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Abstract. It is well-known that the transition function of the Ornstein-Uhlenbeck
process solves the Fokker-Planck equation. This standard setting has been re-
cently generalized in different directions, for example, by considering the so-called
α-stable driven Ornstein-Uhlenbeck, or by time-changing the original process with
an inverse stable subordinator. In both cases, the corresponding partial differential
equations involve fractional derivatives (of Riesz and Riemann-Liouville types, re-
spectively) and the solution is not Gaussian. We consider here a new model, which
cannot be expressed by a random time-change of the original process: we start by
a Fokker-Planck equation (in Fourier space) with the time-derivative replaced by
a new fractional differential operator. The resulting process is Gaussian and, in
the stationary case, exhibits long-range dependence. Moreover, we consider further
extensions, by means of the so-called convolution-type derivative.

1. Introduction and notation

The Ornstein–Uhlenbeck process has been widely studied and applied in many
different fields, mainly in finance and physics. Indeed, its mean-reverting property
is useful, in particular, in the financial data description, since many economic quan-
tities (such as interest rates) appear to be pulled back to some average value, in
the long-term period. Moreover, it is Gaussian, Markovian and has a stationary
version, which is the only nontrivial process satisfying all the previous conditions.

It is well-known that the density of the Ornstein-Uhlenbeck (hereafter OU) pro-
cess satisfies the so-called Fokker-Planck (FP) equation, i.e.

∂

∂t
u(x, t) = η

∂

∂x
[xu(x, t)] +D

∂2

∂x2
u(x, t), x ∈ R, t ≥ 0, D, η > 0, (1.1)

with the initial condition u(x, 0) = δ(x) and the boundary condition
lim|x|→+∞ xu(x, t) = 0, for any t ≥ 0 (see, for example, Pavliotis, 2014, p.95).
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Fractional extensions of the previous equation have been proposed by many au-
thors, in different directions: in particular, when a fractional Riemann-Liouville
derivative (with respect to time) is introduced in the right-hand side, an anoma-
lous diffusion is obtained, which can be described as a random time-change of the
OU process by means of the inverse of an independent stable subordinator (see
Magdziarz et al., 2007 and Magdziarz, 2009). In Janczura et al. (2011) this model
is compared to the OU process driven by the α-stable Lévy motion (which is gov-
erned by equation (1.1) with the second order derivative replaced by the Riesz
fractional operator). Later, in Gajda and Wyłomańska (2015), the model has been
generalized to the case where the time-derivative in (1.1) is replaced by a more
general integro-differential operator with memory kernel; as a consequence, the
time-change is by means of the inverse of a general Lévy subordinator.

Another approach to fractional OU processes has been proposed in Magdziarz
(2008) where the solution of the α-stable Langevin equation (the so-called α-stable
OU process) is extended to the fractional case, tracing the transition form Brownian
motion to fractional Brownian motion. The resulting processes exhibit long-range
dependence, which, due to the lack of finite second moments, must be measured by
codifferences.

Other non-Gaussian OU-type processes have been obtained by applying the Lam-
perti transform to the fractional Brownian motion (see Cheridito et al., 2003) and
they are proved to display short-range dependence when the Hurst parameter H
is greater than 1/2 (on the contrary to that obtained from the Langevin equation
with fractional noise). Also the extension of OU defined in Kaarakka and Salmi-
nen (2011), by the Doob’s transform of fractional Brownian motion, has covariance
function decaying exponentially for all values of H.

The class of time-fractional Pearson diffusions have also been studied in Leonenko
et al. (2013) and the fractional OU process is treated there as a particular case.
All these models are non-Markovian, as described in Mura et al. (2008), and non-
Gaussian. Finally, we recall that fractional diffusion equations with logarithmic-
type differential operators have been studied in Beghin (2018) and, as in the cases
cited above, a random time change (or subordination) is proved to hold for the
corresponding process.

We present here different models, alternative to all those described above, which
generalize the OU process in a fractional (and non-fractional) sense, but preserve
the Gaussianity of its distribution. Moreover, contrary to the α-stable OU and
fractional α-stable OU processes (in Magdziarz (2008)), they have finite moments
and, indeed, they are characterized by means of their covariance function (since
they are Gaussian).

As we will see, in our case, no random time change is entailed by the introduction
of the fractional operator, being in Fourier space. This is the most important
feature of our results and shows that correspondence between partial differential
equations with fractional (or convolution-type derivatives) and subordination (or
time-change) does not always come true.

The first model is called time-changed OU, since we prove that introducing, in
the Fourier transform of (1.1), a fractional operator entails a deterministic time-
change in the original process, expressed in terms of the Mittag-Leffler function.
Hence the process is still Gaussian, mean-reverting and Markovian, even though,
in the limit (for t → ∞), it does not converge to its stationary counterpart (as
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in the standard case), but to a random walk. In order to correct this anomalous
asymptotic behavior, we define a second fractional OU process, whose (Gaussian)
one-dimensional density satisfies the same fractional FP equation, but is not Mar-
kovian and has a stationary counterpart, in the limit. We show that it presents
long-range dependence, both in the covariance and in the spectral density sense.
We remark that, in all these cases, when the fractional parameter tends to one, we
recover the classical OU model.

As a motivation of the results described above, we show that the solution of the
fractional FP equation coincides with the one-dimensional distribution of the limit-
ing process obtained from a Poisson shot-noise, with power-law decaying response
function, when the frequency of the shocks increases and their amplitude tends to
zero.

Further extensions of the previous results are obtained, in the last section, by
generalizing the fractional operator adopted, by means of the convolution-type de-
rivative (see Gajda and Wyłomańska, 2015 and Toaldo, 2015 among the others) and
solving the corresponding FP equation (in Fourier space). The solution coincides
with the characteristic function of a generalized OU process, which is then defined
through the inverse of a general subordinator.

We now introduce some useful definitions and notation.
First of all, let f : R → R be an integrable function belonging to the Schwartz

space S(R) of rapidly decreasing functions; then we denote by F(f ; ξ) :=∫ +∞
−∞ eiξxf(x)dx = f̂(ξ) the Fourier transform and by F−1(f ;x) :=
1

2π

∫ +∞
−∞ e−iξxf̂(ξ)dξ its inverse. Moreover, for s > 0, we denote the Laplace trans-

form of f , as L(f ; s) :=
∫ +∞

0
e−sxf(x)dx = f̃(s).

Let α > 0, m = bαc + 1 and assume that u : [a, b] → R, b > a, is an absolutely
continuous function, with absolutely continuous derivatives up to order m on [a, b],
then, for x ∈ [a, b],

Dα
xu(x) :=

{
1

Γ(m−α)

∫ x
a

1
(x−s)α−m+1

dm

dsmu(s)ds, α /∈ N0

dm

dxm , α = m ∈ N0

(1.2)

is the Caputo fractional derivative of order α (see Kilbas et al., 2006, p.92). We
define here the new following fractional operator.

Definition 1.1. Let α ≥ 0 and m = bαc+ 1. Let u(·) : [0, b], b > 0, be a positive
function, with absolutely continuous derivatives up to order m on [0, b], then

Lαxu(x) := u(x)Dα
x log u(x), x ∈ R, (1.3)

where Dα
x is the Caputo fractional derivative of order α.

It is easy to check that, for α = 1, the operator defined in (1.3) coincides with
the first-order derivative, i.e.

L1
xu(x) =

d

dx
u(x). (1.4)

The previous definition can be generalized by considering the convolution-type
derivative (see Toaldo, 2015), which is defined by means of the subordinators’ the-
ory. Let g : (0,+∞) → R be a Bernstein function, i.e. let g be non-negative,
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infinitely differentiable and such that, for any x ∈ (0,+∞),

(−1)n
dn

dxn
g(x) ≤ 0, for any n ∈ N.

A function g is a Bernstein function if and only if it admits the following represen-
tation

g(x) = a+ bx+

∫ +∞

0

(1− e−sx)ν(ds),

where ν is the Lévy measure and (a, b, ν) is called the Lévy triplet of g. Then a sub-
ordinator is the stochastic process with non-decreasing paths Ag := {Ag(t), t ≥ 0} ,
such that

Ee−sA
g(t) = e−g(s)t,

(see Applebaum, 2009 and Sato, 1999 for the theory of Lévy processes and subor-
dinators). Let moreover Lg(t), t ≥ 0, be the inverse of Ag, i.e.

Lg(t) = inf {s ≥ 0 : Ag(s) > t} , t > 0

and lg(x, t) = Pr {Lg(t) ∈ dx} be its transition density.
We recall the definition of the convolution-type derivative on the positive half-

axes, in the sense of Caputo (see Toaldo, 2015, Def.2.4, for b = 0):

Dg
t u(t) :=

∫ t

0

d

ds
u(t− s)ν(s)ds, t > 0, (1.5)

where ν is the tail of the Lévy measure ν, i.e. ν(s)ds = a + ν(s,∞)ds. For
g(s) = sα with α ∈ (0, 1), the process Ag coincides with the α-stable subordinator
with Ee−sAg(t) = e−s

αt (whose Lévy measure is ν(s) = s−α−1/Γ(m − α)) and
formula (1.5) reduces to the Caputo derivative (1.2), for m = 1.

The Laplace transform of Dg
t is given by∫ +∞

0

e−stDg
t u(t)dt = g(s)ũ(s)− g(s)

s
u(0), R(s) > s0, (1.6)

(see Toaldo, 2015, Lemma 2.5).

Let Eβ,γ(x) denote the generalized Mittag-Leffler function defined as

Eβ,γ(x) =

∞∑
j=0

xβj

Γ(βj + γ)
, x, β, γ ∈ C, Re (β) ,Re (γ) > 0, (1.7)

(see Haubold et al., 2011), then we recall the well-known formula of its Laplace
transform (see Kilbas et al., 2006, formula (1.9.13), for ρ = 1), i.e.

L
{
xγ−1Eβ,γ(Axβ); s

}
=

sβ−γ

sβ −A
, (1.8)

with Re (β) ,Re (γ) > 0, A ∈ R and s > |A|1/Re(β).
We recall also the well-known (power-law) asymptotic behavior of the Mittag-

Leffler function (see Kilbas et al., 2006, formula (1.8.11)), for |z| → +∞, i.e.

Eβ,γ(z) = −
n∑
k=1

z−k

Γ(γ − βk)
+O

(
z−n−1

)
, n ∈ N, (1.9)

which holds for 0 < β < 2, µ ≤ arg(z) ≤ π, where πβ/2 < µ < min{π, πβ}.
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We will also make use of the property of the function (1.7) of being completely
monotone (CM), which is proved in Schneider (1996), for a negative argument and
β ∈ (0, 1], γ ≥ β. By definition, a function f(x) is CM if and only if it is infinitely
differentiable and (−1)

n dn

dxn f(x) ≥ 0, for any n = 0, 1, ...
Finally we recall the definition of Fox’s H-functions, which will by applied in the

next sections. Let Hm,n
p,q denote the H-function defined as (see Mathai et al., 2010

p.13):

Hm,n
p,q

[
z| (a1, A1) ... (ap, Ap)

(b1, B1) ... (bq, Bq)

]

=
1

2πi

∫
L

{
m∏
j=1

Γ(bj +Bjs)

}{
n∏
j=1

Γ(1− aj −Ajs)

}
z−sds{

q∏
j=m+1

Γ(1− bj −Bjs)

}{
p∏

j=n+1

Γ(aj +Ajs)

} ,

(1.10)

with z 6= 0, m, n, p, q ∈ N0, for 1 ≤ m ≤ q, 0 ≤ n ≤ p, aj , bj ∈ R, Aj , Bj ∈ R+,
for i = 1, ..., p, j = 1, ..., q and L is a contour such that the following condition is
satisfied

Aλ(bj + α) 6= Bj(aλ − k − 1), j = 1, ...,m, λ = 1, ..., n, α, k = 0, 1, ... (1.11)

2. Auxiliary results

We consider the fractional diffusion equation obtained by replacing the time de-
rivative with the pseudo-differential operator Lαt defined in Def.1.1 in the standard
heat equation (in the Fourier space), i.e.

∂

∂t
û(ξ, t) = −ξ

2

2
û(ξ, t) ξ ∈ R, t ≥ 0, with û(ξ, 0) = 1.

Lemma 2.1. Let Lαt be the operator defined in Def.1.1, then the solution to the
following equation

Lαt û(ξ, t) = −Γ(α+ 1)ξ2

2
û(ξ, t) ξ ∈ R, t ≥ 0, α ∈ (0, 1], (2.1)

is given by the characteristic function of a standard Brownian motion W .
= W (t),

t ≥ 0, time-changed by T (t) = tα, for any t ≥ 0, i.e. Wα(t) := W (tα).

Proof : By considering (1.3), we get from (2.1) that

Dα
t log û(ξ, t) = −Γ(α+ 1)ξ2

2
,

with log û(ξ, 0) = 0. Then we take the Laplace transform and obtain, by taking into
account formula (2.4.62) in Kilbas et al. (2006) (with the initial condition),

sα
∫ +∞

0

e−st log û(ξ, t)dt− sα−1 log û(ξ, 0) = −Γ(α+ 1)ξ2

2s
(2.2)

and then

log û(ξ, t) = −ξ
2tα

2
,

which gives û(ξ, t) = e−ξ
2tα/2, ξ ∈ R, t ≥ 0. �
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We remark that the introduction of the operator Lαt entails a deterministic time
change in the corresponding process, contrary to what happens when substituting
the time-derivative with the Caputo (or the Riemann-Liouville) fractional derivative
in the heat equation. In the latter case, a random time-change is produced, by
means of an independent inverse stable subordinator (see, e.g., Meerschaert and
Sikorskii, 2012, p.42).

In this case, since the function Tα(·) : R+ → R+ is continuous, increasing and
such that Tα(0) = 0, as a consequence, Wα(t) is an additive process (see Cont and
Tankov, 2004, p. 469 and Sato, 1999, p.3), i.e. the Brownian motion (which is a
Lévy process) looses the stationarity of its increments, by effect of the time-change,
but the latter are still independent. Indeed, we get, for 0 ≤ t1 ≤ t2,

E (Wα(t2)−Wα(t1))
2

= tα2 − tα1 6= (t2 − t1)
α

= E (Wα(t2 − t1))
2
,

unless α = 1. Finally, we notice that Wα is a self-similar process with Hurst expo-
nent equal to α/2, since, for any c > 0,

cα/2Wα(t)
d
= Wα(ct), for any t ≥ 0.

The process Wα is already known in the literature as "scaled Brownian motion"
(see Lim and Muniandy, 2002, Jeon et al., 2014), and is used to model anomalous
diffusion (i.e. diffusion with mean-squared displacement 〈Wα(t)2〉 ∼ tα, for α ∈
(0, 2)). As we will see in the next section, the introduction of the operator Lαt
in the Fokker-Planck equation (in Fourier space) will entail a deterministic time-
change in the corresponding OU process, which, instead of Tα(t) = tα, is expressed
by means of the Mittag-Leffler process (see formula (3.3) below).

As a motivation for our analysis, we introduce the following Poisson shot-noise
process and study its asymptotic behavior.

Definition 2.2. (Power-law shot-noise) Let {N(t), t ≥ 0} be an homogeneous
Poisson process, with rate λ > 0, and let Tj be the occurring time of its j-th event,
for j = 1, 2, ..., then we define the generalized shot-noise process as

Sα(t) :=

N(t)∑
j=1

h(t− Tj), (2.3)

with h(u) =
√
uα−1Eα,α(−γ(2u)α)1{u>0}, α ∈ (0, 1].

Remark 2.3. By considering formula (16.85) in Papoulis (1991), p.632, for h(·)
given above, it can be easily checked that the joint cumulant generating function
of Sα is equal to

Cα(θ, t) := logEeθ1Sα(t1)+...+θkSα(tk) = λ

∫ +∞

−∞

[
eθ1h(t1−u)+...+θkh(tk−u) − 1

]
du,

(2.4)
where θ := (θ1, ..., θk) and t := (t1, .., tk), for any k ∈ N. Moreover, by applying
formula (1.9), we can see that h(u) ' ku−α2− 1

2 , for u→∞ and for a constant k > 0.
The function h is decreasing, since both terms under square root in its expression
are CM, for α ∈ (0, 1], and thus the same is true for their product; the square root
does not affect the decreasing behavior. Therefore the previous model is well suited
to the case where the values of the shocks (occurring at Poisson times) decrease in
time with a power law (thus slower than in the, usual, exponential case).
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We now study the limiting behavior of Sα := {Sα(t), t ≥ 0}, after centering (2.3)
(subtracting its mean µn) and by a proper rescaling of the amplitude of the shocks
and their frequency.

Lemma 2.4. Let {Nn(t), t ≥ 0} be an homogeneous Poisson process, with rate λ =
nλ0, for λ0 > 0, and let h(u) = 1√

n
h0(u), with h0(u) =√

(u+ ξ0)α−1Eα,α(−γ2α(u+ ξ0)α)1{u>0}, for n ∈ N, some ξ0 > 0. Under these
assumptions, the process

Uα,n(t) :=
1√
n

Nn(t)∑
j=1

h0(t− Tj)− µn(t)

 , (2.5)

converges weakly, for n → +∞, to a Gaussian process Uα := {Uα(t), t ≥ 0} with
joint cumulant generating function

logEeθ1Uα(t1)+...+θkUα(tk) =
λ0

2

∫ +∞

−∞
[θ1h0(t1 − u) + ...+ θkh0(tk − u)]

2
du.

(2.6)

Proof : The convergence of the finite dimensional distributions can be easily derived,
following Papoulis (1991), p.633, by the Taylor’s series expansion of (2.4). See also
Papoulis (1971) and Heinrich and Schmidt (1985). Then we prove tightness of the
sequence, by proving the following sufficient conditions (see Revuz and Yor, 1999,
p.516):

P (|Uα,n(0)| > A) ≤ ε
for any n ≥ n0, ε > 0 and for some n0, A,

δ−1P ( sup
|t−s|<δ

|Uα,n(t)− Uα,n(s)| ≥ η) ≤ ε (2.7)

for s < t and for some δ ∈ (0, 1). The first condition is trivially satisfied since the
process starts a.s. from zero. The check that condition (2.7) holds is carried out by
applying the Doob submartingale’s inequality (see Revuz and Yor, 1999, p.52), i.e.

ηpP (sup
t
Xt ≥ η) ≤ sup

t
EXp

t ,

for p ≥ 1 and for a positive submartingale Xt. We choose p = 4 and show that the
difference process in (2.7) is a positive submartingale, since its fourth moment is
increasing in t, for fixed t− s. Indeed, we can write (by denoting h0(·) the centered
addends)

Uα,n(t)− Uα,n(s) =
1√
n

Nn(t)∑
j=1

h0(t− Tj)− µn(t)−
Nn(s)∑
j=1

h0(s− Tj) + µn(s)


=

1√
n

Nn(s)∑
j=1

h0(t− Tj) +

Nn(t)∑
j=Nn(s)+1

h0(t− Tj)−
Nn(s)∑
j=1

h0(s− Tj)


=

1√
n

 Nn(t)∑
j=Nn(s)+1

h0(t− Tj)−
Nn(s)∑
j=1

[
h0(s− Tj)− h0(t− Tj)

]
= U∗α,n(t− s)−Wα,n(s; t)
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where U∗α,n is a new, centered, shot-noise (starting from s and evaluated in t), which
depends only on the Poisson events in (0, t− s) and is independent of

Wα,n(s; t) :=

Nn(s)∑
j=1

[
h0(s− Tj)− h0(t− Tj)

]
/
√
n,

thanks to the lack of memory property of the Poisson process. Thus we get, by
putting ρ := t− s,

E [Uα,n(t)− Uα,n(s)]
4 (2.8)

= E
[
U∗α,n(ρ)

]4
+ E [Wα,n(s; ρ)]

4 − 4E
[
U∗α,n(ρ)

]
E [Wα,n(s; ρ)]

3
+

−4E
[
U∗α,n(ρ)

]3 E [Wα,n(s; ρ)] + 6E
[
U∗α,n(ρ)

]2 E [Wα,n(s; ρ)]
2

= E
[
U∗α,n(ρ)

]4
+ E [Wα,n(s; ρ)]

4
+ 6E

[
U∗α,n(ρ)

]2 E [Wα,n(s; ρ)]
2

since, by the centering, the first moment of both U∗α,n and Wα,n(s; ρ) is null. We
can now evaluate the moments of Wα,n(s; ρ), by its cumulant generating function:

K(θ) := log{EeθWα,n(s;ρ)}

= log

{
e−λs

∞∑
m=0

(λs)m

m!
E
[
eθWα,n(s;ρ)

∣∣∣N(s) = m
]}

= log

{
e−λs

∞∑
m=0

(λs)m

m!

[
1

s

∫ s

0

e
θ√
n [h0(s−y)−h0(s+ρ−y)]dy

]m}

= λ

∫ s

0

[
e
θ√
n [h0(s−y)−h0(s+ρ−y)] − 1

]
dy,

(2.9)

where, in the second line, we have considered the uniform conditional distribution
of the occurring time for each Poisson event and their independence. Then, by
denoting as κj the j-th cumulant of Wα,n(s; ρ) and differentiating (2.9), we get

E [Wα,n(s; ρ)]
2

= κ2−κ2
1 =

d2

dθ2
K(θ)

∣∣∣∣
θ=0

=
λ√
n

∫ s

0

[
h0(s− y)− h0(s+ ρ− y)

]2
dy

(2.10)
and

E [Wα,n(s; ρ)]
4 (2.11)

= κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1 =
d4

dθ4
K(θ)

∣∣∣∣
θ=0

+ 3

[
d2

dθ2
K(θ)

∣∣∣∣
θ=0

]2

=
λ

n2

∫ s

0

[
h0(s− y)− h0(s+ ρ− y)

]4
dy

+
3λ2

n

{∫ s

0

[
h0(s− y)− h0(s+ ρ− y)

]2
dy

}2

,

(by considering that the first cumulant vanishes). We now take the sup of (2.8),
for ρ ≤ δ:

sup
ρ≤δ

E [Uα,n(s+ ρ)− Uα,n(s)]
4

≤ sup
ρ≤δ

E
[
U∗α,n(ρ)

]4
+ sup
ρ≤δ

E [Wα,n(s; ρ)]
4

+ 6 sup
ρ≤δ

E
[
U∗α,n(ρ)

]2
sup
ρ≤δ

E [Wα,n(s; ρ)]
2
.
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All the terms are positive and increasing in ρ, for fixed s, as can be checked in
(2.10) and (2.11), by considering also that

U∗α,n(ρ) =
1√
n

Nn(s+ρ)∑
j=Nn(s)+1

h0(s+ ρ− Tj) ≤
1√
n

Nn(s+ρ)∑
j=Nn(s)+1

h0(s− Tj)

and that h0(·) is positive. Thus we get that

sup
ρ≤δ

E [Uα,n(s+ ρ)− Uα,n(s)]
4

≤ E
[
U∗α,n(δ)

]4
+ E [Wα,n(s; δ)]

4
+ 6E

[
U∗α,n(δ)

]2 E [Wα,n(s; δ)]
2
.

(2.12)

In order to study the limit for s→∞, of (2.12), we note that, for x, ρ > 0,∣∣h0(x)− h0(x+ ρ)
∣∣ ≤ ρ sup

x<z<x+ρ

d

dz
h0(z) ≤ kρ

(x+ ξ0)β
, (2.13)

for some k > 0 and β > 3
2 . Indeed, by ignoring the expected value, we have that

d

dx
h0(x) =

d

dx

[√
(x+ ξ0)α−1Eα,α(−γ(2x+ ξ0)α)

]

=

∑∞
j=0

(−γ2α)j(x+ξ0)αj+α−2

Γ(αj+α−1)

2
√

(x+ ξ0)α−1Eα,α(−γ2α(x+ ξ0)α)
=
x
α
2−

3
2Eα,α−1(−γ2α(x+ ξ0)α)

2
√
Eα,α(−γ2α(x+ ξ0)α)

.

Whence, using (1.9),

sup
x<z<x+ρ

d

dz
h0(z) ≤ sup

z≥x

d

dz
h0(z) (2.14)

≤ sup
z≥x

[
K1(z + ξ0)−2α +O(z−3α)

]
/Γ(−α− 1)

(z + ξ0)
3
2−

α
2 [K2(z + ξ0)−2α +O(z−3α)]

1/2
/Γ(−α)

≤ K3

(z + ξ0)β

(for some positive constants K1, K2 K3, so that (2.13) is satisfied with β = α
2 + 3

2 ).
As a consequence,∫ s

0

[
h0(s− y)− h0(s+ ρ− y)

]2
dy

=

∫ s−c

0

[
h0(s− y)− h0(s+ ρ− y)

]2
dy +

∫ s

s−c

[
h0(s− y)− h0(s+ ρ− y)

]2
dy.

The second integral can be bounded by considering that, for any c > 0 and u ∈ [0, c],

|h0(u)− h0(u+ ρ)| ≤ ρ sup
0≤z≤c

d

dz
h0(z)

= [analogously to (2.14)]

≤ K3ρ

ξβ0
.

�
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The first moments of the limiting process Uα can be evaluated by differentiating
(2.6) and reads: EUα(t) = 0 and

V ar(Uα(t)) = λ0

∫ +∞

−∞
h2

0(t− u)du (2.15)

= λ0

∫ t

0

(u+ ξ0)α−1Eα,α(−γ2α(u+ ξ0)α)du

= −λ0 Eα,1 (−γ2α(u+ ξ0)α)|tu=0 = λ0 [Eα,1(−γ2αξα0 )− Eα,1(−γ2α(t+ ξ0)α)] ,

by considering that

d

dw
Eα,1(−kwα) = −kwα−1Eα,α(−kwα), k, w ∈ R.

The previous Lemma shows that the distribution of a suitably normalized sequence
of Poisson shot-noise (with power-law impulse response function described by h0)
converges, when the frequency of shocks is large and their amplitude small, to a
generalized version of the OU process. Indeed, for ξ0 = 0, one obtains the following
one-dimensional distribution

fUα(t)(x) := P{Uα(t) ∈ dx}/dx (2.16)

=
1√

2π(γ/θ) [1− Eα,1(−γ(2t)α)]
exp

{
− x2

2(γ/θ) [1− Eα,1(−γ(2t)α)]

}
,

for x ∈ R, t > 0, γ, θ > 0. Note that, as far as the convergence of the finite-
dimensional distributions is concerned, ξ0 could be allowed to take any fixed non-
negative value ξ0 ∈ R+

0 ; however the proof of tightness requires the slightly stronger
condition ξ0 > 0.

3. Main results

3.1. Time-changed Ornstein-Uhlenbeck process. We start by evaluating the solution
of a fractional version of the Fokker-Planck equation (in the Fourier space), defined
by means of the operator introduced above.

Theorem 3.1. Let Lαt be the operator defined in Def.1.1, then the solution of the
following equation

Lαt û(ξ, t) = − γ

21−α ξ
∂

∂ξ
û(ξ, t)− θ

21−α ξ
2û(ξ, t), ξ ∈ R, t ≥ 0, α ∈ (0, 1], D, γ > 0,

(3.1)
with initial condition û(ξ, 0) = 1, is given by

û(ξ, t) = exp

{
−θξ

2

2γ
[1− Eα,1(−γ(2t)α)]

}
. (3.2)

Proof : We start by writing the Fourier transform of the FP equation, given in (1.1),
i.e.

∂

∂t
û(ξ, t) = η

∫ +∞

−∞
eiξx

∂

∂x
[xu(x, t)]dx−Dξ2û(ξ, t)

= η

{[
eiξxxu(x, t)

]+∞
−∞ − iξ

∫ +∞

−∞
eiξxxu(x, t)dx

}
−Dξ2û(ξ, t),
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which, with η = γ/21−α and D = θ/21−α, coincides with the r.h.s. of (3.1), by
considering the boundary condition.

Since the Mittag-Leffler function (1.7) is the eigenfunction of the Caputo frac-
tional derivative (1.2) (see Lemma 2.23, p.98, in Kilbas et al., 2006), we get from
(3.2), that

Dα
t log û(ξ, t) = −θξ

2

2γ
Dα
t [1− Eα,1(−γ(2t)α)]

= − θξ2

21−αEα,1(−γ(2t)α)

= −2αγ log û(ξ, t)− θξ2

21−α

and thus

û(ξ, t)Dα
t log û(ξ, t) =

θξ2

21−α [1− Eα,1(−γ(2t)α)] û(ξ, t)− θξ2

21−α û(ξ, t),

which coincides with (3.1). The initial condition is verified since Eα,1(0) = 1. �

Remark 3.2. Formula (3.2) coincides with the characteristic function of the process
Uα(t) obtained, in the previous section, by taking the limit of the power-law Poisson
shot-noise defined in Def.2.2. Moreover, for α = 1, it reduces to the characteristic
function of the OU process (with starting point in the origin), i.e.

û(ξ, t) = exp

{
−θξ

2

2γ

[
1− e−2γt

]}
.

Similarly to the result obtained in Lemma 2.1, the solution of (3.1) coincides
with the characteristic function of the OU process time-changed by means of the
continuous and increasing function

Tα(t) = − 1

2γ
logEα,1(−γ(2t)α), (3.3)

such that Tα(0) = 0. Therefore we define the time-changed OU process, by means
of (3.3), as follows.

Definition 3.3. (Time-changed OU process) Let X1 := {X1(t), t ≥ 0} de-
note the standard OU process, then we define the time-changed OU process Xα ={
Xα(t), t ≥ 0

}
, as Xα(t) := X1(Tα(t)), for Tα(·) given in (3.3).

Remark 3.4. The process Xα is still Gaussian (being obtained by a deterministic
time-change) with EXα(t) = 0, and, for any t, s ≥ 0, γ > 0, α ∈ (0, 1], has

Cov (Xα(t), Xα(s)) =
θ

γ

√
Eα,1(−γ2α(t ∨ s)α)

Eα,1(−γ2α(t ∧ s)α)
[1− Eα,1(−γ2α(t ∧ s)α)] . (3.4)

Formula (3.4) can be derived as follows

Cov (Xα(t), Xα(s)) =
θ

γ
e−γTα(t)|

[
eγTα(s) − e−γTα(s)

]
=
θ

γ
e

1
2 logEα,1(−γ(2t)α)

[
e−

1
2 logEα,1(−γ(2s)α) − e 1

2 logEα,1(−γ(2s)α)
]

for s < t and thus for Tα(s) < Tα(t), by recalling that the Mittag-Leffler function
Eα,1(x) is completely monotone, for α ∈ (0, 1), on the real negative semi-axis.
Analogously, for s ≥ t.
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Remark 3.5. We can easily derive the following representation of Xα in terms of
a Brownian motion, by applying again the time change (3.3) to the well known
representation of the standard OU process:

Xα(t) =

√
θ

γ
e−γTα(t)W (e2γTα(t) − 1) (3.5)

=

√
θ

γ
Eα,1(−2αγtα)W

(
1

Eα,1(−2αγtα)
− 1

)
.

Moreover, it follows from (3.4) that the process is Markovian, for any α, since

ρXα(s, t) =

√
Eα,1(−γ2αtα) [1− Eα,1(−γ2αsα)]

Eα,1(−γ2αsα) [1− Eα,1(−γ2αtα)]
= ρXα(s, h)ρXα(h, t), s < h < t,

where ρXα(·, ·) denotes the autocorrelation coefficient. On the other hand, in this
case, by considering formula (1.9), we get, for any τ ≥ 0,

lim
t→∞

Cov (Xα(t), Xα(t+ τ))

=
θ

γ
lim
t→∞

√
Eα,1(−γ2α(t+ τ)α)

Eα,1(−γ2αtα)
[1− Eα,1(−γ2αtα)] =

θ

γ
.

Thus the process Xα asymptotically behaves as a random walk. Moreover it does
not coincide, in the limit, with the stationary OU process (which we denote by X1)
time-changed by (3.3), i.e. with Xα(t) = X1(Tα(t)), for Tα(·) given in (3.3). Indeed
the latter is a Gaussian (non-stationary) process with EXα(t) = 0, and

Cov
(
Xα(t), Xα(s)

)
=
θ

γ

√
Eα,1(−γ2α(t ∨ s)α)

Eα,1(−γ2α(t ∧ s)α)
, (3.6)

for any t, s ≥ 0, γ > 0, α ∈ (0, 1]. Formula (3.6) is obtained as follows: for t > s

Cov
(
Xα(t), Xα(s)

)
=

θ

γ
e−γ|Tα(t)−Tα(s)| =

θ

γ
e

1
2 [logEα,1(−γ2αtα)−logEα,1(−γ2αsα)]

=
θ

γ

√
Eα,1(−γ2αtα)

Eα,1(−γ2αsα)
.

3.2. Fractional OU process. In order to overcome the anomalous asymptotic behav-
ior of the previous model, we start by defining the fractional Ornstein-Uhlenbeck
process in the stationary case, by means of the following preliminary result.

Lemma 3.6. The function

f(s) = Eα,1(−γ|s|α), s ∈ R,

is positive definite.

Proof : We apply the Schoenberg’s characterization: let ϕ : [0,+∞)→ R be a con-
tinuous function, then Φ(·) = ϕ(‖·‖2) is positive definite and radial on Rd, for any
d, if and only if ϕ(·) is CM on [0,+∞). Then, we note that the complete monotonic-
ity of the Mittag-Leffler function of negative argument and that the composition
of a CM functional and a Bernstein function is again CM (see Mainardi, 2014 for
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details). Since sα/2 is a Bernstein function, the result follows by considering that
Eα,1(−γsα/2) is CM. �

With this at hand we can give the following definition:

Definition 3.7. (Fractional stationary OU) Let Yα :=
{
Yα(t), t ≥ 0

}
be de-

fined as a Gaussian process with EYα(t) = 0, for any t ≥ 0 and

r(s) := Cov
(
Yα(t),Yα(t+ s)

)
=
θ

γ
Eα,1(−γ|s|α), (3.7)

for any s ∈ R, γ > 0, α ∈ (0, 1].

Remark 3.8. Long-range dependent processes with autocorrelation function decay-
ing as a Mittag-Leffler have been already studied in Barndorff-Nielsen and Leonenko
(2005), where they are obtained, in a completely different way, i.e. by superposition
of OU processes.

Then, for the spectral density of the fractional stationary OU defined above, we
prove the following result.

Lemma 3.9. The spectral density of the process Yα is given by

SYα(ω) =
θ√
πγ
H2,1

2,3

[
|ω|α

2αγ

∣∣∣∣ (0, 1) (1− α, α)
( 1

2 −
α
2 ,

α
2 ) (0, 1) (1− α

2 ,
α
2 )

]
, ω ∈ R\{0},

(3.8)
where Hm,n

p,q is the H-function defined in (1.10). Then its spectral representation
reads

Yα(t) =

∫ +∞

−∞

√
SYα(ω)eitωdW (ω). (3.9)

Proof : From (3.7) we can write, for any t ≥ 0 and ω ∈ R,

SYα(ω) =
1

2π

∫ +∞

−∞
e−iωsCov(Yα(t),Yα(t+ s))ds (3.10)

=
θ

πγ

∫ +∞

0

cos(|ω|s)Eα,1(−γsα)ds

= [by (1.12.65) in Kilbas et al. (2006)]

=
θ

πγ

∫ +∞

0

cos(|ω|s)H1,1
1,2

[
γsα| (0, 1)

(0, 1) (0, α)

]
ds.

In order to evaluate the previous cosine transform, we apply formula (2.50), for
ρ = 1, of Mathai et al. (2010), i.e.∫ +∞

0

cos(ax)Hm,n
p,q

[
bxσ| (ap, Ap)

(bq, Bq)

]
dt

=

√
π

a
Hm,n+1
p+2,q

[
b

(
2

a

)σ∣∣∣∣ ( 1
2 ,

σ
2 ) (ap, Ap)

(
0, σ2

)
(bq, Bq)

]
,

for a, α, σ > 0, b ∈ C,R
[
1+σmax1≤j≤n

{
aj−1
Aj

}]
< 1 andR

[
1+σmin1≤j≤m

{
bj
Bj

}]
> 0; arg|a| < πα/2, where α =

∑m
j=1Bj −

∑q
j=m+1Bj +

∑n
j=1Aj −

∑p
j=n+1Aj .
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It is easy to check that the corresponding conditions are all satisfied, since 1 +

α
{
a1−1
A1

}
= 1−α < 1, 1 +α b1

B1
= 1 > 0 and α = B1 −B2 +A1 = 2−α > 0. Then

(3.10) becomes

SYα(ω) =
θ√
πγ|ω|

H1,2
3,2

[
2αγ

|ω|α

∣∣∣∣ ( 1
2 ,

α
2 ) (0, 1) (0, α2 )

(0, 1) (0, α)

]
(3.11)

= [by (1.12.47) in Kilbas et al. (2006)]

=
θ√
πγ|ω|

H2,1
2,3

[
|ω|α

2αγ

∣∣∣∣ (1, 1) (1, α)
( 1

2 ,
α
2 ) (1, 1) (1, α2 )

]
,

which coincides with (3.8), by applying formula (1.12..45) in Kilbas et al. (2006),
for σ = −1/α. The existence condition in Mathai et al. (2010) is satisfied, for any
ω 6= 0, by (3.8), since α = α/2 > 0, by choosing the contour L = Liγ∞, since in
this case µ =

∑q
j=1Bj −

∑p
j=1Aj = 0 (see Theorem 1.1, case 7, in Mathai et al.

(2010)). Finally, the function (3.8) is positive, since (3.7) is positive definite, by
the Bochner’s theorem. The representation (3.9) easily follows. �

Remark 3.10. We can check that in the special case α = 1 formula (3.8) reduces to
the well-known spectral density of the OU process:

SYα(ω) =
θ

2γ
√
π
H2,1

2,3

[
|ω|
2γ

∣∣∣∣ (0, 1) (0, 1)
(0, 1

2 ) (0, 1) ( 1
2 ,

1
2 )

]
=

θ

2γ
√
π

1

2πi

∫
L

(
|ω|
2γ

)−s Γ
(
s
2

)
Γ(1− s)

Γ
(

1
2 −

s
2

) ds

= [by the duplication formula]

=
θ

2πγ

1

2πi

∫
L

(
|ω|
γ

)−s
Γ
(s

2

)
Γ
(

1− s

2

)
ds

=
θ

2πγ
H1,1

1,1

[
|ω|
γ

∣∣∣∣ (0, 1
2

)(
0, 1

2

) ]
= [see (4.8) in Vellaisamy and Kataria (2018)]

=
θγ

π

1

γ2 + ω2
.

for ω ∈ R.

In order to derive the dependence properties of the process Yα we apply Theorem
1.2, p.19, in Mathai et al. (2010): the asymptotic behavior, for |ω| → 0, of the
spectral density (3.11) is then given by

SYα(ω) =
1

|ω|
O(|ω|α) = O(|ω|α−1

), |ω| → 0, (3.12)

since c = min [1/α, 1] = 1. As a consequence, we can conclude that the process
Yα exhibits long-range dependence under the assumption that α ∈ (0, 1), while for
α = 1 we have SY(ω)

|ω|a → ∞, for any a ∈ (0, 1), as it is well-known in the standard
OU case. The same conclusion could be drawn form the covariance function (3.7),
taking into account (1.9), so that r(s) ∼ Cαs−α, for some constant Cα and s→ +∞.
Thus the process is long-memory of order 1− α, both in the covariance and in the
spectral density sense.
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We prove the following properties for the trajectories of the fractional stationary
OU process.

Theorem 3.11. There exists a version of Yα with continuous trajectories and the
latter are not differentiable in the L2-norm.

Proof : In order to apply the Kolmogorov continuity theorem, we only need to
check that there exist p, η > 1, such that, for a constant c and for any t1, t2 ∈ I,
the following inequality holds:

E
∣∣Yα(t2)− Yα(t1)

∣∣p ≤ c |t2 − t1|η .
Let dxe denote the upper integer part of x ∈ R, then, by choosing p = d2/αe,
η = αp

2 > 1, the previous inequality is verified; indeed

E
∣∣Yα(t2)− Yα(t1)

∣∣p =
2pΓ((p+ 1)/2)√

πγp/2

[
E
[
Yα(t2)− Yα(t1)

]2]p/2
= Cp [1− Eα,1(−γ |t2 − t1|α)]

p/2

= γp/2Cp |t2 − t1|αp/2 [Eα,α+1(−γ |t2 − t1|α)]
p/2

≤ γp/2Cp
Γ(α+ 1)p/2

|t2 − t1|αp/2 ,

(where Cp = 2pθp/2Γ((p+1)/2)/γp/2
√
π), since Eα,α+1(−γ |t2 − t1|α) ≤ 1/Γ(α+1).

Indeed Eα,α+1(0) = 1/Γ(α+ 1) and the function is completely monotone and non-
increasing (see Gorenflo et al., 2014, Sec. 4.10.2). Moreover we have that

E
(
Yα(t2)− Yα(t1)

t2 − t1

)2

= 2θ |t2 − t1|α−2
Eα,α+1(−γ |t2 − t1|α)→ +∞,

for t2 → t1 and α ∈ (0, 1], by considering that limx→0Eα,α+1(−xα) = 1/Γ(α + 1).
Alternatively, we could notice that the covariance function can be expanded as
follows: r(τ) = r(0)− γ|τ |α

Γ(α+1) + o(|τ |α). �

We can now define a non-stationary version of the fractional OU process, whose
density function coincides with the solution of the fractional Fokker-Planck equation
(3.1), in Fourier space. We start by the following preliminary result.

Lemma 3.12. The function

f(s) =
√
Eα,1(−ksα), s ∈ R, k > 0

is positive definite.

Proof : Similarly to Lemma 2.1, the result follows by proving that
√
Eα,1(−γsα/2)

is CM. But, as can be checked directly, by differentiating, if f(t) is a CM function,
then the same is true for

√
f(t). �

Definition 3.13. (Fractional OU) Let (Ω,F ,Ft, P ) be a probability space with
filtration Ft and let Yα := {Yα(t), t ≥ 0} be defined as follows

Yα(t) = Yα(t)−
√
Eα,1(−γ(2t)α)Z,
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where
(
Yα(t),Z

)
is a Gaussian centered random vector with covariance matrix∑
=

(
θ
γ

θ
γ

√
Eα,1(−γ(2t)α)

θ
γ

√
Eα,1(−γ(2t)α) θ

γ

)
,

for any t ≥ 0.

Remark 3.14. The fractional OU process Yα is centered, Gaussian with

Cov (Yα(t),Yα(s)) =
θ

γ

[
Eα,1(−γ|t− s|α)−

√
Eα,1(−γ(2t)α)Eα,1(−γ(2s)α)

]
,

(3.13)
for s, t ≥ 0, α ∈ (0, 1], and θ, γ > 0. Since Yα is a zero-mean Gaussian process, its
finite-dimensional distributions are completely characterized by its autocovariance
function. The variance of the process reads

V arYα(t) =
θ

γ
[1− Eα,1(−γ(2t)α)]

which is positive since Eα,1(−xα) ≤ 1, for x ≥ 0. Thus, the one-dimensional density
of the process Yα coincides with the solution to the fractional FP equation (3.1) and
its characteristic function is given in (3.2). By considering (1.9), we notice that the
process Yα is a mean reverting process, for any α, since limt→∞ V arYα(t) = θ/γ.
Moreover from (3.13) it is evident that the process is non-Markovian for α 6= 1,
since

ρYα(s, t) =
Eα,1(−γ|t− s|α)−

√
Eα,1(−γ(2t)α)Eα,1(−γ(2s)α)√

1− Eα,1(−γ(2t)α)
√

1− Eα,1(−γ(2s)α)

6= ρYα(s, h)ρYα(h, t),

for s, h, t ≥ 0. Only for α = 1, the sufficient condition for the Markov property (in
the Gaussian case) is verified: indeed the process Y1 coincides with the standard
OU process, since

Cov (Y1(t),Y1(s)) =
θ

γ

[
e−γ|t−s| − e−γ|t+s|

]
= Cov (X(t), X(s)) .

Thus, for α 6= 1, the process must also have dependent increments, otherwise the
Markovian property would follow from Gaussianity.

Theorem 3.15. The cumulant generating function CYα(η, t) := logEeηYα(t) of Yα,
i.e.

CYα(η, t) =
η2θ

2γ
[1− Eα,1(−γ(2t)α)] . (3.14)

satisfies the following fractional equation

Dα
t u(η, t) = −2αγu(η, t) + 2α−1η2θ, (3.15)

with u(η, 0) = 0.

Proof : Let f̃(s) := L{f(t); s} =
∫ +∞

0
e−stf(t)dt denote the Laplace transform of

f(·). By considering the well-known formula (see Kilbas et al., 2006, Lemma 2.24)

L{Dα
t f(t); s} = sαf̃(s)−

m−1∑
j=0

sα−j−1 dn

dtn
f(t)

∣∣∣∣
t=0

, m− 1 < α ≤ m,
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the Laplace transform of (3.15) reads

sαũ(η, s)− sα−1u(η, 0) = −2αγũ(η, s) +
2α−1η2θ

s
.

Then, by the initial condition, we get

ũ(η, s) =
2α−1η2θs−1

sα + 2αγ
,

which, by means of (1.8), gives

u(η, t) = 2α−1η2θtαEα,α+1(−γ(2t)α) = 2α−1η2θtα
∞∑
j=0

(−2αγtα)j

Γ(αj + α+ 1)

which, after some algebra, coincides with (3.14). The latter satisfies the initial
conditions since Eα,1(0) = 1. �

Remark 3.16. We notice that a similar result holds for the moment generating func-
tion of the time-changed Brownian motion (time-fractional diffusion), i.e.
W (Lα(t)), where W denotes a standard Brownian motion and Lα the inverse of an
independent α-stable subordinator (see Orsingher and Beghin, 2009). Indeed for
M(θ, t) := EeθW (Lα(t)) we have thatM(θ, t) = Eα,1( θ

2

2 t
α).

4. Further generalizations

We generalize the results of the previous sections by considering the Fokker-
Planck equation (in Fourier space) with a convolution-type operator defined by
means of a general Bernstein function (not necessarily fractional).

Definition 4.1. Let u : R+ → R be an absolutely continuous function and Dg
x be

the convolution-type derivative defined in (4), then

Lgxu(x) := u(x)Dg
x log u(x), x ∈ R+. (4.1)

We start by proving the following preliminary result which concerns the transi-
tion density of the inverse subordinator: let us denote by Ag(t), t ≥ 0, the subor-
dinator with Laplace exponent g(s), i.e. such that

Ee−sA
g(t) = e−g(s)t.

Let moreover Lg(t), t ≥ 0, be its inverse, i.e.

Lg(t) = inf {s > 0 : Ag(s) > t} , s, t > 0

and lg(x, t) = Pr {Lg(t) ∈ dx} be its transition density.

Lemma 4.2. The following initial-value problem

Dg
t u(t) = −ku(t), t, k ≥ 0, (4.2)

with u(0) = 1, is satisfied by the Laplace transform of the inverse subordinator
density lg(x, t), i.e. by

l̃g(k, t) =

∫ +∞

0

e−kxlg(x, t)dx = Ee−kL
g(t). (4.3)
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Proof : By considering the Laplace transform of the inverse subordinator given in
Toaldo (2015, Proposition 3.2), we get

ũ(s) =
g(s)

s

∫ +∞

0

e−kxe−g(s)xdx =
g(s)

s

1

k + g(s)
.

On the other hand, from (4.2), we get, by (1.6) together with the initial condition,

g(s)

∫ +∞

0

e−st l̃g(k, t)dt−
g(s)

s
= −k

∫ +∞

0

e−st l̃g(k, t)dt.

�

By means of the previous result, we can prove the following generalization of
Theorem 3.1.

Theorem 4.3. Let Lgt be the operator defined in Def.4.1, then the solution of the
generalized Fokker-Planck equation (in Fourier space)

Lgt û(ξ, t) = − γ

21−α ξ
∂

∂ξ
û(ξ, t)− θ

21−α ξ
2û(ξ, t), ξ ∈ R, t ≥ 0, α ∈ (0, 1], D, γ > 0,

(4.4)
with initial condition û(ξ, 0) = 1, for any t ≥ 0, is given by

û(ξ, t) = exp

{
−θξ

2

2γ

[
1− l̃g(γ, t)

]}
. (4.5)

Proof : By applying Lemma 4.2, we get

Dg
t log û(ξ, t) = −θξ

2

2γ
Dg
t

[
1− l̃g(γ, t)

]
= −θξl̃g(γ, t)
= −2γ log û(ξ, t)− θξ2

and thus

û(ξ, t)Dg
t log û(ξ, t) = θξ2

[
1− l̃g(γ, t)

]
û(ξ, t)− θξ2û(ξ, t)

= −ξγ ∂
∂ξ
û(ξ, t)− θξ2û(ξ, t),

which coincides with (4.4). The initial condition is verified since
l̃g(γ, 0) =

∫ +∞
0

e−γxlg(x, 0)dx =
∫ +∞

0
e−γxδ(x)dx = 1. �

In order to define the generalized time-changed OU process, we check that
Tg(·) := − 1

2γ log l̃g(γ, ·) is an increasing and continuous function. Let us denote
by hg(x, t) the density of the subordinator Ag, then we get, for any t > 0,

l̃g(γ, t) =

∫ +∞

0

e−γxlg(x, t)dx (4.6)

=

∫ +∞

0

e−γx
∂

∂x
P {Lg(t) < x} dx

=

∫ +∞

0

e−γx
∂

∂x
P {Ag(x) > t} dx

=
[
e−γxP {Ag(x) > t}

]+∞
x=0

+ γ

∫ +∞

0

e−γxP {Ag(x) > t} dx
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= γ

∫ +∞

0

e−γx
(∫ +∞

t

hg(s, x)ds

)
dx

= γ

∫ +∞

t

(∫ +∞

0

e−γxhg(s, x)dx

)
ds,

which is clearly decreasing, since the quantity inside brackets is positive. Continuity
follows from Proposition 3.2 in Toaldo (2015).

Definition 4.4. Let (Ω,F ,Ft, P ) be a probability space with filtration Ft and
let Xg := {Xg(t), t ≥ 0} be defined as Xg(t) := X(Tg(t)), where X is the standard
OU process and Tg(t) = − 1

2γ log l̃g(γ, t).

Remark 4.5. It is easy to check that Xg is a Gaussian process, with EXg(t) = 0 and

Cov (Xg(t),Xg(s)) =
θ

γ

√√√√ l̃g(γ, t ∨ s)
l̃g(γ, t ∧ s)

[
1− l̃g(γ, t ∧ s)

]
,

for t, s ≥ 0, γ > 0 and for any Bernstein function g. Moreover, the process Xg is
related to the Brownian motion by the following equality in distribution

Xg(t)
d
=

√
θ

γ
l̃g(γ, t)W

(
1

l̃g(γ, t)
− 1

)
. (4.7)

The definition of fractional OU processes given in section 3.2 can be analogously
generalized, under the assumption that l̃g(γ, | · |) is a positive definite function, both
in the stationary and non-stationary cases. From (4.6), we can write the following
relationship between the derivatives of l̃g(γ, t) and h̃g(t, γ):

∂r

∂tr
l̃g(γ, t) = −γ ∂

r

∂tr
h̃g(t, γ), (4.8)

for any r = 1, 2, .... Therefore, by steps similar to Lemma 3.6, we can conclude that
l̃g(γ, | · |) is a positive definite function if l̃g(γ, ·) is CM and (from (4.8)) this holds
if the subordinator Ag is such that the time-Laplace transform of its density, i.e.
h̃g(·, γ), is a Bernstein function.

Definition 4.6. Let Ag be a subordinator such that the time-Laplace transform
of its density, i.e. h̃g(·, γ), is a Bernstein function. Let Yg :=

{
Yg(t), t ≥ 0

}
be a

Gaussian process with EYg(t) = 0, for any t ≥ 0 and

r(s) := Cov
(
Yg(t),Yg(t+ s)

)
=
θ

γ
l̃g(γ, |s|), (4.9)

for any s ∈ R, γ > 0.

We can also give a condition for long-range dependence of Yg in terms of the
tail’s probability of the subordinator, i.e. P {Ag(x) > t} , for t→ +∞. Indeed it is
evident from (4.6) that if

P {Ag(x) > t} ∼ Kxt
1−H , (4.10)

for some H ∈ (0, 1) and a constant Kx > 0, then r(s) = θ
γ l̃g(γ, s) ∼ K ′γs

1−H for
s→ +∞ and for K ′γ > 0. Thus, under condition (4.10), the process is long-memory
of order H, in the covariance sense.
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Definition 4.7. Let Yg be defined as in Def.4.6 and let

Yg(t) = Yg(t)−
√
l̃g(γ, 2t)Z,

where
(
Yg(t),Z

)
is a Gaussian centered random vector with covariance matrix

∑
=

 θ
γ

θ
γ

√
l̃g(γ, 2t))

θ
γ

√
l̃g(γ, 2t)

θ
γ

 ,

for any t ≥ 0.

Remark 4.8. The generalized OU process Yg is centered, Gaussian, with

Cov (Yg(t),Yg(s)) =
θ

γ

[
l̃g(γ, |t− s|)−

√
l̃g(γ, 2t)l̃g(γ, 2s)

]
, (4.11)

for s, t ≥ 0 and θ, γ > 0. Since Yg is a zero-mean Gaussian process, its finite-
dimensional distributions are completely characterized by its autocovariance func-
tion. The characteristic function of Yg coincides with (4.5) and therefore the one-
dimensional density of the process Yg coincides with the solution to the general-
ized FP equation (4.4). Moreover, Yg is non-Markovian and mean-reverting, since
limt→∞ V arYα(t) = limt→∞ θ/γ

[
1− l̃g(γ, 2t)

]
= θ/γ, as can be checked in (4.6).

We now show how the results of sections 3.1 and 3.2 can be derived as special
cases and we also present another interesting special case. Other examples could
be derived analogously, by specifying the Bernstein function and the corresponding
Lévy measure.

Example 4.9. (Stable case) In the special case where g(s) = sα, for α ∈ (0, 1],
the process Ag coincides with the α-stable subordinator with Ee−sAg(t) = e−s

αt

(whose Lévy density is ν(x) = x−α−1/Γ(m − α)). Formula (1.5) reduces to the
Caputo derivative (1.2), for m = 1. Thus the operator defined in (4.1) coincides
with Lαt given in Def.1.1. It is immediate to check that, in this special case, formula
(4.3) coincides with the Laplace transform of the inverse α-stable subordinator, i.e.
l̃α(γ, t) =

∫ +∞
0

e−γxlα(x, t)dx = Eα,1(−γtα) (see Meerschaert and Straka, 2013).
Therefore the result of Lemma 4.2 reduces to the well-known property of the Mittag-
Leffler function of being the eigenfunction of the Caputo fractional derivative (see,
e.g., Lemma 2.23 in Kilbas et al., 2006). Correspondingly, Def.4.6 reduces to Def.3.7
and formula (4.7) coincides with (3.5).

Example 4.10. (Compound Poisson with exponential jumps) Another inter-
esting case can be obtained by specializing the previous results to the case where
g(s) = s/(s+a), with a > 0. This Bernstein function corresponds to the exponential
Lévy density ν(x) = ae−ax (see Schilling et al., 2012, p.304). The density of the
inverse subordinator can be obtained explicitely as follows:

lg(x, t) =

∫ t

0

hg(z, x)ν(t− z)dz =

∫ t

0

hg(z, x)e−a(t−z)dz, (4.12)

where the subordinator’s density can be evaluated by inverting its Laplace trans-
form:

h̃g(η, x) = e−x
η
η+a = e−xe

xa
η+a = e−x + e−x

∞∑
j=1

(xa)j

j!(η + a)j
.
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Thus

hg(z, x) = e−xδ(z) +
e−x−az

z

∞∑
j=1

(xaz)j

j!(j − 1)!

which is the transition density of the compound Poisson with exponential jumps∑N(t)
n=1 Xj , t > 0, where N(t), t > 0 is the Poisson process with unitary intensity and

Xj are exponential i.i.d. random variables with parameter a for any j = 1, 2, ... (see
Beghin and Macci, 2012, for details). By substituting in (4.12) and by standard
calculus, we get

lg(x, t) = e−x−at
∞∑
j=0

(xat)j

(j!)2
= e−x−atW1,1(xat),

where Wβ,γ(x) =
∑∞
j=0

xβj

j!Γ(βj+γ) , x, β, γ ∈ C, is the Wright function (see Kilbas

et al., 2006, p.54). Therefore l̃g(γ, t) is given by

l̃g(γ, t) =
e−at

γ
γ+1

γ + 1
(4.13)

and the time transform in Def.4.4, i.e. Tg(t) = a
2(γ+1) t+2γ log(γ+1), is surprisingly

linear in t. As a consequence, we can conclude that the generalized Fokker-Planck
equation (4.4), with the operator Lgt in Def.4.1 specialized with

Dg
t u(t) =

∫ t

0

d

ds
u(t− s)e−asds,

is satisfied by the transition density of a standard OU process under a linear com-
bination of the time argument.

Finally, since (4.13) is clearly positive definite, the stationary version of the
previous process is the centered Gaussian process with covariance

r(s) =
θ

γ

e−
aγ
γ+1 |s|

γ + 1
,

for any s ∈ R, γ, θ > 0.
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