
ALEA, Lat. Am. J. Probab. Math. Stat. 17, 857–876 (2020)
DOI: 10.30757/ALEA.v17-33

High-dimensional sample covariance matrices
with Curie–Weiss entries

Michael Fleermann and Johannes Heiny
FernUniversität in Hagen
Fakultät für Mathematik und Informatik
Universitätsstraße 1
58084 Hagen, Germany
E-mail address: michael.fleermann@fernuni-hagen.de
URL: https://www.fernuni-hagen.de/stochastik/team/michael.fleermann.shtml

Ruhr-Universität Bochum
Fakultät für Mathematik
Universitätsstraße 150
44801 Bochum, Germany
E-mail address: johannes.heiny@rub.de
URL: https://www.ruhr-uni-bochum.de/ffm/Lehrstuehle/stochastik/heiny.html

Abstract. We study the limiting spectral distribution of sample covariance ma-
trices XXT , where X are p × n random matrices with correlated entries and
p/n → y ∈ [0,∞). If y > 0, we obtain the Marčenko–Pastur distribution and
in the case y = 0 the semicircle distribution after appropriate rescaling. The en-
tries we consider are Curie–Weiss spins, which are correlated random signs, where
the degree of the correlation is governed by an inverse temperature β > 0. The
model exhibits a phase transition at β = 1. The correlation between any two en-
tries is of order O((np)−1) for β ∈ (0, 1), O((np)−1/2) for β = 1, and for β > 1 the
correlation does not vanish in the limit. In our proofs we use Stieltjes transforms
and concentration of random quadratic forms.

1. Introduction and Preliminaries

In many contemporary applications, one is faced with large data sets where
both the dimension of the observations and the sample size are large. In quan-
tum mechanics, for example, the energy levels of particles in a large system can
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be approximated by the eigenvalues of a large random matrix. Estimating the
underlying covariance structure of high-dimensional data with the sample covari-
ance matrix can be misleading Bai and Silverstein (2010); El Karoui (2009). Even
in the case of independent covariates, it is well-known that the sample covariance
matrix poorly estimates the population covariance matrix. The fluctuations of the
off-diagonal entries of the sample covariance matrix aggregate, creating an estima-
tion bias which was quantified in 1967 by the famous Marčenko–Pastur theorem
Marčenko and Pastur (1967). Ever since, the classical setting of well-behaved i.i.d.
ensembles was extended to investigate settings more aligned with reality. In many
situations, it is reasonable to assume that entries in data sets are dependent. The
dependence might span between different observations, but also between covariates
of individual observations. In random matrix theory, one often considers models
exhibiting linear dependence between the entries. Works that consider non-linear
dependencies are sparse. The paper Bai and Zhou (2008), for example, incorporates
non-linear dependence within the columns of the data matrix, but assumes these
columns to be independent. In this paper, we consider a data matrix filled with
Curie–Weiss spins. This model exhibits nonlinear dependence between all entries.
For technical reasons, settings with correlated entries are harder to analyze, since
many proof techniques break down in presence of correlations.

Another way to deviate from the classical setting is to assume that data might
stem from heavy-tailed distributions. The theory for the eigenvalues and eigen-
vectors of the sample covariance matrices stemming from heavy-tailed time series
with infinite fourth moment is quite different from the classical Marčenko–Pastur
theory which applies in the light-tailed case. For detailed discussions about classi-
cal random matrix theory, we refer to the monographs Bai and Silverstein (2010);
Yao et al. (2015), while the developments in the heavy-tailed case can be found in
Davis et al. (2016b,a); Heiny and Mikosch (2017); Auffinger et al. (2009); Heiny
and Mikosch (2018, 2019); Basrak et al. (2020) and the references therein.

The Marčenko–Pastur law gives insight into the spectrum of large dimensional
sample covariance matrices. Assume we have n observations x1, . . . , xn, each with
p real-valued covariates, where n, p ∈ N, so that xi = (xi(1), . . . , xi(p))

T for all
i ∈ {1, . . . , n}. Define the p×n data matrix Xn

..= (x1, x2, . . . , xn), that is, Xn has
columns xi. The (centered) sample covariance matrix is then defined by

Ṽn ..=
1

n− 1

n∑
k=1

(xk − x̄)(xk − x̄)T ,

which is of dimension p× p. Here, the vector x̄ denotes the arithmetic mean of the
vectors xk. Assuming that the data stems from n i.i.d. realizations of an Rp-valued
random vector x with L2-entries, Ṽn is an unbiased estimator for its covariance
matrix var(x).

The sample covariance matrix is of crucial importance in multivariate statistics,
for instance in principal component analysis, canonical correlation analysis, mul-
tivariate regression, factor analysis, hypothesis testing and discriminant analysis.
Many test statistics are based on the eigenvalues of the sample covariance matrix.
Examples include independence tests (Bodnar et al., 2019) and likelihood ratio
tests. For the latter it is essential that the log-determinant of Ṽn can be written as
log(λ1) + · · ·+ log(λp), where (λi) are the eigenvalues of Ṽn.
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When analyzing the limiting spectral distribution (LSD) of the eigenvalues, it
suffices to consider the (non-centered) sample covariance matrix

Vn ..=
1

n

n∑
k=1

xkx
T
k =

1

n
XnX

T
n , (1.1)

since x̄x̄T is of rank 1, see Theorem A.44 in Bai and Silverstein (2010). From now
on we will refer to Vn as the sample covariance matrix. Our object of interest in this
paper will be the limit of the empirical spectral distributions (ESD) FVn defined as

FVn(x) =
1

p

p∑
i=1

1{λi(Vn)≤x}, x ∈ R ,

where λ1(Vn) ≥ · · · ≥ λp(Vn) are the ordered eigenvalues of Vn. If such a limit
exists in the sense of weak convergence almost surely, we call it the limiting spectral
distribution of Vn.

Also, we will assume that the number of covariates p and the sample size n are
large and tend to infinity together. In this paper, the sample size n is a function of
the dimension p (cf. Remark 2.2) and the dimension increases at most proportionally
to the sample size. To be precise, we assume

n = np →∞ and
p

np
→ y ∈ [0,∞) , as p→∞ . (1.2)

The constant y controls the growth of the dimension relative to the sample size.
Most of the random matrix literature focuses exclusively on the case y > 0, while
the case y = 0 plays only a minor role. In many fields, however, the wider range
of possible growth rates arising in the y = 0 regime is desirable. The framework in
this paper unifies these two lines of research.

1.1. Background. Before presenting our model, we provide some background. As-
sume that the entries of Xn are i.i.d. with unit variance and zero mean. Then
if p/n → y ∈ (0,∞) the limiting spectral distribution of (Vn) is the so-called
Marčenko–Pastur (MP) distribution µy. The MP distribution with ratio index
y ∈ (0,∞) is the probability measure µy on (R,B) given by

µy =
1

2πxy

√
(b− x)(x− a)1(a,b)(x)λ(dx) +

(
1− 1

y

)
δ01y>1,

where a = (1−√y)2, b = (1 +
√
y)2 and λ denotes the Lebesgue measure on (R,B)

and δ0 denotes the Dirac measure in 0.
It is well-known that measures on R are uniquely characterized by their Stieltjes

transforms Yao et al. (2015). The Stieltjes transform of µy is given for z ∈ C+ =
{c ∈ C : Im(c) > 0} by

Sµy (z) :=

∫
R

1

x− z
µy(dx) =

1− y − z +
√

(1− y − z)2 − 4yz

2yz
,

where throughout this paper, if z ∈ R+,
√
z denotes the positive square root, while

if z ∈ C\R+, then
√
z denotes the complex square root with positive imaginary

part; see for example Bai and Silverstein (2010). If p/n → ∞, we observe δ0 as
LSD of Vn, as there are at most min(p, n) positive eigenvalues of Vn.

In the case p/n→ 0, the limiting spectral distribution of Vn is the Dirac measure
at 1. After centering Vn by the identity matrix I and a subsequent appropriate
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rescaling, one can obtain a non-degenerate limiting spectral distribution. In Bai
and Yin (1988) it is proved under the additional assumption E[Xn(1, 1)4] <∞ that
the empirical spectral distribution of the matrices

√
n/p (Vn − I) converges to the

semicircle law G with Lebesgue density

g(x) = 1
2π

√
4− x21[−2,2](x) , x ∈ R,

and Stieltjes transform

sG(z) =
−z +

√
z2 − 4

2
, z ∈ C+. (1.3)

The i.i.d. assumption on the entries of the data matrix Xn can be relaxed to linear
dependence of the form Σ

1/2
n Xn for symmetric positive definite deterministic ma-

trices Σn with uniformly bounded spectral or operator norm ‖Σn‖ :=
√
λ1(ΣnΣTn ).

For p/n → y > 0, the Stieltjes transform of the LSD of
n−1Σ

1/2
n XnX

T
n Σ

1/2
n can then be characterized via the LSD of E[Vn] = Σn; see

Bai and Silverstein (2010) for details. The same holds in the case p/n → 0 for
the LSD of

√
n/p (n−1Σ

1/2
n XnX

T
n Σ

1/2
n −Σn) as proved in Pan and Gao (2012) and

Wang and Paul (2014).
It is important to note that the linear dependence between the entries of Xn

was a crucial assumption for the above results. For nonlinear dependencies the
situation becomes more delicate as the following examples will show. We present
two examples of random matrices Yn with dependent entries and E[n−1YnY

T
n ] = I

for which the LSD of n−1YnY Tn is not the Marčenko–Pastur distribution µy.

Example 1.1. Assume that the entries of Xn are i.i.d. continuous random variables
and let p/n→ y > 0. Kendall’s Tau is a U-statistic which measures the association
of random variables. For higher dimensional observations, such as the columns
xi = (xi(1), . . . , xi(p))

T of the data matrix X, the empirical Kendall’s Tau matrix
is defined as

τn = 2
n(n−1)

∑
1≤s<t≤n

sign(xs − xt)(sign(xs − xt))T ,

where sign of a vector is taken coordinatewise. In particular, one sees that τn(i, i) =
1. Since Xn has i.i.d. continuous entries, we have E[τn] = I. Bandeira et al. (2017)
proved that the empirical spectral distribution Fτn of τn converges, namely

Fτn
P→ 2

3 ξ + 1
3 , p→∞ ,

where the random variable ξ has the Marčenko–Pastur distribution µy. In Theorem
2.1 we will observe a similar scaling phenomenon. The exact formula for Yn such
that n−1YnY Tn = τn can be found in Bao (2019).

Example 1.2. Assume that the entries of Xn are i.i.d. symmetric random variables
with tails P(|Xn(1, 1)| > t) = t−α`(t), where α ∈ (0, 2) and ` is a slowly varying
function at infinity. Under the regime p/n→ y > 0, set Yn = (diag(XnX

T
n ))−1/2Xn

and consider the sample correlation matrices Rn := YnY
T
n . It was shown in Heiny

and Mikosch (2018) that E[Rn] = I. In other words, the entries of Yn are uncor-
related with variance 1/n. Very recently, Heiny and Yao (2020) characterized the
LSD of Rn, which they called α-heavy Marčenko–Pastur distribution Hα,y. The
moments of the α-heavy Marčenko–Pastur distribution are a sum of the moments
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of µy and a nonnegative heavy-tailed part which depends on the tail index α and
y. They also showed that limα→0+ Hα,y is a modified Poisson distribution.

1.2. Our model. We will consider a data matrix Xn with correlated entries. To
this end, we introduce the Curie–Weiss model which is an exactly solvable model
of ferromagnetism. “Because of its simplicity and because of the correctness of at
least of some of its predictions, the Curie–Weiss model occupies an important place
in the statistical mechanics literature and its application to information theory
Kochmański et al. (2013).” The first time that random matrices with Curie–Weiss
spins were analyzed was in Friesen and Löwe (2013), with subsequent improve-
ments in Hochstättler et al. (2016); Kirsch and Kriecherbauer (2018); Fleermann
et al. (2021); Fleermann (2019b), where the last two publications are based on
Fleermann (2019a). All of these texts were concerned with Wigner type matrices
and convergence to the semicircle distribution.

Definition 1.3. Let n ∈ N be arbitrary and Y1, . . . , Yn be random variables defined
on some probability space (Ω,A,P). Let β > 0, then we say that Y1, . . . , Yn are
Curie-Weiss(β,n) distributed, if for all y1, . . . , yn ∈ {−1, 1} we have that

P(Y1 = y1, . . . , Yn = yn) =
1

Zβ,n
· e

β
2n (

∑n
i=1 yi)

2

,

where Zβ,n =
∑
y1,...,yn∈{−1,1} e

β
2n (

∑n
i=1 yi)

2

is a normalization constant. The pa-
rameter β is called inverse temperature.

Note that in above definition, (Y1, . . . , Yn) is an exchangeable random vector,
since the probability of any spin configuration (y1, . . . , yn) only depends on the sum
of the spins. The Curie-Weiss(β, n) distribution is used to model the behavior of n
ferromagnetic particles (spins) at the inverse temperature β. At low temperatures
(if β is large), all magnetic spins are likely to have the same alignment, resembling
a strong magnetic effect. On the contrary, at high temperatures (if β is small),
spins can act almost independently, resembling a weak magnetic effect. The model
exhibits a phase transition at β = 1, meaning that the behavior of the distribution
varies significantly in the realms β ∈ (0, 1), β = 1 and β > 1. To exemplify
a manifestation of this phase transition, we formulate the following result; see
Theorem 5.17 in Kirsch (2015).

Lemma 1.4. Fix l ∈ N and let for all n ≥ l, (Y
(n)
1 , . . . , Y

(n)
l ) be part of a Curie-

Weiss(β, n) distributed random vector. If l is even, the following statements hold:

i) If β < 1, then for some constant c(β, l) > 0, EY (n)
1 · · ·Y (n)

l ∼ c(β, l)n−l/2 as
n→∞.

ii) If β = 1, then for some constant c(l) > 0, EY (n)
1 · · ·Y (n)

l ∼ c(l)n−l/4 as
n→∞.

iii) If β > 1, then EY (n)
1 · · ·Y (n)

l ∼ ml as n → ∞, where m ∈ (0, 1) is the unique
positive number such that tanh(βm) = m.

If l is odd, then for all β > 0 one has EY (n)
1 · · ·Y (n)

l = 0.

Note that in the setting of Lemma 1.4, the correlation EY (n)
1 Y

(n)
2 is of a different

order for the three regions of β. If β < 1, the correlation EY (n)
1 Y

(n)
2 decays at a rate

of n−1. For the critical temperature β = 1 the decay rate is n−1/2 , whereas if β > 1,
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the correlation EY (n)
1 Y

(n)
2 converges to m2 and hence does not vanish as n → ∞.

In our main result Theorem 2.1, we will see that for β > 1 a different normalization
of the sample covariance matrix is required to account for the correlation at level
m2.

Objective and structure of this paper. The aim of this paper is to characterize the
LSD of the sample covariance matrices Vn = n−1XnX

T
n , where Xn follows a Curie–

Weiss distribution. At the critical temperature β = 1 a phase transition occurs. In
Section 2, we see that the LSD is a possibly rescaled Marčenko–Pastur or semicircle
distribution. Section 3 contains some useful lemmas and the proof of our main
result.

Notation. For simplicity of notation, we define for all n ∈ N: [n] ..= {1, . . . , n}.
Further, whenever there is no ambiguity about the dimension we denote the identity
matrix by I. The resolvent (M − zI)−1 of a Hermitian matrix M will be denoted
by (M − z)−1.

2. Main result

Our main result characterizes the limiting spectral distributions of sample co-
variance matrices with Curie–Weiss entries with parameter β > 0 in the regimes
p/n→ y > 0 and p/n→ 0.

Theorem 2.1. Assume (1.2) and that the entries of the p×n matrix Xn are Curie-
Weiss(β, np) distributed with β > 0, where we assume that (Xn(i, j))i∈[p],j∈[n],n∈N
are defined on a common probability space. Denote by Fn the ESD of Vn ..=
n−1XnX

T
n .

(i) Assume β ∈ (0, 1]. If p/n → y ∈ (0,∞), then (Fn)n converges weakly al-
most surely to the Marčenko–Pastur distribution µy, as p→∞. If p/n→ 0,
then the ESDs of

√
n
p (Vn − I) converge weakly almost surely to the semi-

circle distribution G, as p→∞.
(ii) Assume β ∈ (1,∞) and let m be the unique number in (0, 1) satisfying

tanh(mβ) = m. If p/n → y ∈ (0,∞), then the ESDs of (1 − m2)−1Vn
converge weakly almost surely to the Marčenko–Pastur distribution µy, as
p→∞. If p/n→ 0, then the ESDs of

√
n
p

(
1

1−m2Vn − I
)
converge weakly

almost surely to the semicircle distribution G, as p→∞.

By Lemma 1.4, the correlations between the entries of Xn increase with the value
β. Theorem 2.1 shows that for β ≤ 1 the correlation is still weak enough to not
affect the LSD, in the sense that we obtain the same LSD as for a sample of i.i.d.
random variables. For β > 1 the asymptotic behavior of the correlations changes
drastically. Consequently, a different normalization of the sample covariance matrix
is required to account for the correlation at constant level m2.

Remark 2.2. The convergence in Theorem 2.1 is for p → ∞, which is standard in
the p/n → 0 literature; see for example Bai and Yin (1988); Pan and Gao (2012);
Wang and Paul (2014). If there exists a δ > 0 such that nδ/p→ 0, the convergence
also holds for n→∞; compare also with Corollary 2 in El Karoui (2009). Indeed,
nδ/p→ 0 for some δ > 0 is equivalent to p−an being summable over n for some large
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Figure 2.1. Simulation for (p, n) = (200, 800) and β = 0.5. In
blue: Density f1/4. Histogram: Eigenvalues of n−1XnX

T
n .

Figure 2.2. Simulation for (p, n) = (200, 800) and β = 1.29727.
In blue: Density f1/4. Left histogram: Eigenvalues of n−1XnX

T
n .

Right histogram: Eigenvalues of (n(1−m2))−1XnX
T
n , where m =

3/4, so that tanh(βm) = m.

a > 0, which is required for the Borel-Cantelli argument in the proof of Theorem
2.1. Our formulation with p → ∞ is slightly more flexible because it also allows
choices such as p = log n.

In Figure 1 and Figure 2, we can see a simulation output where a 200 × 800
random matrix with Curie–Weiss entries was simulated, using the Metropolis algo-
rithm with 16 · 106 steps. We compare the histogram of the eigenvalues with the
Marčenko–Pastur density fp/n,

fy(x) =
1

2πxy

√
((1 +

√
y)2 − x)(x− (1−√y)2)1((1−√y)2,(1+√y)2)(x) ,

where x ∈ R and y ∈ (0, 1] . While in Figure 2.1, the ensemble was simulated
for β = 0.5, in Figure 2.2 we used β = 1.29727, so that tanh(βm) = m holds
for m = 3/4. The largest eigenvalue of n−1XnX

T
n resp. (n(1 −m2))−1XnX

T
n was

112.51 resp. 257.16 and was excluded from the histogram in Figure 2.2. These large
values in the case β > 1 are well explained by the fact that the largest eigenvalue
of Vn is of order p as our next result shows.
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Proposition 2.3 (Largest eigenvalue). Assume p/n → y ∈ (0,∞) and let the
entries of the p× n matrix Xn be Curie-Weiss(β, np) distributed with β > 1, where
we assume that (Xn(i, j))i∈[p],j∈[n],n∈N are defined on a common probability space.
Then, as p → ∞, the largest eigenvalue of Vn/p converges in probability to m2,
where m is the unique number in (0, 1) satisfying tanh(mβ) = m.

Proof : Since m2 is a constant, it suffices to show that λ1(Vn/p)→ m2 in distribu-
tion, and for this it suffices to show that the moments E

[
λk1(Vn/p)

]
converge tom2k,

k ≥ 1. Assume β > 1 and recall from Lemma 1.4 that EXn(1, 1) · · ·Xn(1, l) ∼ ml

as p → ∞. Set w = p−1/2(1, . . . , 1)T ∈ Rp and consider the following lower bound
on the second moment of λ1(Vn/p):

E
[
λ21(Vn/p)

]
≥ p−2E

[
‖Vnw‖22

]
=

1

n2p3

p∑
i=1

E
[( p∑

j=1

n∑
t=1

Xn(i, t)Xn(j, t)
)2]
∼ m4 ,

as p→∞, where ‖ · ‖2 is the `2 norm. By Jensen’s inequality, for k ≥ 1 it follows
that

lim inf
p→∞

E
[
λ2k1 (Vn/p)

]
≥ lim inf

p→∞
E
[
λ21(Vn/p)

]k ≥ m4k. (2.1)

An upper bound is given by

E
[
λk1(Vn/p)

]
≤ p−kE

[
tr(V kn )

]
=

1

nkpk

p∑
i1,...,ik=1

n∑
t1,...,tk=1

E[Xn(i1, tk)Xn(i1, t1)Xn(i2, t1) · · ·Xn(ik, tk−1)Xn(ik, tk)]

→ m2k , p→∞ .

(2.2)

A combination of (2.1) and (2.2) implies that E
[
λ2k1 (Vn/p)

]
→ m4k for k ≥ 1.

This shows λ21(Vn/p)→ m4 weakly, so also in probability. By continuous mapping,
λ1(Vn/p) =

√
λ21(Vn/p)→

√
m4 = m2 in probability. �

Remark 2.4. For β ∈ (0, 1) and p/n→ y > 0, a direct consequence of Theorem 2.1
is

lim inf
p→∞

λ1(Vn) ≥ (1 +
√
y)2 a.s.

Using Lemma 1.4 and the arguments in Geman (1980), it can be shown that (1 +√
y)2 is the almost sure limit of λ1(Vn). To the best of our knowledge, the behavior

of the largest eigenvalue at critical temperature β = 1 is still open and might yield
an interesting phase transition.

In the proof of Theorem 2.1, we use Stieltjes transforms and concentration of
random quadratic forms. Regarding the latter, we adapt techniques originally de-
veloped in Fleermann (2019b) and Fleermann et al. (2020) to our situation. An
important tool is the fact that Curie-Weiss(β, n) spins (Y1, . . . , Yn) are condition-
ally i.i.d. That is, without loss of generality we can assume that they are defined
on the same probability space as a Lebesgue-continuous mixing variable Mβ

n with
support [−1, 1], such that conditioned on Mβ

n = t ∈ (−1, 1), (Y1, . . . , Yn) are i.i.d.
Pt-distributed, where Pt is the probability measure on {±1} with

Pt(1) =
1 + t

2
and Pt(−1) =

1− t
2

.
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Next, we collect some properties of the mixing variable Mβ
n in the following lemma

which is taken from Kirsch (2015); see Theorem 5.6, Remark 5.7, Proposition 5.9
and Theorem 5.17 therein.

Lemma 2.5. If Y = (Y1, . . . , Yn) are Curie-Weiss(β,n) distributed for some β > 0
and n ∈ N, then w.l.o.g. there exists a random variable Mβ

n supported on [−1, 1]
with the following properties:

(1) The distribution of Mβ
n has Lebesgue-density fβn ,

fβn (t) ..=
1∫

(−1,1)
e−

n
2
Fβ(s)

1−s2 λ(ds)

e−
n
2 Fβ(t)

1− t2
1(−1,1)(t) , t ∈ (−1, 1),

where for all s ∈ (−1, 1) we define

Fβ(s) ..=
1

β

(
1

2
ln

(
1 + s

1− s

))2

+ ln(1− s2).

(2) PM
β
n -almost surely, PY |M

β
n=t = ⊗i∈[n]PYi|M

β
n=t = ⊗i∈[n]Pt. In words, con-

ditionally on Mβ
n the Y1, . . . , Yn are i.i.d. Pt-distributed random variables.

(3) If β < 1, the mixing variable Mβ
n satisfies the following moment decay:

∀ a ∈ 2N :

∫
[−1,+1]

taPM
β
n (dt) ≤ Kβ,a

n
a
2
.

(4) If β = 1, the mixing variable Mβ
n satisfies the following moment decay:

∀ a ∈ 2N :

∫
[−1,+1]

taPM
β
n (dt) ≤ Kβ,a

n
a
4
,

where Kβ,a ∈ R+ are constants that depend on β and a only.

In the case β > 1 we will work with suitably restandardized Curie–Weiss spins
in order to use the following lemma which can be found in Fleermann et al. (2020).

Lemma 2.6. Let (Y1, . . . , Yn) be Curie-Weiss(β, n) distributed with β > 1 and
mixing variable Mβ

n . Denote by m ∈ (0, 1) the unique positive number satisfying
tanh(mβ) = m. For i ∈ {1, . . . , n} define

Zi ..=
1√

1−m2

(
Yi −m1Mβ

n>0 +m1Mβ
n<0

)
.

Then (Y1, . . . , Yn) are conditionally i.i.d. given Mβ
n and the following statements

hold:
(1) Almost surely, (Z1, . . . , Zn) takes values in { ±1+m√

1−m2
}n ∪ { ±1−m√

1−m2
}n.

(2) For each i ∈ {1, . . . , n},

E(Zi|Mβ
n = t) = ζ(t) ..=

{
1√

1−m2
(t−m), t > 0,

1√
1−m2

(t+m), t < 0,

E(1− Z2
i |Mβ

n = t) = ψ(t) ..=

{
2m

1−m2 (t−m), t > 0,
2m

1−m2 (t+m), t < 0.

(3) We obtain the following bounds on the moments of ζ(Mβ
n ) and ψ(Mβ

n ):

∀ a ∈ 2N :

∫
[−1,+1]

|ζ(t)|aPM
β
n (dt) ≤ Kβ,a

n
a
2
,
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∀ a ∈ 2N :

∫
[−1,+1]

|ψ(t)|aPM
β
n (dt) ≤ Kβ,a

n
a
2
.

Here, the constants Kβ,a > 0 depend only on β and a.

3. Proof of Theorem 2.1

We will prove the cases β ≤ 1 and β > 1 separately, but before we begin, we will
provide two lemmas which we will use throughout the proof.

Lemma 3.1. Let n ∈ N be arbitrary, (ai,j)i,j∈[n] and (bi)i∈[n] be deterministic
complex numbers, (Yi)i∈[n] be independent and complex-valued random variables
with common expectation t ∈ C. Further, we assume that for all a ≥ 2 there exists
a µa ∈ R+ such that ‖Yi − t‖a := E[|Yi − t|a]1/a ≤ µa for all i ∈ [n]. Then we
obtain for all a ≥ 2:

i)

∥∥∥∥∥∥
∑
i∈[n]

biYi

∥∥∥∥∥∥
a

≤
(
Aaµa +

√
n|t|
)√∑

i∈[n]

|bi|2 ,

ii)

∥∥∥∥∥∥∥∥
∑
i,j∈[n]
i 6=j

ai,jYiYj

∥∥∥∥∥∥∥∥
a

≤ Aaµa|t|

√√√√√∑
j∈[n]

∣∣∣∣∣∣
∑

i∈[n]\{j}

ai,j

∣∣∣∣∣∣
2

+Aaµa|t|

√√√√√∑
i∈[n]

∣∣∣∣∣∣
∑

j∈[n]\{i}

ai,j

∣∣∣∣∣∣
2

+ 4A2
aµ

2
a

√√√√ ∑
i,j∈[n]
i 6=j

|ai,j |2 + |t|2

∣∣∣∣∣∣∣∣
∑
i,j∈[n]
i 6=j

ai,j

∣∣∣∣∣∣∣∣
≤
(
4A2

aµ
2
a + 2Aaµa

√
n|t|+ n|t|2

)√√√√ ∑
i,j∈[n]
i6=j

|ai,j |2 ,

where Aa ∈ R+ is a positive constant depending only on a.

Proof : This is straightforward refinement of the proof of Theorem 39 in Fleermann
(2019b). �

The following lemma allows us to apply Lemma 3.1 to the setting we will en-
counter in our proof.

Lemma 3.2. Let X be a p× n matrix with real-valued entries, z ∈ C+. Define

F (X) ..= XT

(
1

n
XXT − z

)−1
X. (3.1)

Then we obtain the following bounds:

i)

√√√√ n∑
i6=j

|Fij(X)|2 ≤ n√p
(

1 +
|z|

Im(z)

)
, ii) |trF (X)| ≤ np

(
1 +

|z|
Im(z)

)
.
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Further, if the absolute values of all entries in X are uniformly bounded by some
b > 0, it holds:

iii)

∣∣∣∣∣∣
∑
i,j∈[n]

Fij(X)

∣∣∣∣∣∣ ≤ b2p

Im(z)
+

1

n

(
1 +

|z|
Im(z)

)
,

iv) ∀ j ∈ [n] :

∣∣∣∣∣∣
∑

i∈[n]\{j}

Fij(X)

∣∣∣∣∣∣ ≤ b2p

n Im(z)
.

Proof : To prove i), we recall that
a) Spectrum(XT (XXT − z)−1X) ∪ {0} = Spectrum((XXT − z)−1XXT ) ∪ {0},
b) (XXT − z)−1XXT = I + z(XXT − z)−1,
and that ‖ · ‖F ≤

√
m‖ · ‖ for m×m matrices, where ‖ · ‖F denotes the Frobenius

norm and ‖ · ‖ denotes the operator norm. Therefore,

√√√√ n∑
i 6=j

|Fij(X)|2 ≤

√√√√ n∑
i,j

∣∣∣∣∣
[
XT

(
1

n
XXT − z

)−1
X

]
(i, j)

∣∣∣∣∣
2

= n

∥∥∥∥∥ 1

n
XT

(
1

n
XXT − z

)−1
X

∥∥∥∥∥
F

= n

∥∥∥∥∥
(

1

n
XXT − z

)−1(
1

n
XXT

)∥∥∥∥∥
F

= n

∥∥∥∥∥Ip + z

(
1

n
XXT − z

)−1∥∥∥∥∥
F

≤ n√p

∥∥∥∥∥Ip + z

(
1

n
XXT − z

)−1∥∥∥∥∥
≤ n√p

(
1 +

|z|
Im(z)

)
.

For ii) we calculate

|trF (X)| = n

∣∣∣∣∣tr
((

1

n
XXT − z

)−1(
1

n
XXT

))∣∣∣∣∣
≤ np

∥∥∥∥∥
(

1

n
XXT − z

)−1(
1

n
XXT

)∥∥∥∥∥ ≤ np
(

1 +
|z|

Im(z)

)
,

where the last step follows as in the proof of i). This shows ii). For iii) let 1n ..=
(1, . . . , 1)T ∈ Rn and Y ..= n−1/2X. Then we see that

n

∣∣∣∣∣∣
∑
i,j∈[n]

Fij(X)

∣∣∣∣∣∣ =
∣∣1TnY T (Y Y T − z)−1Y 1n

∣∣
≤
∣∣1TnY T [(Y Y T − z)−1 − (Y Y T + Y 1n1TnY

T − z)−1
]
Y 1n

∣∣
+
∣∣1TnY T (Y Y T + Y 1n1TnY

T − z)−1Y 1n
∣∣ =: P1 + P2 .

By Silverstein and Bai (1995, Lemma 2.6), one has

P1 ≤
‖Y 1n1TnY

T ‖
Im(z)

=
|1TnY TY 1n|

Im(z)
=

1

Im(z)

∣∣∣∣∣∣ 1n
∑
i∈[n]

∑
j∈[p]

∑
s∈[n]

XijXjs

∣∣∣∣∣∣ ≤ b2np

Im(z)
.
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To bound P2, recall from Yaskov (2016) that for a real, symmetric, positive semi-
definite m×m matrix M ; x ∈ Rm, z ∈ C+ the following inequality holds:∣∣xT (M + xxT − z)−1x

∣∣ ≤ 1 +
|z|

Im(z)
. (3.2)

So in particular P2 is bounded by the right-hand side of (3.2). This yields the
bound ∣∣∣∣∣∣

∑
i,j∈[n]

Fij(X)

∣∣∣∣∣∣ ≤ P1 + P2

n
≤ b2p

Im(z)
+

1

n

(
1 +

|z|
Im(z)

)
.

Lastly, to show iv) let Y be defined as before and let j ∈ [n] be arbitrary. Denote
by y the j-th standard basis vector of Rn and let x ..= 1n − y. Then, using that
Y yxTY T has rank one,

n

∣∣∣∣∣∣
∑

i∈[n]\{j}

Fij(X)

∣∣∣∣∣∣ =
∣∣xTY T (Y Y T − z)−1Y y

∣∣ =
∣∣tr [(Y Y T − z)−1Y yxTY T ]∣∣

≤
∥∥(Y Y T − z)−1Y yxTY T

∥∥ ≤ ∥∥(Y Y T − z)−1
∥∥∥∥Y yxTY T∥∥

≤ 1

Im(z)

∣∣xTY TY y∣∣ =
1

Im(z)

∣∣∣∣∣∣ 1n
∑

i∈[n]\{j}

∑
s∈[p]

XjsXis

∣∣∣∣∣∣ ≤ b2p

Im(z)
.

�

3.1. The case β ≤ 1. We will show that the Stieltjes transforms converge. For a
real symmetric matrix M ∈ Rp×p we denote by SM the Stieltjes transform of the
ESD of M , that is:

∀ z ∈ C+ : SM (z) =
1

p
tr(M − z)−1 =

1

p

p∑
i=1

1

λi(M)− z
.

Further, we write sn = SVn for the Stieltjes transform of Vn.
Fix a z ∈ C+. Our starting point is the following identity, which is easy to verify

using that λi(Vn − I) = λi(Vn)− 1:

S
y
−1/2
n (Vn−I)

(z) = y1/2n sn(1 + y1/2n z), where yn ..=
p

n
. (3.3)

For simplicity of notation we write η = Im(z) > 0 and q = qn = 1 + y
1/2
n z. Note

that Im(q) = η
√
p/n. We know by equation (3.3.6) in Bai and Silverstein (2010)

that

sn(q) =
1

p

∑
k∈[p]

1

1
nα

T
k αk − q −

1
n2αTkX

(k)
n

(
1
nX

(k)
n X

(k)T
n − q

)−1
X

(k)
n αk

=
1

1− q − yn − ynqsn(q)
− δn(q), (3.4)

where αTk is the k-th row of Xn (note that αk also depends on n, which we drop
from the notation), X(k)

n is Xn with its k-th row removed (thus a (p−1)×n-matrix).
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Further,

δn(q) =
1

p

∑
k∈[p]

Ω
(n)
k (q)

(1− q − yn − ynqsn(q))(1− q − yn − ynqsn(q) + Ω
(n)
k (q))

, (3.5)

where for all k ∈ {1, . . . , p}:

Ω
(n)
k (q) =

1

n
αTk αk − 1︸ ︷︷ ︸

=0

− 1

n2
αTkX

(k)T
n

(
1

n
X(k)
n X(k)T

n − q
)−1

X(k)
n αk + yn + ynqsn(q).

Solving (3.4), we obtain analogously to Bai and Silverstein (2010, pp. 55 and 56)
that

sn(q) =
1

2ynq

(
1− q − yn − ynqδn(q) +

√
(1− q − yn + ynqδn(q))2 − 4ynq

)
.

(3.6)
If yn → y > 0, we see from (3.6) that sn(q) converges almost surely to Sµy (1+

√
yz)

provided δn(q)→ 0 almost surely as n→∞. Here Sµy is the Stieltjes transform of
the Marčenko–Pastur law µy. Then also sn(1+

√
yz)→ Sµy (1+

√
yz) almost surely

for all z ∈ C+, since all sn are (minn Im(
√
ynz))

−2 < ∞ Lipschitz continuous on
the relevant domain. Therefore, µn → µy weakly almost surely.

If yn → 0, a straightforward calculation using (3.6) and the definition of q yields
as p→∞,

y1/2n sn(q) =
−z+y

1/2
n δn(q)q+

√
z2−4+2zy

1/2
n δn(q)+2ynδn(q)+ynδ2n(q)

2
+ o(1) .

We see that S
y
−1/2
n (Vn−I)

(z) = y
1/2
n sn(q) converges almost surely to the Stieltjes

transform sG(z) of the semicircle law (see (1.3)) provided

lim
p→∞

y1/2n δn(q) = 0 a.s. (3.7)

Thus, condition (3.7) suffices in both cases p/n → y > 0 and p/n → 0. It remains
to prove (3.7).

3.2. Proof of (3.7). Recall the definition of δn(q) in (3.5). First, we lower bound
the denominator. By (3.3.13) in Bai and Silverstein (2010) and p. 57 below (3.3.15),
we have

Im(1− q − yn − ynqsn(q)) ≤ − Im(q) ,

Im(1− q − yn − ynqsn(q) + Ω
(n)
k (q)) ≤ − Im(q) .

(3.8)

Using (3.8) we see that

|y1/2n δn(q)| ≤ y1/2n |Im(q)|−2 1

p

∑
k∈[p]

|Ω(n)
k (q)| = η−2y−1/2n

1

p

∑
k∈[p]

|Ω(n)
k (q)| .

Thus, it suffices to show that

lim
p→∞

y−1/2n max
k=1,...,p

|Ω(n)
k (q)| = 0 a.s. (3.9)

Now we prove (3.9). Note that

Ω
(n)
k (q) = − 1

n2
αTkX

(k)T
n

(
1

n
X(k)
n X(k)T

n − q
)−1

X(k)
n αk + yn + ynqsn(q)
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=

− 1

n2

n∑
i 6=j

αk(i)

[
X(k)T
n

(
1

n
X(k)
n X(k)T

n − q
)−1

X(k)
n

]
(i, j)αk(j)


+

(
− 1

n2
trX(k)T

n

(
1

n
X(k)
n X(k)T

n − q
)−1

X(k)
n + yn + ynqsn(q)

)
=: A(n, k, q) +B(n, k, q).

We analyse B(n, k, q) first. We have

− 1

n2
trX(k)T

n

(
1

n
X(k)
n X(k)T

n − q
)−1

X(k)
n

= − 1

n
tr

[
Ip−1 + q

(
1

n
X(k)
n X(k)T

n − q
)−1]

= − p
n

+
1

n
− q

n
tr

(
1

n
X(k)
n X(k)T

n − q
)−1

.

Hence, using yn = p/n, Im(q) =
√
ynη, and (A.1.12) in Bai and Silverstein (2010),

we find

|B(n, k, q)|

=

∣∣∣∣∣− pn +
1

n
− q

n
tr

(
1

n
X(k)
n X(k)T

n − q
)−1

+ yn + ynq
1

p
tr

(
1

n
XnX

T
n − q

)−1∣∣∣∣∣
≤ 1

n
+

|q|
n Im(q)

=
1

n
+
|1 +

√
ynz|

n
√
ynη

.

Since this bound holds uniformly for all k ∈ {1, . . . , p}, it follows that

y−1/2n max
k=1,...,p

|B(n, k, q)| ≤ 1

n
√
p/n

+
|1 + z

√
p/n|

pη
−−−→
p→∞

0 a.s.

It is left to show that y−1/2n maxk=1,...,p |A(n, k, q)| → 0 almost surely. We do so by
bounding the terms

S(n, k, q) ..= n2A(n, k, q) =

n∑
i 6=j

αk(i)

[
X(k)T
n

(
1

n
X(k)
n X(k)T

n − q
)−1

X(k)
n

]
(i, j)αk(j)

using Lemma 3.1 and Lemma 3.2. In accordance with Lemma 3.2, we consider the
symmetric matrix

F
(
X(k)
n

)
= X(k)T

n

(
1

n
X(k)
n X(k)T

n − q
)−1

X(k)
n .

Using q = 1 +
√
ynz, we draw the following corollary of Lemma 3.2:

Corollary 3.3. For any a ∈ N there exists a constant Ca > 0 independent of n
and p such that for any k ∈ [p] and any realization X of X(k)

n , it holds

i)
(∑

i 6=j |Fij(X)|2
) a

2 ≤ Can3a/2

ii)
∣∣∣∑i 6=j Fij(X)

∣∣∣a ≤ Can3a/2pa/2
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iii)
(∑

j∈[n]

∣∣∣∑i∈[n]\{j} Fij(X)
∣∣∣2) a

2

≤ Capa/2.

Proof : We will use Lemma 3.2 throughout the proof. For i) we obtain∑
i 6=j

|Fij(X)|2
 1

2

≤ n
√
p− 1

(
1 +
|q|
η

√
n

p

)
≤ C1n

3/2

for some constant C1 independent of n and p. For ii) we note that∣∣∣∣∣∣
∑
i 6=j

Fij(X)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
i,j

Fij(X)

∣∣∣∣∣∣+ |trF (X)|

≤ p

Im(q)
+

1

n

(
1 +

|q|
Im(q)

)
+ np

(
1 +

|q|
Im(q)

)
≤
√
pn

η
+

1

n
+
|q|

η
√
pn

+ np+
|q|n3/2p1/2

η
≤ C2n

3/2p1/2

for some constant C2 independent of n and p. Now for iii) we calculate∑
j∈[n]

∣∣∣∣∣∣
∑

i∈[n]\{j}

Fij(X)

∣∣∣∣∣∣
2


1
2

≤
(
n
p

nη2

) 1
2

≤ C3p
1/2

for a constant C3 independent of n and p. This shows the statement with Ca ..=
max{Ca1 , Ca2 , Ca3 }. �

Throughout this section the random variable Mβ
np satisifies the properties listed

in Lemma 2.5 if β ≤ 1 or those in Lemma 2.6 if β > 1.
Note that the matrix Xn consists of np Curie-Weiss(β, np) spins, and that for

any k ∈ [p], αk is the k-th row of Xn and thus contains variables disjoint from the
variables in X

(k)
n . In what follows, we will use that for r, s, t ≥ 0 and a ∈ N we

have (s + t)a ≤ 2a(sa + ta) and (r + s + t)a ≤ 4a(ra + sa + ta). We calculate for
a ∈ 2N and k ∈ [p] arbitrary, where sums over i 6= j are for i, j ∈ [n], and further
explanations can be found beneath the calculation:

E|S(n, k, q)|a = EE[|S(n, k, q)|a|Mβ
np] = EE

∑
i 6=j

αk(i)Fij
(
X(k)
n

)
αk(j)

∣∣∣∣∣∣Mβ
np


=

∫
[−1,1]

∫
{±1}(p−1)×n

∫
{±1}n

∣∣∣∣∣∣
∑
i 6=j

xiFij(X)xj

∣∣∣∣∣∣
a

P
αk|Mβ

np=t(dx)PX
(k)
n |Mβ

np=t(dX)PM
β
np(dt)

≤
∫

[−1,1]

∫
{±1}(p−1)×n

4a(4A2
aµ

2
a)
a

∑
i 6=j

|Fij(X)|2
 a

2

P
X

(k)
n |Mβ

np=t(dX)PM
β
np(dt)

+

∫
[−1,1]

∫
{±1}(p−1)×n

4a(2Aaµa)
a|t|a

∑
j∈[n]

∣∣∣∣∣∣
∑

i∈[n]\{j}

Fij(X)

∣∣∣∣∣∣
2

a
2

P
X

(k)
n |Mβ

np=t(dX)PM
β
np(dt)
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+

∫
[−1,1]

∫
{±1}(p−1)×n

4a|t|2a
∣∣∣∣∣∣
∑
i 6=j

Fij(X)

∣∣∣∣∣∣
a

P
X

(k)
n |Mβ

np=t(dX)PM
β
np(dt)

≤ K

(
n3a/2 + pa/2

∫
[−1,1]

|t|aPM
β
np(dt) + n3a/2pa/2

∫
[−1,1]

|t|2aPM
β
np(dt)

)
≤ K

(
n3a/2 + pa/2(np)−a/4 + n3a/2pa/2(np)−a/2

)
≤ Kn3a/2.

For the fourth step we used Lemma 3.1 and the constants Aa and µa therein (note
that F (X) is symmetric). In the fifth step we used Corollary 3.3 and from here
on out, K denotes a constant not depending on n and p, but only on a, β and η,
and K may change its value from one occurrence to the next. In the sixth step we
applied Lemma 2.5. Hence, if ε > 0 is arbitrary, we get with a union bound and
Markov’s inequality that

P

(
maxk∈[p] |A(n, k, q)|

√
yn

> ε

)
≤ p max

k∈[p]
P(S(n, k, q)a > εn3a/2pa/2) ≤ pKn3a/2

εan3a/2pa/2
,

which is summable in p for (say) a = 6. By the Borel-Cantelli lemma, it follows
that y−1/2n maxk=1,...,p |A(n, k, q)| → 0 almost surely.

3.3. The case β > 1. To prove part (ii) of Theorem 2.1, let β > 1. Instead of the
matrix Xn we consider

X̃n
..=

1√
1−m2

(
Xn(i, j)−m1Mβ

np>0 +m1Mβ
np<0

)
i∈[p],j∈[n]

,

which for every realization is just a rank 1 perturbation of (1 −m2)−1/2Xn. As a
consequence, it suffices to prove Theorem 2.1 (ii) for Ṽn ..= n−1X̃nX̃

T
n instead of

(1−m2)−1Vn. Using the terminology as above, but substituting X̃n for Xn and Ṽn
for Vn, we obtain new terms s̃n, Ω̃

(k)
n , α̃k, δ̃n and S̃(n, k, z). Inspecting above proof

for the case β ≤ 1 and observing (3.9), it will suffice to show

lim
p→∞

y−1/2n max
k=1,...,p

|Ω̃(n)
k (q)| = 0 a.s.

Here,

Ω̃
(n)
k (q)

= − 1

n2
α̃Tk X̃

(k)T
n

(
1

n
X̃(k)
n X̃(k)T

n − q
)−1

X̃(k)
n α̃k + yn + ynqs̃n(q) +

1

n
α̃Tk α̃k − 1

=

− 1

n2

n∑
i 6=j

α̃k(i)

[
X̃(k)T
n

(
1

n
X̃(k)
n X̃(k)T

n − q
)−1

X̃(k)
n

]
(i, j)α̃k(j)


+

(
− 1

n2
tr X̃(k)T

n

(
1

n
X̃(k)
n X̃(k)T

n − q
)−1

X̃(k)
n + yn + ynqs̃n(q)

)

+

(
1

n
α̃Tk α̃k − 1

)
=: Ã(n, k, q) + B̃(n, k, q) + C̃(n, k, q).
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The term B̃(n, k, q) can be treated analogously to the term B(n, k, q) above, so we
obtain

y−1/2n max
k=1,...,p

|B̃(n, k, q)| ≤ 1

n
√
p/n

+
|1 + z

√
p/n|

pη

p→∞−−−→ 0 a.s.

To handle Ã(n, k, q), we use Lemma 2.6 and the definitions therein. X̃n is a
matrix of np perturbed Curie-Weiss(β, np) spins. Now α̃k is the k-th row of X̃n

and thus contains variables disjoint from those in X̃
(k)
n . Analogously to the case

above we consider the term

F (X̃(k)
n ) = X̃(k)T

n

(
1

n
X̃(k)
n X̃(k)T

n − q
)−1

X̃(k)
n .

We use a slightly faster calculation than for the case β ≤ 1, where a finer analysis
was necessary due to the slowly decaying correlations when β = 1. In the following,
we will directly compare |S̃(n, k, q)| to

R̃(n, k, q) ..=

∑
i6=j

|Fij(X̃(k)
n )|2

 1
2

.

Note that R̃(n, k, q) never vanishes, so we may divide by it. Now for T > 0 and
a ∈ 2N (and where sums over i 6= j are for i, j ∈ [n]) we calculate for k ∈ [p]:

P
(
|S̃(n, k, q)| > TR̃(n, k, q)

)
= P


∣∣∣∣∣∣
∑
i6=j

α̃k(i)Fij(X̃
(k)
n )α̃k(j)

∣∣∣∣∣∣ > T

∑
i6=j

|Fij(X̃(k)
n )|2

 1
2


≤ 1

T a

∫
[−1,1]

∫
Z2

∫
Z1

∣∣∣∣∣∣∣
∑
i 6=j x̃iFij(X̃)x̃j(∑
i6=j |Fij [X̃]|2

) 1
2

∣∣∣∣∣∣∣
a

P
α̃k|Mβ

np=t(dx̃)PX̃
(k)
n |Mβ

np=t(dX̃)PM
β
np(dt)

≤ 1

T a

∫
[−1,1]

∫
Z2

[
4A2

aµ
2
a + 2Aaµa

√
n|ζ(t)|+ n|ζ(t)|2

]a
P
X̃

(k)
n |Mβ

np=t(dX̃)PM
β
np(dt)

≤ 1

T a

∫
[−1,1]

4a(4A2
aµ

2
a)
a
P
Mβ
np(dt) +

1

T a

∫
[−1,1]

4a(2Aaµa)
ana/2|ζ(t)|aPM

β
np(dt)

+
1

T a

∫
[−1,1]

4ana|ζ(t)|2aPM
β
np(dt)

≤ 1

T a

(
K +Kna/2

∫
[−1,1]

|ζ(t)|aPM
β
np(dt) +Kna

∫
[−1,1]

|ζ(t)|2aPM
β
np(dt)

)

≤ K

T a
,

where Z1 and Z2 denote the ranges of α̃k and X̃(k)
n , respectively (cf. Lemma 2.6).

Further, in the third step we used Lemma 3.1 and in the last step Lemma 2.6. Again,
K denotes a floating constant which may change its value from one occurrence to
the next, but remains independent of k, n and p. Therefore we have

K

T a
≥ P

(
|S̃(n, k, q)| > TR̃(n, k, q)

)
≥ P

(
n2|Ã(n, k, q)| > Tn

√
p

(
1 +

|q|
Im(q)

))
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= P

(
|Ã(n, k, q)|√

p/n
>

T√
n

(
1 +
|q|
√
n

η
√
p

))
= P

(
|Ã(n, k, q)|
√
yn

>
T√
n

+
T |q|
η
√
p

)
,

where in the second step we used the bound on R̃(n, k, q) given by Lemma 3.2.
Choosing T = p1/4, a ∈ 2N such that a > 8 and using the union bound shows by
Borel-Cantelli that

y−1/2n max
k=1,...,p

|Ã(n, k, q)| −−−→
p→∞

0 almost surely.

It is left to analyze C̃(n, k, q). Note that this term was zero in the case β ≤ 1. Note
also that it suffices to show

1
√
yn

max
k∈[p]

∣∣∣∣∣ 1n
n∑
l=1

(X̃(k, l)2 − 1)

∣∣∣∣∣ =
1
√
yn

max
k∈[p]

|C̃(n, k, q)| −−−→
p→∞

0 a.s.

To this end, for T > 0, k ∈ [p] and a ∈ 2N arbitrary it holds

P

(∣∣∣∣∣ 1n
n∑
l=1

(X̃n(k, l)2 − 1)

∣∣∣∣∣ > T

)
≤ 1

(Tn)a
E

∣∣∣∣∣
n∑
l=1

(X̃n(k, l)2 − 1)

∣∣∣∣∣
a

=
1

(Tn)a

∫
[−1,1]

∫
Z1

∣∣∣∣∣
n∑
l=1

(x2kl − 1)

∣∣∣∣∣
a

Pα̃k|M
β
np=t(dx)PM

β
np(dt)

≤ 1

(Tn)a

∫
[−1,1]

[
(Aaµa +

√
nψ(t))

√
n
]a
PM

β
np(dt)

=
1

(Tn)a

∫
[−1,1]

[
Aaµa

√
n+ nψ(t)

]a
PM

β
np(dt)

≤ 1

(Tn)a

(
2a(Aaµa)ana/2 + 2ana

∫
[−1,1]

ψ(t)aPM
β
np(dt)

)

≤ 1

(Tn)a
Kna/2 +

1

(Tn)a
K

na

na/2
≤ K

T ana/2
,

where in the first step we used Markov’s inequality, in the second step conditional
expectations, in the third step Lemma 3.1 i) with bi = 1, and in the last line
Lemma 2.6.

Choosing ε > 0 arbitrarily and setting T ..= ε
√
p/n we obtain for a ∈ N with

a ∈ 2N arbitrary that

P

(
1
√
yn

max
k∈[p]

|C̃(n, k, q)| > ε

)
≤
∑
k∈[p]

P
(
|C̃(n, k, q)| > ε

√
yn

)
≤ pK

εapa/2
,

which is summable over p for a > 4. This ends the proof via Borel-Cantelli.
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