

Proof of Proposition 5.1: For t ≥ −1 the assertions in (a) follows from Proposi-
tion 4.4. Recall from Theorem 2.5 that the distribution of Vn,r involves Beta
random variables Z := β ν+r−j

2 ,n−r+j
2

with j ≤ r. Writing

Ee
tn
2 logZ = EZ

tn
2 = c

∫ 1

0

z
n−r+j

2 + tn
2 −1(1− z)

ν+r−j
2 −1 dz

we see that the exponent at z is less than −1 for sufficiently large n if t < −1. This
implies that Ee tn2 logZ → +∞ and completes the proof of (a).

Now, let us turn towards the case r ∼ αn, α ∈ (0, 1) in (b). Similar to what
has been done in the Gaussian setting, we obtain by using the asymptotic formula
(4.3) for all ν > 0,

(αn+ 1) log

(
Γ
(
n+ν

2

)
Γ
( (1+t)n+ν

2

))

∼ (αn+ 1)

(
tn

2
− tn

2
log
(n

2

)
− (1 + t)n+ ν − 1

2
log(1 + t)

)
∼ tαn2

2
− tαn2

2
log
(n

2

)
− (1 + t)αn2 + αn(ν − 1)

2
log(1 + t),

as n→∞, and for all t ≥ 0,

log

(
Γ
(αn(n+ν−2)+n+tn(αn+1)+ν

2

)
Γ
(αn(n+ν−2)+n+tnαn+ν

2

) )
∼ − tn

2
+
tn

2
log
(n

2

)
+
αn(n+ ν − 2) + n+ tn(αn+ 1) + ν

2
log (α(n+ ν − 2) + 1 + t(αn+ 1))

− αn(n+ ν − 2) + n+ tnαn+ ν

2
log (α(n+ ν − 2) + 1 + tαn) .
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Thus, by using the calculations made in the Gaussian case above, we conclude that

1

αn2
logEetnLn,r

=
1

αn2

[
(αn+ 1) log

(
Γ
(
n+ν

2

)
Γ
( (1+t)n+ν

2

))

+ log

(
Γ
(αn(n+ν−2)+n+tn(αn+1)+ν

2

)
Γ
(αn(n+ν−2)+n+tnαn+ν

2

) )
+

αn∑
j=1

log

(
Γ
( (1+t−α)n+j

2

)
Γ
( (1−α)n+j

2

) )


∼ t

2
− t

2
log
(n

2

)
− 1 + t

2
log(1 + t) +

1 + t

2
log (α(n+ ν − 2) + 1 + t(αn+ 1))

− 1 + t

2
log (α(n+ ν − 2) + 1 + tαn)− t

2
+
t

2
log
(n

2

)
+

2 + 2t− α
4

log (1 + t− α)− 2− α
4

log (1− α)

∼ −1 + t

2
log(1 + t) +

2 + 2t− α
4

log (1 + t− α)− 2− α
4

log (1− α) ,

as n → ∞. This directly yields the result in the case where r ∼ αn, again taking
into account the moment representation in the Beta model stated in Section 2.1.
Since there is no dependence on the parameter ν in the result concerning the Beta
model, the one regarding the spherical model is implied by considering the limiting
case ν ↓ 0 as seen several times before.
The proofs of the (c) and (d) directly follow from the proofs of Propositions 4.11
and 4.13 in the previous section, respectively. �

Now, we are able to state the large deviation principles for the Beta and the
spherical model. Their proofs follow the same lines as the ones in the Gaussian
case presented above by using the Gärtner–Ellis theorem. For this reason we have
decided to skip them.

Theorem 5.4 (LDP for Beta-type and spherical simplices). (a) Let r ∈ N be
fixed. Then, Ln,r satisfies a LDP with speed n and rate function

I(x) = sup
t∈R

{
tx− j3(t)

}
,

where j3(t) is the function from Proposition 5.3 (a).

(b) If r ∼ αn, α ∈ (0, 1), then, 1
αnLn,r satisfies a LDP with speed αn2 and rate

function

I(x) = sup
t∈R
{tx− j4(t)} ,

where j4(t) is the function from Proposition 5.3 (b).

(c) Let d ∈ N and assume that d = n − r, as n → ∞, and m̃n = 1
2 ( 1

2 log n −
n+ 1− ν + log(23/2π)). Then, 1

1
2 (log n

2−1)
(Ln,r − m̃n − d−1

2 log n
2 ) satisfies

a LDP with speed 1
2 (log n

2 − 1) and rate function

I(x) =
1

2
x2 , x ∈ R .
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(d) Let r = r(n) be such that n−r = o(n), and let mn = 1
2 (n log n−n+ 1

2 log n+

log(23/2π)) be defined as in Proposition 4.10. Then, 1
1
2 log n

n−r

(
Ln,r− (mn−

mn−r − r+1
4n (t − 2 + 2ν)) − 1

2 log (n−r)(1+r)
n1+r

)
satisfies a LDP with speed

1
2 log n

n−r and rate function

I(x) =
1

2
x2 , x ∈ R .

Remark 5.5. One can combine Theorem 5.4 with the contraction principle from
large deviation theory to obtain a LDP for Vn,r, that is, for the volume of the
random simplex itself in the cases that r = o(n) and r ∼ αn for some α ∈ (0, 1).
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P. Eichelsbacher and L. Knichel. Fine asymptotics for models with gamma type
moments. ArXiv Mathematics e-prints (2017). arXiv: 1710.06484.
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