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Abstract. We study functional convergence of sums of moving averages with ran-
dom coefficients and heavy-tailed innovations. Under some standard moment con-
ditions and the assumption that all partial sums of the series of coefficients are
a.s. bounded between zero and the sum of the series we obtain functional conver-
gence of the corresponding partial sum stochastic process in the space D[0, 1] of
càdlàg functions with the Skorohod M2 topology.

1. Introduction

Let (Zi)i∈Z be a sequence of i.i.d. regularly varying random variables with index
of regular variation α ∈ (0, 2). This means that

P(|Zi| > x) = x−αL(x), x > 0, (1.1)

where L is a slowly varying function at ∞. Regular variation implies E|Zi|β < ∞
for every β ∈ (0, α). We study the moving average process with random coefficients,
defined by

Xi =

∞∑
j=0

CjZi−j , i ∈ Z, (1.2)

where (Ci)i≥0 is a sequence of random variables independent of (Zi), such that the
series in (1.2) is a.s. convergent. One sufficient condition for that is

∞∑
j=0

|Cj |α−ε <∞ a.s. for some ε > 0 (1.3)
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(see Hult and Samorodnitsky, 2008). We will use the following moment condition
on the sequence (Cj):

∞∑
j=0

E|Cj |δ <∞ for some δ < α, 0 < δ ≤ 1. (1.4)

This condition also implies the a.s. convergence of the series in (1.2), since

E|Xi|δ ≤
∞∑
j=0

E|Cj |δE|Zi−j |δ = E|Z1|δ
∞∑
j=0

E|Cj |δ <∞.

Beside condition (1.4) we will require some other moment conditions, which will be
specified in Section 3. We also impose the following (usual) regularity conditions
on Z1:

EZ1 = 0, if α ∈ (1, 2), (1.5)
Z1 is symmetric, if α = 1. (1.6)

Let (an) be a sequence of positive real numbers such that

nP(|Z1| > an)→ 1, (1.7)

as n→∞. Regular variation of Zi can be expressed in terms of vague convergence
of measures on E = R \ {0}: for an as in (1.7) and as n→∞,

nP(a−1
n Zi ∈ · )

v−→ µ( · ), (1.8)

with the measure µ on E given by

µ(dx) =
(
p 1(0,∞)(x) + r 1(−∞,0)(x)

)
α|x|−α−1 dx, (1.9)

where
p = lim

x→∞

P(Zi > x)

P(|Zi| > x)
and r = lim

x→∞

P(Zi ≤ −x)

P(|Zi| > x)
. (1.10)

When the coefficients Ci are deterministic, Basrak and Krizmanić (2014) obtained
functional convergence of the partial sum process of Xi’s with respect to the Skoro-
hod M2 topology on D[0, 1]. More precisely, they showed that under the condition
on the coefficients Ci:

0 ≤
s∑
i=0

Ci

/ ∞∑
i=0

Ci ≤ 1, for every s = 0, 1, 2 . . . , (1.11)

the following

1

an

bn ·c∑
i=1

Xi
d−→
( ∞∑
j=0

Cj

)
V ( · ), (1.12)

holds in D[0, 1], where V ( · ) is an α–stable Lévy process and D[0, 1] is the space of
real–valued right continuous functions on [0, 1] with left limits.

Recall here that if at least two coefficients are nonzero, then the convergence in
(1.12) cannot hold with respect to the more usual Skorohod J1 topology on D[0, 1],
but if all the coefficients are nonnegative, then the convergence in (1.12) holds in
the M1 topology, see Avram and Taqqu (1992). The aim of this article is to obtain
the functional convergence with respect to the M2 topology as in (1.12) when
the coefficients Ci are random variables. Limit theory for moving averages with
random coefficients, but without the time component, have already been studied,
see Kulik (2006). These processes can represent various stochastic models, such as
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solutions to stochastic recurrence equations and stochastic integrals (usually with
some predictability assumption instead of the independence between the coefficients
Cj and the noise variables Zj , see Hult and Samorodnitsky, 2008).

The SkorohodM2 topology onD[0, 1] is defined using completed graphs and their
parametric representations (see Section 12.11 in Whitt, 2002 for details). Here we
give only a characterization of the M2 topology using the Hausdorff metric on the
spaces of graphs, since it will be convenient for our purposes. For x ∈ D[0, 1] the
completed graph of x is the set

Γx = {(t, z) ∈ [0, 1]× R : z = λx(t−) + (1− λ)x(t) for some λ ∈ [0, 1]},

where x(t−) is the left limit of x at t. Besides the points of the graph {(t, x(t)) :
t ∈ [0, 1]}, the graph Γx also contains the vertical line segments joining (t, x(t)) and
(t, x(t−)) for all discontinuity points t of x. Now, for x1, x2 ∈ D[0, 1] define

dM2
(x1, x2) =

(
sup
a∈Γx1

inf
b∈Γx2

d(a, b)

)
∨
(

sup
a∈Γx2

inf
b∈Γx1

d(a, b)

)
,

where d is the metric on R2 defined by d((x1, y1), (x2, y2)) = |x1 − x2| ∨ |y1 − y2|
for (xi, yi) ∈ R2, i = 1, 2, where a ∨ b = max{a, b}. The metric dM2

induces the
M2 topology. This topology is weaker than the more frequently used M1 and J1

topologies. Therefore the M1 convergence implies the M2 convergence, but the
converse does not hold in general. For instance, take the moving average process
with heavy-tailed innovations Zi and deterministic coefficients C0 = 1, C1 = −1,
C2 = 1, and Ci = 0 for i ≥ 3, i.e.

Xi = Zi − Zi−1 + Zi−2, i ∈ Z.

Since the condition (1.11) is satisfied, the M2 convergence in relation (1.12) holds.
Clusters of large values in the sequence (Xn) contain positive and negative values,
which means that the corresponding partial sum processes have jumps of opposite
signs within temporal clusters of large values, and this precludes the M1 conver-
gence. The detailed proof of this fact for the moving average process (Xi) defined
above is given in Appendix.

The paper is organized as follows. In Section 2 we obtain functional convergence
for finite order moving average processes, and then in Section 3 we extend this
result to infinite order moving averages. A technical result needed for establishing
functional convergence for infinite order moving averages when α ∈ [1, 2) is given
in Appendix.

2. Finite order MA processes

Let C0, C1, . . . , Cq (for some fixed q ∈ N) be random variables satisfying

0 ≤
s∑
i=0

Ci

/
q∑
i=0

Ci ≤ 1 a.s. for every s = 0, 1, . . . , q. (2.1)

Put C =
∑q
i=0 Ci. Observe that condition (2.1) implies that C,

∑s
i=0 Ci and∑q

i=s Ci are a.s. of the same sign for every s = 0, 1, . . . , q. Also note that condition
(2.1) is satisfied if the Cj ’ are all nonnegative or all nonpositive.
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Let (Xt) be a moving average process defined by

Xt =

q∑
i=0

CiZt−i, t ∈ Z,

and let the corresponding partial sum process be

Vn(t) =
1

an

bntc∑
i=1

Xi, t ∈ [0, 1], (2.2)

where the normalizing sequence (an) satisfies (1.7).

Theorem 2.1. Let (Zi)i∈Z be an i.i.d. sequence of regularly varying random vari-
ables with index α ∈ (0, 2), such that (1.5) and (1.6) hold. Assume C0, C1, . . . , Cq
are random variables, independent of (Zi), that satisfy (2.1). Then

Vn( · ) d−→ C̃V ( · ), n→∞,

in D[0, 1] endowed with the M2 topology, where V is an α–stable Lévy process with
characteristic triple (0, µ, b), with µ as in (1.9) and

b =

{
0, α = 1,

(p− r) α
1−α , α ∈ (0, 1) ∪ (1, 2),

and C̃ is a random variable, independent of V , such that C̃ d
= C.

As in Basrak and Krizmanić (2014) one can prove the following lemma (with the
notation Ci = 0 for i < 0).

Lemma 2.2. (i) For k < q it holds

k∑
i=1

C Zi
an
−

k∑
i=1

Xi

an
=

k−1∑
u=0

Zk−u
an

q∑
s=u+1

Cs −
q−1∑

u=k−q

Z−u
an

q∑
s=u+1

Cs

−
q−k−1∑
u=0

Z−u
an

u+k∑
s=u+1

Cs.

(ii) For k ≥ q it holds

k∑
i=1

C Zi
an
−

k∑
i=1

Xi

an
=

q−1∑
u=0

Zk−u
an

q∑
s=u+1

Cs −
q−1∑
u=0

Z−u
an

q∑
s=u+1

Cs

=: Hn(k)−Gn.

(iii) For q ≤ k ≤ n− q it holds

k∑
i=1

C Zi
an
−
k+q∑
i=1

Xi

an
= −

q−1∑
u=0

Z−u
an

q∑
s=u+1

Cs −
q∑

u=1

Zk+u

an

q−u∑
s=0

Cs

=: −Gn − Tn(k).
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Proof : (Theorem 2.1) Since the random variables Zi are i.i.d. and regularly varying,
it is known that

bntc∑
i=1

Zi
an
− bntcE

(Z1

an
1{|Z1|≤an}

)
, t ∈ [0, 1],

converges in distribution, as n→∞, in D[0, 1] with theM1 topology to an α–stable
Lévy process with characteristic triple (0, µ, 0) (see Theorem 3.4 in Basrak et al.,
2012). By Karamata’s theorem, as n→∞,

nE
(Z1

an
1{|Z1|≤an}

)
→ (p− r) α

1− α
, if α < 1,

nE
(Z1

an
1{|Z1|>an}

)
→ (p− r) α

α− 1
, if α > 1,

with p and r as in (1.10). Therefore conditions (1.5) and (1.6), Corollary 12.7.1
in Whitt (2002) (which gives a sufficient condition for addition to be continuous in
the M1 topology) and the continuous mapping theorem yield that V Zn ( · ) d−→ V ( · ),
as n→∞, in D[0, 1] with the M1 topology, where

V Zn (t) :=

bntc∑
i=1

Zi
an
, t ∈ [0, 1],

and V is an α–stable Lévy process with characteristic triple (0, µ, b).
It is well known that the space D[0, 1] equipped with the Skorohod J1 topology is

a Polish space (i.e. metrizable as a complete separable metric space), see Billingsley
(1968), Section 14. The same holds for the M1 topology, since it is topologically
complete (see Whitt, 2002, Section 12.8) and separability remains preserved in the
weaker topology. Therefore by Corollary 5.18 in Kallenberg (1997), we can find a
random variable C̃, independent of V , such that C̃ d

= C. This and the fact that
C is independent of V Zn , by an application of Theorem 3.29 in Kallenberg (1997),
imply

(B( · ), V Zn ( · )) d−→ (B̃( · ), V ( · )), as n→∞, (2.3)

in D([0, 1],R2) with the product M1 topology, where B(t) = C and B̃(t) = C̃ for
t ∈ [0, 1].

Let g : D([0, 1],R2)→ D[0, 1] be a function defined by

g(x) = x1x2, x = (x1, x2) ∈ D([0, 1],R2),

where (x1x2)(t) = x1(t)x2(t) for t ∈ [0, 1]. Let

D1 = {u ∈ D([0, 1] : Disc(u) = ∅},

and
D2 = {(u, v) ∈ D([0, 1],R2) : Disc(u) = ∅},

where Disc(u) is the set of discontinuity points of u. Then by Theorem 13.3.2
in Whitt (2002) the function g is continuous on the set D2 (with the Skorohod M1

topology onD[0, 1] and productM1 topology onD([0, 1],R2)). Hence Disc(g) ⊆ Dc
2,

and
P[(B̃, V ) ∈ Disc(g)] ≤ P[(B̃, V ) ∈ Dc

2] ≤ P(B̃ ∈ Dc
1) = 0.
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This allows us to apply the continuous mapping theorem (see for instance Theo-
rem 3.1 in Resnick, 2007) to relation (2.3) which yields g(B, V Zn )

d−→ g(B̃, V ), i.e.

CV Zn ( · ) d−→ C̃V ( · ), as n→∞,

in D[0, 1] with the M1 topology. Using the fact that M1 convergence implies M2

convergence, we obtain

CV Zn ( · ) d−→ C̃V ( · ), as n→∞, (2.4)

in (D[0, 1], dM2
) as well. If we can show that for every ε > 0

lim
n→∞

P[dM2(CV Zn , Vn) > ε] = 0,

an application of Slutsky’s theorem (see for instance Theorem 3.4 in Resnick, 2007)
will imply Vn( · ) d−→ C̃V ( · ), as n→∞, in (D[0, 1], dM2).

Fix ε > 0 and let n ∈ N be large enough, i.e. n > max{2q, 2q/ε}. By the
definition of the metric dM2

we have

dM2(CV Zn , Vn) =

(
sup

a∈ΓCVZn

inf
b∈ΓVn

d(a, b)

)
∨
(

sup
a∈ΓVn

inf
b∈ΓCVZn

d(a, b)

)
=: Yn ∨ Tn,

and therefore
P[dM2

(V Zn , Vn) > ε] ≤ P(Yn > ε) + P(Tn > ε) . (2.5)
In order to estimate the first term on the right hand side of (2.5) note that

{Yn > ε} ⊆ {∃ a ∈ ΓCV Zn such that d(a, b) > ε for every b ∈ ΓVn}

⊆ {∃ k ∈ {1, . . . , q − 1} such that |CV Zn (k/n)− Vn(k/n)| > ε}

∪ {∃ k ∈ {q, . . . , n− q} such that |CV Zn (k/n)− Vn(k/n)| > ε

and |CV Zn (k/n)− Vn((k + q)/n)| > ε}

∪ {∃ k ∈ {n− q + 1, . . . , n} such that |CV Zn (k/n)− Vn(k/n)| > ε}

=: AYn ∪BYn ∪ CYn , (2.6)

where the second inclusion above follows from the fact that the paths of Vn and
CV Zn are constant on the intervals of the form[

j

n
,
j + 1

n

)
, j = 0, 1, . . . , n− 1 .

More precisely, if there is a point a = (ta, xa) ∈ ΓCV Zn such that d(a,ΓVn) > ε, then
necessarily ta ∈ [i/n, (i+ 1)/n) for some i = 1, . . . , n. If a lies on a horizontal part
of the completed graph, then xa = CV Zn (i/n) and∣∣CV Zn (i/n)− Vn(i/n)

∣∣ ≥ d(a,ΓVn) > ε.

Alternatively, if a lies on a vertical part of the completed graph, then xa ∈ [CV Zn ((i−
1)/n), CV Zn (i/n)), and one can similarly conclude that∣∣CV Zn (k/n)− Vn(k/n)

∣∣ > ε
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for some k = 1, . . . , n (in fact k = i or k = i − 1; see Basrak and Krizmanić, 2014
for details). Moreover, if q ≤ k ≤ n− q, from q/n < ε/2 it follows similarly that∣∣CV Zn (k/n)− Vn((k + q)/n)

∣∣ > ε .

By Lemma 2.2 (i) we obtain

P(AYn ) ≤
q−1∑
k=1

P
(∣∣∣ k∑

i=1

CZi
an
−

k∑
i=1

Xi

an

∣∣∣ > ε
)

≤
q−1∑
k=1

[
P
( k−1∑
u=0

|Zk−u|
an

q∑
s=u+1

|Cs| >
ε

3

)
+ P

( q−1∑
u=k−q

|Z−u|
an

q∑
s=u+1

|Cs| >
ε

3

)

+ P
( q−k−1∑

u=0

|Z−u|
an

u+k∑
s=u+1

|Cs| >
ε

3

)]

≤ 3(q − 1)(2q − 1) P
( |Z0|
an

C∗ >
ε

3(2q − 1)

)
, (2.7)

where C∗ =
∑q
s=0 |Cs|. For an arbitrary M > 0 it holds that

P
( |Z0|
an

C∗ >
ε

3(2q − 1)

)
= P

( |Z0|
an

C∗ >
ε

3(2q − 1)
, C∗ > M

)
+ P

( |Z0|
an

C∗ >
ε

3(2q − 1)
, C∗ ≤M

)
≤ P

(
C∗ > M

)
+ P

( |Z0|
an

>
ε

3(2q − 1)M

)
.

By the regular variation property we observe

lim
n→∞

P
( |Z0|
an

>
ε

3(2q − 1)M

)
= 0,

and hence from (2.7) we get

lim sup
n→∞

P(AYn ) ≤ P
(
C∗ > M

)
.

Letting M →∞ we conclude

lim
n→∞

P(AYn ) = 0. (2.8)

Next, using Lemma 2.2 (ii) and (iii), for an arbitrary M > 0 we obtain

P(BYn ∩ {C∗ ≤M}) = P
(
∃ k ∈ {q, . . . , n− q} such that |Hn(k)−Gn| > ε

and | −Gn − Tn(k)| > ε, C∗ ≤M
)

≤ P
(
|Gn| >

ε

2
, C∗ ≤M

)
+

n−q∑
k=q

P
(
|Hn(k)| > ε

2
and |Tn(k)| > ε

2
, C∗ ≤M

)
.
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Note that

P
(
|Gn| >

ε

2
, C∗ ≤M

)
≤ P

(
C∗

q−1∑
u=0

|Z−u|
an

>
ε

2
, C∗ ≤M

)

≤ P
( q−1∑
u=0

|Z−u|
an

>
ε

2M

)

≤ qP
( |Z0|
an

>
ε

2qM

)
.

Similarly

P
(
|Hn(k)| > ε

2
and |Tn(k)| > ε

2
, C∗ ≤M

)
≤ P

( q−1∑
u=0

|Zk−u|
an

>
ε

2M
and

q∑
u=1

|Zk+u|
an

>
ε

2M

)

= P
( q−1∑
u=0

|Zk−u|
an

>
ε

2M

)
P
( q∑
u=1

|Zk+u|
an

>
ε

2M

)

≤
[
qP
( |Z0|
an

>
ε

2qM

)]2
,

where the equality above holds since the random variables Zi are independent.
Therefore

P(BYn ∩ {C∗ ≤M}) ≤ qP
( |Z0|
an

>
ε

2qM

)
+

n−q∑
k=q

[
qP
( |Z0|
an

>
ε

2qM

)]2

≤ qP
( |Z0|
an

>
ε

2qM

)
+
q2

n

[
nP

( |Z0|
an

>
ε

2qM

)]2
and an application of the regular variation property yields

lim
n→∞

P(BYn ∩ {C∗ ≤M}) = 0.

Thus
lim sup
n→∞

P(BYn ) ≤ lim sup
n→∞

P(BYn ∩ {C∗ > M}) ≤ P(C∗ > M),

and letting again M →∞ we conclude

lim
n→∞

P(BYn ) = 0. (2.9)

In a similar manner as in (2.7), but using (ii) from Lemma 2.2 instead of (i) we get

lim
n→∞

P(CYn ) = 0. (2.10)

From relations (2.6), (2.8), (2.9) and (2.10) we obtain

lim
n→∞

P(Yn > ε) = 0. (2.11)

It remains to estimate the second term on the right hand side of (2.5). For
each k ≥ q, set V Z,min

k = min{CV Zn ((k − q)/n), CV Zn (k/n)} and V Z,max
k = max{
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CV Zn ((k− q)/n), CV Zn (k/n)}. From the definition of Tn, the Hausdorff metric and
the number n it follows

{Tn > ε} ⊆ {∃ a ∈ ΓVn such that d(a, b) > ε for every b ∈ ΓCV Zn }

⊆ {∃ k ∈ {1, . . . , 2q − 1} such that |Vn(k/n)− CV Zn (k/n)| > ε}

∪
{
∃ k ∈ {2q, . . . , n} such that d̃(Vn(k/n), [V Z,min

k , V Z,max
k ]) > ε

}
=: ATn ∪BTn , (2.12)

where d̃ is the Euclidean metric on R. The argument behind the second inclusion
in (2.12) is similar to the one given after (2.6). Indeed, assume there is a point
a = (ta, xa) ∈ ΓVn such that

d(a,ΓCV Zn ) > ε. (2.13)
Then necessarily ta ∈ [i/n, (i+ 1)/n) for some i = 1, . . . , n. The case i ≤ 2q − 1 is
covered by the same argument used to obtain (2.6) and the set AYn . Therefore, we
may assume i ≥ 2q. From (2.13) we immediately obtain

d(a, (i/n, CV Zn (i/n))) > ε and d(a, ((i− q)/n,CV Zn ((i− q)/n))) > ε. (2.14)

Suppose first that xa = Vn(i/n) for some i = 2q, . . . , n. Recall that q/n < ε/2.
Since max{|ta− i/n|, |ta− (i−q)/n|} ≤ (q+1)/n < ε, from (2.14) we conclude that

d̃(Vn(i/n), [V Z,min
i , V Z,max

i ]) > ε.

If xa ∈ [Vn((i− 1)/n), Vn(i/n)) (in this case ta = i/n), relation (2.14) again implies
d̃(xa, [V

Z,min
i , V Z,max

i ]) > ε, and similarly d̃(xa, [V
Z,min
i−1 , V Z,max

i−1 ]) > ε. Thus we
obtain

max{d̃(Vn(i/n), [V Z,min
i , V Z,max

i ]), d̃(Vn((i− 1)/n), [V Z,min
i−1 , V Z,max

i−1 ])} > ε.

Finally we conclude that there exists k ∈ {2q, . . . , n} such that

d̃(Vn(k/n), [V Z,min
k , V Z,max

k ]) > ε.

Using Lemma 2.2 (i) and (ii), one could similarly as before for the set AYn obtain

lim
n→∞

P(ATn ) = 0. (2.15)

Note that P(BTn ) is bounded above by

P

(
∃ k ∈ {2q, . . . , n} such that

k∑
i=1

Xi

an
> V Z,max

k + ε

)

+ P

(
∃ k ∈ {2q, . . . , n} such that

k∑
i=1

Xi

an
< V Z,min

k − ε

)
.

In the sequel we consider only the first of these two probabilities, since the other
one can be handled in a similar manner. The first probability using Lemma 2.2 can
be bounded by

P (∃ k ∈ {2q, . . . , n} such that Gn −Hn(k) > ε and Gn + Tn(k − q) > ε)

≤ P
(
Gn >

ε

2

)
+ P

(
∃ k ∈ {2q, . . . , n} such that Hn(k) < − ε

2
and Tn(k − q) > ε

2

)
.



738 D. Krizmanić

From the calculations yielding (2.9) we conclude that P(Gn > ε/2)→ 0 as n→∞.
The second term is bounded by

P(C∗ > M) +

n∑
k=2q

P
(
Hn(k) < − ε

2
and Tn(k − q) > ε

2
, C∗ ≤M

)
(2.16)

for an arbitrary M > 0. Note that

Hn(k) =

q−1∑
u=0

Zk−u
an

q∑
s=u+1

Cs and Tn(k − q) =

q−1∑
u=0

Zk−u
an

u∑
s=0

Cs.

Therefore for a fixed k ∈ {2q, . . . , n}, on the event {Hn(k) < −ε/2 and Tn(k− q) >
ε/2, C∗ ≤M} there exist i, j ∈ {0, . . . , q − 1} such that

Zk−i
an

q∑
s=i+1

Cs < −
ε

2q
and

Zk−j
an

j∑
s=0

Cs >
ε

2q
.

From (2.1) it follows that the sums
∑j
s=0 Cs and

∑q
s=i+1 Cs are a.s. of the same

sign and their absolute values are bounded by C∗. Hence if these sums are positive
we obtain Zk−iM/an < −ε/(2q) and Zk−jM/an > ε/(2q), while if they are negative
we obtain Zk−iM/an > ε/(2q) and Zk−jM/an < −ε/(2q). Note that the case i = j
is not possible since then we would have Zk−i < 0 and Zk−i > 0. From this, using
the stationarity of the sequence (Zi), we conclude that the expression in (2.16) is
bounded by

P(C∗ > M) + nP
(
∃ i, j∈{0, . . . , q − 1}, i 6= j s.t. M

Z−i
an

<− ε

2q
and M

Z−j
an

>
ε

2q

)
≤ P(C∗ > M) + n

(
q

2

)[
P

(
|Z0|
an

>
ε

2qM

)]2

,

which tends to 0 if we first let n→∞ and then M →∞. Together with relations
(2.12) and (2.15) this implies

lim
n→∞

P(Tn > ε) = 0. (2.17)

Now from (2.5), (2.11) and (2.17) we obtain

lim
n→∞

P[dM2(CV Zn , Vn) > ε] = 0, (2.18)

and finally we conclude that Vn( · ) d−→ C̃V ( · ), as n → ∞, in (D[0, 1], dM2). This
concludes the proof. �

3. Infinite order MA processes

Let (Xi) be a moving average process defined by

Xi =

∞∑
j=0

CjZi−j , i ∈ Z,

where (Zi) is an i.i.d. sequence of regularly varying random variables with index
α ∈ (0, 2), such that EZi = 0 if α ∈ (1, 2) and Zi is symmetric if α = 1. Let {Ci, i =



Functional convergence for moving averages 739

0, 1, 2, . . .} be a sequence of random variables, independent of (Zi), satisfying
∞∑
i=0

E|Ci|δ <∞ for some δ < α, 0 < δ ≤ 1, (3.1)

and

0 ≤
s∑
i=0

Ci

/ ∞∑
i=0

Ci ≤ 1 a.s. for every s = 0, 1, 2 . . . . (3.2)

Let C =
∑∞
i=0 Ci. Condition (3.1) implies C is a.s. finite, and ensures that the

series in the definition of Xi above converges almost surely. Define further the
corresponding partial sum stochastic process Vn as in (2.2). Beside the above
stated conditions, we require also the following conditions: for α ∈ (0, 1)

∞∑
i=0

E|Ci|γ <∞ for some γ ∈ (α, 1), (3.3)

and for α ∈ [1, 2)

lim
n→∞

(lnn)1+η E

[( ∞∑
i=n

|Ci|
)η−δ ∞∑

j=n

|Cj |δ
]

= 0 for some η > α. (3.4)

The latter condition is borrowed from Avram and Taqqu (1992), where they studied
M1 functional convergence of sums of moving averages with deterministic coeffi-
cients. Since in the case α ∈ (1, 2) we will also need that the series

∑∞
i=1 E|Ci|

converges, we assume δ = 1 in (3.1) if α > 1.
For a deterministic sequence (Cj) condition (3.3) is not needed since it is implied

by (3.1). The latter in general does not hold when the coefficients Cj are random.
It can easily be seen by the following example. Take ε > 0 such that δ + ε < γ.
Let S =

∑∞
j=1 j

−(1+δ+ε) <∞ and Sk = S−1
∑k
j=1 j

−(1+δ+ε), k ∈ N (with S0 = 0).
Taking P to be the Lebesgue measure on the Borel subsets of (0, 1) and

Ci(ω) = i 1(Si−1,Si](ω), ω ∈ (0, 1), i ∈ N,

we obtain
∞∑
i=1

E|Ci|δ = S−1
∞∑
i=1

iδ(Si − Si−1) = S−1
∞∑
i=1

1

i1+ε
<∞,

and
∞∑
i=1

E|Ci|γ = S−1
∞∑
i=1

iγ(Si − Si−1) = S−1
∞∑
i=1

1

i1+δ+ε−γ =∞,

since 1 + δ + ε− γ < 1.

Theorem 3.1. Let (Zi)i∈Z be an i.i.d. sequence of regularly varying random vari-
ables with index α ∈ (0, 2). Suppose that conditions (1.5) and (1.6) hold. Let
{Ci, i = 0, 1, 2, . . .} be a sequence of random variables, independent of (Zi), such
that (3.1) and (3.2) hold. Assume also (3.3) holds if α ∈ (0, 1), and (3.4) if
α ∈ [1, 2). Then

Vn( · ) d−→ C̃V ( · ), n→∞,
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in D[0, 1] endowed with the M2 topology, where V is an α–stable Lévy process with
characteristic triple (0, µ, b), with µ as in (1.9) and

b =

{
0, α = 1,

(p− r) α
1−α , α ∈ (0, 1) ∪ (1, 2),

and C̃ is a random variable, independent of V , such that C̃ d
= C.

In the proof of the theorem we are going to use the following three lemmas, in
which (Zi)i∈Z is an i.i.d. sequence of regularly varying random variables with index
α, (Ci)i≥0 is a sequence of random variables, independent of (Zi), and (an) is a
sequence of positive real numbers satisfying (1.7).

Lemma 3.2. Let α ∈ (0, 1), and assume conditions (3.1) and (3.3) hold. Then for
every ε > 0

lim
q→∞

lim sup
n→∞

P

[(
2

∞∑
j=q+1

|Cj |
) n∑
i=1

|Zi−q|
an

+

0∑
i=−∞

|Zi−q|
an

n∑
j=1

|Cq−i+j | > ε

]
= 0.

Proof : Let

Dn,q
i =


2

∞∑
j=q+1

|Cj |, i = 1, . . . , n,

n∑
j=1

|Cq−i+j |, i ≤ 0.

We have to show

lim
q→∞

lim sup
n→∞

P

( n∑
i=−∞

Dn,q
i |Zi−q|
an

> ε

)
= 0. (3.5)

Let

Z≤i,n =
Zi
an

1{ |Zi|
an
≤1
} and Z>i,n =

Zi
an

1{ |Zi|
an

>1
},

and note that the probability in (3.5) is bounded above by

P

( n∑
i=−∞

Dn,q
i |Z

≤
i−q,n| >

ε

2

)
+ P

( n∑
i=−∞

Dn,q
i |Z

>
i−q,n| >

ε

2

)
. (3.6)

Using Markov’s inequality, the triangle inequality |
∑∞
i=1 ai|s ≤

∑∞
i=1 |ai|s with

s ∈ (0, 1], the fact that (Ci) is independent of (Zi) and the stationarity of the
sequence (Zi), for the first term in (3.6) we obtain

P

( n∑
i=−∞

Dn,q
i |Z

≤
i−q,n| >

ε

2

)
≤

( ε
2

)−γ
E

( n∑
i=−∞

Dn,q
i |Z

≤
i−q,n|

)γ

≤
( ε

2

)−γ
E

( n∑
i=−∞

(Dn,q
i )γ |Z≤i−q,n|

γ

)

≤
( ε

2

)−γ
E|Z≤1,n|γ

n∑
i=−∞

E(Dn,q
i )γ .
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Again by triangle inequality we have
n∑

i=−∞
E(Dn,q

i )γ ≤ 2γn

∞∑
j=q+1

E|Cj |γ +

0∑
i=−∞

n∑
j=1

E|Cq−i+j |γ ,

Note that every E|Cj |γ , for j = q + 1, q + 2, . . ., appears in the sum∑0
i=−∞

∑n
j=1 E|Cq−i+j |γ at most n times, and hence

P

( n∑
i=−∞

Dn,q
i |Z

≤
i−q,n| >

ε

2

)
≤
( ε

2

)−γ
E|Z≤1,n|γ

(
2γn

∞∑
j=q+1

E|Cj |γ + n

∞∑
j=q+1

E|Cj |γ
)

= (2γ + 1)
( ε

2

)−γ
nE|Z≤1,n|γ

∞∑
j=q+1

E|Cj |γ . (3.7)

Similarly

P

( n∑
i=−∞

Dn,q
i |Z

>
i−q,n| >

ε

2

)
≤ (2δ + 1)

( ε
2

)−δ
nE|Z>1,n|δ

∞∑
j=q+1

E|Cj |δ. (3.8)

By Karamata’s theorem and (1.7), as n→∞,

nE|Z≤1,n|γ =
E(|Z1|γ1{|Z1|≤an})

aγn P(|Z1| > an)
· nP(|Z1| > an)→ α

γ − α
<∞

and

nE|Z>1,n|δ =
E(|Z1|δ1{|Z1|>an})

aδn P(|Z1| > an)
· nP(|Z1| > an)→ α

α− δ
<∞.

From this and relations (3.7) and (3.8) we conclude that

lim sup
n→∞

P

( n∑
i=−∞

Dn,q
i |Zi−q|
an

> ε

)
≤M

( ∞∑
j=q+1

E|Cj |γ +

∞∑
j=q+1

E|Cj |δ
)
,

where M = (2γ + 1)(ε/2)−γα/(γ−α) + (2δ + 1)(ε/2)−δα/(α− δ) <∞. Now letting
q →∞, conditions (3.1) and (3.3) imply (3.5). �

Lemma 3.3. Let α ∈ (1, 2). Assume conditions (3.1) and (3.4) hold, and EZ1 = 0.
If (qn) is a sequence of positive integers tending to infinity, then

lim
n→∞

P

(
sup

0≤t≤1

∣∣∣∣ bntc∑
i=1

C ′′qnZi−qn
an

∣∣∣∣ > ε

)
= 0 for every ε > 0,

where C ′′qn =
∑∞
j=qn+1 Cj.

Proof : Let

Z̃≤i,n = Z≤i,n − EZ≤i,n and Z̃>i,n = Z>i,n + EZ≤i,n,

and note that Zi/an = Z̃≤i,n + Z̃>i,n, EZ̃≤i,n = 0 and also EZ̃>i,n = EZ>i,n + EZ≤i,n =

E(Zi/an) = 0. Thus

P

(
sup

0≤t≤1

∣∣∣∣ bntc∑
i=1

C ′′qnZi−qn
an

∣∣∣∣ > ε

)
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≤ P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

C ′′qnZ̃
≤
i−qn,n

∣∣∣∣ > ε

2

)
+ P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

C ′′qnZ̃
>
i−qn,n

∣∣∣∣ > ε

2

)
=: I1 + I2.

Since C ′′qn is independent of (Zi) and EZ̃≤i,n = 0, it follows that (
∑k
i=1 C

′′
qnZ̃

≤
i−qn,n)k

is a martingale (with respect to the filtration (Fk), where the σ–field Fk is generated
by Ci, i ≥ 0 and Zj−qn , j ≤ k − qn). Hence by Markov’s inequality and Doob’s
maximal inequality

E

(
sup

1≤k≤n
|Sk|

)κ
≤
( κ

κ− 1

)κ
E|Sn|κ,

which holds for κ > 1 and (Sk)k a martingale (see Durrett, 1996, p. 251) we obtain

I1 ≤
( ε

2

)−η( η

η − 1

)η
E

∣∣∣∣ n∑
i=1

C ′′qnZ̃
≤
i−qn,n

∣∣∣∣η,
with η as in (3.4). Note that (C ′′qnZ̃

≤
i−qn,n)i is a martingale difference sequence, and

hence by the Bahr-Esseen inequality

E

∣∣∣∣ n∑
j=1

Yj

∣∣∣∣κ ≤ 2

n∑
j=1

E|Yj |κ,

which holds for κ ∈ [1, 2] and (Yj)j a martingale-difference sequence (see Chatterji,
1969, Lemma 1) we have

I1 ≤ 2
( ε

2

)−η( η

η − 1

)η n∑
i=1

E|C ′′qnZ̃
≤
i−qn,n|

η

= 2
( ε

2

)−η( η

η − 1

)η
E|Z̃≤1,n|η

n∑
i=1

E|C ′′qn |
η

= 2
( ε

2

)−η( η

η − 1

)η
nE|Z̃≤1,n|ηE|C ′′qn |

η.

Using the inequality |a−b|η ≤ 2η(|a|η+|b|η) and a special case of Jensen’s inequality

(E|Y |)κ ≤ E|Y |κ

(which holds for κ ≥ 1) we have

E|Z̃≤1,n|η ≤ 2η[E|Z≤1,n|η + (E|Z≤1,n|)η] ≤ 2η+1E|Z≤1,n|η, (3.9)

and hence
I1 ≤ 22+2ηε−η

( η

η − 1

)η
nE|Z≤1,n|ηE|C ′′qn |

η.

Note that

E|C ′′qn |
η = E(|C ′′qn |

η−δ · |C ′′qn |
δ) ≤ E

[( ∞∑
i=qn+1

|Ci|
)η−δ ∞∑

j=qn+1

|Cj |δ
]
, (3.10)

and thus condition (3.4) yields limn→∞ E|C ′′qn |
η = 0. This and the fact that

limn→∞ nE|Z≤1,n|η = α/(η − α) (which holds by Karamata’s theorem) allows us
to conclude that limn→∞ I1 = 0.
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For I2 by Markov’s inequality we obtain

I2 ≤ P

( n∑
i=1

|C ′′qnZ̃
>
i−qn,n| >

ε

2

)
≤
( ε

2

)−1

E|Z̃>1,n|
n∑
i=1

E|C ′′qn |.

Since Z̃>i,n = Z>i,n − EZ>i,n, it holds that

E|Z̃>1,n| ≤ E|Z>1,n|+ |EZ>1,n| ≤ 2E|Z>1,n|. (3.11)

Therefore

I2 ≤ 4ε−1nE|Z>1,n|
∞∑

j=qn+1

E|Cj |,

yielding limn→∞ I2 = 0, since by Karamata’s theorem limn→∞ nE|Z>1,n| = α/(α−1)

and we assumed (3.1) holds with δ = 1 in this case. This completes the proof of
the lemma. �

Lemma 3.4. Let α ∈ (1, 2). Assume conditions (3.1) and (3.4) hold, and EZ1 =
0. If (qn) is a sequence of positive integers tending to infinity, such that lnn =
O(ln qn), then

lim
n→∞

P

(
sup

0≤t≤1

∣∣∣∣ bntc∑
i=1

∞∑
j=qn+1

CjZi−j
an

∣∣∣∣ > ε

)
= 0 for every ε > 0.

Proof : Note that

P

(
sup

0≤t≤1

∣∣∣∣ bntc∑
i=1

∞∑
j=qn+1

CjZi−j
an

∣∣∣∣ > ε

)

≤ P

(
sup

0≤t≤1

∣∣∣∣ bntc∑
i=1

∞∑
j=qn+1

CjZ̃
≤
i−j,n

∣∣∣∣ > ε

2

)
+ P

(
sup

0≤t≤1

∣∣∣∣ bntc∑
i=1

∞∑
j=qn+1

CjZ̃
>
i−j,n

∣∣∣∣ > ε

2

)
=: I3 + I4.

Let

Wn(t) =

bntc∑
i=1

∞∑
j=qn+1

CjZ̃
≤
i−j,n, t ∈ [0, 1].

Take 0 ≤ t1 < t2 ≤ 1, and consider (for ρ > 0)

P(|Wn(t2)−Wn(t1)| > ρ) = P

(∣∣∣∣ bnt2c∑
i=bnt1c+1

∞∑
j=qn+1

CjZ̃
≤
i−j,n

∣∣∣∣ > ρ

)

= P

(∣∣∣∣ bnt2c−1∑
i=−∞

D̃n,t1,t2
i−qn Z̃≤i−qn,n

∣∣∣∣ > ρ

)
, (3.12)
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where

D̃n,t1,t2
i−qn =



qn−i+bnt2c∑
j=qn−i+bnt1c+1

Cj , i ≤ bnt1c − 1,

qn−i+bnt2c∑
j=qn+1

Cj , i = bnt1c, . . . , bnt2c − 1,

and the last equality in (3.12) follows by standard changes of variables and order
of summation. The sequence (D̃n,t1,t2

i−qn Z̃≤i−qn,n)i is a martingale difference sequence,
and hence the Bahr-Esseen inequality (which holds also for infinite sums, by the
Fatou lemma) and Markov’s inequality imply

P

(∣∣∣∣ bnt2c−1∑
i=−∞

D̃n,t1,t2
i−qn Z̃≤i−qn,n

∣∣∣∣ > ρ

)
≤ ρ−η

( η

η − 1

)η bnt2c−1∑
i=−∞

E|D̃n,t1,t2
i−qn Z̃≤i−qn,n|

η

= ρ−η
( η

η − 1

)η
E|Z̃≤1,n|η

bnt2c−1∑
i=−∞

E|D̃n,t1,t2
i−qn |

η,

with η as in (3.4). With the same argument as in (3.10) we obtain

bnt2c−1∑
i=bnt1c

E|D̃n,t1,t2
i−qn |

η

≤
bnt2c−1∑
i=bnt1c

E

[( ∞∑
s=qn+1

|Cs|
)η−δ ∞∑

j=qn+1

|Cj |δ
]

= (bnt2c − bnt1c)E
[( ∞∑

s=qn+1

|Cs|
)η−δ ∞∑

j=qn+1

|Cj |δ
]
, (3.13)

and
bnt1c−1∑
i=−∞

E|D̃n,t1 ,̧t2
i−qn |η

≤ E

[( ∞∑
s=qn+1

|Cs|
)η−δ bnt1c−1∑

i=−∞

qn−i+bnt2c∑
j=qn−i+bnt1c+1

|Cj |δ
]

≤ (bnt2c − bnt1c)E
[( ∞∑

s=qn+1

|Cs|
)η−δ ∞∑

j=qn+1

|Cj |δ
]
, (3.14)

where the last inequality follows from the fact that every |Cj |δ, for j ≥ qn + 1,
appears in the sum

∑bnt1c−1
i=−∞

∑qn−i+bnt2c
j=qn−i+bnt1c+1 |Cj |

δ at most bnt2c − bnt1c times.
Therefore

P

(∣∣∣∣ bnt2c−1∑
i=−∞

D̃n,t1,t2
i−qn Z̃≤i−qn,n

∣∣∣∣ > ρ

)
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≤ 2ρ−η
( η

η − 1

)η
nE|Z̃≤1,n|η

bnt2c − bnt1c
n

E

[( ∞∑
s=qn+1

|Cs|
)η−δ ∞∑

j=qn+1

|Cj |δ
]
.

Since by (3.9) and Karamata’s theorem supn{nE|Z̃≤1,n|η} < ∞, and (bnt2c −
bnt1c)/n ≤ 2(t2 − t1) for large n, it follows that

P

(∣∣∣∣ bnt2c−1∑
i=−∞

D̃n,t1,t2
i−qn Z̃≤i−qn,n

∣∣∣∣ > ρ

)
≤Mρ−η(t2 − t1)E

[( ∞∑
s=qn+1

|Cs|
)η−δ ∞∑

j=qn+1

|Cj |δ
]
,

for some constant M independent of n. Now by Theorem 2 in Avram and Taqqu
(1989) and the arguments in the proof of Proposition 4 in Avram and Taqqu (1992)
we conclude that

P

(
sup

0≤t≤1

∣∣∣∣ bntc−1∑
i=−∞

D̃n,0,t
i−qnZ̃

≤
i−qn,n

∣∣∣∣ > ρ

)

≤ M ′ρ−η(lnn)1+ηE

[( ∞∑
s=qn+1

|Cs|
)η−δ ∞∑

j=qn+1

|Cj |δ
]

for some constantM ′ independent of n. From this and condition (3.4), since lnn =
O(ln qn), it follows that

lim
n→∞

I3 = lim
n→∞

P

(
sup

0≤t≤1

∣∣∣∣ bntc−1∑
i=−∞

D̃n,0,t
i−qnZ̃

≤
i−qn,n

∣∣∣∣ > ε

2

)
= 0. (3.15)

Further, note that

P

(
sup

0≤t≤1

∣∣∣∣ bntc∑
i=1

∞∑
j=qn+1

CjZ̃
>
i−j,n

∣∣∣∣ > ε

2

)
≤ P

( n∑
i=1

∞∑
j=qn+1

|CjZ̃>i−j,n| >
ε

2

)

≤
( ε

2

)−1 n∑
i=1

∞∑
j=qn+1

E|CjZ̃>i−j,n|

=
( ε

2

)−1

E|Z̃>1,n|
n∑
i=1

∞∑
j=qn+1

E|Cj |

=
( ε

2

)−1

nE|Z̃>1,n|
∞∑

j=qn+1

E|Cj |.

By (3.11) and Karamata’s theorem supn{nE|Z̃>1,n|} <∞, and hence condition (3.1)
(with δ = 1) implies

lim
n→∞

I4 = 0. (3.16)

Now from (3.15) and (3.16) we get the conclusion of the lemma. �

We are now ready to prove Theorem 3.1.

Proof : (Theorem 3.1) For q ∈ N define

Xq
i =

q−1∑
j=0

CjZi−j + C ′qZi−q, i ∈ Z,



746 D. Krizmanić

where C ′q =
∑∞
i=q Ci, and

Vn,q(t) =

bntc∑
i=1

Xq
i

an
, t ∈ [0, 1].

Now we treat separately the cases α ∈ (0, 1), α ∈ (1, 2) and α = 1.

Case α ∈ (0, 1). Fix q ∈ N. Since the coefficients C0, . . . , Cq−1, C
′
q satisfy

condition (2.1), an application of Theorem 2.1 to a finite order moving average
process (Xq

i )i yields that, as n→∞,

Vn,q( · )
d−→ C̃V ( · ) (3.17)

in (D[0, 1], dM2
). If we show that for every ε > 0

lim
q→∞

lim sup
n→∞

P[dM2
(Vn,q, Vn) > ε] = 0,

then by a generalization of Slutsky’s theorem (see for instance Theorem 3.5 in
Resnick, 2007) it will follow Vn( · ) d−→ C̃V ( · ), as n → ∞, in (D[0, 1], dM2). Since
the Skorohod M2 metric on D[0, 1] is bounded above by the uniform metric on
D[0, 1], it suffices to show that

lim
q→∞

lim sup
n→∞

P

(
sup

0≤t≤1
|Vn,q(t)− Vn(t)| > ε

)
= 0.

Recalling the definitions, we have

lim
q→∞

lim sup
n→∞

P

(
sup

0≤t≤1
|Vn,q(t)− Vn(t)| > ε

)

≤ lim
q→∞

lim sup
n→∞

P

( n∑
i=1

|Xq
i −Xi|
an

> ε

)
.

Put C ′′q = C ′q − Cq =
∑∞
j=q+1 Cj and observe

n∑
i=1

|Xq
i −Xi| =

n∑
i=1

∣∣∣∣ q−1∑
j=0

CjZi−j + C ′qZi−q −
∞∑
j=0

CjZi−j

∣∣∣∣
=

n∑
i=1

∣∣∣∣C ′′q Zi−q − ∞∑
j=q+1

CjZi−j

∣∣∣∣
≤

n∑
i=1

[
|C ′′q | |Zi−q|+

∞∑
j=q+1

|Cj | |Zi−j |
]

≤
(

2

∞∑
j=q+1

|Cj |
) n∑
i=1

|Zi−q|+
0∑

i=−∞
|Zi−q|

n∑
j=1

|Cq−i+j |.

Lemma 3.2 now implies

lim
q→∞

lim sup
n→∞

P

( n∑
i=1

|Xq
i −Xi|
an

> ε

)
= 0,

which means that Vn( · ) d−→ C̃V ( · ), as n→∞, in (D[0, 1], dM2).
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Case α ∈ (1, 2). Let (qn) be a sequence of positive integers such that qn =
bn1/10c. We first show that limn→∞ P[dM2

(Vn,qn , Vn) > ε] = 0 for every ε > 0. For
this, similar to the case α ∈ (0, 1), it suffices to show that

lim
n→∞

P

(
sup

0≤t≤1
|Vn,qn(t)− Vn(t)| > ε

)
= 0.

Recalling the definitions, we have

Vn,qn(t)− Vn(t) =
1

an

bntc∑
i=1

(Xqn
i −Xi) =

1

an

bntc∑
i=1

(
C ′′qnZi−qn +

∞∑
j=qn+1

CjZi−j

)
,

and hence

P

(
sup

0≤t≤1
|Vn,qn(t)− Vn(t)| > ε

)

≤ P

(
sup

0≤t≤1

∣∣∣∣ bntc∑
i=1

C ′′qnZi−qn
an

∣∣∣∣ > ε

2

)
+ P

(
sup

0≤t≤1

∣∣∣∣ bntc∑
i=1

∞∑
j=qn+1

CjZi−j
an

∣∣∣∣ > ε

2

)
.

Applying Lemma 3.3 and Lemma 3.4 we conclude

lim
n→∞

P

(
sup

0≤t≤1
|Vn,qn(t)− Vn(t)| > ε

)
= 0.

Thus, in order to have Vn( · ) d−→ C̃V ( · ) in D[0, 1] with the M2 topology, ac-
cording to Slutsky’s theorem (see Resnick, 2007, Theorem 3.4), it remains to show
Vn,qn( · ) d−→ C̃V ( · ) in (D[0, 1], dM2

) as n → ∞. Note that we cannot simply use
Theorem 2.1 as we did in the case α ∈ (0, 1), since now qn depends on n. By careful
analysis of the proof of Theorem 2.1 we see that relations that have to be checked,
in order that the statement of Theorem 2.1 remains valid if we replace q by qn,
are (2.8), (2.9) and (2.17) (with C∗ =

∑∞
s=0 |Cs|). Hence we have to establish the

following relations

lim
n→∞

(qn − 1)(2qn − 1) P

(
|Z0|
an

>
ε

3(2qn − 1)M

)
= 0

lim
n→∞

[
qn P

(
|Z0|
an

>
ε

2qnM

)
+ nq2

n

(
P

(
|Z0|
an

>
ε

2qnM

))2]
= 0

lim
n→∞

n

(
qn
2

)[
P

(
|Z0|
an

>
ε

2qnM

)]2

= 0,

for arbitrary ε > 0 and M > 0. For all of this, taking into consideration relation
(1.1), i.e. the regular variation property of Z0, it suffices to show

lim
n→∞

nq2
n

[
P

(
|Z0| >

an
qn

)]2

= 0,

which holds by Lemma 4.1 in Appendix. Therefore we conclude Vn( · ) d−→ C̃V ( · )
in (D[0, 1], dM2

).

Case α = 1. Since Zi is symmetric, note that Z̃≤i,n = Z≤i,n and Z̃>i,n = Z>i,n. We
proceed as in the case α ∈ (1, 2) to obtain limn→∞ I1 = 0 and limn→∞ I3 = 0 (with
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the notation form the proofs of Lemma 3.3 and Lemma 3.4). For I2, by Markov’s
inequality and the triangle inequality |

∑n
i=1 ai|γ ≤

∑n
i=1 |ai|δ we obtain

I2 ≤ P

( n∑
i=1

|C ′′qnZ̃
>
i−qn,n| >

ε

2

)
≤
( ε

2

)−δ
nE|Z>1,n|δ

∞∑
i=qn+1

E|Cj |δ.

By Karamata’s theorem limn→∞ nE|Z>1,n|δ = (1 − δ)−1 and hence from (3.1) we
have limn→∞ I2 = 0. Similarly we obtain limn→∞ I4 = 0. This all allows us to
conclude

lim
n→∞

P

(
sup

0≤t≤1
|Vn,qn(t)− Vn(t)| > ε

)
= 0.

As before, Lemma 4.1 from Appendix and the modified proof of Theorem 2.1 (with
q replaced by qn) imply Vn,qn( · ) d−→ C̃V ( · ) in (D[0, 1], dM2

). Now the statement of
the theorem follows by an application of Slutsky’s theorem. �

Remark 3.5. When the sequence of coefficients (Cj) is deterministic, condition (3.4)
is not needed. This was shown by Basrak and Krizmanić (2014), but their proof
contains an error (i.e. they used Lemma 2 from Avram and Taqqu (1992), but the
conditions needed to use this lemma were not fulfilled). Therefore in the proposition
below we improve the proof of Theorem 3.1 in Basrak and Krizmanić (2014) in the
case α ∈ [1, 2), thus showing that condition (3.4) can be dropped if all coefficients
of the moving average process are deterministic.

Proposition 3.6. Let (Zi)i∈Z be an i.i.d. sequence of regularly varying random
variables with index α ∈ [1, 2). Suppose that conditions (1.5) and (1.6) hold. Let
{Ci, i = 0, 1, 2, . . .} be a sequence of real numbers satisfying

∞∑
j=0

|Cj |δ <∞ for some δ < α, 0 < δ ≤ 1, (3.18)

and

0 ≤
s∑
i=0

Ci

/ ∞∑
i=0

Ci ≤ 1 for every s = 0, 1, 2 . . . . (3.19)

Then
Vn( · ) d−→ CV ( · ), n→∞,

in D[0, 1] endowed with the M2 topology, where C =
∑∞
j=0 Cj, V is an α–stable

Lévy process with characteristic triple (0, µ, b), with µ as in (1.9) and

b =

{
0, α = 1,

(p− r) α
1−α , α ∈ (1, 2).

Proof : Fix q ∈ N, and define

Xq
i =

q−1∑
j=0

CjZi−j + C ′qZi−q, i ∈ Z,

where C ′q =
∑∞
j=q Cj , and

Vn,q(t) =

bntc∑
i=1

Xq
i

an
, t ∈ [0, 1].
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Since the coefficients C0, . . . , Cq−1, C
′
q satisfy condition (2.1), an application of The-

orem 2.1, adjusted to deterministic coefficients Cj , yields Vn,q( · )
d−→ CV ( · ) in

(D[0, 1], dM2
) as n → ∞ (see also Theorem 2.1 in Basrak and Krizmanić, 2014).

Therefore, in order to have Vn( · ) d−→ CV ( · ) in D[0, 1] with the M2 topology, by a
generalization of Slutsky’s theorem we have to show that for every ε > 0

lim
q→∞

lim sup
n→∞

P[dM2
(Vn,q, Vn) > ε] = 0.

As before it suffices to show that

lim
q→∞

lim sup
n→∞

P

(
sup

0≤t≤1
|Vn,q(t)− Vn(t)| > ε

)
= 0. (3.20)

As in the proof of Theorem 3.1 we have

P

(
sup

0≤t≤1
|Vn,q(t)− Vn(t)| > ε

)

≤ P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

C ′′q Zi−q

an

∣∣∣∣ > ε

2

)
+ P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

CjZi−j
an

∣∣∣∣ > ε

2

)
, (3.21)

where C ′′q =
∑∞
i=q+1 Ci. Take τ > 0 such that{

α− τ > δ, if α = 1,

α− τ > 1, if α ∈ (1, 2).

Condition (3.18) implies
∑∞
j=0 |Cj |α−τ < ∞. Similarly

∑∞
j=0 |Cj | < ∞. This

implies that for large q we have |C ′′q | < 1, which allows us to apply Lemma 2
in Avram and Taqqu (1992) to the first term on the right-hand side of (3.21), to
obtain (for large q)

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

C ′′q Zi−q

an

∣∣∣∣ > ε

2

)
≤ M

( ε
2

)−(α+τ) 1

n

n∑
i=1

|C ′′q |α−τ

= M
( ε

2

)−(α+τ)

|C ′′q |α−τ (3.22)

where M is a constant independent of n and q. Using the following inequalities{
|
∑m
i=1 ai|s ≤

∑m
i=1 |ai|s, if s ≤ 1,

|
∑m
i=1 ai|s ≤

∑m
i=1 |ai|, if s > 1 and |

∑m
i=1 ai| < 1,

(3.23)

we have

|C ′′q |α−τ ≤

{ ∑∞
j=q+1 |Cj |α−τ , if α = 1,∑∞
j=q+1 |Cj |, if α ∈ (1, 2),

yielding limq→∞ |C ′′q |α−τ = 0. Now from (3.22) we obtain

lim
q→∞

lim sup
n→∞

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

C ′′q Zi−q

an

∣∣∣∣ > ε

2

)
= 0. (3.24)
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Note that the second term on the right-hand side of (3.21) is bounded above by

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Zi−j

an

∣∣∣∣ > ε

4

)
+ P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C−j Zi−j

an

∣∣∣∣ > ε

4

)
,

where C+
j = Cj ∨ 0 and C−j = (−Cj) ∨ 0. In the sequel we consider only the first

of these two probabilities since the other one can be handled in the same manner.
Assume first α ∈ (1, 2). Recall Z̃≤i,n and Z̃>i,n from the proof of Lemma 3.3, and

note

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Zi−j

an

∣∣∣∣ > ε

4

)

≤ P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Z̃
≤
i−j,n

∣∣∣∣ > ε

8

)
+ P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Z̃

>
i−j,n

∣∣∣∣ > ε

8

)
(3.25)

Since the coefficients C+
j are nonnegative, the moving average processes

Y ≤i,n,q :=

∞∑
j=q+1

C+
j Z̃
≤
i−j,n, i = 1, 2, . . . ,

are associated, as nondecreasing functions of independent random variables (see
Esary et al., 1967). Thus the sequence (

∑k
i=1 Y

≤
i,n,q)k is a demimartingale (see Sec-

tion 2.1 in Prakasa Rao, 2012), and hence by Markov’s inequality and the maximal
inequality for demimartingales

E

(
sup

1≤k≤n
|Sk|

)κ
≤
( κ

κ− 1

)κ
E|Sn|κ,

which holds for κ > 1 and (Sk)k a demimartingale (see for example Corollary 2.4
in Wang et al., 2010) we obtain

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Z̃
≤
i−j,n

∣∣∣∣ > ε

8

)
≤
( ε

8

)−(α+τ)( α+ τ

α+ τ − 1

)α+τ

E

∣∣∣∣ n∑
i=1

Y ≤i,n,q

∣∣∣∣α+τ

(3.26)
and similarly

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Z̃

>
i−j,n

∣∣∣∣ > ε

8

)
≤
( ε

8

)−(α−τ)( α− τ
α− τ − 1

)α−τ
E

∣∣∣∣ n∑
i=1

Y >i,n,q

∣∣∣∣α−τ,
(3.27)

where Y >i,n,q :=
∑∞
j=q+1 C

+
j Z̃

>
i−j,n. By standard changes of variables and order of

summation we have

n∑
i=1

Y ≤i,n,q =

n−1∑
i=−∞

( q+n−i∑
j=q+1+(−i)∨0

C+
j

)
Z̃≤i−q,n.
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Note that ((
∑q+n−i
j=q+1+(−i)∨0 C

+
j )Z̃≤i−q,n)i is a martingale difference sequence, and

thus by the Bahr-Esseen inequality we obtain

E

∣∣∣∣ n∑
i=1

Y ≤i,n,q

∣∣∣∣α+τ

≤ 2

n−1∑
i=−∞

( q+n−i∑
j=q+1+(−i)∨0

C+
j

)α+τ

E|Z̃≤i−q,n|
α+τ .

Noting that for large q,
∑q+n−i
j=q+1+(−i)∨0 C

+
j < 1, the second inequality in (3.23)

yields that (for large q)

E

∣∣∣∣ n∑
i=1

Y ≤i,n,q

∣∣∣∣α+τ

≤ 2|Z̃≤1,n|α+τ
n−1∑
i=−∞

q+n−i∑
j=q+1+(−i)∨0

C+
j .

Now note that every C+
j , for j ≥ q + 1, appears in the sum

n−1∑
i=−∞

q+n−i∑
j=q+1+(−i)∨0

C+
j

at most n times, and therefore

E

∣∣∣∣ n∑
i=1

Y ≤i,n,q

∣∣∣∣α+τ

≤ 2n|Z̃≤1,n|α+τ
∞∑

j=q+1

C+
j .

Similarly we obtain

E

∣∣∣∣ n∑
i=1

Y >i,n,q

∣∣∣∣α−τ ≤ 2n|Z̃>1,n|α−τ
∞∑

j=q+1

C+
j .

Jensen’s inequality, as in (3.9), yields

E|Z̃≤1,n|α+τ ≤ 2α+τ+1E|Z≤1,n|α+τ ,

and similarly
E|Z̃>1,n|α−τ ≤ 2α−τ+1E|Z>1,n|α−τ .

Collecting all these facts, from (3.26) and (3.27) we obtain, for large q,

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Z̃
≤
i−j,n

∣∣∣∣ > ε

8

)

≤ 2α+τ+2
( ε

8

)−(α+τ)( α+ τ

α+ τ − 1

)α+τ

n|Z≤1,n|α+τ
∞∑

j=q+1

C+
j (3.28)

and

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Z̃

>
i−j,n

∣∣∣∣ > ε

8

)

≤ 2α−τ+2
( ε

8

)−(α−τ)( α− τ
α− τ − 1

)α−τ
n|Z>1,n|α−τ

∞∑
j=q+1

C+
j . (3.29)

From (3.25), (3.28) and (3.29) we see that for some positive constant M ′ the fol-
lowing inequality holds for large q

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Zi−j

an

∣∣∣∣ > ε

4

)
≤M ′(n|Z≤1,n|α+τ + n|Z>1,n|α−τ )

∞∑
j=q+1

C+
j .
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By Karamata’s theorem nE|Z≤1,n|α+τ → α/τ and nE|Z>1,n|α−τ → α/τ , as n → ∞.
Therefore, since

∑∞
j=q+1 C

+
j ≤

∑∞
j=q+1 |Cj | → 0 as q →∞, we have

lim
q→∞

lim sup
n→∞

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Zi−j

an

∣∣∣∣ > ε

4

)
= 0.

Hence we conclude

lim
q→∞

lim sup
n→∞

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

CjZi−j
an

∣∣∣∣ > ε

2

)
= 0. (3.30)

Now, from (3.21), (3.24) and (3.30) follows (3.20), which means that Vn( · ) d−→
CV ( · ) in D[0, 1] with the M2 topology.

Assume now α = 1. Relation (3.26) holds also in this case, but for (3.27) we
need a different argument since α − τ < 1, and thus we can not use the maximal
inequality for demimartingales. By Markov’s inequality and the first inequality in
(3.23) we have

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Z̃

>
i−j,n

∣∣∣∣ > ε

8

)
≤ P

( n∑
i=1

∞∑
j=q+1

C+
j |Z̃

>
i−j,n| >

ε

8

)

≤
( ε

8

)−(α−τ)

E

( n∑
i=1

∞∑
j=q+1

C+
j |Z̃

>
i−j,n|

)α−τ
,

≤
( ε

8

)−(α−τ)

E|Z̃>1,n|α−τ
n∑
i=1

∞∑
j=q+1

(C+
j )α−τ

≤
( ε

8

)−(α−τ)

nE|Z̃>1,n|α−τ
∞∑

j=q+1

|Cj |α−τ .

From the symmetry of Z1, Karamata’s theorem and (1.7) we obtain, as n→∞,

nE|Z̃>1,n|α−τ = nE|Z>1,n|α−τ =
E(|Z1|α−τ1{|Z1|>an})

aα−τn P(|Z1| > an)
· nP(|Z1| > an)→ α

τ
.

Therefore, since limq→∞
∑∞
j=q+1 |Cj |α−τ = 0, we have

lim
q→∞

lim sup
n→∞

P

(
sup

1≤k≤n

∣∣∣∣ k∑
i=1

∞∑
j=q+1

C+
j Z̃

>
i−j,n

∣∣∣∣ > ε

8

)
= 0,

and as in the case α ∈ (1, 2) it follows that Vn( · ) d−→ CV ( · ) in D[0, 1] with the M2

topology. This completes the proof. �

4. Appendix

We provide a technical result used in the proof of Theorem 3.1 and an example of
moving average process with heavy-tailed innovations and deterministic coefficients
for which the M1 convergence of the corresponding partial sum process does not
hold (but for which the M2 convergence holds).
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Lemma 4.1. Let Z1 be a regularly varying random variable with index α ∈ [1, 2)
and (an) a sequence of positive real numbers such that (1.7) holds. Let qn =
bn1/10c, n ∈ N. Then

lim
n→∞

nq2
n

[
P

(
|Z1| >

an
qn

)]2

= 0.

Proof : By (1.1) and (1.7) we have

lim
n→∞

na−αn L(an) = 1. (4.1)

Since L is a slowly varying function, it holds that for all s > 0 and t ∈ R, as
x → ∞, xs[L(x)]t → ∞ and x−s[L(x)]t → 0 (Bingham et al., 1989, Proposition
1.3.6). Hence a2−α

n L(an)→∞ as n→∞, and since by (4.1)

lim
n→∞

n

a2
n

a2−α
n L(an) = 1,

it follows that n/a2
n → 0 as n→∞. This yields

an
qn

=

√
a2
n

n
·
√
n

qn
→∞ as n→∞,

since by the definition of the sequence (qn),
√
n/qn →∞. Thus for u > 0,Mn(u) :=

(an/qn)−u[L(an/qn)]2 → 0 as n→∞.
From (1.1) we obtain

nq2
n

[
P

(
|Z1| >

an
qn

)]2

= nq2
n

(an
qn

)−2α
[
L
(an
qn

)]2

= nq2
n

(an
qn

)−2α+u

Mn(u).

By (4.1) we have
aαn ≥ KnL(an)

for some positive constant K independent of n, and hence taking some v > 0 such
that u+ v < 2α we obtain

nq2
n

[
P

(
|Z1| >

an
qn

)]2

= nq2+2α−u
n (aαn)−2+(u+v)/αa−vn Mn(u)

≤ K−2+(u+v)αq2+2α−u
n n−1+(u+v)/αa−vn [L(an)]−2+(u+v)/αMn(u)

= q2+2α−u
n n−1+(u+v)/αMn(u, v)

≤ n(2+2α−u)/10−1+(u+v)/αMn(u, v). (4.2)

where

Mn(u, v) := K−2+(u+v)αa−vn [L(an)]−2+(u+v)/αMn(u)→ 0, as n→∞.
Now let u = 1/5 and v = 1/5, and note that for this choice of u and v it holds that

2 + 2α− u
10

− 1 +
u+ v

α
≤ − 1

50
< 0.

Therefore from (4.2) we obtain

lim
n→∞

nq2
n

[
P

(
|Z1| >

an
qn

)]2

= 0.
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�

Example 4.2. Let (Zi)i be a sequence of i.i.d. regularly varying random variables
with index of regular variation α ∈ (0, 2). Define the moving average process

Xi = Zi − Zi−1 + Zi−2, i ∈ Z.

We will show that Vn, as defined in (2.2), does not converge in distribution un-
der the M1 topology on D[0, 1]. For this, according to Skorohod (1956) (see also
Proposition 2 in Avram and Taqqu, 1992), it suffices to show that

lim
δ→0

lim sup
n→∞

P(ωδ(Vn) > ε) > 0 (4.3)

for some ε > 0, where

ωδ(x) = sup
t1 ≤ t ≤ t2

0 ≤ t2 − t1 ≤ δ

M(x(t1), x(t), x(t2))

(x ∈ D[0, 1], δ > 0) and

M(x1, x2, x3) =

{
0, if x2 ∈ [x1, x3],
min{|x2 − x1|, |x3 − x2|}, otherwise,

Note that M(x1, x2, x3) is the distance from x2 to [x1, x3], and ωδ(x) is the M1

oscillation of x. To show (4.3) we use, with appropriate modifications, the procedure
of Avram and Taqqu (1992) in the proof of their Theorem 1.

Let i′ = i′(n) be the index at which max1≤i≤n−1 |Zi| is obtained. Fix ε > 0 and
introduce the events

An,ε = {|Zi′ | > εan} =
{

max
1≤i≤n−1

|Zi| > εan

}
and

Bn,ε = {|Zi′ | > εan and ∃ l 6= 0,−i′ − 1 ≤ l ≤ 1, such that |Zi′+l| > εan/4}.
Using the facts that (Zi) is an i.i.d. sequence and nP(Z1 > λan)→ λ−α as n→∞
for λ > 0 (which follows from the regular variation property of Z1 and (1.7)) we
get

lim
n→∞

P(An,ε) = 1− e−ε
−α

(4.4)

and

lim sup
n→∞

P(Bn,ε) ≤
ε−2α

4−α
(4.5)

(see Example 5.1 in Krizmanić, 2014).
On the event An,ε \Bn,ε one has |Zi′ | > εan and |Zi′+l| ≤ εan/4 for every l 6= 0,

−i′ − 1 ≤ l ≤ 1, and hence∣∣∣Vn( i′
n

)
− Vn

( i′ − 1

n

)∣∣∣ =
|Xi′ |
an

=
|Zi′ − Zi′−1 + Zi′−2|

an
>
ε

2
(4.6)

and ∣∣∣Vn( i′ + 1

n

)
− Vn

( i′
n

)∣∣∣ =
|Xi′+1|
an

=
|Zi′+1 − Zi′ + Zi′−1|

an
>
ε

2
. (4.7)

Further, we claim that on the event An,ε \Bn,ε it also holds that

Vn

( i′
n

)
/∈
[
Vn

( i′ − 1

n

)
, Vn

( i′ + 1

n

)]
. (4.8)
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If this is not the case, then

Vn

( i′ − 1

n

)
≤ Vn

( i′
n

)
≤ Vn

( i′ + 1

n

)
,

i.e.

0 ≤ Xi′

an
≤ Xi′ +Xi′+1

an
.

Therefore
Xi′

an
=
Zi′ − Zi′−1 + Zi′−2

an
≥ 0 and

Xi′+1

an
=
Zi′+1 − Zi′ + Zi′−1

an
≥ 0,

and this implies
Zi′

an
>
ε

2
and

Zi′

an
< − ε

2
,

which is not possible. Thus relation (4.8) holds, and it implies

M
(
Vn

( i′ − 1

n

)
, Vn

( i′
n

)
, Vn

( i′ + 1

n

))
= min

{∣∣∣Vn( i′
n

)
− Vn

( i′ − 1

n

)∣∣∣, ∣∣∣Vn( i′ + 1

n

)
− Vn

( i′
n

)∣∣∣}.
Taking into account (4.6) and (4.7) we obtain

ω2/n(Vn) = sup
t1 ≤ t ≤ t2

0 ≤ t2 − t1 ≤ 2/n

M(Vn(t1), Vn(t), Vn(t2))

≥ M
(
Vn

( i′ − 1

n

)
, Vn

( i′
n

)
, Vn

( i′ + 1

n

))
>
ε

2

on the event An,ε \Bn,ε. Therefore, since ωδ is nondecreasing in δ, it holds that

lim inf
n→∞

P(An,ε \Bn,ε) ≤ lim inf
n→∞

P(ω2/n(Vn) > ε/2)

≤ lim
δ→0

lim sup
n→∞

P(ωδ(Vn) > ε/2). (4.9)

Since x2α(1 − e−x
−α

) tends to infinity as x → ∞, we can find ε > 0 such that
ε2α(1− e−ε−α) > 4α, i.e.

1− e−ε
−α

>
ε−2α

4−α
.

For this ε, by relations (4.4) and (4.5), it holds that

lim
n→∞

P(An,ε) > lim sup
n→∞

P(Bn,ε),

i.e.
lim inf
n→∞

P(An,ε \Bn,ε) ≥ lim
n→∞

P(An,ε)− lim sup
n→∞

P(Bn,ε) > 0.

Therefore by (4.9) we obtain

lim
δ→0

lim sup
n→∞

P(ωδ(Vn) > ε/2) > 0

and relation (4.3) holds, which means that Vn does not converge in distribution in
D[0, 1] endowed with the M1 topology.
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