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Abstract. We consider a random walk on the hyperoctahedral group Bn generated
by the signed permutations of the forms (i, n) and (−i, n) for 1 ≤ i ≤ n. We call
this the flip-transpose top with random shuffle on Bn. We find the spectrum of
the transition probability matrix for this shuffle. We prove that the mixing time
for this shuffle is of order n log n. We also show that this shuffle exhibits the
cutoff phenomenon. In the appendix, we show that a similar random walk on the
demihyperoctahedral group Dn also has a cutoff at

(
n− 1

2

)
log n.

1. Introduction

Card shuffling problems are mathematically analysed by considering them as
random walks on symmetric groups (Diaconis, 1988b; Flatto et al., 1985; Diaconis
and Shahshahani, 1981; Saloff-Coste, 2004; Schoolfield, 2005, 2002). In this paper,
our main aim is to study the properties of a random walk on Coxeter groups of type
B (Björner and Brenti, 2005). This work is a generalisation of the transpose top with
random shuffle (Flatto et al., 1985; Diaconis, 1988a) to the signed permutations. A
signed permutation (Björner and Brenti, 2005) is a bijection π from {±1, . . . ,±n}
to itself satisfying π(−i) = −π(i) for all 1 ≤ i ≤ n. A signed permutation is
completely determined by its image on the set [n] := {1, . . . , n}. Given a signed
permutation π, we write it in window notation by [π1, . . . , πn], where πi is the image
of i under π. The set of all signed permutations forms a group under composition
and is known as the hyperoctahedral group and is denoted by Bn. The subset of Bn
consisting of those signed permutations having even number of negative entries in
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their window notation form a subgroup of Bn, called the demihyperoctahedral group
and is denoted by Dn.

Suppose there are n cards labelled from 1 to n and each card has two orientations
namely ‘face up’ and ‘face down’. Given an arrangement of these n cards in a row,
we associate a signed permutation [π1, π2, . . . , πn] to it in the following way: πi is
the label of the ith card (counting started from left) with sign{

positive, if the orientation of the card is ‘face up’ and
negative, if the orientation of the card is ‘face down’.

Thus every arrangement of the n cards in a row represents a signed permutation in
its window notation. We consider the following shuffle on the set of all arrangements
of these n cards in a row: Given an arrangement, either interchange the last card
with a random card, or interchange the last card with a random card and flip both
of them, with equal probability. We call this shuffle the flip-transpose top with
random shuffle. Formally, this shuffle is the random walk on Bn driven by the
probability measure P on Bn, given by

P (π) =


1

2n , if π = id, the identity element of Bn,
1

2n , if π = (i, n) for 1 ≤ i ≤ n− 1,
1

2n , if π = (−i, n) for 1 ≤ i ≤ n,
0, otherwise.

(1.1)

We study the flip-transpose top with random shuffle on Bn using the representation
theory of Bn. However, the moves are not the same for elements of the same
conjugacy class (i.e., the generating measure does not take the same value at the
elements of the same conjugacy class, we abbreviate such shuffle/walk as the non-
conjugacy class shuffle/walk). In general, it is not easy to study non-conjugacy class
walks on finite groups using the representation theory of the underlying groups.
Some examples of such non-conjugacy class walks are the random-to-top shuffle
(Aldous and Diaconis, 1986; Diaconis et al., 1992) (this is an example of the Tsetlin
library problem Cetlin, 1963), the random-to-random shuffle (Diaconis and Saloff-
Coste, 1993; Ayyer et al., 2017; Dieker and Saliola, 2018; Bernstein and Nestoridi,
2019), the one-sided transposition shuffle on the symmetric group (Bate et al.,
2019), and its generalisation to the hyperoctahedral group (Matheau-Raven, 2020).
In this paper, we will show that the flip-transpose top with random shuffle on Bn
satisfies the cutoff phenomenon and determine the mixing time for this random
walk. Particularly if ||P ∗k − UBn ||TV denotes the total variation distance between
the distribution after k transitions and the stationary distribution, then the main
results of this paper are the following:

Theorem 1.1. For the flip-transpose top with random shuffle on Bn, we have the
following:

(1) ||P ∗k − UBn ||TV <
√

2(e+ 1) e−c + o(1), for k ≥ n log n+ cn and c > 0.
(2) lim

n→∞
||P ∗kn − UBn ||TV = 0, for any ε ∈ (0, 1) and kn = b(1 + ε)n log nc.

Theorem 1.2. For the flip-transpose top with random shuffle on Bn, we have the
following:

(1) For large n, ||P ∗k − UBn ||TV ≥ 1 − 2(3+3e−c+o(1)(e−2c+e−c+1))
(1+(1+o(1))e−c)2

, when k =

n log n+ cn and c� 0.



Total variation cutoff for the flip-transpose top with random shuffle 987

(2) lim
n→∞

||P ∗kn − UBn ||TV = 1, for any ε ∈ (0, 1) and kn = b(1− ε)n log nc.

We will first recall some concepts and terminologies which we will use in this
paper frequently.

1.1. Representation theoretic background. Let V be a finite-dimensional complex
vector space and GL(V ) be the group of all invertible linear operators from V
to itself under the composition of linear mappings. Elements of GL(V ) can be
thought of as invertible matrices over C. Let G be a finite group, a mapping
ρ : G→ GL(V ) is said to be a linear representation of G if ρ(g1g2) = ρ(g1)ρ(g2) for
all g1, g2 in G. The dimension of the vector space V is said to be the dimension of
the representation ρ and is denoted by dρ. V is called the G-module corresponding
to the representation ρ in this case. If C[G] = {

∑
i cigi | ci ∈ C, gi ∈ G}, then we

define the right regular representation R : G −→ GL(C[G]) of G by

R(g)

(∑
h∈G

Chh

)
=
∑
h∈G

Chhg, where Ch ∈ C.

Let H be a subgroup of G. The restriction of the representation ρ to H is denoted
by ρ ↓GH and is defined by ρ ↓GH (h) := ρ(h) for all h ∈ H. The trace of the matrix
ρ(g) is said to be the character value of ρ at g and is denoted by χρ(g). A vector
subspace W of V is said to be stable ( or ‘invariant ’) under ρ if ρ(g) (W ) ⊂ W
for all g in G. The representation ρ is irreducible if V is non-trivial and V has no
non-trivial proper stable subspace. Two representations (ρ1, V1) and (ρ2, V2) of G
are said to be isomorphic if there exists an invertible linear map T : V1 → V2 such
that the following diagram commutes for all g ∈ G:

V1 V1

V2 V2

ρ1(g)

T T

ρ2(g)

If V1 ⊗ V2 denotes the tensor product of the vector spaces V1 and V2, then the
tensor product of two representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2) is a
representation denoted by (ρ1 ⊗ ρ2, V1 ⊗ V2) and defined by,

(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) = ρ1(g)(v1)⊗ ρ2(g)(v2) for v1 ∈ V1, v2 ∈ V2 and g ∈ G.

We will state some results from the representation theory of finite groups without
proof. For more details, see Prasad (2015); Sagan (2001); Serre (1977).

1.2. Random walks on finite groups. We first recall some terminology. Let p and q
be two probability measures on a finite group G. The Fourier transform p̂ of p
at the representation ρ is defined by the matrix

∑
x∈G p(x)ρ(x). We define the

convolution p ∗ q of p and q by

(p ∗ q)(x) :=
∑

{u,v∈G|uv=x}

p(u)q(v).

It can be easily seen that (̂p ∗ q)(ρ) = p̂(ρ)q̂(ρ). For the right regular representation
R, the matrix p̂(R) can be thought of as the action of the group algebra element∑
g∈G p(g)g on C[G] by multiplication on the right.
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A random walk on a finite group G driven by a probability measure p is a discrete
time Markov chain with state space G and transition probabilities Mp(x, y) =
p(x−1y), x, y ∈ G. The transition matrix Mp is the transpose of p̂(R). If p∗k
denotes the k-fold convolution of p with itself, then the probability of reaching
state y starting from state x using k transitions is p∗k(x−1y). The random walk
is said to be irreducible if given any two states u and v there exists t (depending
on u and v) such that p∗t(u−1v) > 0. We now state the lemma regarding the
irreducibility of the random walk on G driven by p.

Lemma 1.3 (Saloff-Coste, 2004, Proposition 2.3). Let G be a finite group and p
be a probability measure on G. The random walk on G driven by p is irreducible if
and only if the support of p generates G.

A probability vector (a row vector with non-negative components which sum
to one) Π is said to be a stationary distribution of the random walk if Π is a
left eigenvector of the transition matrix with eigenvalue 1. There exists a unique
stationary distribution for each irreducible random walk. If the random walk on G
driven by p is irreducible, then the stationary distribution for this random walk is
the uniform distribution on G (Saloff-Coste, 2004, Section 2.2). From now on, we
denote the uniform distribution on G by UG. Let us consider a random walk and
fix one state x ∈ G. The greatest common divisor of the set of all times when it
is possible for the walk to return to the starting state x is said to be the period of
the state x. All the states of an irreducible random walk have the same period (see
Levin et al., 2009, Lemma 1.6). An irreducible random walk is said to be aperiodic
if the common period for all its states is 1.

Let µ and ν be two probability distributions on Ω. The total variation distance
between µ and ν is defined by

||µ− ν||TV := sup
A⊂Ω
|µ(A)− ν(A)|.

The total variation distance between two discrete distributions µ and ν is half the
`1 distance between them (see Levin et al., 2009, Proposition 4.2). If the random
walk on a finite group G driven by a probability measure on G is irreducible and
aperiodic, then the distribution after the kth transition converges to the uniform
measure on G as k →∞. We now define the total variation cutoff phenomenon.

Definition 1.4. Let {Gn}∞0 be a sequence of finite groups and pn be probability
measures on Gn, n ≥ 0. For each n ≥ 0, consider the irreducible and aperiodic ran-
dom walks on Gn driven by pn. We say that the total variation cutoff phenomenon
holds for the family {(Gn, pn)}∞0 if there exists a sequence {τn}∞0 of positive real
numbers such that the following hold:

(1) lim
n→∞

τn =∞,
(2) For any ε ∈ (0, 1) and kn = b(1 + ε)τnc, lim

n→∞
||p∗knn − UGn ||TV = 0 and

(3) For any ε ∈ (0, 1) and kn = b(1− ε)τnc, lim
n→∞

||p∗knn − UGn ||TV = 1.

Here bxc denotes the floor of x (the largest integer less than or equal to x).

Informally, we will say that {(Gn, pn)}∞0 has a total variation cutoff at time τn.
Roughly the cutoff phenomenon depends on the multiplicity of the second largest
eigenvalue of the transition matrix (Diaconis, 1996).
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Proposition 1.5. The flip-transpose top with random shuffle on Bn is irreducible
and aperiodic.

Proof : We know that the set {(−1, 1), (1, 2), (2, 3), . . . , (n− 1, n)} generates Bn.
Let i be any integer from [n− 1]. Then

(i, i+ 1) = (i+ 1, n)(i, n)(i+ 1, n) and (−1, 1) = (1, n)(−n, n)(1, n).

Therefore the support of the measure P generates Bn, and hence the chain is
irreducible by Lemma 1.3. Given any π ∈ Bn, the set of all times when it is
possible for the chain to return to the starting state π contains the integer 1 (∵ the
identity element of Bn is in support of P ). Therefore the period of the state π is 1
and hence from irreducibility all the states of this chain have period 1. Thus this
chain is aperiodic. �

Proposition 1.5 says that the flip-transpose top with random shuffle on Bn has
unique stationary distribution UBn and the distribution after the kth transition will
converge to its stationary distribution as k →∞.

The plan of the rest of the paper is as follows: In Section 2, we will find the
spectrum of the transition matrix P̂ (R). We will find an upper bound of ||P ∗k −
UBn ||TV for k ≥ n log n+cn, c > 0 in Section 3. Finally, in Section 4, we will find a
lower bound of ||P ∗k−UBn ||TV for k = n log n+ cn, c� 0 (large negative number)
and show that the total variation cutoff for the shuffle on Bn occurs at n log n.

In Appendix A, we give an outline of the irreducible representations of the demi-
hyperoctahedral group Dn. We also give an idea for the deduction of irreducible
representations of Dn from that of Bn. In Appendix B, we consider a random walk
on Dn analogous to the flip-transpose top with random shuffle on Bn and show
that this random walk exhibits the total variation cutoff phenomenon with cutoff
at
(
n− 1

2

)
log n.

2. Spectrum of The Transition Matrix P̂ (R)

In this section, we find the eigenvalues of the transition matrix P̂ (R), the Fourier
transform of P at the right regular representation R of Bn. To find the eigenvalues
of P̂ (R), we will use the representation theory of the hyperoctahedral group Bn.
We briefly discuss the representation theory of Bn. For more details, one can see
Mishra and Srinivasan (2016); Geissinger and Kinch (1978); Pushkarev (1997).

Definition 2.1. A partition λ of a positive integer n is denoted by λ ` n and
is defined by a finite sequence of positive integers (λ1, λ2, . . . , λ`) satisfying λ1 ≥
λ2 ≥ · · · ≥ λ` > 0 and |λ| :=

∑`
i=1 λi = n. The Young diagram of shape λ is an

arrangement of n boxes into ` rows in a left justified way such that the ith row
contains λi boxes for 1 ≤ i ≤ `. We use the same notation λ to express both the
partition and the Young diagram. The content of a box in row i and column j
of a Young diagram is the integer j − i. Given a Young diagram λ, its conjugate
λ′ is obtained by reflecting λ with respect to the diagonal consisting of boxes with
content 0. A standard Young tableau of shape λ is a filling of the boxes of the Young
diagram of shape λ with the numbers 1, . . . , n such that the numbers are increasing
along each row and each column. The set of all standard Young tableaux of shape
λ is denoted by tab(λ), and the number of standard Young tableaux of shape λ is
denoted by dλ.
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Figure 2.1. All elements of D3.

Definition 2.2. Let n be a positive integer. A (Young) double-diagram µ with n
boxes is an (ordered) pair of Young diagrams such that the total number of boxes
is n. We define ||µ|| = n. The set of all double-diagrams with n boxes is denoted
by Dn. For example, the double-diagrams with 3 boxes are listed in Figure 2.1.
A standard (Young) double-tableau of shape µ is obtained by taking the double-
diagram µ and filling its ||µ|| boxes (bijectively) with the numbers 1, 2, . . . , ||µ|| such
that the numbers in the boxes strictly increase along each row and each column
of all Young diagrams occurring in µ. Let tabD(n, µ), where µ ∈ Dn, denote the
set of all standard double-tableaux of shape µ and let tabD(n) = ∪

µ∈Dn

tabD(n, µ).

For example an element of tabD(8) is given in Figure 2.2. Let T ∈ tabD(n, µ) and
i ∈ [n]. Let bT (i) be the box of the Young diagram in µ, in which the number
i resides. We denote the content of the box bT (i) by c(bT (i)). For the standard
double-tableau given in Figure 2.2, we have c(bT (1)) = 0, c(bT (2)) = 1, c(bT (3)) =
0, c(bT (4)) = 1, c(bT (5)) = −1, c(bT (6)) = −1, c(bT (7)) = 0, c(bT (8)) = 2.

(
3 4 8
6 7 ,

1 2
5

)
Figure 2.2. An element of tabD(8).

Definition 2.3. The Young-Jucys-Murphy elements X1, X2, . . . , Xn of C[Bn] are

defined by X1 = 0 and Xi =

i−1∑
k=1

(k, i) +

i−1∑
k=1

(−k, i), for all 2 ≤ i ≤ n.

Definition 2.4. Let µ ∈ B̂n (set of all irreducible representations of Bn) and
consider the Bn-module V µ. Since the branching is simple (Mishra and Srinivasan,
2016, Section 3), the decomposition into irreducible Bn−1-modules is canonical and
is given by

V µ = ⊕
λ
V λ,

where the sum is over all λ ∈ B̂n−1, with λ↗ µ (i.e. there is an edge from λ to µ
in the branching multi-graph). Iterating this decomposition of V µ into irreducible
B1-modules, we obtain

V µ = ⊕
T
vT , (2.1)
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where the sum is over all possible chains T = µ1 ↗ µ2 ↗ · · · ↗ µn with µi ∈ B̂i
and µn = µ. We call (2.1) the Gelfand-Tsetlin decomposition of V µ and each vT in
(2.1) a Gelfand-Tsetlin vector of V µ. We note that if 0 6= vT , then C[Bi]vT = V µi .
The Gelfand-Tsetlin vectors of V µ form a basis of V µ.

The irreducible representations ofBn are parametrised by elements ofDn (Mishra
and Srinivasan, 2016, Lemma 6.2, Theorem 6.4). We may index the Gelfand-Tsetlin
vectors of V µ by standard double-tableaux of shape µ for µ ∈ Dn (Mishra and Srini-
vasan, 2016, Theorem 6.5) and write the Gelfand-Tsetlin decomposition as

V µ = ⊕
T∈tabD(n,µ)

vT .

Let µ =
(
µ(1), µ(2)

)
∈ Dn and T ∈ tabD(n, µ). Then the action (Mishra and

Srinivasan, 2016, Theorem 6.5) of the Young-Jucys-Murphy elements Xi and the
signed permutation (i,−i) on vT are given by

Xi vT = 2c(bT (i)) vT for all i ∈ [n],

(−i, i) vT =

{
vT if bT (i) is in µ(1)

−vT if bT (i) is in µ(2)
for all i ∈ [n].

(2.2)

Remark 2.5. The components of the elements of Dn are indexed by the irreducible
representations of the cyclic group of order two. In this paper, we adopt the con-
vention that the first component of the elements of Dn is indexed by the trivial
representation.

We now come to our main problem of finding the eigenvalues of the transition
matrix P̂ (R). The eigenvalues of P̂ (R) are the eigenvalues of 1

2n (id +(−n, n) +Xn)
acting on C[Bn] by multiplication on the right. The following theorem gives the
eigenvalues of P̂ (R).

Theorem 2.6. For each µ =
(
µ(1), µ(2)

)
∈ Dn satisfying

m := |µ(1)| ∈
{

0, 1, . . . ,
⌊n

2

⌋}
,

let T ∈ tabD(n, µ). Then c(bT (n))+1
n and c(bT (n))

n are eigenvalues of P̂ (R) with
multiplicity M(µ) each, where

M(µ) =

{ (
n
m

)
dµ(1)dµ(2) , if 0 ≤ m < n

2 ,
1
2

(
n
m

)
dµ(1)dµ(2) , if m = n

2 (when n is even).
(2.3)

Proof : For each µ =
(
µ(1), µ(2)

)
∈ Dn, we have another double-diagram µ̃ with n

boxes such that µ̃ =
(
µ(2), µ(1)

)
. We first find the eigenvalues of the matrix P̂ (R)

in the irreducible Bn-modules V µ and V µ̃. For each T = (T1, T2) ∈ tabD(n, µ),
T̃ = (T2, T1) ∈ tabD(n, µ̃). If bT (n) is in µ(1), then bT̃ (n) is in µ̃(2). Without loss of
generality, let us assume that bT (n) is in µ(1) and bT̃ (n) is in µ̃(2). Let us recall vT
(respectively vT̃ ) is the Gelfand-Tsetlin vector of V µ (respectively V µ̃). From (2.2)
we have (−n, n) vT = vT and Xn vT = 2c(bT (n)) vT , which implies the following:

(id +(−n, n) +Xn) vT = (1 + 1 + 2c(bT (n))) vT = (2c(bT (n)) + 2) vT . (2.4)

Since {vT : T ∈ tabD(n, µ)} form a basis of V µ, the eigenvalues of the action of
(id +(−n, n) +Xn) on V µ can be obtained from (2.4). Now using (2.2) again we
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have (−n, n) vT̃ = −vT̃ and Xn vT̃ = 2c(bT̃ (n)) vT̃ , thus

(id +(−n, n) +Xn) vT̃ = (1− 1 + 2c(bT (n))) vT̃ = 2c(bT (n)) vT̃ . (2.5)

Therefore the eigenvalues of the action of (id +(−n, n) +Xn) on V µ̃ are obtained
from (2.5), as {vT̃ : T̃ ∈ tabD(n, µ̃)} form a basis of V µ̃. Thus considering the
action of 1

2n (id +(−n, n) +Xn) on V µ and V µ̃ simultaneously, the eigenvalues of
P̂ (R) are given by c(bT (n))+1

n and c(bT (n))
n for each T ∈ tabD(n, µ).

Now we know that the multiplicity of every irreducible representation in the
right regular representation is equal to its dimension. Therefore the multiplicity
of the eigenvalues are dim(V µ) =

(
n
m

)
dµ(1)dµ(2) = dim(V µ̃) if 0 ≤ m < n

2 and the
multiplicity of the eigenvalues are 1

2

(
n
m

)
dµ(1)dµ(2) if m = n

2 (when n is even). The
multiplicity of the eigenvalues for the case of m = n

2 is half of the dimension of the
corresponding Bn-module because of the following: In this case m = n−m. Thus
both µ = (µ(1), µ(2)) and µ̃ = (µ(2), µ(1)) are in Dn such that their first component
is a partition of m and the second component is a partition of n −m. Therefore
while computing the eigenvalues of P̂ (R) by considering the irreducible Bn-modules
V µ and V µ̃, each space is counted twice. Now the proof of the theorem follows from
the fact that all the irreducible representations of Bn are parameterised by Dn. �

3. Upper bound of total variation distance

In this section, we will prove the theorem giving an upper bound of the total
variation distance ||P ∗k − UBn ||TV for k ≥ n log n + cn, c > 0. Given a positive
integer `, throughout this section we write λ ` ` to denote λ is a partition of `. Let
us recall that tab(λ) denote the set of all standard Young tableaux of shape λ.

Lemma 3.1 (Upper bound lemma, Diaconis, 1988a, Lemma 4.2). Let p be a prob-
ability measure on a finite group G such that p(x) = p(x−1) for all x ∈ G. Suppose
the random walk on G driven by p is irreducible. Then we have the following

||p∗k − UG||2TV ≤
1

4

∗∑
ρ

dρ Tr
(

(p̂(ρ))
2k
)
,

where the sum is over all non-trivial irreducible representations Dρ of G and dρ is
the dimension of Dρ.

Lemma 3.2. Let m be any positive integer satisfying 1 ≤ m ≤ n
2 and µ =(

µ(1), µ(2)
)
∈ Dn be such that |µ(1)| = m, |µ(2)| = n − m. If µ(i)

1 (respectively
µ

(i)′

1 ) denotes the largest part of the partition µ(i) (respectively its conjugate µ(i)′)
for i = 1, 2, then

∑
T∈tabD(n,µ)

(
c(bT (n)) + x

n

)2k

<

(
n

m

)
dµ(2)dµ(1)

2∑
i=1

(µ(i)
1

n

)2k

+

(
µ

(i)′

1

n

)2k
 ,

with x = 0, 1.

Proof : The set tabD(n, µ) is a disjoint union of the sets

T1 = {(T1, T2) ∈ tabD(n, µ) : bT (n) is in T1} and
T2 = {(T1, T2) ∈ tabD(n, µ) : bT (n) is in T2}.
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Therefore we have

∑
T∈tabD(n,µ)

(
c(bT (n)) + x

n

)2k

=
∑
T∈T1

(
c(bT (n)) + x

n

)2k

+
∑
T∈T2

(
c(bT (n)) + x

n

)2k

.

(3.1)
Now the right hand side of (3.1) is equal to(

n− 1

n−m

)
dµ(2)

∑
T1∈tab(µ(1))

(
c(bT1

(m)) + x

n

)2k

+

(
n− 1

m

)
dµ(1)

∑
T2∈tab(µ(2))

(
c(bT2(n−m)) + x

n

)2k

<

(
n

m

)dµ(2)

∑
T1∈tab(µ(1))

(
c(bT1

(m)) + x

n

)2k

+ dµ(1)

∑
T2∈tab(µ(2))

(
c(bT2

(n−m)) + x

n

)2k


≤
(
n

m

)
dµ(2)dµ(1)

(µ(1)
1

n

)2k

+

(
µ

(1)′

1

n

)2k

+

(
µ

(2)
1

n

)2k

+

(
µ

(2)′

1

n

)2k
 . (3.2)

The inequality in (3.2) follows from the fact: If λ1 (respectively λ′1) denotes the
largest part of the partition λ (respectively its conjugate λ′), then for all T ∈ tab(λ)
we have(

c(bT (|λ|)) + x

n

)2k

≤ max

{(
λ1 − 1 + x

n

)2k

,

(
λ′1 − x− 1

n

)2k }
<

(
λ1

n

)2k

+

(
λ′1
n

)2k

, for x = 0, 1.

�

Lemma 3.3. Let ` be a positive integer. For a partition λ of `, if λ1 denotes the
largest part of λ, then ∑

λ``

d2
λ

(
λ1

`

)2k

< e`
2e−

2k
` .

Proof : For any partition ζ of ` − λ1 with largest part ζ1 less than or equal to λ1,

we have dλ ≤
(
`
λ1

)
dζ . Therefore

∑
λ``

d2
λ

(
λ1

`

)2k

is less than or equal to

∑̀
λ1=1

∑
ζ`(`−λ1)
ζ1≤λ1

(
`

λ1

)2

d2
ζ

(
λ1

`

)2k

≤
∑̀
λ1=1

(
`

λ1

)2(
λ1

`

)2k ∑
ζ`(`−λ1)

d2
ζ

=
∑̀
λ1=1

(
`

`− λ1

)2

(`− λ1)!

(
1− `− λ1

`

)2k

. (3.3)



994 S. Ghosh

Now writing t = ` − λ1 and using 1 − x ≤ e−x for x ≥ 0, the expression in (3.3)

less than or equal to
`−1∑
t=0

(
`

t

)2

t!e−
2kt
` . Thus we have

∑
λ``

d2
λ

(
λ1

`

)2k

≤
`−1∑
t=0

(
`

t

)2

t!e−
2kt
` =

`−1∑
t=0

(`(`− 1) . . . (`− t+ 1))
2

t!
e−

2kt
`

≤
`−1∑
t=0

(
`2e−

2k
`

)t
t!

< e`
2e−

2k
` . �

Proof of Theorem 1.1: We know that the trace of the (2k)th power of a matrix
is the sum of the (2k)th powers of its eigenvalues. Therefore Lemma 3.1 implies
4||P ∗k −UBn ||2TV is bounded above by the sum of (2k)th powers of the non-largest
eigenvalues (which are strictly less the largest eigenvalue 1) of P̂ (R). Thus from
Theorem 2.6, we have

4||P ∗k − UBn ||2TV

≤
(
n− 1

n

)2k

+
∑
λ`n
λ6=(n)

dλ

 ∑
T∈tab(λ)

((
c(bT (n)) + 1

n

)2k

+

(
c(bT (n))

n

)2k
)

+

bn2 c∑
m=1

∑
µ(1)`m

µ(2)`(n−m)

µ=(µ(1), µ(2))

M(µ)

 ∑
T∈tabD(n,µ)

((
c(bT (n)) + 1

n

)2k

+

(
c(bT (n))

n

)2k
) .

(3.4)

M(µ) is defined in (2.3) and can be written as M(µ) = I(n,m)
(
n
m

)
dµ(1)dµ(2) , where

I(n,m) =

{
1 if 0 ≤ m < n

2 ,
1
2 if m = n

2 (when n is even).

Using Lemma 3.2, the third term in the right hand side of (3.4) is less than the
following expression
bn2 c∑
m=1

∑
µ(1)`m

µ(2)`(n−m)

µ=(µ(1), µ(2))

2M(µ)

(
n

m

)
dµ(2)dµ(1)

2∑
i=1

(µ(i)
1

n

)2k

+

(
µ

(i)′

1

n

)2k


= 2

bn2 c∑
m=1

∑
µ(1)`m

µ(2)`(n−m)

µ=(µ(1), µ(2))

2M(µ)

(
n

m

)
dµ(2)dµ(1)

(µ(1)
1

n

)2k

+

(
µ

(2)
1

n

)2k
 (3.5)

= 4

bn2 c∑
m=1

I(n,m)

(
n

m

)2 ∑
µ(1)`m

µ(2)`(n−m)

d2
µ(1)d

2
µ(2)

(µ(1)
1

n

)2k

+

(
µ

(2)
1

n

)2k

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= 4

bn2 c∑
m=1

I(n,m)

(
n

m

)2
(n−m)!

∑
µ(1)`m

d2
µ(1)

(
µ

(1)
1

n

)2k

+m!
∑

µ(2)`(n−m)

d2
µ(2)

(
µ

(2)
1

n

)2k
 .

(3.6)

The equality in (3.5) holds because

∑
µ(1)`m

µ(2)`(n−m)

µ=(µ(1), µ(2))

2M(µ)

(
n

m

)
dµ(2)dµ(1)

(
µ

(i)′

1

n

)2k

=
∑

µ(1)`m
µ(2)`(n−m)

µ=(µ(1), µ(2))

2M(µ)

(
n

m

)
dµ(2)dµ(1)

(
µ

(i)
1

n

)2k

for i = 1, 2. Now the definition of I(n,m) and

bn2 c∑
m=1

I(n,m)

(
n

m

)2

m!
∑

µ(2)`(n−m)

d2
µ(2)

(
µ

(2)
1

n

)2k

=

n−1∑
t=dn2 e

I(n, n− t)
(

n

n− t

)2

(n− t)!
∑
µ(2)`t

d2
µ(2)

(
µ

(2)
1

n

)2k

implies that the expression (3.6) is equal to

4

n−1∑
m=1

(
n

m

)2

(n−m)!
∑

µ(1)`m

d2
µ(1)

(
µ

(1)
1

n

)2k

. (3.7)

Replacing ` (respectively λ) by m (respectively µ(1)) in Lemma 3.3, we have∑
µ(1)`m

d2
µ(1)

(
µ

(1)
1

m

)2k

< em
2e−

2k
m . Thus

∑
µ(1)`m

d2
µ(1)

(
µ

(1)
1

m

)2k

< e, if k ≥ m logm.

Therefore when k ≥ n log n (which implies k ≥ m logm), the expression in (3.7)
and hence the third term in the right hand side of (3.4) is less than

4e

n−1∑
m=1

(
n

m

)2

(n−m)!
(m
n

)2k

= 4e

n−1∑
t=1

(
n

t

)2

t!

(
1− t

n

)2k

< 4e

n−1∑
t=1

(
n2e−

2k
n

)t
t!

< 4e

(
en

2e−
2k
n − 1

)
. (3.8)

Now we consider the second term in the right hand side of (3.4). The second term
in the right hand side of (3.4) is bounded above by

2
∑
λ`n

λ6=(n),(1n)

d2
λ

((
λ1

n

)2k

+

(
λ′1
n

)2k
)

+

(
n− 2

n

)2k

+

(
n− 1

n

)2k

. (3.9)
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Now using
∑
λ`n

λ6=(n),(1n)

d2
λ

(
λ′1
n

)2k

=
∑
λ`n

λ6=(n),(1n)

d2
λ

(
λ1

n

)2k

, the expression in (3.9) is

equal to

4
∑
λ`n

λ6=(n),(1n)

d2
λ

(
λ1

n

)2k

+

(
1− 2

n

)2k

+

(
1− 1

n

)2k

< 4

(∑
λ`n

d2
λ

(
λ1

n

)2k

− 1

)
+ e−

4k
n + e−

2k
n . (3.10)

The right hand side of the expression (3.10) and hence the second term in the right

hand side of (3.4) is less than 4
(
en

2e−
2k
n − 1

)
+ e−

2k
n + e−

4k
n by Lemma 3.3. Thus

the inequality (3.4) becomes

4||P ∗k−UBn ||2TV ≤ 2e−
2k
n +(4+4e)

(
en

2e−
2k
n − 1

)
+e−

4k
n , for k ≥ n log n. (3.11)

Now if k ≥ n log n+ cn and c > 0, then the right hand side of (3.11) becomes

(4e+ 4)
(
ee
−2c

− 1
)

+
2e−2c

n2
+
e−4c

n4
< (8e+ 8)e−2c + o(1).

This proves the first part of the theorem. Now for ε ∈ (0, 1), kn = b(1 + ε)n log nc
implies, kn ≥ (1 + ε)n log n. Thus the right hand side of (3.11) is bounded above
by

(4e+ 4)
(
e

1
n2ε − 1

)
+ 2n−2(1+ε) + n−4(1+ε).

Therefore the proof of the second part follows from

lim
n→∞

(4e+ 4)
(
e

1
n2ε − 1

)
+

2

n2(1+ε)
+

1

n4(1+ε)
= 0. �

4. Lower bound of total variation distance

In this section, we will find a lower bound of the total variation distance ||P ∗k−
UBn ||TV for k = log n+cn, c� 0. We define a group homomorphism from Bn onto
the symmetric group Sn which projects the flip-transpose top with random shuffle
on Bn to the transpose top with random shuffle on Sn. We begin with a variant of
the transpose top with random shuffle on Sn. This will be useful in obtaining the
lower bound of ||P ∗k − UBn ||TV.

Given 0 < a < 1, we define a probability measure Pa on the symmetric group
Sn as follows:

Pa(π) =

{
a if π = sid, the identity element of Sn,
1−a
n−1 if π = s(i,n), 1 ≤ i < n,

for π ∈ Sn, (4.1)

where s(i,n) denotes the transposition in Sn interchanging i and n. We prove a
theorem which provides a lower bound of ||P∗ka − USn ||TV. Although the proof is
straightforward and uses techniques (Diaconis, 1988a, Chapter 5(C), p. 27) from
the transpose top with random shuffle on Sn, we prove it to make this paper self
contained. Recall that P̂a(R) denotes the Fourier transform of Pa at the right
regular representation R of Sn. Thus P̂a(R) is the transition matrix for the random
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walk on Sn driven by Pa (since P̂a(R) is symmetric). If we denote the nth Young-
Jucys-Murphy element of C[Sn] using notation X ′n, then P̂a(R) is the action of
asid+ 1−a

n−1X
′
n on C[Sn] by multiplication on the right. Moreover given an irreducible

Sn-module (Specht module) Sλ indexed by λ ` n, the actions of X ′n on the Gelfand-
Tsetlin basis vectors of Sλ are given as follows: X ′n(uT ) = c(bT (n))uT , where uT
denotes the Gelfand-Tsetlin basis vector of Sλ indexed by T ∈ tab(λ) and recall
that c(bT (n)) is the content of the box containing n in T (Okounkov and Vershik,
1996; Ceccherini-Silberstein et al., 2010). Let us define a random variable f on Sn
given as follows:

f(π) := numbers of fixed points of π, for π ∈ Sn.

The expected value of f with respect to the uniform distribution USn is given by
EU (f) = 1 (Diaconis, 1988a, p.=27, eq. (5.12)). Moreover if P̂a(R)

∣∣
λ
denotes the

restriction of P̂a(R) to the irreducible Sn-module Sλ, then the expected value of f
with respect to the distribution P∗ka is given by

Ea,k (f) = Tr

((
P̂a(R)

∣∣
(n)

)k)
+ Tr

((
P̂a(R)

∣∣
(n−1,1)

)k)
,

Diaconis, 1988a, p.=28, eq.(5.13)

= 1 + (n− 2)

(
1− 1− a

n− 1

)k
+

(
an− 1

n− 1

)k
, see Table 4.1

≈ 1 + (n− 2)e−( 1−a
n−1 )k +

(
an− 1

n− 1

)k
. (4.2)

Here ‘ ≈’ means ‘asymptotic to’ i.e. an ≈ bn means lim
n→∞

an
bn

= 1. The expectation

of f2 with respect to the distribution P∗ka is given by

Ea,k
(
f2
)

= 2 Tr

((
P̂a(R)

∣∣
(n)

)k)
+ 3 Tr

((
P̂a(R)

∣∣
(n−1,1)

)k)
+ Tr

((
P̂a(R)

∣∣
(n−2,2)

)k)
+ Tr

((
P̂a(R)

∣∣
(n−2,1,1)

)k)
,

Diaconis, 1988a, p.=28, eq.(5.14)

= 2 + 3

(
(n− 2)

(
1− 1− a

n− 1

)k
+

(
an− 1

n− 1

)k)

+

(
(n− 1)(n− 4)

2

(
1− 2(1− a)

n− 1

)k
+ (n− 2)ak

)

+

(
(n− 2)(n− 3)

2

(
1− 2(1− a)

n− 1

)k
+ (n− 2)

(
an+ a− 2

n− 1

)k)
,

see Table 4.1

≈ 2 + 3(n− 2)e−( 1−a
n−1 )k + (n2 − 5n+ 5)e−2( 1−a

n−1 )k

+ 3

(
an− 1

n− 1

)k
+ (n− 2)

(
ak +

(
an+ a− 2

n− 1

)k)
. (4.3)
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Partition of n Eigenvalues of P̂a(R) corresponding to
the partition of column 1

(n) 1 with algebraic multiplicity 1

n+a−2
n−1 with algebraic multiplicity n− 2

(n− 1, 1)
an−1
n−1 with algebraic multiplicity 1

n+2a−3
n−1 with algebraic multiplicity (n−1)(n−4)

2

(n− 2, 2)
a with algebraic multiplicity n− 2

n+2a−3
n−1 with algebraic multiplicity (n−2)(n−3)

2

(n− 2, 1, 1)
an+a−2
n−1 with algebraic multiplicity n− 2

Table 4.1. Eigenvalues of P̂a(R)
∣∣
λ
for λ = (n), (n − 1, 1), (n −

2, 2), and (n− 2, 1, 1).

Proposition 4.1. For the random walk on Sn driven by Pa, we have the following:

||P∗ka − USn ||TV ≥ 1−
4
(
Ea,k

(
f2
)
− (Ea,k (f))

2
)

(Ea,k(f))
2 − 2

Ea,k(f)
,

where Ea,k(f) and Ea,k(f2) are given in (4.2) and (4.3) respectively.

Proof : If Vara,k(f) denotes the variance of f with respect to the probability measure
P∗ka , then Chebychev’s inequality implies that

P∗ka

({
π ∈ Sn : |f(π)− Ea,k(f)| ≤ Ea,k(f)

2

})
≥ 1− 4 Vara,k(f)

(Ea,k(f))
2 . (4.4)

Again using f ≥ 0, EU (f) = 1 and the Markov’s inequality, we have

USn

({
π ∈ Sn : f(π) ≥ Ea,k(f)

2

})
≤ 2EU (f)

Ea,k(f)
=

2

Ea,k(f)
. (4.5)

Now from the definition of total variation distance, we have

||P∗ka − USn ||TV = sup
A⊂Sn

|P∗ka (A)− USn(A)|

≥ P∗ka

({
π ∈ Sn : |f(π)− Ea,k(f)| ≤ Ea,k(f)

2

})
− USn

({
π ∈ Sn : |f(π)− Ea,k(f)| ≤ Ea,k(f)

2

})
≥ P∗ka

({
π ∈ Sn : |f(π)− Ea,k(f)| ≤ Ea,k(f)

2

})
− USn

({
π ∈ Sn : f(π) ≥ Ea,k(f)

2

})
. (4.6)
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Therefore the proposition follows from (4.6), (4.5), (4.4), and the definition of
variance. �

We now come back to our main objective of this section i.e., computation of a
lower bound of ||P ∗k − UBn ||TV. Let us define a homomorphism f from Bn onto
Sn as follows: For π ∈ Bn,

f : π 7→ (f(π) : i 7→ |π(i)|, for 1 ≤ i ≤ n) . (4.7)

i.e., f(π) ∈ Sn sends i to |π(i)| for 1 ≤ i ≤ n. Here |π(i)| denotes the absolute
value of π(i). It can be checked that the mapping f defined in (4.7) is a homo-
morphism (this follows directly by considering Bn as the wreath product S2 o Sn).
The surjectivity of f follows from the definition. The homomorphism f projects
the flip-transpose top with random shuffle on Bn to the transpose top with random
shuffle on Sn i.e., Pf−1 = P 1

n
. We now prove a lemma which will be useful in

proving the main result of this section.

Remark 4.2. Although we prove the upcoming lemma for the probability distri-
bution P on Bn, it is true if P is replaced by any other probability distribution
on Bn.

Lemma 4.3. For any positive integer k we have
(
Pf−1

)∗k
= P ∗kf−1.

Proof : We use the first principle of mathematical induction on k. The base case for
k = 1 is true by definition. Now assume the induction hypothesis i.e.,

(
Pf−1

)∗m
=

P ∗mf−1 for some positive integer m > 1. Let π ∈ Sn be chosen arbitrarily. Then
for the inductive step k = m+ 1 we have the following:(

Pf−1
)∗(m+1)

(π) =
((
Pf−1

)
∗
(
Pf−1

)∗m)
(π)

=
∑

{ξ,ζ∈Sn: ξζ=π}

(
Pf−1

)
(ξ)
(
Pf−1

)∗m
(ζ)

=
∑

{ξ,ζ∈Sn: ξζ=π}

(
Pf−1

)
(ξ)
(
P ∗mf−1

)
(ζ),

by the induction hypothesis,

=
∑

ξ,ζ∈Sn
ξζ=π

P
(
f−1(ξ)

)
P ∗m

(
f−1(ζ)

)
=

∑
ξ,ζ∈Sn
ξζ=π

∑
ξ′∈f−1(ξ)

ζ′∈f−1(ζ)

P (ξ′)P ∗m(ζ ′). (4.8)

Now using the fact that f is a homomorphism, we have the following:

{(ξ′, ζ ′) ∈ f−1(ξ)× f−1(ζ) : ξ, ζ ∈ Sn and ξζ = π}
={(ξ′, ζ ′) ∈ Bn ×Bn : ξ′ζ ′ ∈ f−1(π)}.

Therefore the expression in (4.8) becomes∑
{ξ′,ζ′∈Bn: ξ′ζ′∈f−1(π)}

P (ξ′)P ∗m(ζ ′) =
∑

π′∈f−1(π)

∑
ξ′,ζ′∈Bn
ξ′ζ′=π′

P (ξ′)P ∗m(ζ ′)
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=
∑

π′∈f−1(π)

P ∗(m+1)(π′) =
(
P ∗(m+1)f−1

)
(π).

Thus the lemma follows from the first principle of mathematical induction. �

Proof of Theorem 1.2: We know that, given two probability distributions µ and ν
on Ω and a mapping ψ : Ω→ Λ, we have ||µ− ν||TV ≥ ||µψ−1 − νψ−1||TV, where
Λ is finite (Levin et al., 2009, Lemma 7.9). Therefore we have the following:

||P ∗k − UBn ||TV ≥ ||P ∗kf−1 − UBnf−1||TV

= ||
(
Pf−1

)∗k − USn ||TV, by Lemma (4.3) and UBnf
−1 = USn ,

= ||P∗k1
n
− USn ||TV, using Pf−1 = P 1

n
. (4.9)

Now setting a = 1
n in (4.2) and (4.3) we have

E 1
n ,k

(f) ≈ 1 + (n− 2)e−
k
n .

E 1
n ,k

(f2) ≈ 2 + 3(n− 2)e−
k
n + (n2 − 5n+ 5)e−

2k
n + (n− 2)

(
1 + (−1)k

nk

)
.

Therefore Proposition 4.1 and (4.9) implies that

||P ∗k − UBn ||TV ≥1−
2
(

3 + 3(n− 2)e−
k
n − 2(n− 1)e−

2k
n + o(1)

)
(

1 + (n− 2)e−
k
n

)2 , for k > 1.

(4.10)

Now if n is large, c� 0 and k = n log n+ cn, then by (4.10), we have the first part
of this theorem. Again for any ε ∈ (0, 1) and kn = b(1− ε)n log nc from (4.10), we
have

1 ≥ ||P ∗kn − UBn ||TV ≥ 1−
2
(
3 + 3nε + o(1)(n2ε + nε + 1)

)
(1 + (1 + o(1))nε)

2 , (4.11)

for large n. Therefore, the second part of this theorem follows from (4.11) and the
fact that

lim
n→∞

2
(
3 + 3nε + o(1)(n2ε + nε + 1)

)
(1 + (1 + o(1))nε)

2 = 0.

�

Therefore from the first part of Theorems 1.1 and 1.2, we can say that the mixing
time for the flip-transpose top with random shuffle on Bn is O(n log n) (i.e., order
of n log n). Furthermore, the second part of Theorems 1.1 and 1.2 implies that this
shuffle satisfies the cutoff phenomenon and the total variation cutoff for this shuffle
occurs at n log n.

Remark 4.4. Let 0 ≤ α ≤ 1. A generalisation of the flip-transpose top with random
shuffle on Bn can be considered, which we call the biased flip-transpose top with
random shuffle on Bn. Given an arrangement of n distinct oriented cards in a row,
choose a card uniformly at random and choose the last card. Then perform one of
the following moves:

(1) Transpose the chosen cards with probability α
2 .

(2) Transpose the chosen cards after flipping both the cards with probability α
2 .
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(3) Transpose the chosen cards after flipping one of the cards with probabil-
ity 1−α

2 .
This is the random walk on Bn driven by the probability measure Pα on Bn, defined
below.

Pα(π) =


1
n ·

α
2 , if π = (i, n) or (−i, n) for 1 ≤ i ≤ n, here (n, n) := id,

1
n ·

1−α
2 , if π = (−n, n)(i, n) or (−i, i)(i, n) for 1 ≤ i ≤ n,

0, otherwise.
(4.12)

The Fourier transform P̂α(R) of Pα at the right regular representation R is the
transition matrix for this biased variant. Recall that the nth Young-Jucys-Murphy
element of Bn is Xn. Then P̂α(R) is the action of

1

2n
(α id +(1− α)(−n, n)) (id +(−n, n) +Xn)

on C[Bn] by multiplication on the right. It can be easily seen that P̂α(R) and P̂ (R)
have the same set of eigenvectors when they act on the irreducible Bn-modules.
Therefore using the arguments given in the proof of Theorem 2.6, we can obtain
the eigenvalues of P̂α(R) as follows: For each µ =

(
µ(1), µ(2)

)
∈ Dn satisfying m :=

|µ(1)| ∈ {0, 1, . . . , bn2 c}, let T ∈ tabD(n, µ). Then c(bT (n))+1
n and c(bT (n))

n (2α − 1)

are eigenvalues of P̂α(R) with multiplicity M(µ) each. Now using the fact −1 ≤
2α−1 ≤ 1, we can conclude that ||P ∗k−UBn ||TV and ||P ∗kα −UBn ||TV have the same
upper bound. Thus Theorem 1.1 is true if P is replaced by Pα. Moreover, the same
mapping f defined in (4.7) projects the biased flip-transpose top with random shuffle
on Bn to the transpose top with random shuffle on Sn. Therefore ||P ∗k − UBn ||TV
and ||P ∗kα − UBn ||TV have the same lower bound. Thus Theorem 1.2 is true if P
is replaced by Pα. Hence the biased flip-transpose top with random shuffle on Bn
satisfies total variation cutoff phenomenon with cutoff time n log n.

Appendix A. Representation theory of demihyperoctahedral group Dn

In this section, we briefly discuss the irreducible representations of Dn (detailed
proofs are omitted). Our main aim is to look at the restriction of the irreducible
representations of Bn to Dn.

Let us consider the one-dimensional character (or representation) ξ : Bn →
({±1}, ·) of Bn. The action of ξ on the generators of Bn is defined by

ξ(π) =

{
−1, if π = (−1, 1),

1, if π = (i, i+ 1) for 1 ≤ i ≤ n− 1.
(A.1)

It can be easily seen that ker(ξ) = Dn and the Bn-module V ⊗ ξ is irreducible if
and only if the Bn-module V is irreducible. We have already seen in Section 2 that
the irreducible representations of Bn are indexed by Dn. If µ = (µ(1), µ(2)) ∈ Dn,
then µ̃ = (µ(2), µ(1)) ∈ Dn. Now from Geissinger and Kinch (1978, Proposition
II.1.(ii)), it follows that the irreducible Bn-modules V µ ⊗ ξ and V µ̃ are isomorphic
for µ ∈ Dn.

Theorem A.1. For the irreducible Bn-module V µ indexed by µ = (µ(1), µ(2)) ∈ Dn,
we have the following:
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(1) If µ(1) 6= µ(2), then the restriction V µ ↓BnDn of V µ to Dn is irreducible as
a Dn-module. We denote this irreducible Dn-module by the same notation
V µ. Moreover, if µ̃ = (µ(2), µ(1)), then V µ and V µ̃ are isomorphic as Dn-
modules. If ν ∈ Dn be such that ν 6= µ and ν 6= µ̃, then V ν and V µ are
non-isomorphic as Dn-modules.

(2) If µ(1) = µ(2), then the restriction V µ ↓BnDn of V µ to Dn is a direct sum
of two irreducible Dn-modules with the same dimension. We denote these
irreducible Dn-modules by the V µ+ and V µ− .

Proof : The proof follows by mimicking the steps of deducing the irreducible rep-
resentations of An from that of Sn (Prasad, 2015, Theorem 4.4.2, Theorem 4.6.5).
Here An denotes the alternating group. For this proof, Bn (respectively Dn) will
play the role of Sn (respectively An), and ξ will play the role of the one-dimensional
sign character of Sn. �

Let S be the collection of subsets Γ of Dn satisfying the following properties:
(1) µ(1) 6= µ(2) for each (µ(1), µ(2)) ∈ Γ,
(2) (µ(2), µ(1)) /∈ Γ if and only if (µ(1), µ(2)) ∈ Γ.

Let Γ1 be the maximal element of the poset (S,⊆) and Γ2 = {(µ(1), µ(2)) ∈ Dn :
µ(1) = µ(2)}. Then from Theorem A.1 and the observation∑

µ∈Γ1

(dim(V µ))
2

+
∑
µ∈Γ2

((
dim(V µ+ )

)2
+
(
dim(V µ− )

)2)

=
1

2

2
∑
µ∈Γ1

(dim(V µ))
2

+
∑
µ∈Γ2

(dim(V µ))
2

 =
|Bn|

2
= |Dn|,

all the irreducible Dn-modules are given by {V µ : µ ∈ Γ1} ∪ {V µ+ , V
µ
− : µ ∈ Γ2}.

Appendix B. A random walk on Dn analogous to the walk on Bn driven
by P

Let us consider the random walk on the demihyperoctahedral group Dn driven
by the probability measure Q on Dn defined as follows:

Q(π) =


1

2n−1 , if π = id, the identity element of Dn,
1

2n−1 , if π = (i, n) for 1 ≤ i ≤ n− 1,
1

2n−1 , if π = (−i, n) for 1 ≤ i ≤ n− 1,

0, otherwise.

(B.1)

It can be easily seen that the support of Q generatesDn and hence this random walk
is irreducible. Moreover, this random walk is aperiodic too. Thus the distribution
after kth transition for this random walks will converge to UDn as k →∞. Let us
recall that Q̂(R) is the Fourier transform of Q at the right regular representation
R of Dn. The transition matrix for the random walk on Dn driven by Q is the
transpose of Q̂(R). To find the eigenvalues of Q̂(R) we will use the representation
theory of Dn.

Theorem B.1. The eigenvalues of Q̂(R) are given by

(1) If µ =
(
µ(1), µ(2)

)
∈ Γ1, then for each T ∈ tabD(n, µ), 2c(bT (n))+1

2n−1 is an
eigenvalue of Q̂(R) with multiplicity dim(V µ).
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(2) If µ =
(
µ(1), µ(2)

)
∈ Γ2, then for each T ∈ tabD(n, µ), 2c(bT (n))+1

2n−1 is an
eigenvalue of Q̂(R) with multiplicity 1

2dim(V µ).
Recall c(bT (n)) is the content of the box containing n in T .

Proof : We have Q̂(R) = 1
2n−1 (Xn + id), whereXn is the nth Young-Jucys-Murphy

element of Bn and id is the identity element of Dn. Here we identify the elements
of Dn(⊆ Bn) by the elements of Bn.

For µ =
(
µ(1), µ(2)

)
∈ Γ1, we have µ(1) 6= µ(2). Therefore the restriction of

irreducible Bn-module V µ to Dn is irreducible (Theorem A.1). Now for each
T ∈ tabD(n, µ), let vT be the Gelfand-Tsetlin vector of V µ satisfying XnvT =
2c(bT (n))vT . Also, we know that {vT : T ∈ tabD(n, µ)} forms a basis of V µ.
Therefore the eigenvalues of Q̂(R) on the irreducible Dn-module V µ are given by
2c(bT (n))+1

2n−1 for each T ∈ tabD(n, µ). Since the multiplicity of every irreducible rep-
resentation in the right regular representation is equal to its dimension, therefore
the multiplicity of these eigenvalues are dim(V µ).

Now for µ =
(
µ(1), µ(2)

)
∈ Γ2 we have µ(1) = µ(2). Then the restriction of the

irreducible Bn-module V µ to Dn splits into two irreducible Dn-modules V µ+ and
V µ− (Theorem A.1). In this case also vT is the Gelfand-Tsetlin vector of V µ and
{vT : T ∈ tabD(n, µ)} forms a basis of V µ+ ⊕ V

µ
− . Therefore, by similar arguments

in case of µ(1) 6= µ(2), the eigenvalues of Q̂(R) on the irreducible Dn-modules V µ+
and V µ− are given by 2c(bT (n))+1

2n−1 for each T ∈ tabD(n, µ). The multiplicity of these
eigenvalues are 1

2dim(V µ) ( ∵ dim(V µ+ ) = dim(V µ− ) = 1
2dim(V µ)). �

Theorem B.2. For the random walk on Dn driven by Q, we have the following:
(1) ||Q∗k − UDn ||TV <

√
e+ 1 e−c, for k ≥

(
n− 1

2

)
(log n+ c) and c > 0.

(2) lim
n→∞

||Q∗kn−UDn ||TV=0, for any ε ∈ (0, 1) and kn=
⌊
(1 + ε)

(
n− 1

2

)
log n

⌋
.

Proof : Using Lemma 3.1 and following similar steps of Theorem 1.1, we have

4||Q∗k − UDn ||2TV ≤ 2(1 + e)

(
en

2e
− 4k

2n−1 − 1

)
+ e−

4k
2n−1 , for k ≥

(
n− 1

2

)
log n.

(B.2)
Now if k ≥

(
n− 1

2

)
(log n+ c) and c > 0, then the right hand side of (B.2) becomes

2(e+ 1)
(
ee
−2c

− 1
)

+
e−2c

n2
< (4e+ 4)e−2c + o(1).

This proves the first part of the theorem. Now for ε ∈ (0, 1), kn =
b(1 + ε)

(
n− 1

2

)
log nc implies, kn ≥ (1 + ε)

(
n− 1

2

)
log n. Thus the right hand

side of (B.2) is bounded above by 2(e+1)
(
e

1
n2ε − 1

)
+ 1
n2(1+ε) . Therefore the proof

of the second part follows from

lim
n→∞

2(e+ 1)
(
e

1
n2ε − 1

)
+

1

n2(1+ε)
= 0. �

Now we obtain a lower bound for the total variation distance ||Q∗k − UDn ||TV.
Recall the homomorphism f defined in (4.7) and set f ′ = f

∣∣
Dn

, the restriction of f
to Dn. Then f ′ projects the random walk on Dn driven by Q to the random walk
on Sn driven by P 1

2n−1
. Thus we have UDnf ′−1 = USn and Qf ′−1 = P 1

2n−1
. Now
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using the arguments used in the proof of Lemma 4.3, we can conclude that

P∗k1
2n−1

=
(
Qf ′−1

)∗k
= Q∗kf ′−1.

Therefore using Levin et al. (2009, Lemma 7.9), we have the following:

||Q∗k − UDn ||TV ≥ ||Q∗kf ′−1 − UDnf ′−1||TV =
∣∣∣∣∣∣P∗k1

2n−1
− USn

∣∣∣∣∣∣
TV

. (B.3)

Theorem B.3. For the random walk on Dn driven by Q, we have the following:

(1) For large n, ||Q∗k − UDn ||TV ≥ 1 − 2(3+3e−c+o(1)(e−2c+e−c+1))
(1+(1+o(1))e−c+o(1))2

, when k =

(n− 1
2 )(log n+ c) and c� 0.

(2) lim
n→∞

||Q∗kn−UDn ||TV=1, for any ε ∈ (0, 1) and kn=
⌊
(1− ε)

(
n− 1

2

)
log n

⌋
.

Proof : Setting a = 1
2n−1 in (4.2) and (4.3) we have

E 1
2n−1 ,k

(f) ≈ 1 + (n− 2)e−
2k

2n−1 +

(
− 1

2n− 1

)k
.

E 1
2n−1 ,k

(
f2
)
≈ 2 + 3(n− 2)e−

2k
2n−1 + (n2 − 5n+ 5)e−

4k
2n−1

+ 3

(
− 1

2n− 1

)k
+ (n− 2)

((
1

2n− 1

)k
+

(
−3

2n− 1

)k)
.

Therefore Proposition 4.1 and (B.3) implies that

||Q∗k−UDn ||TV ≥ 1−
2
(

3 + 3(n− 2)e−
2k

2n−1 − 2(n− 1)e−
4k

2n−1 + o(1)
)

(
1 + (n− 2)e−

2k
2n−1 + o(1)

)2 , for k > 1.

(B.4)
Now if n is large, c� 0 and k = (n− 1

2 )(log n+ c), then by (B.4), we have the first
part of this theorem. Again for any ε ∈ (0, 1) and kn = b(1− ε)(n− 1

2 ) log nc from
(B.4), we have

1 ≥ ||Q∗kn − UDn ||TV ≥ 1−
2
(
3 + 3nε + o(1)(n2ε + nε + 1)

)
(1 + (1 + o(1))nε + o(1))

2 (B.5)

for large n. Therefore, the second part of this theorem follows from (B.5) and the
fact that

lim
n→∞

2
(
3 + 3nε + o(1)(n2ε + nε + 1)

)
(1 + (1 + o(1))nε + o(1))

2 = 0.

�

Therefore from the first part of Theorems B.2 and B.3, we can say that the mixing
time for the random walk on Dn driven by Q is O

((
n− 1

2

)
log n

)
. Furthermore,

the second part of Theorems B.2 and B.3 implies that this shuffle satisfies the cutoff
phenomenon and the total variation cutoff for this shuffle occurs at

(
n− 1

2

)
log n.
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