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Abstract. We study the spatial Gibbs random graphs introduced in Mourrat and
Valesin (2018) from the point of view of local convergence. These are random
graphs embedded in an ambient space consisting of a line segment, defined through
a probability measure that favors graphs of small (graph-theoretic) diameter but
penalizes the presence of edges whose extremities are distant in the geometry of the
ambient space. In Mourrat and Valesin (2018) these graphs were shown to exhibit
threshold behavior with respect to the various parameters that define them; this
behavior was related to the formation of hierarchical structures of edges organized
so as to produce a small diameter. Here we prove that, for certain values of the
underlying parameters, the spatial Gibbs graphs may or may not converge locally,
in a manner that is compatible with the aforementioned hierarchical structures.

1. Introduction

In Mourrat and Valesin (2018), the authors introduced and studied a class of
random graphs which they called spatial Gibbs random graphs. These are random
graphs embedded in an ambient space, which in Mourrat and Valesin (2018), was
a finite line segment. They are distributed according to a measure that penalizes
the presence of edges whose extremities are distant (in terms of the ambient space
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geometry), but also penalizes graphs with large graph-theoretic diameter. Graphs
sampled from this measure may thus be thought of as answering to a compromise
between the conflicting requirements of using few long edges and having vertices
close to each other in graph distance. The main result of Mourrat and Valesin (2018)
describes the typical aspect of these graphs depending on the various parameters
that define them. Here, we continue the study of spatial Gibbs random graphs on
line segments by considering their local convergence properties.

Let us explain the definition of spatial Gibbs random graphs and briefly present
the results of Mourrat and Valesin (2018). Define the set of graphs on Z as

G = {g = (V,E) : V ⊂ Z and g is locally finite};
we say a graph g is locally finite if all its vertices have finite degree. Given a graph
g = (V,E) ∈ G and two vertices x, y ∈ V , the distance between x and y in g is the
smallest length over all paths in g with endpoints x and y. We denote this distance
by dg(x, y). Let p ∈ [1,∞]; in case g = (V,E) ∈ G is finite, we define

Hp(g) =



 1(
N
2

) ∑
x,y∈V :
x<y

(dg(x, y))p


1
p

if p ∈ [1,∞);

sup {dg(x, y) : x, y ∈ V } if p =∞,

that is, H∞(g) is the graph-theoretic diameter of g and, if p ∈ [1,∞), Hp(g) is a
measure of typical distances in g.

For eachN ≥ 1 and γ > 0, let PN,γ be the probability measure on G supported on
graphs g = (V,E) with V = [N ] := {1, . . . , N} and E ⊃ {{x, y} : x, y ∈ V, |x− y| =
1}, and so that the events

{{x, y} ∈ E}x,y∈V,|x−y|>1 (1.1)

are independent, each having probability

p{x,y} = exp{−|x− y|γ}. (1.2)

We think of PN,γ as a “reference measure” which we multiply by a Gibbs-type
weight, thus obtaining a measure

Pb,pN,γ(g) =
1

Zb,pN,γ
· exp{−N b · Hp(g)} · PN,γ(g), g ∈ G, (1.3)

where b ∈ R, p ∈ [1,∞] and Zb,pN,γ is the normalization constant. In summary,
this measure has four parameters: N ∈ N is the number of vertices of graphs over
which it is supported, γ > 0 controls the probabilities of the presence of edges in
the reference measure, p ∈ [1,∞] determines the notion of typical distance that is
used, and b ∈ R controls the sensitivity of the measure to the value of the typical
distance. We denote by GN a random graph sampled from PN,γ or Pb,pN,γ , depending
on the context.

Under the reference measure PN,γ , the geometry of the random graph GN is not
too different from that of the line segment on [N ]. Indeed, using a simple analysis
of “cutpoints” carried out in Mourrat and Valesin (2018), it is not hard to show
that, if ε > 0 is small enough,

lim
N→∞

PN,γ (Hp(GN ) < εN) = 0. (1.4)
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This changes drastically by the introduction of the Gibbs weight (at least if the
parameter b is large enough). The main result of Mourrat and Valesin (2018), re-
produced as Theorem 1.1 below, is the convergence in probability of the random
variable N−1 logHp(GN ) under Pb,pN,γ , when γ, b, p are fixed and N is taken to infin-
ity. The limit is deterministic and given explicitly as a function of the parameters.
Not all triples (γ, b, p) ∈ (0,∞) × R × [1,∞] are covered by the theorem: the case
γ = 1 is technically challenging and the proof of convergence for certain values of
(b, p) in that case is still missing. To identify this set of values, define for each
p ∈ [1,∞]:

Ep =


⋃∞
k=1

[
k−1
k , k−1

k +
(

0 ∨ 2p−(p−1)k
k(k+1)(k+2p)

)]
if p <∞;

[0, 1
4 ] ∪

⋃∞
k=2

{
k−1
k

}
if p =∞.

This set is plotted on Figure 1.1.
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Figure 1.1. For each p ∈ [1,∞], the dark region represents the
set Ep, that is, the values of b for which Theorem 1.1 does not cover
the pair (b, p) if γ = 1. Note that, unless p = 1, Ep only includes
finitely many intervals and all numbers of the form k−1

k , k ∈ N.

Theorem 1.1 (Mourrat and Valesin, 2018). In case

either γ 6= 1, p ∈ [1,∞], b ∈ R or γ = 1, p ∈ [1,∞], b ∈ R\Ep,

for any ε > 0,

Pb,pN,γ
(
Nα∗−ε < Hp(GN ) < Nα∗+ε

)
N→∞−−−−→ 1, (1.5)

where

α∗ = α∗(γ, b) =



(
1−b
2−γ ∧ 1

)
∨ 0 if γ ∈ (0, 1);(

γ−b
γ ∧ 1

)
∨ 0 if γ > 1;

1(−∞,0)(b) +
∑∞
k=1

1
k+1 · 1[ k−1

k , k
k+1 )(b) if γ = 1.
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Note that the theorem identifies a “transition window” for the parameter b, given
by the intervals (−1 + γ, 1), (0, γ) and (0, 1) respectively in the cases γ ∈ (0, 1),
γ > 1 and γ = 1. See Figure 1.2.

Figure 1.2. Plot of the function b 7→ α∗(γ, b) of Theorem 1.1 for
the three cases γ ∈ (0, 1), γ > 1 and γ = 1.

In order to motivate our results, it is useful to give a brief exposition of what is
involved in the proof of Theorem 1.1, carried out in Mourrat and Valesin (2018).
Most of the work involves studying the reference measure; specifically, estimating
PN,γ(Hp(GN ) ≤ Nα) as N → ∞ for all values of α ∈ (0, 1). Upper and lower
bounds whose orders roughly match are obtained for these probabilities. To obtain
a lower bound, the authors exhibit a graph g? = g?(N, γ, α) with same vertex
set [N ] as GN and Hp(g?) close to Nα and use the inequality

PN,γ(Hp(GN ) ≤ Nα) ≥ PN,γ(g? is a subgraph of GN ).

The definition of g? is completely different for the three cases γ ∈ (0, 1), γ > 1 and
γ = 1. In order to explain it, let us define, for N ∈ N and ` ∈ [N ], the “layer” of
edges

EN,` = {{1, 1 + `}, {1 + `, 1 + 2`}, . . . , {1 + (k − 1)`, 1 + k`}, {1 + k`,N}},
where k ≥ 0 is the integer satisfying 1 + k` < N , 1 + (k + 1)` ≥ N . Then,
g? = ([N ], E) is defined as follows:

• in case γ ∈ (0, 1), E = EN,1 ∪
⋃i
j=0 EN,N2−j , where i is the smallest integer

with N2−i < N1−α;
• in case γ > 1, E =

⋃i
j=0 EN,2j , where i is the smallest integer with 2i > Nα;

• in case γ = 1, E = EN,1 ∪
⋃i−1
j=1 EN,Nj/i , where i ≥ 2 is the integer such

that α ∈
(

1
i ,

1
i−1

)
.

In all three cases, the layers which constitute g? form hierarchical or fractal struc-
tures; they are added “from the top”, “from the bottom” and “from the middle”,
respectively, when α < 1, α > 1 and α = 1. See Figures 2 and 5 in Mourrat and
Valesin (2018) for depictions of these graphs. The proof of the matching upper
bound does not quite establish that the mentioned fractal structures are likely to
be present in GN . However, it does show that, in agreement with the definition
of g?, the large-deviation event {Hp(GN ) ≤ Nα} with α ∈ (0, 1) is most likely to
occur due to a coordinated presence of long edges in case γ ≤ 1 and a coordinated
presence of short edges in case γ > 1.

As already mentioned, in this paper we consider the local picture of the spatial
Gibbs random graphs. The standard topology for local graph convergence is the one
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introduced by Benjamini and Schramm (2001). This topology involves comparing
rooted graphs by asking whether there are graph automorphisms between balls of
different radii around the roots. Since here we consider graphs on Z, the vertices
of our graphs are labeled by natural numbers, so it makes sense to modify the
Benjamini-Schramm convergence so as to demand that the automorphisms between
balls respect the relative positions of the labels. This modification produces a finer
topology (that is, if a sequence of rooted graphs converges in the sense to be given
below, then it converges in the sense of Benjamini and Schramm (2001)). Let
us also mention that Benjamini et al. (2015) also deals with an example of local
convergence of rooted graphs endowed with labels or marks.

We now explain the ideas of the previous paragraph precisely. The set of rooted
graphs on Z is defined by

G• = {(g, o) : g ∈ G, o is a vertex of g} .
For o, o′ ∈ Z, let ϕo,o′ : Z→ Z be the translation

ϕo,o′(x) = x− o+ o′.

With abuse of notation, for a rooted graph (g, o) ∈ G• with g = (V,E), and o′ ∈ Z,
we define ϕo,o′(g, o) = ((Vϕ, Eϕ), o′) ∈ G• as the rooted graph with

Vϕ = ϕo,o′(V ), Eϕ = {{ϕo,o′(x), ϕo,o′(y)} : {x, y} ∈ E}.

For g = (V,E) ∈ G, o ∈ V , g′ = (V ′, E′) ∈ G and o′ ∈ V ′, we write (g, o) ' (g′, o′)
if ϕo,o′(g, o) = (g′, o′).

Given R > 0 and (g, o) ∈ G• with g = (V,E), a ball with center o and radius R
in g is the rooted graph B(g,o)(R) = ((VB , EB), o) ∈ G• of g with

VB = {x ∈ V : dg(o, x) ≤ R}, EB = {{x, y} ∈ E : dg(o, x) ≤ R and dg(o, y) ≤ R}.

A sequence (gn, on) ∈ G• is defined to converge to (g, o) ∈ G• in case

∀R ∃n0 : n ≥ n0 =⇒ B(gn,on)(R) ' B(g,o)(R). (1.6)

The associated notion of convergence in distribution is as follows. Given a sequence
of random rooted graphs (Gn,On) defined under the probability measure µn and
a random rooted graph (G,O) defined under the probability measure µ, the se-
quence (Gn,On) converges in distribution to (G,O) if for all R > 0, and for any
deterministic rooted graph (h, o) ∈ G•, we have

lim
n→∞

µn(B(Gn,On)(R) ' (h, o)) = µ(B(G,O)(R) ' (h, o)).

Note that it suffices to verify the convergence above for graphs (h, o) with o taken
to be zero.

Let us give an example that will be useful for the statement of our main result.
Let Pγ be the measure on G supported on graphs g = (V,E) with V = Z and
E ⊃ {{x, y} : x, y ∈ V, |x − y| = 1}, and so that the events as in (1.1) are
independent, with probabilities as in (1.2). If GN is sampled from PN,γ , G is
sampled from Pγ and aN is a sequence with 1 � aN � N , then it is easy to see
that (GN , aN ) converges in distribution to (G, 0).

We now state our main result.

Theorem 1.2. Assume p ∈ [1,∞] and either of the following conditions hold:

[γ ∈ (0, 1), b ∈ (−∞, 1)], [γ = 1, b ∈ (−∞, 1)\Ep], or [γ > 1, b ∈ (−∞, 0)].
(1.7)
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Let UN be the uniform measure on {1, . . . , N}. Then, (GN ,ON ) sampled from
Pb,pN,γ ⊗ UN converges in distribution to (G,O) sampled from Pγ ⊗ δ{0}.

Intuitively, this result states that, if one of the three conditions holds, then graphs
sampled from PN,γ and Pb,pN,γ are indistinguishable from the point of view of local
convergence; in other words, the presence of the Gibbs weight exp{−N b ·Hp(g)} has
no impact on the local picture. Note that, for the regimes γ ∈ (0, 1) and γ = 1, this
is compatible with the heuristic explanation we have provided above for the proof
of Theorem 1.1: in both cases, graphs are most likely to achieve a small diameter
by deviating from the reference measure in their long-edge configuration. In the
remaining case [γ > 1, b < 0], the idea is that the Gibbs weight is not sufficiently
large to cause the random graph to deviate from its local aspect under the reference
measure.

Taking this into account, it is not surprising that the study of local convergence
is harder for γ > 1, b ≥ 0: in that case, short edges do most of the job of reducing
the diameter of the graph, so the local picture should be affected by the Gibbs
weight. If there is a limiting distribution at all, it would likely differ from Pγ . Our
results in this direction are more modest: we show that for a certain subset of the
relevant parameters, there is no convergence in distribution.

Proposition 1.3. For L > 0, let LL be the set of graphs g = (V,E) ∈ G with the
property that, if x, y ∈ V with 0 < |x − y| ≤ L, then {x, y} ∈ E. For any L > 0,
γ > 1, p <∞ and b > p+ 1, then

Pb,pN,γ(GN ∈ LL)
N→∞−−−−→ 1.

In particular (since G consist only of locally finite graphs), the sequence (GN ,ON )

sampled from Pb,pN,γ ⊗ UN does not converge in distribution.

Remark 1.4. (1) As mentioned after the statement of Theorem 1.1, the “tran-
sition window” for b in case γ > 1 is the interval (0, γ) (regardless of p).
Hence, if p+ 1 < γ, the above proposition shows that there is no local limit
even for some values of b within the transition window.

(2) For γ > 1, this leaves open the cases:

p =∞, b ≥ 0 and p ∈ [1,∞), b ∈ [0, p+ 1].

We have no guess on whether or not local convergence occurs for some of
these parameter values.

The above proposition suggests that the Benjamini-Schramm convergence is per-
haps not well suited to study our random graph model in the parameter regimes
where the density of short edges is too high. It would thus be interesting to inves-
tigate the behavior of the model with respect to some other notion of convergence,
particularly one that is more well-suited for the study of dense graphs, such as the
ones discussed in Borgs et al. (2008) and Borgs et al. (2012); see also Borgs and
Chayes (2017).
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2. Proof of main result

2.1. Truncated balls and proof of Theorem 1.2. In order to prove Theorem 1.2, it
is enough to fix γ, p, b as in (1.7), fix k ∈ N, (g, o) ∈ G•, ε > 0, and show that

Pb,pN,γ

(∣∣∣∣#{i ∈ [N ] : B(GN ,i)(k) ' (g, o)}
N

− µγ(k, (g, o))

∣∣∣∣ > ε

)
N→∞−−−−→ 0, (2.1)

where
µγ(k, (g, o)) := Pγ

(
B(G,0)(k) ' (g, o)

)
. (2.2)

The natural approach to prove this statement is to first show that, under the
reference measure PN,γ , the graph GN has certain desirable properties with high
probability, and then to use this to draw the desired conclusion about the weighted
measure Pb,pN,γ . This approach is indeed natural because of the independence prop-
erties of the reference measure, which make it easier to study than the weighted
measure. However, note that for i, j ∈ [N ], events of the form {B(GN ,i)(k) ' (g, o)}
and {B(GN ,j)(k) ' (g, o)} are not independent even if |i− j| is large, as both events
could be influenced by the presence of long edges with extremities in the vicinities
of i and j. To deal with this problem, we will introduce truncated balls below.

Given an edge e = {i, j} of a graph on Z, we define the length of e as |e| := |i−j|.
Given the rooted graph (g, o) and k, L ∈ N, we define the truncated ball BL(g,o)(k)

as follows. Let g′ be the graph obtained from g by removing all edges with length
larger than L; then, we let BL(g,o)(k) = B(g′,o)(k).

The essential ingredients in our proof of (2.1) are given in the following result.

Proposition 2.1. Fix γ, p, b as in (1.7).
(1) For any k, L > 0, (g, o) ∈ G• and ε > 0,

Pb,pN,γ

(∣∣∣∣∣#{i ∈ [N ] : BL(GN ,i)(k) ' (g, o)}
N

− µLγ (k, (g, o))

∣∣∣∣∣ > ε

)
N→∞−−−−→ 0, (2.3)

where
µLγ (k, (g, o)) = Pγ

(
BL(G,0)(k) ' (g, o)

)
. (2.4)

(2) For any ε > 0 there exists L > 0 such that

Pb,pN,γ (GN has more than εN edges with length larger than L)
N→∞−−−−→ 0. (2.5)

Let us show how Proposition 2.1 gives the proof of Theorem 1.2; the proof of
Proposition 2.1 will be given afterwards.

Proof of Theorem 1.2. Fix γ, p, b as in (1.7). Also fix k ∈ N, (g, o) ∈ G• and ε > 0.
As already observed, the statement of the theorem will follow once we establish
(2.1).

Let µγ(k, (g, o)) be as in (2.2) and, for each L > 0, let µLγ (k, (g, o)) be as in (2.4).
Using the fact that Pγ is supported on locally finite graphs, it is easy to verify that
limL→∞ µLγ (k, (g, o)) = µγ(k, (g, o)). We can thus choose L large enough that

|µLγ (k, (g, o))− µγ(k, (g, o))| < ε/2.

It is then sufficient to prove that

Pb,pN,γ

(∣∣∣∣∣#{i : BL(GN ,i)(k) ' (g, o)}
N

− µLγ (k, (g, o))

∣∣∣∣∣ > ε

4

)
N→∞−−−−→ 0 (2.6)
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and

Pb,pN,γ

(∣∣∣∣∣#{i : B(GN ,i)(k) ' (g, o)}
N

−
#{i : BL(GN ,i)(k) ' (g, o)}

N

∣∣∣∣∣ > ε

4

)
N→∞−−−−→ 0.

(2.7)
The convergence (2.6) is given directly by (2.3). For (2.7), first observe that, for L
larger than the length of any edge in (g, o), we have

{i ∈ [N ] : B(GN ,i)(k) ' (g, o)} ⊆ {i ∈ [N ] : BL(GN ,i)(k) ' (g, o)}.

Moreover, if i0 ∈ [N ] belongs to the set on the right-hand side but not to the set
on the left-hand side, then there exists a vertex x of g such that i0 + x − o is an
extremity of some edge e of GN with |e| > L. Using these observations, we obtain

|#{i ∈ [N ] : B(GN ,i)(k) ' (g, o)} −#{i ∈ [N ] : BL(GN ,i)(k) ' (g, o)}|
≤ 2 ·#{vertices of g} ·#{edges of GN with length larger than L}.

Hence, (2.7) follows from (2.5), completing the proof. �

2.2. Estimates from Mourrat and Valesin (2018). We now import some estimates
that we will need from Mourrat and Valesin (2018) (Lemmas 2.2 and 2.3 below)
and state and prove a consequence of them (Corollary 2.4).

Lemma 2.2. (1) Mourrat and Valesin (2018, Proposition 2.1(1)) Assume γ ∈
(0, 1). There exists c > 0 such that for each α ∈ (0, 1) and N ∈ N,

PN,γ(Hp(GN ) ≤ Nα) ≥ exp
{
−cN1−α(1−γ)

}
. (2.8)

(2) Mourrat and Valesin (2018, Proposition 3.1(1)) Assume γ = 1. For each
k ∈ N and N large enough,

PN,1
(
Hp(GN ) ≤ 3(k + 1)N

1
k+1

)
≥ exp {−kN} . (2.9)

Lemma 2.3. Mourrat and Valesin (2018, Lemma 3.3) Assume p ∈ [1,∞], k ∈ N
and α < 1

k . There exists δ > 0 and a function o1(N) with o1(N)/N
N→∞−−−−→ 0 such

that, for N large enough,

if g = ([N ], E) ∈ G with Hp(g) ≤ Nα, then
∑
e∈E:
|e|≥Nδ

|e| ≥ kN − o1(N).

Corollary 2.4. (1) Assume p ∈ [1,∞] and either of the following conditions
hold:

[γ ∈ (0, 1), b ∈ (−∞, 1)] or [γ ≥ 1, b < 0].

If EN are events with PN,γ(EN ) < exp{−βN} for some β > 0 and N large,
then

Pb,pN,γ(EN )
N→∞−−−−→ 0. (2.10)

(2) Assume γ = 1, p ∈ [1,∞] and b ∈ [0, 1)\Ep. Then,
2a. there exists C > 0 such that, if EN are events with PN,γ(EN ) <

exp{−CN} for all N , then

Pb,pN,1(EN )
N→∞−−−−→ 0; (2.11)
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2b. if EN are events such that PN,γ(EN ) < exp{−cN} for some c > 0,
and each EN only depends on {e : |e| ≤ L} for a fixed L, then

Pb,pN,1(EN )
N→∞−−−−→ 0. (2.12)

Proof : We start assuming that

p ∈ [1,∞], γ > 0, b < 0.

In this case,

Zb,pN,γ =
∑
g∈G

exp{−N b · Hp(g)} · PN,γ(g)

≥
∑
g∈G

exp{−N b+1} · PN,γ(g) = exp{−N b+1}

since Hp(GN ) ≤ N almost surely under PN,γ . Let EN be events with PN,γ(EN ) <
exp{−βN} for some β > 0 and N large. Thus,

Pb,pN,γ(EN ) ≤ (Zb,pN,γ)−1 · PN,γ(EN ) ≤ exp
{
−βN +N b+1

} N→∞−−−−→ 0

since b < 0. This proves part of statement 1 of the corollary; to complete the proof
of statement 1, we now assume

p ∈ [1,∞], γ ∈ (0, 1), b ∈ (−1 + γ, 1).

For any α ∈ (0, 1) we obtain the following lower bound for the partition function:

Zb,pN,γ
(1.3)
= EN,γ

[
exp{−N b · Hp(GN )}

]
≥ exp{−N b ·Nα} · PN,γ (Hp(GN ) ≤ Nα)

(2.8)
≥ exp{−N b+α − cN1−α(1−γ)}.

Thus,

Pb,pN,γ(EN ) ≤ (Zb,pN,γ)−1 · PN,γ(EN ) ≤ exp
{
−βN +N b+α + cN1−α(1−γ)

}
.

Since b < 1, setting α = 1−b
2−γ gives b+ α < 1 and 1− α(1− γ) < 1, proving (2.10).

Now suppose γ = 1, p ∈ [1,∞] and b ∈ [0, 1)\Ep. Let k ∈ N be the unique integer
such that

k − 1

k
< b <

k

k + 1
. (2.13)

Bounding from below as above, we have

Zb,pN,1 ≥ exp
{
−N b · 3(k + 1)N

1
k+1

}
· PN,γ(Hp(GN ) ≤ 3(k + 1)N

1
k+1 )

(2.9)
≥ exp

{
−3(k + 1)N b+ 1

k+1 − kN
}

= exp{−kN + o(N)},
(2.14)

where o(N)/N → 0. The last equality holds by (2.13). Then, for C = C(b) > k
and events EN satisfying PN,γ(EN ) < exp{−CN}, we have

Pb,pN,γ(EN ) ≤ (Zb,pN,γ)−1 · PN,γ(EN ) ≤ exp{−CN + kN − o(N)} N→∞−−−−→ 0,
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proving (2.11). To prove (2.12), fix an arbitrary 1
k+1 < α < 1

k . Take δ > 0 and
o1(N) as in Lemma 2.3. Define

B = {Hp(GN ) ≤ Nα} and

C =

GN = ([N ], E) :
∑

e∈E:|e|≥Nδ
|e| ≥ kN − o1(N)

 .

Then, for events EN as described in part 2b of the statement of the corollary,

Pb,pN,1(EN ) = Pb,pN,1(EN ∩B) + Pb,pN,1(EN ∩Bc).

From Theorem 1.1,

Pb,pN,1(EN ∩Bc) ≤ Pb,pN,1(Hp(GN ) > Nα)
N→∞−−−−→ 0.

Lemma 2.3 claims that B ⊆ C. Moreover, since the event EN depends only on
edges with length at most L, we can take N large enough so that the events EN
and C are independent under the reference measure PN,1. Thus,

Pb,pN,1(EN ∩B) ≤ Pb,pN,1(EN ∩ C) ≤ (Zb,pN,1)−1 · PN,1(EN ) · PN,1(C)

(2.14)
≤ exp{kN − o(N)} · exp{−cN} · PN,1(C).

Now, using Markov’s inequality it can be shown that

PN,1(C) < exp{−kN + o(N)};

see the proof of Proposition 3.1 in Mourrat and Valesin (2018) for the details. This
completes the proof of (2.12). �

2.3. Estimates for the reference measure and proof of Proposition 2.1. We will use
the following concentration result for sums of bounded random variables with finite-
range dependence. It is a particular case of Theorem 2.1 of Janson (2004).

Lemma 2.5. Let Y1, . . . , Yn be random variables such that, for some m,L > 0 and
for each i, 0 ≤ Yi ≤ m and Yi is independent of {Yj : |j − i| > L}. Then, letting
X =

∑n
i=1 Yi, we have

P (|X − E(X)| > t) ≤ 2 exp
{
− 2t2

(2L+ 1)nm2

}
. (2.15)

We now state and prove two lemmas which give upper bounds to the probabilities
of the same events that appear in the two parts of Proposition 2.1; however, in these
lemmas, the probability measure under consideration is the reference measure PN,γ
rather than the weighted measure Pb,pN,γ .

Lemma 2.6. Let γ > 0, k, L > 0, (g, o) ∈ G• and ε > 0. For N large enough we
have

PN,γ
(∣∣∣∣#{i ∈ [N ] : BL(GN ,i)(k) ' (g, o)}

N
−µLγ (k, (g, o))

∣∣∣∣ > ε

)
< 2 exp

{
− ε2N

8kL+ 2

}
,

(2.16)
where µLγ (k, (g, o)) is as in (2.4).
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Proof : Fix γ, k, L, (g, o) and ε. Also let N > L. Define

YN,i = N−1 · 1{BL(G,i)(k) ' (g, o)}, i ∈ [N ],

XN =

N∑
i=1

YN,i, νLN,γ(k, (g, o)) = EN,γ (XN ) .

If 1 + kL < i < N − kL, then

PN,γ
(
BL(GN ,i)(k) ' (g, o)

)
= µLγ (k, (g, o)),

so if N is large enough we have

|νLN,γ(k, (g, o))− µLγ (k, (g, o))| < ε

2
. (2.17)

Moreover, for each i ∈ [N ] we have 0 ≤ YN,i ≤ N−1 and YN,i is independent of
{YN,j : |j − i| > 2kL} under PN,γ , so Lemma 2.5 yields

PN,γ
(
|XN − νLN,γ(k, (g, o))| > ε

2

)
≤ 2 exp

{
− 2ε2N2

4(4kL+ 1)N

}
= 2 exp

{
− ε2N

8kL+ 2

}
.

(2.18)

The result now follows from (2.17) and (2.18). �

Lemma 2.7. For every γ > 0, N > 1 and ε > 0 we have, for L large enough,

PN,γ(GN has more than εN edges with length larger than L) ≤ exp
{
−Lγ/8N

}
.

Proof : Fix L ≥ 1 and define

ΛN,L = {{i, j} : 1 ≤ i < i+ L < j ≤ N}.
By Markov’s inequality, for θ > 0,

PN,γ(GN has more than εN edges with length larger than L)

≤ exp{−θεN}
∏

{i,j}∈ΛN,L

(p{i,j} exp{θ}+ 1− p{i,j});

we remind the reader that p{i,j} = exp{−|j− i|γ}. The right-hand side is less than

exp{−θεN}
∏

{i,j}∈ΛN,L

exp{p{i,j}(exp{θ} − 1)}

≤ exp

−θεN + (exp{θ} − 1)
∑

{i,j}∈ΛN,L

p{i,j}

 . (2.19)

We then bound∑
{i,j}∈ΛN,L

p{i,j} =

N∑
k=L+1

(N−k+1) exp{−kγ} ≤ N
∞∑

k=L+1

exp{−kγ} < N exp{−Lγ/2}

if L is large enough.
Choosing θ = L

γ
4 , the expression in (2.19) is at most

exp
{
−L

γ
4 εN + exp{L

γ
4 } · exp{−L

γ
2 } ·N

}
< exp{−L

γ
8N}

if L is large enough. �
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Proof of Proposition 2.1. The proposition follows immediately from putting to-
gether Corollary 2.4 and Lemmas 2.6 and 2.7. �

3. No local convergence for γ > 1, p <∞ and b > p+ 1

Proof of Proposition 1.3: Fix γ > 1, p ∈ [1,∞), b > p + 1 and L > 1. Also
fix N ∈ N. For g = ([N ], E) ∈ LL and k ∈ N, let ML,k(g) be the set of graphs
obtained by removing k edges with length at most L from g. For every g′ ∈ML,k(g)
we have

(Hp(g′))p ≥ (Hp(g))p +
k(
N
2

) · (2p − 1).

Since Hp(g) ∈ [1, N ], the mean value theorem gives

Hp(g′)−Hp(g) ≥ (Hp(g′))p − (Hp(g))p

p ·Np−1
.

Thus, there exists CL > 0 such that

g′ ∈ML,k(g) =⇒
Pb,pN,γ(GN = g′)

Pb,pN,γ(GN = g)
≤ exp

{
−kN b−p−1 · (2p − 1)

p

}
(CL)k.

Noting that #ML,k(g) ≤
(
NL
k

)
, we bound

NL∑
k=1

∑
g′∈ML,k(g)

Pb,pN,γ(GN = g′)

Pb,pN,γ(GN = g)
≤

NL∑
k=1

(
NL

k

)
exp

{
−kN b−p−1 · (2p − 1)

p

}
(CL)k

≤
∞∑
k=1

(
CL ·N · L · exp

{
−N b−p−1 · (2p − 1)

p

})k
N→∞−−−−→ 0

since b > p+ 1. Thus,

Pb,pN,γ(GN /∈ LL) ≤
∑
g∈LL

Pb,pN,γ(GN = g)

NL∑
k=1

∑
g′∈ML,k(g)

Pb,pN,γ(GN = g′)

Pb,pN,γ(GN = g)

N→∞−−−−→ 0,

as desired. �
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