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Abstract. We prove local limit theorems for mod-ϕ convergent sequences of ran-
dom variables, ϕ being a stable distribution. In particular, we give two new proofs
of the local limit theorem stated in Delbaen et al. (2015): one proof based on the
notion of zone of control introduced in Féray et al. (2019+a), and one proof based
on the notion of mod-ϕ convergence in L 1(iR). These new approaches allow us
to identify the infinitesimal scales at which the stable approximation is valid. We
complete our analysis with a large variety of examples to which our results ap-
ply, and which stem from random matrix theory, number theory, combinatorics or
statistical mechanics.

1. Introduction

Let (Yn)n∈N be a sequence of random variables which admit a limit in law Y∞ as
n goes to infinity. We assume that the distribution of Y∞ is absolutely continuous
with respect to the Lebesgue measure; thus, there is a density p(x) such that

P[Y∞ ∈ (a, b)] =

∫ b

a

p(x) dx.
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The convergence in law Yn ⇀ Y∞ amounts then to

lim
n→∞

P[Yn ∈ (a, b)] =

∫ b

a

p(x) dx.

for any a < b. In this setting, a local limit theorem for the sequence (Yn)n∈N is a
statement of the following form: for some sequence (sn)n∈N going to +∞, and any
x, a, b ∈ R,

lim
n→∞

sn P
[
Yn − x ∈ 1

sn
(a, b)

]
= p(x) (b− a). (1.1)

Thus, we are interested in the asymptotics of the probability for Yn to fall in a
small interval of size (sn)

−1. More generally, given a bounded measurable subset
B whose boundary ∂B has Lebesgue measure m(∂B) = 0, we want to prove that
for some scales sn → +∞,

lim
n→∞

sn P
[
Yn − x ∈ 1

sn
B

]
= p(x)m(B). (1.2)

Notice that the convergence in law Yn ⇀ Y∞ does not imply this kind of result.
Besides, for many convergent sequences (Yn)n∈N, there exist some scales (sn)n∈N for
which the probability on the left-hand side of Equation (1.2) cannot be equivalent
to p(x)m(B)/sn. For instance, if Yn = Nn

sn
is a renormalisation of an integer-

valued statistics Nn, then at the scale sn, Equation (1.1) cannot be true, because
a, b 7→ P[Nn ∈ (a, b)] is not continuous in a and b. The goal of this paper is to show
that in the setting of mod-ϕ convergent sequences, there is a large range of scales
(sn)n∈N for which the local limit theorem is satisfied.

1.1. Mod-ϕ convergence. We start by recalling the notion of mod-ϕ convergent se-
quences, which has been introduced in Jacod et al. (2011); Delbaen et al. (2015);
Féray et al. (2016).

Definition 1.1. Let D ⊆ C be a subset of the complex plane containing 0, and
(Xn)n∈N be a sequence of real-valued random variables whose moment generating
functions E[ezXn ] are well defined over D. We also fix a non-constant infinitely
divisible distribution ϕ whose Laplace transform is well defined over D and has
Lévy exponent η:

∀z ∈ D,

∫
R
ezx ϕ(dx) = eη(z).

We then say that (Xn)n∈N converges mod-ϕ over D with parameters (tn)n∈N and
limiting function ψ : D → C if, locally uniformly on D,

ψn(z) := E
[
ezXn

]
e−tnη(z) −→ ψ(z).

Here, (tn)n∈N is some deterministic sequence of positive numbers with limn→∞ tn =
+∞, and ψ(z) is a continuous function on D such that ψ(0) = 1.

Let us comment a bit this definition with respect to the choice of the domain. If
D = iR, then we are looking at Fourier transforms, or ratios thereof. So, there is
no problem of definition of these quantities (recall that the Fourier transform eη(iξ)

of an infinitely divisible distribution does not vanish, see Sato, 1999, Lemma 7.5).
We shall then simply speak of mod-ϕ convergence (or mod-ϕ convergence in the
Fourier sense if we want to be precise), and denote

θn(ξ) := E
[
eiξXn

]
e−tnη(iξ)
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and θ(ξ) = limn→∞ θn(ξ). On the other hand, if D is an open subset containing
0, then the Laplace transforms must be analytic functions on this domain. Mod-ϕ
convergence on such a domain, or even on the whole complex plane C occurs often
when the reference law ϕ is the standard Gaussian distribution, with density

1√
2π

e−
x2

2

and with Lévy exponent η(z) = z2

2 . In this paper, we shall consider domains of
convergence D equal to iR, or C, or R (in Section 6.3). In some cases, we shall
also require that the local uniform convergence of the residues ψn → ψ or θn → θ
occurs in L 1(D); see Definitions 6.1 and 6.3.

1.2. Stable distributions on the real line. In this article, we shall only be interested
in the case where ϕ is a stable distribution:
Definition 1.2. Let c > 0, α ∈ (0, 2] and β ∈ [−1, 1]. The stable distribution of
parameters (c, α, β) is the infinite divisible law ϕ = ϕc,α,β whose Fourier transform∫
R eiξxϕ(dx) = eη(iξ) has Lévy exponent η = ηc,α,β given by

ηc,α,β(iξ) = − |cξ|α (1− iβh(α, ξ) sgn(ξ)) ,

where sgn(ξ) is the sign of ξ, and

h(α, ξ) =

{
tan

(
πα
2

)
, if α ̸= 1,

− 2
π log |ξ| , if α = 1.

We refer to Sato (1999, Chapter 3) for details on stable distributions, see in
particular Theorem 14.15 in loc. cit. for the formula for the Lévy exponents. Using
the above definition, one sees that the Lévy exponent of a stable law satisfies the
scaling property:

tηc,α,β

(
iξ

t1/α

)
=

{
ηc,α,β(iξ) if α ̸= 1,

ηc,α,β(iξ)−
(

2cβ
π log t

)
iξ if α = 1.

Stable distributions include:
• the standard Gaussian law, corresponding to (c, α, β) = ( 1√

2
, 2, 0);

• the standard Cauchy law, corresponding to (c, α, β) = (1, 1, 0) ;
• the standard Lévy law, corresponding to (c, α, β) = (1, 12 , 1).

Note that, since |eηc,α,β(iξ)| = e−|cξ|α is integrable, any stable law is absolutely
continuous with the respect to the Lebesgue measure. Throughout this article, we
denote by pc,α,β(x) dx the density of the stable distribution ϕc,α,β . On the other
hand, it is an easy exercise to show that the definition of mod-stable convergence
together with the scaling property of the Lévy exponent imply the following propo-
sition (see Féray et al., 2019+a, Proposition 1.3).
Proposition 1.3. If (Xn)n∈N converges mod-ϕc,α,β (in the Fourier sense on D =
iR) with parameters (tn)n∈N and limiting function θ, then

Yn :=

{
Xn

(tn)1/α
if α ̸= 1,

Xn

tn
− 2cβ

π log tn if α = 1

converges in law towards ϕc,α,β.



820 M. Dal Borgo, P.-L. Méliot and A. Nikeghbali

The stable laws are well known to be the attractors of the laws of sums of
independent and identically distributed random variables. More precisely, fix a
cumulative distribution function F : R → [0, 1], and consider a sequence (Xn)n∈N
of independent random variables with P[Xn ≤ x] = F (x) for any n. If the scaled
sum

Sn −An
Bn

=
X1 +X2 + · · ·+Xn −An

Bn
admits a limiting distribution for some choice of parameters An and Bn, then this
limiting distribution is necessarily a stable law ϕc,α,β (up to a translation if An is
not chosen correctly); see Gnedenko and Kolmogorov (1968, Chapter 7). One then
says that F belongs to the domain of attraction of the stable law of parameter
(α, β) (c can be chosen by changing Bn). Necessary and sufficient conditions on F
for belonging to the domain of attraction of a stable distribution ϕc,α,β are given
in Gnedenko and Kolmogorov (1968, Chapter 7, §35) and Ibragimov and Linnik
(1971, Chapter 2, §6). In terms of Fourier transforms, one criterion is the following
(see Ibragimov and Linnik, 1971, Theorem 2.6.5): a probability measure µ belongs
to the domain of attraction of a stable law of parameter (α, β) if and only if its
Fourier transform writes in the neighborhood of the origin as

µ̂(ξ) = eimξ−|cξ|α(1−iβh(α,ξ) sgn(ξ)) s(ξ) (1+ε(ξ)),

where limξ→0 ε(ξ) = 0, and ξ 7→ s(ξ) is a slowly varying function at 0 in the sense
of Karamata (see Bingham et al., 1987), meaning that s is positive and

∀a ̸= 0, lim
ξ→0

s(aξ)

s(ξ)
= 1.

In this representation, s(ξ) is positive real valued, whereas the function ε(ξ) can
be complex. The central limit theorem for random variables in the domain of
attraction of a stable law is completed by a local limit theorem (Shepp, 1964; Stone,
1965; Feller, 1967). In this paper, we shall revisit this theorem by showing that
it is a simple consequence of a result of approximation by smooth test functions
(Section 2.2).

1.3. Main results and outline of the paper. We fix a stable law ϕc,α,β , and we
consider a sequence (Xn)n∈N of random variables that is mod-ϕc,α,β convergent
over some domain D, with parameters (tn)n∈N and limiting function ψ. The goal
of this paper is to show that the central limit theorem of Proposition 1.3 goes
together with a local limit theorem

lim
n→∞

(sn)P[Yn − x ∈ (sn)
−1B] = pc,α,β(x)m(B),

at scales (sn)n∈N that are determined by the quality of the convergence of the
residues θn → θ (or ψn → ψ if D = C or D = R). To be more precise, with
(Xn)n∈N and (Yn)n∈N as in Proposition 1.3, there are two possible situations:

(1) There exists a minimal scale sn → +∞ such that:
• if s′n = o(sn) and s′n → +∞, then P[Yn−x ∈ (s′n)

−1B] can be approx-
imated by the probability for the stable reference law;

• on the contrary, P[Yn − x ∈ (sn)
−1B] cannot be approximated by the

stable distribution, because of combinatorial or arithmetic properties



Local limit theorems and mod-ϕ convergence 821

of the underlying random model (for instance, if Yn comes from a
lattice-valued random variable).

In this case, the theory of zones of control introduced in Féray et al.
(2019+a) will enable us to determine the scale sn, or at least a sequence
rn = O(sn) up to which the stable approximation holds. This is the content
of Theorem 3.2.

(2) The stable approximation of the probability P[Yn − y ∈ (sn)
−1B] holds

as soon as sn → +∞. Hence, for any infinitesimal scale εn → 0, the
probability of Yn falling in an interval with this scale εn is asymptotically
equivalent to the probability given by the stable reference law. Theorem 6.2
gives a sufficient condition which relies on the notion of mod-ϕ convergence
in L 1(iR). Note that this cannot occur if the Xn’s are lattice valued.

Both approaches extend the results of the paper Delbaen et al. (2015), which
gave a set of conditions (cf. the hypotheses H1-H3 in loc. cit.) that implied a local
limit theorem with respect to a symmetric stable law (β = 0). In many cases, the
results of our paper improve the range of validity of this local limit theorem. On
the other hand, both approaches rely on estimates for the differences

E[gn(Yn)]− E[gn(Y )],

where Y ∼ ϕc,α,β and where the gn’s are integrable test functions whose Fourier
transforms have compact support. These test functions already played an es-
sential role in Féray et al. (2019+a) when studying the speed of convergence in
Proposition 1.3; we recall their main properties in Section 2. Note that recently,
other techniques have been developed in order to obtain local limit theorems: for
integer-valued random variables, let us mention in particular the use of Landau–
Kolmogorov type inequalities (cf. Röllin and Ross, 2015), the use of translated
Poisson random variables instead of normal variables, and estimates coming from
Stein’s method (see Barbour et al., 2019).

Let us now detail the content of the paper. The theoretical results are given
in Sections 2.1, 3 and 6.1. The other sections are devoted to a large variety of
examples and applications:

• In Section 2.2, we first look at sequences Sn =
∑n
i=1Ai, where the Ai’s

are i.i.d. random variables. In this case, we show that our results on test
functions imply the well-known local limit theorems for distributions in the
domain of attraction of a stable law. Namely, we recover the theorem of
Shepp (1964) for laws with finite variance, and the generalizations of Stone
(1965); Feller (1967) for the cases α ∈ (0, 2).

• Section 4 is devoted to the analysis of sums of random variables which
are not identically distributed, or not independent. We start with random
variables that can be represented in law by sums or series of independent
random variables:

– the size of a random integer partition or a random plane partition
chosen with probability proportional to q|λ| (Section 4.1);
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– the number of zeroes of a random analytic series in a disc around the
origin, and more generally the number of points of a determinantal
point process that fall in a compact subset (Section 4.2);

– the random zeta functions

log

∏
p≤N

1

1− Xp√
p

 ,

where the Xp’s are labeled by prime numbers, and are independent
uniform random variables on the unit circle (Section 4.3).

The first example was kindly suggested to us by A. Borodin. On the other
hand, the random zeta functions have already been studied in Kowalski
and Nikeghbali (2012, Section 3, Example 2) and Delbaen et al. (2015,
Section 3.5), in connection to Ramachandra’s conjecture on the denseness
in the complex plane of the values of the Riemann ζ function on the critical
line. For these three examples, we establish the mod-Gaussian convergence
with an adequate zone of control, and we deduce from it a local limit
theorem.

• More generally, we can work with sums Sn =
∑
v∈Vn

Av of random variables
which have a dependency structure encoded in a dependency graph or in
a weighted dependency graph. In Féray et al. (2016, Theorem 9.1.8) and
Féray et al. (2019+a, Proposition 5.3), we proved that these hypotheses
imply uniform bounds on the cumulants of Sn. From these bounds, it
is usually possible to establish a zone of control for a renormalization of
(Sn)n∈N, and the local limit theorem is then a straightforward application
of Theorem 3.2. In Sections 4.4 and 4.5, we study in particular the subgraph
counts in random Erdös–Rényi graphs, and the number of visits of a finite
ergodic Markov chain.

• The next applications (Section 5) are based on the results in Dal Borgo
et al. (2018, 2019), where mod-Gaussian convergence has been proven for
sequences stemming either from random matrices or from the Coulomb gas
context. For all these examples, one can compute a large zone of control,
which combined with our main result (Theorem 3.2) provides a local limit
theorem. The precise models that we shall study are:

– in Section 5.1, the charge ensembles proposed in Rider et al. (2013);
Shum and Sinclair (2014), which consist of charge 1 and charge 2 par-
ticles located on the real line or the circle and interacting via their
pairwise logarithmic repulsion, and with an harmonic attraction to-
wards the origin in the real case. In the regime where the two types
of particles have the same magnitude, the asymptotic behavior of the
number of particles with charge 1 was studied by Dal Borgo, Hovhan-
nisyan and Rouault in Dal Borgo et al. (2018).

– in Section 5.2, the logarithm of the determinant of a random matrix
of the Gaussian Unitary Ensemble. The central limit theorem for this
quantity was shown in Delannay and Le Caër (2000), and moderate
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deviations and Berry–Esseen bounds were established in Döring and
Eichelsbacher (2013).

– in Section 5.3, the logarithm of the determinant of a random matrix
of the β-Laguerre, the β-Jacobi and the β-uniform Gram ensemble,
for general β > 0. The corresponding central limit theorems were
established by Rouault (2007).

– last, in Section 5.4, the logarithm of the characteristic polynomial of
a random matrix of the β-circular Jacobi ensemble, for general β > 0.
An asymptotic study of these quantities relying on the theory of de-
formed Verblunsky coefficients was proposed by Bourgade, Nikeghbali
and Rouault in Bourgade et al. (2009, Section 5).

To the best of our knowledge, the local limit theorems are new for all
these examples. Using the polynomial structure of the partition function
and applying an argument of Bender (1973, Theorem 2), Forrester (2010,
Section 7.10) gave a local limit theorem for a two-component Coulomb gas
model on the circle with charge ratio 2 : 1. This model is analogous to
the ensemble proposed in Shum and Sinclair (2014) and studied in our
Section 5.1, but different.

• In our last Section 6, we consider examples that correspond to the second
case of the alternative previously described. In Delbaen et al. (2015); Féray
et al. (2019+a), it has been proved that the winding number of the planar
Brownian motion starting at z = 1 converges in the mod-Cauchy sense, with
a large zone of control. We show in §6.2 that we have in fact mod-Cauchy
convergence in L 1(iR), and therefore a local limit theorem that holds at
any infinitesimal scale. On the other hand, in Méliot and Nikeghbali (2015,
Section 3), a notion of mod-Gaussian convergence in L 1(R) was introduced,
leading to a simple proof of classical results of Ellis and Newman (1978)
on the magnetisation of the Curie–Weiss model at critical temperature. In
Section 6.3, we extend and generalise Méliot and Nikeghbali (2015, Theorem
22), by proving a local limit theorem for this magnetisation, which holds
for more scales than in loc. cit.

2. Smooth test functions

In this section, we introduce the main tool for the proof of local limit theorems,
namely, a space of smooth test functions T0(R). This functional space already
appeared in Féray et al. (2019+a) when studying estimates of the speed of conver-
gence in central limit theorems. We state in §2.1 an approximation lemma which
will enable the proof of our local limit theorems, and in Section 2.2, we explain how
to recover quickly the Stone–Feller local limit theorem by using the space of test
functions.

2.1. Functions with compactly supported Fourier transforms. In this section, all the
spaces of functions are spaces of complex functions on the real line f : R → C. We
denote

• C∞(R) (respectively, D(R)) the space of infinitely differentiable functions
on R (respectively, infinitely differentiable and compactly supported).
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• L 1(R) the space of measurable functions on R that are integrable with
respect to the Lebesgue measure.

On the other hand, if f ∈ L 1(R), its Fourier transform is the continous function

f̂(ξ) =

∫
R
f(x) eixξ dx.

Definition 2.1. A smooth test function is a function f ∈ L 1(R) whose Fourier
transform is compactly supported:

∃K ≥ 0, ∀ξ /∈ [−K,K], f̂(ξ) = 0.

We denote by T0(R) the space of smooth test functions; it is a subspace of
C∞(R), and if f ∈ T0(R), then f and all its derivatives tend to 0 at infinity, and
f satisfies the Plancherel inversion formula

f(x) =
1

2π

∫ K

−K
f̂(ξ) e−iξx dξ,

where [−K,K] is a support for f̂ . We refer to Féray et al. (2019+a, Section 2.2)
for details on the functional space T0(R). An essential property of T0(R) is the
following approximation result, proven in Delbaen et al. (2015, Theorem 4):

Theorem 2.2. Let f ∈ D(R). For any η > 0, there exists two smooth test functions
g1, g2 ∈ T0(R) such that g1 ≤ f ≤ g2 and∫

R
(g2(x)− g1(x)) dx ≤ η.

Using approximations by smooth functions in D(R), one can extend Theorem 2.2
to other functions. More precisely:

Corollary 2.3. Let B be a bounded measurable subset of R such that ∂B has
zero Lebesgue measure. For any η > 0, there exists two smooth test functions
g1, g2 ∈ T0(R) such that g1 ≤ 1B ≤ g2 and∫

R
(g2(x)− g1(x)) dx ≤ η.

Proof : The function x 7→ 1B(x) is bounded, and since m(∂B) = 0, it is almost
everywhere continuous. Therefore, it is Riemann integrable, and one can frame it
between two step functions f1 and f2 (locally constant functions with a finite num-
ber of values). In turn, one can classically approximate these two step functions
by smooth compactly supported functions in D(R), and finally one can use Theo-
rem 2.2 to replace the smooth compactly supported functions in D(R) by smooth
test functions in T0(R). □

In the sequel, a bounded measurable subset B ⊂ R whose boundary ∂B has zero
Lebesgue measure will be called a Jordan measurable subset.

2.2. Stone–Feller local limit theorem. In the next section, we shall use the approx-
imation theorem 2.2 to prove local limit theorems in the mod-ϕ setting. As a
warm-up, let us explain how to recover the Stone–Feller local limit theorem for
sums of i.i.d. random variables in the attraction domain of a stable law.
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Theorem 2.4 (Stone, Feller). Let µ be a non-lattice distributed probability measure
which is in the attraction domain of ϕc,α,β, and which has its Fourier transform
that writes as

µ̂(ξ) = eimξ−|cξ|α(1−iβh(α,ξ) sgn(ξ)) s(ξ) (1+ε(ξ)),

with s slowly varying at 0 and limξ→0 ε(ξ) = 0. We assume to simplify that we
are not in the case α = 1, β ̸= 0. We consider a sum Sn = X1 + · · · + Xn of
i.i.d. random variables with law µ, and we define An and Bn by

An = nm ; (Bn)
α = n s

(
1

Bn

)
.

Assume that (Bn)n∈N goes to +∞. Then, for any x ∈ R and any Jordan measurable
subset C with m(C) > 0,

lim
n→∞

Bn P[Sn ∈ An +Bnx+ C] = pc,α,β(x)m(C),

where pc,α,β(x) is the density at x of the stable law ϕc,α,β.

Remark 2.5. The assumption Bn → +∞ is in fact a consequence of the other hy-
potheses, see Gnedenko and Kolmogorov (1968, Lemma in §29); besides, in practice
one can usually compute Bn or an estimate of it. On the other hand, under the
assumptions of the theorem, for any ξ fixed in R,

E[eiξ
Sn−An

Bn ] = exp

−|cξ|α(1− iβ h(α, ξ) sgn(ξ))
s
(

ξ
Bn

)
s
(

1
Bn

) (1 + ε

(
ξ

Bn

))
→n→∞ e−|cξ|α(1−iβh(α,ξ) sgn(ξ))

so we have the central limit theorem Sn−An

Bn
⇀n→∞ ϕc,α,β . The Stone–Feller theo-

rem is a local version of this limiting result.

Proof : If Yn = Sn − An − Bnx, then we are interested in the asymptotics of the
quantity P[Yn ∈ C] = E[1C(Yn)]. By Corollary 2.3, it suffices to prove that for any
f ∈ T0(R),

lim
n→∞

Bn E[f(Yn)] =
(∫

R
f(y) dy

)
pc,α,β(x) (2.1)

for f ∈ T0(R); the same result will then hold for f = 1C , hence the theorem. We
compute the left-hand side of (2.1), denoting [−K,K] a support for f̂ :

Bn E[f(Yn)]

=
Bn
2π

∫
R
f̂(ξ) (µ̂(−ξ))n eAniξeBniξx dξ

=
Bn
2π

∫ K

−K
f̂(ξ) e−n|cξ|

α(1−iβh(α,−ξ) sgn(−ξ)) s(−ξ) (1+ε(−ξ))e(An−nm)iξ+Bniξx dξ

=
1

2π

∫ KBn

−KBn

f̂

(
− t

Bn

)
e
−|ct|α(1−iβh(α,t) sgn(t))

s( t
Bn

)

s( 1
Bn

)
(1+ε( t

Bn
))
e−ixt dt.

Since s is slowly varying around 0, the pointwise limit as n goes to infinity of the
function in the integral is

f̂(0) e−|ct|α(1−iβh(α,t) sgn(t)) e−ixt.
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Let us explain why we can use the dominated convergence theorem. As µ is non-
lattice distributed, the function µ̂(ξ) has modulus 1 only for ξ = 0, and therefore,
the real part of the function ξ 7→ (1 − iβh(α, ξ) sgn(ξ))(1 + ε(ξ)) does not vanish
on R. In particular, this real part stays bounded from below by a positive constant
C1 on some interval [−K,K]. On the other hand, in order to evaluate the ratio
s( t
Bn

)/s( 1
Bn

), we use Karamata’s representation theorem, which states that for
ξ ≤ K,

s(ξ) = exp

(
η1(ξ) +

∫ K

ξ

η2(u)
du

u

)
(2.2)

with η1 bounded measurable function admitting a limit η1(0) when ξ → 0, and η2
is a bounded measurable function with limξ→0 η2(ξ) = 0; see Bingham et al. (1987,
Section 1.3). Up to a modification of the pair (η1, η2), we can assume that |η2| ≤ α

2
for any ξ ≤ K. Then,

s
(

t
Bn

)
s
(

1
Bn

) = exp

(
η1

(
t

Bn

)
− η1

(
1

Bn

)
+

∫ 1
Bn

t
Bn

η2(u)
du

u

)

≥ exp
(
O(1)− α

2
log t

)
≥ C2

t
α
2

for some constant C2 > 0, and any t ≤ KBn. Therefore, on the zone of integration,

Re

(
|t|α(1− iβh(α, t) sgn(t))

s( t
Bn

)

s( 1
Bn

)

(
1 + ε

(
t

Bn

)))
≥ C1C2|t|

α
2 .

This lower bound allows one to use the dominated convergence theorem, which
shows that:

lim
n→∞

Bn E[f(Yn)] =
1

2π

∫
R
f̂(0) e−|ct|α(1−iβh(α,t) sgn(t)) e−ixt dt

=

(∫
R
f(y) dy

)
pc,α,β(x). □

The proof adapts readily to the case α = 1, up to a modification of the parameters
An and Bn when β ̸= 0. Notice that our result of approximation by smooth test
functions has reduced the notoriously difficult proof of the local limit theorem of
Stone and Feller (due to Shepp in the case α = 2, for random variables with finite
variance) to an application of Parseval’s formula and of Karamata’s representation
theorem.

3. Zones of control and local limit theorems

In this section, we explain how to obtain local limit theorems in the setting of
mod-stable convergent sequences. The main idea is that the scales at which the
stable approximation of a mod-ϕ convergent sequence is valid are dictated by:

(1) the behavior of the residues θn(ξ) and θ(ξ) around 0;

(2) the maximal size of a zone on which the growth of these residues can be
controlled.
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In the following, we fix a sequence of real-valued random variables (Xn)n∈N, a
sequence of parameters tn → +∞ and a reference stable law ϕα,β,c. In Section 3.1,
we recall the definition of zone of control, which is in some sense an improvement
of the definition of mod-stable convergence. In Section 3.2, we prove local limit
theorems under this hypothesis of zone of control.

3.1. The notion of zone of control. In Féray et al. (2019+a, Section 2.1), the rate
of convergence in Proposition 1.3 was determined by using the notion of zone of
control, which we recall here:

Definition 3.1. Let (Xn)n∈N be a sequence of real-valued random variables, ϕc,α,β
be a stable law, and tn → +∞. We set θn(ξ) = E[eiξXn ] e−tnηc,α,β(iξ). Consider the
following assertions:

(Z1) Fix ν > 0, ω > 0 and γ ∈ R. There exists positive constants K, K1

and K2 that are independent of n and such that, for all ξ in the zone
[−K (tn)

γ
,K (tn)

γ
],

|θn(ξ)− 1| ≤ K1 |ξ|ν exp (K2 |ξ|ω) .

(Z2) One has

α ≤ ω, − 1

α
< γ ≤ 1

ω − α
, 0 < K ≤

(
cα

2K2

) 1
ω−α

.

Note that if Condition (Z1) holds for some parameters γ > − 1
α and ν, ω,K,K1,K2,

then (Z2) can always be forced by increasing ω, and then decreasing K and γ. If
Conditions (Z1) and (Z2) are satisfied, then we say that we have a zone of control
[−K (tn)

γ
,K (tn)

γ
] with index of control (ν, ω).

Let us make a few remarks on this definition. First, Conditions (Z1) and (Z2)
imply that if (Yn)n∈N is defined in terms of (Xn)n∈N in the same way as in Proposi-
tion 1.3, then one has the convergence in law Yn ⇀ ϕc,α,β , see Féray et al. (2019+a,
Proposition 2.3). On the other hand, the mod-ϕc,α,β convergence implies the exis-
tence of a zone of control [−K,K] with γ = 0, with index (ν = 0, ω = α) and with
K as large as wanted (and K2 = 0). Therefore, Definition 3.1 is a generalisation of
the notion of mod-stable convergence. Conversely, a zone of control does not imply
the mod-stable convergence, even if γ ≥ 0. However, in all the examples that we are
going to present, it will always be the case that the sequence under consideration
converges mod-ϕc,α,β with the same parameters (tn)n∈N as for the notion of zone
of control.

3.2. Local limit theorems for mod-stable random variables. We can now state our
main result:

Theorem 3.2. Let (Xn)n∈N be a sequence of real-valued random variables, ϕα,β,c
a stable reference law, (tn)n∈N a sequence growing to infinity, and

θn(ξ) = E[eiξXn ] e−tnηc,α,β(iξ).

We assume that there is a zone of control [−K (tn)
γ
,K (tn)

γ
] with index (ν, ω),

and we denote (Yn)n∈N the renormalisation of (Xn)n∈N given by Proposition 1.3.
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Let x ∈ R and B be a fixed Jordan measurable subset with m(B) > 0. Then, for
every exponent δ ∈ (0, γ + 1

α ),

lim
n→∞

(tn)
δ P
[
Yn − x ∈ 1

(tn)δ
B

]
= pc,α,β(x)m(B).

Before proving Theorem 3.2, let us make a few comments. First, since this is
an asymptotic result, we actually only need a zone of control on the residues θn
for n large enough. Secondly, for exponents δ ∈ (0, 1

α ], this local limit theorem was
proven in Delbaen et al. (2015, Theorem 5, Propositions 1 and 2). Theorem 3.2
improves on these previous results by showing that the stable approximation holds
at scales (tn)

−δ:
• which can be smaller than in Delbaen et al. (2015),
• and which are directly connected to the size of the zone of control.

Lemma 3.3. Consider a sequence (Xn)n∈N that satisfies the assumptions of The-
orem 3.2. Let fn ∈ T0(R) be a smooth test function whose Fourier transform f̂n

has its support included in the zone
[
−K (tn)

γ+1/α
,K (tn)

γ+1/α
]
. There exists a

constant C(c, α, ν) such that∣∣∣∣E[fn(Yn)]− ∫
R
fn(y)ϕc,α,β(dy)

∣∣∣∣ ≤ C(c, α, ν)K1
∥fn∥L 1

(tn)ν/α
.

Proof : See Féray et al. (2019+a, Proposition 2.12). □

Proof of Theorem 3.2: We fix x, δ and B as in the statement of the theorem. Sup-
pose that we can prove that

lim
n→∞

(tn)
δ E
[
f((tn)

δ(Yn − x))
]
= pc,α,β(x)

(∫
R
f(y) dy

)
.

for any f ∈ T0(R). Then, for any η > 0, Corollary 2.3 shows that there exist
f1, f2 ∈ T0(R) with f1 ≤ 1B ≤ f2 and

∫
R f2(x)− f1(x) dx ≤ η, so

lim sup
n→∞

(tn)
δ P
[
Yn − x ∈ 1

(tn)δ
B

]
≤ lim
n→∞

(tn)
δ E
[
f2((tn)

δ(Yn − x))
]

≤ pc,α,β(x)

(∫
R
f2(y) dy

)
≤ pc,α,β(x)

(∫
R
f1(y) dy + η

)
≤ pc,α,β(x) η + lim

n→∞
(tn)

δ E
[
f1((tn)

δ(Yn − x))
]

≤ pc,α,β(x) η + lim inf
n→∞

(tn)
δ P
[
Yn − x ∈ 1

(tn)δ
B

]
so the local limit theorem holds. Hence, as in the proof of the Stone–Feller local
limit theorem, we have reduced our problem to estimates on test functions in T0(R).
Fix f ∈ T0(R), and denote fn(y) = f((tn)

δ(y − x)). If [−C,C] is the support of f̂ ,
then [−C(tn)δ, C(tn)δ] is the support of f̂n, and since δ < γ + 1

α , it is included in
[−K(tn)

γ+1/α,K(tn)
γ+1/α] for n large enough (K being given by Condition (Z1)
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of zone of control). Hence, by the previous lemma,

E[fn(Yn)] =
(∫

R
fn(y)ϕc,α,β(dy)

)
+O

(
∥fn∥L 1

(tn)
ν
α

)
=

(∫
R
fn(y)ϕc,α,β(dy)

)
+O

(
∥f∥L 1

(tn)
ν
α+δ

)
,

which implies

(tn)
δ E[f((tn)δ(Yn − x))] = (tn)

δ E[fn(Yn)]

= (tn)
δ

(∫
R
fn(y)ϕc,α,β(dy)

)
+O

(
∥f∥L 1

(tn)
ν
α

)
=

∫
R
f(u) pc,α,β

(
x+

u

(tn)δ

)
du+ o(1).

Since pc,α,β(y) = 1
2π

∫
R eηc,α,β(iξ) e−iyξ dξ is bounded by 1

2π

∫
R e−|cξ|α dξ, by domi-

nated convergence, the limit of the integral is

pc,α,β(x)

(∫
R
f(u) du

)
. □

If we want Theorem 3.2 to be meaningful, it is natural to ask when one can give an
explicit formula for the density pc,α,β at the real point x. Unfortunately, there is no
general closed formula for the density of a stable law and it is known explicitly only
for the Lévy, Cauchy and normal distributions. However, the following proposition
gives a sufficient condition for the existence of a closed formula at the origin.

Proposition 3.4. Suppose that |β tan(απ2 )| < 1. Then, the density of the stable
distribution ϕc,α,β at x = 0 is given by the convergent series

pc,α,β(0) =
1

παc

∞∑
k=0

(−1)k
(
β tan

(πα
2

))2k Γ(2k + 1
α )

Γ(2k + 1)
.

Proof : Suppose first that α ̸= 1. One computes

pc,α,β(0) =
1

2π

∫
R
eη(iξ) dξ =

1

π

∫ ∞

0

e−(cξ)α cos
(
(cξ)αβ tan

(απ
2

))
dξ

=
1

παc

∫ ∞

0

e−u cos
(
uβ tan

(απ
2

))
u

1
α−1 du.

Under the assumption |β tan(απ2 )| < 1, one can develop in power series the cosinus
and change the order of summation to obtain the formula claimed; this ends the
proof when α ̸= 1. If α = 1, then |β tan(απ2 )| < 1 is satified if and only if β = 0. In
this case, one deals with the Cauchy law

1

πc

1

1 + x2

c2

dx,

which has density 1
cπ at x = 0. This is also what is obtained by specialisation of the

power series, because, if β = 0, then for every α ∈ (0, 2], the power series specialises
to

1

παc
Γ

(
1

α

)
. □
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4. Sums of random variables

In this section, we apply our main result to various examples of random variables
which admit a representation in law as a sum of elementary components which are
independent (Sections 4.2, 4.1 and 4.3) or dependent (Sections 4.4 and 4.5).

4.1. Size of a random integer partition or plane partition. To illustrate our theory
of zone of controls and the related local limit theorems, we shall consider as a
first example the size of a random integer partition or plane partition chosen with
probability proportional to qvol(λ). Let us start with integer partitions; we refer to
Macdonald (1995, §1.1) for the details of their combinatorics. An integer partition
of size n is a non-increasing sequence λ = (λ1 ≥ λ2 ≥ · · · ≥ λr) of positive integers
such that λ1 + λ2 + · · ·+ λr = n. We then denote n = |λ|, and we represent λ by
its Young diagram, which is the array of boxes with λ1 boxes on the first row, λ2
boxes on the second row, etc. For instance, λ = (5, 5, 3, 2) is an integer partition of
size 15 represented by the Young diagram

.

Let Y be the set of all integer partitions, and Pq be the probability measure on Y

which is proportional to q|λ|, q being a fixed parameter in (0, 1). The corresponding
partition function is given by Euler’s formula

Z(q) =
∑
λ∈Y

q|λ| =

∞∏
n=1

1

1− qn
.

Thus, Pq[λ] = (
∏∞
n=1 1− qn) q|λ|. We are interested in the asymptotics of the size

Sq of a random integer partition taken according to the probability measure Pq.
The Laplace transform of Sq is

E[ezSq ] =

∞∏
n=1

1− qn

1− qnenz
;

it is well defined for Re(z) < − log q. This formula shows that Sq has the same law
as a random series

Sq =

∞∑
n=1

nYn,

where the Yn’s are independent, and Yn is a geometric random variable of parameter
1 − qn, with distribution P[Yn = k] = (1 − qn)qnk for any k ∈ N. Set An = nYn,
and fn(ξ) = logE[eiξAn ] − nqn iξ

1−qn + n2qn

(1−qn)2
ξ2

2 . The function fn and its two first
derivatives vanish at 0, and

f ′′′n (ξ) = −in3
(qeiξ)n + (qeiξ)2n

(1− (qeiξ)n)3
; |f ′′′n (ξ)| ≤ n3

qn + q2n

(1− qn)3
.

Set Mq =
∑∞
n=1

nqn

1−qn and Vq =
∑∞
n=1

n2qn

(1−qn)2 .
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Lemma 4.1. The mean Mq and the variance Vq of the random variable Sq have
for asymptotic behavior

Mq =
ζ(2)

(log q)2
+

1

2 log q
+

1

24
+ o(1) =

ζ(2)

(1− q)2
(1 + o(1));

Vq =
2ζ(2)

(1− q)3
(1 + o(1))

as q goes to 1.

Proof : For the first asymptotic expansion, we follow closely Banerjee and Wilkerson
(2017, Theorem 2.2). Introduce the series L(qx) =

∑∞
k=1 q

kx = qx

1−qx , and consider
the operator D = ∂

∂x , and

D

eD − 1
=

∞∑
n=0

BnD
n

n!
,

where the Bn’s are the Bernoulli numbers. We have(
D

eD − 1

)
(L(qx)) =

∞∑
k=1

(
D

eD − 1

)
(qkx) =

∞∑
k=1

∞∑
n=0

Bn
n!

Dn(qkx)

=

∞∑
k=1

( ∞∑
n=0

Bn(k log q)
n

n!

)
qkx = (− log q)

∞∑
k=1

k qkx

1− qk
.

On the other hand, we have the expansion in powers of x log q:

L(qx) = − 1

x log q
+

∞∑
k=0

ζ(−k)
k!

(x log q)k.

We have the relation D
eD−1

(xk) = −k ζ(1 − k, x) where ζ(s, x) =
∑∞
n=0

1
(n+x)s

is Hurwitz’ zeta function (extended to a meromorphic function of the complex
parameter s). Therefore, we obtain:

∞∑
k=1

k qkx

1− qk
=

ζ(2, x)

(log q)2
+

1

2 log q
+

∞∑
k=0

ζ(−k − 1) ζ(−k, x)
k!

(log q)k,

hence the first equivalent by taking x = 1. For the equivalent of the variance, let
us remark that

Vq =

∞∑
n=1

n2qn

(1− qn)2
=

∞∑
n=1

∞∑
k=1

n2k qnk =

∞∑
k=1

k
qk + q2k

(1− qk)3

=
1

(1− q)3

∞∑
k=1

k

(1 + q + · · ·+ qk−1)3
(qk + q2k). (4.1)

As q goes to 1, each term of the series in (4.1) converges to 2
k2 , and it is an easy

exercice to see that one can sum these limits. □
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Set Xq =
Sq−Mq

(Vq)4/9
. We have:

logE[eiξXq ] +
(Vq)

1/9ξ2

2
=

∞∑
n=1

fn

(
ξ

(Vq)4/9

)
∣∣∣∣logE[eiξXq ] +

(Vq)
1/9ξ2

2

∣∣∣∣ ≤ |ξ|3

6 (Vq)4/3

∞∑
n=1

n3(qn + q2n)

(1− qn)3
. (4.2)

As q goes to 1, the series in Equation (4.2) behaves as
∞∑
n=1

n3(qn + q2n)

(1− qn)3
=

∞∑
n=1

∞∑
k=1

n3
k(k + 1)

2
(qkn + q(k+1)n)

=

∞∑
k=1

k(k + 1)

2

(
qk(1 + 4qk + q2k)

(1− qk)4
+
qk+1(1 + 4qk+1 + q2k+2)

(1− qk+1)4

)

=
3(1 + o(1))

(1− q)4

∞∑
k=1

(
1

k2
+

1

k3
+

1

(k + 1)2
− 1

(k + 1)3

)
=

6 ζ(2) (1 + o(1))

(1− q)4
.

It follows that for any constant C > 1
24/3(ζ(2))1/3

, there exists q0 ∈ (0, 1) such that
if q ≥ q0, then ∣∣∣∣logE[eiξXq ] +

(Vq)
1/9ξ2

2

∣∣∣∣ ≤ C|ξ3|;

|θq(ξ)− 1| ≤ C|ξ|3 exp(C|ξ|3),

uniformly on the parameter ξ ∈ R, with θq(ξ) = E[eiξXq ] e
(Vq)1/9ξ2

2 . Hence, the fam-
ily (Xq)q∈(0,1) has a zone of control of mod-Gaussian convergence for the parameter
tq = (Vq)

1/9, with index (3, 3) and with size O((tq)
3/2) = O((Vq)

1/6) if one wants
Condition (Z2) to be satisfied. We conclude with Theorem 3.2 and Féray et al.
(2019+a, Theorem 2.16):

Proposition 4.2. Let Sq be the size of a random integer partition chosen with
probability proportional to q|λ|, and Mq and Vq be defined as in Lemma 4.1. As
q goes to 1, the random variable Yq = (Sq − Mq)/

√
Vq converges in law to the

standard Gaussian distribution, and one has more precisely:

dKol(Yq , NR(0, 1)) = O
(
(1− q)1/2

)
.

Moreover, one has the following local limit theorem: for any exponent δ ∈ (0, 12 )
and any Jordan measurable subset B with m(B) > 0,

lim
q→1

(1− q)−δ P
[
Yq − x ∈ (1− q)δ B

]
=

e−
x2

2

√
2π

m(B).

Note that this result does not allow one to go up to the discrete scale. Indeed, the
estimate of the variance shows that the Gaussian approximation for Sq −Mq holds
at scales (1 − q)δ−3/2 with δ < 1

2 , so one cannot describe what happens for the
scales (1− q)−γ with γ ∈ (0, 1].

Remark 4.3. The asymptotics of the expectations Mq are easy to retrieve from the
Hardy–Ramanujan asymptotic formula for the number p(n) of integer partitions of
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size n:

p(n) =
(1 + o(1))

4n
√
3

exp

(
π

√
2n

3

)
,

see Hardy and Ramanujan (1918); Rademacher (1937). It implies that the proba-
bility measure Pq[λ] = q|λ|

Z(λ) is concentrated on partitions of size n such that p(n) qn
is maximal, that is roughly with

fq(n) = π

√
2n

3
+ n log q

maximal. When q is fixed, the maximal of fq(n) is attained at n = π2

6(log q)2 =
ζ(2)

(log q)2 ; this is the leading term in the asymptotic expansion of Mq.

With the same techniques, one can study the size of a random plane partition
chosen with probability proportional to qvol(λ). A plane partition is a sequence
λ = (λ(1), λ(2), . . . , λ(s)) of non-empty integer partitions such that the following
inequalities hold:

∀i ≤ s− 1, ∀j ≤ ℓ(λ(i)), λ
(i)
j ≥ λ

(i+1)
j .

We refer to Andrews (1976, Chapter 11) for the combinatorics of these objects.
They can be represented by 3-dimensional Young diagrams, so for instance,

is the diagram of the plane partition ((5, 5, 3, 2), (4, 3, 1, 1), (2, 2), (1), (1)). The vol-
ume of a plane partition is the number of boxes of its diagram, that is vol(λ) =
|λ(1)|+ · · ·+ |λ(r)|. The generating series of the volumes of the plane partitions is
given by MacMahon’s formula:∑

λ plane partition

qvol(λ) =

∞∏
n=1

1

(1− qn)n
.

Therefore, if S′
q is the size of a random plane partition chosen according to the

probability measure P′
q[λ] =

qvol(λ)

Z′(q) = (
∏∞
n=1(1 − qn)n) qvol(λ), then the Laplace

transform of S′
q is

E[ezS
′
q ] =

∞∏
n=1

(
1− qn

1− qnenz

)n
.
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Thus, S′
q admits a representation in law as a random series of independent random

variables

S′
q =

∞∑
n=1

n∑
i=1

nYn,i,

where Yn,i is a geometric random variable with parameter (1 − qn). Set M ′
q =∑∞

n=1
n2 qn

1−qn and V ′
q =

∑∞
n=1

n3 qn

(1−qn)2 . Similar arguments as those used in the proof
of Lemma 4.1 show that

M ′
q =

2 ζ(3)

(− log q)3
+

1

12 log q
+ o(1) =

2 ζ(3)

(1− q)3
(1 + o(1));

V ′
q =

6 ζ(3)

(1− q)4
(1 + o(1))

as q goes to 1. Again, the asymptotics of M ′
q are related to the asymptotic formula

for the number on plane partitions with volume n:

p′(n) =
(1 + o(1)) (ζ(3))7/36√

12π

(n
2

)− 25
36

exp

(
3(ζ(3))1/3

(n
2

)2/3
+ ζ ′(−1)

)
,

see Wright (1931); Mutafchiev and Kamenov (2006). Set

X ′
q =

S′
q −M ′

q

(V ′
q )

5/12
.

Since S′
q involves the same geometric random variables as before, we can perform

the same computations as before to prove that (X ′
q)q∈(0,1) admits a zone of control

of mod-Gaussian convergence for the parameter tq = (V ′
q )

1/12. This zone of control
has again index (3, 3), and its size can be taken equal to O((V ′

q )
1/8). We conclude:

Proposition 4.4. Let S′
q be the size of a random plane partition chosen with prob-

ability proportional to qvol(λ), and M ′
q and V ′

q be the expectation and the variance
of S′

q. As q goes to 1, Y ′
q =

S′
q−M

′
q√

V ′
q

converges in law to the standard Gaussian
distribution, and one has more precisely:

dKol(Y
′
q , NR(0, 1)) = O

(
(1− q)1/2

)
.

Moreover, for any exponent δ ∈ (0, 12 ) and any Jordan measurable subset B with
m(B) > 0,

lim
q→1

(1− q)−δ P
[
Y ′
q − x ∈ (1− q)δ B

]
=

e−
x2

2

√
2π

m(B).

4.2. Determinantal point processes and zeroes of a random analytic series. The
determinantal point processes form another framework which often yields mod-
Gaussian random variables satisfying Theorem 3.2. Consider a locally compact,
separable and complete metric space X endowed with a locally finite measure λ,
and a Hermitian non-negative linear operator K : L 2(X, λ) → L 2(X, λ) such that
for any relatively compact subset A ⊂ X, the induced operator KA = 1A K 1A on
L 2(A, λ|A) is a trace class operator with spectrum included in [0, 1]. The operator
K can then be represented by a Hermitian locally square-integrable kernel K:

(K f)(x) =

∫
X

K(x, y) f(y)λ(dy).
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In this setting, there is a unique law of random point process M =
∑
i∈I δXi

on X
such that the correlation functions of M with respect to the reference measure λ
write as

ρn(x1, . . . , xn) = det(K(xi, xj))1≤i,j≤n.

One says that M is the determinantal point process associated to the kernel K, see
for instance Soshnikov (2000); Johansson (2006) and Hough et al. (2009, Chapter 4)
for details. For any relatively compact set A, the number of points M(A) of the
random point process that falls in A writes then as

M(A) =(law)

∑
j∈J

Ber(pA,j),

where the pA,j ’s are the eigenvalues of the trace class integral operator KA, and
the Bernoulli random variables are independent; see Hough et al. (2009, Theorem
4.5.3).

Proposition 4.5. We consider a determinantal point process M as above, with
a continuous kernel K that is locally square-integrable but not square-integrable:∫
X2 |K(x, y)|2 λ(dx)λ(dy) = +∞. We also fix a growing sequence (An)n∈N of rela-

tively compact subsets of X such that
⊔
n∈NAn = X, and such that the ratio

rn =

( ∫
An

K(x, x)λ(dx)∫
(An)2

|K(x, y)|2 λ(dx)λ(dy)

)
→n→+∞ r

admits a limit r ∈ (1,+∞] (we allow r = +∞, and we shall see that rn ≥ 1 for any
n ∈ N). Then, with mn = E[M(An)] and vn = Var(M(An)), we have mod-Gaussian
convergence of Xn = (M(An) − mn)/(vn)

1/3 with parameters tn = (vn)
1/3, and

with a zone of control of size O((vn)
1/3) and with index (3, 3). Therefore, for any

δ ∈ (0, 12 ) and any Jordan measurable subset B with m(B) > 0,

lim
n→∞

(vn)
1
2−δ P

[
M(An)−mn − x(vn)

1
2 ∈ (vn)

δ B
]
=

e−
x2

2

√
2π

m(B).

If Yn = M(An)−mn√
vn

, then we also have dKol(Yn,NR(0, 1)) = O((vn)
−1/2).

Proof : Denote (pn,j)j∈N the non-increasing sequence of eigenvalues of the compact
operator KAn

, these eigenvalues being counted with multiplicity; they all belong
to [0, 1] by Soshnikov (2000, Theorem 3). The expectation of M(An) is

mn =
∑
j∈N

pn,j =

∫
An

ρ1(x)λ(dx) =

∫
An

K(x, x)λ(dx) =
∑
j∈N

pn,j ,

and its variance is

vn =
∑
j∈N

pn,j(1− pn,j) = E[M(An)] + E[M(An)(M(An)− 1)]− (E[M(An)])
2

=

∫
An

K(x, x)λ(dx) +

∫
(An)2

(
det
(
K(x,x) K(x,y)
K(y,x) K(y,y)

)
−K(x, x)K(y, y)

)
λ(dx)λ(dy)

=

∫
An

K(x, x)λ(dx)−
∫
(An)2

|K(x, y)|2 λ(dx)λ(dy).
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In particular, we always have rn = mn

mn−vn ≥ 1. Since K is not square-integrable
on X2,

lim
n→∞

mn − vn = lim
n→∞

∫
(An)2

|K(x, y)|2 λ(dx)λ(dy) = +∞.

If r ∈ (1,+∞), then mn and vn grow to infinity at the same speed sn = mn − vn,
but with different rates rsn and (r − 1)sn. If r = +∞, then mn and vn grow to
infinity faster than the speed sn, and mn/vn → 1.

Consider a real parameter ζ with |ζ| ≤ c for some constant c < 1 sufficiently
small, so that

∑∞
n=3

cn−3

n ≤ 1
2 . Then, with p ∈ [0, 1], the power series expansion of

log(1 + t) yields∣∣∣∣log(1 + p(eiζ − 1))− ipζ + p(1− p)
ζ2

2

∣∣∣∣
≤ p

∣∣∣∣eiζ − 1− iζ +
ζ2

2

∣∣∣∣+ p2

2

∣∣(eiζ − 1)2 + ζ2
∣∣+ p3|ζ|3

2
≤ Ap |ζ|3

for some positive constant A, since |eiζ − 1| ≤ |ζ| for any ζ. Therefore, with
ζ = ξ

(vn)1/3
, we obtain on the zone ξ ∈ [−c(vn)1/3, c(vn)1/3| the estimate∣∣∣∣∣∣

∑
j∈N

log

(
1 + pn,j

(
e

iξ

(vn)1/3 − 1

))
− i

mn

(vn)1/3
ξ + (vn)

1/3 ξ
2

2

∣∣∣∣∣∣ ≤ A
mn

vn
|ξ|3.

So, if tn = (vn)
1/3 andXn = (M(An)−mn)/(vn)

1/3, then the identity E[eiζM(An)] =∏
j∈N(1 + pn,j (e

iζ − 1)) leads to

|θn(ξ)− 1| ≤ A
mn

vn
|ξ|3 exp

(
A
mn

vn
|ξ|3
)

≤ K1|ξ3| exp(K2|ξ|3)

with K1 = K2 = 2A r
r−1 , for n large enough. Once this zone of control is estab-

lished, the probabilistic estimates follow readily from Theorem 3.2 and Féray et al.
(2019+a). □

As an application of the previous proposition, consider G(z) =
∑∞
n=0Gn z

n

a random analytic series, with the Gn’s that are independent standard complex
Gaussian variables. The radius of convergence of G is almost surely equal to 1, and
the set of zeroes of G is a determinantal point process on D(0, 1) = {z ∈ C | |z| < 1}
with kernel

K(z1, z2) =
1

π(1− z1z2)2
;

see Peres and Virág (2005, Theorem 1). As a consequence, the number of zeroes
ZR of the random series G that fall in the disk D(0, R) = {z ∈ C | |z| < R} with
R < 1 admits for representation in law

ZR =

∞∑
k=1

Ber(R2k),

where the Bernoulli random variables are taken independent (Theorem 2 in loc. cit.).
In Féray et al. (2016, Section 7.1) and Féray et al. (2019+a, Section 3.1), we used
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this representation to prove the mod-Gaussian convergence of ZR as R goes to 1.
Here, we remark that

mR = E[ZR] =
∞∑
k=1

R2k =
R2

1−R2
;

vR = Var(ZR) =

∞∑
k=1

R2k(1−R2k) =
R2

1−R2
− R4

1−R4
=

R2

1−R4
,

so as R goes to 1, we have mR/(mR−vR) = 1+R−2 → 2 ∈ (1,+∞]. Consequently,
if we introduce the hyperbolic area h = 4πR2

(1−R2) of the disc D(0, R), and if we use the
conformal invariance of the point process of zeroes Hough et al. (2009, Section 2.3),
we obtain:

Proposition 4.6. Denote Zh the number of zeroes of a random analytic series
G =

∑∞
n=0Gn z

n that fall in a disc with hyperbolic area h. For any δ ∈ (0, 12 ) and
any Jordan measurable subset B with m(B) > 0,

lim
h→+∞

h
1
2−δ P

[
Zh − h

4π
− xh

1
2

√
8π

∈ hδ√
8π

B

]
=

e−
x2

2

√
2π

m(B).

This result is optimal, because δ = 0 corresponds to the discrete scale, where the
Gaussian approximation cannot hold.

4.3. Random zeta functions. In this section, we consider a multi-dimensional ex-
ample stemming from number theory and the study of the Riemann ζ function.
Notice that Theorem 2.2 and Lemma 3.3 hold also in Rd with d ≥ 2. Therefore, we
have the following extension to Rd≥2 of our main Theorem 3.2 (we only state this
extension for mod-Gaussian sequences):

Proposition 4.7. Let (Xn)n∈N be a sequence of random vectors in Rd, and (tn)n∈N
a sequence going to +∞. We denote

θn(ξ) = E[ei⟨ξ |Xn⟩] e
tn ∥ξ∥2

2 , with ⟨ξ | Xn⟩ =
d∑
i=1

ξiXn,i and ∥ξ∥2 =

d∑
i=1

(ξi)
2.

We assume that there is a zone [−K(tn)
γ ,K(tn)

γ ]d such that, for any ξ in this
zone,

|θn(ξ)− 1| ≤ K1 ∥ξ∥v exp(K2 ∥ξ∥w)
where v > 0, w ≥ 2 and − 1

2 < γ ≤ 1
w−2 .

Then, Yn = Xn/
√
tn converges in law to a standard Gaussian law NRd(0, Id),

and for any δ ∈ (0, 12 + γ), any y ∈ Rd and any Jordan measurable subset B ⊂ Rd
with m(B) > 0,

lim
n→∞

(tn)
dδ P
[
Yn − y ∈ (tn)

−δB
]
=

e−
∥y∥2

2

(2π)
d
2

m(B),

where m(B) is the d-dimensional Lebesgue measure of B.

We refer to Kowalski and Nikeghbali (2012, Theorem 4) for a similar statement,
with slightly different assumptions. The reader should beware that in the theory of
mod-ϕ convergent sequences, this local limit theorem is the only multi-dimensional
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extension of the results in dimension 1 that is straightforward. Thus, for the speed
of convergence estimates and the large deviation results, new phenomenons occur
in dimension d ≥ 2, and the extension of the one-dimensional results is much more
involved; see Féray et al. (2019+b). Now, let us apply Proposition 4.7 to the
sequence of complex random variables

Xn = −
∑
p≤n

log

(
1− Up√

p

)
, (4.3)

where the sum runs over prime numbers p smaller than n, and the random variables
Up are independent and uniformly distributed on the unit circle. The random
variables Xn are simple models of the logarithm of the random zeta function on
the critical line, see Jacod et al. (2011, Section 4.1) and Kowalski and Nikeghbali
(2012, Example 2). The 2-dimensional Fourier transform of Xn was computed in
Kowalski and Nikeghbali (2012):

E[ei(ξ1Re(Xn)+ξ2Im(Xn))] =
∏
p≤n

2F1

( iξ1+ξ2
2 , iξ1−ξ22

1

)(
1

p

)
,

where 2F1

(
a,b
c

)
(z) is the hypergeometric function defined by

2F1

(
a, b

c

)
(z) =

∞∑
m=0

a↑m b↑m

c↑mm!
zm,

with k↑m = k(k + 1) · · · (k +m− 1).

Therefore, if θn(ξ) = E[ei⟨ξ |Xn⟩] e
tn∥ξ∥2

2 with tn = 1
2

∑
p≤n

1
p , then

θn(ξ) =
∏
p≤N

1− ∥ξ∥2

4p
+
∑
m≥2

( iξ1+ξ22 )↑m ( iξ1−ξ22 )↑m

(m!)2
p−m

 e
∥ξ∥2
4p .

Denote Tp(ξ) the terms of the product on the right-hand side. We have

|Rp(ξ)| =

∣∣∣∣∣∣
∑
m≥2

( iξ1+ξ22 )↑m ( iξ1−ξ22 )↑m

(m!)2
p−m

∣∣∣∣∣∣
≤
∑
m≥2

(
(∥ξ∥2 )↑m

m!

)2

p−m =
1

2π

∫ 2π

0

∣∣∣∣∣∣
∑
m≥2

(∥ξ∥2 )↑m

m!
eimθ p−

m
2

∣∣∣∣∣∣
2

dθ

≤ 1

2π

∫ 2π

0

∣∣∣∣∣ 1

(1− eiθp−1/2)
∥ξ∥
2

− 1− ∥ξ∥
2

eiθp−1/2

∣∣∣∣∣
2

dθ

≤

(
(∥ξ∥2 )(∥ξ∥2 + 1)

2

1

(1− p−1/2)
∥ξ∥
2 +2 p

)2

.
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Suppose ∥ξ∥ ≤ √
p. Then, e

∥ξ∥2
4p ≤ e

1
4 and (1− (1− ∥ξ∥2

4p )e
∥ξ∥2
4p ) ≤ (1− 3

4e
1
4 )∥ξ∥

4

p2 , so

|Rp(ξ)| ≤
1

64(1− p−1/2)4+p1/2
∥ξ∥2(∥ξ∥+ 2)2

p2
≤ 12.06 ∥ξ∥2(∥ξ∥+ 2)2

p2
;

|Tp(ξ)− 1| ≤
(
1−

(
1− ∥ξ∥2

4p

)
e

∥ξ∥2
4p

)
+ e1/4 |Rp(ξ)| ≤

16 ∥ξ∥2(∥ξ∥+ 2)2

p2

≤ 16 ∥ξ∥2(∥ξ∥+ 2)2

p2
e

16 ∥ξ∥2(∥ξ∥+2)2

p2 ;

|Tp(ξ)| ≤ 1 +
16 ∥ξ∥2(∥ξ∥+ 2)2

p2
≤ e

16 ∥ξ∥2(∥ξ∥+2)2

p2 .

On the first line, we used the fact that p ∈ P 7→ (1 − p−1/2)4+p
1/2 attains its

minimum at p = 2. On the other hand, if ∥ξ∥ ≥ √
p, then

|Tp(ξ)| =
∣∣∣∣E[e−i

⟨
ξ
∣∣∣ log(1−Up√

p

)⟩]∣∣∣∣ e ∥ξ∥2
4p ≤ e

∥ξ∥2
4p ≤ e

16 ∥ξ∥2(∥ξ∥+2)2

p2 ;

|Tp(ξ)− 1| ≤ 1 + e
∥ξ∥2
4p ≤ 2 e

∥ξ∥2
4p ≤ 16 ∥ξ∥2(∥ξ∥+ 2)2

p2
e

16 ∥ξ∥2(∥ξ∥+2)2

p2 .

From these inequalities, one deduces that for any ξ ∈ R2,

|θn(ξ)− 1| =

∣∣∣∣∣∣
∏
p≤n

Tp(ξ)

− 1

∣∣∣∣∣∣ ≤
∑
p≤n

∏
p′≤n
p′ ̸=p

|Tp′(ξ)|

 |Tp(ξ)− 1| ≤ S expS

where S =
∑
p≤n

16 ∥ξ∥2(∥ξ∥+2)2

p2 ≤ 8 ∥ξ∥2(∥ξ∥ + 2)2. It follows immediately that
one has a control of index (2, 4) over θn(ξ)−1, which holds over the whole real line.
Hence:

Proposition 4.8. Let Xn be the random log-zeta function defined by Equation
(4.3). For any exponent δ ∈ (0, 1) and any z ∈ C,

lim
n→∞

(log log n)
2δ P

[
Xn − z

√
log log n ∈ (log log n)

1
2−δ B

]
=

e−|z|2

π
m(B)

for any Jordan measurable bounded set B ⊂ C with m(B) > 0.

This result improves on Kowalski and Nikeghbali (2012, Section 3, Example 2) and
Delbaen et al. (2015, Section 3.5), which dealt only with the case δ ≤ 1

2 .

4.4. Sums with sparse dependency graphs. In the previous paragraphs, we looked
at sums of independent random variables, but the theory of zones of control is also
useful when dealing certain sums of weakly dependent random variables. A general
setting where one can prove mod-Gaussian convergence with a zone of control is if
one has strong bounds on the cumulants of the random variables considered. Recall
that if X is a random variable with convergent Laplace transform E[ezXn ], then its
cumulants κ(r≥1)(X) are the coefficients of the log-Laplace transform:

logE[ezXn ] =

∞∑
r=1

κ(r)(X)

r!
zr.
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If (Sn)n∈N is a sequence of random variables, one says that one has uniform bounds
on the cumulants with parameters (Dn, Nn, A) if

∀r ≥ 1, |κ(r)(Sn)| ≤ rr−2Ar (2Dn)
r−1Nn. (4.4)

This definition was introduced in Féray et al. (2019+a, Definition 4.1). If Dn =
o(Nn) and Nn → +∞, then the uniform bounds on cumulants imply that Xn =

Sn−E[Sn]
(Nn)1/3(Dn)2/3

admits a zone of control of mod-Gaussian convergence, with param-
eters

tn =
Var(Sn)

(Nn)2/3(Dn)4/3
,

index (3, 3) and size O(tn) (cf. Féray et al., 2019+a, Corollary 4.2). Therefore:

Proposition 4.9. Let (Sn)n∈N be a sequence of random variables that admit uni-
form bounds on cumulants (Equation (4.4)). We suppose that (var(Sn))

3/2

Nn(Dn)2
goes to

+∞, and that Dn = o(Nn). Then, if Yn = Sn−E[Sn]√
Var(Sn)

, for any δ ∈ (0, 1) and any
Jordan measurable subset B with m(B) > 0,

lim
n→∞

(
(Var(Sn))

3/2

Nn(Dn)2

)δ
P

[
Yn − y ∈

(
(Var(Sn))

3/2

Nn(Dn)2

)−δ
B

]
=

e−
y2

2

√
2π

m(B).

In particular, if lim infn→∞
Var(Sn)
NnDn

> 0, then for any γ ∈ (0, 12 ),

lim
n→∞

(
Nn
Dn

)γ
P
[
Yn − y ∈

(
Dn

Nn

)γ
B

]
=

e−
y2

2

√
2π

m(B).

Example 4.10. As a particular case, suppose that Sn =
∑Nn

i=1Ai is a sum of random
variables with ∥Ai∥∞ ≤ A for all i ≤ Nn, and such that there exists a dependency
graph G = ([[1, Nn]] , En) with the following property:

(1) We have Dn = 1 +maxi∈[[1,Nn]] deg(i).

(2) If I and J are two disjoint sets of vertices of [[1, Nn]] without edge e ∈ En
connecting a vertex i ∈ I with a vertex j ∈ J , then (Ai)i∈I and (Aj)j∈J
are independent.

Then, it was shown in Féray et al. (2016, Section 9) that Sn has uniform bounds
on cumulants with parameters (Dn, Nn, A). Therefore, if Sn is a sum of random
variables with a sparse dependency graph, then Yn = (Sn − E[Sn])/

√
Var(Sn)

usually satisfies a local limit theorem which holds up to the scale
√
Dn/Nn.

For instance, consider the graph subcount I(H,Gn) of a motive H in a random
Erdös–Rényi graph Gn of parameters (n, p), with p ∈ (0, 1) fixed (see Féray et al.,
2019+a, Example 4.10 for the precise definitions). It is shown in loc. cit. that
I(H,Gn) admits a dependency graph with parameters

Nn = n↓k;

Dn = 2

(
k

2

)
(n− 2)↓k−2,
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where k is the number of vertices of the graph H, and n↓k = n(n−1) · · · (n−k+1).
Moreover,

E[I(H,Gn)] = phn↓k;

Var(I(H,Gn)) = 2h2p2h−1(1− p)n2k−2 +O(n2k−3),

where h is the number of edges of H. Therefore, we have the local limit theorem:

P
[
I(H,Gn)

ph
− n↓k − 2hnk−1x ∈ nk−1−γ B

]
≃ n−γ

e−
px2

1−p m(B)

2h
√
π ( 1p − 1)

for any γ ∈ (0, 1). For example, if Tn is the number of triangles in a random
Erdös–Rényi graph G(n, p), then for any γ ∈ (0, 1),

lim
n→∞

nγ P
[
Tn
p3

− n↓3 − 6n2x ∈ n2−γ B

]
=

e−
px2

1−p m(B)

6
√
π ( 1p − 1)

.

We cannot attain with our method the discrete scale (which would correspond to
the exponent γ = 2 in the case of triangles). In the specific case of triangles, this
strong local limit theorem has been proved recently by Gilmer and Kopparty (2016).
Our local limit theorem holds at larger scales and for any graph subcount.

4.5. Numbers of visits of a finite Markov chain. The method of cumulants can
also be applied to sums of random variables that are all dependent (there is no
sparse dependency graph), but still with a “weak” dependency structure. We refer
to Féray et al. (2019+a, Section 5), where this is made rigorous by means of the
notion of weighted dependency graph. Consider for instance an ergodic Markov
chain (Xn)n∈N on a finite state space X = [[1,M ]], where by ergodic we mean that
the transition matrix P of (Xn)n∈N is irreducible and aperiodic. We also fix a state
a ∈ [[1,M ]], and we denote π(a) the value of the unique stationary measure π of
the Markov chain at a. If Ta is the first return time to a, then it is well known
that π(a) = 1

Ea[Ta]
. In the sequel, we assume to simplify that the Markov chain

has for initial distribution the stationary measure π, and we denote P and E the
corresponding probabilities and expectations on trajectories in XN. If

Nn,a = card{i ∈ [[1, n]] |Xi = a}
is the number of visits of a from time 1 to time n, then E[Nn,a] = nπ(a) and

lim
n→∞

Var(Nn,a)

n
= (π(a))3 Var(Ta).

This identity is a particular case of the following general result: if f is a function
on X, then

lim
n→∞

Var(
∑n
i=1 f(Xi))

n
= π(a)Ea

( Ta∑
i=1

f(Xi)− π(f)

)2
 .

In Féray et al. (2019+a, Theorem 5.14), we proved that Nn,a has uniform bounds
on cumulants with parameters A = 1, Nn = n, and Dn = 1+θP

1−θP , where θP < 1 is a
constant depending only on P (it is the square root of the second largest eigenvalue
of the multiplicative reversiblization PP̃ of P , see Fill (1991, §2.1) for details on
this construction). From this, we deduce:
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Proposition 4.11. Let (Xn)n∈N be a stationary finite ergodic Markov chain, and
a be an element of the space of states. The numbers of visits Nn,a satisfy the local
limit theorem

lim
n→∞

nγ P

[
Nn,a − nπ(a)√

Var(Nn,a)
− x ∈ n−γB

]
=

e−
x2

2 m(B)√
2π

for any γ ∈ (0, 12 ) and any Jordan measurable subset B with m(B) > 0.

For finite ergodic Markov chains, the discrete local limit theorem (γ = 1
2 ) is

known and due to Kolmogorov (1949). However, since there is no uniformity in the
local estimates of P[Nn,a = k], our result is not a direct consequence (and does not
imply) the local limit theorem of Kolmogorov.

5. Examples from random matrix theory

In this section, we examine examples stemming from or closely related to random
matrix theory, and which exhibit mod-Gaussian behavior.

5.1. Number of charge one particles in a two charge system. Let L,M be non-
negative random integers and n ∈ N be a fixed natural number, such that L+2M =
2n. We consider the two charge ensembles proposed in Rider et al. (2013) and Shum
and Sinclair (2014), where the particles are located on the real line, respectively
on the unit circle. These models can be considered as interpolations between the
classical ensembles GOE and GSE, respectively COE and CSE from random matrix
theory.
The real line. The system consists of L particles with unit charge and M particles
with charge two, located on the real line at positions ξ = (ξ1, . . . , ξL) and ζ =
(ζ1, . . . , ζM ). We denote by EL,M the total potential energy of the state (ξ, ζ). For
this model EL,M is the sum of the total interaction energy between particles and
of an external harmonic oscillator potential:

EL,M = −
∑

1≤i<j≤L

log |ξi − ξj | − 2

L∑
i=1

M∑
j=1

log |ξi − ζj | − 4
∑

1≤i<j≤M

log |ζi − ζj |

+

L∑
i=1

(ξi)
2

2
+ 2

M∑
j=1

(ζj)
2

2
.

The ensemble has population vector (L,M) with probability proportional to

XLZL,M ,

where X ≥ 0 is a parameter called fugacity and ZL,M is given by

ZL,M =
1

L!M !

∫
RL

∫
RM

e−EL,M (ξ,ζ)dµL(ξ)dµM (ζ),

µL, µM being the Lebesgue measures on RL and RM respectively. We denote by
Zn(X) the total partition function of the system, that is

Zn(X) =
∑

L+2M=2n

XLZL,M .
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Let Ln(γ) represent the number of charge one particles, in the scaling X =
√
2nγ

with γ > 0. In this regime, the proportion of such particles is non-trivial. In
Rider et al. (2013), the authors gave a representation of the total partition function
Zn(X) as a product of generalized Laguerre polynomials with parameters − 1

2 . As a
consequence, in Dal Borgo et al. (2018, Section 2), it is shown that the normalized
sequence (

Ln(γ)− E [Ln(γ)]

n1/3

)
n∈N

is mod-Gaussian convergent on the complex plane with parameters tn = n1/3σ2
n(γ)

and limiting function ψ(z) = exp(M(γ) z
3

6 ) ; here σ2
n(γ) =

Var(Ln(γ))
n and

M(γ) = lim
n→∞

κ(3)(Ln(γ))

n
.

The precise values of σ2(γ) = limn→∞ σ2
n(γ) and M(γ) are computed in Dal Borgo

et al. (2018, Proposition 2.2). On the other hand, the mod-Gaussian convergence
has a zone of control of order O (tn) and index (3, 3). A straightforward application
of Theorem 3.2 shows that for any δ ∈ (0, 12 ),

P
[
Ln(γ)− E[Ln(γ)]

n1/2 σn(γ)
− x ∈ n−δB

]
≃ n−δ

e−
x2

2

√
2π

m(B).

The unit circle. In the circular version of the above ensemble introduced in Shum
and Sinclair (2014), the particles are located on the unite circle, instead of on the
real line. Unlike the previous model, the total energy of the system is given by the
interacting energy between the particles, and there is no external field contributing
to it:

EL,M = −
∑

1≤i<j≤L

log |ξi − ξj | − 2

L∑
i=1

M∑
j=1

log |ξi − ζj | − 4
∑

1≤i<j≤M

log |ζi − ζj |.

Let Ln(ρ) denote the number of charge one particles, in the scaling X = 2nρ with
ρ > 0. Using the polynomial product structure of the partition function established
by Forrester (see Forrester, 2010, Section 7.10), it is possible to prove that the
normalized sequence (

Ln(ρ)− E [Ln(ρ)]

n1/3

)
n∈N

converges mod-Gaussian on the complex plane with parameters tn = n1/3σ2
n(ρ),

limiting function

ψ(z) = exp

(
z3

6

(
ρ arctan

1

ρ
− ρ4 + 3ρ2

(ρ2 + 1)
2

))
and with a zone of control of order O (tn) and index (3, 3); see Dal Borgo et al.
(2018, Section 3). Again σ2

n(ρ) =
Var(Ln(ρ))

n . Therefore, for any δ ∈ (0, 12 ),

P
[
Ln(ρ)− E [Ln(ρ)]

n1/2 σn(ρ)
− x ∈ n−δB

]
≃ n−δ

e−
x2

2

√
2π

m(B).
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5.2. Determinant of the GUE. Let WH
n be a n×n random matrix in the Gaussian

Unitary Ensemble. Denote by

XH
n := log |detWH

n | − µHn ,

the logarithm of the modulus of the determinant, properly centered. The centering
is given by

µHn =
1

2
log 2π − n

2
+
n

2
log n,

and corresponds (up to constant terms) to the expectation of log det |WH
n |. The

Mellin transform of this statistics has been calculated explicitly by Mehta and
Normand (1998). Thus

E
[
|detWH

n |z
]
= 2

nz
2

n∏
k=1

Γ
(
z+1
2 + ⌊k2 ⌋

)
Γ
(
1
2 + ⌊k2 ⌋

) ,

is analytic for all z ∈ C with Re(z) > −1. Recently, the same representation has
been derived by Edelman and La Croix (2015), noticing that |detWH

n | is distributed
as the product of the singular values of the GUE. Relying on this explicit formula,
it is possible to prove that the sequence (XH

n )n∈N is mod-Gaussian convergent on
D = (−1,+∞)× iR, with parameters tn = 1

2 log
n
2 and limiting function

ψ(z) = log
Γ( 12 )

(
G( 12 )

)2
Γ( z+1

2 )
(
G( z+1

2 )
)2 .

Moreover, this sequence has a zone of control of size O(tn) and index (1, 3). Hence,
by Theorem 3.2, we obtain that

P

 XH
n√

1
2 log

n
2

− x ∈ (log n)−δB

 ≃ (log n)−δ
e−

x2

2

√
2π

m(B),

for every δ ∈
(
0, 32

)
.

5.3. Determinants of β-ensembles. A result analogous to the previous one can
be established for log-determinants of matrices in some well-known β-ensembles.
Namely, let W i,β

n be a random matrix in the:

(i = L) Laguerre ensemble with parameters (n, n, β),

(i = J) Jacobi ensemble, with parameters (⌊nτ1⌋, ⌊nτ1⌋, ⌊nτ2⌋, β), where τ1, τ2 > 0,

(i = G) Uniform Gram ensemble of parameters (n, n, β).

We refer to Dal Borgo et al. (2019, Section 3) for the precise definitions. For all i,
denote by

Xi,β
n := log detW i,β

n − µi,βn

the logarithm of the determinant, properly centered. As for the GUE case, the
centering parameters µi,βn correspond (up to constant terms) to the expectation
of the log-determinants; see Dal Borgo et al. (2019, Lemma 4.2) for their explicit
expressions.
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For these statistics, the moment generating functions can be calculated by means
of Selberg integrals. As a consequence, they are all given by a product of Gamma
functions; for instance, for the β-Laguerre ensemble,

E
[
ezX

L,β
n

]
= e−zµ

L,β
n 2nz

n∏
k=1

Γ(β2 k + z)

Γ(β2 k)
.

Classical techniques of complex analysis enable us to find an asymptotic expansion
of these product formulas as n goes to infinity. In turn, these expansions imply
mod-Gaussian convergence for all the sequences (Xi,β

n )n∈N on

D =

(
−β
2
,+∞

)
× iR,

with parameters tn = 2
β log n and a zone of control of size O(tn), with index (1, 3).

Therefore, for all i = L, J,G and any δ ∈
(
0, 32

)
,

P

 Xi,β
n√

2
β log n

− x ∈ (log n)−δB

 ≃ (log n)−δ
e−

x2

2

√
2π

m(B).

5.4. Characteristic polynomial of the circular β-Jacobi ensemble. Let WCJ,β
n be a

random matrix in the circular β-Jacobi ensemble of size n. We recall that the joint
density function of the eigenangles (θ1, . . . , θn) ∈ [0, 2π]n is proportional to∏

1≤k<j≤n

∣∣eiθk − eiθl
∣∣ n∏
k=1

(
1− e−iθk

)δ (
1− eiθk

)δ̄
,

with δ ∈ C, Re(δ) > − 1
3 . Denote by

XCJ,β
n := log det

∣∣Id−WCJ,β
n

∣∣− δ + δ̄

β

the logarithm of the determinant of the characteristic polynomial evaluated at 1 and
properly shifted. Starting from the representation of Laplace transform of XCJ,β

n

computed in Bourgade et al. (2009, Formula 4.2), one can establish the complex
mod-Gaussian convergence of the sequence (XCJ,β

n )n∈N on the subset

D =

(
−β
2
,+∞

)
× iR,

with parameters tn = 1
2β log n and a zone of control of size O(tn), with index (1, 3).

It follows then from Theorem 3.2 that for all δ ∈
(
0, 32

)
,

P

 XCJ,β
n√
1
2β log n

− x ∈ (log n)−δ B

 ≃ (log n)−δ
e−

x2

2

√
2π

m(B).

6. L 1-mod-ϕ convergence and local limit theorems

6.1. Mod-ϕ convergence in L 1(iR). In all the previous examples, by using the
notion of zone of control, we identified a range of scales (tn)

−δ at which the stable
approximation of the random variables Yn holds. However, in certain examples,
one has a control over the residues θn(ξ) that is valid over the whole real line. This
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raises the question whether the theory of mod-ϕ convergence can be used to prove
local limit theorems that hold for any infinitesimal scale. A sufficient condition for
these strong local limit theorems is the notion of mod-ϕ convergence in L 1(iR). It
is a more abstract and restrictive condition than the notion of zone of control used
in Theorem 3.2, but it yields stronger results.

Definition 6.1. Fix a reference stable law ϕ = ϕc,α,β . Let (Xn)n∈N be a sequence
that is mod-ϕ convergent on D = iR, with parameters (tn)n∈N and limiting function
θ(ξ). We say that there is mod-ϕ convergence in L 1(iR) if:

• θ and the functions θn(ξ) = E[eiξXn ] η−tnηc,α,β(iξ) belong to L 1(R);
• the convergence

θn(ξ) −→ θ(ξ)

takes place in L 1(R): ∥θn − θ∥L 1(R) → 0.

Roughly speaking, mod-convergence in L 1(iR) is equivalent to the assumption
that γ = +∞ in the zone of control. The following theorem makes this statement
more precise.

Theorem 6.2. Let (Xn)n∈N be a sequence that converges mod-ϕc,α,β in L 1(iR),
with parameters (tn)n∈N and limiting function θ. Let x ∈ R and B be a fixed Jordan
measurable subset with m(B) > 0. Then, for any sequence sn → +∞,

lim
n→∞

sn P
[
Yn − x ∈ 1

sn
B

]
= pc,α,β(x)m(B),

where Yn is obtained from Xn as in Proposition 1.3.

Proof : For the same reasons as in the proof of Theorem 3.2, it suffices to prove the
estimate on test functions g ∈ T0(R):

lim
n→∞

sn E[g(sn(Yn − x))] = pc,α,β(x)

(∫
R
g(y) dy

)
.

By using Parseval’s theorem and making the adequate changes of variables, we get

E[g(sn(Yn − x))] =
1

2π sn

∫
R
ĝ

(
ξ

sn

)
θn

(
− ξ

(tn)1/α

)
eη(−iξ)+ixξ dξ.

The function under the integral sign converges pointwise towards ĝ(0) eη(−iξ)+ixξ,
and this convergence actually occurs in L 1(R). Indeed,∫

R
|eη(−iξ)+ixξ|

∣∣∣∣ĝ( ξ

sn

)
θn

(
− ξ

(tn)1/α

)
− ĝ(0)

∣∣∣∣ dξ ≤ A+B + C

with

A =

∫
R
|eη(−iξ)|

∣∣∣∣ĝ( ξ

sn

)∣∣∣∣ ∣∣∣∣θn(− ξ

(tn)1/α

)
− θ

(
− ξ

(tn)1/α

)∣∣∣∣ dξ;
B =

∫
R
|eη(−iξ)|

∣∣∣∣ĝ( ξ

sn

)∣∣∣∣ ∣∣∣∣θ(− ξ

(tn)1/α

)
− 1

∣∣∣∣ dξ;
C =

∫
R
|eη(−iξ)|

∣∣∣∣ĝ( ξ

sn

)
− ĝ(0)

∣∣∣∣ dξ.
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Since ĝ is bounded and ĝ( ξsn )− ĝ(0) → 0 pointwise, one can apply the dominated
convergence theorem to show that C → 0. For A, we make another change of
variables and write

A =

∫
R
(tn)

1/α e−tn|cυ|
α

∣∣∣∣ĝ( υ

sn (tn)−1/α

)∣∣∣∣ |θn(−υ)− θ(−υ)| dυ

≤ ∥ĝ∥∞
∫
R
(tn)

1/α e−tn|cυ|
α

|θn(−υ)− θ(−υ)| dυ.

Fix ε > 0. Since θn converges locally uniformly towards θ, there exists an interval
[−C,C] such that |θn(−υ) − θ(−υ)| ≤ ε for any υ ∈ [−C,C]. The part of A
corresponding to this interval is therefore smaller than

ε ∥ĝ∥∞
∫ C

−C
(tn)

1/α e−tn|cυ|
α

dυ ≤ ε ∥ĝ∥∞
∫
R
e−|cξ|α dξ,

that is to say a constant times ε. On the other hand, for |υ| ≥ C,

(tn)
1/α e−tn|cυ|

α

≤ (tn)
1/α e−tn(cC)α → 0,

and the part of A corresponding to R \ [−C,C] is smaller than

∥ĝ∥∞ (tn)
1/α e−tn(cC)α∥θn − θ∥L 1 → 0

since ∥θn − θ∥L 1 goes to zero. Hence, A goes to zero. The same arguments allows
one to show that B → 0, using the continuity of θ at zero instead of the convergence
θn → θ for the integral over an interval [−C,C].

As a consequence of the convergence in L 1, one can now write

E[g(sn(Yn − x))] ≃ 1

2π sn

∫
R
ĝ(0) eη(iξ)−ixξ dξ =

1

sn
pc,α,β(x)

(∫
R
g(y) dy

)
,

which is what we wanted to prove. □

6.2. The winding number of the planar Brownian motion. As an application of our
theory of L 1-mod-ϕ convergence, consider a standard planar Brownian motion
(Zt)t≥0 starting at the point (1, 0). With probability 1, Zt does not visit the origin,
so one can write Zt = Rt e

iφt with continuous functions t → Rt and t → φt, and
with φ0 = 0. The process (φt)t≥0 is called winding number of the Brownian motion
around the origin. Its Fourier transform has been calculated by Spitzer (1958), in
terms of the modified Bessel function Iν(z) =

∑
k≥0

1
k! Γ(ν+k+1)

(
z
2

)ν+2k. Thus,

E
[
eiξφt

]
=

√
π

8t
e−

1
4t

(
I |ξ|−1

2

(
1

4t

)
+ I |ξ|+1

2

(
1

4t

))
.

As a consequence, in Féray et al. (2019+a), it is shown that (φt)t≥0 converges
mod-Cauchy with parameters log

√
8t, limiting function

θ(ξ) =

√
π

Γ( |ξ|+1
2 )

and with a control of index (1, 1) over the whole real line R. Since 1
ω−α = +∞, this

means that one can consider zones of control [−K(tn)
γ ,K(tn)

γ ] with γ as large as
wanted. In the sequel, we shall rework this example by using the notion of mod-ϕ
convergence in L 1(iR).
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Notice first that

Γ

(
|ξ|+ 1

2

)
≥ 2

1 + |ξ|
Γ

(
1 +

|ξ|
2

)
≥ 2

1 + |ξ|

(
|ξ|
2e

) |ξ|
2

,

so that the limiting function θ(ξ) =
√
π (Γ( |ξ|+1

2 ))−1 is in L 1(R). So are the
functions θt. It remains to check that the convergence θt → θ happens in L 1(R):
∥θt − θ∥L 1

≤

∥∥∥∥∥∥
∑
k≥0

( √
πe−

1
4t

k!Γ(k + |ξ|+1
2 )

(
1

8t

)2k

−
√
πe−

1
4t

k!Γ(k + |ξ|+3
2 )

(
1

8t

)2k+1
)

−
√
π

Γ( |ξ|+1
2 )

∥∥∥∥∥∥
L 1

≤ ∥θ∥L 1

(
1− e−

1
4t

)
+
√
π e−

1
4t

( ∞∑
k=1

1

k!

(
1

8t

)2k ∥∥∥∥∥ 1

Γ(k + |ξ|+1
2 )

∥∥∥∥∥
L 1

)

+
√
π e−

1
4t

( ∞∑
k=0

1

k!

(
1

8t

)2k+1
∥∥∥∥∥ 1

Γ(k + |ξ|+3
2 )

∥∥∥∥∥
L 1

)

≤ ∥θ∥L 1

((
1− e−

1
4t

)
+ e−

1
4t

(
e(

1
8t )

2

− 1
)
+

1

8t
e−

1
4t+(

1
8t )

2
)
t→∞−→ 0.

Hence, (φt)t∈R+
converges mod-Cauchy in L 1(iR), and for any family (st)t∈R+

growing to infinity,

lim
t→+∞

st P
[

φt

log
√
8t

− x ∈ 1

st
B

]
=

m(B)

π(1 + x2)
.

6.3. The magnetisation of the Curie–Weiss model. In Méliot and Nikeghbali (2015),
another notion of mod-ϕ convergence in L 1 was introduced, in connection with
models from statistical mechanics.
Definition 6.3. Let (Xn)n∈N be a sequence of random variables that is mod-
Gaussian convergent on D = R (beware that the domain here is R and not iR),
with parameters (tn)n∈N and limiting function ψ(x). We say that there is mod-
Gaussian convergence in L 1(R) if:

• ψ and the functions ψn(x) = E[exXn ] e−
tnx2

2 belong to L 1(R);
• the convergence

ψn(x) −→ ψ(x)

occurs in L 1(R): ∥ψn − ψ∥L 1(R) → 0.
This definition mimics Definition 6.1 with a domain R instead of iR. This framework
allows one to prove the convergence in distribution for sequences which are obtained
from (Xn)n∈N by an exponential change of measure. We recall without proof this
result (see Méliot and Nikeghbali, 2015, Theorem 6).
Theorem 6.4. Let (Xn)n∈N be a sequence of real-valued random variables that
converges mod-Gaussian in L 1(R), with parameters (tn)n∈N and limit ψ. Denote
by (Yn)n∈N the sequence obtained by the change of measures

PYn
[dx] =

e
x2

2tn

E
[
e

(Xn)2

2tn

] PXn
[dx].
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Then (Yn

tn
)n∈N converges in law towards a variable W∞ with density ψ(x) dx∫

R ψ(x) dx
.

In this setting and with mild additional hypotheses, one can identify the in-
finitesimal scales at which a local limit theorem holds for (Yn)n∈N. The precise
assumptions are the following:

Assumption 6.5. Let (Xn)n∈N be a sequence of real-valued random variables. We
assume that:

(A1) The sequence (Xn)n∈N is mod-Gaussian convergent in L 1(R), with param-
eters (tn)n∈N and limit ψ.

(A2) For every M > 0,

sup
n∈N

sup
m∈[−M,M ]

(∫
R
|ψn(x+ im)| dx

)
< +∞.

We denote C(M) the constant in this bound.

Theorem 6.6. If Conditions (A1) and (A2) are satisfied, then for any ε ∈ (0, 1],

lim
n→∞

(tn)
ε P
[
Yn
tn

− x ∈ 1

(tn)ε
B

]
=
ψ(x)m(B)∫
R ψ(y) dy

,

where Yn is obtained from Xn by the exponential change of measure of Theorem 6.4.

Lemma 6.7. If (Xn)n∈N satisfies Conditions (A1) and (A2), then

|ψ̂n(ξ)| ≤ 2C(M) e−M |ξ| for any ξ ∈ R and any M > 0.

Proof : This is the content of Reed and Simon (1975, p. 132), which we reproduce
here for the convenience of the reader. Set ψn,M (x) = ψn(x + iM). Applying the
Cauchy integral theorem,

ψ̂n,M (ξ) =

∫
R
ψn(x+ iM) eixξ dx =

(∫
R
ψn(x+ iM) ei(x+iM)ξ dx

)
eMξ

=

(∫
R
ψn(x) e

ixξ dx

)
eMξ = ψ̂n(ξ) e

Mξ

by analyticity of the function ψn(z) e
izξ, and existence and boundedness of all the

integrals
∫
R ψn(x+ im) ei(x+im)ξ dx. Therefore,

|ψ̂n(ξ)| eM |ξ| ≤ |ψ̂n(ξ)|
(
eMξ + e−Mξ

)
≤ |ψ̂n,M (ξ)|+ |ψ̂n,−M (ξ)| ≤ 2C(M). □

Proof of Theorem 6.6: In the sequel we set In :=
∫
R ψn(x) dx and I∞ :=

∫
R ψ(x) dx.

As usual, it is sufficient to prove the estimate with test functions f ∈ T0(R):

lim
n→∞

(tn)
ε E
[
g

(
(tn)

ε

(
Yn
tn

− x

))]
=
ψ(x)

I∞

(∫
R
g(y) dy

)
.

We compute, with ĝ compactly supported on [−M,M ] and gn(y) = g((tn)
ε(y−x)):

E
[
g

(
(tn)

ε

(
Yn
tn

− x

))]
= E

[
gn

(
Yn
tn

)]
=

1

2πIn

∫
R
ĝn(ξ) e

ξ2

2tn ψ̂n(−ξ) dξ

=
1

2πIn (tn)ε

∫
R
ĝ

(
ξ

(tn)ε

)
e

ξ2

2tn
+ixξ ψ̂n(−ξ) dξ.
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In the integral, as n goes to infinity, the quantity ĝ( ξ
(tn)ε

) e
ξ2

2tn
+ixξ ψ̂n(−ξ) converges

pointwise to ĝ(0) eixξ ψ̂(−ξ). Moreover, it is dominated by

2 ∥ĝ∥∞ C(M) e−M
|ξ|
2

by Lemma 6.7, and using the fact that ε ≤ 1. Hence, by dominated convergence,

lim
n→∞

(tn)
ε E
[
g

(
(tn)

ε

(
Yn
tn

− x

))]
=

ĝ(0)

2πI∞

(∫
R
eixξψ̂(−ξ) dξ

)
=
ψ(x)

I∞

(∫
R
g(y) dy

)
. □

Example 6.8. The Curie–Weiss model at critical temperature is the probability law
on spin configurations σ = (σi)i∈[[1,n]] ∈ {±1}n given by

CW(σ) =
e

1
2n (

∑n
i=1 σi)

2∑
σ e

1
2n (

∑n
i=1 σi)

2 .

The random quantity Mn :=
∑n
i=1 σi under the law CW is the total magnetization

of the Curie–Weiss model.
One can interpret Mn in the mod-Gaussian convergence setting. Namely, con-

sider be a sequence of i.i.d. Bernoulli random variables (σi)i∈N with

P [σi = 1] = 1− P [σi = −1] =
1

2

Then (see Méliot and Nikeghbali, 2015, Theorem 8), Xn =
∑n

i=1 σi

n1/4 is mod-Gaussian
convergent in L 1(R) with parameters tn =

√
n and limiting function ψ(x) =

exp(−x4

12 ). The sequence Yn obtained by the exponential change of measure of
Theorem 6.4 has the same distribution as the rescaled total magnetization in the
Curie–Weiss model, that is

Yn
law
=

Mn

n1/4
.

Note that, in this particular case,

ψn(ξ) = e−
√
n x2

2

(
cosh

( x

n1/4

))n
, ψ(x) = e−

x4

12 .

From Proposition 15 in Méliot and Nikeghbali (2015), we have that for all M > 0

sup
n∈N

sup
m∈[−M,M ]

(∫
R
|ψn(x+ im)| dx

)
≲ C(M)

with
C(M) = e

13M4

12

(
2
√
3M + I∞

)
,

and where ≲ means that the inequality holds up to a multiplicative constant (1+ε),
with ε > 0, and for n big enough. Therefore, Conditions (A1) and (A2) are verified,
and we can deduce from Theorem 6.6 the following local limit theorem: for any
ε ∈ (0, 12 ], the following local limit theorem holds:

lim
n→∞

nε P
[
Mn

n3/4
− x ∈ B

nε

]
=

e−
x4

12∫
R e−

y4

12 dy
m(B)
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for any Jordan measurable subset B with m(B) > 0. This improves on Méliot and
Nikeghbali (2015, Theorem 22), which only dealt with the case x = 0 and ε = 1

2 .
In the same setting, one can also show that the Kolmogorov distance between Yn

tn

and its limit in law W∞ is a O(∥ψn − ψ∥L 1(R) +
1
tn
), see Theorem 21 in loc. cit.
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