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de Narbonne, 31062 Toulouse, France. On leave from: TU Dresden, Fachrichtung Math-
ematik, Institut für Mathematische Stochastik, 01062 Dresden, Germany.
E-mail address: franziska.kuhn@math.univ-toulouse.fr

Abstract. Using probabilistic methods we study the existence of viscosity solu-
tions to non-linear integro-differential equations

∂tu(t, x)− sup
α∈I

(
bα(x) · ∇xu(t, x) +

1

2
tr
(
Qα(x) · ∇2

xu(t, x)
)

+

∫
y 6=0

(
u(t, x+ y)− u(t, x)−∇xu(t, x) · h(y)

)
να(x, dy)

)
= 0

with initial condition u(0, x) = ϕ(x); here (bα(x), Qα(x), να(x, dy)), α ∈ I, x ∈ Rd,
is a family of Lévy triplets and h is some truncation function. The solutions, which
we construct, are of the form u(t, x) = Ttϕ(x) for a sublinear Markov semigroup
(Tt)t≥0 with representation

Ttϕ(x) = Exϕ(Xt) := sup
P∈Px

∫
Ω

ϕ(Xt) dP

where (Xt)t≥0 is a stochastic process and Px, x ∈ Rd, are families of probability
measures. The key idea is to exploit the connection between sublinear Markov
semigroups and the associated Kolmogorov backward equation. In particular, we
obtain new existence and uniqueness results for viscosity solutions to Kolmogorov
backward equations associated with Lévy(-type) processes for sublinear expecta-
tions and Feller processes on classical probability spaces.
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1. Introduction

Markov processes and the semigroups generated by them play an important role
in the study of evolution equations. For a Markov process (Xt)t≥0 with semigroup
Ttϕ(x) := Exϕ(Xt) it is well-known that – under suitable assumptions – the map-
ping u(t, x) := Ttϕ(x) is a solution to the Kolmogorov backward equation

∂

∂t
u(t, x)−Axu(t, x) = 0 u(0, x) = ϕ(x) (1.1)

where A = Ax is the infinitesimal generator of the semigroup (Tt)t≥0. For instance
if ϕ ∈ C∞c (Rd) is a compactly supported smooth function and (Xt)t≥0 is a Lévy
process (Sato, 2013) or a “good” Feller process (Böttcher et al., 2013; Jacob, 2002)
with infinitesimal generator A, then u(t, x) = Exϕ(Xt) solves the evolution equa-
tion (1.1), and A|C∞c (Rd) is a pseudo-differential operator with a representation of
the form

Af(x) = b(x) · ∇f(x) +
1

2
tr
(
Q(x) · ∇2f(x)

)
+

∫
y 6=0

(
f(x+ y)− f(x)−∇f(x) · h(y)

)
ν(x, dy)

where h is some truncation function and (b(x), Q(x), ν(x, dy)) is a Lévy triplet for
each fixed x ∈ Rd, see Section 2 for details.

In this paper, we are interested in evolution equations for sublinear Markov
semigroups, that is, semigroups (Tt)t≥0 of sublinear operators Tt, see Definition 3.1
for the precise definition. They appear naturally in the study of Markov processes
on sublinear expectation spaces; quite often (Tt)t≥0 has a representation of the form

Ttϕ(x) = Exϕ(Xt) := sup
P∈Px

∫
Ω

ϕ(Xt) dP

for families of probability measures Px, x ∈ Rd. As in the case of classical Markov
semigroups, it is possible to associate an evolution equation (1.1) with a sublinear
Markov semigroup (Tt)t≥0, cf. Hollender (2016). In this paper we exploit the con-
nection between sublinear Markov semigroups and the associated evolution equa-
tion to establish new existence and uniqueness results for solutions to non-local
non-linear Hamilton–Jacobi–Bellman (HJB) equations

∂tu(t, x)− sup
α∈I

(
bα(x) · ∇xu(t, x) +

1

2
tr
(
Qα(x) · ∇2

xu(t, x)
)

+

∫
y 6=0

(
u(t, x+ y)− u(t, x)−∇xu(t, x) · h(y)

)
να(x, dy)

)
= 0

(1.2)

using probabilistic methods; here I is an index set and (bα(x), Qα(x), να(x, dy)) is
a Lévy triplet for each x ∈ Rd and α ∈ I. In particular, we will see that HJB
equations (1.2) appear in probability theory as Kolmogorov backward equations
of Markov processes for sublinear expectations. The stochastic processes, which
we study in this paper, can be interpreted as generalizations of classical Lévy-type
processes under uncertainty in their semimartingale characteristics.

Non-linear integro-partial differential equations (1.2) have attracted a lot of at-
tention in the last years. In particular, there has been a substantial progress in
extending the highly developed viscosity solution theory for second order local
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equations to second order non-local equations. Since there is a large amount of
literature, let us just mention a few fundamental results. Important contributions
to comparison principles were obtained by Alvarez and Tourin (1996), Barles and
Imbert (2008) and Jakobsen and Karlsen (2006). These works use mostly analyti-
cal approaches, and they differ in the exact form of the admissible equations, the
behaviour of the solutions at infinity as well as in the assumptions on the continuity
of the coefficients (bα(x), Qα(x), να(x, dy)) and on the singularities of the measures
να(x, dy). Recently, Hollender (2016) succeeded in relaxing the assumptions from
Jakobsen and Karlsen (2006) and obtained a quite general comparison principle.
Barles et al. (2011) study the regularity of viscosity solutions with respect to the
space variable x, and Jakobsen and Karlsen (2005) investigate the continuous de-
pendence on the coefficients (bα(x), Qα(x), να(x, dy)). There are close connections
between HJB equations and several areas of probability theory, e. g. backwards sto-
chastic differential equations (Barles et al., 1997) and stochastic control with jumps
(see Biswas et al., 2010; Pham, 1998 and the references therein).

The approach which we use in this paper goes back to Shige Peng; he was one of
the first researchers to investigate Kolmogorov equations associated with sublinear
Markov processes. In his pioneering work Peng (2007) constructed the so-called G-
Brownian motion: a continuous stochastic process with independent and stationary
increments whose associated evolution equation is the G-heat equation

∂tu(t, x)− sup
α∈I

(
1

2
tr(Qα · ∇2

xu(t, x))

)
= 0

for a given index set I and a family Qα, α ∈ I, of positive semi-definite symmetric
matrices. His approach was generalized in Hu and Peng (2009) who constructed a
class of stochastic processes with independent and stationary increments such that
the associated Kolmogorov backward equation is given by the non-local non-linear
equation

∂tu(t, x)− sup
α∈I

(
bα · ∇xu(t, x) +

1

2
tr(Qα · ∇2

xu(t, x))

+

∫
y 6=0

(
u(t, x+ y)− u(t, x)−∇xu(t, x) · h(y)

)
να(dy)

)
= 0

(1.3)

for a family (bα, Qα, να(dy)), α ∈ I, of Lévy triplets. In their construction it is a-
priori unclear how one should define the associated semigroup Ttϕ(x) for functions
ϕ which are not continuous. Neufeld and Nutz (2017) studied sublinear Markov
semigroups of the form

Ttϕ(x) := Eϕ(x+Xt) := sup
P

∫
Ω

ϕ(x+Xt) dP

where the supremum is taken over probability measures P such that (Xt)t≥0 is
a P-semimartingale with differential characteristics taking value in a given family
(bα, Qα, να), α ∈ I, of Lévy triplets; they showed that u(t, x) := Ttϕ(x) is a viscosity
solution to (1.3) under the assumption that ϕ is Lipschitz continuous and bounded,
and

sup
α∈I

(
|bα|+ |Qα|+

∫
y 6=0

min{|y|, |y|2} να(dy)

)
<∞.
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Using a version of Kolmogorov’s extension theorem for non-linear expectations,
Denk et al. (2017) recently established under the weaker condition

sup
α∈I

(
|bα|+ |Qα|+

∫
y 6=0

min{1, |y|2} να(dy)

)
<∞

the existence of a viscosity solution to (1.3) for initial conditions u(0, x) = ϕ(x)
which are bounded and uniformly continuous; we will recover this statement as a
particular case of our main result, cf. Corollary 4.2.

This paper builds on the PhD thesis by Hollender (2016) who obtained many
new insights on Markov processes for sublinear expectations. In particular, he gen-
eralized the approach by Neufeld and Nutz (2017) to HJB equations (1.2) with
state-space dependent coefficients (bα(x), Qα(x), να(x, dy)), and succeeded in con-
structing a class of sublinear Markov processes with associated evolution equa-
tion (1.2). Compared to Hollender (2016), our results require weaker regularity
and integrability assumptions, see the discussion in Section 3 for details. The key
tool to relax the assumptions from Hollender (2016) is a maximal inequality which
allows us to estimate expressions of the form

sup
P∈Px

P

(
sup
s≤t
|Xs − x| > r

)
for a family of probability measures Px, cf. Section 5.

This article is organized as follows. After introducing basic notation and defi-
nitions in Section 2, we recall some results on sublinear Markov semigroups at the
beginning of Section 3. In Section 3 we also state and discuss our main result,
Theorem 3.3. Several applications of Theorem 3.3 will be presented in Section 4;
we will study Kolmogorov backward equations associated with Lévy and Lévy-type
processes for sublinear expectations and evolution equations associated with clas-
sical Feller processes. In Section 5 we will establish the maximal inequality which
is a crucial tool for the proofs which will be presented in Section 6.

2. Preliminaries

We consider the Euclidean space Rd endowed with the Borel σ-algebra B(Rd)
and write B(x, r) for the open ball centered at x ∈ Rd with radius r > 0. If
A ∈ Rd×d is a matrix, then AT is the transpose of A and tr(A) is the trace of A.
The gradient and Hessian of a function f : Rd → R are denoted by ∇f and ∇2f ,
respectively, and on C2

b (Rd), the space of functions with bounded derivatives up to
order 2, we define a norm by

‖f‖(2) := ‖f‖∞ + ‖∇f‖∞ + ‖∇2f‖∞.

The space of bounded Borel measurable functions f : Rd → R is denoted by
Bb(R

d). A function f : [0,∞)→ Rd is in the Skorohod space D([0,∞),Rd) if f is
càdlàg, i. e. f is right-continuous and has finite left-hand limits in Rd. We will use
the shorthand

Dx := Dx([0,∞),Rd) := {f ∈ D([0,∞),Rd); f(0) = x}.

For a probaility measure P we denote by E := EP :=
∫
dP the expectation with

respect to P. We use λ to denote the Lebesgue measure. Throughout this paper,
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we denote by h a truncation function, i. e. a bounded mapping h : Rd → Rd with
bounded support such that h(x) = x in a neighbourhood of 0.

Let (Ω,A,P) be a probability space. If Bt : Ω → Rd is a predictable càdlàg
bounded variation process, Ct : Ω→ Rd×d a continuous bounded variation process
and F a predictable random measure on [0,∞) ×Rd, then the triplet (B,C, F ) is
called the (predictable) semimartingale characteristics (with respect to a truncation
function h) of a semimartingale (Xt)t≥0 if the process

f(Xt)− f(X0)−
d∑
j=1

∫ t

0

∂xjf(Xs−) dBjs −
d∑

i,j=1

∫ t

0

∂xi∂xjf(Xs−) dCi,js

−
∫ t

0

∫
y 6=0

(f(Xs− + y)− f(Xs−)−∇f(Xs−) · h(y)) F (dy, ds)

is a local martingale for any f ∈ C2
b (Rd). If the triplet (B,C, F ) is absolutely

continuous with respect to Lebesgue measure, in the sense that

dBt = bt dt dCt = Qt dt F (dy, dt) = νt(dy) dt

for predictable processes (bt)t≥0, (Qt)t≥0 and a predictable kernel ν, then we call
(bt, Qt, νt) the differential characteristics of (Xt)t≥0; we write (bPt , Q

P
t , ν

P
t ) if we

need to emphasize the underlying probability measure P. We denote by Pac
sem(Ω)

the family of probability measures P on Ω such that (Xt)t≥0 is a semimartingale
(with respect to P) which has absolutely continuous semimartingale characteristics
with respect to Lebesgue measure. For a thorough discussion of semimartingales
and their characteristics we refer to Jacod and Shiryaev (2003).

A pseudo-differential operator with continuous negative definite symbol is an op-
erator A : C∞c (Rd)→ R of the form

Af(x) = −q(x,D)f(x) := −
∫
Rd
q(x, ξ)eix·ξ f̂(ξ) dξ, x ∈ Rd, f ∈ C∞c (Rd) (2.1)

where f̂(ξ) = (2π)−d
∫
Rd
f(x)e−ix·ξ dx denotes the Fourier transform of f and the

symbol q(x, ξ) is a continuous negative definite function for each x ∈ Rd, i. e.

q(x, ξ) = −ib(x) · ξ +
1

2
ξ ·Q(x)ξ +

∫
y 6=0

(
1− eiy·ξ + iξ · h(y)

)
ν(x, dy), x, ξ ∈ Rd,

(2.2)
here h is a given truncation function and (b(x), Q(x), ν(x, dy)) is for each x ∈ Rd
a Lévy triplet consisting of a vector b(x) ∈ Rd (drift vector), a symmetric positive
semidefinite matrix Q(x) ∈ Rd×d (diffusion matrix ) and a Lévy measure ν(x, dy),
i. e. measure on (Rd\{0},B(Rd\{0})) satisfying

∫
y 6=0

min{1, |y|2} ν(x, dy) <∞. We

call (b,Q, ν) is the characteristics of q. For a fixed truncation function h the
characteristics (b,Q, ν) is uniquely determined by q; note that only the drift b(x)
depends on the choice of h. Using properties of the Fourier transform it follows
readily that

Af(x) = b(x) · ∇f(x) +
1

2
tr
(
Q(x) · ∇2f(x)

)
+

∫
y 6=0

(f(x+ y)− f(x)−∇f(x) · h(y)) ν(x, dy),

and therefore A extends naturally to C2
b (Rd). Pseudo-differential operators with

negative definite symbol play an important role in the study of Feller processes, see
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e. g. the monographs Böttcher et al. (2013); Jacob (2002); Kühn (2017) for details,
and in the context of stochastic differential equations, see e. g. Kühn (2018); Kurtz
(2011). If the characteristics (b,Q, ν) (and hence the symbol q) does not depend on
x, then q is the characteristic exponent of a Lévy process, i. e. a stochastic process
with càdlàg sample paths and independent and stationary increments, and (b,Q, ν)
is its Lévy triplet with respect to the truncation function h, cf. Sato (2013) and
also Khoshnevisan and Schilling (2016).

In this paper we study Hamilton–Jacobi–Bellman equations of the form

∂

∂t
u(t, x)− sup

α∈I
Aαxu(t, x) = 0 (2.3)

where Aα is for each α ∈ I a pseudo-differential operator; we write Aαx to empha-
size that Aα acts with respect to the space variable x. In general, there do not
exist classical solutions to (2.3). We will work with the weaker notion of viscosity
solutions which was originally introduced by Crandall and Lions (1983) and Evans
(1980). The following definition is taken from Hollender (2016); for a discussion of
equivalent definitions we refer the reader to Hollender (2016, Chapter 2) and Barles
and Imbert (2008).

Definition 2.1. Let A : D(A)→ R be an operator with domain D(A) containing
the space of smooth functions with bounded derivatives C∞b (Rd). An upper semi-
continuous function u : [0,∞)×Rd → R is a viscosity subsolution to the equation

∂tu(t, x)−Axu(t, x) = 0

if the inequality ∂tϕ(t, x)−Axϕ(t, x) ≤ 0 holds for any function ϕ ∈ C∞b ([0,∞)×Rd)
such that u−ϕ has a global maximum in (t, x) ∈ (0,∞)×Rd with u(t, x) = ϕ(t, x).
A mapping u is a viscosity supersolution if −u is a viscosity subsolution. If u is
both a viscosity sub- and supersolution, then u is called viscosity solution.

3. Main result

In order to state our main result, Theorem 3.3, we first need to introduce Markov
sublinear semigroups and their associated evolution equation.

Definition 3.1. Let H be a convex cone of functions f : Rd → R containing
all constant functions. A family of sublinear operators Tt : H → H, t ≥ 0, is a
sublinear Markov semigroup (on H) if it satisfies the following properties.

(i) (Tt)t≥0 has the semigroup property, i. e. Tt+s = TtTs for all s, t ≥ 0 and
T0 = id,

(ii) Tt is monotone for each t ≥ 0, i. e. f, g ∈ H, f ≤ g implies Ttf ≤ Ttg,
(iii) Tt preserves constants for each t ≥ 0, i. e. Tt(c) = c for all c ∈ R.

Following Hollender (2016) we associate the sublinear infinitesimal generator
A : D(A)→ H with the sublinear Markov semigroup (Tt)t≥0,

Af(x) := lim
t↓0

Ttf(x)− f(x)

t
, x ∈ Rd, f ∈ D(A),

where

D(A) :=

{
f ∈ H;∃g ∈ H ∀x ∈ Rd : g(x) = lim

t↓0

Ttf(x)− f(x)

t

}
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is the domain of A. Hollender (2016, Proposition 4.10) established the following
fundamental result which associates to the sublinear Markov semigroup (Tt)t≥0 a
evolution equation. It plays a key role in the proof of our main result.

Theorem 3.2. Let (Tt)t≥0 be a sublinear Markov semigroup on a convex cone H

of real-valued functions on Rd containing all constants functions, and denote by
A : D(A) → H be its generator. If C∞b (Rd) ⊆ D(A) and if f ∈ H is such that
(t, x) 7→ u(t, x) := Ttf(x) is continuous, then u is a viscosity solution (in the sense
of Definition 2.1) to

∂tu(t, x)−Axu(t, x) = 0

under u(0, x) = f(x).

Throughout the remaining part of this section, we use the canonical model,
i. e. we denote by (Xt)t≥0 the canonical process Xt(ω) := ω(t), ω ∈ Ω, on the
Skorohod space Ω := D([0,∞),Rd). Moreover, we write Pac

sem(Dx) for the family
of probability measures P on Dx such that the canonical process (Xt)t≥0 is a
semimartingale (with respect to P) which has absolutely continuous semimartingale
characteristics with respect to Lebesgue measure, cf. Section 2. In our main result,
Theorem 3.3, we study family of sublinear operators (Tt)t≥0 of the form

Ttf(x) = sup
P∈Px

EPf(Xt)

where Px is for each x ∈ Rd a set of probability measures on the Skorohod space
satisfying

Px ⊆

{
P ∈ Pac

sem(Dx); (bPs , Q
P
s , ν

P
s )(ω)∈

⋃
α∈I
{(bα, Qα, να)(Xs(ω))} λ(ds)× P-a.s.

}
(3.1)

for a family of Lévy triplets (bα(x), Qα(x), να(x, dy)), α ∈ I, x ∈ Rd, which is
uniformly bounded on compact sets, i. e.

∀r > 0 : Mr := sup
α∈I

sup
|x|≤r

(
|bα(x)|+ |Qα(x)|+

∫
y 6=0

min{|y|2, 1} να(x, dy)

)
<∞,

(3.2)
Following Hollender (2016) we call the family (bα(x), Qα(x), να(x, dy)), α ∈ I,
x ∈ Rd, the uncertainty coefficients and the families of probability measures Px

uncertainty subsets. In the sequel we will impose the following conditions.

(C1) Ttf(x) := Exf(Xt) := supP∈Px EPf(Xt) defines a sublinear Markov semi-
group on a convex cone H of real-valued bounded functions containing all
constant functions,

(C2) For each α ∈ I there exists a measure Pα ∈ Px with differential charac-
teristics

(bPαs , QPαs , νPαs ) := (bα(Xs−), Qα(Xs−), να(Xs−, ·)) λ(ds)× P-a.s.

(C3) K 3 x 7→ bα(x), α ∈ I, and K 3 x 7→ Qα(x), α ∈ I, are uniformly
equi-continuous,

(C4) K 3 x 7→
∫
y 6=0

g(y) να(x, dy), α ∈ I, is uniformly equi-continuous for any

g ∈ C1
b (Rd) which satisfies |g(y)| ≤ min{1, |y|2}, y ∈ Rd.
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Let us mention that (C1) is automatically satisfied if Px equals the right-hand
side of (3.1) and (bα(x), Qα(x), να(x)) satisfies a certain measurability condition,
cf. Hollender (2016, Remark 4.33). The following statement is our main result.

Theorem 3.3. Let h be a truncation function, and let (bα(x), Qα(x), να(x, ·)),
α ∈ I, x ∈ Rd, be a family of Lévy triplets which is uniformly bounded on compact
sets (in the sense of (3.2)) and which satisfies at least one of the following two
conditions.

(A1) Conditions (C3),(C4) hold for any compact set K ⊆ Rd, and the family
qα(x, ·) : Rd → C, α ∈ I, x ∈ Rd, of continuous negative definite func-
tions associated with (bα(x), Qα(x), να(x, ·)) via (2.2) satisfies the uniform
continuity condition

lim
r→∞

sup
|z−x|≤r

sup
|ξ|≤r−1

sup
α∈I
|qα(z, ξ)| = 0 for all x ∈ Rd.

(A2) Conditions (C3),(C4) hold for K = Rd and the family of Lévy triplets is
uniformly bounded:

M := sup
α∈I

sup
x∈Rd

(
|bα(x)|+ |Qα(x)|+

∫
y 6=0

min{1, |y|2} να(x, dy)

)
<∞.

For uncertainty subsets Px, x ∈ Rd, satisfying (3.1) set

Ttf(x) := Exf(Xt) := sup
P∈Px

EPf(Xt)

and assume that (C1) and (C2) hold. If f ∈ H and (t, x) 7→ u(t, x) := Ttf(x) is
continuous, then u is a viscosity solution (in the sense of Definition 2.1) to

∂tu(t, x)− sup
α∈I

(
bα(x) · ∇xu(t, x) +

1

2
tr
(
Qα(x) · ∇2

xu(t, x)
)

+

∫
y 6=0

(
u(t, x+ y)− u(t, x)−∇xu(t, x) · h(y)

)
να(x, dy)

)
= 0

(3.3)

with u(0, x) = f(x).

Theorem 3.3 generalizes Hollender (2016, Theorem 4.37) where the assertion was
shown under stronger regularity assumptions – Hollender (2016) requires Lipschitz
continuity of the uncertainty coefficients and of the mapping f – and under the
additional assumption that

sup
α∈I

sup
x∈Rd

(
|bα(x)|+ |Qα(x)|+

∫
y 6=0

min{|y|, |y|2} να(x, dy)

)
<∞. (3.4)

Clearly, (3.4) is more restrictive than the uniform boundedness condition (A2) since
(3.4) poses an additional integrability assumption on the family of Lévy measures
at infinity; for instance, να(dy) = |y|−d−1 dy satisfies (A2) but not (3.4). Since
the uniform boundedness condition (A2) in Theorem 3.3 can be replaced by the
uniform continuity condition (A1), Theorem 3.3 even allows us to study equations
with unbounded coefficients; this seems to be a novelty in the literature. We will
take advantage of this when we study HJB equations associated with solutions to
stochastic differential equations, see Corollary 4.6.
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Remark 3.4. (i) Hollender (2016, Corollary 2.34) established a comparison
principle for HJB equations (3.3); it gives, in particular, a sufficient con-
dition for the uniqueness of the solution to (3.3).

(ii) Theorem 3.3 requires continuity of the mapping (t, x) 7→ Ttf(x). Using
the stochastic representation Tt(x) = supP∈Px EPf(Xt) and a maximal
inequality, which we will derive in Section 5, we will show that Ttf(x)
depends continuously on t whenever f ∈ H is bounded and uniformly
continuous, cf. Theorem 5.3. The continuous dependence on the space
variable x is, however, in general hard to verify, see the discussion in
Hollender (2016, Remark 4.43) for further details.

4. Applications

In this section we present applications of Theorem 3.3. We are going to study
existence and uniqueness results for Hamilton–Jacobi–Bellman (HJB) equations

∂tu(t, x)− sup
α∈I

(
bα(x) · ∇xu(t, x) +

1

2
tr(Qα(x) · ∇2

xu(t, x))

+

∫
y 6=0

(
u(t, x+ y)− u(t, x)−∇xu(t, x) · h(y)

)
να(x, dy)

)
= 0

(4.1)

for the following particular cases:

(i) The coefficients (bα(x), Qα(x), να(x, dy)) are space homogeneous, i. e. do
not depend on the space variable x. This leads to, so-called, Lévy processes
for sublinear expectations, cf. Proposition 4.1 and Corollary 4.2. Our
results apply, in particular, to classical Lévy processes, cf. Corollary 4.3.

(ii) The coefficients (bα(x), Qα(x), να(x, dy)) are of the form

bα(x) = σ(x)b̂α Qα(x) = σ(x)Q̂ασ(x)T να(x, dy) = ν̂α ◦ σ(x)−1

for a family of Lévy triplets (b̂α, Q̂α, ν̂α), α ∈ I, and a mapping σ. Such
HJB equations are the evolution equations of solutions to stochastic dif-
ferential equations driven by a sublinear Lévy process, cf. Corollary 4.6.

(iii) The index set I consists of a single element, i. e. (4.1) becomes

∂tu(t, x)−
(
b(x) · ∇xu(t, x) +

1

2
tr(Q(x) · ∇2

xu(t, x))

+

∫
y 6=0

(
u(t, x+ y)− u(t, x)−∇xu(t, x) · h(y)

)
ν(x, dy)

)
= 0.

They appear as Kolmogorov backward equations of Feller processes on
classical probability spaces, cf. Corollary 4.8.

As usual, (Xt)t≥0 denotes the canonical process on the Skorohod space. We
recall that a function f : Rd → R is called upper semi-analytic if the preimage
{f > c} = {x ∈ Rd; f(x) > c} is an analytic set for all c ∈ R, i. e. {f > c} is the
continuous image of a Polish space for all c ∈ R.

Proposition 4.1. Let (bα, Qα, να), α ∈ I, be a family of Lévy triplets. If

sup
α∈I

(
|bα|+ |Qα|+

∫
y 6=0

min{1, |y|2} να(dy)

)
<∞,
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then the family of sublinear operators

Ttf(x) := Exf(Xt) := sup
P∈Px

EPf(Xt), t ≥ 0, x ∈ Rd,

with uncertainty subsets

Px :=

{
P ∈ Pac

sem(Dx); (bPs , Q
P
s , ν

P
s )(ω) ∈

⋃
α∈I
{(bα, Qα, να)} λ(ds)× P-a.s.

}
(4.2)

defines a sublinear Markov semigroup on each of the following spaces:

(i) the space of bounded upper semi-analytic functions,
(ii) the space of bounded uniformly continuous functions,

(iii) the space of bounded Lipschitz continuous functions.

If the family of Lévy measures να, α ∈ I, is tight at infinity in the sense that

lim
R→∞

sup
α∈I

∫
|y|>R

να(dy) = 0, (4.3)

then (Tt)t≥0 is a sublinear Markov semigroup on

(iv) the space of bounded continuous functions.

It can be shown that the semigroup (Tt)t≥0 is spatially homogeneous on the
space of bounded upper semi-analytic functions, i. e.

Ttf(x) = Exf(Xt) = E0f(x+Xt) = Tt(f(x+ ·))(0), (4.4)

for any bounded upper semi-analytic function f , and that (Xt)t≥0 has independent
and stationary increments, see e. g. Hollender (2016, Remark 4.38) for details. Fol-
lowing Denk et al. (2017); Hollender (2016) we refer to the process (Xt)t≥0 from
Corollary 4.2 as Lévy process for sublinear expectations with uncertainty coefficients
(bα, Qα, να); we would like to mention that there is no standard terminology for
this class of processes, for instance Hu and Peng (2009) call them G-Lévy processes.

From Theorem 3.3 and Proposition 4.1 we obtain the following existence and
uniqueness result for HJB equations (4.1) with space homogeneous coefficients.

Corollary 4.2. Let h be a truncation function, and let (bα, Qα, να), α ∈ I, be a
family of Lévy triplets such that

sup
α∈I

(
|bα|+ |Qα|+

∫
y 6=0

min{1, |y|2} να(dy)

)
<∞. (4.5)

Denote by Ttf(x) = Exf(Xt) the family of sublinear operators introduced in Propo-
sition 4.1. The mapping u(t, x) := Ttf(x) is a viscosity solution to

∂tu(t, x)− sup
α∈I

(
bα · ∇xu(t, x) +

1

2
tr
(
Qα · ∇2

xu(t, x)
)

+

∫
y 6=0

(
u(t, x+ y)− u(t, x)−∇xu(t, x) · h(y)

)
να(dy)

)
= 0

(4.6)

with u(0, x) = f(x) in each of the following cases:

(i) f is bounded and uniformly continuous,
(ii) (4.3) holds and f is bounded and continuous.



Solutions to HJB equations associated with sublinear Lévy(-type) processes 541

If additionally the tightness condition

lim
r→0

sup
α∈I

∫
0<|y|≤r

|y|2 να(dy) = 0 and lim
R→∞

sup
α∈I

∫
|y|>R

να(dy) = 0 (4.7)

holds, then u(t, x) = Ttf(x) is for any f ∈ Cb(Rd) the unique viscosity solution to
(4.6) with u(0, x) = f(x).

Corollary 4.2 generalizes a result by Neufeld and Nutz (2017) which shows that
u(t, x) = supP∈Px EPf(Xt) is a viscosity solution to (4.6) under the additional

assumptions that f is Lipschitz continuous and that supα∈I
∫
|y|>1

|y| να(dy) < ∞.

Recently, Denk et al. (2017) studied semigroups associated with Lévy processes for
sublinear expectations and showed that (4.5) implies the existence of a viscosity
solution to (4.6) for initial values u(0, x) = f(x) which are bounded and uniformly
continuous; this corresponds to Corollary 4.2(i). Let us mention that Denk et
al. do not have the representation u(t, x) = supP∈Px EPf(Xt) for the solution; this
stochastic representation is useful to derive further information on the solution, e. g.
to study regularity and growth properties. Moreover, it allows us to interpret Lévy
processes for sublinear expectations as generalizations of classical Lévy processes
under uncertainty of the semimartingale characteristics.

For the particular case that the index set I consists of a finitely many elements,
the tightness condition (4.3) is automatically satisfied, and therefore Corollary 4.2
gives the following result for classical Lévy processes.

Corollary 4.3. Let (Xt)t≥0 be a d-dimensional Lévy process on a classical proba-
bility space (Ω,A,P), and denote by ψ its characteristic exponent,

ψ(ξ) = −ib · ξ +
1

2
ξ ·Qξ +

∫
y 6=0

(
1− eiy·ξ + iξ · h(y)

)
ν(dy), ξ ∈ Rd.

If f : Rd → R is continuous and bounded, then Ttf(x) := Ef(x+Xt) is the unique
viscosity solution to

∂tu(t, x)−
(
b · ∇xu(t, x) +

1

2
tr
(
Q · ∇2

xu(t, x)
)

+

∫
y 6=0

(
u(t, x+ y)− u(t, x)−∇xu(t, x) · h(y)

)
ν(dy)

)
= 0.

with u(0, x) = f(x).

Next we investigate HJB equations (4.1) with coefficients (bα(x), Qα(x),
να(x, dy)) of the form

bα(x) = σ(x)b̂α Qα(x) = σ(x)Q̂ασ(x)T να(x, dy) = ν̂α ◦ σ(x)−1

for a family of Lévy triplets (b̂α, Q̂α, ν̂α), α ∈ I, and a mapping σ; here ν̂α ◦σ(x)−1

denotes the pullback of the measure ν̂α under σ(x). It turns out that such HJB
equations are the evolution equations of solutions to stochastic differential equations
driven by a sublinear Lévy process. Before we can state the result, we need to
introduce stochastic integrals on sublinear expectation spaces. It is well-known, see
e. g. Jacod and Shiryaev (2003), that for any semimartingale (Xt)t≥0 on a classical
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probability space (Ω,A,P) and any locally bounded predictable process (Ht)t≥0

the stochastic integral
∫ t

0
Hs dXs exists. We will use the notation

IP(H,X)t :=

∫ t

0

Hs dXs

to emphasize that the stochastic integral depends on the underlying probability
measure P. The next definition is adapted from Hollender (2016, Definition 4.51).

Definition 4.4. Let (Xt)t≥0 be a d-dimensional (Ft)t≥0-adapted stochastic process
on a measurable space (Ω,A), and let P ⊆ Pac

sem(Ω), i. e. a family of probability
measures P on (Ω,A) such that (Xt,Ft)t≥0 is a semimartingale (with respect to P)
which has absolutely continuous differential characteristics with respect to Lebesgue
measure. For a locally bounded predictable process (Ht)t≥0 the stochastic integral
of (Ht)t≥0 with respect to (Xt)t≥0,

IP(H,X) = (IP(H,X)t)t≥0 : Ω→ D([0,∞))

is defined as the stochastic process adapted to the P-universally augmented filtra-

tion (FP
t+)t≥0,

F
P
t+ :=

⋂
P∈P

FPt+

with càdlàg sample paths such that

IP(H,X) = IP(H,X)

holds P-almost surely for any P ∈ P.

Let us mention that the stochastic integral can be defined for a larger space of
integrands; in this paper we restrict ourselves to locally bounded processes. The
following existence and uniqueness result for stochastic differential equations on
sublinear expectation spaces is a direct consequence of Hollender (2016, Theorem
4.57).

Theorem 4.5. Let (Xt)t≥0 and P be as in Definition 4.4. If σ : Rk → Rk×d is a
Lipschitz continuous function, then the stochastic differential equation

Z = x+ IP(σ(Z−·), X) (4.8)

has for any initial point Z0 = x ∈ Rk a solution (Zt)t≥0 with càdlàg sample paths
which is adapted to the universally completed filtration

F
P
t :=

⋂
P∈P

FPt :=
⋂
P∈P

{A ∪N ;A ∈ Ft,∃B ∈ A, B ⊇ N : P(B) = 0}.

The solution is unique in the following sense: If (Z ′t)t≥0 is another F
P
t -adapted

solution with càdlàg sample paths, then Z = Z ′ P-a.s. for any P ∈ P.

Note that the solution (Zt)t≥0 to (4.8) satisfies by the very definition of the
stochastic integral, cf. Definition 4.4,

Zt = x+ IP(σ(Z−), X)t = x+

∫ t

0

σ(Zs−) dXs

P-almost surely for any P ∈ P.

Theorem 3.3 allows us to study the evolution equations of solutions to stochastic
differential equations driven by a Lévy process for sublinear expectations. We



Solutions to HJB equations associated with sublinear Lévy(-type) processes 543

obtain the following existence and uniqueness result which generalizes Hollender
(2016, Remark 4.62).

Corollary 4.6. Let (Xt)t≥0 be the d-dimensional sublinear Lévy process from
Corollary 4.2 with uniformly bounded uncertainty coefficients (bα, Qα, να), α ∈ I,
and truncation function h. Assume that the uncertainty coefficients satisfy the
tightness condition (4.7) and that

⋃
α∈I{(bα, Qα, να)} is convex and closed (see Re-

mark 4.7 below). For a Lipschitz continuous function σ : Rk → Rk×d which grows
at most sublinearly let (Zxt )t≥0 be the unique solution to the SDE

Zx = x+ IP0(σ(Zx·−), X),

cf. Theorem 4.5, for the uncertainty subset P0 defined in (4.2). If f : Rk → R is a
continuous bounded function, then

u(t, x) := Ptf(x) := E0f(Zxt ) := sup
P∈P0

EPf(Zxt ), t ≥ 0, x ∈ Rk,

is the unique viscosity solution to

∂tu(t, x)− sup
α∈I

(
σ(x)bα∇xu(t, x) +

1

2
tr
(
σ(x)Qασ(x)T∇2

xu(t, x)
)

+

∫
y 6=0

(
u(t, x+ σ(x) · y)− u(t, x)−∇xu(t, x)σ(x)h(y)

)
να(dy)

)
= 0

(4.9)

with u(0, x) = f(x).

Remark 4.7. In Corollary 4.6 we assume that the set {(bα, Qα, να);α ∈ I} is
closed; let us explain which topology we consider. For each α ∈ I the Lévy triplet
(bα, Qα, να) is an element of the cartesian product

Π := Rd × Sd×d+ × L(Rd)

where Sd×d+ is the space of symmetric semi-positive definite matrices Q ∈ Rd×d and

L(Rd) is the family of Lévy measures on Rd\{0}. We consider Π endowed with the

product topology; as usual, Rd and Sd×d+ are endowed with the Euclidean metric,

and the topology on L(Rd) is induced by the Wasserstein metric

dW (µ, ν) := sup
f

∣∣∣∣∫
Rd
f(x) min{|x|2, 1}µ(dx)−

∫
Rd
f(x) min{|x|2, 1} ν(dx)

∣∣∣∣
where the supremum is taken over all functions f : Rd → R which satisfy

sup
x∈Rd

|f(x)| ≤ 1 and sup
x 6=y

|f(x)− f(y)|
|x− y|

≤ 1.

We close this section with a result on HJB equations associated with Feller
processes on classical probability spaces. Recall that a Markov process (Xt)t≥0

with càdlàg sample paths and semigroup Ttf(x) = Exf(Xt) is a Feller process
if (Tt)t≥0 is strongly continuous on C∞(Rd), the space of continuous functions
vanishing at infinity, i. e.

∀f ∈ C∞(Rd) : lim
t→0
‖Ttf − f‖∞ = 0,

and each Tt has the Feller property, i. e. Tt(C∞(Rd)) ⊆ C∞(Rd). In particular,
(Tt)t≥0 is a sublinear Markov semigroup on H := C∞(Rd) in the sense of Def-
inition 3.1. The sublinear infinitesimal generator associated with this sublinear
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Markov semigroup coincides with the classical infinitesimal generator associated
with the Feller process (Xt)t≥0; this follows from the maximal dissipativity of the
(classical) infinitesimal generator, see e. g. Böttcher et al. (2013, Theorem 1.33).
If (Xt)t≥0 is a Feller process with infinitesimal generator (A,D(A)) which satisfies
C∞c (Rd) ⊆ D(A), then A equals, when restricted to C∞c (Rd), a pseudo-differential
operator with negative definite symbol q, cf. (2.1) and (2.2). For a detailed discus-
sion of Feller processes and their infinitesimal generators we refer to the monographs
Böttcher et al. (2013); Jacob (2002).

Corollary 4.8. Let (Xt)t≥0 be a d-dimensional Feller process with semigroup
(Tt)t≥0 and infinitesimal generator (A,D(A)) such that C∞c (Rd) ⊆ D(A). Assume
that characteristics (b,Q, ν) of the associated symbol q depends uniform continu-
ously on x, in the sense that x 7→ b(x), x 7→ Q(x) are uniformly continuous and
that x 7→

∫
y 6=0

g(y) ν(x, dy) is uniformly continuous for any function g ∈ C1
b (Rd)

such that |g(y)| ≤ min{1, |y|2}, y ∈ Rd. The mapping u(t, x) := Ttf(x) is a viscos-
ity solution to

∂tu(t, x)−
(
b(x) · ∇xu(t, x) +

1

2
tr
(
Q(x)∇2

xu(t, x)
)

+

∫
y 6=0

(
u(t, x+ y)− u(t, x)−∇xu(t, x) · h(y)

)
ν(x, dy)

)
= 0

(4.10)

with u(0, x) = f(x) in each of the following cases:

(i) f ∈ C∞(Rd) and q has bounded coefficients, i. e.

sup
x∈Rd

(
|b(x)|+ |Q(x)|+

∫
y 6=0

min{1, |y|2} ν(x, dy)

)
<∞.

(ii) f ∈ Cb(Rd) and q satisfies the uniform continuity condition

lim
r→∞

sup
|ξ|≤r−1

sup
|x|≤r

|q(x, ξ)| = 0. (4.11)

Remark 4.9. (i) If (4.11) holds then the continuity assumptions on the co-
efficients can be relaxed; it suffices to assume that the coefficients de-
pend continuously on x, i. e. that the mappings x 7→ b(x), x 7→ Q(x)
and x 7→

∫
g(y) ν(x, dy) are continuous. This is a direct consequence of

Theorem 3.3 and the proof of Corollary 4.8.
(ii) Corollary 4.8 applies, in particular, if (Xt)t≥0 is a Lévy process, see also

Corollary 4.3.

5. Maximal inequality for sublinear expectations

Let (Xt)t≥0 be the canonical process on the Skorohod space. In the first part of
this section we establish a maximal inequality of the form

Px
(

sup
s≤t
|Xs − x| > r

)
≤ crt, t ≥ 0,

for sublinear expectations Px = supP∈Px P with uncertainty subset Px,

Px⊆

{
P∈Pac

sem(Dx); (bPs , Q
P
s , ν

P
s )(ω)∈

⋃
α∈I
{(bα, Qα, να)(Xs(ω))} λ(ds)× P-a.s.

}
.



Solutions to HJB equations associated with sublinear Lévy(-type) processes 545

The idea of the proof goes back to Schilling (1998b) who obtained a maximal in-
equality for Feller processes, see also Böttcher et al. (2013, Theorem 5.1). The
maximal inequality has turned out to be a very useful tool to study distributional
and path properties of Feller processes, cf. Böttcher et al. (2013). Recently, a local-
ized version of the maximal inequality was derived by Kühn and Schilling (2019) to
study domains of Feller generators, and in Kühn (2019+) the maximal inequality
was used in the context of martingale problems to give a sufficient condition for
the non-explosion of solutions. Since the proof of the maximal inequality for Feller
processes relies essentially on Dynkin’s formula, we can extend it to our framework.

Proposition 5.1 (Maximal inequality). Let (bα(x), Qα(x), να(x, ·)), x ∈ Rd, α ∈
I, be a family of Lévy triplets which is uniformly bounded on compact sets, i. e.
which satisfies (3.2). For a given truncation function h denote by

qα(x, ξ) = −ibα(x) · ξ +
1

2
ξ ·Qα(x)ξ +

∫
y 6=0

(1− eiy·ξ + iξ · h(y)) να(x, dy)

the associated family of continuous negative definite symbols. For any uncertainty
subset Px with

Px⊆

{
P∈Pac

sem(Dx); (bPs , Q
P
s , ν

P
s )(ω) ∈

⋃
α∈I
{(bα, Qα, να)(Xs(ω))} λ(ds)× P-a.s.

}
(5.1)

there exists c > 0 such that

sup
P∈Px

P

(
sup
s≤t
|Xs − x| > r

)
≤ ct sup

α∈I
sup
|z−x|≤r

sup
|ξ|≤r−1

|qα(z, ξ)| (5.2)

for all t ≥ 0, r > 0. The constant c > 0 can be chosen independently from the
starting point x ∈ Rd and the family (bα(x), Qα(x), να(x, ·)), α ∈ I, x ∈ Rd.

Proof : Fix P ∈ Px and u ∈ C∞c (Rd) with suppu ⊆ B(0, 1) and 0 ≤ u ≤ 1 = u(0).
If we set uxr (·) := u((· − x)/r), then Dynkin’s formula, cf. Lemma A.1, shows that

EPu
x
r (Xτxr ∧t)− 1 = EP

(∫
(0,t∧τxr )

APs u
x
r (Xs−) ds

)
where τxr denotes the first exit time from the closed ball B(x, r) and

APs f(z) := bPs · ∇f(z) +
1

2
tr
(
QPs · ∇2f(z)

)
+

∫
y 6=0

(
f(z + y)− f(z)−∇f(z) · h(y)

)
νPs (dy).

Thus,

P(τxr ≤ t) ≤ EP(1− uxr (Xt∧τxr )) = −EP

(∫
(0,t∧τxr )

APs u
x
r (Xs−) ds

)
.

Because of the structural assumption (5.1) this implies that

P(τxr ≤ t) ≤ sup
α∈I

∣∣∣∣∣EP
(∫

(0,t∧τxr )

qα(Xs−, D)uxr (Xs−) ds

)∣∣∣∣∣ ;
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here qα(z,D) denotes the pseudo-differential operator with symbol qα, cf. (2.1).
Hence,

P(τxr ≤ t) ≤ t sup
α∈I

sup
|z−x|≤r

|qα(z,D)uxr (z)|.

Since the Fourier transform ûxr satisfies |ûxr (ξ)| = rd|û(rξ)| a change of variables
gives

|qα(z,D)uxr (z)| =
∣∣∣∣∫
Rd
qα(z, ξ)eiz·ξûxr (ξ) dξ

∣∣∣∣ ≤ ∫
Rd
|qα(z, r−1ξ)| |û(ξ)| dξ.

Using that |qα(z, η)| ≤ 2(1 + |η|2) sup|ξ|≤1 |qα(z, ξ)|, see e. g. Böttcher et al. (2013,

Theorem 2.31), we conclude that

P(τxr ≤ t) ≤ ct sup
α∈I

sup
|z−x|≤r

sup
|ξ|≤r−1

|qα(z, ξ)|

for c := 2
∫
Rd

(1 + |ξ|2)|û(ξ)| dξ, cf. Böttcher et al. (2013, Theorem 5.1) for more
details. Taking the supremum over P ∈ Px, this proves the assertion. �

Remark 5.2. If K ⊆ Rd is such that

sup
α∈I

sup
x∈K

(
|bα(x)|+ |Qα(x)|+

∫
y 6=0

min{|y|2, 1} να(x, dy)

)
<∞,

then

sup
α∈I

sup
x∈K

sup
|ξ|≤r−1

|qα(x, ξ)| <∞

for any r > 0; this follows easily from the fact that we can find for any truncation
function h a constant C > 0 such that

|1− eiy·ξ + ih(y) · ξ| ≤ C min{1, |y|2|ξ|2} for all y, ξ ∈ Rd.

In particular, the boundedness condition (3.2) ensures that the supremum on the
right-hand side of (5.2) is finite.

The maximal inequality, Proposition 5.1, allows us to study the regularity of the
mapping t 7→ Ttf(x) for sublinear Markov semigroups (Tt)t≥0.

Theorem 5.3 (Continuity in time). Let qα(x, ·) : Rd → C, x ∈ Rd, α ∈ I, be a
family of continuous negative definite functions with characteristics (bα(x), Qα(x),
να(x, ·)), α ∈ I, x ∈ Rd, which is uniformly bounded on compact sets, i. e. which
satisfies (3.2). Let

Px⊆

{
P ∈ Pac

sem(Dx); (bPs , Q
P
s , ν

P
s )(ω) ∈

⋃
α∈I
{(bα, Qα, να)(Xs(ω))} λ(ds)× P-a.s.

}
be such that

Ttf(x) := Exf(Xt) := sup
P∈Px

EPf(Xt), t ≥ 0, x ∈ Rk.

defines a sublinear Markov semigroup on a convex cone H of real-valued functions.

(i) If M := supn∈NMn <∞ and f ∈ H is bounded and uniformly continuous,
then t 7→ Ttf(x) is continuous uniformly in x ∈ Rd.
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(ii) If f ∈ H is bounded and continuous and

lim
r→∞

sup
|x|≤2r

sup
|ξ|≤r−1

|qα(x, ξ)| = 0

then t 7→ Ttf(x) is continuous uniformly in x ∈ K for any compact set
K ⊆ Rd.

Let us mention that a sufficient condition for the family (Tt)t≥0 to be a sublinear
Markov semigroup was established by Hollender (2016, Remark 4.33).

Proof of Theorem 5.3: Let f ∈ H be a bounded function. Because of the subaddi-
tivity of Ts we have

TsTt−sf = Ts(Tt−sf − f + f) ≤ Ts(Tt−sf − f) + Tsf

for any s ≤ t and by combining this with the Markov property we find that

Ttf(x)− Tsf(x) = TsTt−sf(x)− Tsf(x)

≤ Ts(Tt−sf − f) = Ex
(
EXsf(Xt−s)− f(Xs)

)
for any x ∈ Rd and s ≤ t. In exactly the same fashion we obtain that

Tsf(x)− Ttf(x) ≤ Ex
(
f(Xs)− EXsf(Xt−s)

)
.

Interchanging the roles of s and t we conclude that

|Ttf(x)− Tsf(x)| ≤ Ex

(
|Ezf(X|t−s|)− f(z)|

∣∣∣∣
z=Xmin{s,t}

)
≤ sup
z∈Rd

Ez|f(X|t−s|)− f(z)| (5.3)

for any s, t ≥ 0 and x ∈ Rd. Applying the maximal inequality (5.2) we get

|Ttf(x)− Tsf(x)| ≤ sup
|u−v|≤δ

|f(u)− f(v)|+ 2‖f‖∞ sup
z∈Rd

P z

(
sup

r≤|t−s|
|Xr − z| > δ

)
≤ sup
|u−v|≤δ

|f(u)− f(v)|+ 2c‖f‖∞|t− s| sup
α∈I

sup
z∈Rd

sup
|ξ|≤δ−1

|qα(z, ξ)|

for any δ > 0. Since the boundedness of the coefficients implies that the second
term on the right-hand side is finite, cf. Remark 5.2, we infer that t 7→ Ttf(x) is
continuous uniformly in x ∈ Rd for any bounded function f ∈ H which is uniformly
continuous, and this proves (i). To prove (ii) we fix f ∈ H∩Cb(Rd) and note that,
by (5.3),

|Ttf(x)− Tsf(x)| ≤ sup
|z|≤R

Ez(|f(X|t−s|)− f(z)|)

+ 2‖f‖∞Px

(
sup

r≤min{s,t}
|Xr − x| > R

)
implying

|Ttf(x)− Tsf(x)| ≤ sup
|u|,|v|≤R+δ
|u−v|≤δ

|f(u)− f(v)|+ 2‖f‖∞ sup
|z|≤R

P z

(
sup

r≤|t−s|
|Xr − z| > δ

)

+ 2‖f‖∞Px

(
sup

r≤min{s,t}
|Xr − x| > R

)
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for any δ > 0. Applying once more the maximal inequality we find that

|Ttf(x)− Tsf(x)| ≤ sup
|u|,|v|≤R+δ
|u−v|≤δ

|f(u)− f(v)|+ c|t− s| sup
|z|≤R+δ

sup
|ξ|≤δ−1

sup
α∈I
|qα(z, ξ)|

+ c(t+ s) sup
|z−x|≤R

sup
|ξ|≤R−1

sup
α∈I
|qα(z, ξ)|

for some absolute constant c > 0. If K ⊆ Rd is a compact set and ε > 0 fixed,
then the growth assumption on qα entails that we can choose R > 0 sufficiently
large such that the third term on the right hand side is less than ε for x ∈ K. The
uniform continuity of f on compacts implies that the first term on the right-hand
side is less than ε for small δ > 0 and finally the second term will be small for
|t− s| < % for % = %(R, δ) > 0 small enough. This proves the assertion. �

6. Proofs

In this section we prove the results which we stated in Section 3 and 4. The
following lemma is the key ingredient for the proof of Theorem 3.3. As usual, we
denote by (Xt)t≥0 the canonical process on the Skorohod space.

Lemma 6.1. Let (bα(x), Qα(x), να(x, ·)) and Ex = supP∈Px EP be as in Theo-

rem 3.3. If f ∈ C2
b (Rd) is such that f and its derivatives up to order 2 are uniformly

continuous, then

lim
t→0

Exf(Xt)− f(x)

t
= sup

α∈I
Aαf(x) for all x ∈ Rd;

here Aαf(x) := qα(x,D)f(x) denotes the pseudo-differential operator with symbol
qα, i. e.

Aαf(x) = bα(x) · ∇f(x) +
1

2
tr
(
Qα(x)∇2f(x)

)
+

∫
y 6=0

(
f(x+ y)− f(x)−∇f(x) · h(y)

)
να(x, dy).

The idea of the proof is similar to Hollender (2016, Proof of Theorem 4.37) but
we use the maximal inequality, Proposition 5.1, to avoid additional assumptions on
the existence of moments.

Proof of Lemma 6.1: For simplicity of notation we give the proof only in dimension
d = 1. First we are going to prove the assertion under (A1); at the very end of
the proof we will discuss how the proof has to be modified to obtain the assertion
under the uniform boundedness condition (A2). We divide the proof into several
steps.

Step 1: Show that

lim
t→0

Exf(Xt∧τxr )− f(x)

t
= lim
t→0

sup
P∈Px

1

t
EP

(∫
(0,t∧τxr )

APs f(x) ds

)
(6.1)

for any r > 0 where τxr denotes the first exit time of the canonical process (Xt)t≥0

from the closed ball B(x, r) and

APs f(z) := bPs f
′(z) +

1

2
QPs f

′′(z) +

∫
y 6=0

(
f(z + y)− f(z)− f ′(z)h(y)

)
νPs (dy).
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Proof of (6.1): Since f and its derivatives up to order 2 are uniformly continuous,
we can choose for any ε > 0 a constant δ > 0 such that

|x− y| ≤ δ =⇒ |f(x)− f(y)|+ |f ′(x)− f ′(y)|+ |f ′′(x)− f ′′(y)| ≤ ε. (6.2)

Fix P ∈ Px. Applying Dynkin’s formula, Lemma A.1, we find

EPf(Xt∧τxr )− f(x)

= EP

∫
(0,t∧τxr )

APs f(Xs−) ds (6.3)

= EP

∫
(0,t∧τxr )

bPs f
′(Xs−) ds+

1

2
EP

∫
(0,t∧τxr )

QPs f
′′(Xs−) ds

+ EP

∫
(0,t∧τxr )

∫
y 6=0

(f(Xs− + z)− f(Xs−)− f ′(Xs−)h(z)) νPs (dz) ds.

We are going to estimate

J1 := J1(t,P) :=

∣∣∣∣∣EP
∫

(0,t∧τxr )

bPs f
′(Xs−) ds− EP

∫
(0,t∧τxr )

bPs f
′(x) ds

∣∣∣∣∣
J2 := J2(t,P) :=

∣∣∣∣∣EP
∫

(0,t∧τxr )

QPs f
′′(Xs−) ds− EP

∫
(0,t∧τxr )

QPs f
′′(x) ds

∣∣∣∣∣
J3 := J3(t,P) :=

∣∣∣∣EP∫
(0,t∧τxr )

∫
y 6=0

(f(Xs− + y)− f(Xs−)− f ′(Xs−)h(y)) νPs (dy) ds

− EP
∫

(0,t∧τxr )

∫
y 6=0

(f(x+ y)− f(x)− f ′(x)h(y)) νPs (dy) ds

∣∣∣∣
for fixed r > 0, x ∈ Rd. It follows from (6.2), (3.2) and (3.1) that

J1 = EP

∣∣∣∣∣
∫

(0,t∧τxr )

bPs (f ′(Xs−)− f ′(x)) ds

∣∣∣∣∣
≤ sup
α∈A

sup
|z−x|≤r

|bα(z)|
[
εt+ 2t‖f ′‖∞P

(
sup
s≤t
|Xs − x| > δ

)]
≤ C1t

[
ε+ Px

(
sup
s≤t
|Xs − x| > δ

)]
for some constant C1 = C1(r, x) <∞ which does not depend on t and P ∈ Px. In
exactly the same way it follows from the uniform continuity of f ′′, (3.2) and (3.1)
that

J2 ≤ C2t

[
ε+ Px

(
sup
s≤t
|Xs − x| > δ

)]
for some constant C2 = C2(r, x). In order to estimate J3 we note that

∆ :=
∣∣(f(Xs− + y)− f(Xs−)− f ′(Xs−)y

)
−
(
f(x+ y)− f(x)− f ′(x)y

)∣∣
=

∣∣∣∣y ∫ 1

0

(f ′(Xs− + ηy)− f ′(Xs−)) dη − y
∫ 1

0

(f ′(x+ ηy)− f ′(x)) dη

∣∣∣∣
= |y|2

∣∣∣∣∫ 1

0

∫ 1

0

ηf ′′(Xs− + κηy) dκ dη −
∫ 1

0

∫ 1

0

ηf ′′(x+ κηy) dκ dη

∣∣∣∣
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and therefore the uniform continuity (6.2) gives

∆ ≤ |y|2
(
ε1{|Xs−−x|≤δ} + 2‖f ′′‖∞1{|Xs−−x|>δ}

)
.

On the other hand, the uniform continuity of f entails that∣∣(f(Xs− + y)− f(Xs−)
)
−
(
f(x+ y)− f(x)

)∣∣
≤ |f(Xs− + y)− f(x+ y)|+ |f(Xs−)− f(x)|
≤ 2ε1{||Xs−−x|≤δ} + 4‖f‖∞1{|Xs−−x|>δ}.

Since the truncation function h is bounded, has bounded support and satisfies
h(y) = y in a neighborhood of 0, it follows from the above estimates that∣∣(f(Xs− + y)− f(Xs−)− f ′(Xs−)h(y)

)
−
(
f(x+ y)− f(x)− f ′(x)h(y)

)∣∣
≤ C3

(
1{|Xs−−x|≤δ}ε+ 1{|Xs−−x|>δ}‖f‖(2)

)
min{1, |y|2}

for some constant C3 > 0. Combining this with (3.1) we find that

J3 ≤ C3εEP

(∫
(0,t∧τxr )

∫
y 6=0

min{1, |y|2} νPs (dy) ds

)

+ C3‖f‖(2)EP

(
1{sups≤t |Xs−x|>δ}

∫
(0,t∧τxr )

∫
y 6=0

min{1, |y|2} νPs (dy) ds

)

≤ C ′3t sup
α∈I

sup
|z−x|≤r

∫
y 6=0

min{1, |y|2} να(z, dy)

(
ε+ P

[
sup
s≤t
|Xs − x| > δ

])
≤ C ′′3 t

(
ε+ Px

[
sup
s≤t
|Xs − x| > δ

])
for suitable absolute constants C ′3, C

′′
3 > 0. The maximal inequality, Proposi-

tion 5.1, shows that Px(sups≤t |Xs − x| > δ) = O(t) as t → 0, and therefore
we conclude that

lim
t→0

sup
P∈Px

1

t

∣∣∣∣∣EP
∫

(0,t∧τxr )

APs f(Xs−) ds− EP
∫

(0,t∧τxr )

APs f(x) ds

∣∣∣∣∣
≤ lim sup

t→0
sup
P∈Px

1

t
(J1(t,P) + J2(t,P) + J3(t,P)) ≤ (C1 + C2 + C ′′3 )ε

ε→0−−−→ 0.

It now follows from (6.3) that

lim
t→0

Exf(Xt∧τxr )− f(x)

t
= lim
t→0

sup
P∈Px

EPf(Xt∧τxr )− f(x)

t

= lim
t→0

sup
P∈Px

1

t
EP

(∫
(0,t∧τxr )

APs f(Xs−) ds

)

= lim
t→0

sup
P∈Px

1

t
EP

(∫
(0,t∧τxr )

APs f(x) ds

)
.

Step 2: Show that

lim
t→0

sup
P∈Px

1

t
EP

(∫
(0,t∧τxr )

APs f(x) ds

)
= sup

α∈I
Aαf(x). (6.4)
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Proof of (6.4): Fix P ∈ Px. Because of (3.1) we have

EP

∫
(0,t∧τxr )

APs f(x) ds

≤ sup
α∈I

EP

(∫
(0,t∧τxr )

bα(Xs)f
′(x) ds+

1

2

∫
(0,t∧τxr )

Qα(Xs)f
′′(x) ds

+

∫
(0,t∧τxr )

∫
y 6=0

(f(x+ y)− f(x)− f ′(x)h(y)) να(Xs, dy)

)
.

Using (A1), (C3) and (C4) we find that for any ε > 0 there exist constants δ > 0
and c1 > 0 such that

EP

∫
(0,t∧τxr )

APs f(x) ds ≤ sup
α∈I

EP

∫
(0,t∧τxr )

Aαf(x) ds+ tε

+ c1Mt‖f‖(2)P

(
sup
s≤t
|Xs − x| > δ

)
for

M = M(r, x) = sup
α∈I

sup
|z−x|≤r

(
|bα(z)|+ |Qα(z)|+

∫
y 6=0

min{1, |y|2} να(z, dy)

)
.

Applying the maximal inequality (5.2) and the dominated convergence theorem we
conclude that

lim sup
t→0

sup
P∈Px

1

t
EP

(∫
(0,t∧τxr )

APs f(x) ds

)
≤ sup

α∈I
Aαf(x) + ε

ε→0−−−→ sup
α∈I

Aαf(x).

(6.5)

On the other hand (C2) gives for any α ∈ I

sup
P∈Px

1

t
EP

(∫
(0,t∧τxr )

APs f(x) ds

)

≥ 1

t
EPα

(∫
(0,t∧τxr )

APαs f(x) ds

)

= EPα

(∫
(0,t∧τxr )

bα(Xs−)f ′(x) ds+
1

2

∫
(0,t∧τxr )

Qα(Xs−)f ′′(x) ds

+

∫
(0,t∧τxr )

∫
y 6=0

(f(x+ y)− f(x)− f ′(x)h(y)) να(Xs−, dy)

)
.

Invoking once more the uniform equicontinuity and the boundedness of the coeffi-
cients on compacts we can choose for any ε > 0 some constants δ > 0, c2 > 0 such
that

sup
P∈Px

1

t
EP

(∫
(0,t∧τxr )

APs f(x) ds

)
≥ EPα

∫
(0,t∧τxr )

Aαf(x) ds− tε

− c2Mt‖f‖(2)P
α

(
sup
s≤t
|Xs − x| > δ

)
,
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and the maximal inequality (5.2) gives

lim inf
t→0

sup
P∈Px

1

t
EP

(∫
(0,t∧τxr )

APs f(x) ds

)
≥ Aαf(x)− ε ε→0−−−→ Aαf(x).

As α ∈ I is arbitrary this proves that

lim inf
t→0

sup
P∈Px

1

t
EP

(∫
(0,t∧τxr )

APs f(x) ds

)
≥ sup

α∈I
Aαf(x). (6.6)

Combining (6.5) and (6.6) gives (6.4).
Step 3: Show that there exists cr = cr(x) > 0 such that cr → 0 as r →∞

and

sup
P∈Px

∣∣∣∣EPf(Xt)− EPf(Xt∧τxr )

t

∣∣∣∣ ≤ crt for all t ≥ 0, r > 0. (6.7)

Proof of (6.7): As f(Xt)− f(Xt∧τxr ) = 0 on {τxr ≥ t} we have

|EPf(Xt)− EPf(Xt∧τxr )| ≤ 2‖f‖∞P
(

sup
s≤t
|Xs − x| > r

)
.

Applying the maximal inequality we obtain that

|EPf(Xt)− EPf(Xt∧τxr )| ≤ crt

for

cr := 2‖f‖∞c sup
|z−x|≤r

sup
|ξ|≤r−1

sup
α∈I
|qα(z, ξ)|

where c > 0 is some absolute constant; by (A1), cr → 0 as r →∞.
Step 4: Conclusion. Using the elementary estimate

sup
P

aP − sup
P

|bP| ≤ sup
P

(aP + bP) ≤ sup
P

aP + sup
P

|bP|

and the fact that

Exf(Xt)− f(x)

t
− sup
α∈I

Aαf(x)

= sup
P∈Px

([
EPf(Xt∧τxr )− f(x)

t
− sup
α∈I

Aαf(x)

]
+
EPf(Xt)− EPf(Xt∧τxr )

t

)
it follows easily from Step 1-3 that

lim
t→0

Exf(Xt)− f(x)

t
= sup

α∈I
Aαf(x) for all x ∈ Rd;

this proves the assertion for the case that the family of Lévy triplets satisfies (A1). If
the family of Lévy triplets is uniformly bounded, i. e. if it satisfies (A2), we replace in
the above reasoning the stopped process (Xt∧τxr )t≥0 by the original process (Xt)t≥0;
formally this corresponds to setting r :=∞ (note that the sample paths of (Xt)t≥0

do not explode in finite time). In particular, Step 3 can be omitted since the
expression on the left-hand side of (6.7) equals zero. �

We are now ready to prove our main result, Theorem 3.3.
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Proof of Theorem 3.3: Let f ∈ H be a function such that u(t, x) := Ttf(x) depends
continuously on (t, x). If we denote by A the generator of the sublinear Markov
semigroup (Tt)t≥0, then we find by applying Theorem 3.2 that u is a viscosity
solution (in the sense of Definition 2.1) to the evolution equation

∂tu(t, x)−Axu(t, x) = 0 u(0, x) = f(x).

Since Lemma 6.1 shows that

Aϕ(x) = sup
α∈I

qα(x,D)ϕ(x)

for any ϕ ∈ C∞b (Rd), we conclude that u is a viscosity solution to

∂tu(t, x)− sup
α∈I

qα(x,D)u(t, x) = 0. �

Proof of Proposition 4.1: It was shown by Hollender (2016) that (Tt)t≥0 is a sub-
linear Markov semigroup on the space of bounded upper semi-analytic functions
and that (Tt)t≥0 is spatially homogeneous, i. e.

Ttf(x) = Exf(Xt) = E0f(x+Xt), t ≥ 0, x ∈ Rd

for any bounded upper semi-analytic function f . In order to show that (Tt)t≥0 is
a sublinear Markov semigroup on the spaces (ii)-(iv), it therefore suffices to prove
that the semigroup leaves each of the spaces invariant. The spatial homogeneity of
the semigroup gives

Ttf(x)− Ttf(y) = E0f(x+Xt)− E0f(y +Xt) ≤ E0
(
f(x+Xt)− f(y +Xt)

)
≤ E0|f(x+Xt)− f(y +Xt)|

where we have used for the first inequality the subaddivity of P0. Interchanging
the roles of x and y we obtain that

|Ttf(x)− Ttf(y)| ≤ E0|f(x+Xt)− f(y +Xt)|, (6.8)

and this shows that x 7→ Ttf(x) is Lipschitz continuous (resp. uniformly continuous)
if f is Lipschitz continuous (resp. Lipschitz continuous). Now assume additionally
that (4.3) holds; to finish the proof we have to show that Ttf is continuous for any
f ∈ Cb(Rd). Fix f ∈ Cb(Rd), ε > 0 and x, y ∈ B(0, k). It follows from (6.8) that

|Ttf(x)− Ttf(y)| ≤ sup
|u−v|≤|x−y|
u,v∈B(0,k+R)

|f(u)− f(v)|+ 2‖f‖∞P0

(
sup
s≤t
|Xs| > R

)
,

and therefore the maximal inequality (5.2) gives

|Ttf(x)− Ttf(y)| ≤ sup
|u−v|≤|x−y|
u,v∈B(0,k+R)

|f(u)− f(v)|+ ct‖f‖∞ sup
α∈I

sup
|ξ|≤R−1

|ψα(ξ)| (6.9)

for some absolute constant c > 0 and

ψα(ξ) = −ibα · ξ +
1

2
ξ ·Qαξ +

∫
y 6=0

(
1− eiy·ξ + iξ · h(y)

)
να(dy).

Because of the tightness condition (4.3), we can choose R > 0 sufficiently large
the second term on the right-hand side of (6.9) is smaller than ε, cf. Lemma A.2.
Since f is uniformly continuous on B(0, k+R) the first term on the right-hand side
of (6.9) is smaller than ε for |x − y| ≤ δ small, and this proves the continuity of
x 7→ Ttf(x). �
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Proof of Corollary 4.2: To prove that u(t, x) = Ttf(x) is a solution, we are going to
apply Theorem 3.3. The uniform boundedness condition (A2) holds by assumption
whereas (C3),(C4) are trivially satisfied. Condition (C1) follows from the Proposi-
tion 4.1, and (C2) is clearly satisfied since we can choose Pα ∈ Px such that the
canonical process (Xt)t≥0 is a (classical) Lévy process with characteristic exponent
ψα on the Skorohod space endowed with the probability meausre Pα. In order to
apply Theorem 3.3, we finally note that (t, x) 7→ Ttf(x) is continuous if (i) or (ii)
holds; this follows readily from Proposition 4.1 and Theorem 5.3.

If additionally the tightness condition (4.7) is satisfied, then Hollender (2016,
Corollary 2.34) shows that the solution is unique. �

Proof of Corollary 4.6: We are going to apply Theorem 3.3 to prove the assertion.
It was shown in Hollender (2016, Proposition 4.60) that

Ptf(x) = E0f(Zxt ) = sup
P∈P0

EPf(Zxt ), t ≥ 0, x ∈ Rd,

defines a sublinear Markov semigroup on the space of bounded upper semi-analytic

functions. Fix a Lipschitz continuous truncation function ĥ : Rk → Rk. For each
P ∈ P0 the process (Zxt )t≥0 is a P-semimartingale with differential characteristics

(bPs , Q
P
s , ν

P
s ) with respect to the truncation function ĥ satisfying

(bPs , Q
P
s , ν

P
s ) ∈

⋃
α∈I
{(b̂α(Zs), Q̂α(Zs), ν̂α(Zs))} λ(ds)× P-a.s.

for the uncertainty coefficients

b̂α(x) := σ(x) · bα −
∫
y 6=0

(
σ(x) · h(y)− ĥ(σ(x) · y)

)
να(dy)

Q̂α(x) := σ(x)Qασ(x)T

ν̂α(x,B) :=

∫
y 6=0

1B(σ(x) · y) να(dy),

see e. g. Jacod and Shiryaev (2003, Proposition 9.5.3); recall that h is the trunca-
tion function associated with the driving Lévy process for sublinear expectations.

Consequently, the push-forward P̂x := P0 ◦ (Zx)−1 satisfies

P̂x ⊆

{
P̂ ∈ Pac

sem(Dx); (bP̂s , Q
P̂
s , ν

P̂
s )(ω)∈

⋃
α∈I
{(b̂α, Q̂α, ν̂α)(ω(s))}λ(ds)×P̂(dω)-a.s.

}
which proves that condition (C1) of Theorem 3.3 is satisfied. If Pα ∈ P0 is such that
(Xt)t≥0 is a classical Lévy process with Lévy triplet (bα, Qα, να) with respect to Pα,

then the differential characteristics associated to the measure P̂α := Pα ◦ (Zx)−1 ∈
P̂x is given by

(bP̂αs , QP̂αs , νP̂αs )(ω) = (b̂α(ω(s)), Q̂α(ω(s)), ν̂α(ω(s)))

λ(ds) × P̂α(ω)-almost surely, and this gives (C2). The continuity assumptions
(C3) and (C4) are a consequence of the tightness condition (4.7) and the Lipschitz

continuity of σ and ĥ. Moreover, we clearly have

sup
α∈I

sup
x∈K

(
|b̂α(x)|+ |Q̂α(x)|+

∫
y 6=0

min{1, |y|2} ν̂α(x, dy)

)
<∞
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for any compact set K ⊆ Rk. The continuous negative definite function q̂α(x, ·)
associated with (b̂α(x), Q̂α(x), ν̂α(x, dy)) via the Lévy–Khintchine formula equals

q̂α(x, ξ) = ψα(σ(x)T ξ), α ∈ I, x, ξ ∈ Rk,
cf. Schilling and Schnurr (2010), and so the sublinear growth condition on σ entails
that

sup
α∈I

sup
|x|≤2r

sup
|ξ|≤r−1

|q̂α(x, ξ)| ≤ sup
α∈I

sup
|η|≤cr−ε

|ψα(η)|

for suitable constants c > 0 and ε ∈ (0, 1]. By the tightness and uniform bounded-
ness of the family (bα, Qα, να), α ∈ I, the right-hand side converges to 0 as r →∞,
see Lemma A.2 for details. Consequently, we have shown that condition (A1) holds.

Now let f ∈ Cb(Rk). In order to apply Theorem 3.3, it remains to prove that

(t, x) 7→ Ptf(x) = E0f(Zxt )

is continuous. To this end, we note that Theorem 5.3(ii) yields that t 7→ Ptf(x),
x ∈ K, is equi-continuous for any compact set K ⊆ Rk. On the other hand,
Hollender (2016, Proposition 4.61) shows that x 7→ Ptf(x) is continuous for each
fixed t ≥ 0. Combining both facts we conclude that (t, x) 7→ Ptf(x) is continuous.

An application of Theorem 3.3 now shows that u(t, x) = Ptf(x) is a viscosity
solution to (4.9). The uniqueness follows from Hollender (2016, Corollary 2.34). �

Proof of Corollary 4.8: We apply Theorem 3.3 for Px := {Px} and the family
of Lévy triplets (b(x), Q(x), ν(x, dy)). First of all, we note that by Schilling and
Schnurr (2010, Lemma 6.2) (see also Böttcher et al., 2013, Theorem 2.31)

sup
x∈K

(
|b(x)|+ |Q(x)|+

∫
y 6=0

min{1, |y|2} ν(x, dy)

)
<∞

for any compact set K ⊆ Rd. The assumptions of Corollary 4.8 are tailored in
such a way that one of the conditions (A1),(A2) is satisfied. Moreover, the (classi-
cal) Markov semigroup Ttf(x) = Exf(Xt) is clearly a sublinear Markov semigroup
on the Borel measurable bounded functions, and so (C4) holds for H := Bb(R

d).
Condition (C1) is automatically satisfied since the Feller process (Xt)t≥0 is a semi-
martingale with differential characteristics (b(Xs−), Q(Xs−), ν(Xs−, dy)). Applying
Theorem 3.3 we find that u(t, x) := Ttf(x) is a viscosity solution to (4.10) for any
f ∈ Bb(R

d) such that (t, x) 7→ u(t, x) is continuous. We consider the two cases
separately:

(i) f ∈ C∞(Rd) and q has bounded coefficients: The Feller property gives
that x 7→ Ttf(x) is continuous. On the other hand, Theorem 5.3(i) shows
that t 7→ Ttf(x) is continuous uniformly in x ∈ Rd. Therefore we infer
that (t, x) 7→ Ttf(x) is continuous for any f ∈ C∞(Rd), and combining
this with the first part of the proof this proves that u is a viscosity solution
to (4.10).

(ii) f ∈ Cb(Rd) and the uniform continuity condition (4.11) holds: Schilling
(1998a, Theorem 5.5), see also Kühn (2019+, Lemma 3.3), shows that
(Xt)t≥0 is conservative, i. e. Tt1 = 1 for any t ≥ 0. Since

Tt(C∞(Rd)) ⊆ C∞(Rd), Tt(1) ∈ Cb(Rd) =⇒ Tt(Cb(R
d)) ⊆ Cb(Rd),

cf. Schilling (1998a, Section 3) or Böttcher et al. (2013, Theorem 1.9), we
find that x 7→ Ttf(x) is continuous for all t ≥ 0. Moreover, Theorem 5.3(ii)
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gives that t 7→ Ttf(x) is continuous uniformly in x ∈ K for any compact
set K ⊆ Rd. Consequently, we obtain that (t, x) 7→ Ttf(x) is continuous,
and by the first part of the proof u(t, x) = Ttf(x) is a viscosity solution to
(4.10). �

Appendix A.

Lemma A.1 (Dynkin formula). Let (Xt)t≥0 be an (Ft)t≥0-adapted càdlàg semi-
martingale on a (classical) probability space (Ω,A,P) started at X0 = x ∈ Rd.
Assume that (Xt)t≥0 has differential characteristics (bs, Qs, νs) satisfying

(bs, Qs, νs)(ω) ∈
⋃
α∈I
{(bα, Qα, να)(Xs(ω))} λ(ds)× P(ω)-a.s. (A.1)

for a family of Lévy triplets (bα(z), Qα(z), να(z)), α ∈ I, z ∈ Rd.

(i) If

Kn := sup
α∈I

sup
|z−x|≤n

(
|bα(z)|+ |Qα(z)|+

∫
y 6=0

min{1, |y|2} να(z, dy)

)
<∞

for all n ∈ N, then

Ef(Xt∧τr )− f(x) = E

(∫
(0,t∧τr)

Asf(Xs−) ds

)
for any r > 0 and f ∈ C2

b (Rd); here τr denotes the first exit time from

B(x, r) and

Asf(z) := bs ·∇f(z) +
1

2
tr(Qs∇2f(z)) +

∫
y 6=0

(
f(z + y)−f(z)−∇f(z) · h(y)

)
νs(dy).

(ii) If K := supn∈NKn <∞, then

Ef(Xt)− f(x) = E

(∫
(0,t)

Asf(Xs−) ds

)
for any t ≥ 0 and f ∈ C2

b (Rd).

Proof : First of all, we note that we may replace Ft by the augmented filtration
FPt ; this follows from the fact that (Xt,F

P
t ) is a semimartingale (on the completed

probability space) which has almost surely the same characteristics as (Xt,Ft)t≥0,
cf. Neufeld and Nutz (2014, Proposition 2.2). Since the first exit time τr is an
FPt -stopping time, this allows us to use standard stopping techniques. By Jacod
and Shiryaev (2003, Theorem II.2.34), the semimartingale (Xt)t≥0 has a canonical
representation of the form

Xt =

∫ t

0

bs ds+Xc
t +Xd

t +

∫ t

0

∫
(y − h(y))µX(dy, ds)

where (Xc
t )t≥0 is the continuous local martingale part of (Xt)t≥0, νs(dy) ds is the

compensator of the jump measure µX(dy, ds) and

Xd
t =

∫ t

0

∫
h(y) (µX(dy, ds)− νs(dy) ds)
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is the purely discontinuous local martingale part. An application of Itô’s formula
for semimartingales, see e. g. Jacod and Shiryaev (2003, Theorem II.2.42), shows
that

f(Xt)− f(X0)−
∫ t

0

Asf(Xs−) ds = M c
t +Md

t

where

M c
t :=

∫ t

0

∇f(Xs−) dXc,P
s

Md
t :=

∫ t

0

∫ (
f(Xs− + h(y))− f(Xs−)

)
(µX(ds, dy)− νs(dy) ds)

are local martingales. By (A.1) the quadratic variation of the stopped processes
(M c

t∧τr )t≥0 and (Md
t∧τr )t≥0 satisfy

E[M c
τr ]t ≤ t‖∇f‖

2
∞ sup
α∈I

sup
|z−x|≤r

|Qα(z)|2

E[M c
τr ]t ≤ Ct‖f‖(2) sup

α∈I
sup
|z−x|≤r

∫
y 6=0

min{1, |y|2} να(z, dy)

for a suitable constant C > 0. If the constant Kn, defined in (i), is finite for each
n ∈ N, then the expressions on the right-hand side are finite, and Protter (2005,
Corollary II.6.3) gives that (M c

t∧τr )t≥0 and (Md
t∧τr )t≥0 are martingales which proves

(i). For (ii) we can use a very similar reasoning (formally we can set r :=∞). �

Lemma A.2. Let ψα : Rd → C, α ∈ I, be a family of continuous negative defi-
nite functions with characteristics (bα, Qα, να), α ∈ I, with respect to a truncation
function h. If the family (bα, Qα, να) is uniformly bounded, i. e.

sup
α∈I

(
|bα|+ |Qα|+

∫
y 6=0

min{1, |y|2} να(dy)

)
<∞,

and satisfies the tightness condition

lim
R→∞

sup
α∈I

∫
|y|>R

να(dy) = 0,

then

lim
r→0

sup
α∈I

sup
|ξ|≤r

|ψα(ξ)| = 0.

For the particular case I = Rd the result follows from Schilling (1998a, Proof
of Theorem 4.4); since the proof does not rely on the topological structure of the
Euclidean space, we may replace Rd by an arbitrary index set I.
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T. G. Kurtz. Equivalence of stochastic equations and martingale problems. In Sto-
chastic analysis 2010, pages 113–130. Springer, Heidelberg (2011). MR2789081.

A. Neufeld and M. Nutz. Measurability of semimartingale characteristics with
respect to the probability law. Stochastic Process. Appl. 124 (11), 3819–3845
(2014). MR3249357.
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