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Abstract. In Salminen et al. (2015), Salminen, Yen and Yor have proven several
equalities of sigma-finite measures involving the law of one-dimensional recurrent
diffusions and some of its h-transforms. In the present article, we show that similar
equalities hold in the setting of irreducible and recurrent discrete Markov chains.

1. Introduction

In Salminen et al. (2015), the authors find some relationships between different
sigma-finite measures associated to recurrent one-dimensional diffusions and their
excursions. More precisely, let X be a one-dimensional diffusion which is regular,
recurrent, taking values on R+ with 0 as an instantaneously reflecting boundary
point (see Salminen et al., 2007 for detailed setting), the authors define another
process X↑ using the h-transform of the process X killed when it hits zero; the
process X↑ can be seen as X conditioned to stay positive. For example, if X is a
reflected Brownian motion, X↑ is a Bessel process of dimension three. The notion
of local times, excursions, and Itô measure are well-defined in this setting. One can
then define the following measures:

• P0 is the law of the diffusion X, starting at zero, Pt0 and Pτ`0 correspond the
law of the same process, stopped respectively at time t and at the inverse
local time τ`.

• P↑0 is the law of the diffusion X↑ starting at zero.
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• P0,u,0 is the law of the bridge of X with length u, starting and ending at
zero.

• n is the Itô measure of the excursion ofX, nt is the image of n by restricting
the trajectories to the interval [0, t].

All these measures are very closely related. In Salminen et al. (2015), the authors
prove the following equalities of sigma-finite measures:∫ ∞

0

Pt0 dt =
∫ ∞
0

Pτ`0 d` ◦
∫ ∞
0

dunu( · ;u < ζ),

∫ ∞
0

Pτ`0 d` =

∫ ∞
0

du pu(0, 0)P0,u,0,

n(Gt; t < ζ) = EP↑0

[
Gt

1

S(ωt)

]
,

∫ ∞
0

nt( · ; t < ζ) =

∫ ∞
0

m(da)(P↑0)
γa .

Here, the integrals correspond to disintegration of sigma-finite measures, the symbol
◦ represents concatenation of trajectories, ζ is the life-time of the excursions, S is
the scale function and m is the speed measure of X, pu(0, 0) is the corresponding
transition density with respect to the measure m, Gt is a non-negative functional,
measurable with respect to the σ-algebra generated by the canonical trajectory ω
up to time t, and γa denotes the last hitting time of a.

The results in Salminen et al. (2015) are generalizations of the same results in
the case of the Brownian motion and the three-dimensional Bessel process, proven
in Biane and Yor (1987) in this particular case. These equalities are directly related
to different ways of splitting the trajectories of the processes X and X↑ at different
random times. In order to see this more clearly, we develop a similar setting adapted
to discrete recurrent Markov chains, which have the advantage that we can consider
the measure of individual trajectories. The setting will be the same as in the last
chapter of Najnudel et al. (2009) and in Najnudel (2015), where some sigma-finite
measures related to the law of the Markov chains are considered.

An analog of the two first equalities cited above is proven in Section 2. The two
last equalities have a priori no immediate analog in the setting of Markov chains,
since they involve the probability measure P↑0. In Section 3, we use a particular
construction of transient Markov chain in order to solve this issue. We then prove
an analog of the third equality above, and of the fourth equality in the setting of
the simple random walk on Z or Z2.

2. Presentation of the setting and proof of two equalities of sigma-finite
measures

We consider a countable state space E, (Xn)n≥0 the canonical process defined
on EN0 (N0 := {0, 1, 2, . . . }), (Fn)n≥0 the natural filtration of (Xn)n≥0 and F∞ the
σ-algebra generated by Fn for n ≥ 0. We define a family (Px)x∈E of probability
measures on the filtered measurable space (EN0 ,F∞, (Fn)n≥0) corresponding to a
Markov chain, i.e. there exists a family (py,z)y,z∈E of elements of [0, 1] such that
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for all k ≥ 0, x0, . . . xk ∈ E,

Px(X0 = x0, X1 = x1, . . . , Xk = xk) = 1x0=x

k∏
j=1

pxj−1,xj
.

We will denote by Ex the expectation under Px. We assume:
• For all x ∈ E, px,y > 0 for finitely many y ∈ E.
• The Markov chain associated to the probability measures (Px)x∈E is irre-

ducible and recurrent.
Let us now fix a point x0 ∈ E. By the recurrence of the Markov chain, the canonical
trajectory almost surely hits x0 infinitely many times under Px, for all x ∈ E. For
k ≥ 1, we define τk as the k-th strictly positive value of n such thatXn = x0 (inverse
local time at x0). Under Px0 , if we stop the canonical trajectory at τ1, the first
return time at x0, we get almost surely a finite trajectory e1 := (X0, X1, . . . , Xτ1),
such that

Px0(τ1 = k, e1 = (x0, x1, . . . , xk)) =

 k∏
j=1

pxj−1,xj

1x1,...,xk−1 6=x0,xk=x0 .

The trajectory e1 is the first excursion, starting and ending at x0, of the canonical
process (Xk)k≥0: the formula just above gives its probability distribution under
Px0 .

Example 2.1. The law of a standard random walk on Z corresponds to the following
distribution for the excursions starting from 0: a trajectory starting at zero, ending
at zero and never hitting zero in between has probability 2−k when it stops at time
k.

We can also notice that the distribution Px0
can be recovered from the distribu-

tion of e1, by using the strong Markov property: under Px0
, the canonical process

has the same law as the concatenation of i.i.d. excursions distributed as e1. The
results we will prove in this article are related to this fact.

For a deterministic or random time T , and for x ∈ E, we denote by PTx the
law of the Markov chain starting at x, the trajectory being stopped at time T .
Moreover, if Q1 and Q2 are two measures (not necessarily of total mass equal to 1),
respectively on E`+1 and E`

′+1 for some nonnegative integers ` and `′, we define
the measure Q1 ◦Q2 as the image of the product measure Q1 ⊗Q2 by the map

((Y0, . . . , Y`), (Z0, . . . , Z`′)) 7→ (Y0, . . . , Y`, Z1, . . . , Z`′).

In the case where Q1 and Q2 are probability measures and Y` = Z0 almost surely
under Q1 ⊗Q2, the probability measure Q1 ◦Q2 is the law of the concatenation of
two independent paths, respectively following Q1 and Q2. With this notation, we
have the following equality of σ-finite measures, where by convention we set τ0 := 0:

Proposition 2.2. It holds:
∞∑
n=0

Pnx0
=

( ∞∑
k=0

Pτkx0

)
◦

( ∞∑
m=0

pm

)
,

where pm is the finite measure on Em+1 given by

pm(x0, . . . , xm) = Px0
[X0 = x0, . . . , Xm = xm, τ1 > m].
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Proof : Almost every trajectory, under the measures in both sides of the equality,
starts at x0. Let (x0, . . . , xn) be such a trajectory. We assume that it returns k
times to x0, the last hitting time being r (then xr = x0). If k = 0, we set r := 0.

Under the σ-finite measure on the left-hand side, the trajectory (x0, . . . , xn) has
measure px0,x1

. . . pxn−1xn
.

Under the first measure in the right-hand side, the trajectories start and end at
x0, and under the second measure in the right-hand side, the trajectories start at x0
and then never hit x0 again (we necessary stop the excursions strictly before their
last step). Hence, the only way to split the trajectory (x0, . . . , xn) into a trajectory
with non-zero first measure and a trajectory with non-zero second measure is at time
r. By considering the number of hitting times of x0 of the trajectory (x0, . . . , xr),
and the number of steps of the trajectory (xr, . . . , xn), we deduce that the right-
hand side measure of (x0, . . . , xn) is

Pτkx0
(x0, . . . , xr) · pn−r(xr, . . . , xn).

Now, since r is the k-th return time at x0 of (x0, . . . , xn), we have

Pτkx0
(x0, . . . , xr) = Px0(X0 = x0, X1 = x1, . . . , Xr = xr) =

r∏
j=1

pxj−1,xj .

On the other hand, we have

pn−r(xr, . . . , xn) = Px0
(X0 = xr, . . . , Xn−r = xn, τ1 > n).

Now, if Xj = xr+j for 0 ≤ j ≤ n − p, necessarily τ1 > n since xs 6= x0 for all s
between r + 1 and n. Hence,

pn−r(xr, . . . , xn) = Px0
(X0 = xr, . . . , Xn−r = xn) =

n∏
j=r+1

pxj−1,xj
.

The right-hand side measure of (x0, . . . , xn) is then r∏
j=1

pxj−1,xj

 n∏
j=r+1

pxj−1,xj

 =

n∏
j=1

pxj−1,xj
.

�

Let us now denote by P(n)
x0,x0 the law of the bridge of the Markov process from x0

to x0, with duration n, i.e. the law of (X0, . . . , Xn) under Px0 , conditioned by the
event Xn = x0. If this event has probability zero, we take for P(n)

x0,x0 any probability
measure on the trajectories indexed by {0, . . . , n}, for example the Dirac measure
at (x0, . . . , x0). We denote by p

(n)
x,y the probability that Xn = y, under Px: for

example, p(1)x,y = px,y. We then have the following result:

Proposition 2.3. One has
∞∑
k=0

P(τk)
x0

=

∞∑
n=0

p(n)x0,x0
P(n)
x0,x0

.

Proof : Almost everywhere under the two measures, the trajectories start and stop
at x0. Let (x0, . . . , xn) be such a trajectory (and then xn = x0). Let k be the
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number of its returns to x0. The left-hand side measure of this path is

P(τk)
x0

(x0, . . . , xn) = Px0(X0 = x0, . . . , Xn = xn, τk = n)

= Px0(X0 = x0, . . . , Xn = xn),

the last equality coming from the fact that X0 = x0, . . . , Xn = xn implies τk = n,
since xn = x0, and (x0, . . . , xn) has k return times at x0.

On the other hand, in the equality of the proposition, the right-hand side measure
of the trajectory (x0, . . . , xn) is equal to

p(n)x0,x0
P(n)
x0,x0

(x0, x1, . . . , xn)

= Px0
(Xn = x0)Px0

(X0 = x0, . . . , Xn−1 = xn−1, Xn = xn|Xn = x0)

if Px0
(Xn = x0) > 0, since under P(n)

x0,x0 , (X0, . . . , Xn) is a bridge of the Markov
process from x0 to x0, with duration n.

Since we consider trajectories such that xn = x0, we deduce, for Px0(Xn = x0) >
0, that

p(n)x0,x0
P(n)
x0,x0

(x0, x1, . . . , xn)

= Px0
(Xn = xn)Px0

(X0 = x0, . . . , Xn−1 = xn−1, Xn = xn|Xn = xn)

= Px0(X0 = x0, . . . , Xn−1 = xn−1, Xn = xn).

If Px0(Xn = x0) = 0, we have p(n)x0,x0 = 0 and

Px0(X0 = x0, . . . , Xn−1 = xn−1, Xn = xn)

≤ Px0
(Xn = xn) = Px0

(Xn = x0) = 0.

which implies that the equality

p(n)x0,x0
P(n)
x0,x0

(x0, x1, . . . , xn) = Px0(X0 = x0, . . . , Xn−1 = xn−1, Xn = xn)

remains true, and then we always have

p(n)x0,x0
P(n)
x0,x0

(x0, x1, . . . , xn) = P(τk)
x0

(x0, x1 . . . , xn),

if (x0, . . . , xn) is a trajectory with k returns to x0, the last one being at time n. �

3. Other equalities involving measures on transient trajectories

From the probability distribution Px0 we can construct, by using h-transforms,
other measures under which the canonical process is transient. A similar construc-
tion is detailed in Najnudel (2015). We let ϕ be a function from E to R+, not
identically zero, which vanishes at x0 and is harmonic at all other points: for all
x 6= x0,

ϕ(x) =
∑
y∈E

px,yϕ(y).

We also normalize ϕ in such a way that

Ex0
[ϕ(X1)] =

∑
y∈E

px0,xϕ(x) = 1.

It is easy to check that under Px0 , (ϕ(Xn∧τ1))n≥1 is a (Fn)n≥1-martingale, whose
expectation is equal to 1. Hence, there exists a probability measure P(ϕ)

x0 , whose
density with respect to Px0

, restricted to Fn, is equal to ϕ(Xn∧τ1) for all n ≥ 1.
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Under P(ϕ)
x0 , the canonical process never returns to x0, and more generally, to

points where ϕ vanishes: indeed, ϕ(Xn∧τ1) = 0 when ϕ(Xn) = 0, since we always
have ϕ(Xτ1) = ϕ(x0) = 0. If (x0, x1, . . . , xn) is such that ϕ(x1), . . . , ϕ(xn) are all
strictly positive, we have for n ≥ 1,

P(ϕ)
x0

[X0 = x0, . . . , Xn = xn] = ϕ(xn)Px0
[X0 = x0, . . . , Xn = xn]

= ϕ(xn)

n∏
j=1

pxj−1,xj
= ϕ(x1)px0,x1

n∏
j=2

(
ϕ(xj)

ϕ(xj−1)
pxj−1,xj

)
=

n∏
j=1

qxj−1,xj
,

where
qx0,y = ϕ(y)px0,y,

and for all x 6= x0,

qx,y =
ϕ(y)

ϕ(x)
px,y,

with the essentially arbitrary convention ϕ(y)/ϕ(x) = 1 in the case where x 6= x0
and ϕ(x) = 0. Since ϕ is harmonic everywhere except at x0, and

∑
y∈E ϕ(y)px0,y =

1, the numbers (qx,y)x,y∈E correspond to the transition probability of a Markov
chain never returning to x0. Hence, the canonical process under P(ϕ)

x0 follows this
chain, with starting point x0.

We then have the following result, which may be seen as discrete version of the
third equality from Salminen et al. (2015) cited at the beginning of the present
paper:

Proposition 3.1. For all n ≥ 1, the restriction of pn to the trajectories such that
ϕ(Xn) > 0 is absolutely continuous with respect to the law of (X0, . . . , Xn) under
P(ϕ)
x0 , with density 1/ϕ(Xn) (recall that ϕ(Xn) > 0 almost surely under P(ϕ)

x0 ).

Proof : The first measure is supported on the trajectories such that the values
ϕ(X1), ϕ(X2), . . . , ϕ(Xn) are all strictly positive. Indeed, we already know that it
is supported on the trajectories which do not return to x0, and on the other hand,
if Xj 6= x0 and ϕ(Xj) = 0, then ϕ(Xj+1) = 0 almost surely under Px0 , by the
harmonic property of ϕ, and then also under pn if j < n. By induction, we deduce
that ϕ(Xn) = 0, which contradicts the fact that we restrict pn to the paths such
that ϕ(Xn) > 0.

The measure with density 1/ϕ(Xn) with respect to the law of (X0, . . . , Xn) under
P(ϕ)
x0 is also supported on the trajectories such that ϕ does not vanish except at time

zero. Indeed, the transition probabilities qx,y of the Markov chain associated to P(ϕ)
x0

vanish as soon as ϕ(y) = 0, and ϕ(x) > 0 or x = x0.
Now, if (x0, . . . , xn) is a trajectory such that ϕ(xj) > 0 for all j between 1 and

n, we then quickly check that the two measures involved in the proposition give the
same quantity, namely the product of pxj−1,xj for j between 1 and n. �

The following property of the measure P(ϕ)
x0 is useful:

Proposition 3.2. The canonical process under P(ϕ)
x0 is transient, i.e. it visits each

state finitely many times.

Proof : Let x be a state such that ϕ(x) > 0. Since the initial recurrent Markov chain
is irreducible and ϕ(x0) = 0, there exists k > 0 minimal such that Px[ϕ(Xk) = 0] >
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0. The harmonic properties of ϕ then imply that Ex[ϕ(Xk)] = ϕ(x), since the chain
a.s. does not hit x0 before time k. Since

Px[ϕ(Xk) < ϕ(x)] ≥ Px[ϕ(Xk) = 0] > 0,

we deduce that
Px[ϕ(Xk) > ϕ(x)] > 0.

Hence, there exist y0 = x, y1, . . . , yk such that pyj−1,yj > 0 for 0 ≤ j ≤ k, ϕ(yj) > 0
for 1 ≤ j ≤ k − 1 (this fact is due to the minimality of k), and ϕ(yk) > ϕ(x). We
have qyj−1,yj > 0, and then for all n ≥ 1,

P(ϕ)
x0

[Xn+k = yk|Xn = x] > 0.

By the strong Markov property, applied to the stopping times (Tp)p≥1 given by

T1 := inf{n ≥ 1, Xn = x},

and for p ≥ 1,
Tp+1 := inf{n ≥ Tp + k + 1, Xn = x},

we deduce that under P(ϕ)
x0 , the probability that the canonical process hits x infin-

itely often without also hitting yk infinitely often is equal to zero.
We know that P(ϕ)

x0 -almost surely, ϕ(Xn) > 0 for all n ≥ 1. Moreover,
(1/ϕ(Xn))n≥1 is a supermartingale. Indeed, for n ≥ 1, and x ∈ E such that
ϕ(x) > 0,

EP(ϕ)
x0

[1/ϕ(Xn+1)|Xn = x] =
∑
y∈E

(1/ϕ(y))
ϕ(y)

ϕ(x)
px,y ≤

1

ϕ(x)

∑
y∈E

px,y =
1

ϕ(x)
.

Note that we don’t have an equality in general since (1/ϕ(y))ϕ(y) should be under-
stood as 0 and not 1 if ϕ(y) = 0 (which agrees with the usual convention 0×∞ = 0
in probability theory): indeed, in this case, the Markov chain following the dis-
tribution P(ϕ)

x0 has probability transitions towards y equal to zero, and then such
a value of y does not contribute to the sum corresponding to the expectation of
1/ϕ(Xn+1) given Xn = x.

The supermartingale (1/ϕ(Xn))n≥1 is positive, hence, it converges almost surely.
If (Xn)n≥1 visits some state x infinitely often, necessarily with ϕ(x) > 0, we deduce,
from what we have seen above, that it almost surely also visits another state yk such
that ϕ(yk) > ϕ(x). We deduce that (1/ϕ(Xn))n≥1 oscillates infinitely often between
the distinct values 1/ϕ(x) and 1/ϕ(yk), which can only happen with probability
zero because of the a.s. convergence of the supermartingale. �

We can look at two important examples: the simple symmetric random walk on
Z and the simple symmetric random walk on Z2.

For the simple symmetric random walk on Z, with x0 = 0, the function ϕ can be
any convex combination of x 7→ 2x+ and x 7→ 2x−, i.e. ϕ(x) = λx+ + µx− where
λ, µ ≥ 0, λ+µ = 2. Here, the factor 2 is needed in order to have the normalization
Ex0

[ϕ(X1)] = 1.
In the case where ϕ(x) = 2x+, the probability distribution P(ϕ)

0 corresponds
to the Bessel random walk (which is a discrete analog of the Bessel process of
dimension 3).
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For the simple symmetric random walk on Z2, with x0 = (0, 0), there is only one
possibility for the function ϕ, given as follows:

ϕ(x) = lim
N→∞

(
N∑
n=0

P(0,0)[Xn = (0, 0)]−
N∑
n=0

Px[Xn = (0, 0)]

)
,

where the limit can be shown to exist. One has in particular ϕ(x) = 1 for x ∈ Z2

such that ||x|| = 1, and for all n ≥ 1,

ϕ(n, n) := ϕ((n, n)) =
4

π

n∑
j=1

1

2j − 1
.

Moreover, for x 6= (0, 0),

ϕ(x) =
2

π
log ||x||+ 2γEuler + log 8

π
+O(||x||−2),

||x|| denoting the Euclidean norm of x (see Najnudel, 2015, pp. 289-290).
In these two examples, we can compute the probability that the Markov chain

associated to P(ϕ)
x0 does not return to a after time n, conditionally on Xn = a,

where a 6= 0. This computation will be used in the proof of the last proposition
of the paper, which is related to the fourth equality stated at the beginning in the
continuous setting. In the one-dimensional case, the computation of the probability
just above is not difficult.

Proposition 3.3. Let us assume that we are in the setting of the simple random
walk on Z, and that ϕ is a strict convex combination of 2x+ and 2x−. If a 6= x0 = 0,
then we have, for any n ≥ 0 such that P(ϕ)

x0 (Xn = a) > 0:

P(ϕ)
x0

(∀k > n,Xk 6= a|Xn = a) =
1

2|a|
.

Proof : By the symmetry of the simple random walk on Z, we can assume that
a > 0. In this case, conditionally on Xn = a, we have Xn+1 = a + 1 with prob-
ability (a + 1)/2a and Xn+1 = a − 1 with probability (a − 1)/2a. These proba-
bilities are computed by multiplying the transitions of the simple random walk by
ϕ(Xn+1)/ϕ(Xn). Then, we can further condition on Xn+1:

• Conditionally on Xn+1 = a − 1, the Markov chain goes back to a with
probability one, since it tends to infinity.

• Conditionally on Xn+1 = a + 1, the process (1/Xk)k≥n+1, stopped at the
first time after n + 1 when X hits a, is a bounded martingale tending to
zero if X never returns to a and to 1/a if it returns to a. We deduce by
the stopping theorem that the probability to never return to a in this case
is 1/(a+ 1).

This gives the proposition, since

P(ϕ)
x0

(∀k > n,Xk 6= a|Xn = a)

=
a− 1

2a
P(ϕ)
x0

(∀k > n+ 1, Xk 6= a|Xn+1 = a− 1)

+
a+ 1

2a
P(ϕ)
x0

(∀k > n+ 1, Xk 6= a|Xn+1 = a+ 1)

=
a− 1

2a
· 0 + a+ 1

2a
· 1

a+ 1
=

1

2a
.
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�

A similar formula holds in the two-dimensional case, but our proof is longer.

Proposition 3.4. In the setting of the two-dimensional simple random walk, with
x0 = (0, 0), we have, for all x, a, b ∈ Z2, a 6= b,

Px(Ta < Tb) =
1

2

(
1 +

ϕ(x− b)− ϕ(x− a)
ϕ(b− a)

)
,

where for all c ∈ Z, Tc denotes the first hitting time of c, and for a 6= 0,

Pa(T(0,0) < T ′a) = 1/(2ϕ(a)),

where T ′a is the first return time at a. Finally for all n ≥ 1,

P(ϕ)
(0,0)(∀k > 0, Xn+k 6= a|Xn = a) = 1/(2ϕ(a)).

Proof : We observe that the function x 7→ Px(Ta < Tb) is harmonic everywhere
except at a and b. This property remains true, for any λ ∈ R, if we add λϕ(x− a)
to this function of x, since x 7→ ϕ(x − a) is harmonic everywhere except at a.
Moreover, since a 7→ ϕ(x− a) is not harmonic at a, we have that

Pa(Ta < Tb) + λϕ(0)− 1

4

∑
v∈Z2,||v||=1

(Pa+v(Ta < Tb) + λϕ(v))

is a non-constant affine function of λ. Hence, there exists a value of λ such that
this quantity is equal to zero, and then

x 7→ Px(Ta < Tb) + λϕ(x− a),
is harmonic at a, and then it is harmonic everywhere except at b since we already
know that it is harmonic on Z2\{a, b}. Since ϕ has logarithmic growth at infinity,
the absolute value of the function just above is dominated by 1 + log(1 + ||x||).
Hence, if the parameter µ is sufficiently large, we have that

x 7→ h(x) := Px(Ta < Tb) + λϕ(x− a) + µϕ(x− b)
is positive function, tending to infinity at infinity, and harmonic everywhere except
at b. Let M > 0 and let S be the first hitting time of the union of b and the
complement in Z2 of the ball of center b and radiusM . For all x ∈ Z2, (h(Xn∧S))n≥0
is a bounded martingale, since h is harmonic on Z2\{b}, and then, by letting
n→∞, we deduce that E[h(XS)] = h(x). Now, since h tends to infinity at infinity,
we have h ≥ h(b) on the complement of the ball of center b and radius M , as
soon as M is large enough. Hence, h(XS) ≥ h(b) almost surely, which shows that
h(x) ≥ h(b). Therefore, h− h(b) is a nonnegative function, equal to zero at b, and
harmonic everywhere else. By the uniqueness property satisfied by ϕ, we deduce
that h(x)− h(b) is a multiple of ϕ(x− b), and then

Px(Ta < Tb) = c1 + c2ϕ(x− a) + c3ϕ(x− b)
for three constants c1, c2, c3. By looking at the behavior at infinity, c2 = −c3.
Taking x = a and x = b then gives

1 = c1 − c2ϕ(a− b),
0 = c1 + c2ϕ(b− a),

and then c1 = 1/2, c2 = −1/(2ϕ(b − a)), since ϕ(a − b) = ϕ(b − a) by symmetry.
This gives the first part of the proposition.
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The second part of the proposition is obtained by observing that if c is a neighbor
of a,

Pc(T0 < Ta) =
1

2

(
1 +

ϕ(c− a)− ϕ(c)
ϕ(a)

)
=

1

2

(
1 +

1− ϕ(c)
ϕ(a)

)
.

Taking the average with the four neighbors of a, and observing that the average of
ϕ on these neighbors is equal to ϕ(a) since ϕ is harmonic at a 6= 0, we get

Pa(T0 < T ′a) =
1

2

(
1 +

1− ϕ(a)
ϕ(a)

)
=

1

2ϕ(a)
.

For the last computation, we observe, for p ≥ 1,

P(ϕ)
(0,0)(Xn+1, . . . , Xn+p−1 6= a,Xn+p = a|Xn = a)

=
∑

r1,...,rp−1 6=a

qa,r1qr1,r2 . . . qrp−1,a,

where q corresponds to the transition probabilities of the Markov chain associated
to P(ϕ)

(0,0). If p denotes the transitions of the standard random walk, we can write
q in function of p and this gives, after simplifying a telescopic product involving ϕ
(observe that the trajectories here start and stop at the same point a):

P(ϕ)
(0,0)(Xn+1, . . . , Xn+p−1 6= a,Xn+p = a|Xn = a)

=
∑

r1,...,rp−1 6=a,(0,0)

pa,r1pr1,r2 . . . prp−1,a,

and then
P(ϕ)
(0,0)(Xn+1, . . . , Xn+p−1 6= a,Xn+p = a|Xn = a)

= Pa(X1, . . . , Xp−1 6= a, (0, 0), Xp = a)

which gives

P(ϕ)
(0,0)(Xn+1, . . . , Xn+p−1 6= a,Xn+p = a|Xn = a) = Pa(T(0,0) > T ′a = p).

Adding for all p ≥ 1, we get

P(ϕ)
(0,0)(∃k,Xn+k = a|Xn = a) = Pa(T(0,0) > T ′a),

and then

P(ϕ)
(0,0)(∀k,Xn+k 6= a|Xn = a) = Pa(T(0,0) < T ′a) =

1

2ϕ(a)
.

�

Remark 3.5. Proposition 3.4 can also deduced from a more general discussion on
recurrent two-dimensional random walks given in Chapter III of the book by Spitzer
Spitzer (1976) (see in particular Section 11). A particular case of this result is the
following: the probability that the simple random walk starting at (0, 0) reaches
(0, 1) before returning to (0, 0) is equal to 1/2.

In the cases of simple random walk on Z or Z2, we have the following relation
between the excursions and the measure P(ϕ)

x0 , which corresponds to the fourth
equality from Salminen et al. (2015) stated at the beginning of the present paper:
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Proposition 3.6. Let us assume that we are in the setting of the simple random
walk on Z or Z2, with x0 equal to the origin. Moreover, in the one-dimensional case,
let us assume that ϕ(x) = |x|. We recall that there is only one possible function ϕ
in the two-dimensional case. Under these assumptions, we have:

∞∑
n=1

pn = 2
∑

b∈E\{x0}

P(ϕ),γb
x0

,

where P(ϕ),γb
x0 is the law of the canonical trajectory, stopped at its last hitting time

of b under the restriction of P(ϕ)
x0 to the trajectories hitting b at least once.

Proof : All the trajectories with positive measure under the two sides of the equality
hit x0 only at time 0. Let (x0, . . . , xn) be such a trajectory, for n ≥ 1. Under the
left-hand side, or equivalently, under pn, its measure is the product of pxj−1,xj

for
j between 1 and n. Under the right-hand side, or equivalently, under 2P(ϕ),γxn

x0 , the
measure is twice the product of qxj−1,xj

for 1 ≤ j ≤ n, multiplied by the probability,
under P(ϕ)

x0 , and conditionally on Xn = xn, that the canonical trajectory does not
hit xn again after time n. Hence, the measure is equal to

2ϕ(x1)px0,x1

n∏
j=2

(
ϕ(xj)

ϕ(xj−1)
pxj−1,xj

)(
1

2ϕ(xn)

)
=

1

2

n∏
j=1

pxj−1,xj
.

�
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