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Abstract. This article studies the dynamics of a nonlinear dissipative reaction-
diffusion equation with well-separated stable states which is perturbed by infinite-
dimensional multiplicative Lévy noise with a regularly varying component at inten-
sity ε > 0. The main results establish the precise asymptotics of the first exit times
and locus of the solution Xε from the domain of attraction of a deterministic stable
state, in the limit as ε → 0. In contrast to the exponential growth for respective
Gaussian perturbations the exit times grow essentially as a power function of the
noise intensity as ε → 0 with the exponent given as the tail index −α, α > 0,
of the Lévy measure, analogously to the case of additive noise in Debussche et al.
(2013). In this article we substantially improve their quadratic estimate of the small
jump dynamics and derive a new exponential estimate of the stochastic convolu-
tion for stochastic Lévy integrals with bounded jumps based on the recent pathwise
Burkholder-Davis-Gundy inequality by Siorpaes (2018). This allows to cover per-
turbations with general tail index α > 0, multiplicative noise and perturbations of
the linear heat equation. In addition, our convergence results are probabilistically
strongest possible. Finally, we infer the metastable convergence of the process on
the common time scale t/εα to a Markov chain switching between the stable states
of the deterministic dynamical system.
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1. Introduction

This article solves the asymptotic first exit problem from the domain of attraction
of a stable state in a generic class of scalar dissipative reaction-diffusion equations
subject to small multiplicative regularly varying Lévy noise, such as small multi-
plicative α-stable noise. More precisely, the asymptotic first exit time and locus,
as the noise intensity ε tends to 0, are determined completely.

The first exit problem of a randomly perturbed dynamical system from the
domain of attraction of a stable fixed point in the limit of small noise intensity has
a long history in finite dimensions for Gaussian perturbations going back to the
works of Cramér and Lundberg and giving rise to the edifice of large deviations
theory and the associated Freidlin-Wentzel theory. We refer the reader to the
classical works Kramers (1940); Freidlin and Wentzell (1970); Day (1983, 1996);
Deuschel and Stroock (1989); Freidlin and Wentzell (1998); Dembo and Zeitouni
(1998); Berglund and Gentz (2004); Bovier et al. (2004) and the references therein.
In infinite dimensions this problem was studied for the infinite dimensional Wiener
processes for instance in Faris and Jona-Lasinio (1982); Freidlin (1988); Brassesco
(1991, 1996); Berglund and Gentz (2013). It is a characteristic feature of small
Gaussian perturbations that the first exit times grow exponentially as a function
of the inverse of the noise intensity, with the prefactor in the exponent given as the
solution of an optimization problem. The convergence of the suitably renormalized
process to a Markov chain Kipnis and Newman (1985); Galves et al. (1987) and its
connection between the metastability and the spectrum of the diffusion generator
are treated in Kolokol’tsov and Makarov (1996); Kolokol’tsov (2000); Bovier et al.
(2005, 2004); Berglund and Gentz (2010). In the context of regularly varying Lévy
jump noise perturbations, however, the perturbed process exhibits heavy tails and
therefore lacks the necessary exponential moments for a large deviations principle
(cf. Sato, 1999; Applebaum, 2009).

The first exit problem for dynamical systems perturbed by small α-stable or
more generally regularly varying Lévy perturbations was addressed in different
settings in a series of works. After the early work of Godovan’čuk (1981) on a
large deviations principle in Skorohod space the first exit times problem is solved
in one dimension for additive α-stable noise in Imkeller and Pavlyukevich (2006).
The authors introduced the following purely probabilistic proof technique also used
and extended in this article, which we sketch briefly:

Given an α-stable noise perturbation εdL the first step is the choice of an ε-
dependent jump size threshold ρε, which decomposes the driving noise into the
sum εdξε + εdηε, ξε being an infinite intensity process with jumps bounded from
above by the threshold ρε and thus exhibiting exponential moments and ηε the
compound Poisson process of jumps bounded from below by the threshold. As-
suming that ερε tends to 0 as ε tends to 0 and taking into account that ξε has
exponential moments, it does not come as a surprise that up to the first large com-
pound Poisson jump of ηε, the process εξε is very small. Hence the resulting flow
decomposition of the strong Markov solution Xε yields that up to the first jump of
εηε, the process Xε remains close to the deterministic solution with overwhelming
probability. Therefore in the vast majority of cases it cannot cause the exit from the
domain of attraction. Due to the Morse-Smale property and the choice of the noise
decomposition the convergence of the deterministic solution to a small ball centered
in the stable state is faster than the first large jump time. As a consequence, the
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first large compound Poisson jump starts from close to the stable state and yields
an exit probability of the first large jump in terms of the tail of the Lévy measure.
The strong Markov property propagates this exit scenario to all independent wait-
ing time intervals between the large jumps. The exit is hence caused with very high
probability by the first successful attempt of a large jump to exit. The resulting
geometric exit structure of the exit times happens at a rate given by the tail decay
of the Lévy measure governing the large jumps which in the case of regular vari-
ation is of polynomial order. In Pavlyukevich (2011) the author shows this result
for gradient systems in any finite dimension and multiplicative noise; in particu-
lar, he derives an exponential estimate for small deviations from the deterministic
system. He obtains exponential estimates for the small noise components, however
his treatment of the small jump component depends on the dimension of the driv-
ing noise and is not suitable in infinite dimensions. In Högele and Pavlyukevich
(2014) the results are generalized to the non-gradient case in finite dimensions, in
addition the convergence in law of the first exit locus is proved. The well-posedness
of reaction-diffusion equations in infinite dimensions in a generic setting is estab-
lished in Peszat and Zabczyk (2007); Marinelli et al. (2010); Marinelli and Röckner
(2010a,b); Brzeźniak et al. (2018). In the infinite dimensional situation summarized
in Debussche et al. (2011) and explained in detail in Debussche et al. (2013) the
authors consider the first exit times of the Chafee-Infante equation perturbed by
small additive regularly varying noise. Their treatment of the small noise dynamics
remains elementary with quadratic deviation estimates and precisely for this reason
only allows for tail indices −α for 0 < α < 2 there.

This article provides a substantial extension of these results in several direc-
tions. We extend the scope of the deterministic forcing of Debussche et al. (2013)
to a general class of weakly dissipative non-linear reaction terms over an interval
with Dirichlet boundary conditions for which the system retains the Morse-Smale
property of the deterministic system. The most important cases covered here are
dissipative polynomials of odd order, such as for the Chafee-Infante equation, and
the linear heat equation. Our results are stated for the Laplace operator with
Dirichlet conditions on the Sobolev space H1

0 over the standard interval [0, 1]. We
expect the results to hold true for any unbounded operator with negative point
spectrum A which generates a generalized contracting analytic semigroup. How-
ever, we use the Morse-Smale property of the deterministic dynamical system in H1

0

as well as the smoothness of the separating manifold of the domains of attractions,
and to our knowledge these results are not readily available in the literature for
general spaces D(A

1
2 ).

The generalizations of the type of stochastic perturbations are twofold. In the
first place we study multiplicative noise coefficients as opposed to Debussche et al.
(2013). They are the original motivation of this article and make it necessary to
consider the first exit problem localized on large balls. Consequently we get rid
of the rather strong point dissipativity of the deterministic dynamical system, and
also treat the important new example of the linear heat equation subject to additive
and multiplicative α-stable noise.

Secondly, we lift the rather strong restriction of a tail index 0 < α < 2 in
Debussche et al. (2013) with the help of an exponential estimate of the stochas-
tic convolution for multiplicative Poisson random integrals with bounded jumps.
It combines the recent pathwise estimate of the stochastic convolution in Salavati
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and Zangeneh (2016) and the pathwise Burkholder-Davis-Gundy inequality in Sior-
paes (2018). Since multiplicative noise necessarily leads to working with stopped
processes, the non-pathwise estimates of the stochastic convolution available until
then were rather difficult to implement. With these new powerful tools at hand
an almost sure estimate in the exponent of an exponential moment yields a lift of
the right side of the Burkholder-Davis-Gundy inequality to the exponent, which is
estimated with the help of a Campbell type formula for the Laplace-transform of
Poisson random integrals. Our estimates are rather direct and avoid the adaption
of the technically charged large deviation theory introduced by Budhiraja and col-
laborators; see for instance Budhiraja et al. (2013); Budhiraja and Nyquist (2015);
Budhiraja et al. (2016). In comparison to those works we construct explicitly (on
the same probability space as the driving noise) a completely understood model of
the first exit times and locus respectively to which the original objects converge.
Our convergence results are optimal in a probabilistic sense, in that we obtain ex-
ponential convergence up to all exponents strictly less than 1, while the limiting
object does not have exponential moments of order 1. The same applies to the con-
vergence of the first exit locus, which is essentially a geometric mixing of deformed
large jump increments of the noise. Those increments with tail index −α, α > 0,
have moments of order 0 < p < α and we show convergence in any such Lp-sense
towards the limiting object. Finally we infer metastability in the sense of Imkeller
and Pavlyukevich (2008) and Högele and Pavlyukevich (2015) as a corollary.

The article is organized as follows. In Section 2 we present the general setup,
the specific hypotheses, the main results and examples. The proof relies on the
mentioned ε-dependent distinction of large and small jump perturbations. In Sec-
tion 3 we prove an exponential error probability estimate on the smallness of the
stochastic convolution between large jumps and its pushforward to the nonlinear
equation. In Section 4 we use the preceding result which yields an asymptotic com-
pound Poisson noise structure that essentially contains only large jumps. With the
help of the strong Markov property and tailor-made event estimates we identify
the asymptotic first exit mechanism of the solution of the fully perturbed nonlinear
equation.

2. The object of study and the main result

Notation: For J = (0, 1) we consider the Sobolev space H := H1
0 (J) equipped with

the inner product 〈〈x, y〉〉 = 〈∇x,∇y〉 for x, y ∈ H and the norm ‖x‖ = 〈〈x, x〉〉 12 ,
where 〈·, ·〉 is the inner product in L2(J) with |x| = 〈x, x〉 12 . Let C0(J̄) be the
space of continuous functions x : J̄ → R with x(0) = x(1) = 0 equipped with the
supremum norm | · |∞. Since |x| 6 |x|∞ 6 ‖x‖ for x ∈ H we have the embeddings
H ↪→ C0(J̄) ↪→ L2(J), in particular, |x| 6 Λ0‖x‖ for all x ∈ H and the Sobolev
constant Λ0 > 0.

2.1. The underlying deterministic dynamics.

The unperturbed PDE . The object of study is the effect of random perturbations
of the deterministic dynamical system given for any t > 0 as the solution map
x 7→ u(t;x) of the following nonlinear reaction-diffusion equation over the interval
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J with Dirichlet boundary conditions. We consider
∂

∂t
u(t, ζ) = ∆u(t, ζ) + f(u(t, ζ))

with u(t, 0) = u(t, 1) = 0 and u(0, ζ;x) = x(ζ),
(2.1)

for t > 0, x ∈ H and ζ ∈ J , where the non-linearity f ∈ C2(R,R) satisfies the
growth condition

lim sup
|r|→∞

f ′(r) < Λ0. (2.2)

This equation has unique and well-posed weak and mild solutions in L2(J) and H
(cf. Temam, 1997; Debussche et al., 2013). The solutions are most regular for any
t > 0 and x ∈ L2(J), that is, u(t;x) ∈ C∞(J) ∩ C0(J̄).

Remark 2.1. In case of f(r) =
∑2n−1
j=0 bjr

j with b2n−1 < 0 for n ∈ N it is well-known
in the literature Rocha (1988); Henry (1985); Hale (1997) that for a generic choice
of (b0, . . . , bn) ∈ Rn+1, that is, up to a nowhere dense set, the dynamical system
generated by (2.1) is of Morse-Smale type. In other words, there is a finite number
of fixed points, all of which are hyperbolic and whose stable and unstable manifold
intersect transversally. The paradigmatic example of the Chafee-Infante equation
is studied in Chafee and Infante (1974/75); Henry (1985) where f(r) = −a(r3 − r),
r ∈ R, whenever a > π2 and a 6= (πn)2, n ∈ N. Since all finitely many equilibria are
elements of H ⊆ L∞(J), the Morse-Smale property only involves f on a bounded
set. On bounded sets a general function f ∈ C2(R,R) is approximated in C2-norm
by polynomials and the generic Morse-Smale property is inherited by f .

The deterministic dynamics: It is well-known that the solution of equation (2.1) has
the nonnegative potential function V(x) =

∫
J

(
(∇x(ζ))2 + F (x(ζ))

)
dζ on H where

F (r) =
∫ r
r0
f(s)ds for some r0. Therefore, equation (2.1) reads as the gradient

system
∂

∂t
u(t, ζ) = −(DV)(u(t, ζ)) with u(0, ζ;x) = x(ζ) for x ∈ H.

The level sets of V are bounded in H and positive invariant under the system (2.1).
For r > 0 set

Ur := {x ∈ H | V(x) 6 d∗(r)},
d∗(r) := inf{s > 0 | Br(0) ⊆ V−1[0, s]} and d(r) := sup

x∈Ur
‖x‖. (2.3)

As a consequence, V serves as a Lyapunov function and yields the following result
(cf. Henry, 1981; Hale, 1997).

Proposition 2.2. Denote by P ⊆ H the set of fixed points of (2.1). Then we have
0 < |P| <∞ and for any x ∈ H there exists a stationary state φ ∈ P of the system
(2.1) such that limt→∞ u(t;x) = φ.

For φ ∈ P we define the domain of attraction D(φ) := {x ∈ H| limt→∞ u(t;x) = φ}.
The set of stable states is the subset P− of all φ ∈ P such that D(φ) contains an
open ball in H. For φι ∈ P−, 1 6 ι 6 |P−|, we denote its domain of attraction
Dι = D(φι) and the separating manifold between them by S := H \

⋃
ιDι. For a

generic choice of coefficients the Morse-Smale property implies that S is a closed
C1-manifold without boundary in H of codimension 1 separating all elements of
(Dι)φι∈P− and containing all unstable fixed points P \ P− (cf. Raugel, 2002).
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Reduced domains of attraction: Note that f : H → H is locally Lipschitz continu-
ous. For any subset Dι ⊆ Dι with C1 boundary, such that ∆+f on ∂Dι is uniformly
inward pointing we have

κ1 := inf
v∈∂Dι∩C30(I)

〈〈nι(v),
∆v + f(v)

‖∆v + f(v)‖
〉〉 > 0, (2.4)

where nι(v) is the normalized inner normal at the foot point v ∈ ∂Dι and the space
C3

0(I) = C3(I) ∩ C0(Ī). In the sequel we define the following nested reduced domains
of attraction of Dι in order to formulate the nondegenericity of the noise perturba-
tions in Hypothesis (S.4) below. Fix a radius R0 > 0 such that P ⊆ BR0/2(0) and
UR0 ∩ ∂Dι 6= ∅ for all φι ∈ P−. We define for δi > 0, i = 1, . . . , 3, R > R0 and G
the function appearing in (2.9) below the following reductions of Dι:

Dι
1(R) := Dι ∩ UR,

Dι
2(δ1,R) := {x ∈ Dι

1(R) | Bδ1(x) ⊆ Dι
1(R) },

Dι
3(δ1, δ2,R) := {x ∈ Dι

2(δ1,R) |
⋂

v∈Bδ2 (x)

{v +G(v, z)} ⊆ Dι
2(δ1,R) }.

(2.5)

For convenience we set Dι
3(δ1,R) := Dι

3(δ1, δ1,R). The reduced domains of attrac-
tion are nested by construction and Dι =

⋃
R>R0,δ∈(0,1]D

ι
3(δ,R) (cf. Debussche

et al., 2011). For any R > 0 and δ ∈ (0, δ0], δ0 ∈ (0, 1] sufficiently small, the
reduced domains of attraction Dι

3(δ,R) (and Dι
2(δ,R)) are positive invariant under

the dynamical system (2.1) due to the uniformly inward pointing property of f on
∂Dι.

Proposition 2.3. For any choice of f such that (2.1) is Morse-Smale, Dι ⊆ Dι
with ∂Dι ∈ C1 satisfying (2.4) and R > R0 there exists a constant κ0 > 0 which
satisfies the following. For any function γ· : (0, 1]→ (0, 1) with limε→0 γε = 0 there
is a constant ε0 ∈ (0, 1] such that for each ε ∈ (0, ε0] the conditions t > κ0| ln(γε)|
and x ∈ Dι

1(R) imply ‖u(t;x) − φι‖ < 1
4γε. In addition, (2.1) is Morse-Smale if

and only if the equilibrium points are hyperbolic.

This result is based on the existence of a Lyapunov function, the uniform inward
pointing property of f on ∂Dι, and the hyperbolicity of the fixed points. In De-
bussche et al. (2011) it is shown for a stronger form of approximation for the
Chafee-Infante equation. Its generalization is straightforward. The second part of
the statement is given by Theorem 2.2.1 in Hale (1997) and the references therein.

2.2. The stochastic reaction-diffusion equation.

The Lévy driver: Given a filtered probability space Ω = (Ω,A,P, (Ft)t>0) satis-
fying the usual conditions in the sense of Protter (2004), let L = (L(t))t>0 be a
càdlàg version of a Lévy process in (H,B(H)). We denote by M0(H) the class
of Radon measures ν on B(H) satisfying ν(A) < ∞ for A ∈ B(H) with 0 /∈ Ā.
The Lévy-Chinchine representation establishes a unique Lévy triplet (h,Q, ν) with
h ∈ H, a positive trace-class operator Q ∈ L+

1 (H) and ν ∈ M0(H) satisfying
ν({0}) = 0 and

∫
H

(1 ∧ ‖y‖2)ν(dy) < ∞ such that the characteristic function
φL(t)(u) := E

[
exp(i〈〈u, L(t)〉〉)

]
has the exponent

t
(
i〈〈h, u〉〉− 1

2
〈〈Qu, u〉〉+

∫
H

(
ei〈〈u,z〉〉−1−i〈〈z, u〉〉1{‖z‖ 6 1}

)
ν(dz)

)
, u ∈ H, t > 0.
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By the Lévy-Itō representation of L there exist a Q-Wiener process (BQ(t))t>0 and
a Poisson random measure N on Ω with intensity measure dt⊗ν(dz) on [0,∞)×H
such that P-a.s.

L(t) = ht+BQ(t) +

∫ t

0

∫
‖z‖61

zÑ(dsdz) +

∫ t

0

∫
‖z‖>1

zN(dsdz) (2.6)

for all t > 0, where Ñ([a, b)×A) := N([a, b)×A)−(b−a)ν(A) for a 6 b, A ∈ B(H),
0 /∈ Ā is the compensated Poisson random measure of N . For a comprehensive ac-
count of Lévy processes in Hilbert spaces with refer to Peszat and Zabczyk (2007).
In this study we set h = 0 and BQ = 0, since their exit contributions are asymp-
totically insignificant compared to the pure jump part, if ν 6= 0.

The multiplicative nonlinearity is given as a map G : H×H → H which satisfies
the following standard boundedness and Lipschitz conditions. There are constants
K1,K2 > 0 such that∫

B1(0)

‖G(x, z)‖2ν(dz) 6 K1(1 + ‖x‖2) for all x ∈ H, (2.7)

‖G(x1, z)−G(x2, z)‖ 6 K2‖x1 − x2‖ for all x1, x2, z ∈ H. (2.8)

The perturbed equation: We consider the formal stochastic reaction-diffusion equa-
tion for t > 0, x ∈ H, ζ ∈ J and ε ∈ (0, 1]

dXε(t, ζ) =
(
∆Xε(t, ζ) + f(Xε(t, ζ))

)
dt+G(Xε(t−, ζ), εdL(t, ζ))

with Xε(t, 0) = Xε(t, 1) = 0 and Xε(0, ζ) = x(ζ),
(2.9)

where

G(Xε(t, ζ), εdL(t, ζ)) =

=

∫
|z|61

G(Xε(t−, ζ), εz(ζ))Ñ(dtdz) +

∫
|z|>1

G(Xε(t−, ζ), εz(ζ))N(dtdz).

Proposition 2.4. Assume the setting of Subsection 2.1, in particular, the growth
rate (2.2) for f ∈ C2(R,R) and the conditions (2.7) and (2.8) of G. Then for
any mean zero càdlàg L2(P;H)-martingale ξ = (ξ(t))t>0 on Ω, T > 0, and initial
value x ∈ H, equation (2.9) driven by εdξ instead of εdL has a unique càdlàg mild
solution (Xε(t;x))t∈[0,T ]. The transition kernels of the solution process Xε induce
a homogeneous Markov family satisfying the Feller property and hence the strong
Markov property.

The proof relies on the local Lipschitz continuity and the dissipativity of f : H → H.
A proof for dissipative polynomials f is given in Peszat and Zabczyk (2007), Chapter
10, and for the Chafee-Infante equation in Debussche et al. (2013) and can be
extended to our situation straightforwardly. By interlacing of large jumps, this
notion of solution is extended to the heavy-tailed process L, as carried out in
Peszat and Zabczyk (2007), Subsec. 9.7, pp.170.

Corollary 2.5. For x ∈ H and ε > 0 equation (2.9) has a unique global càdlàg
mild solution (Xε(t;x))t>0 which satisfies the strong Markov property.
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2.3. The specific hypotheses and the main results.

We fix the standing assumptions of Subsection 2.1 and 2.2 and impose the following
additional conditions.
Hypotheses:

(D.1) The function f is generic in the sense that the solution flow of (2.1) defines
a Morse-Smale system. In addition, we assume 2 6 |P−| <∞.

(D.2) The function f satisfies the eventual monotonicity condition (2.2).

(D.3) We fix a subset Dι ⊆ Dι with C1-boundary such that the operator ∆ + f is
uniformly inward pointing on ∂Dι in the sense of (2.4).

(S.1) There is a globally Lipschitz continuous function G1 : H → [0,∞) such that

‖G(y, z)‖ 6 G1(y)‖z‖, y, z ∈ H.

(S.2) The Lévy measure ν ∈ M0(H) of L is regularly varying with index −α,
α > 0, and limit measure µ ∈M0(H).

For a definition of regular variation see for example Def 3.44 in Debussche et al.
(2013). By Bingham et al. (1987) and Hult and Lindskog (2006) Hypothesis (S.2)
is equivalent to the existence of measurable functions h, ` : (0,∞) → (0,∞) such
that

lim
r→∞

ν(rU)

h(r)µ(U)
= 1 for any U ∈ B(H) with 0 /∈ Ū ,

where h(r) = r−α`(r) and ` is a slowly varying function. In other words, we have
limr→∞ `(ar)/`(r) = 1 for any a > 0. We define the set of increment vectors z ∈ H
sending x ∈ H to the set U ∈ B(H) as

J U (x) := {z ∈ H | x+G(x, z) ∈ U}, x ∈ H.

For any φι ∈ P− we denote the measure mι(U) := µ(J U (φι)), U ∈ B(H) with
0 /∈ Ū , and the scale hε := h( 1

ε ) for ε ∈ (0, 1].

(S.3) For all φι ∈ P− and R > R0 we have mι((Dι ∩ UR)c) > 0.

(S.4) For Dι in (D.3) and all η > 0 there are δ > 0 and R > R0 such that
mι(Dι \Dι

3(δ,R)) < η.

Hypothesis (S.3) states that asymptotically there is some non-vanishing mass for
large jumps to exit, while (S.4) codes the nondegeneracity of the limiting Lévy
measure on the boundary ∂Dι, in order to allow for the approximations of Dι by
Dι

3(δ,R) in terms of mι.

(S.5) For any η > 0 and ι there are sets Dι ⊆ Dι satisfying (D.3) as well as δ > 0
and R > R0 > 0 such that

mι(H \
⋃
ι

Dι
3(δ,R)) < η.

Hypothesis (S.5) is a uniform version of (S.4) for all domains of attraction Dι.
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The first exit time result: For γ, ε ∈ (0, 1], R > R0, x ∈ Dι
2(εγ ,R) and the

càdlàg mild solution (Xε(t;x))t>0 of (2.9) we define the first exit time from the
reduced domain of Dι

τ ιx(ε,R) := inf{t > 0 | Xε(t;x) /∈ Dι
2(εγ ,R)}.

We define the characteristic exit rate λιε of system (2.9) from Dι by

λιε := ν
(1

ε
J (Dι)c(φι)

)
, ε ∈ (0, 1]. (2.10)

Then (S.2) implies λιε
hε

=
λιε

εα`( 1
ε )

ε→0+−→ mι((Dι)c). Our asymptotic exit time result
reads as follows.

Theorem 2.6. Let Hypotheses (D.1)-(D.3) and (S.1)-(S.4) be satisfied for some ι.
Then there is an EXP(1)-distributed family of random variables (sι(ε))ε∈(0,1] on
Ω satisfying the following. For any c > 0 and θ ∈ (0, 1) there are R > R0 and
ε0, γ ∈ (0, 1] such that ε ∈ (0, ε0] implies

sup
x∈Dι2(εγ ,R)

E
[
eθ|λ

ι
ετ
ι
x(ε,R)−sι(ε)|

]
6 1 + c.

Therefore, we have the convergence of all moments

lim
ε→0

E[|λιετ ιx(ε,R)|n] ∈ [n!− c, n! + c]

uniformly in Dι
2(εγ ,R) and the following polynomial behavior

sup
x∈Dι2(εγ ,R)

E
[
τ ιx(ε,R)

]
∈ [

1− c
λιε

,
1 + c

λιε
] ⊆ [

1− 2c

εα`( 1
ε )mι((Dι)c)

,
1 + 2c

εα`( 1
ε )mι((Dι)c)

],

where the supremum can be changed to the infimum.

In terms of Brassesco (1996) the memorylessness of sι(ε) describes the “unpre-
dictability” of the exit times, however, with a “polynomial” loss of memory as op-
posed to a “exponential” loss of memory in the case of Gaussian perturbations.

The first exit locus result: For the statement of the main result about the exit
locus we write ∆tL := L(t)−L(t−), t > 0 for L given by (2.6). For some ρ ∈ (0, 1)
and ε ∈ (0, 1] we define large jump arrival times of L by

T0(ε) := 0, Tk(ε) := inf
{
t > Tk−1(ε)

∣∣ ‖∆tL‖ > ε−ρ
}
, k > 1, (2.11)

and large jump increments by Wk(ε) := ∆Tk(ε)L, k ∈ N. The family (Wk(ε))k∈N is
i.i.d. with

P(εWk(ε) ∈ U) =
ν(U ∩Bc

ε−ρ(0))

βε
, U ∈ B(H),

where βε := ν(Bc
ε−ρ(0)) satisfies

βε
εαρ`(ε−ρ)

ε→0+−→ µ(Bc
1(0)).

We drop the ε-argument of Tk and Wk. The asymptotic exit locus result theorem
reads as follows.

Theorem 2.7. Let Hypotheses (D.1)-(D.3) and (S.1)-(S.4) be satisfied for some ι.
Then there is a family of random variables (Kι(ε))ε∈(0,1] on Ω with Kι(ε) being
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GEO(λιε/βε) distributed and satisfying the following. For any c > 0 and 0 < p < α
there are R > R0 and γ, ρ, ε0 ∈ (0, 1] such that ε ∈ (0, ε0] implies

sup
x∈Dι2(εγ ,R)

E
[∥∥Xε(τ ιx(ε,R);x)− (φι +G(φι, εWKι(ε)))

∥∥p] 6 c.
For any c > 0 there are R > R0 and γ, ρ ∈ (0, 1] such that for any U ∈ B(H) with
mι(U) > 0 and mι(∂U) = 0 there is ε0 ∈ (0, 1] such that ε ∈ (0, ε0] yields

sup
x∈Dι2(εγ ,R)

∣∣∣P(Xε(τ ιx(ε,R);x) ∈ U)− mι(U ∩ (Dι)c)

mι((Dι)c)

∣∣∣ 6 c.
The metastability result: Under Hypothesis (S.5) we have a good approxima-
tion of Dι by sets Dι

3(δ,R) with inward pointing ∆+f at its boundary in the sense
of (2.4). Hence the exit rate ε 7→ λιε ≈ε εα`(1/ε)mι((Dι)c) asymptotically depends
on ι only by a prefactor and the process Xε converges on the common (polynomial)
time scale t/(εα`(1/ε)) to a continuous time Markov chain whose transition prob-
abilities from Dι to Dκ only depend on the values (mι(Dκ)), 1 6 κ 6 |P−|, κ 6= ι.
This behavior is typical for regularly varying Lévy noises such as α-stable noise
Imkeller and Pavlyukevich (2008); Debussche et al. (2013); Högele and Pavlyuke-
vich (2015) and differs strongly from the Gaussian case (see in particular Galves
et al., 1987). In the introduction of Högele and Pavlyukevich (2015) it is explained
in detail how this behavior corresponds to the degenerate Gaussian case where the
time scales are comparable which occurs if and only if the potential barriers are all
of exactly the same height. The asymptotic metastability result reads as follows.

Corollary 2.8. Let Hypotheses (D.1)-(D.3), (S.1)-(S.3) and (S.5) be satisfied.
Then there exists a continuous time Markov chain M = (Mt)t>0 with values in P−
and infinitesimal generator G for p = |P−| given as the matrix

G =

−m
1
((
D1
)c)

m1
(
D2
)

. . . m1(Dp)
...

...
mp
(
D1
)

. . . mκ(Dκ−1) −mp
(
(Dp)

c)
 , (2.12)

and a constant γ > 0 such that for any R > R0, T > 0 and x ∈ Dι
2(γ,R),

1 6 ι 6 |P−|, we have (Xε( t
εα`(1/ε) ;x))t∈[0,T ]

d−→ (Mt)t∈[0,T ] in the sense of
convergence of finite-dimensional distributions.

The proof of this result is an analogous construction as in Högele and Pavlyuke-
vich (2015) and does not depend on the fact that the system is infinite-dimensional
and follows in a fairly straightforward manner.

2.4. Examples.

2.4.1. The Chafee-Infante equation with multiplicative stable noise.

We consider equation (2.1) for f(r) = −a(r3 − r), r ∈ R, where a > π2 and
a 6= (πn)2 for all n ∈ N. The respective deterministic dynamical system is a
well understood Morse-Smale system and has two stable states φι, ι ∈ {+,−} with
domains of attraction D±, see Hale (1997); Henry (1981).
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The stochastic perturbation of interest is an H-valued symmetric α-stable Lévy
process L(t) =

∫ t
0

∫
‖z‖61

zÑ(dsdz) +
∫ t

0

∫
‖z‖>1

zN(dsdz) with characteristic triplet

(0, 0, ν), where ν(dz) = σ(dz̄)
rα+1 , α ∈ (0, 2), r = ‖z‖, z̄ = z/‖z‖ and σ is a symmetric

Radon measure on ∂B1(0) ⊆ H. The characteristic function has the special shape
φL(t)(u) = exp(−tcα‖u‖α) for some cα > 0. This Lévy measure is selfsimilar in the
sense that ν(rA) = r−αν(A) for r > 0 and A ∈ B(H) with 0 /∈ Ā. In other words,
it is regularly varying with index −α and has the limiting measure µ = ν. We take
G(x, z) := ‖x‖z.
Then the H-valued mild solution of the Chafee-Infante equation with multiplicative
α-stable noise

dXε(t) =
(
∆Xε(t)− a(Xε(t)3 −Xε(t))

)
dt+ ε‖Xε(t)‖dL(t)

has the following first exit times and locus behavior from a set D = Dι ⊆ Dι with
inward pointing vector field ∆ + f in the sense of (2.4). For any c > 0 there are
R > 1 and ε0, γ ∈ (0, 1) such that ε ∈ (0, ε0] implies

sup
x∈Dι2(εγ ,R)

E
[
τ ιx(ε,R)

]
∈ 1

εαν( 1
‖φ‖D

c − φ)
[1− c, 1 + c]

and for any U ∈ B(H) with ν( 1
‖φ‖U − φ) > 0 and ν( 1

‖φ‖∂U − φ) = 0 we have

sup
x∈Dι2(εγ ,R)

P(Xε(τ ;x) ∈ U) ∈
ν( 1
‖φ‖ (U ∩D)c − φ)

ν( 1
‖φ‖D

c − φ)
[1− c, 1 + c],

where τ = τ ιx(ε,R). Our results also cover the exit times result of the additive case
given in Debussche et al. (2013). In addition, the continuous time Markov chain
M constructed in Corollary 2.8 is switching trivially between the states {φ+, φ−}
and (Xε( t

εα ;x))t∈[0,T ]
d−→ (Mt)t∈[0,T ] in the sense of Corollary 2.8.

2.4.2. The linear heat equation perturbed by additive and multiplicative stable noise.

We consider the linear heat equation on H with Dirichlet conditions, that is, f = 0,
since the eigenvalues of the Dirichlet-Laplacian are strictly negative with upper
bound −Λ0. The unit ball D := B1(0) ⊆ H is obviously positive invariant. As
in the previous example we treat perturbations by a symmetric α-stable process
(L(t))t>0. We consider the multiplicative coefficient G(x, z) = 〈〈x−v, z〉〉v for some
0 6= v ∈ H, with ‖v‖ = 1 fixed. For ε > 0, t > 0 and x ∈ D the equation

dXε(t) = ∆Xε(t)dt+ ε〈〈Xε(t)− v, dL(t)〉〉v with Xε(0) = x,

has the following first exit times and locus behavior as ε → 0. We calculate the
exit increments using the half space in v direction, H(v) = {z ∈ H | 〈z, v〉 > 0},
as follows

JD
c

(0) = {z ∈ H | |〈〈−v, z〉〉| > 1} =
(
H(v) + v

)
∪
(
−H(v)− v

)
.

Theorem 2.6 states that for any c > 0 we find ε0, γ ∈ (0, 1) such that ε ∈ (0, ε0]
implies

sup
x∈B1−εγ (0)

E
[
τx(ε)

]
∈ 1

εα2ν
(
H(v) + v

) [1− c, 1 + c]
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and Theorem 2.7 yields for U ∈ B(H) with ν(J U∩Dc

(0)) > 0 and ν(J ∂U∩Dc

(0)) = 0

sup
x∈B1−εγ (0)

P(Xε(τ ;x) ∈ U) ∈
ν
(
U ∩

((
H(v) + v

)
∪
(
−H(v)− v

)))
2ν
(
H(v) + v

) [1− c, 1 + c],

where τ = τx(ε). Note that our first exit results also cover the additive case, which
to our knowledge is also new in the literature for G(x, z) = z, with

sup
x∈B1−εγ (0)

E
[
τx(ε)

]
∈ 1

εαν
(
Dc
) [1− c, 1 + c], and

sup
x∈B1−εγ (0)

P(Xε(τ ;x) ∈ U) ∈
ν
(
U ∩Dc

)
ν
(
Dc
) [1− c, 1 + c], where τ = τx(ε).

3. Exponentially small deviations of the small noise solution

This section is devoted to a large deviations type estimate for the stochastic con-
volution between consecutive large jumps. It quantifies the fact that in the time
interval strictly between two adjacent large jumps the solution of (2.9) is perturbed
by only the small noise component and deviates from the solution of the determin-
istic equation by only a small ε-dependent quantity, with a probability converging
to 1 exponentially fast as a function of the inverse noise intensity, 1/ε, as ε→ 0+.

Preliminaries and notation: In this section we fix the domain of attraction D = Dι
of φ = φι and the invariant subset D = Dι with ∂Dι ∈ C1 such that f is inward
pointing on ∂D. We drop all further dependencies on the index ι. For a better
understanding of the role of the different scales we formulate and prove our results
for abstract scale functions

ρ· : (0, 1]→ [1,∞), lim
ε→0+

ρε =∞, lim
ε→0+

ερε = 0,

γ· : (0, 1]→ (0, 1], lim
ε→0+

γε = 0,

T · : (0, 1]→ [1,∞), lim
ε→0+

T ε =∞,
(3.1)

before choosing them numerically in (3.30)-(3.33) below the statement of Proposi-
tion 3.3. We fix the following notation for abstract scales

T0 := 0, Tk := inf
{
t > Tk−1

∣∣ ‖∆tL‖ > ρε
}

and Wk := ∆TkL, k > 1. (3.2)

We define the compound Poisson process ηε which consists only of large jumps
of L with intensity βε := ν

(
Bc
ρε(0)

)
and the jump probability distribution by

P(Wk ∈ U) = ν(U ∩Bc
ρε(0))/βε. Then

ηεt :=

∫ t

0

∫
‖z‖>ρε

zN(dsdz) =

∞∑
k=1

Wk1{Tk<t}, t > 0.

The complementary small jumps process ξεt := Lt − ηεt has the following shape

ξεt =

∫ t

0

∫
‖z‖61

zÑ(dsdz) +

∫ t

0

∫
1<‖z‖6ρε

zN(dsdz)

=

∫ t

0

∫
‖z‖6ρε

zÑ(dsdz) +

∫ t

0

∫
1<‖z‖6ρε

zν(dz)ds.
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The process ξε has for any ε ∈ (0, 1] exponential moments of any order due to the
uniformly bounded jump size and ξε − t

∫
1<‖z‖6ρε zν(dz) is a mean zero (Ft)t>0-

martingale in H.
Denote by (S(t))t>0 the semigroup (et∆)t>0 on H. It is a generalized contraction

C0-semigroup satisfying several regularization properties. We refer for our special
setup to Debussche et al. (2013) p.13-14 and for general cases to Pazy (1983).

The i.i.d. family of EXP(βε)-distributed waiting times between successive large
jumps of ηε is given by t0 = 0 and tk := Tk − Tk−1 for k > 1.We denote the process
L between the waiting times by ξε,k(t) := Lt+Tk−1

− LTk−1
for t ∈ [0, tk). Then

the i.i.d. families (tk)k∈N, (Wk)k∈N, (ξε,k(t))t∈[0,tk),k∈N are independent. We call
Y ε(t, ζ;x) for all t > 0, ζ ∈ J and x ∈ H the mild solution of

dY ε(t, ζ) =
(

∆Y ε(t, ζ) + f(Y ε(t, ζ))
)
dt+G

(
Y ε(t−, ζ), εdξε(t)

)
,

with Y ε(0, ζ;x) = x(ζ), and Y ε(t, 0;x) = Y ε(t, 1;x) = 0.
(3.3)

In the following two subsections we derive all results on the stochastic convolution
w.r.t. to ξε up to the hitting time of Y ε leaving a large ball. We shall get rid of that
artificial time horizon in the proof of Proposition 3.4 by showing that the process
Y ε at time σ is strictly inside the large ball whenever the noise convolution is small.
For R > R0, ε ∈ (0, 1] and x ∈ D2(γε,R) we define the (Ft)t>0-stopping time

σ1 := σ1
R,x(ε) := inf{t > 0 | Y ε(t;x) /∈ UR}. (3.4)

3.1. Exponential estimate of stochastic convolutions with bounded jumps.

In this subsection we show that for small ε > 0 the stochastic convolution with
respect to G(Y ε(s−), εdξε(s)) is very small, i.e. of order 6 γqε for some q > 1, with
a probability which tends to 1 in terms of γε exponentially fast as long as Y ε and
the stochastic convolution remain bounded by R. For the solution Y ε(t;x) of (3.3)
with R > R0, ε ∈ (0, 1] and x ∈ D2(γε,R) we consider the multiplicative stochastic
convolution process

Ψε,x
t :=

∫ t

0

S(t− s)G(Y ε(s−;x), εdξε(s))

=

∫ t

0

∫
0<‖z‖6ρε

S(t− s)G(Y ε(s−;x), εz)Ñ(dsdz)

+

∫ t

0

∫
1<‖z‖6ρε

S(t− s)G(Y ε(s;x), εz)ν(dz)ds =: Φε,xt + bε,xt .

The process (Ψε,x
t )t>0 is an (Ft)t>0-adapted càdlàg process. For R > R0, ε ∈ (0, 1]

and x ∈ D2(γε,R) we set

σ2 := σ2
R,x(ε) := inf{t > 0 | Ψε,x

t /∈ UR} and σ := σ1 ∧ σ2. (3.5)

Proposition 3.1. Let the Hypotheses (D.1)-(D.3), and (S.1)-(S.2) be satisfied and
the functions ρ·, γ· be given by (3.1) and fulfill for some q > 1 the limit relation

lim
ε→0

Γ(ε) = 0 where Γ(ε) :=
(ερε)2T ε

γ4q+6
ε

. (3.6)
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Then for any R > R0 there is ε0 ∈ (0, 1] such that ε ∈ (0, ε0] implies

sup
x∈D2(γε,R)

P
(

sup
s∈[0,σ∧T ε]

‖Ψε,x
s ‖ > γqε

)
6 2 exp(−(2γε)

−1). (3.7)

Proof : The plan of the proof is as follows. First we get rid of the drift bε,x (Step 0).
In order to control Φε,x we start with the exponential Kolmogorov inequality where
we introduce the free parameters λ and χ. We estimate the stochastic convolution
with the help of a result of Salavati and Zangeneh (2016) and derive an exponential
version of the Burkholder-Davis-Gundy inequality using the respective pathwise
result by Siorpaes (2018) (Step 1). Then we optimize over the free parameters and
use the Campbell representation of the Laplace transform of the quadratic variation
of Poisson random integrals and a Campbell type estimate shown in Lemma 3.2.
This allows for a comparison principle for the characteristic exponent of Ψε,x (Step
2) and allows to conclude (Step 3).

Step 0: Drift estimate. We show that for any R > R0 there is ε0 ∈ (0, 1] such
that ε ∈ (0, ε0] implies

sup
t∈[0,σ∧T ε]

sup
x∈D2(γε,R)

‖bε,xt ‖ <
1

2
γqε .

We write Y (t) = Y ε(t;x) and recall Hypothesis (S.1). For g1 := supx∈UR G1(x)
the triangular inequality and the norm estimate of the heat semigroup S yield for
x ∈ D2(γε,R)

sup
t∈[0,σ]

‖bε,xt ‖ 6 sup
t∈[0,σ]

‖
∫ t

0

∫
1<‖z‖6ρε

S(t− s)G(Y (s−), εz)ν(dz)ds‖

6 sup
t∈[0,σ]

∫ t

0

∫
1<‖z‖6ρε

‖S(t− s)G(Y (s−), εz)‖ν(dz)ds

6 g1 sup
t∈[0,σ]

∫ t

0

∫
1<‖z‖6ρε

e−Λ0(t−s)‖εz‖ν(dz)ds

6 εg1 sup
t∈[0,∞)

∫ t

0

e−Λ0(t−s)ds

∫
1<‖z‖6ρε

‖z‖ν(dz)

6
(
g1
ν(Bc

1(0))

Λ0

)
ερε 6 C0ερ

ε.

Note that the right side is independent σ and x. The limit (3.6) yields the existence
of a constant ε0 ∈ (0, 1] such that for ε ∈ (0, ε0] we have ερε 6 γqε/2C0 and hence
satisfies the claim.

Step 1: Exponential estimate of the stochastic convolution. Note that for
ε0 of Step 0 and ε ∈ (0, ε0] we get

P( sup
t∈[0,σ∧T ε]

‖Ψε,x
t ‖ > γqε ) 6 P( sup

t∈[0,σ∧T ε]
‖Φε,xt ‖ >

γqε
2

) + P( sup
t∈[0,σ∧T ε]

‖bε,xt ‖ >
γqε
2

)

= P( sup
t∈[0,σ∧T ε]

‖Φε,xt ‖ >
γqε
2

).

Kolmogorov’s exponential inequality yields with a free parameter ϑ > 0 reads

P( sup
t∈[0,σ∧T ε]

‖Φε,xt ‖ >
γqε
2

) 6 exp(−ϑγ
q
ε

2
)E
[

exp(ϑ sup
t∈[0,σ∧T ε]

‖Φε,xt ‖)
]
. (3.8)
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For M (1)
t :=

∫ t
0

∫
0<‖z‖6ρε G(Y (s−;x), εz)Ñ(dsdz) the process (M

(1)
t∧σ)t>0 is an

(Ft)t>0-martingale. The pathwise estimate of the stochastic convolution in Salavati
and Zangeneh (2016) (Theorem 6) yields for any t > 0 the following P-a.s. inequal-
ity (Φε,x0 = 0)

‖Φε,xt ‖2 6 2

∫ t

0

e−2Λ0(t−s)〈〈Φε,xs− , dM (1)
s 〉〉

+
∑

0<s6t

e−2Λ0(t−s)(‖Φε,xs ‖2 − ‖Φε,xs−‖2 − 2〈〈Φε,xs− ,∆sM
(1)〉〉

)
= e−2Λ0t

(
2

∫ t

0

∫
‖z‖6ρε

e2Λ0s〈〈Φε,xs− , G(Y (s−), z)〉〉Ñ(dsdz)

+

∫ t

0

∫
‖z‖6ρε

e2Λ0s‖G(Y (s−), z)‖2N(dsdz)

)
6 e−2Λ0t

(
|M (2)

t |+M
(3)
t

)
,

where

M
(2)
t := 2

∫ t

0

∫
‖z‖6ρε

e2Λ0s〈〈Φε,xs− , G(Y (s−), z)〉〉Ñ(dsdz),

M
(3)
t :=

∫ t

0

∫
‖z‖6ρε

e2Λ0s‖G(Y (s−), z)‖2N(dsdz).

Therefore

sup
t∈[0,σ∧T ε]

‖Φε,xt ‖2 6 sup
t∈[0,σ∧T ε]

e−2Λ0t|M (2)
t |+ sup

t∈[0,σ∧T ε]
e−2Λ0tM

(3)
t . (3.9)

Step 1a: We start with the first term in (3.9). Itō’s formula applied to e−2Λ0tM
(2)
t

gives

e−2Λ0tM
(2)
t =

∫ t

0

e−2Λ0sdM (2)
s − 2Λ0

∫ t

0

(
e−2Λ0sM (2)

s

)
ds. (3.10)

The preceding identity (3.10) defines the following recursion. We replace the ex-
pression e−2Λ0sM

(2)
s under the integral by the respective right-hand side

e−2Λ0tM
(2)
t =

∫ t

0

e−2Λ0s1dM (2)
s1 − 2Λ0

∫ t

0

(
e−2Λ0s1M (2)

s1

)
ds1

=

∫ t

0

e−2Λ0s1dM (2)
s1

+ (−2Λ0)

∫ t

0

(∫ s1

0

e−2Λ0s2dM (2)
s2 − 2Λ0

∫ s1

0

e−2Λ0s2M (2)
s2 ds2

)
ds1

=

∫ t

0

e−2Λ0s1dM (2)
s1

+ (−2Λ0)

∫ t

0

∫ s1

0

e−2Λ0s2dM (2)
s2 ds1 + (−2Λ0)2

∫ t

0

∫ s1

0

e−2Λ0s2M (2)
s2 ds2ds1.
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Repeating this procedure k + 1 times an easy induction shows that for all k ∈ N

e−2Λ0tM
(2)
t =

k∑
`=0

∫ t

0

∫ s1

0

· · ·
∫ s`−1

0

(∫ s`

0

(−2Λ0)`e−2Λ0s`dM (2)
s`+1

)
ds` . . . ds1

+ (−2Λ0)k+1

∫ t

0

∫ s1

0

· · ·
∫ sk

0

e−2Λ0sk+1M (2)
sk+1

dsk+1 . . . ds1.

Cauchy’s formula for repeated integrals applied to the second term provides∣∣∣(−2Λ0)k+1

∫ t

0

∫ s1

0

· · ·
∫ sk

0

e−2Λ0sk+1M (2)
sk+1

dsk+1 . . . ds1

∣∣∣
=
∣∣∣(−2Λ0)

∫ t

0

(
(−2Λ0)(t− s)

)k
k!

e−2ΛsM (2)
s ds

∣∣∣
6 2Λ0

∫ t

0

∣∣2Λ0(t− s)
∣∣k

k!
ds sup

s∈[0,t]

e−2Λs|M (2)
s |.

Since sups∈[0,t] e
−2Λs|M (2)

s | < ∞ P-a.s. we may pass to the limit as k → ∞ and
obtain with the help of the monotone convergence theorem that

lim sup
k→∞

∣∣∣(−2Λ0)k+1

∫ t

0

∫ s1

0

· · ·
∫ sk

0

e−2Λ0skM (2)
sk+1

dsk+1 . . . ds1

∣∣∣
6 2Λ0 lim sup

k→∞

∫ t

0

(
2Λ0(t− s)

)k−1

(k − 1)!
ds sup

s∈[0,t]

e−2Λs|M (2)
s | = 0, P− a.s. (3.11)

Hence we have proved the represenation

e−2Λ0tM
(2)
t =

∞∑
`=1

∫ t

0

∫ s1

0

· · ·
∫ s`−1

0

∫ s`

0

(−2Λ0)`e−2Λ0s`+1dM (2)
s`+1

ds` . . . ds1.

For each of the summands we apply Cauchy’s formula for repeated integrals∫ t

0

∫ s1

0

· · ·
∫ s`−1

0

∫ s`

0

(−2Λ0)`e−2Λ0s`+1dM (2)
s`+1

ds` . . . ds1

= (−2Λ0)

∫ t

0

(−2Λ0(t− s))`−1

(`− 1)!

∫ s

0

e−2Λ0rdM (2)
r ds.

Fubini’s theorem yields P-a.s.
∞∑
`=1

∫ t

0

(−2Λ0(t− s))`−1

(`− 1)!

∫ s

0

e−2Λ0rdM (2)
r ds

=

∫ t

0

∞∑
`=1

(−2Λ0(t− s))`−1

(`− 1)!

∫ s

0

e−2Λ0rdM (2)
r ds

=

∫ t

0

e−2Λ0(t−s)
∫ s

0

e−2Λ0rdM (2)
r ds.

We estimate

e−2Λ0t|M (2)
t | 6

∣∣(−2Λ0)

∫ t

0

e−2Λ0(t−s)
∫ s

0

e−2Λ0rdM (2)
r ds

∣∣
6
∣∣(−2Λ0)

∫ t

0

e−2Λ0(t−s)ds
∣∣ sup
s∈[0,t]

|M (4)
s | 6 sup

s∈[0,t]

|M (4)
s |, (3.12)
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where ∫ s

0

e−2Λ0rdM (2)
r = 2

∫ t

0

∫
‖z‖6ρε

〈〈Φε,xs− , G(Y (s−), z)〉〉Ñ(dsdz) =: M
(4)
t .

Since the right-hand side of (3.12) is nondecreasing the first term in (3.9) has the
upper bound

sup
t∈[0,σ∧T ε]

e−2Λ0tM
(2)
t 6 sup

t∈[0,σ∧T ε]
|M (4)

t |. (3.13)

We continue with the pathwise Burkholder-Davis-Gundy inequality by Siorpaes
(2018)

sup
t∈[0,σ∧T ε]

|M (4)
t | 6 6

√
[M (4)]σ∧T ε + 2

∫ σ∧T ε

0

Hs−dM
(4)
s , (3.14)

where
Hs := M (4)

s /
√

[M (4)]s + sup
r∈[0,s]

|M (4)
r |2 . (3.15)

Note that sups>0 |Hs| 6 1 P-a.s. by construction.
Step 1b: The second term in (3.9) is easier since the nonnegative integrands allow
for a P-a.s. monotonicity estimate

sup
t∈[0,σ∧T ε]

e−2Λ0tM
(3)
t 6 sup

t∈[0,σ∧T ε]

∫ t

0

∫
‖z‖6ρε

‖G(Y (s−), z)‖2N(dsdz)

=

∫ σ∧T ε

0

∫
‖z‖6ρε

‖G(Y (s−), z)‖2N(dsdz) =: M
(5)
σ∧T ε . (3.16)

Step 1c: We combine (3.9), (3.13), (3.14) and (3.16). The subadditivity of the
square root and the estimate

√
r 6 r + 1

4 for r > 0 yield

E
[

exp(ϑ sup
t∈[0,σ∧T ε]

‖Φε,xt ‖)
]

6 E
[

exp
(
ϑ

√
6
√

[M (4)]σ∧T ε + 2

∫ σ∧T ε

0

Hs−dM
(4)
s +M

(5)
σ∧T ε

)]
6 e

1
4E
[

exp
(
ϑ2
(
6
√

[M (4)]σ∧T ε + 2

∫ σ∧T ε

0

Hs−dM
(4)
s +M

(5)
σ∧T ε

))]
. (3.17)

Young’s inequality with the additional free parameter χ > 0 reads√
[M (4)]σ∧T ε 6

1

2χ2
[M (4)]σ∧T ε +

χ2

2
.

Then the estimate abcd 6 (a4 + b4 + c4 + d4)/4, a, b, c, d > 0, provides for (3.17)
the upper bound

e
1
4E
[

exp
(3ϑ2

χ2
[M (4)]σ∧T ε +

3ϑ2χ2

2
+ 2ϑ2

(∫ σ∧T ε

0

Hs−dM
(4)
s

)
+ ϑ2M

(5)
σ∧T ε

)]
6
e

1
4

4
E
[

exp
(12ϑ2

χ2
[M (4)]σ∧T ε

)]
+
e

1
4

4
exp

(
6ϑ2χ2

)
+
e

1
4

4
E
[

exp
(

8ϑ2

∫ σ∧T ε

0

Hs−dM
(4)
s

)]
+
e

1
4

4
E
[

exp
(

4ϑ2M
(5)
σ∧m

)]
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=: J1(ϑ, χ) + J2(ϑ, χ) + J3(ϑ) + J4(ϑ). (3.18)

Step 2: Campbell’s formula and Optimization over the free parameters.
We now choose the free parameters ϑ and χ as ε-dependent functions ϑε := 1

γq+1
ε

and χε = γq+2
ε such that the upper bound (3.18) of the right side of (3.8) reads

exp(−ϑε
1

2
γqε )
(
J1(ϑε, χε) + J2(ϑε, χε) + J3(ϑε) + J4(ϑε)

)
.

In the sequel we estimate the respective terms J1, . . . , J4 one by one.
J1(ϑε, χε): By P-a.s. monotonicity we have

[M (4)]σ∧T ε =
[
4

∫ ·
0

∫
‖z‖6ρε

〈〈Φε,xs− , G(Y (s−), εz)〉〉Ñ(dsdz)
]
σ∧T ε

= 16

∫ σ∧T ε

0

∫
‖z‖6ρε

〈〈Φε,xs− , G(Y (s−), εz)〉〉2N(dsdz)

6 C1

∫ σ∧T ε

0

∫
‖z‖6ρε

‖Φε,xs−‖2‖εz‖2N(dsdz)

6 C2

∫ σ∧T ε

0

∫
‖z‖6ρε

‖εz‖2N(dsdz) 6 C2

∫ T ε

0

∫
‖z‖6ρε

‖εz‖2N(dsdz).

The classical Campbell formula for the Poisson random measure N has the shape

E
[

exp
(

12
(ϑε
χε

)2
[M (4)]σ∧T ε

)]
6 E

[
exp

( C3

γ4q+6
ε

∫ T ε

0

∫
‖z‖6ρε

‖εz‖2N(dsdz)
)]

= E
[

exp
(
T ε
∫
‖z‖6ρε

(
exp

(C3‖εz‖2

γ4q+6
ε

)
− 1
)
ν(dz)

)]
.

The limit (3.6) implies for the exponent

sup
‖z‖6ρε

‖εz‖2

γ4q+6
ε

6
(ερε)2

γ4q+6
ε

−→ 0, as ε→ 0.

In the sequel we use (er − 1) 6 (e − 1)r for all r ∈ [0, 1] under the integral in the
exponent of equation (3.19) and choose ε0 ∈ (0, 1] small enough such that ε ∈ (0, ε0]
implies C3(ερε)2/γ4q+3

ε 6 1. If, in addition, ρε > 1 for any ε ∈ (0, ε0] we obtain the
following upper bound of (3.19)

E
[

exp
(
C3(e− 1)

ε2T ε

γ4q+6
ε

∫
‖z‖6ρε

‖z‖2ν(dz)
)]

6 E
[

exp
(
C3(e− 1)

ε2T ε

γ4q+6
ε

( ∫
‖z‖61

‖z‖2ν(dz) + (ρε)2ν(Bc
1(0))

))]
6 exp

(
C4

(ερε)2T ε

γ4q+6
ε

)
,
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where C4 = C3(e− 1)
( ∫
‖z‖61

‖z‖2ν(dz) + ν(Bc
1(0))

)
. Thus ε ∈ (0, ε0] yields

exp(−ϑε
2
γqε )J1(ϑε, χε) = exp(− 1

2γε
)J1(ϑε, χε)

6
e

1
4

4
exp(− 1

2γε
) exp(C4Γ(ε)) 6

1

2
exp(− 1

2γε
).

(3.19)

J2(ϑε, χε): There is ε0 ∈ (0, 1] such that for ε ∈ (0, ε0] we have the estimate

exp(−ϑε
2
γqε )J2(ϑε, χε) 6

e
1
4

4
exp(− 1

2γε
+ 6(ϑεχε)

2)

=
e

1
4

4
exp(− 1

2γε
+ 6γ2

ε ) 6
1

2
exp(− 1

2γε
).

(3.20)

J3(ϑε): Recall that

M
(4)
t = 2

∫ t

0

∫
‖z‖6ρε

〈〈Φε,xs− , G(Y (s−), εz)〉〉Ñ(dsdz)

such that for the function hy(s−, εz) := 2Hs−〈〈Φε,xs− , G(Y (s−;x), εz)〉〉 we have the
representation

Zε,xt :=

∫ t

0

∫
‖z‖6ρε

hx(s−, εz)Ñ(dsdz)
(

=

∫ t

0

Hs−dM
(4)
s

)
. (3.21)

Lemma 3.2 which is proved in Appendix 5.2 yields ε0 ∈ (0, 1] such that ε ∈ (0, ε0]
implies

sup
x∈D2(γε,R)

E
[

exp
(
8ϑ2

ε

∣∣Zε,xσ∧T ε∣∣)] 6 2.

This implies for ε ∈ (0, ε0] the estimate

exp(−ϑε
1

4
γ2q
ε )J3(ϑε) 6

2

4e
1
4

exp(− 1

2γε
) 6

1

2
exp(− 1

2γε
). (3.22)

J4(ϑε): This case resembles the one of J1(ϑε, χε). Since we have only positive jumps
we estimate P-a.s.

M
(3)
σ∧T ε =

∫ σ∧T ε

0

∫
‖z‖6ρε

‖G(Y (s−), εz)‖2N(dsdz)

6
∫ σ∧T ε

0

∫
‖z‖6ρε

g2
1‖εz‖2N(dsdz),

leading to

E
[

exp
(
2ϑ2

εM
(3)
σ∧T ε

)]
6 E

[
exp

(
T ε
∫
‖z‖6ρε

(
exp(2g1ϑ

2
ε ‖εz‖2)− 1

)
ν(dz)

)]
.

Analogously to J1(ϑε, χε) we obtain with the help of the limit (3.6) that for ε→ 0+

sup
‖z‖6ρε

2g1ϑ
2
ε ‖εz‖2 6 2g1ϑ

2
ε (ερε)2 6 2g1

(ερε)2

γ2q+2
ε

→ 0.

The additional restriction of ε0 ∈ (0, 1] such that ε ∈ (0, ε0] simultaneously implies
2g1

(ερε)2

γ2q+2
ε

6 1 and ρε >
∫
‖z‖61

‖z‖2ν(dz)/ν(Bc
1(0)) yields the estimate

J4(ϑε) 6
e

1
4

4
E
[

exp
(∫ σ∧T ε

0

∫
‖z‖6ρε

(
exp

(
2ϑ2

ε g1‖εz‖2
)
− 1
)
ν(dz)ds

)]



684 M. A. Högele

6
e

1
4

4
E
[

exp
(

(e− 1)2g1C6T
εϑ2
ε (ερε)2

)]
6

1

2
exp

(
C7

(ερε)2T ε

γ2q+2
ε

)
.

This implies for ε0 ∈ (0, 1] sufficiently small and any ε ∈ (0, ε0] the estimate

exp(−ϑε
1

2
γqε )J4(λε) 6

1

2
exp(− 1

2γε
). (3.23)

Step 3: Conclusion. For ε0 ∈ (0, 1] sufficiently small such that (3.19) - (3.23) are
satisfied we conclude for ε ∈ (0, ε0] that

P( sup
t∈[0,σ∧T ε]

‖Ψε,x
t ‖ > γqε ) 6 exp(−ϑε

1

2
γqε )E

[
exp(ϑε sup

t6σ∧T ε
‖Φε,xt ‖)

]
6 2 exp(− 1

2γε
).

Note that our estimates are uniformly over all x ∈ D2(γε,R). This finishes the
proof. �

Lemma 3.2 (An asymptotic Campbell type estimate). Under the hypothesis of
Proposition 3.1 and the notation of Step 2 of the proof of Proposition 3.1 the process
Zε,x = (Zε,xt )t>0 given in (3.21) satisfies the following. There is ε0 ∈ (0, 1] such
that ε ∈ (0, ε0] implies

sup
x∈D2(γε,R)

E
[

exp
(
8ϑ2

ε

∣∣Zε,xσ∧T ε∣∣)] 6 2.

The proof is found in Appendix 5.2.

3.2. Exponential estimates of the deviations of the small jump equation.

For ε, γ ∈ (0, 1], x ∈ H, T > 0 we define the events

Ex,T (γ, ε) := { sup
s∈[0,T ]

‖Ψε,x
s ‖ 6 γ}, Eσx,T (γ, ε) := { sup

s∈[0,T∧σ]

‖Ψε,x
s ‖ 6 γ}, (3.24)

Gx,T (γ, ε) := { sup
s∈[0,T ]

‖Y ε(s;x)− u(s;x)‖ 6 γ}, (3.25)

Gσx,T (γ, ε) := { sup
s∈[0,T∧σ]

‖Y ε(s;x)− u(s;x)‖ 6 γ}, (3.26)

Gx(γ, ε) := { sup
s∈[0,T1]

‖Y ε(s;x)− u(s;x)‖ 6 γ}. (3.27)

We suppress the overall dependence on ε ∈ (0, 1]. This subsection is dedicated to
the proof of the following estimate used in the proof of the main result.

Proposition 3.3. Let the Hypotheses (D.1)-(D.3) and (S.1)-(S.2) be satisfied (for
fixed ι). Furthermore let the functions γ·, ρ·, T · be given by (3.1) and λ· = λι· be
defined in (2.10). Then there exists a constant q > 1 such that if γ·, ρ·, T · satisfy
condition (3.6) for this value of q and additionally

lim
ε→0+

βεT
ε =∞, and lim

ε→0+
λε/βε = 0 (3.28)
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we have the following. For any R > R0 and θ ∈ (0, 1) there is a constant ε0 ∈ (0, 1]
such that ε ∈ (0, ε0] implies

sup
x∈D2(γε,R)

E
[
eθλεT11(Gcx(

1

2
γε))

]
6 2 exp(− 1

2γε
) + 2 exp(−βεT

ε

2
). (3.29)

(C) Choice of the scales:
(1) For any α > 0 and q > 1 fixed the scales satisfying (3.1) and (3.28) are

chosen as follows
γε := εγ

∗
, ρε := ε−ρ

∗
,

βε = ν(ρεBc
1(0)) = O(ερ

∗α`(
1

ε
))ε→0, T ε := ε−θ

∗
,

(3.30)

where γ∗, ρ∗ ∈ (0, 1) satisfy

(2q + 3)γ∗ + (1 + α)ρ∗ < 1 (3.31)

and θ∗ := 2αρ∗. Since both q + 2 > 0 and α > 0 condition (3.31) is easily
satisfied for sufficiently small positive values of γ∗, ρ∗. Condition (3.31)
directly implies the limits (3.6) and (3.28).

(2) For further use in Section 4 we additionally impose the conditions

γ∗ < ρ∗, (3.32)
γ∗
α

+ 3ρ∗ < 1 , (3.33)

on γ∗ and ρ∗, which do not contradict (3.31) since (3.33) is of the same
type and (3.32) can be satisfied independently. Then condition (3.32)
yields limε→0+ | ln(γε)| ε

α

γαε

βε
λε

= 0 and inequality (3.33) implies the limit

limε→0+ γεβε
βε
λε

= 0. The latter two are used in the estimates (4.15) and
(4.18) respectively of Step 3 in the proof of Proposition 4.3 in Section 4.

Proof of Proposition 3.3: Our strategy consists of two steps. First we show in
Proposition 3.4 that for some q > 1 and small ε the stopped small perturbation
event Eσy,T ε(γqε ) implies the stopped small deviation event Gσx,T ε( 1

2γε). The second
step relates Ey,T ε(γqε ) to Eσy,T ε(γqε ) before finally using the estimate of (Eσy,T ε)c in
Proposition 3.1.

Proposition 3.4. Let the Hypotheses (D.1)-(D.3) and (S.1)-(S.2) be satisfied and
for some fixed q > 1 the scales γ·, ρ·, T · be chosen as in (C). Then for any R > R0

there exists a constant ε0 ∈ (0, 1] such that ε ∈ (0, ε0] and x ∈ D2(γε,R) imply

Eσx,T ε(γqε ) ⊆ Gσx,T ε(
1

2
γε). (3.34)

Corollary 3.5. Let the hypotheses of Proposition 3.4 be satisfied. Then for any
R > R0 there exists a constant ε0 ∈ (0, 1] such that ε ∈ (0, ε0] and x ∈ D2(γε,R)
imply

Eσx,T ε(γqε ) ⊆ {σ > T ε}. (3.35)

The proof of Corollary 3.5 is given below the proof of Proposition 3.4 at the end of
this subsection.
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Corollary 3.6. Let the hypotheses of Proposition 3.4 be satisfied. Then for any
R > R0 there exists a constant ε0 ∈ (0, 1] such that ε ∈ (0, ε0] and x ∈ D2(γε,R)
imply

Ex,T ε(γqε ) ⊆ Gx,T ε(
1

2
γε). (3.36)

The proof of Corollary 3.6 is found at the end of the current subsection.

Remark 3.7. The proof of Proposition 3.4 given below is based on Gronwall esti-
mates in Lemma 3.8 and 3.9. They yield estimates with right-hand sides which
are monotonically growing as a function of an (ε-independent) time argument T
and imply the inclusion (3.34) for any fixed T instead of T ε when ε is sufficiently
small. In Lemma 3.9 we show the stronger statement that (3.34) is valid for the
ε-dependent argument T = T ε which grows monotonically T ε → ∞ as ε → 0+.
We stress that by the mentioned monotonicity in T that (3.34) is also valid for T ε
being replaced by any s ∈ [0, T ε] and can be verified below line by line without
difficulty. The stopping procedure with σ does not affect this reasoning.

Proof of Proposition 3.3: By Corollary 3.5 there is q > 1 such that for any R > R0

there is some ε0 ∈ (0, 1] such that ε ∈ (0, ε0] implies

Eσx,T ε(γqε ) ⊆ {σ > T ε}. (3.37)

This result yields

Eσx,T ε = Eσx,T ε ∩
(
{σ > T ε} ∪ {σ 6 T ε}

)
=
(
Eσx,T ε ∩ {σ > T ε}

)
∪
(
Eσx,T ε ∩ {σ 6 T ε}

)
=
(
Ex,T ε ∩ {σ > T ε}

)
∪
(
Eσx,T ε ∩ {σ 6 T ε}

)
= Ex,T ε ∩ {σ > T ε}.

Hence ε ∈ (0, ε0] yields

(Eσx,T ε)c = (Ex,T ε ∩ {σ > T ε})c = Ecx,T ε ∪ {σ > T ε}c. (3.38)

The identity (3.38) puts us in the position to prove inequality (3.29).
Due to the independence of Y ε and T1 and the statement of Proposition 3.4

there is a constant ε0 ∈ (0, 1] such that ε ∈ (0, ε0] implies (3.34) and additionally
due to (3.28) the inequality

ln(
βε

βε − θλε
) + θλεT

ε 6 2θ
λε
βε

+ θ
λε
βε
βεT

ε 6
1

2
(1 + βεT

ε) 6 ln(2) +
1

2
βεT

ε. (3.39)

With the help of (3.39) and Remark 3.7 ε ∈ (0, ε0] yields

sup
x∈D2(γε,R)

E
[
eθλεT11(Gcx(

1

2
γε))

]
= sup
x∈D2(γε,R)

∫ ∞
0

P(Gcx,s(
1

2
γε))βεe

−(βε−θλε)sds

6
∫ T ε

0

sup
x∈D2(γε,R)

P(Ecx,s(γqε )) βεe
−(βε−θλε)sds+

βεe
−(βε−θλε))T ε

βε − θλε

6 sup
x∈D2(γε,R)

P(Ecx,T ε(γqε )) + 2e−
1
2βεT

ε

.

(3.40)
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Using (3.38) we apply Proposition 3.1 and obtain for ε ∈ (0, ε0] the inequality
sup

x∈D2(γε,R)

P(Ecx,T ε(γqε )) 6 sup
x∈D2(γε,R)

P(Ecx,T ε(γqε ) ∪ {σ > T ε}c)

6 sup
x∈D2(γε,R)

P((Eσx,T ε(γqε ))c)

6 2e−
1

2γε .

(3.41)

Combining (3.40) and (3.41) we obtain the desired result.
�

Proof of Proposition 3.4: We introduce the nonlinear residuum Rε of the ran-
domness in Y ε

Rε,xt := Y ε(t;x)− u(t;x)−Ψε,x
t , t > 0, x ∈ D2(γε,R), ε ∈ (0, 1]. (3.42)

The quantity we have to control in Gx,T ε has the shape Y ε − u = Ψε,x + Rε,x.
By Proposition 3.1 we have a good estimate of Ψε,x. It is therefore natural to
control the remainder term Rε,x in terms of Ψε,x, which is done first for large
initial values x (of Y ε and u) on small time scales in Lemma 3.8 and then for initial
values x (of Y ε and u) close to the stable state and large time scales in Lemma 3.9.
Lemma 3.10 combines the previous two lemmas before concluding the statement of
Proposition 3.4.

Lemma 3.8. Let the Hypotheses (D.1)-(D.3) and (S.1)-(S.2) be satisfied and the
scales γ·, ρ·, T · be chosen as in (3.30). We set sε := κ0| ln(γε)|, ε ∈ (0, 1], where
κ0 > 0 be given by Proposition 2.3.

Then for all R > R0 and K > 0 there is a constant q > 1 such that in case
the scales γ·, ρ·, T · satisfy (3.31), (3.32) and (3.33) with respect to q we have the
following. There is ε0 ∈ (0, 1] such that for ε ∈ (0, ε0], x ∈ D1(R) and ω ∈ Eσx,T ε(γqε )
we have

sup
t∈[0,sε∧T ε∧σ(ω)]

‖Rε,xt (ω)‖ 6 Kγε. (3.43)

Proof : Fix R > R0 and ε ∈ (0, 1] and x ∈ D1(R). Recall that f : H → H are
locally Lipschitz continuous, that is, for y, u ∈ H

‖f(y)− f(u)‖ 6 `∗(y, u)‖y − u‖, (3.44)

for some `∗ : H × H → (0,∞), (y, u) 7→ `∗(y, u) jointly continuous and bounded
on bounded sets. Consequently, it is globally Lipschitz continuous on any of the
bounded level sets UR. The process Rε,xt satisfies formally for all x ∈ H and
ε ∈ (0, 1]

dRε,xt
dt

= ∆Rε,xt + f(Y ε(t;x))− f(u(t;x)), Rε,x0 = 0. (3.45)

Then the mild formulation of (3.45), the triangular inequality in H, the identity
Y ε(t;x)− u(t;x) = Rε,xt + Ψε,x

t and (3.44) yield the estimate

‖Rε,xt ‖ 6
∫ t

0

e−Λ0(t−s)`∗(Y ε(s;x), u(s;x)) ‖Rε,xs −Ψε,x
s ‖ds.

Note that x ∈ D1(R) ⊆ UR and the positive invariance of UR under the determin-
istic system u yield

sup
x∈D2(γε,R)

sup
t>0
‖u(t;x)‖ 6 d(R) <∞.
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We define the (Ft)t>0 stopping time σ∗(ε) := σ ∧ inf{t > 0 | ‖Rε,xt ‖ > 1}. Then
we obtain for t ∈ [0, sε ∧ T ε ∧ σ∗] on the event Eσ∗x,sε∧T ε(γqε ) for any arbitrary fixed
q > 1

‖Y ε(t;x)‖ 6 ‖u(t;x)‖+ ‖Ψε,x
t ‖+ ‖Rε,xt ‖ 6 d(R) + 2.

As a consequence, `R := sup(y,u)∈B2
d(R)+2

(0)) `
∗(y, u) <∞ implies

eΛ0t‖Rε,xt ‖ 6 `R
(∫ t

0

eΛ0s‖Rε,xs ‖ds+

∫ t

0

eΛ0s‖Ψε,x
s ‖ds

)
.

The Gronwall-Bellmann inequality applied to eΛ0t‖Rε,xt ‖ with eΛ00‖Rε,x0 ‖ = 0 yields

eΛ0t‖Rε,xt ‖ 6
∫ t

0

∫ s

0

e`R(t−s)eΛ0r‖Ψε,x
r ‖drds

6 sup
r∈[0,t]

‖Ψε,x
r ‖

∫ t

0

∫ s

0

e`R(t−s)eΛ0rdrds.

The elementary calculation of the factor∫ t

0

∫ s

0

e`R(t−s)eΛ0rdrds =
e`Rt

`R(`R − Λ0)
+

1

Λ0`R
− eΛ0t

Λ0(`R − Λ0)

shows for κ := `R − Λ0 > 0 on the event Eσ∗x,sε∧T ε(γqε ) the estimate

‖Rε,xt ‖ 6
eκt

κ2
sup
r∈[0,t]

‖Ψε,x
r ‖,

where t ∈ [0, sε ∧ T ε ∧ σ∗]. We set q := κ0κ+ 3 and obtain for any K > 0 a value
ε0 ∈ (0, 1] sufficiently small such that ε ∈ (0, ε0] implies on the event Eσ∗x,sε∧T ε(γqε )
the desired estimate

sup
t∈[0,sε∧T ε∧σ∗]

‖Rε,xt ‖ 6
eκs

ε

κ2
γqε 6 Kγε. (3.46)

If ε0 ∈ (0, 1] is additionally small enough such that Kγε < 1 for ε ∈ (0, ε0] we have
on the event Eσ∗x,sε∧T ε(γqε )

inf{t > 0 | ‖Rε,xt ‖ > 1} > sε ∧ T ε ∧ σ,
which proves (3.43). �

Lemma 3.9. Let the Hypotheses (D.1)-(D.3) and (S.1)-(S.2) be satisfied and the
scales γ·, ρ·, T · given by (C) for some q > 1. Then for all R > R0 there exist
constants δ0, δ1,K0 > 0 such that for all x ∈ Bδ0(φ), ε ∈ (0, 1] and ω ∈ Eσx,T ε(δ1)
we have

sup
t∈[0,T ε∧σ(ω)]

‖Rε,xt (ω)‖ 6 K0 sup
r∈[0,T ε∧σ(ω)]

‖Ψε,x
r (ω)‖. (3.47)

Proof : The stability of φ implies that the linearization ∆v + f ′(φ)v of ∆u + f(u)
centered in φ has strictly negative maximal eigenvalues with strictly negative upper
bound, −Λ1 < 0, say, in that 〈∆v+f ′(φ)v, v〉 6 −Λ1|v|2 for v ∈ H.We fix δ0 ∈ (0, 1)
such that we have additionally

sup
v∈Bδ0 (φ)

‖f ′(v)‖ 6 2‖f ′(φ)‖ =: C0, (3.48)

sup
v,w∈Bδ0 (φ)

‖f ′(v)− f ′(w)‖ 6 Λ1

4
. (3.49)
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The stability also implies the existence of δ1 ∈ (0, 1) such that for x ∈ Bδ1(φ)

u(t;x) ∈ B δ0
4

(φ) t > 0. (3.50)

Denote for x ∈ Bδ1(φ) the (Ft)t>0-stopping time σ∗ := σ∧inf{t > 0 | ‖Rε,xt ‖ > δ0
4 }.

The decomposition (3.42) and the mean value theorem applied to (3.45) read

dRε,xt
dt

= ∆Rε,xt +

∫ 1

0

f ′(u(t;x) + θ(Rε,xt + Ψε,x
t ))dθ(Rε,xt + Ψε,x

t )

= ∆Rε,xt + f ′(φ)Rε,xt +

∫ 1

0

(
f ′(u(t;x) + θ(Rε,xt + Ψε,x

t ))− f ′(φ)
)
dθRε,xt

+

∫ 1

0

f ′(u(t;x) + θ(Rε,xt + Ψε,x
t ))dθΨε,x

t .

We multiply with Rε,xt in L2(J) and integrate by parts. Then for any δ1 < δ0
4 the

event Eσ∗x,T ε(δ1) together with the embedding |Ψε,x
t |∞ 6 ‖Ψ

ε,x
t ‖, the deterministic

stability (3.50) and the definition of the stopping time σ∗ imply for t ∈ [0, T ε] and
θ ∈ [0, 1] the estimate

‖u(t;x) + θ(Rε,xt + Ψε,x
t )‖ 6 δ0.

Hence the inequalities (3.48) and (3.49) and the embedding H ⊆ L2(J) give on
Eσ∗x,T ε(δ1) for any t ∈ [0, T ε ∧ σ∗] the estimate

1

2

d

dt
|Rε,xt |2 + Λ1|Rε,xt |2 6

Λ1

4
|Rε,xt |2 + C0|Rε,xt ||Ψ

ε,x
t | 6

Λ1

2
|Rε,xt |2 +

(C0)2

Λ0
|Ψε,x
t |2,

such that we have after rearrangement

d

dt
|Rε,xt |2 + Λ1|Rε,xt |2 6

2(C0)2

Λ1
|Ψε,x
t |2.

Gronwall’s lemma applied to |Rε,xt |2 with initial condition |Rε,x0 |2 = 0 yields on the
event Eσ∗x,T ε(δ1) for t ∈ [0, T ε ∧ σ∗] the estimate

|Rε,xt |2 6
2(C0)2

Λ1
|Ψε,x
t |2. (3.51)

In order to obtain an estimate in H we use the smoothing property of the heat semi-
group S and the mean value theorem as well as (3.51) on Eσ∗x,T ε(δ1) for t ∈ [0, T ε ∧ σ∗]
as follows

‖Rε,xt ‖ 6 C1

∫ t

0

e−Λ0(t−s)
√
t− s

|f(Y ε,xs )− f(u(s;x))|ds

6 C1(C0 +
Λ0

4
)

∫ t

0

e−Λ0(t−s)
√
t− s

(|Rε,xs |+ |Ψε,x
s |)ds

6 C1(C0 +
Λ0

4
)
(

2
(C0)2

Λ0
+ 1
)∫ t

0

e−Λ0(t−s)
√
t− s

ds sup
r∈[0,t]

|Ψε,x
r |

6 C2 sup
r∈[0,t]

‖Ψε,x
r ‖,
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where C2 = C1(C0 + Λ0

4 )
(

2(C∗)
2

Λ0
+1
) ∫∞

0
exp(−Λ0r)√

r
dr <∞. If, in addition, δ1 < 1

K1

we obtain on Eσx,T ε(δ1)

inf{t > 0 | ‖Rε,xt ‖ >
δ0
4
} > T ε ∧ σ.

Note that we have not used any specific property of T ε. This finishes the proof. �

We combine Lemma 3.8 and Lemma 3.9. For this purpose we assume without
loss of generality that the limit

lim
ε→∞

sε

T ε
∈ {0,∞}. (3.52)

This is justified by the choice of scales in (3.30) and Lemma 3.8.

Lemma 3.10. Let the Hypotheses (D.1)-(D.3) and (S.1)-(S.2) be satisfied and the
scales γ·, ρ·, T · given by (3.30). For the constant q > 1 obtained in Lemma 3.8 let
γ·, ρ

·, T · additionally satisfy conditions (3.31), (3.32) and (3.33). Furthermore, we
assume (3.52).

Then for any R > R0 there is a constant ε0 ∈ (0, 1] such that for any ε ∈ (0, ε0],
x ∈ D2(γε,R) and ω ∈ Eσx,T ε(γqε ) we have

sup
t∈[0,T ε∧σ(ω)]

‖Rε,xt (ω)‖ 6 1

4
γε. (3.53)

Proof : Recall the notation sε := κ0| ln(γε)| with κ0 from the statement of Proposi-
tion 2.3. Assume ε0 ∈ (0, 1] is sufficiently small such that γε 6 δ0 and γqε < δ1 given
in Lemma 3.9. In the first case limε→0+

T ε

sε = 0 the result follows immediately by
Lemma 3.8 for K = 1

4 .
In the second case limε→0+

sε

T ε = 0 there is ε0 ∈ (0, 1] such that T ε > sε for all
ε ∈ (0, ε0]. Note that if σ < sε then sε ∧ σ 6 sε and we are back in the first case.
Thus we only have to consider the case σ > sε. Using Lemma 3.8 and the stability
of φ we fix additionally ε0 ∈ (0, 1] small enough such that ε ∈ (0, ε0] implies for
x ∈ D2(γε,R) on Eσx,T ε(γqε ) and {σ > sε} the estimates

sup
t∈[0,sε∧σ]

‖Rε,xt ‖ 6
1

9
γε, (3.54)

‖u(t;x)− φ‖ 6 1

4
γε for t > sε. (3.55)

Then (3.54) and (3.55) give for x ∈ D2(γε,R) on Eσx,T ε(γqε ) and {σ > sε}

‖Y ε(sε;x)−φ‖ 6 ‖u(sε;x)−φ‖+‖Rε,xsε ‖+‖Ψ
ε,x
sε ‖ 6

(1

4
+

1

9

)
γε+γqε 6

1

2
γε. (3.56)

As in the proof of Lemma 3.9 the stability of φ implies for all x ∈ Bδ0(φ) that
u(t;x) ∈ Bδ1(φ) for all t > 0. In addition, the linear stability of φ gives a constant
`0 ∈ (0, 1] such that

‖u(t;x)− u(t; y)‖ 6 `0‖x− y‖, for all x, y ∈ Bδ0(φ), t > 0.

Hence we have for ε ∈ (0, ε0] and x ∈ D2(γε,R) on the event Eσx,T ε(γqε )∩ {σ > T ε}

‖u(t;x)− u(t− sε;Y ε(sε;x))‖ 6 `0‖u(sε;x)− Y ε(sε;x)‖

6 ‖Rε,xsε ‖+ ‖Ψε,x
sε ‖ 6

1

9
γε + γqε .

(3.57)
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Estimate (3.57) provides for x ∈ D2(γε,R) on Eσx,T ε(γqε )∩{σ > sε} and additionally
sε < t 6 T ε ∧ σε the inequality

‖Rε,xt ‖ = ‖Y ε(t− sε, sε, Y ε(sε;x))− u(t− sε;u(sε;x))−Ψε,x
t ‖

6 ‖Y ε(t− sε, sε, Y ε(sε;x))− u(t− sε;Y ε(sε;x))−Ψ
ε,Y ε(sε;x)
t−sε,sε ‖

+ ‖u(t− sε;u(sε;x))− u(t− sε;Y ε(sε;x))‖+ ‖Ψε,x
t ‖+ ‖Ψε,Y ε(sε;x)

t−sε,sε ‖

6 sup
s∈[sε,T ε∧σ]

‖Rε,Y
ε(sε;x)

s,sε ‖+
1

9
γε + γqε + sup

s∈[sε,T ε∧σ]

‖Ψε,x
s ‖

+ sup
s∈[sε,T ε∧σ]

‖Ψε,Y ε(sε;x)
s−sε,sε ‖.

On the other hand estimate (3.56), the Markov property of Y ε for time sε and
Lemma 3.9 guarantee for x ∈ D2(γε,R) on Eσx,T ε(γqε ), {σ > sε} and sε < t 6 T ε∧σε
the inequality

‖Rε,xt ‖ 6 sup
y∈B 1

2
γε

(φ)

sup
s∈[0,T ε∧σ−sε]

‖Rε,ys ‖+
1

9
γε + γqε + sup

s∈[0,T ε∧σ]

‖Ψε,x
s ‖

+ sup
y∈B 1

2
γε

(φ)

sup
s∈[0,T ε∧σ−sε]

‖Ψε,y
s ‖

6 sup
y∈B 1

2
γε

(φ)

sup
s∈[0,T ε∧σ]

‖Rε,ys ‖+
1

9
γε + γqε + 2 sup

y∈D2(γε,R)

sup
s∈[0,T ε∧σ]

‖Ψε,x
s ‖

6 K0 sup
y∈B 1

2
γε

(φ)

sup
s∈[0,T ε∧σ]

‖Ψε,y
s ‖+

1

9
γε + γqε + 2 sup

y∈D2(γε,R)

sup
s∈[0,T ε∧σ]

‖Ψε,x
s ‖

6 (K0 + 2)γqε +
1

9
γε.

We note that the preceding expression is less than 1
4γε for all ε ∈ (0, ε0] if ε0 ∈ (0, 1]

is chosen sufficiently small. This finishes the proof. �

Proof of Proposition 3.4: Without loss of generality we assume in the sequel
T ε > sε for all ε ∈ (0, ε0] for some ε0 ∈ (0, 1]. Let the assumptions of Lemma 3.10
be satisfied for some R > R0 and q > 1 be given by Lemma 3.8. By Lemma 3.10
there exists ε0 ∈ (0, 1] such that for all ε ∈ (0, ε0] and x ∈ D2(γε,R) we have P-a.s.

(Gσx,T ε(
1

2
γε))

c = { sup
t∈[0,T ε∧σ]

‖Y ε(t;x)− u(t;x)‖ > γε
2
}

= { sup
t∈[0,T ε∧σ]

‖Rε,xt + Ψε,x
t ‖ >

γε
2
}

⊆ { sup
t∈[0,T ε∧σ]

‖Rε,xt ‖ >
γε
4
} ∪ { sup

t∈[0,T ε∧σ]

‖Ψε,x
t ‖ >

γε
4
}

⊆ { sup
t∈[0,T ε∧σ]

‖Rε,xt ‖ >
γε
4
} ∪ (Eσx,T ε(γqε ))c ⊆ (Eσx,T ε(γqε ))c. (3.58)

This finishes the proof of Proposition 3.4.
�
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Proof of Corollary 3.5: Proposition 3.4 states the existence of q > 1 such that for
all R > R0 there is ε0 ∈ (0, 1] such that ε ∈ (0, ε0] implies for x ∈ D2(γε,R)

Eσx,T ε(γqε ) ∩ {σ < T ε}
= Eσx,T ε(γqε ) ∩ {σ < T ε} ∩ { sup

t∈[0,T ε∧σ]

‖Y ε(t;x)− u(t;x)‖ 6 (1/2)γε}

⊆ { sup
t∈[0,σ]

‖Y ε(t;x)− u(t;x)‖ 6 (1/2)γε}

= {Y ε(t;x) ∈ B 1
2γε

(u(t;x)) for all t ∈ [0, σ]}

⊆ {Y ε(t;x) ∈
⋃
t>0

∈ B 1
2γε

(u(s;x)) for all t ∈ [0, σ]}.

By construction, we have that⋃
x∈D2(γε,R)

⋃
t>0

Bγε(u(t;x)) ⊆ D1(R) ⊆ UR \
⋃

v∈∂UR
Bγε(v).

In particular, we obtain

Eσx,T ε(γqε ) ∩ {σ < T ε} ⊆ {Y ε(σ;x) ∈ UR \
⋃

v∈∂UR
Bγε(v)}.

However, by definition of σ it is clear that Y ε(σ;x) ∈ (UR)c. Therefore for ε0 ∈
(0, 1] sufficiently small, ε ∈ (0, ε0] implies the desired result

Eσx,T ε(γqε ) ∩ {σ < T ε} = ∅. (3.59)

�

Proof of Corollary 3.5: Combining (3.58) and (3.59) ensures a constant q > 1 such
that for any R > R0 there is ε0 ∈ (0, 1] such that ε ∈ (0, ε0] yields

Ex,T ε(γqε ) ⊆ Gx,T ε(
1

2
γε).

�

4. The geometric structure of the large jumps dynamics

4.1. The models of the exit times and exit locus.

We now construct on Ω := (Ω,A,P, (Ft)t>0) the random variables (sι(ε))ε∈(0,1] of
Theorem 2.6 and (Kι(ε))ε∈(0,1] of Theorem 2.7.

Definition 4.1. For given scales ρ· and γ· in (C), B�j (ε) := {εWj ∈ J (Dι)c(φι)},
and the arrival times Tk of Wk given in (3.2), we define for ε ∈ (0, 1]

s̄ι(ε) :=

∞∑
k=1

Tk

k−1∏
j=1

(1− 1(B�j ))1(B�k),

Kι(ε) :=

∞∑
k=1

k

k−1∏
j=1

(1− 1(B�j ))1(B�k).
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Lemma 4.2. For given scale ρ· in (3.1) and any ε ∈ (0, 1] the random variable
s̄ι(ε) is exponentially distributed with rate λιε and the random variable Kι(ε) is
geometrically distributed with rate P(B�) = λιε/βε. In particular sι(ε) := λιε s̄

ι(ε) is
exponentially distributed with rate 1.

The proof is elementary and provided in Appendix 5.1.

4.2. Exit events and their estimates.

Recall the arrival times Tk = t1 + · · · + tk of Wk from (3.2). The following events
are the building blocks of the first exit events. For x ∈ H, R > R0 and a given
rate γ : (0, 1)→ (0, 1) with γε → 0 as ε→ 0 we define for j ∈ N

A(j)
x := {Y ε(t;x) ∈ Dι

2(γε,R) for all t ∈ [0, tj ]

and Y ε(tj ;x) +G(Y ε(tj ;x), ε∆tjL) ∈ Dι
2(γε,R)},

B(j)
x := {Y ε(t;x) ∈ Dι

2(γε,R) for all t ∈ [0, tj ]

and Y ε(tj ;x) +G(Y ε(tj ;x), ε∆tjL) /∈ Dι
2(γε,R)},

C(j)
x := {Y ε(t;x) /∈ Dι

2(γε,R) for some t ∈ [0, tj)}.

In order to use the (strong) Markov property in Subsection 4.3 we identify Ω
with the canonical probability space given as the path space of the driving noise
D([0,∞), H). The shift operator Θs : D([0,∞), H) → D([0,∞), H) by s > 0 is
defined on this space by Θs ◦ ω(·) := ω(s + ·) for s > 0. It is applied to the event
A

(j)
x by

Θs ◦A(j)
x = {Y ε(t+ s;Y ε(s;x)) ∈ Dι

2(γε,R) for all t ∈ (s, tj + s) and

Y ε(tj + s;Y ε(s;x)) +G(Y ε(tj + s;Y ε(s;x)), ε∆tj+sL) ∈ Dι
2(γε,R)}.

In particular, since tj + Tj−1 = Tj we obtain

Ajx := ΘTj−1
◦A(j)

x = {Y ε(t, Y ε(Tj−1;x)) ∈ Dι
2(γε,R) for all t ∈ (Tj−1, Tj)

and Y ε(Tj ;x) +G(Y ε(Tj ;x), ε∆TjL) ∈ Dι
2(γε,R)} (4.1)

and define the analogous expressions Bjx := ΘTj−1
◦B(j)

x and Cjx := ΘTj−1
◦C(j)

x in
the sense of (4.1). We further define G(j)

x (ε, γ) by Gx(ε, γ) where T1 in (3.27) is re-
placed by tj and analogously as above Gjx(ε, γ) := ΘTj−1

◦G(j)
x (γ, ε). By construction

we have the representations

{τx = Tk} =

k−1⋂
j=1

Ajx ∩Bkx and {τx ∈ (Tk−1, Tk)} =

k−1⋂
j=1

Ajx ∩ Ckx . (4.2)

4.3. Proof of Theorem 2.6 and Theorem 2.7.

In this section we prove two results which are not congruent to Theorem 2.6 and
Theorem 2.7. In Proposition 4.3 we show the statement of Theorem 2.6 and addi-
tionally the convergence in probability of the first exit locus of Theorem 2.7. We
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apply this strategy for the sake of efficiency in order to avoid the repetition of argu-
ments. Proposition 4.4 sharpens this result to the convergence in Lp for p ∈ (0, α)
of Theorem 2.7 by showing the respective uniform integrability.

Proposition 4.3. Let the assumptions of Theorem 2.7 be satisfied. Then for any
θ ∈ (0, 1) and c > 0 there are ε0, γ ∈ (0, 1] and R > R0 such that ε ∈ (0, ε0] implies
for any U ∈ B(H) with mι(∂U) = 0 that

sup
x∈Dι3(εγ ,R)

E
[
eθ|λ

ι
ετ
ι
x(ε,R)−sι(ε)|·

·
(
1 + |1{Xε(τ ;x) ∈ U} − 1{WKι(ε) ∈

1

ε
J U∩(Dι)c(φι)}|

)]
6 1 + c.

The statement of Proposition 4.3 directly implies the statement of Theorem 2.6.

Proof : The proof is organized in four consecutive steps. First, the strong Markov
property reduces the main expression to four geometric sums, whose limit consists
of event involving certain events, which are estimated in Step 2. In Step 3 we
estimate the resulting event probabilities using all the previous results available
and apply these results in Step 4 to the four sums mentioned above and conclude.

Step 0: Conventions and assumptions. We choose the scales γ·, ρ·, T · ac-
cording to (C) for q > 1 given in Lemma 3.8. Without loss of generality we set
θ ∈ ( 1

2 , 1). We use Hypothesis (S.4) and fix c ∈ (0, 1
2 (1− θ)), R > R0 large enough

and δ ∈ (0, 1] sufficiently small such that

mι
(
Dι \Dι

3(δ,R)
)

µι(Dι)
< c. (4.3)

In addition, we assume ε0 ∈ (0, 1] is sufficiently small such that γε 6 δ. Due to the
ubiquitous dependence of all quantities of ε, R and ι we drop these dependencies.
For convenience we write Di = Dι

i(γε,R), i = 2, 3.

Step 1: Reduction to events over (0, T1]. We start with the estimate

sup
x∈D2

E
[
eθ|λετx−s|

(
1 + |1{Xε(τx;x) ∈ U} − 1{WKι ∈

1

ε
J U∩D

c

(φ)}|
)]

6 S11 + S12 + S2 + S3, (4.4)

where

S11 :=

∞∑
k=1

sup
y∈D2

E
[
eθλε|τy−Tk|1{τy = Tk} ∩ {s = Tk}·

·
(
1 + |1{Xε(τy; y) ∈ U} − 1{WKι ∈

1

ε
J U∩D

c

(φ)}|
)]
,

S12 := 2

∞∑
k=1

sup
y∈D2

E
[
eθλε|τy−Tk|1{τy ∈ (Tk−1, Tk)} ∩ {s = Tk}

]
,

S2 := 2

∞∑
k=1

k−1∑
`=1

sup
y∈D2

E
[
eθλε|τy−Tk|1{τy ∈ (T`−1, T`]} ∩ {s = Tk}

]
,

S3 := 2

∞∑
k=1

∞∑
`=k+1

sup
y∈D2

E
[
eθλε|τy−Tk|1{τy ∈ (T`−1, T`]} ∩ {s = Tk}

]
.
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In the sequel we estimate the preceding expressions using the representations in
(4.2) and the strong Markov property with respect to the (Ft)t>0-stopping times Tk.
S11: The term S11 is treated first since it is the only one of order O(1)ε→0, while
all other expressions are o(1)ε→0. We denote the symmetric set difference by
E1 4 E2 := (E1 \ E2) ∪ (E2 \ E1) for events E1, E2. In the sequel we repeatedly
use strong Markov estimates of the following type using for brevity Ãjy = Ajy ∩ A�j
and B̃ky = Bky ∩B�k

E
[
1
(
{τy = Tk} ∩

k−1⋂
j=1

A�j ∩B�k
)(

1 + |1{Xε(Tk; y) ∈ U} − 1{Wk ∈
1

ε
J U∩D

c

(φ)}|
)]

6 E
[
1
( k−1⋂
j=1

Ãjy

)
E
[
1(B̃ky )

(
1 + 1{Xε(Tk; y) ∈ U}4{Wk ∈

1

ε
J U∩D

c

(φ)}
)
|FTk−1

]]

= E
[
1
( k−1⋂
j=1

Ãjy

)
·

· EXε(Tk−1;y)

[
1(B̃k· )

(
1 + 1{Xε(Tk; y) ∈ U}4{Wk ∈

1

ε
J U∩D

c

(φ)}
)]]

6 E
[
1
( k−1⋂
j=1

Ãjy

)]
sup
y′∈D2

E
[
1(B̃1

y′)
(
1 + 1{Xε(Tk; y′) ∈ U}4{Wk ∈

1

ε
J U∩D

c

(φ)}
)]
.

The (k − 1)-fold iteration of this argument yields

S11 6
∞∑
k=1

sup
y∈D2

P(Ay ∩A�)k−1·

· sup
y∈D2

E
[
1
(
By ∩B�

)(
1 + 1{Xε(Tk; y) ∈ U} 4 {Wk ∈

1

ε
J U∩D

c

(φ)}
)]

=
supy∈D2

E
[
1
(
By ∩B�

)(
1 + 1{Xε(Tk; y) ∈ U} 4 {Wk ∈ 1

εJ
U∩Dc

(φ)}
)]

1− supy∈D2
P(Ay ∩A�)

.

(4.5)

S12: The remaining diagonal term is estimated as follows

S12 6 2
∞∑
k=1

sup
y∈D2

E
[
eθλεtk1

( k−1⋂
j=1

(
Ajy ∩A�j

)
∩
(
Cky ∩B�k

)]
.

For k > 1 we obtain by the analogous strong Markov arguments as for the term
S11

sup
y∈D2

E
[
eθλεtk1

( k−1⋂
j=1

(
Ajy ∩A�j

)
∩ 6 sup

y∈D2

P(Ay ∩A�)k−1 sup
y∈D2

E
[
eθλεT11

(
Cy ∩B�

)]
,

such that

S12 6 2 sup
D2

E
[
eθλεT11

(
Cy ∩B�

)] ∞∑
k=1

sup
D2

P(Ay ∩A�)k−1

6
2 supy∈D2

E
[
eθλεT11

(
Cy
)]

1− supy∈D2
P(Ay ∩A�)

.

(4.6)
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S2: The estimate of {τy ∈ (T`−1, T`]} and the representation of {s = Tk} yield

S2 6 2

∞∑
k=1

k−1∑
`=1

sup
y∈D2

E
[
eθλε(t`+···+tk)1

( k−1⋂
j=`+1

A�j ∩B�k
)
·

· 1
( `−1⋂
j=1

(
Ajy ∩A�j

)
∩
(
(B`y ∪ C`y) ∩A�`

))]
.

For each of the summands k ∈ N and k − 1 > ` > 1 we combine the mutual inde-
pendence of the families (Tk)k∈N and (Wk)k∈N with the analogous strong Markov
estimate and obtain

sup
y∈D2

E
[
eθλε(t`+···+tk)1

( k−1⋂
j=`+1

A�j ∩B�k
)
1
( `−1⋂
j=1

(
Ajy ∩A�j

)
∩
(
B`y ∪ C`y

)
∩A�`

)]
6 (1− P(A�))E

[
eθλεT1

]
sup
y∈D2

P
(
By ∪ Cy

)
E
[
eθλεT1

]k−1P(A�)k−1

sup
y∈D2

P(Ay ∩A�)`−1
(
E
[
eθλεT1

]
P(A�)

)−(`−1)

.

Obviously we have
sup
y∈D2

P(Ay ∩A�) 6 E
[
eθλεT1

]
P(A�),

such that for any k > 1

k−1∑
`=1

sup
y∈D2

P(Ay ∩A�)`−1
(
E
[
eθλεT1

]
P(A�)

)−(`−1)

6 k − 1,

and hence

S2 6 2P(B�) sup
y∈D2

P
(
(By ∪ Cy) ∩A�

)
E
[
eθλεT1

] ∞∑
k=1

(k − 1)E
[
eθλεT1

]k−1P(A�)k−1

= 2P(B�)E
[
eθλεT1

] supy∈D2
P
(
(By ∪ Cy) ∩A�

)(
1− E

[
eθλεT1

]
P(A�)

)2 . (4.7)

S3: Due to the doubly infinite summation S3 turns out to be the cumbersome case
here. We rewrite S3 in terms of the events

S3 = 2

∞∑
k=1

∞∑
`=k+1

sup
y∈D2

E
[
eθλε(tk+···+t`)1

( k−1⋂
j=1

(
Ajy ∩ A�j

))
1
(
Aky ∩ B�k

)
·

· 1
( `−1⋂
j=k+1

Ajy ∩
(
B`y ∪ C`y

))]
.

The strong Markov estimates as in S11 yield for all ` > k + 1 for each summand
the following upper bound

sup
y∈D2

E
[
eθλε(tk+···+t`)1

( k−1⋂
j=1

(
Ajy ∩A�j

))
1
(
Aky ∩B�k

)
1
( `−1⋂
j=k+1

Ajy ∩
(
B`y ∪C`y

))]
6 sup
y∈D2

P
(
Ay ∩A�

)k−1
sup
y∈D2

P
(
Ay ∩B�

)
sup
y∈D2

E
[
eθλεT11(Ay)

]`−k
·
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· sup
y∈D2

E
[
eθλεT11(By ∪ Cy)

]
.

Assuming that supy∈D2
E
[
eθλεT11(Ay)

]
< 1 for ε ∈ (0, ε0] for ε0 ∈ (0, 1] sufficiently

small, which we verify in estimate (4.16) of Step 3, we obtain

S3/2 6 sup
D2

P
(
Ay ∩B�

)
E
[
eθλεT11

(
By ∪ Cy

)]
·

·
∞∑
k=1

sup
D2

P
(
Ay ∩A�

)k−1
( ∞∑
`=k+1

sup
D2

E
[
eθλεT11(Ay)

]`−k)

= sup
D2

P
(
Ay ∩B�

)( supD2
E
[
eθλεT11(Ay)

]
supy∈D2

E
[
eθλεT11

(
By ∪ Cy

)]
(1− supD2

P(Ay ∩A�))(1− supD2
E
[
eθλεT11(Ay)

]
)

)
6 E

[
eθλεT1

]( supD2
P
(
Ay ∩B�

)
supy∈D2

E
[
eθλεT11

(
By ∪ Cy

)]
(1− supD2

E
[
eθλεT11(Ay)

]
)2

)
.

(4.8)

Step 2: Fine dynamic estimates of the events on (0, T1].
Claim 1: For y ∈ D2 it follows that

1(Ay) 6 1{εW1 ∈ JD(φ)}+ 1{‖εW1‖ >
γε
2
}1{T1 < κ0| ln(γε)|}+ 1(Gcy), (4.9)

1(By) 6 1{εW1 ∈ JD
c

(φ)}+ 1{εW1 ∈ JD\D3(φ)}

+ 1{‖εW1‖ >
γε
2
}1{T1 < κ0| ln(γε)|}+ 1{T1 < κ1γε}+ 1(Gcy), (4.10)

1(Cy) 6 1{T1 < κ1γε}+ 1(Gcy). (4.11)

Proof of Claim 1: We prove (4.9): By construction we have for y ∈ D2 we have for
a = 5 ∨ g1(R)

1(Ay) 6 1(Ay)1(Gy)1{‖εWε‖ >
γε
a
}+ 1{‖εWε‖ 6 γε}+ 1(Gcy)

6 1(Ay)1(Gy)1{‖εWε‖ >
γε
a
}{T1 > κ0| ln(γε)|}

+ 1(Ay)1(Gy)1{‖εWε‖ >
γε
a
}{T1 < κ0| ln(γε)|}+ 1{‖εWε‖ 6

γε
a
}+ 1(Gcy)

6 1{‖εWε‖ >
γε
a
}1{Y ε(T1; y) ∈ B 3

4γε
(φ)}1{εW1 ∈ JD2(Y ε(T1; y))}

+ 1{‖εWε‖ >
γε
a
}{T1 < κ0| ln(γε)|}+ 1{‖εWε‖ 6

γε
a
}+ 1(Gcy)

6 1{‖εWε‖ >
γε
a
}1
( ⋂
y∈B 3

4
γε

(φ)

{εW1 ∈ JD2(y)}
)

+ 1{‖εWε‖ 6
γε
a
}+ 1{‖εWε‖ >

γε
a
}{T1 < κ0| ln(γε)|}+ 1(Gcy).

We use that by definition⋂
y∈B 3

4
γε

(φ)

{εW1 ∈ JD2(y)} =
⋂

y∈B 3
4
γε

(φ)

{y +G(y, εW1) ∈ D2}.
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Then for y ∈ B 3
4γε

(φ) on {‖εW1‖ 6 γε
a } we obtain for ε ∈ (0, ε0] with ε0 ∈ (0, 1]

sufficiently small the estimate

‖y +G(y, εW1)− φ‖ 6 3

4
γε +

γε
a
< γε.

The obvious inclusion Bγε(φ) ∈ D2 for ε sufficiently small yields

1{‖εWε‖ 6
γε
a
} = 1{‖εWε‖ 6

γε
a
}1
( ⋂
y∈B 3

4
γε

(φ)

{εW1 ∈ JD2(y)}
)
.

Hence the inclusion JD2(Bγε(φ)) ⊆ JD(φ) provides the desired result (4.9)

1(Ay) 6 1{εW1 ∈ JD(φ)}+ 1{‖εWε‖ >
γε
a
}1{T1 < κ0| ln(γε)|}+ 1(Gcy).

We prove (4.10): Hypothesis (D.3) implies for y ∈ D2 and t > κ1γε that u(t; y) ∈
D3. Hence on Gy ∩ {‖εW1‖ 6 γε

a } it follows Y ε(T1;x) + G(Y ε(T1;x), εW1) ∈ D2,
which implies By ∩ Gy ∩ {‖εW1‖ 6 γε

a } ∩ {T1 > κ1γε} = ∅. Therefore, we obtain
the estimate

1(By) 6 1(By)1(Gy) + 1(Gcy)

6 1(By)1(Gy)1{‖εW1‖ >
γε
a
}1{T1 > κ0| ln(γε)|}

+ 1(By)1(Gy)1{‖εW1‖ >
γε
a
}1{T1 < κ0| ln(γε)|}

+ 1(By)1(Gy)1{‖εW1‖ 6
γε
a
}1{T1 > κ1γε}

+ 1(By)1(Gy)1{‖εW1‖ 6
γε
a
}1{T1 < κ1γε}+ 1(Gcy)

6 1{Y ε(T1; y) ∈ B 3
4γε

(φ)}1{εW1 ∈ JD
c
2(Y ε(T1; y))}

+ 1{‖εW1‖ >
γε
a
}1{T1 < κ0| ln(γε)|}+ 0 + 1{T1 < κ1γε}+ 1(Gcy)

6 1{εW1 ∈ JD
c
2(B 3

4γε
(φ))}+ 1{‖εW1‖ >

γε
a
}1{T1 < κ0| ln(γε)|}

+ 1{T1 < κ1γε}+ 1(Gcy).

We conclude (4.10) by the obvious inclusions

JD
c
2(Bγε(φ)) ⊆ JD

c
3(φ), and Dc

3 ⊆ Dc ∪ (D \D3).

We prove (4.11): By Hypothesis (D.3) y ∈ D2 and t > κ1γε imply u(t; y) ∈ D3.
Hence the event Gy∩{T1 > κ1γε} implies that Y ε(t; y) ∈ B 1

2γε
(u(t; y)) ⊆ D2(γε,R)

for all t ∈ [κ1γε, T1] and Cy ∩Gy ∩{T1 > κ1γε} = ∅. This implies the desired result

1(Cy) 6 1(Cy)1(Gy)1{T1 > κ1γε}+ 1{T1 < κ1γε}+ 1(Gcy)

= 1{T1 < κ1γε}+ 1(Gcy),

and finishes the proof of Claim 1.

We recall the Lipschitz constant K2 of G given in (2.8).
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Claim 2: For y ∈ D2 and U ∈ B(H) it follows that

1(Ay ∩B�) 6 1{‖εW1‖ >
γε
a
}1{T1 < κ0| ln(γε)|}+ 1(Gcy), (4.12)

1(By ∩A�) 6 1{εW1 ∈ JD\D3(δ,R)(φ)}+ 1{‖εW1‖ >
γε
a
}1{T1 < κ0| ln(γε)|}

+ 1{T1 < κ1γε}+ 1(Gcy), (4.13)

1(By ∩B�)1
(
{X(T1; y) ∈ U} 4 {εW1 ∈ J U (φ)}

)
6 1{εW1 ∈ J B(K2+1)γε (∂U)∩Dc

(φ)}+ 1{‖εW1‖ >
γε
a
}1{T1 < κ0| ln(γε)|}

+ 1{T1 < κ1γε}+ 1(Gcy). (4.14)

Proof of Claim 2: Estimate (4.12) is a direct consequence of (4.9) in Claim 1. With
the help of (4.10) the proof of (4.13) is straightforward. For the proof of (4.14)
we use the inclusion J U (Bγε(φ)) ⊆ J U (φ) and the global Lipschitz continuity of
y 7→ y +G(y, z) with Lipschitz constant 1 +K2 as follows

1(By ∩B�)1{X(T1; y) ∈ U} 4 {εW1 ∈ J U}

6 1{εW1 ∈ JD
c

(φ) ∩
(
J U (Bγε(φ))4J U (φ

)
}

+ 1{‖εW1‖ >
γε
a
}1{T1 < κ0| ln(γε)|}+ 1{T1 < κ1γε}+ 1(Gcy).

Finally we see for the first term the inclusions

{εW1 ∈ JD
c

(φ) ∩
(
J U (Bγε(φ))4J U (φ

)
}

⊆ {εW1 ∈ JD
c

(φ) ∩
(
J U (φ

)
\ J U (Bγε(φ))}

⊆ {εW1 ∈ J B(K2+1)γε (∂U)∩Dc

(φ)}.

This finishes the proof of (4.14) and of Claim 2.
Step 3: Estimates of the factor probabilities. Step 2 provides the estimates
to dominate respectively the term S11 by (4.5), S12 by (4.6), S2 by (4.7) and S3 by
(4.8). In the sequel we estimate the probabilities of the events contained in these
expressions.
Event Ay: Due to Hypothesis (S.2) and the choice γ∗ < ρ∗ in (3.31) we have

lim
ε→0+

P(‖εW1‖ >
γε
a

)
( εα

(aγε)αβε

)−1

= 1,

lim
ε→0+

| ln(γε)|
( εα

(aγε)α

)βε
λε

= 0.

(4.15)

Together with (4.9) the limits (4.15) yield an ε0 ∈ (0, 1] such that ε ∈ (0, ε0] implies

sup
y∈D2

P(Ay ∩A�) 6 sup
y∈D2

E
[
eθλεT11(Ay)

]
6 1− (1− θ)λε

βε − θλε
+ (1 + c)κ0| ln(γε)|βε

( εα

(aγε)αβε

)
+

βε
βε − θλε

(
e−

1
3γε + e−

βεT
ε

2

)
6 1−

( (1− θ)
1− θ λεβε

− 2c
)λε
βε
6 1− 1− θ

2

λε
βε
6 1− (1− c)λε

βε
< 1. (4.16)
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Event By: Using that ν is regularly varying and the initial choice of R > R0 in
(4.3) we obtain

lim
ε→0

ν( 1
εJ

D\D3(γε,R)(φ))

βε

(λε
βε

)−1

6 lim
ε→0

ν( 1
εJ

D\D3(γε0 ,R)(φ))

ν( 1
εJD(φ))

=
µ(JD\D3(γε0 ,R)(φ))

µ(JD(φ))
6 c.

(4.17)

In addition, by the choice of scales (3.33) there is ε0 ∈ (0, 1] such that for ε ∈ (0, ε0]
we have

P(T1 < κ1γε) = 1− e−κ1γεβε 6 cκ1γεβε 6 c
λε
βε
. (4.18)

Together with (4.15) we apply estimate (4.10) which gives ε0 ∈ (0, 1] such that
ε ∈ (0, ε0] implies

sup
y∈D2

P(By ∩B�) 6 sup
y∈D2

E
[
eθλεT11(By)

]
6 E

[
eθλεT1

]
P(W1 ∈

1

ε
JD

c

(φ)) + E
[
eθλεT11{T1 < κ0| ln(γε)|}

]
P(‖εW1‖ > γε)

+ E
[
eθλεT1 ]P(T1 < κ1γε}+ sup

y∈D2

E
[
eθλεT11(Gcy)

]
6

λε
βε − θλε

+
(1 + c)βε
βε − θλε

(εα(1− e−(βε−θλε)(κ0| ln(γε)|))

γαε βε

)
+

cλε
βε − θλε

+
βε

βε − θλε
(
e−

1
3γε + e−

βεT
ε

2

)
6 (1 + 5c)

λε
βε
. (4.19)

Event Cy: By estimate (4.11) we have a constant ε0 ∈ (0, 1] such that for ε ∈ (0, ε0]
it holds

sup
y∈D2

P(Cy) 6 sup
y∈D2

E
[
eθλεT11

(
Cy
)]

6 sup
y∈D2

E
[
eθλεT1(1(T1 < κ1γε}+ 1(Gcy))

]
6 3c

λε
βε
. (4.20)

Events Ay ∩B� and By ∩A�: By (4.12) there is ε0 ∈ (0, 1] such that for ε ∈ (0, ε0]
we obtain with the analogous calculations

sup
y∈D2

P(Ay ∩B�) 6 sup
y∈D2

E
[
eθλεT11(Ay ∩B�)

]
6 c

λε
βε
. (4.21)

With the help of (4.13), the regular variation of ν and (4.3) there is a constant ε0

such that for ε ∈ (0, ε0] it follows that

sup
y∈D2

P(By ∩A�) 6 sup
y∈D2

E
[
eθλεT11(By ∩A�)

]
6 c

λε
βε
. (4.22)

Step 4: Conclusion. We collect the estimates of the right-hand side of (4.4).
Estimate S11: Since mι(∂U) = µ(J ∂U (φι)) = 0 by assumption, the regular vari-
ation of ν by Hypothesis (S.2) and (4.3) we have ε0 ∈ (0, 1] such that ε ∈ (0, ε0]
yields

lim
ε→0

P
(
εW1 ∈ J B(K2+1)γε (∂U)∩Dc

(φ)
)(λε
βε

)−1
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= lim
ε→0

ν
(

1
εJ

B(K2+1)γε (∂U)∩Dc

(φ)
)

ν(ρεBc
1(0))

ν(ρεBc
1(0))

ν
(

1
εJD

c(φ)
) 6 µ

(
J B(K2+1)δ(∂U)∩Dc

(φ)
)

µ(JDc(φ))
6 c.

(4.23)

Hence (4.14), (4.19) and (4.23) combined yield

sup
y∈D2

E
[
1
(
By ∩B�

)(
1 + 1{Xε(T1; y) ∈ U} 4 {εW1 ∈ J U∩D

c

}
)]

6 P(εW1 ∈ JD
c

(φ)) + P(εW1 ∈ J B(K2+1)γε (∂U)∩Dc

(φ))

+ P(T1 < κ0| ln(γε)|)P(‖εW1‖ >
γε
a

) + sup
y∈D2

P
(
Gcy
)

6 (1 + 3c)
λε
βε
.

Finally, for ε ∈ (0, ε0] the sum S11 given in (4.5) satisfies due to c 6 1
4

S11 6
1 + 3c

1− c
6 1 + 6c. (4.24)

S12 given by (4.6): By (4.16) and (4.20) the sum S12 given in (4.6) satisfies for
ε ∈ (0, ε0]

S12 6
6c

1− c
6 8c. (4.25)

S2 given by (4.7): Using the estimates (4.20), (4.22) and the choice c ∈ (0, 1−θ
2 ) the

sum S2 given in (4.7) satisfies for ε ∈ (0, ε0] the estimate

S2 6
8c(1 + 5c)(
(1− c)λεβε )

)2(λεβε
)2

6 48c. (4.26)

S3 given by (4.8): Using (4.16) and (4.21) we obtain ε0 ∈ (0, 1] such that ε ∈ (0, ε0]
implies

S3 6 4
cλεβε 4cλεβε(
(1− c)λεβε

) 6 16c2

(1− c)2
6 4c. (4.27)

We finally collect (4.24) - (4.27) and infer the existence of ε0 ∈ (0, 1] such that
ε ∈ (0, ε0] yields

sup
x∈D2

E
[
eθλε|τx−s̄(ε)|(1 + |1{Xε(τx;x) ∈ U} − 1{WKι(ε) ∈

1

ε
J U∩D

c

(φ)}|
)]

6 1 + 66c.

Since c ∈ (0, 1−θ
2 ) was chosen arbitrary this finishes the proof. �

Having established the convergence in probability of the exit locus it is sufficient
to establish the uniform integrability. We keep all the notation and the scales of
the proof of Proposition 4.3.

Proposition 4.4. Under the assumptions of Proposition 4.3 for any 0 < p < α
and R > R0 there are ε0, γ ∈ (0, 1] and such that

sup
ε∈(0,ε0]

sup
x∈D2(εγ ,R)

E
[
‖Xε(τ ;x)− (φ+G(φ, εWKι(ε)))‖p

]
<∞. (4.28)

The proof of Proposition 4.4 is given in Subsection 5.3 of the appendix.
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Proof of Theorem 2.7: The convergence ‖Xε(τ ; y) − φ − G(φ, εWKι(ε))‖ → 0 in
probability as ε → 0 is established in Proposition 4.3. In addition it holds true
uniformly for all y ∈ D2(εγ ,R). The uniform boundedness of Proposition 4.4
implies the uniform integrability of the family of random variables (‖Xε(τ ; y)−φ−
G(φ, εWKι(ε))‖p)ε∈(0,ε0] and hence its convergence as ε→ 0 in Lp.

The last statement of Theorem 2.7 follows from limε→0 P(εWKι(ε)(ε) ∈ U) =
µ(U∩(Dι)c)
µ((Dι)c) for all U ∈ B(H) with µ(∂U) = 0.

�

5. Appendix

5.1. Proof of Lemma 4.2: the law of the models.

Since the family (Wk)k∈N is i.i.d. and B�k = {εWk ∈ (Dι)} we have that by
construction Kι(ε) is geometrically distributed with rate P(B�) =

λιε
βε
. Let θ > 0.

We calculate the Laplace transform of s̄ι(ε)

E
[
e−θs̄

ι(ε)
]

= E
[
e−θ

∑∞
k=1 Tk

∏k−1
j=1 (1−1(B�j ))1(B�k)

]
= E

[ ∞∏
k=1

e−θTk
∏k−1
j=1 (1−1(B�j ))1(B�k)

]

=

∞∑
k=1

E

e−θTk k−1∏
j=1

(1− 1(B�j ))1(B�k)


=

∞∑
k=1

E

k−1∏
j=1

e−θtj (1− 1(B�j ))e−θtk1(B�k)

 .
The independence of (Wk)k∈N and (Tk)k∈N as well as the stationarity of (Wk)k∈N
yield that each summand takes the form

E

k−1∏
j=1

e−θtj (1− 1(B�j ))e−θtk1(B�k)

 =

k−1∏
j=1

E
[
e−θtj (1− 1(B�j ))

]
E
[
e−θtk1(B�k)

]
=
(
E
[
e−θt1

]
(1− P(B�1))

)k−1 E
[
e−θt1

]
P(B�1)

=

(
βε

θ + βε
(1− λιε

βε
)

)k−1
βε

θ + βε

λιε
βε
.

Finally we conclude

E
[
e−θs̄

ι(ε)
]

=

∞∑
k=1

(
βε

θ + βε
(1− λιε

βε
)

)k−1
βε

θ + βε

λιε
βε

=
βε

θ + βε

λιε
βε

1

1− βε
θ+βε

(1− λιε
βε

)
=

λιε
βε

1
θ+βε
βε
− (1− λιε

βε
)



The first exit problem of reaction-diffusion equations for small Lévy noise 703

=
λιε

θ + λιε
= ̂EXP(λε)(θ).

5.2. Proof of Lemma 3.2: a Campbell type estimate.

Recall the notation from Step 2 of Proposition 3.1. For the (Ft)t>0-predictable
process (Ht)t>0 given in (3.15) and x ∈ D2 we recall the predictable itegrand given
by hx(s−, εz) := 2Hs〈〈Φε,xs− , G(Y (s−;x), εz)〉〉. Consider the process

Zt := Zε,xt =

∫ t

0

∫
‖z‖6ρε

hx(s−, εz)Ñ(dsdz).

We define the smooth function Ic(r) :=
√
r2 + c2, c ∈ (0, 1], with I0(r) = |r|, which

satisfies the following useful properties

|r| 6 Ic(r) 6 |r|+ c, r ∈ R,

sup
r∈R
| r

Ic(r)
| = 1

Ic(r + h) 6 Ic(r) + Ic(h), r, h ∈ R,

Ic(r)′ =
r

Ic(r)
, r ∈ R,

Ic(r)′′ =
c2

I3
c (r)

, r ∈ R.

For F (r) := exp(κIc(r)) for some parameter κ > 0 we first obtain for all r ∈ R

F ′(r) = F (r)
κr

Ic(r)

F ′′(r) = F (r)
(κ2r2Ic(r) + κc2

Ic(r)3

)
.

Applying twice the mean value theorem, and (5.2) - (5.2) we obtain for all r, h ∈ R
the estimate

|F (r + h)− F (r)− F ′(r)h|

6
∫ 1

0

∫ 1

0

|F ′′(r + θ′θh)|dθ′dθ |h2|

6
∫ 1

0

∫ 1

0

|F (r + θ′θh)
(κ2r2Ic(r + θ′θh) + κc2

Ic(r + θ′θh)3

)
|dθ′dθ |h2|

6 F (r)F (|h|)
(
κ2 +

κ

c

)
|h2|.

Itō’s formula for Poisson random measures then yields P-a.s. for all t > 0

F (Zt)

= 1 +

∫ t

0

∫
‖z‖6ρε

F (Zs− + h(s−, εz))− F (Zs−)Ñ(dsdz)

+

∫ t

0

∫
‖z‖6ρε

F (Zs− + h(s−, εz))− F (Zs−)− F (Zs−)
κZs−h(s−, εz)
Ic(Zs−)

ν(dz)ds.
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Let σ be the (Ft)t>0-stopping time defined in (3.4) and (3.5). Then for κ = κε =
8ϑ2

ε = 8γ−2q−2
ε we have

sup
s∈[0,σ∧T ε]

sup
‖z‖6ρε

(κε)2|h(s, εz)|2

6 2
(ερε)2

γ4p+4
ε

sup
s∈[0,σ∧T ε]

|Hs−|d(R)g1(R)

6 2d(R)g1(R)
(ερε)2

γ4p+4
ε

6 2d(R)g1(R)Γ̃(ε)→ 0, ε→ 0,

where Γ̃(ε) = Γ(ε)/T ε in (3.6). Hence there is a constant ε0 ∈ (0, 1] satisfy-
ing sups∈[0,σ∧T ε] sup‖z‖ρε |h(s, εz)| 6 1 for all ε ∈ (0, ε0]. Then due to the op-
tional stopping theorem the second term vanishes. Using ρε > 1, the constant
C1 =

∫
‖z‖61

‖z‖2ν(dz) + ν(Bc
1(0)), the parametrization c = cε = γε and the abbre-

viations h = h(s−, εz) and hσ = h(s− ∧σ, εz) we have

E
[
F (Zt∧σ)

]
6 1 + E

[ ∫ t∧σ

0

∫
‖z‖6ρε

(
F (Zs− + h)− F (Zs−)− F (Zs−)

κZs−h

Ic(Zs−)

)
ν(dz)ds

]
6 1 + E

[ ∫ t∧σ

0

∫
‖z‖6ρε

F (Zs−)F (|h|)
(
(κε)2 +

κε

c

)
|h|2ν(dz)ds

]
6 1 + E

[ ∫ t

0

∫
‖z‖6ρε

F (Zs−∧σ)F (|h|)
(
(κε)2 +

κε

c

)
|hσ|2ν(dz)ds

]
6 1 + C2

∫ t

0

∫
‖z‖6ρε

E
[
F (Zs−∧σ)

]
F (
√
C2Γ(ε))

(γε(κ
ε)2 + κε)(ερε)2‖z‖2

γ4p+5
ε

ν(dz)ds

6 1 + C3

∫ t

0

E
[
F (Zs−∧σ)

]
ds = 1 + C3

∫ t

0

E
[
F (Zs∧σ)

]
ds,

where C2 = 2d(R)g1(R) and C3 = C1C2Γ̃(ε)F (1). Setting

φε(t) := E
[
F (Zt∧σ)

]
, t > 0,

we have

φε(t) 6 1 + C3Γ̃(ε)

∫ t

0

φε(s)ds, t > 0.

The Gronwall-Bellman inequality yields φε(t) 6 exp(C3Γ̃(ε)t) for all t > 0, and
in particular, φε(T ε) 6 exp(C3Γ(ε)). For ε0 ∈ (0, 1] sufficiently small, ε ∈ (0, ε0]
yields that the right-hand side is less than 2. We conclude by (5.2) the existence of
ε0 ∈ (0, 1] such that ε ∈ (0, ε0] implies

E
[

exp
(
κε|Zσ∧T ε |

)]
6 φε(T

ε) 6 2.

Note that our estimates are uniformly for all x ∈ D2. This finishes the proof of
Lemma 3.2.
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5.3. Proof of Proposition 4.4: uniform integrability.

Fix p ∈ (0, α). We use the conventions in Step 0 of the proof of Proposition 4.3.
Then for x ∈ D2

E
[
‖Xε(τ ;x)− (φ+G(φ, εWKι(ε)))‖p

]
6 3p

(
E
[
‖Xε(τ ;x)‖p

]
+ ‖φ‖p +G1(φ)E

[
‖εWKι(ε)‖p

])
.

For the last term on the right-hand side of (5.3) we obtain

E
[
‖εWKι(ε)‖p

]
=

∞∑
k=1

E
[
‖εWk‖p

]
P(Kι(ε) = k) = εpE

[(
ε‖W1‖p

)]
,

and hence for ε0 ∈ (0, 1] sufficiently small the regular variation of ν implies for
ε ∈ (0, ε0] that

E
[(
ε‖W1‖

)p]
=

∫ ∞
ρε

rp−1P(‖W1‖ > r)dr =

∫ ∞
ρε

rp−1 ν(r 1
εB

c
1(0))

ν(ρεBc
1(0))

dr

6 2

∫ ∞
ρε

rp−1(ερεr)αdr = 2(ερε)α
∫ ∞
ρε

rp−α−1dr = 2
(ερε)α

α− p
(ρε)p−α

6
2(ε0ρ

ε0)α

α− p
(ρε0)p−α <∞.

We calculate the first term on the right side in (5.3)

E
[
‖Xε(τ ;x)‖p

]
=

∫ ∞
0

rp−1P(‖Xε(τ ;x)‖ > r)dr =

∫ ∞
R

rp−1P(‖Xε(τ ;x)‖ > r)dr.

Using (4.2) and the same strong Markov argument as in Claim 1 we obtain for
x ∈ D3

P(‖Xε(τ ;x)‖ > r)

=

∞∑
k=1

P({‖Xε(τ ;x)‖ > r} ∩ {τ = Tk} ∪̇ {‖Xε(τ ;x)‖ > r} ∩ {τ ∈ (Tk−1, Tk)})

6
∞∑
k=1

P(

k−1⋂
j=1

Ajx ∩Bkx ∩ {‖Xε(Tk;x)‖ > r} ∪̇
k−1⋂
j=1

Ajx ∩ Ckx ∩ {‖Xε(τ ;x)‖ > r})

6
∞∑
k=1

sup
y∈D2

P(Ay)k−1 sup
y∈D2

P(By ∩ {‖Xε(T1; y)‖ > r})

+

∞∑
k=1

sup
y∈D2

P(Ay)k−2 sup
y∈D2

P(Ay ∩ C2
y ∩ {‖Y ε(τ ; y)‖ > r})

6
supy∈D2

P(By ∩ {‖Xε(T1; y)‖ > r}) + supy∈D2
P(‖Y ε(τ ; y)‖ > r)

supy∈D2
P(Ay)

(
1− supy∈D2

P(Ay)
) .

For the first sum we have for r > d(R) + 2

sup
y∈D2

P(By ∩ {‖Xε(T1; y)‖ > r})

= sup
y∈D2

P(By ∩ {‖Y ε(T1; y) +G(Y ε(T1; y), εW1)‖ > r})
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6 sup
y∈UR

P(‖y +G(y, εW1)‖ > r)

6 sup
y∈UR

P(G1(y)‖εW1‖ > r − d(R)− 1)

6 P(g1(R)‖εW1‖ > r − d(R)− 1) 6 P(‖W1‖ >
1

ε

r − d(R)− 1

g1(R)
).

Without loss of generality we fix p′ by α > p′ > p > (1 − ρ)α and the estimate
(4.16) of Ax yields

supy∈D2
P(By ∩ {‖Xε(T1; y)‖ > r})
1− supD2

P(Ax)

6
E
[
‖W1‖p

′
]

(1− c)λεβε

εp
′
Gp
′

1 (φ)

(r − ‖φ‖)p′
) 6 εp

′−α(1−ρ)
0

E
[
‖W1‖p

′
]

(1− c)2µ(Bc
1(0))

Gp
′

1 (φ)

(r − d(R)− 1)p′
<∞

for any ε ∈ (0, ε0] for ε0 sufficiently small. For the last term we obtain for
r > d(R) +K2 + 1

sup
y∈D2

P(‖Y ε(τy(ε,R); y)‖ > r) = 0,

since ‖Y ε(τx(ε;R);x)‖ = d(R) + (K2 + 1)ερε 6 d(R) + K2 + 1 for ε0ρ
ε0 6 1.

Therefore for ε0 ∈ (0, 1] and ε ∈ (0, ε0] we have

E
[
‖Xε(τy(ε,R); y)‖p

]
6 C

∫ ∞
d(R)+2

rp−1P(‖Xε(τy(ε,R); y)‖ > r)dr

6 C
∫ ∞
d(R)+2

1

r1−p(r − d(R)− 1)p′
dr <∞.

This establishes the uniform integrability result (4.28).
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