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Abstract. We prove sharp two-sided estimates on the tail probability of the first
hitting time of bounded interval as well as its asymptotic behaviour for general
non-symmetric processes which satisfy an integral condition∫ ∞

0

dξ

1 + Reψ(ξ)
<∞.

To this end, we first prove and then apply the global scale invariant Harnack inequal-
ity. Results are obtained under certain conditions on the characteristic exponent.
We provide a wide class of Lévy processes which satisfy these assumptions.

1. Introduction

The aim of this paper is to discuss the distribution of the first hitting time of
the point or the bounded interval for non-symmetric Lévy processes which satisfy
the following condition: ∫ ∞

0

dξ

1 + Reψ(ξ)
<∞.

Such condition implies that 0 is regular for itself. Under some regularity assump-
tions we prove sharp two-sided estimates on the tail probability of the first hitting
time of a point or a bounded interval, as well as its asymptotic behaviour. In
the case of symmetric processes, it can be described by the compensated potential
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kernel (see Grzywny and Ryznar, 2017), which is given by

K(x) =

∫ ∞
0

(
p(s, 0)− p(s, x)

)
ds,

where p(s, ·) is the transition density of the process (which exists due to the integral
condition). However, in our setting one of substantial difficulties one has to over-
come is the fact that we do not a priori know if K exists, and even if it does exist, it
may vanish on the whole half-line, an example being a one-dimensional completely
asymmetric point recurrent stable process, i.e. with the stability index α ∈ (1, 2)
and skewness parameter β = ±1 (see the formula for the compensated potential
kernel in Port (1967, page 372)). For symmetric Lévy processes its existence is an
easy consequence of the monotone convergence theorem, but in our case we are,
in general, forced to adopt a different method. Instead, we propose an approach
based on the symmetrized compensated potential kernel

H(x) =
1

π

∫ ∞
0

(1− cosxs) Re

[
1

ψ(s)

]
ds,

which turns out to be the proper object for description of the behaviour of the
first hitting time. Its huge advantage is the fact that the integrability condition we
assume in the whole paper ensures that H is well-defined and therefore can serve
our purpose.

Let us briefly describe our results. First, we concentrate on the asymptotic
behaviour of the first hitting time of arbitrary compact sets which contain the
origin (Theorem 4.7 and Corollary 4.8). The obtained asymptotics hold true if Reψ
varies regularly with parameter α ∈ (1, 2] and Imψ displays a similar behaviour.
We devote Section 3 to discussion about situations in which such condition holds
true (see Theorem 3.4). In particular, that turns out to be true if the Lévy measure
is of the special form

ν(dx) = Cd1x<0ν0(dx) + Cu1x>0ν0(dx),

where ν0(dx) is a symmetric Lévy measure. An important class of processes which
clearly exhibit such behaviour are spectrally one-sided Lévy processes; in such case
we simply have either Cd = 0 (spectrally positive case) or Cu = 0 (spectrally
negative case). For the sake of completeness we also note that Cu = Cd gives rise
to a symmetric process.

Next, we turn our attention to derivation of sharp two-sided estimates on the first
hitting time. To that end, we prove the global scale invariant Harnack inequality
under weak lower scaling condition on the real part of the characteristic exponent.
That result seems to be of some value in and of itself, as Harnack inequality is very
strong theoretic tool in the potential theory. For instance, its easy consequences are
estimates on the derivative of the renewal function for the ladder height process,
which in turn entail estimates on the density of the distribution of the supremum
process (see Chaumont and Małecki, 2016). We also provide estimates on the
boundary behaviour of harmonic functions. Meanwhile, we derive estimates on the
Green function of a bounded interval and a half-line (Lemma 5.1 and Corollary 5.6),
which also seem to be interesting on its own. For example, the first one together
with some regularity assumptions on the Lévy measure imply the boundary Harnack
inequality, which is also an important potential theoretic tool (see e.g. Bogdan et al.,
2015).
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Eventually, we apply those results to obtain estimates on the tail of the first
hitting time of points and intervals. They are derived under assumptions of global
lower scaling property, zero mean and control of Kλ from below by H for small
λ (see (2.8) for definition). The estimates are expressed in terms of symmetrized
compensated potential kernel H and renewal function for the dual process V̂ , and
therefore, in particular, do not require the existence of the compensated potential
kernel K. Nevertheless, in Section 4 we provide conditions which assure that K is
well-defined. We remark here that if the process is symmetric, then our assumptions
reduce to those obtained in Grzywny and Ryznar (2017). Since the third assump-
tion is not a priori obvious for general non-symmetric processes, in Subsection 6.1
we present an example of wide class of processes for which such property holds true.
Furthermore, if we restrict ourselves to the special case of spectrally negative Lévy
processes then due to its specific structure, we are able to prove sharp two-sided
estimates on both sides of the interval and for any t > 0 (see Corollary 6.13). To
our best knowledge, such results have not been obtained before. Apart from its own
value, they can be used, together with heat kernel estimates (Grzywny and Szczyp-
kowski, 2020) for instance for estimation of the Hausdorff dimension of the inverse
images of Lévy processes (see Park et al., 2020). We also remark that although our
main object to operate with is the real part of the characteristic exponent, one can
work with the tail of the Lévy measure instead, since in view of Grzywny et al.
(2018, Proposition 3.8), scaling property of the latter implies scaling of the former.

The first studies on the first hitting time of a point or a compact set concerned
α-stable processes. The asymptotic behaviour in the case of recurrent α-stable
process, i.e. 1 < α 6 2, for arbitrary compact sets, was derived in Port (1967).
Next, in Yano et al. (2009) the authors discuss the law of the first hitting time of a
point for the symmetric α-stable processes with 1 < α 6 2. A series representation
of the density of the first hitting time of a point in the case of spectrally positive α-
stable Lévy processes, 1 < α < 2, was obtained in Peskir (2008) and Simon (2011).
That result was extended two general spectrally two-sided α-stable processes with
1 < α < 2 in Kuznetsov et al. (2014). Let us note here that in case of spectrally
negative Lévy processes starting from the left side of the interval, the first hitting
time is equal to the first passage time through the left end and in consequence,
one may apply tools from the fluctuation theory to handle the problem (see e.g.
Bertoin (1996) or Sato (1999) for details).

The general symmetric case is much harder to handle and in principle, requires
some regularity assumptions on the characteristic exponent of the process. In
Kwaśnicki (2012) the author derives an integral representation of the distribution
function of the first hitting time of a point in terms of eigenfunctions of the semi-
group of the process killed upon hitting the origin. That idea was later adopted
in Juszczyszyn and Kwaśnicki (2015) to obtain the asymptotic expansion of the
distribution function (and its derivatives) of the first hitting time of a point for
symmetric Lévy processes with completely monotone jumps. Recently, in Mucha
(2019), the ideas from Kwaśnicki (2012) were extended to non-symmetric Lévy pro-
cesses. A different approach was proposed in Grzywny and Ryznar (2017), where
the authors prove and apply the global Harnack inequality in order to obtain sharp
estimates on the tail probability of the first hitting time of points and bounded
intervals for symmetric processes under global lower scaling condition imposed on
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the characteristic exponent. In the present paper we generalize these ideas to non-
symmetric Lévy processes, which, to our best knowledge, has not been investigated
in such generality before.

The article is organized as follows. In Section 2 we introduce our setting, basic
objects and tools exploited in the paper and prove some auxiliary results. In Sec-
tion 3 we prove that some specific form of the Lévy measure and regular variation of
Reψ implies that Imψ is in fact, comparable to the real part; we apply that result
in Section 4, where asymptotic behaviour of the tail of the distribution of the first
hitting time is obtained. Here, Theorem 3.4 provides an important example. Sec-
tion 5 is devoted to the proof of the Harnack inequality, some of its consequences
and boundary behaviour of harmonic functions. We apply those results in Sec-
tion 6, where we provide sharp two-sided estimates on the tail probability of the
first hitting time of a bounded interval. Finally, in Subsection 6.1 we indicate a
wide class of non-symmetric processes which satisfy assumptions of Theorem 6.10.

2. Preliminaries

Notation. Throughout the paper c, c1, C1, ... denote positive constants which may
vary from line to line during estimates. We write c = c(a) when c depends only on
parameter a. For two numbers a, b we denote a∧ b = min{a, b}. For two functions
f, g we write f ≈ g if the ratio f(u)/g(u) stays between two positive constants.
That notation gives rise to the notion of sharp estimates. Namely, we say that
a sharp two-sided estimate on a function f holds if there is a function g and a
constant c > 0 such that

c−1g(x) 6 f(x) 6 cg(x),

or, in terms of the definition above, f ≈ g. Similarly, we write f . g (f & g)
if the ratio is bounded from above (below) by a positive constant. By analogy,
this corresponds to one-sided (upper or lower) estimates. By f ∼= cg, x → x0,
we mean that limx→x0

f(x)/g(x) = c. For positive g we write f(x) = O(g(x)),
x→ x0, if lim supx→x0

|f(x)|/g(x) <∞. For a complex-valued function f : R 7→ C,
by f−1 we denote its generalized inverse, that is f−1(s) = sup{r > 0: f∗(r) = s},
where f∗(r) = sup|x|6r Re f(x). Borel sets on the real line are denoted by BR.
Finally, for r > 0 by Br we denote a ball centered at the origin and of radius r, i.e.
Br = {x ∈ R : |x| < r}.

Throughout the whole paper we let X = (Xt : t > 0) be a one-dimensional
Lévy process with the Lévy measure ν. Recall that any Lévy measure satisfies the
following conditions:

ν({0}) = 0 and
∫
R

(
1 ∧ x2

)
ν(dx) <∞. (2.1)

If we let ψ be its characteristic exponent, that is

EeiξXt = e−tψ(ξ), ξ ∈ R,

then it is well known that ψ is of the form

ψ(ξ) = σ2ξ2 − iγξ −
∫
R

(
eiξz − 1− iξz1|z|<1

)
ν(dz), ξ ∈ R,

where σ > 0 and γ ∈ R. Note that since we do not assume symmetry of Xt, both
ν and ψ need not be symmetric. The triplet (σ, γ, ν) uniquely determines the Lévy
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process and is therefore called the generating triplet of X. Let us notice that

Reψ(ξ) = σ2ξ2 +

∫
R

(
1− cos ξz

)
ν(dz), ξ ∈ R, (2.2)

and

Imψ(ξ) = −γξ +

∫
R

(
ξz1|z|<1 − sin ξz

)
ν(dz), ξ ∈ R.

Observe that Reψ is symmetric even if X is not symmetric. If we assume that∫
(−1,1)c |z| ν(dz) <∞, then we can also write

Imψ(ξ) = −γ1ξ +

∫
R

(
ξz − sin ξz

)
ν(dz), (2.3)

where γ1 = γ +
∫
(−1,1)c z ν(dz). In particular, if EX1 = 0 then γ1 = 0.

Our standing assumption is finiteness of the following integral:∫ ∞
0

dξ

1 + Reψ(ξ)
<∞. (2.4)

Such condition implies that Reψ is unbounded, hence it must not be a characteristic
exponent of compound Poisson process. It follows that Reψ(ξ) > 0 for ξ 6= 0, since
otherwise we would have σ = 0 in (2.2) and ν(dx) would be supported on

{
2kπ
ξ : k ∈

Z\{0}
}
for some ξ 6= 0. In particular, due to Lévy condition (2.1) we would conclude

that ν(R) <∞, which is the case for compound Poisson process only. Furthermore,
since e−x 6 (1 + x)−1 for x > 0, we obtain that

∣∣∣e−tψ(·)∣∣∣ = e−tReψ(·) is integrable.
Thus, by the Fourier inversion formula, the transition density p(t, ·) of Xt exists for
all t > 0 and is given by

p(t, x) =
1

2π

∫
R

Re
[
e−tψ(ξ)−iξx

]
dξ, x ∈ R.

If, following Pruitt (1981), we define the concentration function by setting for r > 0,

h(r) =
σ2

r2
+

∫
R

(
1 ∧ |s|

2

r2

)
ν(ds),

then by Grzywny (2014, Lemma 4), for all x ∈ R,

h(1/|x|) ≈ ψ∗(|x|). (2.5)

Recall that h is continuous and strictly decreasing. Lastly, also due te Pruitt we
introduce the compensated drift part by setting

br = γ +

∫
R
z
(
1|z|<r − 1|z|<1

)
ν(dz).

We now turn to introduction of basic objects from the potential theory. For any
x ∈ R, Px and Ex will denote the distribution and the expectation for the process
X + x, with the standard notation P0 = P and E0 = E. We also write Ex[A;Y ] =
Ex1AY . By τD we denote the first exit time from an open set D, i.e.

τD = inf{t > 0: Xt /∈ D}.

For a closed set F we define the first hitting time of F as the first exit time from its
complement F c, that is TF = τF c . If F = {b} is a singleton, then slightly abusing
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the notation, we write Tb = T{b}. For λ > 0 we let uλ be the λ-potential kernel,
that is the Laplace transform of p(·, x):

uλ(x) =

∫ ∞
0

e−λtp(t, x) dt.

If uλ exists for λ = 0 then we set u0 = u and then the process is transient (see
Bertoin (1996, Theorem I.17)). In general, this needs not be the case (take for
example the classical stable process with stability index α > 1, which is recurrent).
Nevertheless, the condition ∫ ∞

0

dξ

1 + Reψ(ξ)
<∞,

together with Bretagnolle (1971, Theoreme 7 and 8), implies that 0 is regular for
itself, that is

P0
(
T0 = 0

)
= 1.

That in turn, combined with Kesten (1969, Theorem 1), yield that Px(T0 <∞) > 0
for any x ∈ R.

Let us also set

κ = lim
λ→0+

1

uλ(0)
= lim
λ→0+

1

2π

(∫
R

Re

[
1

λ+ ψ(ξ)

]
dξ

)−1
. (2.6)

Clearly, κ ∈ [0,∞). Moreover, from Bertoin (1996, Theorem I.17) it follows that
the process is transient if κ > 0.

By Bertoin (1996, Corollary II.18 and Theorem II.19) we get that x 7→ Exe−λT0

is continuous with respect to x, and for any x ∈ R we have

uλ(x) = uλ(0)E−xe−λT0 . (2.7)

Note that for recurrent processes we have u(x) =∞ for all x ∈ R. Instead one can
define the compensated λ-potential kernel by setting for λ > 0

Kλ(x) = uλ(0)− uλ(x), x ∈ R. (2.8)

In view of (2.7) we get that Kλ > 0 for all λ > 0.
The next natural move would be to pass with λ to 0 and define the compensated

potential kernel
K(x) = lim

λ→0+
Kλ(x), x ∈ R.

In general, however, it is not easy to show even the existence of K, let alone its
further properties. For some elaboration on that subject, including special cases
when K can be well-defined, see Section 4. If it does exist then one can express
the probability of not hitting the origin in terms of K and κ.

Proposition 2.1. Suppose that K exists. Then

Px(T0 =∞) = κK(−x).

If κ = 0 then Px(T0 <∞) = 1 for all x ∈ R.

It follows that if K exists and Px(T0 <∞) = 1 then X is recurrent.
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Proof : Observe that
lim
λ→0+

Exe−λT0 = Px(T0 <∞).

On the other hand,

Exe−λT0 =
uλ(−x)

uλ(0)
= 1− uλ(0)− uλ(−x)

uλ(0)
→ 1− κK(−x),

as λ→ 0+. �

Instead of K, let us consider the symmetrized λ-potential kernel

Hλ(x) = Kλ(x) +Kλ(−x).

By Bertoin (1996, Theorem II.19),

Hλ(x) =
1

π

∫
R

(
1− cosxs

)
Re

[
1

λ+ ψ(s)

]
ds.

Under (2.4) one can show that the symmetrized compensated potential kernel

H(x) = lim
λ→0+

Hλ(x), x ∈ R,

is well-defined and

H(x) =
1

π

∫
R

(
1− cosxs

)
Re

[
1

ψ(s)

]
ds, x ∈ R.

Indeed, it follows immediately from the fact that Reψ(ξ) & ξ2 for |ξ| 6 1 (see e.g.
Sato, 1999, proof of Theorem 37.8), which together with (2.4) justify the application
of the dominated convergence theorem and the claim follows. Proceeding as in
the proof of Grzywny and Ryznar (2017, Proposition 2.2) one may prove that H
is subadditive on R. See also Pantí (2017, Proposition 3.7) for a similar result,
although derived under different assumptions.

We will often assume the so-called global weak lower scaling condition on the
real part of the characteristic exponent with the scaling index strictly bigger than
1. We will say that a function f satisfies the global weak lower scaling condition, if
there are α ∈ R and c ∈ (0, 1] such that for all u > 0 and λ > 1,

f(λu) > cλαf(u), u > 0.

We will write shortly f ∈WLSC(α, c). The pair (α, c) will be referred to as scaling
characteristics or simply scalings. Note that by Bogdan et al. (2014, Lemma 11),
f ∈WLSC(α, c) for some α ∈ R and c ∈ (0, 1] if and only if the function

(0,∞) 3 x 7→ x−αf(x)

is almost increasing. See e.g. Bogdan et al. (2014, Section 3) for details. Clearly,
the condition Reψ ∈ WLSC(α, c) for some α > 1 and c ∈ (0, 1], implies (2.4).
Moreover, by (2.5) and Grzywny and Szczypkowski (2020, Theorem 3.1), for all
x ∈ R,

Reψ(x) ≈ ψ∗(|x|) ≈ h(1/|x|). (2.9)
We note that under assumptions of the global scaling property of the real part
of the characteristic exponent, its control over the imaginary part (see Grzywny,
2019, Lemma 12) and vanishing of the first moment, i.e. EX1 = 0, one can show
that

∫ 1

0
Re(1/ψ(ξ))dξ =∞ and, in view of Bertoin (1996, Theorem I.17), conclude

that X is recurrent, and consequently, u(x) = ∞ for all x ∈ R. As the processes
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we study in this paper often satisfy such assumptions, we are in dire need of some
object alternative to the (infinite) potential kernel. The symmetrized compensated
potential kernel H can be of usage here, but it appears that the (ordinary) compen-
sated kernel K is more appropriate for description of hitting probability behaviour.
The only problem is that in general we are not able to determine whether it exists.
We devote Sections 4 and 6 to the detailed discussion on the subject.

We note one simple yet crucial observation.

Proposition 2.2. Suppose that EX1 = 0 and Reψ ∈WLSC(α, χ) for some α > 1
and χ ∈ (0, 1]. There is c > 1 such that for all r > 0,

c−1
1

rh(r)
6 H(r) 6 c

1

rh(r)
.

In particular, H ∈WLSC(α− 1, χ̃) for some χ̃ ∈ (0, 1].

Proof : Observe that by Grzywny (2019, Lemma 12), for any r > 0,

H(r) ≈
∫ ∞
0

(1− cos rs)
1

Reψ(s)
ds.

Now, the claim follows by Grzywny (2019, Lemma 13). �

Apart from free processes, for an open set D one can consider the process killed
when exiting D, denoted by XD

t . Namely, for any measurable function f ,

Exf
(
XD
t

)
= Ex

[
t < τD; f(Xt)

]
, t > 0, x ∈ R.

By analogy, by pD(t; ·, ·) we denote its transition density. It is then known that

pD(t;x, y) = p(t, y−x)−Ex
[
t > τD; p

(
t− τD, y−XτD

)]
, t > 0, x, y ∈ R. (2.10)

By analogy to the free process, for any x ∈ R we define the λ-potential measure of
XD
t as

GλD(x,A) =

∫ ∞
0

e−λtPx
(
t < τD;Xt ∈ A

)
dt, A ∈ BR.

Since pD(t; ·, ·) exists for all t > 0, the λ-potential measures are absolutely contin-
uous with the density GλD given by

GλD(x, y) =

∫ ∞
0

e−λtpD(t;x, y) dt, x, y ∈ D.

The 0-Green function is simply called the Green function and denoted by GD(x, y).
Next, we introduce the harmonic measure of the set D, which describes the

distribution of XτD started from x on {τD <∞}. Namely, for any Borel A ⊂ R,
PD(x,A) = Px

(
XτD ∈ A

)
.

If the density kernel of PD exists then we call it the Poisson kernel for the set D
and denote by the same symbol PD(x, z). The celebrated Ikeda-Watanabe formula
Ikeda and Watanabe (1962) provides a connection between the Poisson kernel and
the Green function:

PD(x,A) =

∫
D

ν(A− y)GD(x, dy), A ⊂ Dc
.

Finally, we say that a Borel measurable function u is harmonic in an open set D
with respect to X, if for any bounded open set B such that B ⊂ D,

u(x) = Exu
(
XτB

)
, x ∈ B.
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If the equality above holds also for B = D then we say that u is regular harmonic
in D (with respect to X). Also, u is (regular) coharmonic in D if it is (regular)
harmonic in D with respect to the dual process X̂. Clearly, for symmetric processes
a harmonic function is coharmonic and vice versa; in general, that is not necessarily
true. We remark that by the strong Markov property, a regular harmonic function
is harmonic. Moreover, the Green function for the set D (if it exists) is harmonic
in x on D \ {y}.

Let us note two simple observations.

Proposition 2.3. For any x, y ∈ R we have

G{0}c(x, y) 6 H(x) ∧H(y).

Proof : By (2.10), for any λ > 0 we have

Gλ{0}c(x, y) = uλ(y − x)− Exe−λT0uλ(y − T0)

= uλ(y − x)− uλ(y)
uλ(−x)

uλ(0)

= −Kλ(y − x) +Kλ(−x) +Kλ(y)− Kλ(−x)Kλ(y)

uλ(0)
.

Recall that Kλ > 0. Proceeding as in the proof of Grzywny and Ryznar (2017,
Proposition 2.2) we get that Kλ is subadditive on R. Thus, Kλ(y) 6 Kλ(x) +
Kλ(y − x) and consequently,

Gλ{0}c(x, y) 6 −Kλ(y − x) +Kλ(−x) +Kλ(y) 6 Kλ(x) +Kλ(−x).

Similarly, we have Kλ(−x) 6 Kλ(y − x) +Kλ(−y), and the claim follows. �

Proposition 2.4. For any |x| ∈ (0, R) we have

Ex
[
τ(−R,R) ∧ T0

]
6 2RH(x).

Proof : By Proposition 2.3,

Ex
[
τ(−R,R) ∧ T0

]
=

∫ R

−R
G(−R,0)∪(0,R)(x, y) dy 6

∫ R

−R
G{0}c(x, y) dy 6 2RH(x).

�

2.1. Fluctuation theory. Before embarking on further results we need some intro-
duction from the fluctuation theory of Lévy processes. The general reference here
is the book Bertoin (1996).

First, let us observe that the condition (2.4) implies that X is of unbounded
variation. Indeed, suppose the converse; then X can be written as a difference of
two subordinators. It follows that Reψ has at most linear growth and hence,∫ ∞

0

dξ

1 + Reψ(ξ)
=∞,

which is a contradiction. Thus, by Rogozin (1968), 0 is regular for half-lines (−∞, 0)
and (0,∞). Now, let L = (Lt : t > 0) be a local time at 0 for the process S −X,
where St = sups6tXs, and L−1 — its right-continuous inverse, called the ascend-
ing ladder time process. Next, we define H by setting Ht = SL−1

t
= XL−1

t
on

{L−1t < ∞} and Ht = ∞ otherwise. H is a (possibly killed) subordinator called
the ascending ladder height process.
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Next, we introduce the renewal function V as a potential measure of the interval
[0, x] for the ascending ladder height process, i.e. V (x) =

∫∞
0

P(Hs 6 x) ds, with the
convention V (x) = 0 for x < 0. Similarly, V̂ (x) =

∫∞
0

P(Ĥs 6 x) ds and V̂ (x) = 0

for x < 0. Clearly, if X is symmetric, then X̂ = X and consequently, V̂ = V .
Directly from the definition of V and V̂ we conclude that both are subadditive.
Moreover, by Silverstein (1980, Theorem 1 and 2), V̂ and V̂ ′ are harmonic on
(0,∞), and V and V ′ are coharmonic on (0,∞). In fact, also from Silverstein
(1980) we have that both V ′ and V̂ ′ are positive on (0,∞), hence both V and
V̂ are actually strictly increasing on (0,∞). Note that using monotonicity and
subadditivity of V̂ , for all λ > 1 and any r > 0 we have

V̂ (λx) 6 2λV̂ (x).

One feature that will be substantial in Section 5 is the fact that the Green function
for the positive half-line can be represented in terms of V and V̂ in the following
way:

G(0,∞)(x, y) =

∫ x

0

V̂ ′(u)V ′(y − x+ u) du, y > x > 0. (2.11)

That identity is provided by Bertoin (1996, Theorem VI.20).
A number of helpful results concerning V̂ , which is of significant importance and

usage in the case of non-symmetric processes, are derived in Grzywny (2019). Below
we provide a sharp estimate on the probability that the process, when exiting the
interval (0, R), chooses the right end. Such result seems to be interesting in and of
itself, as we provide sharp two-sided bound, which is an analogue of the estimate
for the symmetric case (see e.g. Grzywny and Ryznar, 2012, Proposition 3.7).

Proposition 2.5. Suppose that EX1 = 0 and Reψ ∈WLSC(α, χ) for some α > 1
and χ ∈ (0, 1]. Then there is c ∈ (0, 1] such that for any R > 0 and 0 < x < R,

c
V̂ (x)

V̂ (R)
6 Px

(
τ(0,R) < τ(0,∞)

)
6
V̂ (x)

V̂ (R)
.

Proof : Fix R > 0 and let x ∈ (0, R). From the proof of Grzywny (2019, Theorem
9) we get the following results. First,

Px
(
τ(0,R) < τ(0,∞)

)
6
V̂ (x)

V̂ (R)
.

Next, we claim that there is c1 such that

c1
V̂ (x)

V̂
(
h−1(1/t)

) − V̂ (x)V (R)

t
6 Px

(
τ(0,R) < τ(0,∞)

)
, (2.12)

if only t > 1/h(R). Indeed, observe that by Markov inequality and Grzywny (2019,
Proposition 4),

Px
(
τ(0,∞) > t

)
6 Px

(
τ(0,R) > t

)
+ Px

(
τ(0,R) < τ(0,∞)

)
6
V̂ (x)V (R)

t
+ Px

(
τ(0,R) < τ(0,∞)

)
.

Thus, using Grzywny (2019, Theorem 6) we get (2.12) for t > 1/h(R) as claimed.
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Now we specify t > 0. Set t = a/h(R), where a > 1. By Grzywny and Szczyp-
kowski (2020, Lemma 2.3), there is c2 > 1 such that

h−1(1/t) = h−1
(
h(R)/a

)
6 c2a

1/αR.

Taking into account subadditivity and monotonicity of V̂ , we infer that

V̂
(
h−1(1/t)

)
6 V̂

(
c2a

1/αR
)
6 2c2a

1/αV̂ (R),

if only a > c−α2 . Furthermore, by Grzywny (2019, Corollary 5), there is c3 > 1 such
that

h(R) 6
c3

V (R)V̂ (R)
.

It follows that

Px
(
τ(0,R) < τ(0,∞)

)
> 2−1c1c

−1
2 a−1/α

V̂ (x)

V̂ (R)
− c3
a

V̂ (x)

V̂ (R)

=
V̂ (x)

V̂ (R)

1

a

(
2−1c1c

−1
2 a(α−1)/α − c3

)
>

1

a

V̂ (x)

V̂ (R)
,

if a is big enough, and the claim follows. �

3. Regular variation

In this section we aim to prove that the regular variation of the real part of
the characteristic exponent implies regular variation of its imaginary part, if we
impose some condition on the structure of the Lévy measure. First, we recall some
basic definitions and properties from the theory of regular variation. The general
reference here is the book Bingham et al. (1989).

We say that a function f : (0,∞) 7→ (0,∞) is regularly varying at 0 with param-
eter ρ, if for all λ > 0,

lim
x→0+

f(λx)

f(x)
= λρ.

Similarly, we say that a function f : (0,∞) 7→ (0,∞) is regularly varying at the
infinity with parameter ρ, if for all λ > 0,

lim
x→∞

f(λx)

f(x)
= λρ.

If ρ = 0 then we say that a function f is slowly varying at 0 (or at ∞).
Next, we recall Potter’s Lemma, a not to be underestimated property of regularly

varying functions (Bingham et al., 1989, Theorem 1.5.6). If a function f is regularly
varying at infinity with a parameter ρ, then for any C > 1 and δ > 0 there exists
X = X(C, δ), such that

f(y)

f(x)
6 C max

[(y
x

)ρ+δ
,
(y
x

)ρ−δ ]
, x, y > X. (3.1)

Let k : (0,∞) 7→ R. The Mellin transformM of the function k is defined by

M{k}(z) =

∫ ∞
0

t−zk(t)
dt

t
,

for z ∈ C such that the integral converges.
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Next, for f, g : (0,∞) 7→ R we define its Mellin convolution by

g
m∗ f(x) =

∫ ∞
0

g(x/t)f(t)
dt

t
, x > 0.

Finally, by

f
s∗ g(x) =

∫ ∞
0

f(x/t)dg(t), x > 0.

we denote the Mellin-Stieltjes convolution for functions f and g such that the
Stieltjes integral is well defined.

Let us start with the observation on the equivalence between tail measure and
real part of the characteristic exponent behaviour.

Proposition 3.1. Let α ∈ (0, 2). Reψ is regularly varying at infinity (at 0) with
the exponent α if and only if t 7→ ν({s : |s| > t}) is regularly varying at 0 (at
infinity) with the exponent −α. Moreover,

ν({s : |s| > t}) ∼=
Γ(1 + α)

B
(

1− α
2 , 1 + α

2

) Reψ(1/t), t→ 0+ (t→∞).

Proof : We compute the Laplace transform of the function Reψ. By Fubini’s the-
orem,

L{Reψ}(λ) =

∫ ∞
0

e−λt
∫
R
(1− cos tx) ν(dx) dt =

∫
R

∫ ∞
0

e−λt(1− cos tx) dt ν(dx)

=
1

λ

∫
R

x2

λ2 + x2
ν(dx).

Next,

λ

2
L{Reψ}(λ) =

1

2

(∫ 0

−∞

x2

λ2 + x2
ν(dx) +

∫ ∞
0

x2

λ2 + x2
ν(dx)

)
=−

∫ 0

−∞

∫ 0

x

λ2t

(λ2 + t2)2
dt ν(dx) +

∫ ∞
0

∫ x

0

λ2t

(λ2 + t2)2
dt ν(dx)

=−
∫ 0

−∞

(λt)2

(λ2 + t2)2
ν((−∞, t])dt

t
+

∫ ∞
0

(λt)2

(λ2 + t2)2
ν([t,∞))

dt

t

=

∫ ∞
0

(λt )2

(1 + (λt )2)
2

(
ν((−∞,−t]) + ν([t,∞))

)dt
t
.

Assume that Reψ varies regularly at infinity with exponent α ∈ (0, 2). Let us
define ν1 = ν1[−1,1] and the characteristic exponent ψ1 corresponding to the triplet
(0, 0, ν1). We have Reψ ∼= Reψ1 at infinity. Indeed, since

0 6
∫
|x|>1

(1− cos(xz)) ν(dx) 6 2ν
(
{x : |x| > 1}

)
, z ∈ R,

and limz→∞Reψ(z) =∞, we get

Reψ(z)− Reψ1(z)

Reψ(z)
→ 0,
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as z → ∞. Next, using the Abel theorem (Bingham et al., 1989, Theorem 1.7.1)
one can observe that

λ−1L{Reψ1}(1/λ) ∼= Reψ(λ)Γ(1 + α), λ→∞.

Let g(t) = ν1({s : |s| > 1/t}), t > 0, and k(t) = t2

(1+t2)2
. Observe that the

Laplace transform of Reψ1 is the Mellin convolution of k and g:
1

2λ
L{Reψ1}(1/λ) =

∫ ∞
0

k(1/(tλ))g(1/t)
dt

t
=

∫ ∞
0

k(t/λ)g(t)
dt

t
= k

m∗ g(λ),

where in the last equality we used k(t) = k(1/t) for t > 0.
To prove that g(t) is regularly varying function, we will use Bingham et al. (1989,

Theorem 4.9.1) for the function g1(t) =
∫ t
0
g(s)dss and convolution k

s∗ g1(λ) = k
m∗

g(λ). Set σ such that −2 < σ < −α and τ = 0. Observe that

‖k‖σ,τ :=
∑

−∞<n<∞
max(e−σn, e−τn) sup

en6x6en+1

∣∣k(x)
∣∣

6
∑
n6−1

e2n +
∑
n>0

e−σn

e2n
<∞.

See Bingham et al. (1989, p. 210, eq. (4.4.3)) for the first appearance and intro-
duction of the ‖k‖σ,τ . Moreover, by Oberhettinger (1974, Table 1.2 (2.19)),

M{k}(z) =

∫ ∞
0

t2

(1 + t2)2
tz−1 dt =

1

2

∫ ∞
0

1

(1 + s)2
s(z/2+1)−1 ds

=
Γ
(
1− z

2

)
Γ
(
1 + z

2

)
2

,

if only Re z ∈ (−2, 2). Since (σ, τ) ⊂ (−2, 2) and neither Γ
(
1+ z

2

)
nor Γ

(
1− z

2

)
have

any roots for Re z ∈ (σ, τ), the Wiener conditionM{k}(z) 6= 0 is satisfied. Notice
that g1 is non-decreasing on (0,∞) and vanishes on (0, 1). Hence, g1(t) = O(tσ) at
0+. That is, the kernel k and the function g1 satisfy assumptions of Bingham et al.
(1989, Theorem 4.9.1), hence,

g1(t) ∼=
Γ(1 + α)

B
(

1− α
2 , 1 + α

2

) Reψ(t)

α
, t→∞.

By monotone density theorem Bingham et al. (1989, Theorem 1.7.2) and the fact
that g(1/t) ∼= ν({s : |s| > t}) as t goes to 0+, we obtain that

ν({s : |s| > t}) ∼=
Γ(1 + α)

B
(

1− α
2 , 1 + α

2

) Reψ(1/t), t→ 0+.

In particular, t 7→ ν({s : |s| > t}) is regularly varying function at 0 with index −α.
Now assume that t 7→ ν({s : |s| > t}) is regularly varying function at 0 with

index −α. Again, instead of ψ one can consider ψ1. Since

Reψ1(z) = z

∫ 1

0

sin(xz)ν({s : |s| > x}) dx =

∫ z

0

sin(x)ν({s : |s| > x/z}) dx,

one can use Potter’s Lemma to justify that

lim
z→∞

Reψ1(z)

ν({s : |s| > 1/z})
=

∫ ∞
0

sinx

xα
dx,
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which finishes the proof in this case.
If Reψ varies regularly at 0 one can modify the above prove to obtain the be-

haviour of the tail of ν at infinity. �

We remark that in fact, equivalence of regular variation of Reψ at 0 and regular
variation of the tail of ν at infinity can be easily obtained from Pitman (1968). Our
proof, however, works in both cases.

If the Lévy measure is of the special form

ν(dx) = Cd1{x<0}ν0(dx) + Cu1{x>0}ν0(dx), (3.2)

where ν0(dx) is a symmetric Lévy measure, the theorem above provides the be-
haviour of the one-sided tail of ν as well. For instance, if Reψ is regularly varying
at 0 with the exponent α ∈ (0, 2), then

ν0([t,∞)) ∼=
1

Cu + Cd

Γ(1 + α)

B
(

1− α
2 , 1 + α

2

) Reψ(1/t), t→∞.

This is the case for stable processes, where even the equality holds true.

Lemma 3.2. If Reψ varies regularly at 0 with an exponent α > 1, then∫
(−1,1)c

|x| ν(dx) <∞.

Proof : If Reψ varies regularly at 0 with a positive exponent then Reψ ∼= ψ∗ near
0. Hence, h(r) ≈ Reψ(1/r) for large r > R0. By the Potter Lemma we get∫

|x|>1

|x| ν(dx) =

∫ ∞
0

ν
(
{s : |s| > 1 ∨ u}

)
du

6
∫ ∞
0

h(1 ∨ u) du 6 h(1)R0 + c

∫ ∞
R0

Reψ(1/u) du <∞.

The claim follows immediately. �

Lemma 3.3. Assume that f(s), s > 0, is a function which is non-negative, reg-
ularly varying at ∞ with parameter −α, where α ∈ (1, 2), and such that

∫∞
0

(1 ∧
s2)f(s) ds <∞. Then the transformation

x 7→
∫ ∞
0

(1− cosxs)f(s) ds, x > 0,

is regularly varying at 0 with the parameter α− 1 and satisfies∫ ∞
0

(1− cosxs)f(s) ds ∼= −
f(1/x)

x

π

2Γ(α) cos
(
πα
2

) , x→ 0+.

Proof : Let x > 0. By the Potter Lemma, one can set A such that for s > A, there
exist −α < −α̂ < −1 and M such that f(s/x)

f(1/x) < Ms−α̂. Notice that

x

f(1/x)

∫ ∞
0

(1− cosxs)f(s) ds

=
x

f(1/x)

∫ A

0

(1− cosxs)f(s) ds+
x

f(1/x)

∫ ∞
A

(1− cosxs)f(s) ds

=
x

f(1/x)

∫ A

0

(1− cosxs)f(s) ds+

∫ ∞
Ax

(1− cos s)
f(s/x)

f(1/x)
ds.
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Again by the Potter Lemma, for constant C and ρ < 2 there exists ε > 0 such that
Cxρ 6 f(1/x), when 0 < x < ε. Then we can observe that

x

f(1/x)

∫ A

0

(1− cosxs)f(s) ds 6 C
x3

xρ

∫ A

0

s2f(s) ds→ 0,

as x→ 0+. Moreover, for |s| > Ax,

(1− cos s)
f(s/x)

f(1/x)
6M(1− cos s)s−α̂.

It allows us to make use of the dominated convergence theorem. Therefore,

lim
x→∞

x

f(1/x)

∫ ∞
0

(1− cosxs)f(s) ds =

∫ ∞
0

(1− cos s)s−α ds =
π

2Γ(α) sin
(
π(α−1)

2

)
=− π

2Γ(α) cos
(
πα
2

) ,
where the second equality follows from Sato (1999, Theorem 14.15). �

Next theorem is the main result of this section. It shows that under assumption
(3.2), regular variation of the real part of the Lévy exponent implies regular vari-
ation of the imaginary part. This is the case for instance for spectrally one-sided
Lévy processes.

Theorem 3.4. Assume that the Lévy measure ν(dx) satisfies (3.2). Let the real
part of the characteristic exponent Reψ(ξ) be regularly varying at 0 with a parameter
α ∈ (1, 2). If γ1 = γ−

∫
(−1,1)c xν(dx) = 0 then the imaginary part Imψ(ξ) satisfies

Imψ(ξ) ∼= −
Cu − Cd
Cu + Cd

tan
(πα

2

)
Reψ(ξ), ξ → 0+.

For γ1 6= 0 we have

Imψ(ξ) ∼= γ1ξ, ξ → 0.

Proof : By Proposition 3.1, t 7→ ν0([t,∞)) is a regularly varying function with the
exponent −α at ∞. More precisely,

ν0([t,∞)) ∼=
1

Cu + Cd

Γ(1 + α)

B
(
1− α

2 , 1 + α
2

) Reψ(1/t), t→∞. (3.3)

By Lemma 3.2 we know that
∫
(−1,1)c |x| ν(dx) < ∞. We are therefore allowed to

use the representation (2.3) of the imaginary part of the function ψ. Let ξ > 0.
Observe that

Imψ(ξ) =γ1ξ +

∫
R

(ξx− sin ξx) ν(dx)

=γ1ξ + (Cu − Cd)
∫ ∞
0

∫ x

0

(ξt− sin ξt)′ dt ν0(dx)

=γ1ξ + (Cu − Cd)ξ
∫ ∞
0

(1− cos ξt)

∫ ∞
t

ν0(dx) dt

=γ1ξ + (Cu − Cd)ξ
∫ ∞
0

(1− cos ξt) ν0([t,∞)) dt.
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Let Cu 6= Cd. Observe that f(s) = ν([s,∞)) satisfies the assumptions of Lemma 3.3.
Thus, a function ξ 7→ (Cu−Cd)ξ

∫∞
0

(1−cos ξt)ν0([t,∞)) dt is also regularly varying
function at 0 with the exponent α. Assume that γ1 6= 0. Then

γ1ξ + ξ(Cu − Cd)
∫∞
0

(1− cos ξt)ν0([t,∞)) dt

γ1ξ
→ 1,

as ξ → 0+, which follows from the Potter Lemma for the function (Cu−Cd)ξ
∫∞
0

(1−
cos ξt)ν0([t,∞)) dt. Then Imψ(ξ) is comparable at zero with a linear function. Now,
assume that γ1 = 0. Again by Lemma 3.3, if ξ → 0+,

ξ

∫ ∞
0

(1− cos ξt)ν0([t,∞)) dt ∼= ν0([1/ξ,∞))
π

2Γ(α) cos
(
πα
2

) .
Using Γ(1− z)Γ(z) = π

sinπz and invoking (3.3), we obtain

Imψ(ξ) ∼=−
Cu − Cd
Cu + Cd

αΓ(α)

Γ
(
1− α

2

)
Γ
(
1 + α

2

) π

2Γ(α) cos
(
πα
2

) Reψ(ξ)

∼=−
Cu − Cd
Cu + Cd

α
2 Γ
(
α
2

)
Γ
(
α
2

)
Γ
(
1− α

2

)
Γ
(
1 + α

2

) π

cos
(
πα
2

) Reψ(ξ)

∼=−
Cu − Cd
Cu + Cd

tan

(
πα

2

)
Reψ(ξ), ξ → 0+.

�

4. Asymptotics

If the process Xt is symmetric then by Yano (2013, Theorem 4.2), the function
K is well-defined. Furthermore, for non-symmetric case by Yano (2013, Proposi-
tion 6.1), existence of first derivatives of (Reψ(ξ))′ and (Imψ(ξ))′ such that∫ ∞

0

(|(Reψ(ξ))′|+ |(Imψ(ξ))′|) (ξ2 ∧ 1)

|ψ(ξ)|2
dξ <∞. (4.1)

is sufficient. We remark here that in view of Sato (1999, Theorem 21.9) and discus-
sion at the beginning of Subsection 2.1, the condition (L1’) in Yano (2013) always
implies (L2).

Unfortunately, (4.1) does not suit our case and therefore, we prove the existence
of K in several cases.

Lemma 4.1. Assume that 1/(1 + Reψ) is integrable and Imψ > 0 on (0, ε) for
some ε > 0. Then K exists and

K(x) =
1

π

∫ ∞
0

Re

[
1

ψ(s)

(
1− e−ixs

)]
ds. (4.2)

Proof : Since e−x 6 (1 + x)−1, x > 0 we obtain e−ψ ∈ L1(R). By the Riemann-
Lebesgue Lemma we have Reψ(ξ) → ∞ as ξ → ∞. Since Reψ(ξ) > 0 for ξ 6= 0,
that implies 1/Reψ ∈ L1([δ,∞)) for any δ > 0. Next, let us observe that Reψ(ξ) >
cξ2, |ξ| 6 1, for some c > 0. Hence,∫

R

1− cos(xξ)

Reψ(ξ)
dξ <∞.
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By the dominated convergence theorem, for x ∈ R,

lim
λ→0+

∫
R

(1− cos(xξ))(λ+ Reψ(ξ))

|λ+ ψ(ξ)|2
dξ =

∫
R

(1− cos(xξ)) Reψ(ξ)

|ψ(ξ)|2
dξ,

and

lim
λ→0+

∫
|ξ|>ε∧(π/|x|)

sin(xξ) Imψ(ξ)

|λ+ ψ(ξ)|2
dξ =

∫
|ξ|>ε∧(π/|x|)

sin(xξ) Imψ(ξ)

|ψ(ξ)|2
dξ.

For |ξ| < ε∧ (π/|x|), the function ξ 7→ sin(xξ) Imψ(ξ) is non-negative, therefore by
the monotone convergence theorem,

lim
λ→0+

∫
|ξ|<ε∧(π/|x|)

sin(xξ) Imψ(ξ)

|λ+ ψ(ξ)|2
dξ =

∫
|ξ|<ε∧(π/|x|)

sin(xξ) Imψ(ξ)

|ψ(ξ)|2
dξ. (4.3)

Since 0 6 Kλ(x) 6 H(x) < ∞ for every λ > 0 and x ∈ R the above integral is
finite. Finally let us notice that the integrand is an even function which ends the
proof. �

Corollary 4.2. If 1/(1 + Reψ) is integrable, EX1 exists and EX1 6= 0 then K is
well-defined and (4.2) holds.

Proof : Since E|X1| <∞, we have

ψ(ξ) = σ2ξ2 + iγ1ξ +

∫
R

(1 + iξz − eiξz) ν(dz).

A consequence of the dominated convergence theorem is

lim
ξ→0+

Imψ(ξ)

ξ
= γ1.

Hence, if γ1 = EX1 6= 0 then Imψ has a constant sign on (0, ε) for some ε > 0,
which finishes the proof due to Lemma 4.1. �

Proposition 4.3. Assume that 1/(1 + Reψ) is integrable and there is c > 0 such
that ∫

|z|>r
|z| ν(dz) 6 crh(r), r > 1. (4.4)

Then K exists and (4.2) holds.

Remark 4.4. If Reψ ∈ WLSC(α, χ) for some α > 1 and χ ∈ (0, 1], then the
assumptions of Proposition 4.3 are satisfied.

Proof : By (4.4) we have E|X1| <∞. If EX1 6= 0 we apply Corollary 4.2 to get the
claim of the Proposition. Therefore, assume that EX1 = 0 and then

ψ(ξ) = σ2ξ2 +

∫
R
(1 + iξz − eiξz) ν(dz).

By the proof of Lemma 4.1 it is enough to prove that (4.3) holds. Let us consider a
Lévy measure ν̃(dx) = 1(0,1)(x)x−5/2dx+1[1,∞) ν(dx) and a characteristic exponent

ψ̃(ξ) =

∫ ∞
0

(1 + iξz − eiξz) ν̃(dz), ξ ∈ R.

Since Re ψ̃(ξ) ≈ |ξ|3/2, |ξ| > 1, and

Im ψ̃(ξ) =

∫ ∞
(ξz − sin(ξz)) ν̃(dz) > 0,
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we can apply Lemma 4.1 and its proof to obtain finiteness of∫ ∞
0

| sin(xξ) Im ψ̃(ξ)|
|ψ̃(ξ)|2

dξ, x ∈ R.

Let
ψ1(ξ) =

∫ ∞
0

(1 + iξz − eiξz) ν(dz),

and ψ2(ξ) = ψ(ξ) − ψ1(ξ). Notice that Reψ1 ≈ Re ψ̃ and Imψ1 ≈ Im ψ̃ on (0, 1)
and Imψ1(ξ), Imψ2(−ξ) > 0, ξ > 0. Hence,∫ 1

0

| sin(xξ) Imψ1(ξ)|
|ψ1(ξ)|2

dξ <∞.

But we also have that | Imψ1(ξ)| 6 cReψ(ξ) for |ξ| < 1. Indeed, by Taylor’s
formula and (4.4),∣∣ Imψ1(ξ)

∣∣ . ∫ 1/|ξ|

0

(|ξ|z)3 ν(dz) + |ξ|
∫ ∞
1/|ξ|

z ν(dz)

. |ξ|2
∫ 1/|ξ|

0

z2 ν(dz) + |ξ|
∫ ∞
1/|ξ|

z ν(dz)

. |ξ|2
∫ 1/|ξ|

0

z2 ν(dz) + h(1/|ξ|)

. Reψ(ξ),

where the last inequality follows from (2.9) and Grzywny and Szczypkowski (2020,
Lemma 2.3). These implies∫ 1

0

| sin(xξ) Imψ1(ξ)|
|ψ(ξ)|2

dξ <∞.

Hence, by the monotone convergence theorem,

lim
λ→0+

∫
|ξ|<ε∧(π/|x|)

sin(xξ) Imψ1(ξ)

|λ+ ψ(ξ)|2
dξ =

∫
|ξ|<ε∧(π/|x|)

sin(xξ) Imψ1(ξ)

|ψ(ξ)|2
dξ,

and the limit is finite. Again by the monotone convergence theorem,

lim
λ→0+

∫
|ξ|<ε∧(π/|x|)

sin(xξ) Imψ2(ξ)

|λ+ ψ(ξ)|2
dξ =

∫
|ξ|<ε∧(π/|x|)

sin(xξ) Imψ2(ξ)

|ψ(ξ)|2
dξ.

Combining the above limits together we obtain (4.3), which ends the proof. �

Corollary 4.5. Let Reψ vary regularly at 0 with an exponent α ∈ (1, 2], then K
is well-defined and (4.2) holds.

Now we turn our attention to the asymptotic behaviour of the tail of the distri-
bution of the first hitting time.

Lemma 4.6. Assume that Reψ varies regularly at 0 with an exponent α ∈ (1, 2]
and

Imψ(ξ)

Reψ(ξ)
→ CI , ξ → 0+,

for some CI ∈ R. Then

λuλ(0) ∼= (Reψ)−1(λ)C(α,CI), λ→ 0+,
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where

C(α,CI) =
cos(arctg(CI)/α)

α(1 + C2
I )1/(2/α) sin(π/α)

.

Proof : Denote θ(ξ) := Reψ(ξ) and ω(ξ) := Imψ(ξ). We have

uλ(0) =
1

π

∫ ∞
0

λ+ θ(ξ)

(λ+ θ(ξ))2 + ω(ξ)2
dξ.

Notice that, for any δ > 0,

I1(λ) :=

∫ ∞
δ

λ+ θ(ξ)

(λ+ θ(ξ))2 + ω(ξ)2
dξ 6

∫ ∞
δ

1

θ(ξ)
dξ <∞.

Since α > 1, we obtain λ
θ−1(λ) I1(λ)→ 0 as λ→ 0+, hence it does not have impact

on the asymptotic behaviour.
Set I2(λ) := πuλ(0)−I1(λ). Since θ is continuous function we have θ(θ−1(s)) = s.

Hence,

λ

θ−1(λ)
I2(λ) =

∫ δ

θ−1(λ)

0

1 + θ
(
θ−1(λ)w

)
/λ

(1 + θ (θ−1(λ)w) /λ)
2

+ (ω (θ−1(λ)w) /λ)
2 dw

=

∫ δ

θ−1(λ)

0

1 + θ(θ−1(λ)w)
θ(θ−1(λ))(

1 + θ(θ−1(λ)w)
θ(θ−1(λ))

)2
+
(
ω(θ−1(λ)w)
θ(θ−1(λ)w)

θ(θ−1(λ)w)
θ(θ−1(λ))

)2 dw. (4.5)

Now we will choose δ. Set ρ such that 1 < ρ < α. By the Potter Lemma there
exists δ > 0 such that for λ < θ(δ), s > 1 and θ−1(λ)s < δ,

θ
(
θ−1(λ)s

)
θ (θ−1(λ))

>
1

2
sρ. (4.6)

The integrand in (4.5) is then dominated by
1

1 + θ(θ−1(λ)w)
θ(θ−1(λ))

6
2

1 + wρ/2
, w 6 δ/θ(λ).

By the dominated convergence theorem,

lim
λ→0+

λ

θ−1(λ)
uλ(0) =

1

π

∫ ∞
0

1 + wα

(1 + wα)2 + (CIwα)2
dw,

which ends the proof since the limit is equal to u1(0) for stable processes (see Port,
1967, p. 389). �

Theorem 4.7. Assume that Reψ(ξ) varies regularly at 0 with an exponent α ∈
(1, 2] and limξ→0+ Imψ(ξ)/Reψ(ξ) = CI . Let B be a compact set such that 0 ∈ B.
Then, for x ∈ R,

lim
t→∞

t(Reψ)−1(1/t)Px(TB > t) =
1

C(α,CI)Γ(1/α)

(
K(−x)− ExK(−XTB )

)
.

Let us note here that Theorem 4.7 extends Port (1967, Theorem 2), where general
recurrent stable processes are treated.

Proof : We have

L(Px(TB > ·))(λ) =
1

λ
[1− Exe−λTB ].
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In view of Proposition 2.3 and the fact that 0 6 GλBc(x, 0) 6 G{0}c(x, 0), we can
observe that GλBc(x, 0) = 0. Hence,

λuλ(0)L(Px(TB > ·))(λ) =uλ(0)− uλ(−x) + uλ(−x)

−Exe−λTB
(
uλ(0)− uλ(−XTB )

)
− Exe−λTB (uλ(−XTB ))

=Kλ(−x)− Exe−λTBKλ (−XTB ) +GλBc(x, 0) (4.7)

=Kλ(−x)− Exe−λTBKλ (−XTB ) .

Since Kλ is bounded by H and, by Proposition 2.2, H is bounded on B because
of its compactness, using the dominated convergence theorem, Lemma 4.6 and
Corollary 4.5 we infer that

lim
λ→0+

(Reψ)−1(λ)L(Px(TB > ·))(λ) =
(
K(−x)− ExK(−XTB )

)
/C(α,CI).

Let U(s) :=
∫ s
0
Px(TB > t)dt. We have

LU(λ) =
1

λ
L(Px(TB > ·))(λ).

Hence,

lim
λ→0+

λ(Reψ)−1(λ)LU(λ) =
(
K(−x)− ExK(−XTB )

)
/C(α,CI).

Notice that (Reψ)−1 is regularly varying with an exponent 1/α, thus, by the Taube-
rian theorem Bingham et al. (1989, Theorem 1.7.1) we can observe that

lim
t→∞

(Reψ)−1(1/t)U(t) =
1

C(α,CI)Γ(1 + 1/α)

(
K(−x)− ExK(−XTB )

)
.

Eventually, by the monotone density theorem (Bingham et al., 1989, Theorem
1.7.2),

lim
t→∞

t(Reψ)−1(1/t)Px(TB > t) =
1

αC(α,CI)Γ(1 + 1/α)

(
K(−x)− ExK(−XTB )

)
.

�

Since ExK(XT0
) = 0, we obtain the following Corollary.

Corollary 4.8. Assume that Reψ varies regularly at 0 with an exponent α ∈ (1, 2]
and suppose that limξ→0+ Imψ(ξ)/Reψ(ξ) = CI . Then, for x ∈ R,

lim
t→∞

t(Reψ)−1(1/t)Px(T0 > t) =
1

C(α,CI)Γ(1/α)
K(−x). (4.8)

Using Theorem 3.4 we conclude the asymptotic behaviour for Lévy measures of
specific type (3.2).

Corollary 4.9. Suppose that ν(dx) is of the form (3.2). Assume that EX1 = 0
and Reψ is regularly varying at 0 with parameter α ∈ (1, 2). Then (4.8) holds true.
In particular, this is the case for spectrally one-sided Lévy processes.

Proposition 4.10. Suppose that 1/(1 + Reψ) is integrable and EX1 exists. If
EX1 6= 0, then

Px(TB > t) ∼=
(
K(−x)− ExK(−XTB )

)
κ, t→∞,

where κ is as in (2.6).
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Proof : Let us observe that by Sato (1999, Theorem 36.7), we have κ > 0. Hence,
by (4.7), Corollary 4.2 and the Tauberian theorem Bingham et al. (1989, Theorem
1.7.1) we obtain the claim. �

Corollary 4.11. Under the assumptions of the above proposition the compensated
kernel exists and it is coharmonic on (0,∞).

5. Harnack inequality and boundary behaviour

This Section is devoted to the proof of the Harnack inequality and a discussion
on its consequences. The main result here is Theorem 5.4, which will then allow
us to deduce some useful properties, including boundary behaviour of harmonic
functions.

Lemma 5.1. Suppose that EX1 = 0 and Reψ ∈WLSC(α, χ) for some α > 1 and
χ ∈ (0, 1]. Then there are δ1 ∈ (0, 1] and c > 0, depending only on the scalings,
such that for any R > 0,

G(−R,R)(x, y) > cH(R), |x|, |y| 6 δ1R.

Proof : By the sweeping formula, for any λ > 0 and any x, y ∈ R we have

G(−R,R)(x, y) > Gλ(−R,R)(x, y) = Uλ(y − x)− Exe−λτ(−R,R)Uλ
(
y −Xτ(−R,R)

)
.

Since EX1 = 0, we have br = −
∫
|z|>r z ν(dz), thus, by Grzywny and Szczypkowski

(2020, Lemma 2.10), there is c1 ∈ (0, 1] such that t
∣∣bh−1(1/t)

∣∣ 6 c1h
−1(1/t) for

all t > 0. Hence, by Grzywny and Szczypkowski (2020, Theorem 5.4) with θ =
(2 + c1)h−1(λ), there is c2 ∈ (0, 1] such that for all |x|, |y| < h−1(λ),

Uλ(y − x) >
∫ ∞
1/λ

e−λtp(t, y − x) dt > c2

∫ ∞
1/λ

e−λt
dt

h−1(1/t)
.

By Grzywny and Szczypkowski (2020, Lemma 2.3), there is c3 ∈ (0, 1] such that

Uλ(y − x) >
c2c3

λh−1(λ)

∫ ∞
1

e−s
ds

s1/α
= c4

1

λh−1(λ)
,

with c4 = c2c3/
∫∞
1
e−ss−1/α ds.

Next, using the estimate on the supremum of the density p(t, ·) (see Grzywny
and Szczypkowski, 2020, Theorem 3.1) we infer that

Exe−λτ(−R,R)Uλ
(
y −Xτ(−R,R)

)
6 Exe−λτ(−R,R)

∫ ∞
0

e−λt
dt

h−1(1/t)
.

By the scaling property of h−1,∫ 1/λ

0

e−λt
dt

h−1(1/t)
.

1

λ1/αh−1(λ)

∫ 1/λ

0

dt

t1/α
= cα

1

λh−1(λ)
.

Moreover, by monotonicity of h−1,∫ ∞
1/λ

e−λt
dt

h−1(1/t)
6

1

h−1(λ)

∫ ∞
1/λ

e−λt dt = e−1
1

λh−1(λ)
.

Now let t0 > 0. By Pruitt’s estimate (see Pruitt, 1981), there is c5 > 0 such that

Ex
[
τ(−R,R) 6 t0; e−λτ(−R,R)

]
6 c5t0

(
h(R) +R−1|bR|

)
.



748 T. Grzywny, Ł. Leżaj and M. Miśta

Furthermore,

Ex
[
τ(−R,R) > t0; e−λτ(−R,R)

]
6

c5e
−λt0

t0
(
h(R) +R−1|bR|

) .
Thus, if we set t0 = c6/(h(R) +R−1bR) and λ = c7

(
h(R) +R−1bR

)
, where c6 and

c7 are such that c6 6 c4/(4c5(cα + e−1)) and c7 > c−16 ln 4c5(cα+e
−1)

c4c6
, then putting

everything together yields

G(−R,R)(x, y) >
c4
2

1

λh−1(λ)
.

Since by Grzywny and Szczypkowski (2020, Lemma 2.10) we have λ ≈ h(R), using
scaling properties of h−1 we get that

G(−R,R)(x, y) &
1

Rh(R)
, |x|, |y| 6 δ1R,

with some δ1 ∈ (0, 1], and the claim follows by Proposition 2.2. �

Proposition 5.2. Suppose Reψ ∈ WLSC(α, χ) for some α > 1 and χ ∈ (0, 1].
There is δ2 6 δ1 dependent only on the scalings such that for any R > 0 any
non-empty A ⊂ (−δ2R, δ2R),

Px
(
TA < τ(−R,R)

)
>

1

2
, |x| 6 δ2R.

Proof : Let |a| 6 R/4 and D = (−R/2, 0)∪(0, R/2). By Grzywny (2014, Lemma 3)
and Proposition 2.4, there is C1 > 0 such that for |x− a| 6 R/4,

Px
(
Ta > τ(−R,R)

)
6 Px−a

(
T0 > τ(−R/2,R/2)

)
6 C1h(R/2)Ex−aτD 6 8C1Rh(R)H(x− a).

In view of Proposition 2.2, there is C2 > 0 dependent only on the scalings such that

Px
(
Ta > τ(−R,R)

)
6 C2

H(x− a)

H(R)
, |x− a| < R/4.

Since by Proposition 2.2, H ∈ WLSC(α − 1, χ̃) for some χ̃ ∈ (0, 1], we can pick
δ2 < 1/2 such that

Px
(
Ta > τ(−R,R)

)
6

1

2
, |x− a| < 2δ2R.

It follows that if x ∈ A ⊂ (−δ2R, δ2R) and a ∈ A, then

Px
(
TA > τ(−R,R)

)
6 Px

(
Ta > τ(−R,R)

)
6

1

2
,

and the proof is completed. �

Denote R0 = δ2R, where δ2 is taken from Proposition 5.2.

Proposition 5.3. Suppose Reψ ∈ WLSC(α, χ) for some α > 1 and χ ∈ (0, 1].
Then for any R > 0 and any non-negative function F such that (suppF )c ⊂
(−R,R),

ExF
(
Xτ(−R0,R0)

)
.

1

c
EyF

(
Xτ(−R,R)

)
, |x|, |y| 6 R0,

where c is taken from Lemma 5.1. The implied comparability depends only on the
scalings.
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Proof : Let us denote, for any w ∈ R and a Borel set A, ν(w,A) = ν(A − w). By
the Ikeda-Watanabe formula and Lemma 5.1,

EyF
(
Xτ(−R,R)

)
>
∫
(−R,R)c

∫ R0

−R0

F (z)G(−R,R)(y, w) ν(w, dz) dw

> c̃H(R)

∫
(−R,R)c

∫ R0

−R0

F (z) ν(w, dz) dw.

On the other hand, by the Ikeda-Watanabe formula, Proposition 2.3, subadditivity
and almost monotonicity of H,

ExF
(
Xτ(−R0.R0)

)
6
∫
(−R,R)c

∫ R0

−R0

F (z)G{0}c(x+R0, w +R0) ν(w, dz) dw

. H(R0)

∫
(−R,R)c

∫ R0

−R0

F (z) ν(w, dz) dw.

Hence,

ExF
(
Xτ(−R0,R0)

)
6

1

c
EyF

(
Xτ(−R,R)

)
.

�

Theorem 5.4. Suppose Reψ ∈ WLSC(α, χ) for some α > 1 and χ ∈ (0, 1].
Then the global scale invariant Harnack inequality holds, i.e. there is a constant
CH dependent only on the scalings such that for any R > 0 and any non-negative
harmonic function on (−R,R) we have

sup
x∈(−R/2,R/2)

h(x) 6 CH inf
x∈(−R/2,R/2)

h(x). (5.1)

Proof : Suppose first that h is bounded. Then using the approach of Bass and Levin
(2002) we infer that there exist constants c1 = c1(α, χ) and a = a(α, χ) ∈ (0, 1]
such that for any non-negative, bounded and harmonic function on (−R,R),

sup
x∈(−aR,aR)

h(x) 6 c1 inf
x∈(−aR,aR)

h(x). (5.2)

For the justification of that claim we observe that Lemma 5.1 is an analogue of Bass
and Levin (2002, Lemma 3.2), Proposition 5.2 corresponds to Bass and Levin (2002,
Proposition 3.4) and Proposition 5.3 mirrors Bass and Levin (2002, Proposition 3.5).
We also observe that Bass and Levin (2002, Lemma 3.3) in our setting follows
immediately from Pruitt’s estimates (Pruitt, 1981) and Proposition 2.2. With these
tools at our disposal, one can follow the proof of Bass and Levin (2002, Theorem 3.6)
almost directly.

Now we apply a standard chain argument to get

sup
x∈(−R/2,R/2)

h(x) 6 CH inf
x∈(−R/2,R/2)

h(x).

Indeed, observe that h is harmonic in (aR− (1− a)R, aR+ (1− a)R). Thus, after
applying (5.2) to the function h̃(x) = h(x− aR) we conclude that (5.2) holds true
also for x ∈ (−(a+ a(1− a))R, (a+ a(1− a))R) with the constant c21. By verbatim

repetition of that argument we get that (5.2) holds true for x ∈
(
− aR

∑n−1
k=0(1−

a)k, aR
∑n−1
k=0(1−a)k

)
=
(
−R

(
1− (1−a)n

)
, R
(
1− (1−a)n

))
with a constant cn1 .
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It is clear now that we get the claim with CH = cn1 for sufficiently large n which
depends only on a. It remains to observe that the boundedness assumption on h
may be removed in the similar way as in the proof of Song and Vondraček (2004,
Theorem 2.4). �

Thanks to the Harnack property we are able to prove a relation between renewal
functions and their derivatives, and provide a sharp estimate for the Green function
of the positive half-line.

Corollary 5.5. Suppose that EX1 = 0 and Reψ ∈ WLSC(α, χ) for some α > 1
and χ ∈ (0, 1]. Then there is c > 1 such that for all x > 0,

c−1
V (x)

x
6 V ′(x) 6 c

V (x)

x
,

and

c−1
V̂ (x)

x
6 V̂ ′(x) 6 c

V̂ (x)

x
,

In particular, V ′, V̂ ′ ∈WLSC(α− 2, γ̃) for some γ̃ ∈ (0, 1].

Proof : First, let us consider the second part of the claim. Let x > 0. Recall that
V̂ ′ is harmonic on (0,∞). Thus, by Theorem 5.4,

V̂ (x) >
∫ x

x/2

V̂ ′(s) ds >
1

2CH
xV̂ ′(x).

On the other hand, since Reψ is the same for X and X̂, we may apply Grzywny
(2019, Lemma 8) for V̂ . Let c1 be taken from Grzywny (2019, Lemma 8) and
δ ∈

(
0, (c1/2)1/(α−1)

]
. Then, again by Theorem 5.4,

CH(1− δ)xV̂ ′(x) >
∫ x

δx

V̂ ′(s) ds = V̂ (x)− V̂ (δx) >
(
1− c−11 δα−1

)
V̂ (x) >

1

2
V̂ (x).

Now, the lower scaling property follows immediately by Grzywny (2019, Lemma 8).
For the proof of the first part it remains to observe that by the previous remark on
the real part of the characteristic exponent, V also satisfies the Harnack inequality
(with the same constant) and one can repeat the reasoning above to finish the
proof. �

Corollary 5.6. Suppose that EX1 = 0 and Reψ ∈ WLSC(α, χ) for some α > 1
and χ ∈ (0, 1]. Then

G(0,∞)(x, y) ≈

{
V̂ (x)V ′(y), 0 < x 6 y,
V̂ ′(x)V (y), 0 < y < x.

The comparability constant depends only on the scaling characteristics.

Proof : First assume that 0 < x 6 y. Recall that

G(0,∞)(x, y) =

∫ x

0

V̂ ′(u)V ′(y − x+ u) du, 0 < x 6 y.

Since V is monotone and subadditive, for any λ > 1 and x > 0 we have

V (λx) 6 2λV (x).
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That, in view of Corollary 5.5, implies that V ′ is almost decreasing, and conse-
quently,

G(0,∞)(x, y) &
∫ x

0

V̂ ′(u)V ′(y) du = V̂ (x)V ′(y).

Next, let x < y < 2x. By Corollary 5.5, Grzywny (2019, Corollary 5), and almost
monotonicity of V ′,

G(0,∞)(x, y) .
∫ x

0

V̂ ′(u)V ′(u) du ≈
∫ x

0

du

u2h(u)
.

Using scaling property of h, Grzywny (2019, Corollary 5) and Corollary 5.5, we
conclude that

G(0,∞)(x, y) .
1

xh(x)
≈ V̂ (x)V (x)

x
.
V̂ (x)V (y)

y
. V̂ (x)V ′(y).

where the third inequality follows from monotonicity of V . Finally, for y > 2x we
use scaling property of V ′ with index α− 2 (Corollary 5.5) to obtain

V ′(y − x+ u) . V ′(y)

(
y

y − x+ u

)2−α

6 22−αV ′(y),

and the first part follows.
If 0 < y 6 x we use the Green function for the dual process to get the claim. �

Assume that EX1 = 0 and Reψ ∈ WLSC(α, χ) for some α > 1 and χ ∈ (0, 1].
By Silverstein (1980, Theorem 1), V ′ is coharmonic on (0,∞), that is harmonic on
(0,∞) for the dual process X̂. Since Reψ is symmetric, the Harnack inequality for
X̂ holds as well. Thus, by Theorem 5.4, for any 0 < δ 6 w 6 u 6 w + 2δ,

V ′(u) 6 CHV
′(w).

With that property at hand, proofs of the remaining lemmas in this section fol-
low directly results obtained in Grzywny and Ryznar (2017, Subsection 4.2) and
therefore they are omitted.

Lemma 5.7. Suppose that EX1 = 0 and Reψ ∈WLSC(α, χ) for some α > 1 and
χ ∈ (0, 1]. Let F (z) be non-negative, F (x) 6 F1(x) on R and F (x + y) 6 F1(x) +
F1(y), for x, y ∈ R. Suppose that ExF

(
Xτ(0,∞)

)
6 F (x) and ExF1

(
Xτ(0,∞)

)
6 F1(x)

for x > 0. Then there is c > 0 such that for any 0 < x < 1,

Ex
[
Xτ(0,∞)

6 −2; F
(
Xτ(0,∞)

)]
6 cC2

HF
∗
1 (1)

V̂ (x)

V̂ (1)
.

The constant c depends only on the scalings.

Proof : Follows directly by proof of Grzywny and Ryznar (2017, Lemma 4.7) with
applications of Lemma 4.6 and Lemma 2.9 replaced by Corollary 5.6 and Grzywny
(2019, Corollary 5), respectively, and using a function F1 instead of subadditivity
of F . �

Lemma 5.8. Suppose EX1 = 0 and Reψ ∈ WLSC(α, χ) for some α > 1 and
χ ∈ (0, 1]. Let F be a non-negative harmonic function on (0, 2R) for some R > 0.
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Suppose that r > 0 is such that V̂ (R) > 2V̂ (r)/c̃, where c is taken from Proposi-
tion 2.5. Then for 0 < x < r,

F (x)

F (r)
>
c

4
C
−1−R/r
H

V̂ (x)

V̂ (r)
,

where CH is the constant from the Harnack inequality (5.1).

Proof : Follows directly the proof of Grzywny and Ryznar (2017, Lemma 4.8) with
applications of Theorem 4.5 and Lemma 2.11 replaced by Theorem 5.4 and Propo-
sition 2.5, respectively. �

6. Estimates

In this Section we prove sharp two-sided estimates on the tail of the first hitting
time of the interval. Our main result here is Theorem 6.10. We also provide
an analogous estimate for the specific case of spectrally negative Lévy processes.
Afterwards, in Subsection 6.1 we point out a large class of non-symmetric Lévy
processes which satisfy its assumptions.

We begin with the following estimate on uλ.

Lemma 6.1. Assume that there exist constants a > 0, b > 0 such that | Imψ(ξ)| 6
bReψ(ξ), ξ ∈ R and aψ∗(x) 6 Reψ(x), x > 0. Then we have

a

4(1 + b2)
H

(
1

(Reψ)−1(λ)

)
6 uλ(0) 6

3π2(1 + b2)

2a
H

(
1

(Reψ)−1(λ)

)
.

Proof : Since | Imψ(ξ)| 6 bReψ(ξ) we have

1

π(1 + b2)

∫ ∞
0

dξ

λ+ Reψ(ξ)
6 uλ(0) 6

1

π

∫ ∞
0

dξ

λ+ Reψ(ξ)
.

Hence, by Grzywny and Ryznar (2017, Lemma 2.15), for λ > 0,

uλ(0) >
a

4π(1 + b2)

∫ ∞
0

(1− cos(s/(Reψ)−1(λ)))
ds

Reψ(s)

and

uλ(0) 6
3π2(1 + b2)

2a

∫ ∞
0

(1− cos(s/(Reψ)−1(λ)))
ds

Reψ(s)
.

Using | Imψ(ξ)| 6 bReψ(ξ) we infer that

πH(x) 6
∫ ∞
0

(1− cos(xs))
ds

Reψ(s)
6 (1 + b2)πH(x),

which ends the proof. �

Lemma 6.2. Suppose that EX1 = 0 and Reψ ∈WLSC(α, χ) for some α > 1 and
χ ∈ (0, 1]. Then there exists c = c(α, χ) such that, for any a, x > 0,

Kλ(x) > c(1− e−a)uλ(0), λ > ah(x).

Proof : Since
Kλ(x) = λuλ(0)L[Px(T0 > ·)](λ),
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it is enough to prove that L[Px(T0 > ·)](λ) > c/λ, if λ > ah(x). Using estimates
of the tail distribution of the first exit time from the positive half-line (Grzywny,
2019, Theorem 6) we conclude that there is c1 such that

L[Px(T0 > ·)](λ) > c1

∫ ∞
0

(
1 ∧ V̂ (x)

V̂
(
h−1(1/s)

)) e−λs ds
> c1

∫ 1/h(x)

0

e−λs ds > c1(1− e−a)λ−1.

�

Proposition 6.3. Assume that there exist constants a > 0, b > 0 such that
| Imψ(ξ)| 6 bReψ(ξ), ξ ∈ R and aψ∗(x) 6 Reψ(x) for x > 0. Then

Px(T0 > t) 6
4(e− 1)

e

(1 + b2)

a

H(x)

H
(
1/(Reψ)−1(1/t)

) ∧ 1.

Proof : Recall that

λL (Px(T0 > ·)) (λ) =
[
1− Exe−λT0

]
=
uλ(0)− uλ(−x)

uλ(0)
=
Kλ(−x)

uλ(0)
.

By Lemma 6.1,

L (Px(T0 > ·)) (λ) 6
4(1 + b2)

a

H(x)

H
(
1/(Reψ)−1(λ)

) .
Therefore, using Bogdan et al. (2014, Lemma 5) we conclude that

Px(T0 > t) 6
e

e− 1

4(1 + b2)

a

H(x)

H
(
1/(Reψ)−1(1/t)

) .
�

Corollary 6.4. Assume that EX1 = 0 and Reψ ∈ WLSC(α, χ) for some α > 1
and χ ∈ (0, 1]. Then there is c > 0 such that for all t > 0,

Px(T0 > t) 6 c
H(x)

H
(
h−1(1/t)

) ∧ 1.

The constant c depends only on the scalings.

Proof : Using Grzywny (2019, Lemma 12) and Grzywny and Szczypkowski (2020,
Remark 3.2) we see that the assumptions of Proposition 6.3 are satisfied. Now
it remains to apply comparability of 1/(Reψ)−1 and h−1 together with Proposi-
tion 2.2. �

Lemma 6.5. Suppose EX1 = 0 and Reψ ∈ WLSC(α, χ) for some α > 1 and
χ ∈ (0, 1]. If x > 1 and t < 1/h(1) then

Px(TB1
> t) ≈ V̂ (x− 1)

V̂
(
h−1(1/t)

) ∧ 1.

The comparability constant depends only on the scalings.
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Proof : Of course, the lower bound is a consequence of the estimates on the tail
for the first exit time from a half-line, that is Grzywny (2019, Theorem 6). By
subadditivity of V̂ , it is enough to consider 1 < x < 1 + h−1(1/t)/2, because if x is
larger, by the lower bound the probability is comparable to 1.

To prove the estimate from the above let us denote r = h−1(1/t). Notice that
r < 1 and we have

Px(TB1
> t) 6 Px

(
τ(1,1+r) > t

)
+ Px

(∣∣Xτ(1,1+r) − 1
∣∣ > r

)
.

Combining Grzywny (2014, Lemma 3) and Grzywny (2019, the proof of Proposi-
tion 4) we obtain

Px(|Xτ(1,1+r) − 1| > r) 6 cExτ(1,1+r)h(r) 6 cV̂ (x− 1)V (r)h(r),

for some c > 0. Finally by Grzywny (2019, Corollary 5),

Px(|Xτ(1,1+r) − 1| > r) 6 c
V̂ (x− 1)

V̂ (r)
.

This together with Grzywny (2019, Theorem 6) imply

Px(TB1 > t) 6 c
V̂ (x− 1)

V̂ (r)
.

�

Lemma 6.6. Assume that EX1 = 0 and Reψ ∈WLSC(α, χ) for some α > 1 and
χ ∈ (0, 1]. If x > 1 and t > 1/h(1) then

Px(TB1
> t) 6 c

V̂ (x− 1)

V̂ (x)

H(x)

H
(
h−1(1/t)

) ∧ 1 ≈ V̂ (x− 1)

V̂ (x)

H(x)

t/h−1(1/t)
∧ 1.

The constant c depends only on the scalings.

Proof : If x > 2 we have, by subadditivity and monotonicity of V̂ , V̂ (x−1)
V̂ (x)

> 1
2 ,

hence the claim follows from Grzywny (2019, Lemma 12) and Corollary 6.4.
Let 1 < x < 2. By Grzywny (2019, Theorem 6),

Px(τ(1,∞) > t) ≈ 1 ∧ V̂ (x− 1)

V̂
(
h−1(1/t)

) .
Since t > 1/h(1), using subadditivity of V̂ and Grzywny and Szczypkowski (2020,

Lemma 2.1) we obtain

Px(τ(1,∞) > t/2) 6 c1
V̂ (x− 1)

V̂ (1)

V̂ (1)

V̂
(
h−1(1/t)

) 6 c2 V̂ (x− 1)

V̂ (1)
P2(τ(1,∞) > t)

6 c3
V̂ (x− 1)

V̂ (x)
P1(T0 > t).

Since
Px(TB1 > t) 6 Px(τ(1,∞) > t/2) + ExPXτ(1,∞) (TB1 > t/2),
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due to Proposition 2.2 and Corollary 6.4, it is enough to estimate the second term.
We have

ExPXτ(1,∞) (TB1
> t/2) 6 Ex[Xτ(1,∞)

6 −1;PXτ(1,∞) (T1 > t/2)]

= Ex−1[Xτ(0,∞)
6 −2;PXτ(0,∞) (T0 > t/2)].

Let F (z) = Pz(T0 > t/2). Observe that

F (z) = Pz(τ(0,∞) > t/2) + Ez
[
τ(0,∞) 6 t/2; PXτ(0,∞)

(
T0 > t/2− τ(0,∞)

)]
> Ez

[
PXτ(0,∞)

(
T0 > t/2

)]
= EzF

(
Xτ(0,∞)

)
.

Furthermore,

F (x+ y) 6 Px+y(Tx > t/4) + Ex
[
Tx 6 t/4; PXTx (T0 > t/4)

]
6 Py(T0 > t/4) + Px(T0 > t/4).

Hence, F and F1(z) = Pz(T0 > t/4) satisfy the assumptions of Lemma 5.7. There-
fore, the conclusion follows from Lemma 5.7 and Proposition 6.3. �

Lemma 6.7. Assume EX1 = 0 and Reψ ∈ WLSC(α, χ) for some α > 1 and
χ ∈ (0, 1]. If x0 > 1, 1 < x 6 x0 and t > 1/h(1), then there is c = c(x0, α, χ) > 0
such that

Px(TB1
> t) > c

V̂ (x− 1)

V̂ (x0)
Px0(T0 > 2t).

Proof : With Lemma 5.8 and Grzywny (2019, Theorem 6) at hand, the proof is the
same as the first part of the proof of Grzywny and Ryznar (2017, Lemma 5.4) and
therefore it is omitted. �

Lemma 6.8. Assume that EX1 = 0 and Reψ ∈WLSC(α, χ) for some α > 1 and
χ ∈ (0, 1]. Suppose that there exist constants c > 0 and a > 0 such that for x > 0,
Kλ(x) > cH(x), λ 6 ah(x). Then there is c̃ = c̃(a, α, c) > 0 such that

Px(T0 > t) > c̃

(
1 ∧ H(x)

H
(
h−1(1/t)

)), x, t > 0.

We remark that in case of symmetric Lévy processes the last assumption follows
from Grzywny and Ryznar (2017, Lemma 2.15).

Proof : By Lemma 6.1, comparability of h and ψ, and Proposition 2.2,

λL(Px(T0 > ·))(λ) ≈ Kλ(x)

H (h−1(λ))
.

Let x > 0, λ > 0 and s > 1. Combining Lemma 6.2 with the assumption on Kλ

we obtain, for λ > ah(x) or λs 6 ah(x),

Kλs(x)

Kλ(x)
. 1.

If λs > ah(x) > λ we have, by Lemma 6.1 and almost monotonicity of H,

Kλs(x)

Kλ(x)
≈ uλ(0)

H(x)
≈
H
(
h−1(λs)

)
H(x)

.
H
(
h−1(ah(x))

)
H(x)

. 1.
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Thus,
Kλs(x)

Kλ(x)
6 c,

and consequently,

L(Px(T0 > ·))(λs)
L(Px(T0 > ·))(λ)

6 c
λ

λs

Kλs(x)

Kλ(x)

H
(
h−1(λ)

)
H (h−1(λs))

6 c
h−1(λs)

h−1(λ)
6 cs−1/2,

where c depends only on the scalings and a. Hence, by Bogdan et al. (2014, Lemma
13) there exists a constant c1 that depends only on the scalings such that

Px(T0 > t) > c1
K1/t(x)

H
(

1
ψ−1(1/t)

) .
For t > 1/ah(x) we get the claim by the comparability K1/t with K and for t 6
1/(ah(x)) we use estimates for the positive half-line (Grzywny, 2019, Theorem 6).

�

Proposition 6.9. Assume EX1 = 0 and Reψ ∈WLSC(α, χ) for some α > 1 and
χ ∈ (0, 1]. Suppose that there exist constants c > 0 and a > 0 such that for x > 0,
Kλ(x) > cH(x), λ 6 ah(x). Then there is x0 > 2, which depends only on the
scaling characteristics and a, such that for x > x0 we have, for t > 1/h(1),

Px(TB1 > t) > c̃

(
H(|x|)

H(h−1(1/t))
∧ 1

)
≈
(

H(|x|)
t/h−1(1/t)

∧ 1

)
.

The constant c̃ depends only on the scalings and a.

The proof is very similar to the proof of Grzywny and Ryznar (2017, Proposition
5.3) with modifications like in the proof above therefore it is omitted.

We now proceed to the proof of the main result of this Section.

Theorem 6.10. Suppose that EX1 = 0 and Reψ ∈ WLSC(α, χ) for some α > 1
and χ ∈ (0, 1]. Then for any R > 0 and x > R,

Px
(
TBR > t

)
≈ V̂ (x−R)

V̂
(
h−1(1/t)

) ∧ 1, t < 1/h(R).

Furthermore, if we additionally assume that there exist constants c1 > 0 and a > 0
such that for x > 0, Kλ(x) > c1H(x), λ 6 ah(x), then

Px
(
TBR > t

)
≈ V̂ (x− 1)

V̂ (x)

H(x)

H
(
h−1(1/t)

)∧1 ≈ V̂ (x− 1)

V̂ (x)

H(x)

t/h−1(1/t)
∧1, t > 1/h(R).

Proof : The case R = 1 follows by Lemmas 6.5 and 6.6, and Proposition 6.9. Now
we may proceed as in the proof of Grzywny and Ryznar (2017, Theorem 5.5) to
obtain the claim for any R > 0. �

Let us turn our attention to the specific class of Lévy processes.

Lemma 6.11. Suppose EX1 = 0, Reψ ∈WLSC(α, χ) for some α > 1, χ ∈ (0, 1],
and let R ∈ [0,∞). Assume that∫ 1

0

ν(y,∞)

h(y)

dy

y
<∞.



Hitting probabilities for Lévy processes on the real line 757

Then

Px
(
TBR > t

)
≈ H(x−R)

H
(
h−1(1/t)

) ∧ 1, R < x < R+ 1, 0 < t < 1/h(1).

Proof : A consequence of Proposition 14 and Corollary 5 in Grzywny (2019) is
Ṽ (x) ≈ 1

xh(x) , 0 < x 6 1. That together with Proposition 2.2 imply Ṽ (x) ≈
H(x), 0 6 x 6 1. Hence the claim holds due to Grzywny (2019, Theorem 6) and
Corollary 6.4. �

Similarly the consequence of Grzywny (2019, Proposition 15 and Section 3) is
the following.

Lemma 6.12. Suppose EX1 = 0 and Reψ ∈ WLSC(α, χ) with α > 1, χ ∈ (0, 1],
and let R ∈ [0,∞). Assume that any of the following holds true:

(i) EX2
1 <∞,

(ii) there are C, r > 0 such that ν(x,∞) 6 Cν(−∞,−x), x > r, and∫ ∞
1

ν(y,∞)

h(y)

dy

y
<∞.

Then
Px
(
TBR > t

)
≈ H(x−R)

H
(
h−1(1/t)

) ∧ 1, x > R+ 1, t > 0.

Combining the above two lemmas and the fact that for spectrally negative pro-
cesses T0 = τ(−∞,0) if the process starts from negative half-line, we obtain the
following result.

Corollary 6.13. Suppose EX1 = 0 and Reψ ∈WLSC(α, χ) with α > 1, χ ∈ (0, 1],
and let R ∈ [0,∞). Assume that X is spectrally negative, i.e. ν(0,∞) = 0. Then

Px
(
TBR > t

)
≈ H(x−R)

H
(
h−1(1/t)

) ∧ 1, x > R, t > 0,

and
Px
(
TBR > t

)
≈ |x+R|
h−1(1/t)

∧ 1, x < −R, t > 0.

6.1. A class of processes which satisfy the assumptions of Theorem 6.10. Let us
now provide an example of a class of non-symmetric Lévy processes which satisfy
the assumptions of Theorem 6.10. As one can suspect, the main difficulty here is
the lower estimate on Kλ for small λ, which is far from obvious for general non-
symmetric process, even if the remaining two assumptions are satisfied. Note that if
process is symmetric then the third assumption follows from Grzywny and Ryznar
(2017, Lemma 2.15).

Let ν be of the form (3.2) such that Reψ ∈ WLSC(α, χ), for some α > 1 and
χ ∈ (0, 1]. Since

∫
|z|>1

|z|ν(dz) <∞, the characteristic exponent ψ is differentiable
and

(Imψ)′(ξ) =

∫
R
z(1− cos ξz) ν(dz) = (Cu − Cd)

∫ ∞
0

z(1− cos ξz) ν0(dz), ξ ∈ R.

Now we specify ν0. Assume that 0 < β1 6 β2 < 1 and 0 < a2 6 1 6 a1. Let
ν0(dz) = f(z)

z2 dz, where f is non-negative, non-increasing and satisfies

a2λ
−β2f(z) 6 f(λz) 6 a1λ

−β1f(z), λ > 1, z > 0.
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For such ν0 it is easy to verify that Reψ is non-decreasing on [0,∞) and by Bogdan
et al. (2014, Proposition 28), there is c1 = c1(β1, β2, a1, a2) such that∣∣(Imψ)′(ξ)

∣∣ 6 c|Cu − Cd|f(1/ξ) 6 c1
|Cu − Cd|
Cu + Cd

Reψ(ξ)

ξ
, ξ ∈ R.

Next, we obtain the lower bound for Kλ for small λ. We have, for x > 0,

Kλ(x) =
1

π

∫ ∞
0

(1− cosxξ)
λ+ Reψ(ξ)

(λ+ Reψ(ξ))2 + (Imψ(ξ))2
dξ

+
1

π

∫ ∞
0

sinxξ
Imψ(ξ)

(λ+ Reψ(ξ))2 + (Imψ(ξ))2
dξ

=
1

2
Hλ(x) + Iλ(x).

Since | Imψ(ξ)| 6 c2 Reψ(ξ), ξ ∈ R, where c2 = c2(β1, a1), by Grzywny and Ryznar
(2017, Lemma 2.15), for x > 0 and λ 6 h(x),

Hλ(x) >
1

π(1 + c22)

∫ ∞
0

(1− cosxξ)
dξ

λ+ Reψ(ξ)
> c3

1

xh(x)
,

where c3 depends only on β1 and a1. The integration by parts implies, for x > 0,

πxIλ(x) =

∫ ∞
0

(1− cosxξ)
g(ξ)

((λ+ Reψ(ξ))2 + (Imψ(ξ)2)
2 dξ,

where

g(ξ) = 2 Imψ(ξ)
(
(Reψ)′(ξ)(λ+ Reψ(ξ)) + (Imψ)′(ξ) Imψ(ξ)

)
− (Imψ)′(ξ)

(
(λ+ Reψ(ξ))2 + (Imψ(ξ)2

)
.

Assume that Cu > Cd, then Imψ, (Imψ)′, (Reψ)′ are non-negative on the positive
half-line, therefore

πxIλ(x) > −
∫ ∞
0

(1− cosxξ)
(Imψ)′(ξ)

(λ+ Reψ(ξ))2 + (Imψ(ξ)2
dξ

> −c1
Cu − Cd
Cu + Cd

∫ ∞
0

(1− cosxξ)
Reψ(ξ)

ξ
(
(λ+ Reψ(ξ))2 + (Imψ(ξ)2

) dξ,
> −c1

Cu − Cd
Cu + Cd

∫ ∞
0

(1− cosxξ)
1

ξReψ(ξ)
dξ

> −c4
Cu − Cd
Cu + Cd

1

Reψ(1/x)
,

where in the last inequality we used Bogdan et al. (2014, Corollary 22) and c4
depends only on β1, β2, a1 and a2. Finally we obtain

Kλ(x) >
1

xh(x)

(
c3 −

c4
π

Cu − Cd
Cu + Cd

)
, λ 6 h(x).

Hence, for small Cu−CdCu+Cd
we have, for x > 0,

Kλ(x) ≈ 1

xh(x)
, λ 6 h(x).

For x < 0 additional assumption on f(s) − sf ′(s) are needed in order to provide
similar calculations.
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