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Abstract. We consider connectivity properties of the Branching Interlacements
model in Zd, d ≥ 5, recently introduced by Angel, Ráth and Zhu (Angel et al.,
2019). Using stochastic dimension techniques we show that every two vertices
visited by the branching interlacements are connected via at most dd/4e conditioned
critical branching random walks from the underlying Poisson process, and that
this upper bound is sharp. In particular every such two branching random walks
intersect if and only if 5 ≤ d ≤ 8. The stochastic dimension of branching random
walk result is of independent interest. We additionally obtain heat kernel bounds
for branching random walks conditioned on survival.

1. Introduction

The model of Branching Interlacements, introduced by Angel, Ráth and Zhu
(Angel et al., 2019), which can also be found in a more generalized setting in the
recently arXived Zhu (2018), is a version of Sznitmann’s Random Interlacements
(Sznitman, 2010) composed of branching random walks on Zd, d ≥ 5. This new
model is proved to be (in Angel et al., 2019) the weak limit of a critical branching
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random walk on Zd/NZd conditioned to occupy buNdc vertices in the torus. Anal-
ogous to Random Interlacements the Branching Interlacements can be realized as
a Poisson Point Process over a space of transient trajectories in Zd, d ≥ 5. Only
here the trajectories stand for the range of an exploration processes over branch-
ing random walks. The main result of this paper is an analogue of the results in
Procaccia and Tykesson (2011); Ráth and Sapozhnikov (2012), claiming that ev-
ery two vertices visited by the Random Interlacements can be connected by dd/2e
trajectories from the underlying Poisson point process. Next we give a non formal
statement of the main theorem (See Theorem 2.6 for the rigorous statement):

Given that x, y ∈ Zd belong to the Branching Interlacements set, it is a.s. possi-
ble to find a path between x and y contained the in the trace left by at most dd/4e
conditioned branching random walks from the underlying Poisson point process.
Moreover this result is sharp in the sense that a.s. there are pairs of points in the
Branching Interlacements which can not be connected by a path using the trace of
dd/4e − 1 conditioned branching random walks from the underlying Poisson point
process.

Throughout this paper, C and c will denote constants that may depend on other
constant parameters such as the dimension. Their values can be different from
place to place.

2. Preliminaries

In this section we formally define the Branching Interlacements model and recall
the concept of Stochastic Dimension (Benjamini et al., 2004).

2.1. Branching random walk. First we define an unconditioned critical geometric
branching random walk. It can be constructed from a simple random walk on
Zd indexed on a critical geometric Galton-Watson tree. I.e., let T be a critical
geometric Galton-Watson tree with root ρ, of which all the oriented edges can be
listed according to the exploration of this tree, which is the depth first search over
the Galton-Watson tree. Moreover, such exploration also gives us a natural order of
vertices in each generation. I.e., let vn,k be the kth vertex visited by the exploration
in the nth generation, if the population size of the nth generation is greater than or
equal to k. And we can also let ST (n) be the population size of the nth generation.

Then for each edge e = v → v′ where v is the ancestor of v′ in T , there is a
unique nT (e) = n such that this oriented edge is visited at the nth step of the
exploration. Let {Z(n)}∞n=1 be a sequence of i.i.d. random variables uniform on
{±i1,±i2, · · · ,±id} where i1, · · · , id are the unit basis of Zd. We can assign each
edge e with Z(nT (e)). Then note that given T and for any vertex v = vn,k ∈ T ,
there is a unique sequence of vertices v1,k1(n,k), v2,k2(n,k), · · · , vn−1,kn−1(n,k) which

gives the sequence of all the ancestors of vn,k. And let e
(n,k)
i = vi,ki(n,k) →

vi+1,ki+1(n,k), i = 0, · · · , n − 1, where v0,k0(n,k) = ρ and vn,kn(n,k) = vn,k. Thus
we can have the mapping BRW (branching random walk) from each vertex vn,k to
Zd as follows:

BRW (vn,k) =


0, if n = 0

n−1∑
i=0

Z(nT (e
(n,k)
i )) if n > 0

. (2.1)
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Then under this mapping, we have a critical geometric branching random walk on
Zd starting at 0. And from the construction above, one can immediately see that
for any n and k, given a T with ST (n) ≥ k, the distribution of BRW (vn,k) is the
same as that of a summation of n i.i.d. unit d−dimensional uniform jumps, which
is the same as the distribution of Xn, where {Xn}∞n=1 is a simple random walk on
Zd starting from 0.

Next we construct a branching random walk conditioned on survival. We start
from the back bone simple random walk. Let {Xn, n ≥ 0} be a simple random walk

with X0 = x, and σ−field F̃N (x) = σ(X0, · · · , XN ). Then let {F̂ (n)}n=0,1,··· and

{B̂(n)}n=0,1,··· be independent families of i.i.d. branching random walks starting
at 0 with increment distribution satisfying a geometric distribution with p = 2,
denoted by G(1/2). For any n ≥ 0, let

F (n) = F̂ (n) +Xn

and

B(n) = B̂(n) +Xn.

Then by our construction here and the construction after Lemma 1.2 in Benjamini
and Curien (2012), we have that

D(x) = {F (0), B(0), F (1), B(1), · · · }

has the same distribution as a critical geometric branching random walk conditioned
on survival starting at x. And in this paper, we will call such a process as a double
branching random walk. We call

Df (x) = {F (0), F (1), · · · }

and

Db(x) = {B(0), B(1), · · · }
the forward and backward part of D(x). And we denote the trace of D(x) by

T (x) =

∞⋃
n=0

(Trace (F (n)) ∪ Trace (B(n))) .

Moreover, let

F̂N (x) = σ
(
F̂ (1), B̂(1), · · · , F̂ (N), B̂(N)

)
,

and

FN (x) = σ
(
F̂N (x), F̃N (x)

)
.

It is easy to see that for each constant N , F̂N (x) and F̃N (x) are independent,
F (n), B(n) ∈ FN (x) for all n ≤ N . Moreover, for

DN (x) = {F (0), B(0), F (1), B(1), · · · , F (N), B(N)}

and

TN (x) =

N⋃
n=0

(Trace (F (n)) ∪ Trace (B(n)))

it is easy to see that DN (x), TN (x) ∈ FN (x).
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2.2. Construction of the Branching Interlacements. For completeness we present
the construction of Angel, Ráth and Zhu (Angel et al., 2019). For more details the
reader is referred to their paper.

Let W be the space of doubly-infinite nearest-neighbor trajectories in Zd which
tend to infinity as the time n → ±∞, and W be the standard cylinder σ-algebra.
And let

W ∗ = W/ ∼, where w ∼ w′ ⇔ w(·) = w′(·+ k) for some k ∈ Z

which is the space of equivalence classes of W modulo time shift (equivalently define
W ∗). Denote by π the natural map from W to W ∗. For a finite set K ⊂ Zd denote
by W 0

K , the set of trajectories γ ∈W which intersect K and inf{n : γ(n) ∈ K} = 0
(backward path doesn’t return to K). Let Px be the measure on W ∗ which is the
law of the exploration on a double branching random walk rooted at x. Define
QK(·) on (W,W ) by

QK(A) =
∑
x∈K

Px[A ∩W 0
K ],

for any K ⊂ Zd and A ∈ W . It is proved in Angel et al. (2019) that there is a a
unique σ-finite measure ν on (W ∗,W ∗) such that

1W∗K
· ν = π ◦QK ,

where W ∗K = π(W 0
K). Now we can construct the underlying Poissson point process

of the branching interlacements. Consider the set of point measures on W ∗ × R+

Ω = {ω =

∞∑
i=1

δ(w∗i ,ui) : w∗i ∈W ∗, ui ∈ R+, ω(W ∗K × [0, u]) <∞,

for every finite K ⊂ Zd}.

Now define P as Poisson point process of intensity ν × dx on Ω, where dx is the
Lesbegue measure. For any given 0 < u′ < u, let

ωu′,u =

∞∑
i=1

δw∗i 1{u′≤ui<u}.

In in the case where u′ = 0 we denote ωu = ω0,u. Now we denote the Branching
Interlacements between levels u′ > 0 and u > 0

Iu
′,u =

⋃
γ∈supp(ωu′,u)

Trace(γ),

And Iu = I0,u. Note that Iu can be characterized by the following equation. For
every finite K ⊂ Zd,

P [Iu ∩K = ∅] = e−uĈap(K),

where Ĉap(K) =
∑
x∈K êK(x). Here êK(x) is the Px-probability a double branch-

ing random walk rooted at x belongs to W 0
K , and is called the branching equilibrium

measure.
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2.3. Stochastic dimension. In this section we recall some definitions and results
from Benjamini, Kesten, Peres and Schramm (Benjamini et al., 2004), and adapt
them to this paper. For x, y ∈ Zd let 〈xy〉 = max{|x − y|, 1}. For any finite
subset W ⊂ Zd and a tree τ on W denote by 〈τ〉 =

∏
(x,y)∈τ 〈xy〉. We define

〈W 〉 = minτ 〈τ〉, where the minimum is over all |W ||W |−2 trees on the vertex set
W . A random relation R is a random subset R ⊂ Zd × Zd. We write xRy for
(x, y) ∈ R.

Definition 2.1. We say that a random relation R has stochastic dimension α ∈
(0, d], and write dimS(R) = α, if there is a constant 0 < c <∞ such that

cP [cRy] ≥ 〈xy〉α−d (2.2)

and
P [xRy, zRv] ≤ c〈xy〉α−d〈zv〉α−d + c〈xyzv〉α−d (2.3)

for all x, y, z, v ∈ Zd.

For two random relations R,L we consider the product defined by xRLy if
∃z ∈ Zd such that xRz and zLy. Next we state two theorems proved in Benjamini
et al. (2004), we include them for reader convenience.

Theorem 2.2. Benjamini et al. (2004, Theorem 2.4) Let L and R be two inde-
pendent random relations with stochastic dimensions. Then

dimS(LR) = min{d, dimS(L) + dimS(R)}.

Note that if a relation has stochastic dimension d then there is a uniform positive
lower bound on the probability two vertices are in the relation. To push this to
probability one, trivial tail sigma algebras are employed.

Definition 2.3. Let E be a random relation and v ∈ Zd. We define the left, right
and remote tail σ-algebras:

FL
E (v) =

⋂
K⊂Zd finite

σ{vEx : x /∈ K},

FR
E (v) =

⋂
K⊂Zd finite

σ{xEv : x /∈ K},

FRem
E =

⋂
K1,K2⊂Zd finite

σ{xEy : x /∈ K1, y /∈ K2}.

(2.4)

We say that E is left (right) tail trivial if FL
E (v) (FR

E (v)) is trivial for every v ∈ Zd.
We say that E is remote tail trivial if FRem

E is trivial.

With those definitions in hand we can state the 0-1 theorem for random relations.

Theorem 2.4. Benjamini et al. (2004, Corollary 3.4) Let m ≥ 2, and let {Ei}mi=1

be independent random relations such that dimS(Ei) exists for all i ≤ m. Suppose
that

m∑
i=1

dimS(Ei) ≥ d,

in addition, E1 is left tail trivial, Em is right tail trivial and E2, . . . , Em−1 are remote
tail trivial. Then for every x, y ∈ Zd

P [xE1E2 · · · Emy] = 1.
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2.4. Statement of results. First we formally define the random relations used in this
paper. For any u > u′ ≥ 0, let

Mu′,u =
{

(x, y) ∈ Zd × Zd : ∃γ ∈ supp(ωu′,u), s.t. x, y ∈ γ
}
,

be the random subset where two points both belong to one trajectory in the Poisson
point process ωu′,u, and again we denote M0,u by Mu. Here we also consider the
left and right tail triviality problems of a double branching random walk starting
at point x ∈ Zd conditioned on the backward part never returning to x. For all
x ∈ Zd, let {γ(x), x ∈ Zd} be the trace of independent double branching random
walks starting at x, conditioned on the backward part never returning to x. Then
we can define the following random subsets of Zd × Zd:

L = {(x, y) ∈ Zd, y ∈ γ(x)} (2.5)

and

R = {(x, y) ∈ Zd, x ∈ γ(y)}. (2.6)

Moreover, we can introduce the notation xLy which is equivalent to (x, y) ∈ L, and
xRy which is equivalent to (x, y) ∈ R, in terms of random relations.

The main results of this paper are stated as follows:

Theorem 2.5. For the random relation L and R defined in (2.5) and (2.6), and
the random relation Mu′,u for any u > u′ ≥ 0,

dimS(L) = dimS(R) = dimS(Mu′,u) = 4.

Theorem 2.6. For every u > 0, and all x, y ∈ Zd,

P
[
xMdd/4eu y|x, y ∈ Iu

]
= 1.

In addition for every u > 0,

P
[
∃x, y ∈ Iu, y /∈ {z : xMdd/4e−1

u z}
]

= 1.

The strategy of the proof goes as follows: in Sections 5 and 6 we prove all the
upper and lower bounds to show that dimS(L) = dimS(R) = dimS(Mu′,u) = 4,
for every u > u′ ≥ 0. Next we define the random relation

C = L

dd/4e−1∏
i=2

Mu(i−1)
dd/4e ,

ui
dd/4e

R. (2.7)

Following the condition of Theorem 2.4, we prove in Section 3 that L is left tail
trivial and R is right tail trivial. And in Section 4 we prove that Mu′,u is remote
tail trivial. That concludes by Theorem 2.4, that

P [xCy] = 1. (2.8)

In Section 7 by stochastic domination and the same argument as in Procaccia and
Tykesson (2011) we prove Theorem 2.6.
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3. Left and Right Tail Trivialities

The result we want to prove in this section is:

Lemma 3.1. The random relation L is left tail trivial and the random relation R
is right tail trivial.

Proof : By symmetry, we can without loss of generality concentrate on the left tail
triviality of the random relation L. We will show this by first proving the left tail
triviality when we no longer conditioned on that backward part never returning to
x. For all x ∈ Zd, let {T (x), x ∈ Zd} be the trace of independent double branching
random walks starting at x (Lemma 3.2). Then we can define the following random
subsets of Zd × Zd:

L0 = {(x, y) ∈ Zd, y ∈ T (x)}
and

R0 = {(x, y) ∈ Zd, x ∈ T (y)}.
The proof then follows with a series of lemmas. The idea is to prove asymptotic
independence between events which depend on the first N levels a double branching
random walk and hitting events far away (Lemma 3.4). Then we take the a limit
to get the left tail triviality of L0 (Lemma 3.3). Finally we add the conditioning of
the backward part not retuning to x and prove Lemma 3.1.

Lemma 3.2. The random relation L0 is left tail trivial and the random relation
R0 is right tail trivial.

Proof : In order to show the left tail triviality in the lemma above, we first show
the following result:

Lemma 3.3. For any N ≥ 0, any event B ∈ FN (x), with P (B) > 0 which has the

form B = B̂ ∩ B̃, where B̂ ∈ F̂N (x) and B̃ ∈ F̃N (x), and any event A ∈ FL
L0(x),

we always have A and B are independent.

Proof : To show the lemma above, it suffices to show that for any ε > 0

|P (A ∩B)− P (A)P (B)| < ε.

Consider the sigma-field for any r > 0:

FL,r
L0 (x) = σ

{
1xL0y : y ∈ B(x, r)c

}
.

It is easy to see that FL,r
L0 (x) ⊃ FL

L0(x) for any r. Moreover, for any subset
S ⊂ B(x, r)c, we have

{T (x) ∩ S = ∅} ∈ FL,r
L0 (x).

We will first show that

Lemma 3.4. For any N ≥ 0, any event B ∈ FN (x), with P (B) > 0 which has

the form B = B̂ ∩ B̃, where B̂ ∈ F̂N (x) and B̃ ∈ F̃N (x), and any ε > 0, there is

a r2 <∞ such that for any event A ∈ FL,r2
L0 (x), we have

|P (A ∩B)− P (A)P (B)| ≤ ε.

Proof : To find the r2 we need in the lemma, we first consider a smaller r1 that will
be specified later in the proof, and

τr1(x) = min{n : Xn ∈ ∂B(x, r1)}
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which is a stopping time with respect to F̃N (x) and FN (x). If we look at the trace
after its back bone random walk first hits ∂B(x, r1), i.e.

T r1 =

∞⋃
n=τr1 (x)

(Trace (F (n)) ∪ Trace (B(n)))

and given Xτr1 (x) = x′ ∈ ∂B(x, r1), then it is a double branching random walk,

starting at x′. Moreover, given Xτr1 (x) = x′ ∈ ∂B(x, r1), T r1 and Fτr1 (x)−1(x) are
conditionally independent. Then for r2 > r1, define family of events

Π = {{T (x) ∩ S = ∅}, S ⊂ B(x, r2)c}

which is a π−field, where σ(Π) = FL,r2
L0 (x). For any A = {T (x) ∩ S = ∅} ∈ Π, let

event

Ar1 = {T r1 ∩ S = ∅}
which is measurable with respect to σ(T r1). It is easy to see that

Ar1 ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅} = A ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}.

Consider the family of events

Dr1,x =
{
A ∈ FL,r2

L0 (x), ∃Ar1 ∈ σ(T r1) s.t. Ar1 ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}

= A ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}
}
.

Then it is easy to see that Ω ∈ Dr1,x and Π ⊂ Dr1,x. Moreover for any A, Â ∈ Dr1,x,

A ⊃ Â
(A ∩ Âc) ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}
= [A ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}]

∩ [Â ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}]c

= [Ar1 ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}]

∩ [Âr1 ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}]c

= (Ar1 ∩ Âcr1) ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}

(3.1)

which implies that A ∩ Âc ∈ Dr1,x. And for any increasing sequence A(n) ↑ Ā, we
have

Ā ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅} =

∞⋃
n=1

[A(n)
r1 ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}]

=

[ ∞⋃
n=1

A(n)
r1

]
∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}

(3.2)

which implies that Ā ∈ Dr1,x. Thus by π − λ Theorem, Dr1,x = FL,r2
L0 (x), which

implies that for any A ∈ FL,r2
L0 (x) there is a Ar1 ∈ σ(T r1) such that

Ar1 ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅} = A ∩ {Tτr1 (x)−1(x) ∩B(x, r2)c = ∅}.

and that

|P (Ar1)− P (A)| ≤ P
(
Tτr1 (x)−1(x) ∩B(x, r2)c 6= ∅

)
.
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However, we have the event{
Tτr1 (x)−1(x) ∩B(x, r2)c 6= ∅

}
=

∞⋃
n=0

⋃
z∈B(x,r1−1)

{Xn = z} ∩ {F̂n ∩B(x, r2)c − z 6= ∅} ∩ {τr1(x) > n}

∪
∞⋃
n=0

⋃
z∈B(x,r1−1)

{Xn = z} ∩ {B̂n ∩B(x, r2)c − z 6= ∅} ∩ {τr1(x) > n}

which implies that

P
(
Tτr1 (x)−1(x) ∩B(x, r2)c 6= ∅

)
≤ 2

∑
z∈B(x,r1−1)

P (Ŷ ∩ {B(x, r2)c − z} 6= ∅)

( ∞∑
n=0

P (Xn = z)

)

where Ŷ is any critical branching random walk starting at 0. Note that for simple
random walk {Xn}∞n=0 starting at x, there exists a constant c <∞ such that

∞∑
n=0

P (Xn = x) ≤ c

and
∞∑
n=0

P (Xn = z) ≤ c|x− z|−d+2.

Moreover, for r2 > r1, and any z ∈ B(x, r1), noting that the random of Ŷ is smaller
than or equal to the population of the corresponding Galton-Watson tree, we have

P (Ŷ ∩ {B(x, r2)c − z} 6= ∅) ≤ P (|Ŷ | ≥ r2 − r1) ≤ 1

r2 − r1
. (3.3)

Thus there exists a C <∞ such that

P
(
Tτr1 (x)−1(x) ∩B(x, r2)c 6= ∅

)
≤ Cr2

1

r2 − r1

which implies that for any r1 and r2 > 4ε−1Cr2
1 + r1, we have

P
(
Tτr1 (x)−1(x) ∩B(x, r2)c 6= ∅

)
≤ ε/4. Noting that

|P (A ∩B)− P (Ar1 ∩B)| < ε/4

and that
|P (A)P (B)− P (Ar1)P (B)| < ε/4,

it is sufficient to prove that for a sufficiently large r1 and sufficiently larger r2 >
8ε−1Cr2

1 + r1, we always have

|P (Ar1 ∩B)− P (Ar1)P (B)| < ε/2. (3.4)

To show the inequality above, note that for any r1 > N + 1, the back bone ran-
dom walk will never exit B(x, r1 − 1) in the first N steps, which implies that
B ∈ Fτr1 (x)−1(x). Moreover, since that T r1 and Fτr1 (x)−1(x) are conditionally in-

dependent, given Xτr1 (x) = x′ ∈ ∂B(x, r1), and that Ar1 is measurable with respect

to σ(T r1), we have

P (Ar1 ∩B|Xτr1 (x) = x′)− P (Ar1 |Xτr1 (x) = x′)P (B|Xτr1 (x) = x′)
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which implies that

|P (Ar1 ∩B)−P (Ar1)P (B)| ≤ P (B)
∑

x′∈∂B(x,r1)

|P (Xτr1 (x) = x′)−P (Xτr1 (x) = x′|B)|.

(3.5)

To find a upper bound of the right hand side above, note that B = B̂ ∩ B̃, where

B̂ ∈ F̂N (x) and B̃ ∈ F̃N (x), and that F̂N (x) is independent to {Xn}∞n=0. We
have ∑

x′∈∂B(x,r1)

|P (Xτr1 (x) = x′)− P (Xτr1 (x) = x′|B)|

=
∑

x′∈∂B(x,r1)

|P (Xτr1 (x) = x′)− P (Xτr1 (x) = x′|B̃)|.
(3.6)

Moreover by strong Markov property, let

τ2N (x) = min{n : Xn ∈ ∂B(x, 2N)}.
We have∑
x′∈∂B(x,r1)

|P (Xτr1 (x) = x′)− P (Xτr1 (x) = x′|B̃)|

≤
∑

y′∈∂B(x,2N)

P (Xτ2N (x) = y′|B̃)
∑

x′∈∂B(x,r1)

|P (Xτr1 (x) = x′)− P (Xτr1 (x) = x′|Xτ2N (x) = y′)|.

(3.7)
Finally, for any x and y′ ∈ B(x, 2N) without loss of generality we can assume
that ‖x− y′‖1 ≡ 0(mod2) (otherwise, one can consider all the nearest neighbors of
y′), by maximum random walk coupling (see Theorem 12.4.5 of Lawler and Limic,
2010), Hölder regularity of simple random walk (see Proposition 4.1 of Delmotte,
1999), and local central limit theorem (see Theorem 2.1.1 of Lawler and Limic,

2010), one can construct {X(1,y′)
n , X

(2,y′)
n }∞n=0 in the same probability space, where

{X(1,y′)
n }∞n=0 is a random walk starting at x and {X(2,y′)

n }∞n=0 is a random walk
starting at y′ such that

lim
n→∞

P
(
X(1,y′)
m = X(2,y′)

m , ∀m ≥ n
)

= 1.

Thus there exists a M such that for any y′ ∈ ∂B(x, 2N)

P
(
X(1,y′)
m = X(2,y′)

m , ∀m ≥M
)
> 1− ε/4.

Then for any r1 > M + 2N , let τr1,i, i = 1, 2 be the first time that {X(i,y′)
n }∞n=0

hits the boundary of B(x, r1). We have for any y′ ∈ ∂B(x, 2N)∑
x′∈∂B(x,r1)

|P (Xτr1 (x) = x′)− P (Xτr1 (x) = x′|Xτ2N (x) = y′)|

=
∑

x′∈∂B(x,r1)

|P (X(1,y′)
τr1,1

= x′)− P (X(2,y′)
τr1,2

= x′)|

≤
∑

x′∈∂B(x,r1)

P (X(1,y′)
τr1,1

= x′, X(2,y′)
τr1,2

6= x′) +
∑

x′∈∂B(x,r1)

P (X(1,y′)
τr1,1

6= x′, X(2,y′)
τr1,2

= x′)

≤2
[
1− P

(
X(1,y′)
m = X(2,y′)

m , ∀m ≥ r1 − 2N
)]

< ε/2.
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The second inequality above is a result of the fact that τr1,i > r1 − 2N and that

once we have X
(1,y′)
m = X

(2,y′)
m , ∀m ≥ r1− 2N , this will guarantee τr1,1 = τr1,2 and

X
(1,y′)
τr1,1

= X
(2,y′)
τr1,2

. Thus, combining (3.5)-(3.7), we now have (3.4) and the proof of
Lemma 3.4 is complete.

�

With Lemma 3.4, for any A ∈ FL
L0(x), noting that FL

L0(x) ⊂ FL,r2
L0 (x) for any

r2 and let r2 → ∞, we have for any event B ∈ FN (x), with P (B) > 0 which has

the form B = B̂ ∩ B̃, where B̂ ∈ F̂N (x) and B̃ ∈ F̃N (x), and any ε > 0,

|P (A ∩B)− P (A)P (B)| < ε

which implies that A and B are independent. �

With Lemma 3.3, since FN can be seen as the product sigma-field of F̃N × F̂N

and any A ∈ FL
L0(x) is already independent to any cylinder event B = B̂ ∩ B̃,

by π − λ Theorem, A is independent to FN for any N ≥ 0 which implies A is
independent with

σ

( ∞⋃
N=0

FN

)
⊃ FL

L0(x).

Thus, A is independent to itself, which implies that P (A) = 0 or 1. Thus the
random relation L0 is left trivial.

�

With the lemma above, it is then easy to adapt this result to the left triviality
of the random relations L and R. Without loss of generality, for L, note that
this random relation is the same as the random relation that y is in the trace of a
double branching random walk starting at x, conditioned under event A0 = {the
backward part of the double branching random walk never return to x}. Thus we
can consider the new probability space (A0, P (·|A0)) and sigma-fields:

FL,K
L0,A0

(x) = σ({xL0y} ∩A0 : y ∈ Kc)

for all finite K ⊂ Zd and

FL
L0,A0

(x) =
⋂

K⊂Zd finite

σ({xL0y} ∩A0 : y ∈ Kc).

And it is sufficient to show that for any A ∈ FL
L0,A0

(x), P (A) = 0 or P (A0). To
show this, first for any finite K, we have the following family of events

Π = {{T (x) ∩ S = ∅} ∩A0, S ⊂ Kc} ⊂ FL,K
L0,A0

(x)

a π−field and σ(Π) = FL,K
L0,A0

(x). Then again by π − λ Theorem we have

FL,K
L0,A0

(x) = FL,K
L0 (x) ∩A0

which immediately implies that

FL
L0,A0

(x) = FL
L0(x) ∩A0.

Thus for any A ∈ FL
L0,A0

(x), P (A) = 0 or P (A0). And the proof of Lemma 3.1 is
complete. �
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4. Remote Tail Trivialities

In this section we prove the following lemma

Lemma 4.1. Let u > 0. The random relation Mu is remote tail trivial.

Proof : In order to show this lemma, we need to combine the idea and results in
the earlier research on random interlacement without branching (Procaccia and
Tykesson, 2011) and the techniques we developed for left/right triviality. For each
finite subset K ⊂⊂ Zd, consider the sigma-fields

FK = σ {xMuy : x, y ∈ K}

and

FK = σ {xMuy : x, y ∈ Kc} .
If we can prove that for any A ∈ FRem

Mu
and any K ⊂⊂ Zd, we always have that A

is independent to FK , then we will have A is independent to itself which implies
P (A) = 0 or 1. Thus it is sufficient to show that

Lemma 4.2. For any K ⊂⊂ Zd, any event B ∈ FK , and any ε > 0 there exists a
r4 <∞ such that for any event A ∈ FB(0,r4),

|P (A ∩B)− P (A)P (B)| ≤ 2ε.

Before we discuss the technical details of the proof, we first give an outline of the
ideas we use in showing this result and set some notations: For any finite K ⊂⊂ Zd
and r > 0 such that B(0, r) ⊃ K, we can look at the branching interlacement
restricted to the trajectories that intersect B(0, r). I.e., for

ωu =

∞∑
i=1

δw∗i

in the branching interlacement, we have

ωu|W∗
B(0,r)

=

∞∑
i=1

δw∗i 1{w∗i ∩B(0,r) 6=∅}

Let ηB(0,r) = ωu|W∗
B(0,r)

(W ∗) be the number of trajectories that intersectB(0, r).

Similarly, we can also let

ωu|W∗K =

∞∑
i=1

δw∗i 1{w∗i ∩K 6=∅}

and ηK = ωu|W∗K (W ∗). Then according to the definition of the Poisson Point
Process, ηK and ηB(0,r) are Poisson random variables with parameters equal to
uĉap(K) and uĉap(B(0, r)) respectively. And ηB(0,r)−ηK is also a Poisson random
variable with parameter u[ĉap(B(0, r)) − ĉap(K)]. Moreover, ωu|W∗

B(0,r)
and ωu −

ωu|W∗
B(0,r)

are independent point measures.

Proof sketch:

• For any finite K ⊂⊂ Zd, we can consider a sufficiently large r1 so that
when looking at ωu|W∗

B(0,r1)
, any event FK will be almost independent to

ηB(0,r1).
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• Secondly, we can have a r2 sufficiently larger than r1 such that in the
construction of ωu|W∗

B(0,r1)
above, we have with high probability all the

double branching random walks will never return to B(0, r1) after their
back bones first hit ∂B(0, r2). So the number of double branching random
walks that survive up to reaching ∂B(0, r2) is with high probability the
same as the number of those surviving forever.
• Then we restart those double branching random walks from ∂B(0, r2), and

given an upper bound of the number of surviving copies, no matter what is
the distribution of their initial values on ∂B(0, r2), there is a r3 sufficiently
larger than r2 such that the distribution of the locations when each of the
back bone random walk first hits ∂B(0, r3) are almost independent to the
initial values on ∂B(0, r2) (Lemma 4.3).
• Finally, there is a r4 sufficiently larger than r3 such that with high proba-

bility all the branches in ωu|W∗
B(0,r1)

that start before the back bones exit

B(0, r3) will not reach B(0, r4)c. So any A ∈ FB(0,r4) can “almost” be de-
termined by those double branching random walks restarted from ∂B(0, r3)
and the independent trajectories in ωu − ωu|W∗

B(0,r1)
(Lemma 4.4).

Additional notations:
The previous research introducing the branching interlacement (Angel et al., 2019)
enables us to construct ωu|W∗

B(0,r)
directly as follows: Let

{{Xn(x, i)}∞n=1 , i = 1, 2, · · · , x ∈ ∂B(0, r)}

be independent family of simple random walks in Zd with initial values X0(x, i) = x.
And let {{

F̂ (n, x, i)
}∞
n=1

, i = 1, 2, · · · , x ∈ ∂B(0, r)
}

where for each x, i and n, F̂ (n, x, i) is an independent copy of branching random

walk starting at 0, F (n, x, i) = Xn(x, i) + F̂ (n, x, i), and{{
B̂(n, x, i)

}∞
n=1

, i = 1, 2, · · · , x ∈ ∂B(0, r)
}

where for each x, i and n, B̂(n, x, i) is a independent copy of branching random

walk starting at 0, B(n, x, i) = Xn(x, i) + B̂(n, x, i). Moreover, let

{nx, x ∈ ∂B(0, r)}

be i.i.d. copies of Poisson random variables with λ = u that are independent with
everything else. Then according to the construction in the introduction, we have

F (x, i) = {F (0, x, i), F (1, x, i), F (2, x, i), · · · }

and

B(x, i) = {B(0, x, i), B(1, x, i), B(2, x, i), · · · }
has the same distribution as the forward/back part of a double branching random
walk. We call them the ith forward random walk starting at x and ith backward
random walk starting at x respectively. The trace of them are denoted by

Tf (x, i) =

∞⋃
n=0

TraceF (n, x, i)
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and

Tb(x, i) =

∞⋃
n=0

TraceB(n, x, i)

Moreover, we call

D(x, i) = {F (0, x, i), B(0, x, i), F (1, x, i), B(1, x, i), F (2, x, i), B(2, x, i), · · · },
which has the same distribution as a double branching random walk rooted at x,
the ith double branching random walk starting at x, whose trace is denoted by

T (x, i) = Tf (x, i) ∪ Tb(x, i).
Finally, for each x and i, let

T̂ ′b(0, x, i) = {y : y ∈ TraceB(0, x, i), y is the location of an offspring of the root}

and T ′b(0, x, i) = x+ T̂ ′b(0, x, i). We can define

T ′b(x, i) = T ′b(0, x, i) ∪
∞⋃
n=1

TraceB(n, x, i)

Note that for each x and i, under the exploration of the double branching random
walk, T (x, i) ∈ W (here we will not use a new notation). Thus we can construct
the branching interlacement restricted on B(0, r) as

ωu|W∗
B(0,r)

=
∑

x∈∂B(0,r)

∞∑
i=1

δπ(T (x,i))1{i≤nx,T ′b(x,i)∩B(0,r)=∅},

where π(·) is the natural mapping from W to W ∗ applied to the exploration of the
double random walks, which implies

ηB(0,r) =
∑

x∈∂B(0,r)

∞∑
i=1

1{i≤nx,T ′b(x,i)∩B(0,r)=∅}

are Poisson random variables with parameters equal to uĉap(B(0, r)). Moreover,

ωu|W∗K =
∑

x∈∂B(0,r)

∞∑
i=1

δπ(T (x,i))1{i≤nx,T ′b(x,i)∩B(0,r)=∅,T (x,i)∩K 6=∅},

and

ηK =
∑

x∈∂B(0,r)

∞∑
i=1

1{i≤nx,T ′b(x,i)∩B(0,r)=∅,T (x,i)∩K 6=∅}.

Finally, for any x, i and any N which is either a constant integer or a stopping time
with respect to {Xn(x, i)}∞n=1, we can let

FN (x, i) = {F (0, x, i), F (1, x, i), F (2, x, i), · · · , F (N, x, i)},
BN (x, i) = {B(0, x, i), B(1, x, i), B(2, x, i), · · · , B(N, x, i)}

and

DN (x, i) = {F (0, x, i), B(0, x, i), F (1, x, i), B(1, x, i), · · · , F (N, x, i), B(N, x, i)}
be the forward, backward and double processes until the Nth step of the back
bone. And let

TN,f (x, i) =

N⋃
n=0

TraceF (n, x, i),
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TN,b(x, i) =

N⋃
n=0

TraceB(n, x, i),

TN (x, i) = TN,f (x, i) ∪ TN,b(x, i),
and

T ′N,b(x, i) = T ′b(0, x, i) ∪
N⋃
n=1

TraceB(n, x, i).

And we let

FN (x, i) = {F (N, x, i), F (N + 1, x, i), F (N + 2, x, i), · · · },

BN (x, i) = {B(N, x, i), B(N + 1, x, i), B(N + 2, x, i), · · · }
and

DN (x, i) = {F (N, x, i), B(N, x, i), F (N + 1, x, i), B(N + 1, x, i), · · · }

be the forward, backward and double processes from the Nth step of the back
bone, and

TNf (x, i) =

∞⋃
n=N

TraceF (n, x, i),

TNb (x, i) =

∞⋃
n=N

TraceB(n, x, i),

TN (x, i) = TNf (x, i) ∪ TNb (x, i).

Now we are ready to start the proof:

Proof : First for any given finite K ⊂⊂ Zd, and given B ∈ FK , note that ηB(0,r1) =
ηK + [ηB(0,r1) − ηK ], where

[ηB(0,r1) − ηK ] ∈ σ
(
ωu|W∗

B(0,r1)
− ωu|W∗K

)
which is independent to ωu|W∗K and Fk. Thus according to Lemma 3.3 of Procaccia
and Tykesson (2011), we have that there is a r1 sufficiently large such that

∞∑
n=0

|P (ηB(0,r1) = n|B)− P (ηB(0,r1) = n)| < ε

8
.

Then we construct ωu|W∗
B(0,r1)

using the construction described above, and let N =∑
x∈∂B(0,r1) nx be a Poisson random variable with parameter u|∂B(0, r1)|. Then

there exists a D < ∞ such that P (N > D) < ε/16. For this given r1, note that
∂B(0, r1) is finite, and we can give an order > to all items in it.

Moreover, for any r > r1, x ∈ ∂B(0, r1) and i ≥ 1 let

τx,i,r = inf{n : Xn(x, i) ∈ ∂B(0, r)}

be the first time the ith back bone starting at x hits ∂B(0, r). And let

ηr =
∑

x∈∂B(0,r1)

D∑
i=1

1{i≤nx,T ′τx,i,r,b(x,i)∩B(0,r)=∅}
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be (approximately) the number of trajectories in our construction that survive
through thinning by its back bone first hits ∂B(0, r). It is easy to see that

P
(
ηr 6= ηB(0,r1)

)
≤ P (N > D) +

∑
x∈∂B(0,r1)

D∑
i=1

P (T τx,i,r (x, i) ∩B(0, r1) 6= ∅) .

Note that given Xτx,i,r (x, i) = x′ ∈ ∂B(0, r), T τx,i,r (x, i) has the same distribution
as the trace of a double branching random walk starting at x′. So according to
Lemma 5.2 there is a c <∞ such that

P (T τx,i,r (x, i) ∩B(0, r1) 6= ∅) ≤ c|∂B(0, r1)|
|r − r1|d−4

which implies there is a sufficiently large r2 such that

P
(
ηr2 6= ηB(0,r1)

)
≤ ε

16
+

ε

16
=
ε

8
.

Then consider the sigma-field:

Gr2 = σ

σ({nx}x∈∂B(0,r1)) ∪
⋃

x∈∂B(0,r1)

D⋃
i=1

σ
(
Dτx,i,r2

(x, i)
) . (4.1)

It is easy to see that ηr2 ∈ Gr2 . Moreover, define

Er1,r2 = {N ≤ D} ∩
⋂

x∈∂B(0,r1)

D⋂
i=1

{T τx,i,r (x, i) ∩B(0, r1) = ∅} .

We have the following result on FB(0,r1).

Lemma 4.3. For any event B ∈ FB(0,r1), there is an event Br2 ∈ Gr2 such that

B ∩ Er1,r2 = Br2 ∩ Er1,r2 .

Proof : Consider the family of events in FB(0,r1) as follows:

Π =

{
n⋂
i=1

{xiMuyi} : n <∞, (xi, yi) ∈ B(0, r1)×B(0, r1),∀i = 1, · · · , n

}
It is easy to see that Π is a π−field, σ(Π) = FB(0,r1), and for any B ∈ Π, we have

n⋂
i=1

{xiMuyi} ∩ Er1,r2

=
( n⋂
i=1

⋃
x∈∂B(0,r1)

D⋃
i=1

{nx ≥ i} ∩ {T ′τx,i,r,b(x, i) ∩B(0, r1) = ∅} ∩ {x, y ∈ Tτx,i,r (x, i)}
)
∩ Er1,r2

so the lemma is satisfied in Π. Moreover, according to the same argument as in
(3.1) and (3.2), the family

D = {B ∈ FB(0,r1), B ∩ Er1,r2 = Br2 ∩ Er1,r2 , for some Br2 ∈ Gr2} ⊃ Π

is a λ−field. The π − λ Theorem finishes the proof of this lemma. �



Connectivity properties of Branching Interlacements 295

With the lemma above we can immediately have for any B ∈ FB(0,r1),

P (B∆Br2) ≤ P (Ecr1,r2) <
ε

8
(4.2)

where B∆Br2 =
(
B ∩Bcr2

)
∪ (Bc ∩Br2), which implies that

|P (B)− P (Br2)| ≤ P (Ecr1,r2) <
ε

8
.

And this is also true for any B in the smaller sigma-field FK . Moreover, in the
ordered set ∂B(0, r1)×{1, 2, · · · , D}, with the dictionary order >̃ = >× >, we can
make the trajectories that survives until their back bones hit ∂B(0, r2) an ordered
sequence. Let

~a1 = min
{

(x, i) : 1nx≥i,T ′τx,i,r2 ,b
(x,i)∩B(0,r1)=∅ = 1

}
and

~ak = min
{

(x, i)>̃~ak−1 : 1nx≥i,T ′τx,i,r2 ,b
(x,i)∩B(0,r1)=∅ = 1

}
for all k ≤ ηr2 . Let

~ξr2 =
(
Xτ~ak,r2

(~ak)
)ηr2
k=1

And for any k ≤ ηr2 let

Dr2,k = {F (τ~ak,r2 ,~ak), B(τ~ak,r2 ,~ak), F (τ~ak,r2 + 1,~ak), B(τ~ak,r2 + 1,~ak), · · · } .

and

Xr2,k
n = Xτ~ak,r2+n(~ak).

It is easy to see that given ηr2 = n0 and ~ξr2 = ~y,
{
Dr2,k

}ηr2
k=1

has the same dis-
tribution as n0 independent double branching random walks with initial values ~y,
with {Xr2,k

n }ηr2k=1 as their back bones, and they are also conditionally independent
to Gr2 .

For the r2 we have above and r3 � r2, given ηr2 = n0 and ~ξr2 = ~y, consider the
following stopping times with respect to Xr2,k

n , k ≤ n0:

τr3,k = inf
{
n : Xr2,k

n ∈ ∂B(0, r3)
}

and let

~γr3 =
(
Xr2,k
τr3,k

)ηr2
k=1

be the locations where each of those new back bone simple random walks first
hit ∂B(0, r3). Then by maximum coupling theorem of random walk, see (3.18) of
Procaccia and Tykesson (2011), there is a r3 sufficiently larger than r2 such that
for all n0 ≤ D|∂B(0, r1)| and ~y ∈ ∂B(0, r2)n0∑

~x∈∂B(0,r3)n0

∣∣∣P (~γr3 = ~x|ηr2 = n0, ~ξr2 = ~y
)
− P (~γr3 = ~x|ηr2 = n0)

∣∣∣ < ε

8
.

Moreover, we can let
{
D
τr3,k
r2,k

}ηr2
k=1

be the double branching random walks Dr2,k

restarted from Xr2,k
τr3,k

, which are conditionally independent to Gr3 given ηr2 = n0

and ~γr3 = ~x, where Gr3 is defined same as in (4.1)
Finally, according to (3.3), for the r3 we have above, we can have a r4 such that

with high probability any branches in the D|∂B(0, r1)| trajectories which start
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before their back bones exiting B(0, r3) will never reach ∂B(0, r4). I.e., for each
x ∈ ∂B(0, r1) and each i ≤ D, let

τr3(x, i) = inf{n : Xn(x, i) = B(0, r3)}

and event

Er3,r4 =
⋂

x∈∂B(0,r1)

D⋂
i=1

{
Tτr3 (x,i)(x, i) ∩ ∂B(0, r4) = ∅

}
.

We have for a sufficiently large r4 � r3, P (Er3,r4) > 1− ε/8.
At this point, we have finished the construction of r4. Define sigma-field gener-

ated by the double branching random walks which survives up to τ·,r2 and restarting
from ∂B(0, r3) above and the trajectories in ωu − ωu|W∗

B(0,r)
as follows:

Hr3 = σ

( ηr2⋃
k=1

σ
(
D
τr3,k
r2,k

)
∪ σ

(
ωu − ωu|W∗

B(0,r1)

))
.

Here we denote
ηr2⋃
k=1

σ
(
D
τr3,k
r2,k

)
=

N |∂B(0,r1)|⋃
k=1

σ
(
D̄
τr3,k
r2,k

)
where

D̄
τr3,k
r2,k

=

{
D
τr3,k
r2,k

, if ηr2 ≥ k
∅, if ηr2 < k

.

Then we again have the following lemma stating that for any event A ∈ FB(0,r4),
it is “almost” also in Hr3 .

Lemma 4.4. For any A ∈ FB(0,r4) there is a Ar3 ∈Hr3 such that

A ∩ Er1,r2 ∩ Er3,r4 = Ar3 ∩ Er1,r2 ∩ Er3,r4
Proof : The proof of this lemma is similar to the previous one. Consider the family
of events in FB(0,r4) as follows:

Π =

{
n⋂
i=1

{xiMuyi}, : n <∞, (xi, yi) ∈ B(0, r4)c ×B(0, r4)c,∀i = 1, · · · , n

}
It is easy to see that Π is a π−field, σ(Π) = FB(0,r4), and for any B ∈ Π, we have

n⋂
i=1

{xiMuyi} ∩ Er1,r2 ∩ Er3,r4 = Br3 ∩ Er1,r2 ∩ Er3,r4

where Br3 ∈Hr3 equals to⋃
A,B ⊂ {1, 2, · · ·n}

A ∪ B = {1, 2, · · ·n}

( ⋂
i∈A

{
∃k ≤ ηr2 , xi, yi ∈ T

τr3,k
r2,k

}
∩

⋂
i∈B

{
∃γ ∈ supp

(
ωu − ωu|W∗

B(0,r1)

)
, xi, yi ∈ γ

})
.
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So the lemma is satisfied in Π. Moreover, according to the same argument as in
(3.1) and (3.2), the family

D = {B ∈ FB(0,r4), B ∩ Er1,r2 ∩ Er3,r4 = Br3 ∩ Er1,r2 ∩ Er3,r4 ,
for some Br3 ∈Hr3} ⊃ Π

is a λ−field. The π − λ Theorem finishes the proof of this lemma. �

Same as before, the Lemma 4.4 also implies that

P (A∆Ar3) ≤ P (Ecr1,r2) + P (Ecr3,r4) ≤ ε

4
. (4.3)

Moreover, for any cylinder event Ar3 = Âr3 ∩ Ãr3 ∈Hr3 , where

Âr3 ∈ σ

( ηr2⋃
k=1

σ
(
D
τr3,k
r2,k

))
and

Ãr3 ∈ σ
(
ωu − ωu|W∗

B(0,r1)

)
,

noting that ωu − ωu|W∗
B(0,r1)

is independent to ωu|W∗
B(0,r1)

and that

σ

( ηr2⋃
k=1

σ
(
D
τr3,k
r2,k

))
is conditionally independent to Gr3 given ηr2 = n0 and ~γr3 = ~x, we have Ar3 is also
conditionally independent to Gr3 given ηr2 = n0 and ~γr3 = ~x. And again by π − λ
Theorem, such conditional independence also holds for any Ar3 ∈Hr3 .

Now put everything we have together. For any A ∈ FB(0,r4) and B ∈ FK , by
(4.2) and (4.3),

|P (A ∩B)− P (A)P (B)|
≤ 2P (A∆Ar3) + 2P (B∆Br2) + |P (Ar3 ∩Br2)− P (Ar3)P (Br2)|
< ε+ |P (Ar3 ∩Br2)− P (Ar3)P (Br2)|.

And for |P (Ar3 ∩Br2)−P (Ar3)P (Br2)|, note that Ar3 is conditionally independent
to Gr3 given ηr2 = n0 and ~γr3 = ~x, and that Br2 ∈ Gr3 . So we have that

P (Ar3 ∩Br2)

=

|∂B(0,r1)|D∑
n=1

∑
~x∈(∂B(0,r3))n0

P (Ar3 ∩Br2 ∩ {ηr2 = n0, ~γr3 = ~x})

=

|∂B(0,r1)|D∑
n=1

∑
~x∈(∂B(0,r3))n0

P (Ar3 |ηr2 = n0, ~γr3 = ~x)P ({ηr2 = n0, ~γr3 = ~x} ∩Br2) .

And by total probability formula,

P (Ar3) =

|∂B(0,r1)|D∑
n=1

∑
~x∈(∂B(0,r3))n0

P (Ar3 |ηr2 = n0, ~γr3 = ~x)P (ηr2 = n0, ~γr3 = ~x).

Thus we have

|P (Ar3 ∩Br2)− P (Ar3)P (Br2)| ≤ Error, (4.4)
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where

Error =

|∂B(0,r1)|D∑
n=1

∑
~x∈(∂B(0,r3))n0

|P ({ηr2 = n0, ~γr3 = ~x} ∩Br2)−P (ηr2 = n0, ~γr3 = ~x)P (Br2)|.

Moreover for any n0 ≤ |∂B(0, r1)|D and ~y ∈ (∂B(0, r2))n0 , note that {Xr2,k
n }ηr2k=1

are conditionally independent to Gr2 given ηr2 = n0 and ~ξr2 = ~y and that Br2 ∈ Gr2 .
Thus for any n0 ≤ |∂B(0, r1)|D and ~x ∈ (∂B(0, r3))n0 , we have

P ({ηr2 = n0, ~γr3 = ~x} ∩Br2)

=
∑

~y∈(∂B(0,r2))n0

P
(
~γr3 = ~x

∣∣ηr2 = n0, ~ξr2 = ~y
)
P
({
ηr2 = n0, ~ξr2 = ~y

}
∩Br2

)
and

P ({ηr2 = n0} ∩Br2)P (~γr3 = ~x|ηr2 = n0)

= P (~γr3 = ~x|ηr2 = n0)
∑

~y∈(∂B(0,r2))n0

P
({
ηr2 = n0, ~ξr2 = ~y

}
∩Br2

)
.

So for any n0 ≤ |∂B(0, r1)|D and ~x ∈ (∂B(0, r3))n0 , adding and subtracting
P ({ηr2 = n0} ∩Br2)P (~γr3 = ~x|ηr2 = n0) at the same time,

|P ({ηr2 = n0, ~γr3 = ~x} ∩Br2)− P (ηr2 = n0, ~γr3 = ~x)P (Br2)|

≤
∑

~y∈(∂B(0,r2))n0∣∣∣P(~γr3 = ~x|ηr2 = n0, ~ξr2 = ~y
)
− P

(
~γr3 = ~x|ηr2 = n0

)∣∣∣P({~ξr2 = ~y, ηr2 = n0

}
∩Br2

)
+ |P (Br2)P (ηr2 = n0)− P ({ηr2 = n0} ∩Br2)|P (~γr3 = ~x|ηr2 = n0) .

Taking the summation over all n ∈ {1, 2, · · · , |∂B(0, r1)|D} and ~x ∈ (∂B(0, r3))n0 ,
we have

Error ≤ Error1 + Error2.

And we have

Error1 =

|∂B(0,r1)|D∑
n0=1

∑
~y∈(∂B(0,r2))n0

P
({
~ξr2 = ~y, ηr2 = n0

}
∩Br2

)
×

∑
~x∈(∂B(0,r3))n0

∣∣∣P (~γr3 = ~x|ηr2 = n0, ~ξr2 = ~y
)
− P (~γr3 = ~x|ηr2 = n0)

∣∣∣
≤
|∂B(0,r1)|D∑

n0=1

∑
~y∈(∂B(0,r2))n0

P
({
~ξr2 = ~y, ηr2 = n0

}
∩Br2

)
× ε

8

≤ ε
8

where the first inequality is a result of the choice of r3. And

Error2 =

|∂B(0,r1)|D∑
n0=1

|P (Br2)P (ηr2 = n0)− P ({ηr2 = n0} ∩Br2)|
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≤
|∂B(0,r1)|D∑

n0=1

∣∣P (B)P (ηB(0,r1) = n0)− P ({ηB(0,r1) = n0} ∩B)
∣∣

+ 2P (B∆Br2) + 4P (ηr2 6= ηB(0,r1))

≤ ε

8
+
ε

4
+
ε

2
=

7ε

8
.

The second inequality is a result of the choice of r1 and r2. Thus we have

Error ≤ Error1 + Error2 ≤ ε

and

|P (A ∩B)− P (A)P (B)| ≤ 2ε.

Thus the proofs of Lemma 4.1 and 4.2 are complete. �

�

5. Upper Bounds for Branching Random Walks

Here we consider the upper bounds of the probabilities that the trace of a condi-
tioned or unconditioned d−dimensional critical geometric branching random walk
includes a certain set of cardinality 1 2 or 3. This is an essential part of upper
bound in the stochastic dimension definition (2.3) that is needed for Theorem 2.5.

5.1. Connection to One Point. Although the asymptotic of the probability that an
unconditioned branching random walk hits one point was given in a recent research
Le Gall and Lin (2015), we still give the lemma as follows, since the method we
developed here will be useful in the discussion of the hitting probability to 2 or 3
points. For any x ∈ Zd, recalling the definition of the branching random walk, let

Nx = |{(n, k) : ST (n) ≥ k,BRW (vn,k) = x}|

Recalling that BRW (vn,k) is the branching random walk from vn,k defined in (2.1),
and that ST (n) is the population size of the nth generation in the associated Galton-
Watson tree, it is easy to see that Nx is the number of visits to x.

We have the following lemma:

Lemma 5.1. For d ≥ 3, there are constant c, C ∈ (0,∞) such that for any x 6=
0 ∈ Zd

E[Nx] ∈
[
c|x|−d+2, C|x|−d+2

]
. (5.1)

Moreover, E[N0] <∞.

Proof : Given T = T0, according to the construction in the introduction, recalling
that given a T0 with ST0

(n) ≥ k, the distribution of BRW (vn,k) is the same as the
nth step of a simple random walk starting at 0, we have

E[Nx|T = T0] =

∞∑
n=0

ST0 (n)∑
k=1

P (BRW (vn,k) = x|T = T0)

=

∞∑
n=0

ST0
(n)P (Xn = x).
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Thus by the total probability theorem we have

E[Nx] =

∞∑
n=0

E[ST (n)]P (Xn = x),

while E[ST (n)] = (E[G(1/2)] − 1)E[ST (n − 1)] = 1 for all n ≥ 0. Thus by the
asymptotic of the Green function of simple random walk, we have

E[Nx] =

∞∑
n=0

P (Xn = x) ∈
[
c|x|−d+2, C|x|−d+2

]
(5.2)

for all x 6= 0, and

E[N0] =

∞∑
n=0

P (Xn = 0) <∞.

�

As a direct result of the lemma above, we have P (Nx > 0) ≤ E[Nx] ≤ C|x|−d+2.
Then for the double branching random walk, according to Benjamini and Curien
(2012), we can again construct it from a critical geometric Galton-Watson tree T∞
conditioned to survive and a sequence of i.i.d. unit jumps in Zd. Thus we can
define

N̄x = |{(n, k) : ST (n) ≥ k,DBRW (vn,k) = x}|
where DBRW (·) is the mapping from the critical geometric Galton-Watson tree
conditioned to survive to Zd. For the upper bound of E[N̄x] we have the following
result:

Lemma 5.2. For d ≥ 5, there are constant c, C ∈ (0,∞) such that for any x 6=
0 ∈ Zd

E[N̄x] ∈
[
c|x|−d+4, C|x|−d+4

]
.

Moreover, E[N0] <∞.

Proof : In order to show this lemma, from the construction of a double branching
random walk in the Introduction we have for any x ∈ Zd

E[N̄x] ≤ 2
∞∑
n=0

∑
y∈Zd

P (Xn = y)E[Nx−y]

≤ 2
∑
y∈Zd

E[Nx−y]

( ∞∑
n=0

P (Xn = y)

)
and

E[N̄x] ≥
∞∑
n=0

∑
y∈Zd

P (Xn = y)E[Nx−y]

≥
∑
y∈Zd

E[Nx−y]

( ∞∑
n=0

P (Xn = y)

)
.

Thus for x = 0, we have

E[N̄0] ≤ 2
∑
y∈Zd

E[N−y]

( ∞∑
n=0

P (Xn = y)

)
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≤ C + C
∑

y 6=0∈Zd
|y|−2d+4

≤ C + C

∞∑
n=1

|y|−d+3 <∞.

And for any x 6= 0, we have

E[N̄x] ≤ C|x|−d+2 + C
∑

y∈Zd−{0,x}

|x− y|−d+2|y|−d+2. (5.3)

To control the right hand side of (5.3), let B1 = B(0, |x|/2), B2 = B(x, |x|/2), and
B3 = B(0, 2|x|). We have

∑
y∈B1−{0}

|x− y|−d+2|y|−d+2 ≤ C(|x|/2)−d+2

|x|/2∑
n=1

n

 ≤ C|x|−d+4, (5.4)

and ∑
y∈B2−{x}

|x− y|−d+2|y|−d+2 ≤ C(|x|/2)−d+2

|x|/2∑
n=1

n

 ≤ C|x|−d+4. (5.5)

Moreover, we have∑
y∈B3−B1−B2

|x− y|−d+2|y|−d+2 ≤ C(2|x|)d(|x|/2)−2d+4 ≤ C|x|−d+4, (5.6)

and ∑
y∈Bc3

|x− y|−d+2|y|−d+2 ≤ C

 ∞∑
n=2|x|

n−d+3

 ≤ C|x|−d+4. (5.7)

Combining all the terms we have in (5.4)-(5.7) gives the upper bound we want. On
the other hand, note that there is a c > 0 such that

|B3 −B1 −B2| ≥ c|x|d

and that

E[N̄x] ≥ c
∑

y∈Zd−{0,x}

|x− y|−d+2|y|−d+2.

Thus

E[N̄x] ≥ c
∑

y∈B3−B1−B2

|x− y|−d+2|y|−d+2 ≥ c(|x|)d(2|x|)−2d+4 ≥ c|x|−d+4. (5.8)

And the proof of this lemma is complete. �

From the arguments above, it is important to note that there exists a C < ∞
such that for any x 6= 0∑

y∈Zd−{0,x}

|x− y|−d+2|y|−d+2 ≤ C|x|−d+4. (5.9)

This is an upper bound we will use again and again in the argument for 2 or 3
points.
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5.2. Connection to Two Points. If we have two different points x, y 6= 0, then the
following lemma controls the probability that x and y are both in the trace of an
unconditioned critical geometric branching random walk.

Lemma 5.3. There exists a C <∞ such that for any x, y 6= 0, x 6= y,

P (Nx > 0, Ny > 0)

≤ C(|x|−d+4|y|−d+2+ |y|−d+2|x|−d+4+ |x− y|−d+4|x|−d+2 + |x− y|−d+4|y|−d+2).

(5.10)

Proof : For any configuration of critical geometric branching random walk that
contains the points x and y, noting that it is finite with probability one, we can
define the most recent common ancestor of x and y as follows: First for any n and
k let

Tn,k = {vn′,k′ : vn′,k′ is an offspring of vn,k}

be all the offsprings of vn,k (and Tn,k = ∅ if k > ST (n)), and Bn,k = BRW (Tn,k)
be their locations embedded to Zd, and Trn,k be the trace of Bn,k. We can define

nx,y = sup{n : ∃k ≤ ST (n), s.t. {x, y} ⊂ Trn,k}

and

kx,y = sup{k : s.t. {x, y} ⊂ Trnx,y,k}.

Remark 5.4. After the proof in this paper had been finished, a similar idea of “last
common ancestor” was proposed and used parallel in Zhu (2016)

By definition, nx,y and kx,y are uniquely defined for any configuration under
{Nx > 0, Ny > 0}. And if nx,y = 0, we call that x and y are separated from the
root. Moreover for any n ≥ 0, k ≥ 1 and z ∈ Zd, note that the event

{Nx > 0, Ny > 0, nx,y = n, kx,y = k,BRW (vn,k) = z}

is a subset of the following event:

{ST (n) ≥ k,BRW (vn,k) = z, {x, y} ⊂ Trn,k, and {x, y} * Trn
′,k′ ,∀vn′,k′ ∈ Tn,k}.

In words, the event that BRW (vn,k) = z and that vn,k is the most recent common
ancestor of x and y must be included in the event that BRW (vn,k) = z, vn,k is a
common ancestor of x and y, and all offsprings of vn,k is not a common ancestor
of x and y. By doing this, we forget the fact that vn,k is the last particle in the
nth generation according to the ordering of exploration/depth first search that has
offsprings both at x and y, we also forget about all the (n+1)th generation particles
that are not an offspring of vn,k. Thus

P (Nx > 0, Ny > 0, nx,y = n, kx,y = k,BRW (vn,k) = z)

≤ P (ST (n) ≥ k,BRW (vn,k) = z)

P
(
{x, y} ⊂ Trn,k, {x, y} * Trn

′,k′ ,∀vn′,k′ ∈ Tn,k
∣∣ST (n) ≥ k,BRW (vn,k) = z

)
.

(5.11)
Then note that given ST (n) ≥ k and BRW (vn,k) = z, Bn,k forms another

critical geometric branching random walk starting at z, and that given ST (n) ≥ k

and BRW (vn,k) = z, the event {{x, y} ⊂ Trn,k, {x, y} * Trn
′,k′ ,∀vn′,k′ ∈ Tn,k} is
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the same as the event that x and y are separated from the root in the new critical
geometric branching random walk Bn,k. Thus we have

P
(
{x, y} ⊂ Trn,k, {x, y} * Trn

′,k′ ,∀vn′,k′ ∈ Tn,k
∣∣ST (n) ≥ k,BRW (vn,k) = z

)
= P (Nx−z > 0, Ny−z > 0, nx−z,y−z = 0).

(5.12)
Combining the (5.11) and (5.12), we have

P (Nx > 0, Ny > 0, nx,y = n, kx,y = k,BRW (vn,k) = z)

≤ P (ST (n) ≥ k,BRW (vn,k) = z)P (Nx−z > 0, Ny−z > 0, nx−z,y−z = 0).
(5.13)

Moreover, note that

1{Nx−z>0,Ny−z>0,nx−z,y−z=0} ≤
∑
i 6=j

1{x−z∈Tr1,i}1{y−z∈Tr1,j}1ST (1)≥max{i,j}

which implies that

P (Nx−z > 0, Ny−z > 0, nx−z,y−z = 0)

≤
∑
i 6=j

P (ST (1) ≥ max{i, j})

P
(
{x− z ∈ Tr1,i} ∩ {y − z ∈ Tr1,j}

∣∣ST (1) ≥ max{i, j}
)
.

(5.14)

Then noting that given ST (1) ≥ max{i, j}, Tr1,i and Tr1,j are the traces of two
independent critical geometric branching random walk starting uniformly from the
neighbors of 0, we have

P
(
{x ∈ Tr1,i} ∩ {y ∈ Tr1,j}

∣∣ST (1) ≥ max{i, j}
)

≤ C min{1, ||x− z| − 1|−d+2, |x− z|−d+2}min{1, ||y − z| − 1|−d+2, |y − z|−d+2}

≤ C|x− z|−d+2|y − z|−d+2

(5.15)
for all z 6= x, y. Thus, combining (5.14) and (5.15) we have

P (Nx−z > 0, Ny−z > 0, nx−z,y−z = 0)

≤ CE[ST (1)2 − ST (1)]|x− z|−d+2|y − z|−d+2

≤ C|x− z|−d+2|y − z|−d+2.

(5.16)

Remark 5.5. We can without loss of generality simplify (5.15) as above since we
can always drop the finite number of terms of form |x|−d+2|x− y|−d+2 when z = x
or y, which do not have the leading order in our lemma.
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Taking the summation over all n, k and z, and by (5.11), (5.16) and Lemma 5.1,
we have

P (Nx > 0, Ny > 0)

=
∑
z∈Zd

∞∑
n=0

∞∑
k=1

P (Nx > 0, Ny > 0, nx,y = n, kx,y = k,BRW (vn,k) = z)

≤ C
∑

z∈Zd−{x,y,0}

[ ∞∑
n=0

∞∑
k=1

P (ST (n) ≥ k,BRW (vn,k) = z)

]
|x− z|−d+2|y − z|−d+2

≤ C
∑

z∈Zd−{x,y,0}

|z|−d+2|x− z|−d+2|y − z|−d+2.

(5.17)
To control the upper bound we have above, let D = min{|x|, |y|}/2. For z ∈
B(0, D)− {0} we have∑

z∈B(0,D)−{0}

|z|−d+2|x− z|−d+2|y − z|−d+2

≤ C

(
D∑
1

n

)
(|x| −D)−d+2(|y| −D)−d+2

≤ C(|x|)−d+4(|y|)−d+2 + C(|x|)−d+2(|y|)−d+4.

And for z ∈ B(0, D)c − {x, y}, by (5.9)∑
z∈B(0,D)c−{x,y}

|z|−d+2|x− z|−d+2|y − z|−d+2

≤ D−d+2
∑

z∈Zd−{x,y}

|x− z|−d+2|y − z|−d+2

≤ CD−d+2|x− y|−d+4

≤ C|x|−d+2|x− y|−d+4 + C|y|−d+2|x− y|−d+4.

Combining the two inequalities above, the proof of this lemma is complete. �

And then for the double branching random walk, we have

Lemma 5.6. There exists a C <∞ such that for any x, y 6= 0, x 6= y,

P (N̄x > 0, N̄y > 0)

≤ C
(
|x|−d+4|y|−d+4 + |x− y|−d+4|x|−d+4 + |x− y|−d+4|y|−d+4

)
.

(5.18)

Proof : Recalling again the construction of the double branching random walk we
have in the introduction, let

τx = inf{n : x ∈ TraceB(n) ∪ TraceF (n)}
and

τy = inf{n : y ∈ TraceB(n) ∪ TraceF (n)}.
Then it is easy to see that they are both stopping times with respect to the filtration
of sigma fields Fn = σ(X0, · · · , Xn, B̂(0), · · · , B̂(n), F̂ (0), · · · , D̂(n)). Moreover,
for any n, given Xn = z, Dn+1 = {B(n+ 1), F (n+ 1), B(n+ 2), F (n+ 2), · · · } has
the same distribution as a double branching random walk starting from a uniform
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distribution on the nearest neighbors of z. And Dn+1 is conditionally independent
to Fn given Xn = z. And since

P (N̄x > 0, N̄y > 0) = P (τx < τy <∞) + P (τy < τx <∞) + P (τx = τy <∞),

to prove this lemma we only need to control each of the three probabilities above.
For P (τx < τy < ∞) and without loss of generality also P (τy < τx < ∞), it is

easy to see that

P (τx < τy <∞) =

∞∑
n=0

∑
z∈Zd

P (τx = n < τy <∞, Xn = z). (5.19)

And that for each n and z, we have event

{τx = n < τy <∞, Xn = z}

is a subset of event{
Xn = z, x− z ∈ Trace(B̂(n)) ∪ Trace(F̂ (n)), y ∈ Trace(Dn+1)

}
.

Noting that {
Xn = z, x− z ∈ Trace(B̂(n)) ∪ Trace(F̂ (n))

}
∈ Fn

and that B̂(n) and F̂ (n) is independent to Xn,

P (τx = n < τy <∞, Xn = z)

≤ P (Xn = z)P
(
x− z ∈ Trace(B̂(n)) ∪ Trace(F̂ (n))

)
P (y ∈ Trace(Dn+1)|Xn = z)

≤ CP (Xn = z)|x− z|−d+2|y − z|−d+4

for all z 6= x, y. Thus we have

P (τx < τy <∞) ≤ C
∞∑
n=0

∑
z∈Zd−{x,y}

P (Xn = z)|x− z|−d+2|y − z|−d+4

≤ C
∑

z∈Zd−{0,x,y}

|z|−d+2|x− z|−d+2|y − z|−d+4.

(5.20)

To control the summation we have on the right hand side of (5.20), we again look
at a neighborhood of y, and let D = min{|y|, |x− y|}/2. Then

C
∑

z∈B(y.D)−{y}

|z|−d+2|x− z|−d+2|y − z|−d+4 ≤ C|D|4|y|−d+2|x− y|−d+2

≤ C|y|−d+4|x− y|−d+4,

(5.21)

and by (5.9)

C
∑

z∈B(y.D)c−{0,x}

|z|−d+2|x− z|−d+2|y − z|−d+4

≤ C|D|−d+4
∑

z∈Zd−{0,x}

|z|−d+2|x− z|−d+2

≤ C|y|−d+4|x|−d+4 + C|x− y|−d+4|x|−d+4.

(5.22)

Combining the two inequalities above, then we have both P (τx < τy < ∞) and
P (τy < τx <∞) be bounded by the form of the right hand side of (5.18).
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And lastly for the part of P (τx = τy <∞), we again have the decomposition:

P (τx = τy <∞) =

∞∑
n=0

∑
z∈Zd

P (τx = τy = n,Xn = z)

and for each n and z,

P (τx = τy = n,Xn = z)

≤ CP (Xn = z) [P (Nx−z > 0, Ny−z > 0) + P (Nx−z > 0)P (Ny−z > 0)] .

Thus taking the leading order and by Lemma 5.3 we have

P (τx = τy <∞) ≤ C
∑

z∈Zd−{0,x,y}

|z|−d+2|x− z|−d+2|y − z|−d+4

+ C
∑

z∈Zd−{0,x,y}

|z|−d+2|x− z|−d+4|y − z|−d+2

+ C|x− y|−d+4
∑

z∈Zd−{0,x}

|z|−d+2|x− z|−d+2

+ C|x− y|−d+4
∑

z∈Zd−{0,y}

|z|−d+2|y − z|−d+2

(5.23)

where the first two parts on the right hand side has been controlled above in (5.21)
and (5.22). Then by (5.9),

C|x− y|−d+4
∑

z∈Zd−{0,x}

|z|−d+2|x− z|−d+2 ≤ C|x− y|−d+4|x|−d+4

and

C|x− y|−d+4
∑

z∈Zd−{0,y}

|z|−d+2|y − z|−d+2 ≤ C|x− y|−d+4|y|−d+4.

Thus the probability P (τx = τy <∞) can also be bounded by the form of the right
hand side in the lemma, and the proof of the lemma is complete. �

5.3. Connection to Three Points. For the connection to three points x, y and z,
the argument is the same to the case of two points, but the notation can be very
complicated. First let

h(x, y, z)

= |x|−d+2|x− y|−d+4|x− z|−d+4 + |x|−d+2|x− y|−d+4|y − z|−d+4

+ |x|−d+2|x− z|−d+4|y − z|−d+4 + |y|−d+2|x− y|−d+4|y − z|−d+4

+ |y|−d+2|x− y|−d+4|x− z|−d+4 + |y|−d+2|y − z|−d+4|x− z|−d+4

+ |z|−d+2|x− z|−d+4|y − z|−d+4 + |z|−d+2|x− z|−d+4|x− y|−d+4

+ |z|−d+2|y − z|−d+4|x− y|−d+4 + |x|−d+2|y|−d+4|y − z|−d+4

+ |x|−d+2|y|−d+4|x− z|−d+4 + |x|−d+4|y|−d+2|y − z|−d+4

+ |x|−d+4|y|−d+2|x− z|−d+4 + |x|−d+2|z|−d+4|x− y|−d+4

+ |x|−d+2|z|−d+4|y − z|−d+4 + |x|−d+4|z|−d+2|x− y|−d+4

+ |x|−d+4|z|−d+2|y − z|−d+4 + |y|−d+2|z|−d+4|x− y|−d+4
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+ |y|−d+2|z|−d+4|x− z|−d+4 + |y|−d+4|z|−d+2|x− y|−d+4

+ |y|−d+4|z|−d+2|x− z|−d+4 + |x|−d+2|y|−d+4|z|−d+4

+ |x|−d+4|y|−d+2|z|−d+4 + |x|−d+4|y|−d+4|z|−d+2.

Then, for any three different x, y, z 6= 0 and a tree γ on {0, x, y, z}, let < γ >=∏
{a,b}∈τ |a− b| = |γ1| · |γ2| · |γ3|, which is a product of 3 terms.

hc(x, y, z) =
∑
γ

< γ >−d+4=
∑
γ

|γ1|−d+4 · |γ2|−d+4 · |γ3|−d+4

which is a summations over 16 terms. Using the notation above, one can also write
h(x, y, z) in a more concise form as follows:

h(x, y, z) =
∑
γ

∑
e∈τ1,τ2,τ3

1e∈{|x|,|y|,|z|} < γ >−d+4 e−2.

We have, for unconditioned critical geometric branching random walk,

Lemma 5.7. There exists a C <∞ such that for any x, y, z 6= 0, x 6= y 6= z,

P (Nx > 0, Ny > 0, Nz > 0) ≤ Ch(x, y, z). (5.24)

Proof : Again we look at the most recent common ancestor of x, y, z and separate
the event into different cases. With the same argument as we have in the proof of
Lemma 5.3 and 5.6 on more different situations, we have there is a C < ∞ such
that the probability P (Nx > 0, Ny > 0, Nz > 0) can be bounded by C times the
summations of the following two types:

C|y − z|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − x|−d+2|w − y|−d+2

and

C
∑

w∈Zd−{0,x,y,z}

|w|−d+2|w − x|−d+4|w − y|−d+2|w − z|−d+2

where the locations of x, y and z can be permuted over all possible orders. For the
first type, by Lemma 5.3 we have

|y − z|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − x|−d+2|w − y|−d+2

≤ C|y − z|−d+4
(
|x|−d+4|y|−d+2 + |y|−d+2|x|−d+4

+ |x− y|−d+4|x|−d+2 + |x− y|−d+4|y|−d+2
)

≤ Ch(x, y, z).

And for the second type, let D = min{|x|, |x− y|, |x− z|}/2. And for B(x,D), we
have ∑

w∈B(x,D)−{x}

|w|−d+2|w − x|−d+4|w − y|−d+2|w − z|−d+2

≤ CD4|x|−d+2|x− y|−d+2|x− z|−d+2

≤ C|x|−d+2|x− y|−d+4|x− z|−d+4 ≤ h(x, y, z),
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and by Lemma 5.3,∑
w∈B(x,D)c−{0,y,z}

|w|−d+2|w − x|−d+4|w − y|−d+2|w − z|−d+2

≤ CD−d+4
∑

w∈Zd−{0,y,z}

|w|−d+2|w − y|−d+2|w − z|−d+2

≤ C
(
|x|−d+4 + |x− y|−d+4 + |x− z|−d+4

)
×
(
|y|−d+4|z|−d+2 + |y|−d+2|z|−d+4 + |y − z|−d+4|y|−d+2 + |y − z|−d+4|z|−d+2

)
≤ Ch(x, y, z).

Thus the proof of this lemma is complete. �

And similarly, for the double critical geometric branching random walk, we can
also have

Lemma 5.8. There exists a C <∞ such that for any x, y, z 6= 0, x 6= y 6= z,

P (N̄x > 0, N̄y > 0, N̄z > 0) ≤ Chc(x, y, z). (5.25)

Proof : With the same argument as we have before, we have there is a C <∞ such
that the probability P (N̄x > 0, N̄y > 0, N̄z > 0) can be bounded by C times the
summations of the following 5 types:

C|y − z|−d+4|x− z|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − y|−d+2,

C|y − z|−d+4|y − x|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − y|−d+2,

C|y − z|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − x|−d+4|w − y|−d+2,

C|x− z|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − x|−d+4|w − y|−d+2,

and
C

∑
w∈Zd−{0,x,y,z}

|w|−d+2|w − x|−d+4|w − y|−d+4|w − z|−d+2

where the locations of x, y and z can be permuted over all possible orders. For the
first two types, we have by (5.9),

C|y − z|−d+4|x− z|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − y|−d+2

≤ C|y − z|−d+4|x− z|−d+4|y|−d+4 ≤ Chc(x, y, z)
and

C|y − z|−d+4|y − x|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − y|−d+2

≤ C|y − z|−d+4|y − x|−d+4|y|−d+4 ≤ Chc(x, y, z).
For the third and fourth type, again by Lemma 5.6 we have

|y − z|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − x|−d+4|w − y|−d+2



Connectivity properties of Branching Interlacements 309

≤ C|y − z|−d+4
(
|x|−d+4|y|−d+4 + |x− y|−d+4|x|−d+4 + |x− y|−d+4|y|−d+4

)
≤ Chc(x, y, z),

and

|x− z|−d+4
∑

w∈Zd−{0,x,y}

|w|−d+2|w − x|−d+4|w − y|−d+2

≤ C|x− z|−d+4
(
|x|−d+4|y|−d+4 + |x− y|−d+4|x|−d+4 + |x− y|−d+4|y|−d+4

)
≤ Chc(x, y, z).

And for the fifth type, first let D1 = min{|x|, |x− y|, |x− z|}/2. And for B(x,D1),
we have ∑

w∈B(x,D1)−{x}

|w|−d+2|w − x|−d+4|w − y|−d+4|w − z|−d+2

≤ CD4|x|−d+2|x− y|−d+4|x− z|−d+2

≤ C|x|−d+4|x− y|−d+4|x− z|−d+4 ≤ h(x, y, z).

Then let D2 = min{|y|, |y − z|}/2. We have by the proof of Lemma 5.6 ,∑
w∈B(x,D1)c∩B(y,D2)−{y}

|w|−d+2|w − x|−d+4|w − y|−d+4|w − z|−d+2

≤ D−d+4
1

∑
w∈B(y,D2)−{y}

|w|−d+2|w − y|−d+4|w − z|−d+2

≤ CD−d+4
1 |y|−d+4|y − z|−d+4

≤ C
(
|x|−d+4|y|−d+4|y − z|−d+4

+ |x− y|−d+4|y|−d+4|y − z|−d+4 + |x− z|−d+4|y|−d+4|y − z|−d+4
)

≤ Chc(x, y, z).

And finally, ∑
w∈B(x,D1)c∩B(y,D2)c−{0,z}

|w|−d+2|w − x|−d+4|w − y|−d+4|w − z|−d+2

≤ D−d+4
1 D−d+4

2

∑
w∈Zd−{0,z}

|w|−d+2|w − z|−d+2

≤ CD−d+4
1 D−d+4

2 |z|−d+4

≤ C
(
|x|−d+4 + |x− y|−d+4 + |x− z|−d+4

) (
|y|−d+4 + |y − z|−d+4

)
|z|−d+4

≤ Chc(x, y, z).

Thus the proof of this lemma is complete. �

6. Lower Bounds for Branching Random Walks

In this section, we find the lower bounds of the probabilities that a d-dimensional
double branching random walk hits one point. First, the asymptotic of the prob-
ability that an unconditioned critical geometric branching random walk hits one
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point was given in a recent research (Le Gall and Lin, 2015) as follows: There exist
c, C ∈ (0,∞) such that for any x 6= 0

c|x|−d+2 ≤ P (Nx > 0) ≤ C|x|−d+2. (6.1)

And for the double branching random walk, we show that

Lemma 6.1. There exist c, C ∈ (0,∞) such that for any x 6= 0

c|x|−d+4 ≤ P (N̄x > 0) ≤ C|x|−d+4. (6.2)

Proof : The part of the upper bound has already been shown in Lemma 5.2, so we
will concentrate on the lower bound. First, it is easy to see the desired result follows
immediately if we can show the same lower bound for the backward branch of the
double branching random walk. Then, back to the unconditioned critical geometric
branching random walk, combining the lower bound in (6.1), the upper bound in
Lemma 1.1, and the fact that

E[Nx] = P (Nx > 0)E[Nx|Nx > 0],

we immediately have, there is a C <∞ such that

E[Nx|Nx > 0] ≤ C.

Then for the backward part of the double branching random walk, let N̂x be its
number of visits to x, and

τ̂x = inf{n : x ∈ Trace(B(n))}

Note that {τ̂x = n} ⊂ {N̂x > 0} and that

E[N̂x|N̂x > 0] =

∞∑
n=0

∑
y∈Zd

E[N̂x|τ̂x = n,Xn = y]P (τ̂x = n,Xn = y|N̂x > 0), (6.3)

where

E[N̂x|τ̂x = n,Xn = y] = E
[
N

(n)
x−y
∣∣τ̂x = n,Xn = y

]
+ E

[
N̂

(n+1)
x−y

∣∣τ̂x = n,Xn = y
]

where N
(n)
x−y is the number of vertices in B̂(n) that is mapped to x− y, and N̂

(n+1)
x−y

is the number of vertices in Cn+1 = {B(n + 1), B(n + 2), · · · } that is mapped to
x− y. Note that the event

{τ̂x = n,Xn = y} =
{
N

(n)
x−y > 0

}
∩An

where

An =

n−1⋂
i=0

{Trace(B(i))∩x = ∅}∩{Xn = y} ∈ σ
(
X0, · · · , Xn, B̂(0), · · · , B̂(n− 1)

)
which is independent to B̂(n). We have

E
[
N

(n)
x−y
∣∣τ̂x = n,Xn = y

]
= E

[
N

(n)
x−y
∣∣N (n)

x−y > 0
]
≤ C.

And by the fact that Cn+1 is stochastically dominated by a double critical geometric
branching random walk starting from a uniformly chosen neighbor of y, which is
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conditionally independent to Fn given Xn = y, and the upper bounds we found in
Lemma 1.2, we have

E
[
N̄

(n+1)
x−y

∣∣τ̂x = n,Xn = y
]
≤ 1

2d

d∑
k=1

(
E
[
N̄x−y+ik

]
+ E

[
N̄x−y−ik

])
≤ C.

Thus there is a C <∞ such that for any n, x and y

E
[
N

(n)
x−y
∣∣τ̂x = n,Xn = y

]
≤ C.

Then plugging the upper bounds to the total expectation formula (6.3), we have

E[N̂x|N̂x > 0] ≤ C. Recalling the lower bound of E[N̄x] in Lemma 5.2, the fact

that E[N̂x] > E[N̄x]/2, and again the fact that

E[N̂x] = P (N̂x > 0)E[N̂x|N̂x > 0],

We have the lower bound we need in this lemma. �

7. Proof of the Main Theorems

7.1. Proof of Theorem 2.5. With the lemmas 5.2-5.8 given in Section 5, for the
double branching random walk starting at x conditioned on A0 = {the backward
part of the double branching random walk never returns to x}. It is easy to see
that

P (N̄y > 0|A0) ≤ P (N̄y > 0)

êx(x)
≤ C|x− y|−d+4 (7.1)

and the same upper bounds holds for the probability of connection to 2 or 3 points.
Moreover, in the branching interlacement Iu′,u, ∀u > u′ ≥ 0, the trajectories

that ever hit x can be sampled by applying thinning on N = Poisson(u) of double
branching random walks starting at x. So the hitting probability is always less
than or equal to that for the double branching random walks without thinning,
which is bounded by u times the hitting probability of each of them. Thus, the
probability that there exists a trajectory in the branching random interlacement
passing a certain point which also includes a set of cardinality 1, 2 or 3 has the
same asymptotic results as in the lemmas 5.2-5.8.

With Lemma 6.1 giving the asymptotic of the hitting probability of the double
branching random walk to one point, we are also able to show the same asymptotic
holds for the double branching random walk conditioned on the backward part
never returning to the root. With the upper bound already shown above, consider
D = {D(0), D(1), · · · } to be a double branching random walk starting at 0. It
suffices to show that

P (A0 ∩ {N̄x > 0}) ≥ c|x|−d+4. (7.2)

To show this, let stopping time

τ = inf{n : Xn ∈ ∂B(0, |x|/2)},
where Xn is the back bone simple random walk of D. For any y ∈ ∂B(0, |x|/2),
given Xτ = y, D′ = {D(τ), D(τ+1), · · · } is another double branching random walk
starting at y and is conditionally independent to Fτ−1. Moreover, let A′0 ⊃ A0 be
the event that the first τ − 1 backward branches never return to 0. We have
A′0 ∈ Fτ−1. Thus

P (A0 ∩ {N̄ ′x > 0}) = P (A′0 ∩ {N̄ ′x > 0})− P (A′0 ∩Ac0 ∩ {N̄ ′x > 0}),
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where N̄ ′ is the number of visits in D′. For any y ∈ ∂B(0, |x|/2), by Lemma 5.6

P (A′0∩Ac0∩{N̄ ′x > 0}|Xτ = y) ≤ P (N̄x−y > 0, N̄−y > 0) ≤ C|x|−2d+8 = o(|x|−d+4),

and

P (A′0 ∩ {N̄ ′x > 0} ∩ {Xτ = y}) = P (A′0 ∩ {Xτ = y})P (N̄x−y > 0)

≥ cP (A′0 ∩ {Xτ = y})|x|−d+4.

Combining the two inequalities above, we have the same asymptotic holds for the
double branching random walk conditioned on the backward part never returning
to the root. And for Iu′,u, ∀u > u′ ≥ 0, the same asymptotic follows immediately
from the fact that

P [xMu′,uy] ≥ P [Poisson(u− u′) > 0]P (A0 ∩ {N̄y−x > 0}). (7.3)

Thus, recalling (7.1) and (7.2), the definition of L and R in (2.5) and (2.6), and
the fact that in the definition of L and R for all x ∈ Zd, we let {γ(x), x ∈ Zd} be
the trace of independent double branching random walks starting at x, conditioned
on the backward part never returning to x, we have for any x, y, z, w ∈ Zd

P (xLy) ≥ C|x− y|−d+4 (7.4)

and
P (xLy, zLw) ≤ C|x− y|−d+4|z − w|−d+4 (7.5)

if x 6= z. The second inequality is a result of the independence of the double
branching random walks starting from each point in Zd in the definition of the
random relation L. And if x = z, we have by Lemma 5.6 and the discussion above
for the upper bound of the hitting probability of the double branching random walk
conditioned on the backward part never returning to the root,

P (xLy, xLw)

≤ C
(
|x−y|−d+4|x−w|−d+4 + |x−y|−d+4|y−w|−d+4 + |x−w|−d+4|y−w|−d+4

)
= C〈xyxw〉−d+4.

(7.6)
Combining (7.4)-(7.6), we have by Definition 2.1, dimS(L) = 4. And dimS(R) = 4
follows from exactly the same argument.

Then for the stochastic dimension of Mu′,u, first by (7.3) we have

P [xMu′,uy] ≥ C|x− y|−d+4. (7.7)

So it is sufficient for us to check the upper bound of the correlation
P (xMu′,uy, zMu′,uw), and the argument here is the same as the argument from
(2.18) to (2.20) in Procaccia and Tykesson (2011). Let K = {x, y, z, w}. For
ωu′,u =

∑
i≥0 δw∗i , we let ω̂u′,u =

∑
i≥0 δw∗i 1trace(w∗i )⊃K . So we can write

P (xMu′,uy, zMu′,uw)

= P (xMu′,uy, zMu′,uw, ω̂u′,u = 0) + P (xMu′,uy, zMu′,uw, ω̂u′,u 6= 0).
(7.8)

For a point measure ω̃ ≤ ωu′,u, we write “xMu′,uy in ω̃”, if there is a trajectory in
supp(ω̃) whose trace contains both x and y. Note that for any w∗ ∈ supp(ωu′,u −
ω̂u′,u) such that x, y ∈Trace(w∗), then at least one of z or w cannot belong to
Trace(w∗). Thus, the events {xMu′,uy in ωu′,u − ω̂u′,u} and {zMu′,uw in ωu′,u −
ω̂u′,u} are defined in terms of disjoint sets of trajectories, and thus they are inde-
pendent under the Poisson point measure P . So for the first term in (7.8), according
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to such independence we have above, and the discussion on the upper bound of the
probability that there exists a trajectory in the branching random interlacement
passing a certain point which also includes a set of cardinality 1, we get that

P (xMu′,uy, zMu′,uw, ω̂u′,u = 0)

= P (xMu′,uy in ωu′,u − ω̂u′,u, zMu′,uw in ωu′,u − ω̂u′,u, ω̂u′,u = 0)

≤ P (xMu′,uy in ωu′,u − ω̂u′,u, zMu′,uw in ωu′,u − ω̂u′,u)

≤ P (xMu′,uy in ωu′,u − ω̂u′,u)P (zMu′,uw in ωu′,u − ω̂u′,u)

≤ P (xMu′,uy)P (zMu′,uw)

≤ C|x− y|−d+4|z − w|−d+4.

(7.9)

Then for the second term in (7.8), note that

P (xMu′,uy, zMu′,uw, ω̂u′,u 6= 0) = P (ω̂u′,u 6= 0)

and that the event {ω̂u′,u 6= 0} is the same as the event

{there exists a trajectory in ωu′,u passing x whose trace also includes y, z, w},
and that the discussion on the upper bound of the probability that there exists
a trajectory in the branching random interlacement passing a certain point which
also includes a set of cardinality 3. We have

P (xMu′,uy, zMu′,uw, ω̂u′,u 6= 0) ≤ C〈xyzw〉−d+4. (7.10)

Combining (7.7)-(7.10), we have shown that dimS(Mu′,u) = 4 and the proof of
Theorem 2.5 is complete.

7.2. Proof of upper bound in Theorem 2.6. We follow Section 4 of Procaccia and
Tykesson (2011). Let A1 be the event that x ∈ Iu/dd/4e and A2 is the event
that y ∈ I(dd/4e−1)u/dd/4e,u. Conditioned on A1 one gets that ωu/dd/4e(W

∗
x ) ≥

1. Thus there is at least one double branching random walk emanating from x,
conditioned on the backward part never returning to x. We can conclude that
conditioned on A1, {z : xM0,u/dd/4ez} stochastically dominates {z : xLz}. By
the same reasoning, conditioned on A2 we have that {z : zM(dd/4e−1)u/dd/4e,uy}
stochastically dominates {z : zRy}. Denote A = A1 ∩A2,

P

[
xMdd/4eu y

∣∣∣∣A] ≥ P
x dd/4e∏

i=1

Mu(i−1)dd/4e,uidd/4ey

∣∣∣∣A
 ≥ P [xCy] = 1.

Now for every disjoint intervals I1 = [t1, t2] and I2 = [t3, t4], define AI1 = {x ∈
It1,t2} and AI2 = {x ∈ It3,t4}. By similar arguments one can get

P

[
xMdd/4eu y

∣∣∣∣AI1 ∩AI2] = 1. (7.11)

Since

{x, y ∈ Iu} = {xMuy} ∪
⋃

I1,I2⊂[0,u], disjoint

{x ∈ It1,t2 , y ∈ It3,t4},

where all t1, t2, t3, t4 ∈ Q are distinct. By (7.11), conditioned on any event in

the countable positive probability union above we have xMdd/4eu y a.s. Thus we
conclude that

P
[
xMdd/4eu y|x, y ∈ Iu

]
= 1.
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7.3. Proof of lower bound in Theorem 2.6. This part follows immediately from
Section 5 of Procaccia and Tykesson (2011). The only change is in the definition
of m which is m = dd/4e − 1 for the purpose of this result, and the stochastic
dimension of the relation M is 4 instead of 2.
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