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Abstract. In 2013 A.A. Borovkov and A.A. Mogulskii proved a weaker-than-standard “metric” large
deviations principle (LDP) for trajectories of random walks in Rd whose increments have the Laplace
transform finite in a neighbourhood of zero. We prove that general metric LDPs are preserved under
uniformly continuous mappings. This allows us to transform the result of Borovkov and Mogulskii
into standard LDPs. We also give an explicit integral representation of the rate function they found.
As an application, we extend the classical Cramér theorem by proving an LPD for kernel-weighted
sums of i.i.d. random vectors in Rd.

1. Introduction

The study of large deviations of trajectories of random walks was initiated by A.A. Borovkov in the
1960’s. Mogulskii (1976) proved a large deviations result for the trajectories of a multidimensional
random walk under the assumption that the Laplace transform of its increments is finite. In this
work A.A. Mogulskii also studied the large deviations under the weaker Cramér moment assumption,
i.e. when the Laplace transform is finite in a neighbourhood of zero, but these results appear to be
of a significantly limited use.

The further progress was due to the concept of metric large deviations principles (LDPs, in short)
on general metric spaces introduced by Borovkov and Mogulskii (2010). The upper bound in such
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metric LDPs is worse than the conventional one – the infimum of the rate function is taken over
shrinking ε-neighbourhoods of a set rather than over its closure as in standard LDPs; compare
definitions (2.1) and (2.2) below. These bounds may differ when the rate function is not tight, i.e.
its sub-level sets are non-compact.

For the scaled trajectories of random walks under the Cramér moment assumption, Borovkov
and Mogulskii (2013, 2014) obtained a metric LDP in the space D[0, 1] of càdlàg functions equipped
with a Skorokhod-type metric generating a version of the topology M1; see Theorem A. Their rate
function has totally bounded sub-level sets but in general, it is not tight because the metric space is
not complete. The authors offer no discussion on whether the usual LDP for the trajectories fails.

Our paper was motivated by the question whether this metric LDP can be converted, in any
reasonable sense, to a standard LDP. Our progress in this direction is as follows.

Our first result is a contraction principle for metric LDPs on general metric spaces (Theorem 3.1).
In particular, it shows that a uniformly continuous mapping to a complete metric space transfers
a metric LDP into a standard one if the sub-level sets of the rate function are totally bounded
(Corollary 3.2). This allows us to transform the metric LDP of Borovkov and Mogulskii (2013,
2014) into standard LDPs with tight rate functions (Theorem 3.3). For example, this yielded a
standard LDP (Proposition 5.2) for scaled trajectories of random walks in Rd considered as random
elements of the space BV [0, 1] of functions of bounded variation equipped with the metric ρ∗ of
joint convergence of functions in L1 and of their values at 1. It metrizes weak-* convergence on sets
of functions of uniformly bounded variation. It is in a certain sense shorter than the Skorokhod
metric generating the topology M1 (Lemma 4.3).

We used ideas from calculus of variations, which offers well-developed methods for working with
integral (action) functionals on the space BV [0, 1] equipped with the weak-* topology. In partic-
ular, this allowed us to find an explicit integral representation (Theorem 5.1) for the rate function
of Borovkov and Mogulskii (2013, 2014), who gave such representation only in dimension one. We
also found a wide class of sets where the upper bound in the metric LDP of Borovkov and Mogulskii
(2013, 2014) coincides with the standard one (see Propositions 3.4 and 5.4 and Remark 5.5).

We have the following applications of our results on the trajectories of random walks.
First, from our contraction principle for the trajectories (i.e. Theorem 3.3) we obtained the LDPs

for the perimeter and the area of the convex hull of a planar random walk, presented in Akopyan and
Vysotsky (2021+, Proposition 4.1). This application motivated our initial interest in the questions
considered here.

Second, from our LDP for the trajectories in (BV [0, 1], ρ∗) (i.e. Proposition 5.2), we obtained
the LDP for kernel-weighted sums of i.i.d. random vectors in Rd (Theorem 6.1). This extends the
classical Cramér theorem, without any additional assumptions. We give an explicit formula for
the rate function, which is especially accessible in dimension one. To the best of our knowledge,
the strongest available results in this direction are by Kiesel and Stadtmüller (2000) and Gantert
et al. (2014), both works concerning dimension one only. The former paper considers the “light-
tailed” case where the i.i.d. terms have finite Laplace transform. The latter paper considers the
“heavy-tailed” case, where the common distribution of the terms has “stretched” exponential tails
and thus does not satisfy the Cramér moment assumption. Our Theorem 6.1 complements these
one-dimensional results, showing that there is a natural transition of the rate function from the
“light-tailed” to the “heavy-tailed” cases; see also Remark 6.2.c.

When the current paper was ready for submission, we became aware of the work of Najim (2002).
His main result, Theorem 3.1 on the LDP for weighted sums of i.i.d. random vectors, is stronger
than the LDP in our Theorem 6.1. Our new contributions are the simplified explicit expressions
for the rate function (formulas (6.2) and (6.3)) and for the corresponding minimizing trajectories
we found in certain cases (Remark 6.2.c). As a corollary to his main result, J. Najim obtained an
LDP in the weak-* topology on BV [0, 1] (Najim, 2002, Theorems 4.1 and 4.3) for trajectories of
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random walks under the Cramér moment assumption. This result is very similar (but not equivalent,
cf. Section 4.1) to our Proposition 5.2.

Notably, we obtained our extension of Cramér’s theorem as a corollary and only at the last step
of our work, as opposed to the argument of Najim (2002) going in the reverse direction. Therefore,
despite of a significant intersection with this work, we believe that the corresponding part of our
paper is of independent interest since it has a different motivation and uses a different approach
– we used Proposition 5.2, which itself follows from the metric LDP in Borovkov and Mogulskii
(2013, 2014) using the metrization result of Theorem B, the contraction principle in Theorem 3.1,
and geometric Lemma 4.3, which is of its own interest.

This paper is organized as follows. Section 2 presents the metric LDP for trajectories of random
walks by Borovkov and Mogulskii (2013, 2014) and also introduces metric LDPs in general metric
spaces. In Section 3 we prove a contraction principle for uniformly continuous mappings of metric
LDPs, and present its application for random walk trajectories. In Section 4 we define the weak-*
and related topologies on the space of functions of bounded variation, and compare them with and
the Skorokhod topologies M1 and M2 and their modifications. The main result of the section is
geometric Lemma 4.3, which compares the metric ρ∗ with Skorokhod metrics. The setup and results
of this section are used in Section 5, where we give an integral representation for the rate function,
prove an LDP for the trajectories in the space (BV [0, 1], ρ∗), and present a few types of sets where
the upper bound in the metric LDP for the trajectories equals the standard one. The last section
concerns our main application, Cramér’s theorem for kernel-weighted sums of i.i.d. random vectors
in Rd.

2. Metric LDPs for trajectories of random walks

In this section we give necessary definitions and provide a brief summary of the results of Borovkov
and Mogulskii (2013, 2014).

2.1. General metric LDPs. We start with general definitions. Let X be a Hausdorff topological
space equipped with the Borel σ-algebra. Let I : X → [0,+∞] be a lower semi-continuous function
such that I 6≡ +∞. By definition, this means that the sub-level sets {x ∈ X : I(x) ≤ α}α∈[0,∞) of
I are closed. If X is a metric space, this is equivalent to requiring that for every x ∈ X , we have
I(x) ≤ lim infn→∞ I(xn) for any sequence (xn)n≥1 converging to x.

We say that a sequence (Zn)n≥1 of random elements of X satisfies the large deviations principle
(LDP) in X with a rate function I and a speed (an)n≥1 ⊂ (0,∞) if for every Borel set B ⊂ X ,

− inf
x∈intB

I(x) ≤ lim inf
n→∞

1

an
logP(Zn ∈ B) ≤ lim sup

n→∞

1

an
logP(Zn ∈ B) ≤ − inf

x∈clB
I(x), (2.1)

where inf∅ := +∞ by the usual convention. If X is equipped with a metric `, we say that (Zn)n≥1

satisfies the metric LDP in (X , `) with a rate function I and a speed (an)n≥1 if

− inf
x∈intB

I(x) ≤ lim inf
n→∞

1

an
logP(Zn ∈ B) ≤ lim sup

n→∞

1

an
logP(Zn ∈ B) ≤ − lim

ε→0+
inf
x∈Bε`

I(x), (2.2)

where Bε
` denotes the open ε-neighbourhood of B in ` (with the convention ∅ε

` := ∅). For brevity,
we will not refer to the speed when an = n, which essentially is the only case of our interest in this
paper. We stress that the concept of metric LDPs is not a topological one, in the sense that (2.2)
may cease to hold when ` is replaced by another metric generating the same topology.

We say that the rate function I is tight if its sub-level sets are compact. A natural way to relax
this condition in the case when X is a metric space is to assume total boundedness of the sub-level
sets of I. Recall that a subset of a metric space is totally bounded if it has a finite ε-net for every
ε > 0; such subset is relatively compact, i.e. its closure is compact, if the metric space is complete.
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Note that if I is tight, then (2.1) and (2.2) coincide because

inf
x∈clB

I(x) = lim
ε→0+

inf
x∈Bε`

I(x); (2.3)

see Borovkov and Mogulskii (2012, Lemma 1.1) or Dembo and Zeitouni (2010, Lemma 4.1.6.b). It
is also easy to see that this equality holds true for any I when B is relatively compact.

Equality (2.3) may not hold in general (see Remark 2.2.d), and thus a metric LDP is in general
strictly weaker than the corresponding standard one. For an example when a metric LDP holds
true but the standard one does not, see Bazhba et al. (2020, Theorem 2.1 and Section 3.3). On the
other hand, a metric LDP is stronger than the corresponding weak LDP, defined as the standard
one but with the upper bound required only for relatively compact sets. For this reason, we find it
misleading to refer to metric LDPs as extended ones, which is the original terminology of Borovkov
and Mogulskii (2010). Moreover, neither standard nor weak LDPs require a metric structure.

2.2. Skorokhod topologies. We will write x = (x(1), . . . , x(d)) for the Cartesian coordinates of x ∈ Rd
with d ∈ N, |x| for the Euclidean norm, and ‘·’ for the scalar product on Rd.

Denote by D[0, 1] = D([0, 1];Rd) the set of càdlàg functions on [0, 1], that is right-continuous Rd-
valued functions without discontinuities of the second kind1. We will consider several
Skorokhod-type metrics and topologies on D[0, 1]. We refer to the book by Whitt (2002), where
Chapter 12 gives a comprehensive treatise of the matter.

The completed graph Γh of a function h ∈ D[0, 1] is a subset of [0, 1]× Rd defined by

Γh :=
{

(t, x) : 0 ≤ t ≤ 1, x ∈ [h(t−), h(t+)]
}
,

where h(0−) := h(0), h(1+) := h(1), and [u1, u2] denotes the line segment with the endpoints
u1, u2 ∈ Rd. We deliberately wrote h(t+) instead of the equal quantity h(t), to stress that Γh is
defined even when h has no discontinuities of the second kind but is not right-continuous. We equip
the completed graphs with the topology induced from [0, 1]× Rd.

Consider a set of parametrizations of the completed graph:

Π(h) :=
{
γ
∣∣γ : [0, 1]→ Γh is bijective, continuous, and satisfying γ(0) = (0, h(0))

}
(this set is non-empty by Whitt 2002, Remark 12.3.3). We can thus regard the completed graphs as
images of continuous curves in Rd. The metric ρ1 on D[0, 1] is the least uniform distance between
parametrizations of completed graphs:

ρ1(h1, h2) := inf
γ1∈Π(h1),γ2∈Π(h2)

sup
t∈[0,1]

|γ1(t)− γ2(t)|. (2.4)

The topology generated by ρ1 is called the Skorokhod topology M1; see Whitt (2002, Remark
12.3.4). The metric ρ2 on D[0, 1] is the Hausdorff distance dH between the completed graphs,
i.e. ρ2(h1, h2) := dH(Γh1,Γh2). In other words,

ρ2(h1, h2) = max
i=1,2

max
(s,x)∈Γhi

min
(t,y)∈Γh3−i

|(s, x)− (t, y)|. (2.5)

This is a genuine distance because each Γh is compact, being a continuous image of [0, 1]. The
topology generated by ρ2 is called the Skorokhod topology M2; see Whitt (2002, Theorem 12.10.1).

Furthermore, consider the modified completed graphs Γ′h := Γh ∪ [0, h(0)] and define ρ′1 and ρ′2
exactly as above using Γ′ (parametrized by functions in Π′) instead of Γ. Then ρ′1, ρ′2 are metrics
too. Equivalently, for h1, h2 ∈ D[0, 1] we can write

ρ′i(h1, h2) = ρi(h11(0,1], h21(0,1]) (2.6)

1A function on [0, 1] has no discontinuities of the second kind if it has right and left limits at every point.
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if we extend definitions (2.4) and (2.5) to the space of functions on [0, 1] that are càdlàg on (0, 1]
and have right limit at 0, where the ρi’s still remain metrics because completed graphs uniquely
define such functions.

From the definitions above, we readily obtain the following inequalities on D[0, 1]:

ρ′2 ≤ ρ′1 ≤ ρ1 and ρ2 ≤ ρ1. (2.7)

The inequality ρ′1 ≤ ρ1 follows because ρ1(h1, h2) equals the infimum in the definition of ρ′1 taken
over the pairs of parametrizations γ1 ∈ Π′(h1), γ2 ∈ Π′(h2) satisfying γ1([0, t]) = [0, h1(0)] and
γ2([0, t]) = [0, h2(0)] for some t ∈ [0, 1]. Moreover, we have

ρ′2(h1, h2) = dH
(
Γh1 ∪ [0, h1(0)],Γh2 ∪ [0, h2(0)]

)
≤ max

(
dH(Γh1,Γh2), dH

(
[0, h1(0)], [0, h2(0)]

))
≤ max

(
ρ2(h1, h2), |h1(0)− h2(0)|

)
, (2.8)

where we used the fact that dH(A1∪B1, A2∪B2) ≤ max(dH(A1, A2), dH(B1, B2)) for any non-empty
A1, A2, B1, B2 ⊂ Rd+1 (which follows easily from the definition of dH).

We will work with the topologies M ′1 and M ′2 on D[0, 1] generated respectively by ρ′1 and ρ′2.
The topology M ′1 was recently used by Bazhba et al. (2020); the versions of M ′1 and M ′2 on D[0,∞)
briefly appeared in Whitt (2002, Section 13.6.2). Inequalities (2.7) and (2.8) imply that

M ′2 ⊂M ′1 ⊂M1 and M ′2 ⊂M2 ⊂M1, (2.9)

where the third inclusion follows from (2.8) using that every M ′2-closed set is also closed in M2

because convergence of functions in M2 implies convergence of their values at 0.
The following result, presented without a proof because we will not use it in this paper, describes

convergence in M ′i in terms of more standard convergence in Mi. It shows that naturally, the
difference between the convergences is only in the behaviour around time 0. In particular, the value
at 0 is not an M ′i -continuous functional.

Proposition 2.1. Let h, h1, h2, . . . ∈ D[0, 1] and i ∈ {1, 2}. Then limn→∞ ρ
′
i(hn, h) = 0 if and only

if there exits a sequence t1, t2, . . . ∈ [0, 1] such that limn→∞ tn = 0,

lim
n→∞

ρi(hn(· ∨ tn), h) = 0,

and {
limn→∞ sup0≤t≤tn sup0≤s≤t

(
|hn(s)| · |h(0)| − hn(t) · h(0)

)
= 0, if i = 1,

limn→∞ sup0≤t≤tn min0≤s≤1 |sh(0)− hn(t)| = 0, if i = 2.

The last condition means that whenever h(0) 6= 0, for i = 1 the values of hn on [0, tn] are nearly
proportional to h(0) and their orthogonal projections on h(0) are nearly non-decreasing, and for
i = 2 they nearly belong to [0, h(0)].

Lastly, we note that each of the metrics ρi, ρ′i is separable and incomplete. Separability follows
from Lemma 1 in Section 14 in Billingsley (1968). Observing that {1[1/2,1/2+1/n)}n≥2 is a Cauchy
sequence in each of the metrics which does not converge shows their incompleteness.

2.3. Metric LDPs for trajectories of random walks. Let (Sn)n≥1, where Sn = X1 + . . . + Xn, be a
random walk with independent identically distributed increments X1, X2, . . . in Rd, where d ≥ 1.
For any n ∈ N, let Sn(·) be the piece-wise linear function on [0, 1] defined by linear interpolation
between its values at the points k/n, where 0 ≤ k ≤ n, k ∈ Z, that are given by Sn(k/n) := Sk,
where S0 := 0. These are time-rescaled trajectories of the random walk (Sn)n≥1. We will regard
them as random elements of the space D[0, 1] (or its subsets) equipped with the Borel σ-algebras
generated by ρ′1 or ρ′2.
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Let L(u) := Eeu·X1 , where u ∈ Rd, be the Laplace transform of the random vector X1 in Rd.
Denote by DL := {u ∈ Rd : L(u) < ∞} the effective domain of L. We say that X1 satisfies the
Cramér moment assumption if L is finite in an open neighbourhood of 0, that is 0 ∈ intDL in short.
The function K := logL, called the cumulant moment generating function of X1, is always convex.
Denote by I the Legendre–Fenchel transform of K, i.e.

I(v) := sup
u∈Rd

(
u · v −K(u)

)
, v ∈ Rd. (2.10)

This is a convex lower semi-continuous function with values in [0,∞]. The classical Cramér theorem
states that under the assumption 0 ∈ intDL, the sequence (Sn/n)n≥1 satisfies the LDP in the
Euclidean space Rd with the tight rate function I. This justifies saying that I is the rate function
of X1.

The total variation Var(h) of a function h ∈ D[0, 1] is defined by

Var(h) := sup
t⊂(0,1]: #t<∞

∫ 1

0
|(ht)′(s)|ds, (2.11)

where ht denotes the continuous function on [0, 1] defined by linear interpolation between its values
t∪{0, 1} that are given by ht(s) := h(s) for s ∈ t∪{1} and ht(0) := 0. We can regard Var(h) as the
length of the curve in Rd obtained by taking the spatial coordinate of a curve in Π′(h). Denote by
BV [0, 1] := {h ∈ D[0, 1] : Var(h) <∞} the set of càdlàg Rd-valued functions of bounded variation,
and by AC0[0, 1] its subset of coordinate-wise absolutely continuous functions such that h(0) = 0.

Lastly, define a non-negative functional ID on h ∈ D[0, 1]:

ID(h) := sup
t⊂(0,1]: #t<∞

∫ 1

0
I((ht)′(s))ds. (2.12)

It is worth noting that ID(h) =
∫ 1

0 I(h′(s))ds when h ∈ AC0[0, 1] (Borovkov and Mogulskii 2013,
Theorem 5.3).

We now present the metric LDP for trajectories of random walks.

Theorem A (Borovkov and Mogulskii 2013, 2014). Assume that X1 is a random vector in Rd
such that 0 ∈ intDL. Then the random sequences (Sn(·)/n)n≥1 and (S[n ·]/n)n≥1 satisfy the metric
LDPs (2.2) in each of the four metric spaces (D[0, 1], ρ′i) and (BV [0, 1], ρ′i) for i ∈ {1, 2}, with the
rate function ID whose sub-level sets are totally bounded (in each space).

Moreover, ID is convex and it satisfies, for some constants c1, c2 > 0,

ID(h) ≥ c1 Var(h)− c2, h ∈ D[0, 1]. (2.13)

Remark 2.2. Let us make a number of comments.
a) Note that ID(h) = +∞ for h 6∈ BV [0, 1] by (2.13).
b) The metric LDPs for Sn(·) and S[n ·] are equivalent by ρi(Sn(·)/n, S[n ·]/n) ≤ 2/n. The metric

LDPs in ρ′1 are stronger than the ones in ρ′2 since ρ′2 ≤ ρ′1. We stated these weaker results to match
the presentation of Borovkov and Mogulskii (2013, 2014), which puts emphasis on the metric ρ′2.
The only advantage of ρ′2 is in its relative simplicity.

c) Although the rate function ID is not tight, equality (2.3) still holds true with I = ID and
` = ρ′1 for certain types of non-relatively compact sets B, described in Remark 5.5.

d) In general, (2.3) does not hold for ` = ρ′2. For example, assume that d = 1, EX1 = 0,
DL is bounded, and consider B := {hn}n≥4 with hn := 1[1/2−2/n,1/2−1/n)∪[1/2+1/n,1/2+2/n). No
subsequence {hnk} converges in ρ′2 to an element of D[0, 1], hence B is closed w.r.t. ρ′2. On the other
hand, we have ρ′2(gn, B) = 1/n for gn := 1[1/2−1/n,1/2+1/n). Then ID(gn) = 1

2ID(hn) = const > 0
by equality (5.7) below, therefore (2.3) cannot hold.

It is plausible that (2.3) does not hold for ` = ρ′1 too but we have no examples. The pa-
pers Borovkov and Mogulskii (2010, 2012, 2013, 2014) offer no discussion on this question.
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e) The reason why the metric LDPs do not immediately imply the corresponding LDPs is incom-
pleteness of the metric spaces considered. There exists an explicit complete metric that generates
the topology M1 (Whitt 2002, Section 12.8), and it appears that its minor modification should give
a complete metric ρ̃′1 generating M ′1. However, such complete metrics are longer than the initial
ones, therefore it seems impossible to have the upper bound in (2.2) with ` = ρ̃′1 instead of ` = ρ′1.

f) Bound (2.13) readily follows from the inequality I(v) ≥ c1|v| − c2 for v ∈ Rd, which holds true
because I is convex and grows at least linearly at infinity; see (5.4) and (5.5) below.

g) In view of (2.6) and given that Sn(0) = S0 = 0, one may argue that it would be more
natural to employ the non-standard space D′[0, 1] := {h1(0,1] : h ∈ D[0, 1]} equipped with the usual
Skorokhod metrics ρi. This is essentially done in Borovkov and Mogulskii (2013, 2014). The spaces
(D′[0, 1], ρi) and (D[0, 1], ρ′i) are isometric, so the metric LDPs transfer easily. On the other hand, it
is natural to work with the space BV [0, 1] of càdlàg modifications of functions of bounded variation
because these are distribution functions of vector-valued finite measures. This explains our choice
of the standard space D[0, 1].

h) The ultimate reason why the space BV [0, 1] arises is that the rate function I is not super-linear
at infinity. The only exception is when the Laplace transform of the increments is finite (see (5.4)
and (5.5)), in which case it suffices to work with the space (AC0[0, 1], ‖ · ‖∞) and the rate function
ID is tight due to the super-linearity of I. Such effects of the behaviour of integrand at infinity are
well-known in the calculus of variations, which studies minimization of integral functionals.

Theorem A is a combination and adaptation of several results scattered through Borovkov and
Mogulskii (2012, 2013, 2014), therefore we shall explain in detail how we obtained it. These authors
considered a wider space D of functions h : [0, 1] → Rd without discontinuities of the second kind
satisfying h(t) ∈ [h(t−), h(t+)] for t ∈ [0, 1]. The functions ρi, defined on D as above in (2.4)
and (2.5), are now pseudometrics. Put D0 := {h ∈ D : h(0) = 0} and define the functionals Var and
ID on D0 as above in (2.11) and (2.12). The functional ID on D is defined by ID := ID on D0 and
ID := +∞ on Dc0, see Borovkov and Mogulskii (2012, Definition 2.1). Lastly, putting h+(t) := h(t+)
for t ∈ [0, 1] defines an isometry from (D0, ρi) onto (D[0, 1], ρ′i).

Then (S[n ·]/n)n≥1 satisfies the metric LDP in (D, ρ2) with convex rate function ID by Borovkov
and Mogulskii (2013, Theorem 5.5), where measurability refers to the Borel σ-algebra (see Borovkov
and Mogulskii 2012, Definition 1.4) and ID is convex and lower semi-continuous by Borovkov and
Mogulskii (2013, Theorem 5.2.i and ii) and its sub-level sets are totally bounded by Borovkov and
Mogulskii (2013, Lemma 5.3) combined with inequality (2.13). By Lemma 3.5.a, the metric LDP
remains valid on (D0, ρ2) because P(S[n ·] ∈ D0) = 1 for every n and ID = +∞ on Dc0. Finally, by
our Theorem 3.1, the isometry h 7→ h+ transforms this metric LDP into the one on (D[0, 1], ρ′2)
with the rate function ID because S+

[n ·] = S[n ·] and ID(h) = ID(h+) for every h ∈ D0 by Borovkov
and Mogulskii (2013, Theorem 5.1).

Denote by V0 the subset of D0 of functions of finite variation. By Borovkov and Mogulskii (2014,
Theorem 6.2), (S[n ·]/n)n≥1 satisfies the metric LDP in (V0, ρ1) with the rate function ID, which is
lower semi-continuous (in ρ1) because it is so in the shorter pseudometric ρ2, and its sub-level sets
are totally bounded by Borovkov and Mogulskii (2014, Lemma 6.2) combined with (2.13). This
metric LDP remains valid in (BV [0, 1], ρ′1) by the same argument as above using Remark 2.2.a. It
in turn implies the weaker metric LDP in (BV [0, 1], ρ′2) and also implies the one in (D[0, 1], ρ′1) by
Lemma 3.5.b using that ID is lower semi-continuous in ρ′1 because it is so in ρ′2.

3. Contraction principle for metric LDPs

The following general result is analogous to the usual contraction principle for standard LDPs;
cf. Dembo and Zeitouni (2010, Theorem 4.2.1 and Remark (c)). To state it, we first give two
definitions.
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For a function J : X → [0,+∞] defined on a topological space X , denote by cl J its closure (or
the lower semi-continuous regularization), i.e. the function whose epigraph is the closure (in the
product topology on X × [0,+∞]) of the epigraph of J . Recall that DJ = {x ∈ X : J(x) < ∞}
denotes the effective domain of J . We say that a mapping F between metric spaces is uniformly
continuous on a subset A of the domain if F |A is uniformly continuous.

Theorem 3.1. Let (X , `1) and (Y, `2) be metric spaces and (Zn)n≥1 be a sequence of random
elements that satisfies a metric LDP in (X , `1) with some speed and a rate function I. Let F : X → Y
be a measurable mapping that is continuous at every x ∈ DI and uniformly continuous on every
sub-level set of I. Then the sequence (F (Zn))n≥1 satisfies the metric LDP in (Y, `2) with the same
speed and the rate function cl J̃ , where J̃ (y) := infx∈F−1(y) I(x) for y ∈ Y.

Moreover, if the sub-level sets of I are totally bounded, then the same is true for cl J̃ .

The interest in this result is in its corollary, which allows one to bring the metric LDPs (2.2) into
the standard form (2.1).

Corollary 3.2. If the metric space (Y, `2) is complete and the sub-level sets of I are totally bounded,
then the sequence (F (Zn))n≥1 satisfies the (standard) LDP with the tight rate function cl J̃ .

This follows from Theorem 3.1 by equality (2.3) and the fact that closed totally bounded subsets
of complete metric spaces are compact.

Our main application of Corollary 3.2 is in the context of random walks trajectories:

Theorem 3.3. Assume that X1 is a random vector in Rd such that 0 ∈ intDL. Let Y be a
complete metric space and F : BV [0, 1] → Y be a mapping that is continuous in ρ′1 and uniformly
continuous in ρ′1 on {h : Var(h) ≤ R} for every R > 0. Then both sequences of random elements
(F (Sn(·)/n))n≥1 and (F (S[n·]/n))n≥1 satisfy the (standard) LDP in Y with the tight rate function
cl J̃ , where J̃ (y) := infh∈F−1(y) ID(h) for y ∈ Y.

This follows from Corollary 3.2 combined with Theorem A using the lower bound (2.13) for ID(h)
in terms of Var(h).

Proof of Theorem 3.1. For any A ⊂ Y, we have

{x : I(x) <∞} ∩ F−1(intA) = {x : I(x) <∞} ∩ int(F−1(intA))

because for every x in the set in the l.h.s., {x}δ`1 ⊂ F−1(intA) holds for some δ > 0 by continuity
of F at x, and thus x ∈ int(F−1(intA)). Hence

inf
x∈int(F−1(intA))

I(x) = inf
x∈F−1(intA)

I(x) = inf
y∈intA

J̃ (y), (3.1)

where the second equality holds true by the definition of J̃ . Furthermore, we claim that

lim
δ→0+

inf
x∈(F−1(A))δ`1

I(x) ≥ lim
ε→0+

inf
x∈F−1(Aε`2

)
I(x) = lim

ε→0+
inf
y∈Aε`2

J̃ (y). (3.2)

The inequality is trivial when its l.h.s. is infinite, otherwise denote the l.h.s. by R. By uniform
continuity of F on sub-level sets of I, for any ε > 0 there exists a δ0 > 0 such that `2(F (x), F (x′)) < ε
whenever `1(x, x′) < δ0 and max(I(x), I(x′)) ≤ R. Hence(

F−1(A) ∩ {x : I(x) ≤ R}
)δ0
`1
⊂ F−1(Aε`2),

and for any δ ∈ (0, δ0) we have

R ≥ inf
x∈(F−1(A))

δ0
`1

I(x) = inf
x∈(F−1(A))

δ0
`1
∩{I≤R}δ0`1

I(x) = inf
x∈(F−1(A)∩{I≤R})δ0`1

I(x) ≥ inf
x∈F−1(Aε`2

)
I(x),

which implies (3.2) by first taking δ → 0+ and then ε→ 0+.
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Denoting by (an)n≥1 the speed in the metric LDP for (Zn)n≥1, for any Borel set A ⊂ Y,

lim sup
n→∞

1

an
logP(F (Zn) ∈ A) ≤ − lim

δ→0+
inf

x∈(F−1(A))δ`1

I(x) ≤ − lim
ε→0+

inf
y∈Aε`2

J̃ (y),

where the second inequality follows from (3.2). We also have

lim inf
n→∞

1

an
logP(F (Zn) ∈ A) ≥ − inf

x∈int(F−1(intA))
I(x) = − inf

y∈intA
J̃ (y),

where the equality follows from (3.1).
Finally, we can replace J̃ above by the function J given by J := cl J̃ , which is lower semi-

continuous by definition, non-negative, and not identically +∞. Indeed, we have

inf
y∈intA

J (y) = inf
y∈intA

J̃ (y), A ⊂ Y, (3.3)

which follows easily from the representation (e.g., see Rassoul-Agha and Seppäläinen, 2015,
Lemma 2.8)

J (y) = sup
{

inf
z∈U
J̃ (z) : y ∈ U,U ⊂ Y, U is open

}
, y ∈ Y. (3.4)

Thus, the sequence (F (Zn))n≥1 of random elements of Y satisfies the metric LDP in (Y, `2) with
the rate function J and speed (an)n≥1, as stated.

Note that representation (3.4) also implies that cl J̃ ≤ J̃ and

{y : J (y) < α} ⊂ cl{y : J̃ (y) < α}, α > 0. (3.5)

Indeed, if there is a y ∈ Y such that J (y) < α but y 6∈ cl{y : J̃ (y) < α}, then since Y is a metric
space, there is an open ball U centred at y that does not intersect with cl{y : J̃ (y) < α}. Thus,
J̃ ≥ α on U , hence J (y) ≥ α by (3.4), which is a contradiction.

If T is a totally bounded subset of X and F is uniformly continuous on T , then F (T ) is totally
bounded in Y. Therefore, if the sub-level sets of I are totally bounded in X , by

{y : J̃ (y) < α} =
{
y : inf

x∈F−1(y)
I(x) < α

}
⊂ F ({x : I(x) < α}),

the set on the l.h.s. is totally bounded in Y, and so is its closure. Then the sub-level sets of J are
totally bounded by (3.5), as claimed.

�

The proof presented actually reveals a wide class of sets where equality (2.3) holds true and thus
the metric LDP bound (2.2) can be strengthened to the standard one (2.1). Let us state this as a
separate assertion.

Proposition 3.4. Let (X , `), (Y, `2) be metric spaces, and F : X → Y, I : X → [0,∞] be
mappings such that F is uniformly continuous on the sub-level sets of I. Assume that the function
J̃ (y) := infx∈F−1(y) I(x) on Y is tight. Then equality (2.3) holds true for every non-empty set B
such that B = F−1(A) for some A ⊂ Y satisfying cl(F−1(A)) = F−1(clA), with the infimum on
the l.h.s. of (2.3) attained at some x ∈ clB.

For a direct application of this result to random walks trajectories, see Proposition 5.4.

Proof : By (3.2) and (2.3) applied to I replaced by J̃ , which is tight by assumption (and hence
lower semi-continuous), we have

inf
x∈cl(F−1(A))

I(x) ≥ lim
δ→0+

inf
x∈(F−1(A))δ`

I(x) ≥ lim
ε→0+

inf
y∈Aε`2

J̃ (y) = inf
y∈clA

J̃ (y) = inf
x∈F−1(clA)

I(x).
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By cl(F−1(A)) = F−1(clA), the inequalities above are equalities, thus establishing (2.3). The
penultimate infimum is attained at some y ∈ clA by tightness of J̃ , hence the last infimum is
attained at some x ∈ clB, as needed. �

Our last simple claim, analogous to Lemma 4.1.5 in Dembo and Zeitouni (2010), describes the
behaviour of metric LDPs under inclusions.

Lemma 3.5. Let (Zn)n≥1 be a sequence of random elements of a metric space (X , `) and Y ⊂ X
be a Borel set such that P(Zn ∈ Y) = 1 for each n ∈ N.

a) If (Zn)n≥1 satisfies a metric LDP in (X , `) with some speed and a rate function I such that
I = +∞ on Yc, then (Zn)n≥1 satisfies the metric LDP in (Y, `) with the same speed and the rate
function I|Y .

b) Conversely, if (Zn)n≥1 satisfies a metric LDP in (Y, `) with some speed and a rate function
I, then (Zn)n≥1 satisfies the metric LDP in (X , `) with the same speed and the rate function cl I,
where I is extended to X by putting I := +∞ on Yc.

Proof : a) Clearly, I|Y is non-negative, lower semi-continuous, and not identically +∞ (otherwise
I = +∞ on X ). By monotonicity of probability, the lower bound in a metric LDP follows if we
establish it for open sets. Since the topology of (Y, `) is the subspace topology induced from (X , `),
for every set B ⊂ Y that is open in (Y, `) we have B = B̃ ∩ Y for some B̃ ⊂ X open in (X , `).
Then, denoting by (an)n≥1 the speed in the metric LDP,

− inf
y∈B
I|Y(y) = − inf

x∈B̃
I(x) ≤ lim inf

n→∞

1

an
logP(Zn ∈ B̃) = lim inf

n→∞

1

an
logP(Zn ∈ B), (3.6)

where in the first equality we used that I = +∞ on Yc and in the last one we used that P(Zn ∈
Y) = 1 for each n. This proves the lower bound required. The upper bound required follows from
the fact that infx∈BεX I(x) = infy∈BεY I|Y(y) for every ε > 0.

b) For every B̃ ⊂ X open in (X , `), the set B := B̃ ∩ Y is open in (Y, `). Then (3.6) holds
true (switch the sides in both equalities), and the lower bound required follows from the equal-
ity infx∈B̃ I(x) = infx∈B̃ cl I(x); see (3.3). And the upper bound follows from the fact that
infy∈BεY I(y) ≥ infx∈BεX cl I(x) for every ε > 0, which holds true by I ≥ cl I. �

4. The weak-* and related topologies on BV [0, 1]

In this section we introduce the weak-* topology W∗ on the space of functions of bounded vari-
ation, then present a convenient metric topology W̃∗ that coincides with W∗ on strongly bounded
sets.

4.1. The weak-* topology and a related metric. Every h ∈ BV [0, 1] is the distribution function of
the Rd-valued finite Borel measure on [0, 1], which we denote by dh, that satisfies dh([0, x]) = h(x)
for x ∈ [0, 1]. As in the case d = 1, this correspondence is bijective (Folland 1999, Theorem 3.29).
Note that this book considers only complex-valued measures but all the cited results from there are
actually valid for any d ≥ 1 since the consideration of Rd-valued finite measures is coordinate-wise.
For example, the integral of a measurable function f : [0, 1]→ Rd w.r.t. dh, is given by∫ 1

0
f · dh :=

d∑
k=1

∫ 1

0
f (k)dh(k), h ∈ BV [0, 1], (4.1)

with the agreement that the notation above always means integration over [0, 1].
Recall that Var(h) denotes the total variation of an h ∈ BV [0, 1]; see (2.11). This is a norm on

BV [0, 1], and it generates a topology. Both will be referred to as strong.
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Denote by C[0, 1] = C([0, 1];Rd) the set of continuous functions on [0, 1], and equip it with
the supremum norm ‖ · ‖∞. By the Riesz theorem (Folland 1999, Theorem 7.17), the dual of
(C[0, 1], ‖ · ‖∞) is isometrically isomorphic to (BV [0, 1],Var(·)) since we regard BV [0, 1] as the
space of finite Rd-valued Borel measures on [0, 1]. In particular, we have

Var(h) = sup
f∈C[0,1]:‖f‖∞≤1

∫ 1

0
f · dh, h ∈ BV [0, 1], (4.2)

i.e. the strong (total variation) norm is the operator norm. The weak-* topology on BV [0, 1],
denoted by W∗, is the coarsest topology such that all the linear functionals on BV [0, 1] of the form
h 7→

∫ 1
0 f · dh for f ∈ C[0, 1] are continuous. The convergence defined by W∗ is called the weak-*

convergence; it is traditionally referred to as weak convergence in probabilistic literature.
We would want to apply our contraction principle (Theorem 3.1) to the natural embedding

(BV [0, 1], ρ′1) → (BV [0, 1],W∗), but we should seek for a substitute of the weak-* topology W∗,
which is known to be non-metrizable. However, it is metrizable on strongly bounded subsets of
BV [0, 1] (cf. a general metrization result Dunford and Schwartz 1958, Theorem V.5.1) This can be
done using an explicit metric ρ∗ defined as follows.

Consider the norm

‖h‖∗ :=

∫ 1

0
|h(s)|ds+ |h(1)|, h ∈ BV [0, 1].

on BV [0, 1], which is simply the L1-norm of h w.r.t. the sum of the Lebesgue measure on [0, 1] and
the δ-measure at 1. The metric ρ∗(g, h) := ‖g − h‖∗ generates a topology, which we denote by W̃∗.
We have the following.

Theorem B (Högnäs 1977). Suppose that {gα}α∈A ⊂ BV [0, 1] is a strongly bounded net, i.e.
supα∈A V ar(gα) <∞. Then the following are equivalent:
1) limα∈A ‖gα‖∗ = 0;
2) limα∈A

∫ 1
0 f · dgα = 0 for any f ∈ C[0, 1], i.e. {gα}α∈A converges weakly-* to zero on [0, 1].

By (4.1), this result fully reduces to d = 1, the only case considered in Högnäs (1977).

Remark 4.1. If the net {gα}α∈A is a sequence, i.e. A = N, then by the uniform boundedness principle
and (4.2), supα∈A Var(gα) < ∞ if and only if supα∈A

∣∣ ∫ 1
0 f · dgα

∣∣ < ∞ for any f ∈ C[0, 1]. Hence,
a weakly-* convergent sequence also converges in the metric ρ∗ (but not vice versa).

Corollary 4.2. A strongly bounded subset of BV [0, 1] that is closed or compact in one of the
topologies W̃∗ and W∗, is closed and compact in each of them.

This result is the main reason why we have chosen to employ the weak-* topology.

Proof : It follows from the Banach–Alaoglu theorem that strongly bounded sets that are closed in
W∗ are compact in W∗. Conversely, every set compact in the metric topology W̃∗ is closed in W̃∗.
The claim then follows from Theorem B because in a topological space, a set is closed if and only
if together with any converging net it contains all its limits (Engelking 1989, Corollary 1.6.4), and
it is compact if and only if any decreasing sequence of its closed non-empty subsets has non-empty
intersection. �

Let us clarify the relationship between the the topologies W̃∗ and W∗. Denote by seq(W∗) the
topology on BV [0, 1] where a set is closed if and only if it is sequentially closed in W∗; we will
use this topology in Section 5. We have W∗ ⊂ seq(W∗) because in any topology, a closed set
is sequentially closed. We also have W̃∗ ⊂ seq(W∗) since by Remark 4.1, sequential convergence
in W∗ implies convergence in W̃∗. However, this argument does not imply that W̃∗ is weaker
than W∗ because it is known that W∗ 6= seq(W∗). And indeed, the topologies W̃∗ and W∗ are
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incomparable, with W̃∗ 6⊂ W∗ following from the observation that for any f1, . . . , fn ∈ C[0, 1], the
set {h ∈ AC0[0, 1] :

∫ 1
0 f · dh = 0, 1 ≤ i ≤ n} is unbounded in ρ∗.

4.2. Comparison with the Skorokhod topologies. First compare ρ∗ with the metrics ρ2 and ρ′2 defined
in Section 2.2.

Lemma 4.3. For any h ∈ BV ([0, 1];Rd) and g ∈ D([0, 1];Rd), we have∫ 1

0
|g(s)− h(s)|ds ≤ 2d(Var(h)− |h(0)|+ 1)ρ2(g, h) + πdρ2

2(g, h)

and ∫ 1

0
|g(s)− h(s)|ds ≤ 2d(Var(h) + 1)ρ′2(g, h) + πd(ρ′2)2(g, h).

Proof : We start by proving the first inequality for d = 1. Consider the set

U :=
{

(s, x) ∈ R2 : 0 ≤ s ≤ 1, g(s) ∧ h(s) ≤ x ≤ g(s) ∨ h(s)
}
.

It is Borel because g and h are càdlàg on [0, 1]. We claim that U ⊂ cl
(
(Γh)ρ2(g,h)

)
, where (Γh)r

denotes the Euclidean open r-neighbourhood of Γh, the completed graph of h. Then by Fubini’s
theorem, ∫ 1

0
|g(s)− h(s)|ds = λ(U) ≤ λ

(
cl
(
(Γh)ρ2(g,h)

))
. (4.3)

where λ denotes the Lebesgue measure on the plane.
In order to prove the claim, pick an s ∈ [0, 1]. There is a point (t, y) ∈ Γh such that |(t, y) −

(s, g(s))| ≤ ρ2(g, h). Hence a) (s, x) ∈ cl
(
(Γh)ρ2(g,h)

)
for any x ∈ [g(s) ∧ y, g(s) ∨ y], and b) since

Γh = γ([0, 1]) for a continuous planar curve γ ∈ Πh (see Section 2.2), by the intermediate value
theorem applied to the spatial coordinate of γ, for any x ∈ [h(s)∧y, h(s)∨y] there is a u ∈ [s∧t, s∨t]
such that (u, x) ∈ Γh, and by |s − t| ≤ ρ2(g, h) this implies (s, x) ∈ cl

(
(Γh)ρ2(g,h)

)
. Put together,

a) and b) imply that U ⊂ cl
(
(Γh)ρ2(g,h)

)
, as claimed, by

[g(s) ∧ h(s), g(s) ∨ h(s)] ⊂ [g(s) ∧ y, g(s) ∨ y] ∪ [h(s) ∧ y, h(s) ∨ y].

Furthermore, denote by `(γ) the length of γ. It is easy to check, using the definition of the total
variation of h, that

`(γ) ≤ Var(h)− |h(0)|+ 1. (4.4)
Thus, γ is a rectifiable curve (i.e. offinite length), therefore (Federer 1969, Theorem 3.2.39)

`(γ) = lim
r→0+

λ(cl((Γh)r))/(2r), (4.5)

where the limit is known as the one-dimensional Minkowski content of the set Γh.
On the other hand, for any compact connected planar set F , the function r 7→ λ(F r) − πr2 is

known to be concave on (0,∞) (Fast 1959, Theorem on p. 139 and Sz.-Nagy 1959, Theorem 1). Its
right derivative at 0 is 2`(γ) by (4.5). Then, since Γh is connected,

λ
(

cl
(
(Γh)r

))
≤ 2r`(γ) + πr2, r > 0. (4.6)

This inequality, which is sometimes referred to as Steiner’s inequality (cf. Steiner’s formula), is
actually available in Fast (1959, p. 146); the assumptions imposed in Fast (1959) are satisfied since
γ is a rectifiable simple (i.e. injective) curve.

Put together, inequalities (4.3), (4.4), (4.6) imply the first inequality of Lemma 4.3 for d = 1.
This in turn proves the inequality in any dimension using that |x| ≤ |x(1)|+ . . .+ |x(d)| for x ∈ Rd,
and Var(h(k)) − |h(k)(0)| ≤ Var(h) − |h(0)| and ρ2(g(k), h(k)) ≤ ρ2(g, h) for k = 1, . . . , d. The
last inequality can be obtained from definition (2.5) of the metric ρ2 as follows: first estimate
|(s, x) − (t, y)| ≥ |(s, x(k)) − (t, y(k))| and then, since the r.h.s. of this inequality does not depend
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on the remaining coordinates, eliminate them from the constraints under the maximum and the
minimum in (2.5).

The second inequality of Lemma 4.3 follows by the same argument using that by (2.6), the
modified completed graphs Γ′g and Γ′h can be regarded as the usual completed graphs of the
modified functions g0 := g1(0,1] and h0 := h1(0,1], which are càdlàg on (0, 1] and have right limits at
0. Hence ρ′2(g, h) = ρ2(g0, h0), and if γ ∈ Π′(h) is a parametrization of Γ′h, then `(γ) ≤ Var(h) + 1.
It remains to use that

∫ 1
0 |g(s)− h(s)|ds =

∫ 1
0 |g0(s)− h0(s)|ds. �

We now use Lemma 4.3 to clarify the relationship between the topologies introduced. With no
risk of confusion, in the rest of the paper we use the original notation Mi, M ′i for the induced
topologies on BV [0, 1]. We have W̃∗ ⊂M ′1 since ρ′2 ≤ ρ′1 and convergence of càdlàg functions in the
metric ρ′1 implies convergence of their values at the endpoint 1.

Neither W̃∗ nor W∗ is comparable with M2. For example, for gn := 1[1−1/n,1) and g := 1{1},
we have ρ2(gn, g) → 0 but ρ∗(gn, g) 6→ 0 as n → ∞. However, by Lemma 4.3, convergence in
either ρ2 or ρ′2 implies convergence in ρ∗ if the limit function is continuous at 1. Moreover, W∗ is
incomparable with M1. For example, for gn := {n ·}/

√
n, where {·} denotes the fractional part, we

have ρ1(gn, 0) → 0 but gn does not converge weakly-* since its total variation explodes. Likewise,
W∗ is incomparable with the topology of uniform convergence, which is weaker than the strong
topology on BV [0, 1] by inequality (5.2) below.

5. Application of the weak-*-related topologies to the study of ID

In this section we use the topologies W̃∗ and seq(W∗) on BV [0, 1], introduced in Section 4,
to study properties of the rate function ID using the results of variational calculus. Namely, we
prove sequential weak-* lower semi-continuity of ID and use this property to obtain an explicit
integral representation for ID, which is written using the directional decomposition of the total
variation of functions in BV ([0, 1];Rd). Moreover, we standardize the upper bound in the metric
LDP of Borovkov and Mogulskii (2013, 2014) for a few types of sets, and prove a standard LDP for
trajectories of random walks in the space (BV [0, 1], ρ∗).

5.1. Directional decomposition of total variation. Recall that AC0[0, 1] denotes the set of
coordinate-wise absolutely continuous functions from [0, 1] to Rd that equal 0 at 0. These are
exactly the distribution functions of Rd-valued finite Borel absolutely continuous measures on [0, 1].
For any h ∈ BV [0, 1], put ha(t) :=

∫ t
0 h
′(s)ds, where h′ exists a.e. and is integrable by Folland

(1999, Proposition 3.30), which also ensures that the measure dhs := dh− dha is singular. We say
that h = ha + hs is the Lebesgue decomposition of the vector-valued function h; let us stress that
ha ∈ AC0[0, 1].

Denote by V h the total variation function of an h ∈ BV [0, 1], defined by V h(t) := Var(h(·∧t)) for
t ∈ [0, 1]; cf. (2.11). It is non-decreasing, càdlàg, and satisfies Var(h) = V h(1), hence V h ∈ BV [0, 1].
By Folland (1999, Theorem 3.29 and Exercise 21 in Section 3.3), dV h is the total variation measure
of the vector-valued measure dh, that is the equality

dV h(B) = sup

{ ∞∑
i=1

|dh(Bi)| : B1, B2, . . . are disjoint Borel sets,
∞⋃
i=1

Bi = B

}
(5.1)

holds true for every Borel set B ⊂ [0, 1]. This implies that V h1+h2 = V h1 + V h2 whenever dh1 and
dh2 are singular. In particular, we have V h = V ha + V hs .

It holds dh � dV h and the Radon–Nykodim density ḣ : [0, 1] → Rd, defined by dh = ḣ dV h,
satisfies |ḣ| = 1 dV h-a.e. (Folland 1999, Proposition 3.13.b). In particular, this implies that

‖h‖∞ ≤ Var(h), h ∈ BV [0, 1]. (5.2)
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We say that the push-forward measure dσh := dV h◦(ḣ)−1 on the unit sphere Sd−1 is the directional
decomposition of the total variation of h. For example, if d = 1, the Hahn–Jordan decomposition
gives the unique representation h = h+ − h−, where h± ∈ BV [0, 1] are non-decreasing functions,
and so dσh = h+(1)δ1 + h−(1)δ−1. Then Var(h) = σh(Sd−1) and

Var(h) =

∫ 1

0
|h′(t)|dt+ σhs(Sd−1). (5.3)

To prove (5.3), note that it follows from (5.1) that the measure dV ha is absolutely continuous
(because so is dha). Then from the equalities h′dt = dha = ḣa dV

ha and |ḣa| = 1 dV ha-a.e., we
see by equating densities that dV ha = |h′|dt (because the unit vector ḣa multiplied by the scalar
density of dV ha equals h′). This implies (5.3) by dV h = dV ha + dV hs .

5.2. Lower semi-continuity of ID w.r.t. ρ∗ and related results. Recall that DL is the subset of Rd
where the Laplace transform of X1 is finite. This set is convex. Denote by

I∞(v) := sup{u · v : u ∈ DL}, v ∈ Rd, (5.4)

its support function. This name reflects that I∞ equals the so-called recession function of I (Rock-
afellar 1970, Theorem 13.3), which is convex, lower semi-continuous and positively homogeneous on
Rd, and has the property (Rockafellar 1970, Theorem 8.5)

I∞(v) = lim
t→∞

I(u+ vt)/t = sup
t>0

[
(I(u+ vt)− I(u))/t

]
, u ∈ DL, v ∈ Rd. (5.5)

Note that in dimension d = 1, we have intDL = (−I∞(−1), I∞(1)).
We can now state the main result of the section.

Theorem 5.1. Assume that X1 is a random vector in Rd such that 0 ∈ intDL. Then the functional
ID on BV [0, 1], defined in (2.12), is tight w.r.t. ρ∗. Moreover, we have

ID(h) =

∫ 1

0
I(h′(t))dt+

∫
Sd−1

I∞(`)σhs(d`), h ∈ BV [0, 1], (5.6)

which is dimension d = 1 reads as

ID(h) =

∫ 1

0
I(h′(t))dt+ h+

s (1)I∞(1) + h−s (1)I∞(−1). (5.7)

Formula (5.7) is available in Borovkov and Mogulskii (2013, Theorem 3.3). If DL = Rd, that is
the Laplace transform of X1 is finite on Rd, then I∞(v) = +∞ for v 6= 0, hence ID(h) = +∞ for
h 6∈ AC0[0, 1].

The advantage of integral representation (5.6) is in its explicitness. It becomes more transparent
when compared with equality (5.3), where the total variation of the singular component of a function
is expressed using its directional decomposition. We can get (5.3) by formally substituting the
Euclidean norm | · | for I in (5.6).

The next two statement are corollaries to Theorem 5.1.

Proposition 5.2. Assume that X1 is a random vector in Rd such that 0 ∈ intDL. Then both
random sequences (Sn(·)/n)n≥1 and (S[n·]/n)n≥1 satisfy the (standard) LDP in the separable metric
space (BV [0, 1], ρ∗) with the tight convex rate function ID.

The main application of this result is our LDP for kernel-weighted sums of i.i.d. random vectors
in Rd, presented in Section 6. It is worth to compare Proposition 5.2 with the results by Gantert
(1998, Theorems 1 and 2), who proved LDPs in L1 (i.e., “almost” in the same topology as in our
case but on a different space) for one-dimensional random walks with so-called semi-exponential
increments.
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Proof of Proposition 5.2. This follows from Theorem A combined with Theorem 3.1 applied to
the natural embedding F : (BV [0, 1], ρ′1) → (BV [0, 1], ρ∗), where J̃ = I = ID, and ID is a tight
rate function w.r.t. ρ∗ by Theorem 5.1. The assumptions of Theorem 3.1 are satisfied because by
Lemma 4.3 and the inequality ρ′2 ≤ ρ′1, F is continuous and it is uniformly continuous on strongly
bounded subsets of BV [0, 1], and also on the sub-level sets of I by (2.13). Lastly, by Corollary 4.2,
the metric space ({h : Var(h) ≤ n}, ρ∗) is compact, hence totally bounded, hence separable for
every n ∈ N, therefore (BV [0, 1], ρ∗) is separable. �

Remark 5.3. Note that we cannot apply Theorem 3.3 instead of Theorem 3.1 in the proof presented
because the metric space (BV [0, 1], ρ∗) is not complete. A way around is to consider the natural
embedding of (BV [0, 1], ρ1) into the complete metric space (L1[0, 1], ρ∗).

Namely, for any g ∈ L1[0, 1], put ID(g) := ID(h) if there exists an h ∈ BV [0, 1] such that
ρ∗(g, h) = 0 and ID(g) := +∞ otherwise. Let us check that this extended version of ID remains
lower semi-continuous. Since ID has this property on (BV [0, 1], ρ∗) by Theorem 5.1, it suffices to
prove that for any h1, h2, . . . ∈ BV [0, 1] and g ∈ L1[0, 1] \BV [0, 1] such that limn→∞ ρ∗(hn, g) = 0
and ρ∗(g, h) > 0 for every h ∈ BV [0, 1], we have lim infn→∞ ID(hn) = +∞. This follows from (2.13)
because lim infn→∞Var(hn) = +∞ (no subsequence of (hn)n is strongly bounded since otherwise
by Corollary 4.2 we can choose a further subsubsequence converging in ρ∗ to some h ∈ BV [0, 1],
hence we arrive at the contradictory ρ∗(g, h) = 0).

Theorem 3.3 then implies that (Sn(·)/n)n≥1 and (S[n·]/n)n≥1 satisfy the LDP in (L1[0, 1], ρ∗)
with the tight rate function ID; it reduces to the LDP in (BV [0, 1], ρ∗) by Dembo and Zeitouni
(2010, Lemma 4.1.5.b).

Let us use subscripts to indicate in which metric (or topology) we take closures.

Proposition 5.4. Assume that X1 is a random vector in Rd such that 0 ∈ intDL. Let B ⊂ BV [0, 1]
be such that clρ′1(B) = clρ∗(B) (where ρ′1 is restricted to BV [0, 1]). Then

inf
h∈clρ′1

(B)
ID(h) = lim

ε→0+
inf

h∈Bε
ρ′1

ID(h),

with the infimum on the l.h.s. attained at some h ∈ clρ′1(B) unless B is empty.

We prove this applying Proposition 3.4 to the natural embedding as in the proof of Proposition 5.2.
We thus see that for the sets B that are closed both in ρ′1 and ρ∗, the upper bound in the metric
LDP of Theorem A matches the standard LDP one.

Remark 5.5. A set B is closed in ρ∗ and in ρ′1 when it is a sub-level set of a functional on BV [0, 1]
that is lower semi-continuous in both metrics. Examples of such functionals include:

a) The action functional JD defined by the r.h.s. of (5.6) with I replaced by any convex lower
semi-continuous function J : Rd → [0,+∞] that satisfies J(u) ≥ c1|u| − c2 for some c1, c2 > 0
and every u ∈ Rd; for example, from (5.3) we see that J|·| = Var. The action functional JD is
sequentially weak-* lower semi-continuous by Buttazzo (1989, Corollary 3.4.2) applied exactly as in
the proof of Theorem 5.1 below. By Theorem B and Remark 4.1, JD is also lower semi-continuous
in ρ∗ (and hence in the stronger metric ρ′1) because its sub-level sets are strongly bounded. Indeed,
from (5.3) it follows that JD(h) ≥ c1 Var(h) − c2 for h ∈ BV [0, 1] since J∞(u) ≥ c1 for u ∈ Rd
by (5.5).

b) The maximum functional h 7→ sup0≤t≤1(h(t) · `), where ` ∈ Sd−1 is a fixed direction. To check
its lower semi-continuity in ρ∗ (which suffices since W̃∗ ⊂M ′1), note that the value of the functional
on an h ∈ BV [0, 1] is either h(t0−) · ` or h(t0) · ` for some t0 ∈ [0, 1]. This fact, combined with the
càdlàg property of h and the fact that every ρ∗-convergent sequence contains a subsequence that
converges pointwise on a dense subset of [0, 1] that contains 1, yields the required property of the
functional.
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Note in passing that the maximum functional is continuous in ρi but not in ρ′i. However, the
positive maximum h 7→ sup0≤t≤1(h(t) · `)+ is continuous in ρ′i.

c) For d = 2, the perimeter of the convex hull (and the mean width in higher dimensions) of
h([0, 1]), the image of a planar curve h. Large deviations of the perimeter of the convex hull of
the first n steps of a planar random walk were studied by Akopyan and Vysotsky (2021+). For the
perimeter functional, lower semi-continuity in ρ∗ follows from the combination of Cauchy’s formula
for perimeter of a planar convex set, the result of Example b), and Fatou’s lemma.

The perimeter functional is continuous in ρi but not in ρ′i. However, the perimeter of the convex
hull of the set h([0, 1]) ∪ {0} is continuous in ρ′i.

One more type of sets satisfying the assumption of Proposition 5.4 is as follows.
d) Bf := {h ∈ BV [0, 1] : h ≤ f} for some f ∈ C[0, 1]. This set is closed in ρ∗ (and ρ′1) by

the same argument as we used in Example b). If Bf ∩ DID 6= ∅, the minimizers of ID over B
exist, and we call them the taut strings. In a probabilistic setup, taut strings were considered
by Lifshits and Setterqvist (2015), who were interested in those corresponding to the sets of the
form {h ∈ BV [0, 1] : f1 ≤ h ≤ f2} = Bf1 ∩ (−B−f2) for f1, f2 ∈ C[0, 1].

5.3. Proof of Theorem 5.1. We will use results and methods of the calculus of variations, referring
to the book by Buttazzo (1989). The action (integral) functionals on the spaces of finite Borel
vector-valued measures are considered in Chapter 3 of this book, where the notation C0([0, 1];Rd)
corresponds to our C[0, 1]; see Buttazzo (1989, Section 3.1). Consider an integral functional IC
defined by IC(h) :=

∫ 1
0 I(h′)dt for h ∈ AC0[0, 1], and extend it formally to BV [0, 1] by putting

IC(h) := +∞ for h 6∈ AC0[0, 1]. The main idea, which applies in a more general setup as described
in Section 1.3 of Buttazzo (1989), is that a natural extension is actually given by clseq(W∗)(IC),
referred to as relaxed functional. The book offers results which will allow us to find this extension
explicitly, and we will show that it equals ID.

We have IC = ID on AC0[0, 1] by Borovkov and Mogulskii (2013, Theorem 5.3), hence

ID(h) ≤ IC(h), h ∈ BV [0, 1]. (5.8)

In the new notation, the definition (2.12) of ID reads as

ID(h) = sup
t⊂(0,1]: #t<∞

IC(ht), h ∈ BV [0, 1]. (5.9)

Then for any dense sequence (tn)n≥1 in (0, 1], for tn := {t1, . . . , tn} we have

ID(h) = lim
n→∞

IC(htn), h ∈ BV [0, 1]. (5.10)

because ID is lower semi-continuous w.r.t. ρ′2 by Theorem A and ρ′2(htn , h) → 0, which follows
from the càdlàg property of h. Moreover, htn → h weakly-*. Indeed, Lemma 4.3 and the equality
htn(1) = h(1) imply that ρ∗(htn , h)→ 0, and the weak-* convergence then follows from Theorem B,
which applies since Var(htn) ≤ Var(h) by (2.11).

Let us prove lower semi-continuity of ID in the metric ρ∗. Use that lower semi-continuity in
metric spaces is a sequential property. Assume that there are g, g1, g2, . . . ∈ BV [0, 1] such that
ρ∗(gn, g) → 0 but ID(g) > lim infn ID(gn) as n → ∞. Since ρ∗(gn, g) → 0 means convergence in
L1 and gn(1) → g(1), by considering a subsequence, we can assume w.l.o.g. that the convergence
is point-wise on a subset of (0, 1] of full Lebesgue measure. Pick a sequence (sn)n≥1 of distinct
elements of this set that is dense in (0, 1] and satisfies s1 = 1.

For any integer k ≥ 1, put sk := {s1, . . . , sk}, and let σk be the permutation of length k such
that sσk(1) < . . . < sσk(k). For any i, k, n ∈ N satisfying 1 ≤ i ≤ k, we have gskn (si) = gn(si) and
also gn(sσk(i))→ g(sσk(i)) as n→∞. Hence, by lower semi-continuity and non-negativity of I, for
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any fixed integer k ≥ 1 we have

IC(gsk) = sσk(1)I
(g(sσk(1))

sσk(1)

)
+

k−1∑
i=1

(sσk(i+1) − sσk(i))I
(g(sσk(i+1))− g(sσk(i))

sσk(i+1) − sσk(i)

)
≤ lim inf

n→∞

[
sσk(1)I

(gn(sσk(1))

sσk(1)

)
+

k−1∑
i=1

(sσk(i+1) − sσk(i))I
(gn(sσk(i+1))− gn(sσk(i))

sσk(i+1) − sσk(i)

)]
= lim inf

n→∞
IC(gskn ).

From (5.9) we see that IC(gskn ) ≤ ID(gn), hence IC(gsk) ≤ lim infn→∞ ID(gn). It remains to take
k → ∞ and use (5.10) to arrive at ID(g) ≤ lim infn→∞ ID(gn), which contradicts our assumption
that the lower semi-continuity does not hold.

Furthermore, the sub-level sets of ID are strongly bounded by (2.13). They are closed in the
metric ρ∗ since ID is lower semi-continuous in ρ∗. Therefore, they are compact by Corollary 4.2,
and thus ID is tight, as claimed.

It remains to prove integral representation (5.6). Denote by I(h) its r.h.s. By Buttazzo (1989,
Corollar 3.4.2) (which applies because the change of measure formula in the definition of directional
total variation σh brings to I into the form Buttazzo 1989, Eq. (3.4.1) and Condition (i) in Buttazzo
(1989, Lemma 2.2.3) is satisfied for z0 = EX1), the functional I is sequentially weakly-* lower semi-
continuous on BV [0, 1]. Equivalently, I is lower semi-continuous in seq(W∗), the topology where a
set is closed if and only if it is sequentially weakly-* closed (Buttazzo 1989, Proposition 1.1.5.ii).

We claim that I = clseq(W∗)(IC). It holds I ≤ clseq(W∗)(IC) because the on r.h.s. we have the
maximal functional that is lower semi-continuous in seq(W∗) and dominated by IC (Buttazzo 1989,
Propositions 1.1.2.ii). Therefore, since I = IC on AC0[0, 1], we have clseq(W∗)(IC) = IC on AC0[0, 1].
On the other hand, by Buttazzo (1989, Theorem 3.3.1), clseq(W∗)(IC) on AC0[0, 1] is of the form
h 7→

∫ 1
0 J(t, h′(t))dt for some measurable function J : [0, 1] × Rd → [0,+∞] such that J(t, ·) is

convex and lower semi-continuous for a.e. t. This is possible only when J(t, ·) = I for a.e. t by
Buttazzo (1989, Proposition 2.1.3) (applied with ψ = 0), hence I = clseq(W∗)(IC), as claimed.

Furthermore, ID is lower semi-continuous in seq(W∗) because ID is lower semi-continuous in the
metric ρ∗ and the topology W̃∗ generated by ρ∗ is coarser than seq(W∗) (see Section 4.1). On the
other hand, by lower semi-continuity of I in seq(W∗) and equality (5.10), where IC(htn) = I(htn)
and htn → h weakly-* as n→∞ (this is explained right after (5.10)), we have I ≤ ID. We also have
ID ≤ IC by (5.8). Therefore, since I = clseq(W∗)(IC) and clseq(W∗)(IC) is the maximal functional
that is lower semi-continuous in seq(W∗) and dominated by IC , we have I = ID, as required.

6. Cramér’s theorem for kernel-weighted sums

In this section we present an application of Proposition 5.2, yielding an LDP for kernel-weighted
sums of i.i.d. random vectors in Rd. This extends the classical Cramér theorem.

It appears that large deviations of weighted i.i.d. random variables were first studied by Book
(1972). The next results were due to Kiesel and Stadtmüller (2000), who considered only the “light-
tailed” case where the i.i.d. terms have finite Laplace transform, i.e. DL = R. They proved an LDP
and found the rate function (available in Kiesel and Stadtmüller, 2000, Theorem on p. 933 with the
coefficients aν for the kernel weights given in Kiesel and Stadtmüller 1996, p. 976); below we will
present a more explicit expression (6.3) for the rate function. A recent result Gantert et al. (2014,
Theorem 3) is an LDP (with polynomial speed and an explicit rate function) for kernel-weighted
sums of i.i.d. random variables with stretched (super-) exponential tails. In this “heavy-tailed”
case where the random variables have no exponential moments, the rate function is defined by the
supremum of the (non-negative) kernel. This corresponds to the first two terms in our formula (6.3)
(cf. Remark 6.2.c). Since these terms vanish for “light-tailed” increments, in the case 0 ∈ intDL
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with DL 6= R there is a natural transition of the rate function from the “light-tailed” case to the
“heavy-tailed” one. One more related reference, added in proof, is Gantert et al. (2016).

We introduce more notation to state our result. Let us agree to write sup g, max g, etc. for the
supremum, maximum, etc. of a real-valued function g over its (effective) domain. For any real-
valued increasing function g on an interval (a, b), where −∞ ≤ a < b ≤ +∞, denote by ḡ its
extension to R given by ḡ(x) := g(b−) for x ≥ b and ḡ(x) := g(a+) for x ≤ a. For a real x, put
x+ := max(x, 0) and x− := (−x)+, and use the same notation for functions. By convention, put
1
0 := +∞ and C

0 := Rd for any set C ⊂ Rd satisfying 0 ∈ intC. Recall that K(u) = logL is the
cumulant generating function of X1, finite on its effective domain DL.

Theorem 6.1. Assume that X1 is a random vector in Rd such that 0 ∈ intDL and f : [0, 1]→ R is
a non-zero Lipschitz function. Then the sequence of random vectors

(
1
n

∑n
k=1 f( kn)Xk

)
n≥1

satisfies
the LDP in Rd with the tight rate function If that is the Legendre–Fenchel transform of the convex
function

Ef (λ) :=

∫ 1

0
K(λf(t))dt, λ ∈ Rd. (6.1)

Moreover, if dim(supp(X1)) = d, the rate function satisfies

If (x) =

∫ 1

0
I(∇K((∇Ef )−1(x)f(t)))dt, x ∈ ∇Ef (intDf ), (6.2)

where Df := DL
max f+

∩ −DL
max f−

and ∇Ef is an injective function (on its domain intDf ). For d = 1,
equality (6.2) extends to

If (x) = M+(x− supE′f )
+

+M−(x− inf E′f )− +

∫ 1

0
I
(
K ′
(
(E′f )−1(x)f(t)

))
dt, x ∈ R, (6.3)

where M± := min
( I∞(1)

max f±
, I∞(−1)

max f∓

)
and K ′(±I∞(±1)) := K ′(±I∞(±1)∓), with the symbol ∓ stand-

ing for the left/right limit.

Remark 6.2. Let us make some comments.
a) Equality (6.2) remains valid when dim(supp(X1)) < d, in which case the integrand on the

r.h.s. still is a well-defined function, calculated by taking any element of the set (∇Ef )−1(x). We
will prove this together with the main case where supp(X1) has full dimension.

b) If DL = Rd and dim(supp(X1)) = d, then int(DIf ) = ∇Ef (intDf ), hence in this case
equality (6.2) completely defines If by lower semi-continuity; and if we additionally assume that
conv(supp(X1)) = Rd, then ∇Ef (intDf ) = Rd and if d = 1, the first two terms in (6.3) vanish. We
will prove the claims of Items b) and c) below after proving Theorem 6.1.

c) Assume that dim(supp(X1)) = d. Then for any x ∈ ∇Ef (intDf ), the function h(x)(t) :=∫ t
0 ∇K((∇Ef )−1(x)f(s))ds is the unique minimizer of ID on {h ∈ BV [0, 1] :

∫ 1
0 fdh = x}. If we

additionally assume that d = 1, M+ <∞, f ≥ 0 for simplicity, and argmaxt∈[0,1] f(t) has Lebesgue
measure zero to fully distinguish from the usual case f ≡ 1 of equal weights, then for (say) any
x ≥ supE′f , all the minimizers of ID are of the form

h(t) =
x− supE′f

max f+
g(t) +

∫ t

0
K ′(M+f(s))ds, t ∈ [0, 1],

where g ∈ BV [0, 1] is a non-decreasing function such that g(0) = 0, g(1) = 1, and dg is supported
on argmaxt f(t). For example, if argmaxt f(t) has a unique element t0, the only possible g is 1[t0,1].
The singular part of such h provides the first term on the r.h.s. of (6.3).

Also note that in the case when DL = Rd, the function h(x) is the unique solution to the Euler–
Lagrange equation for the Lagrangian L(t, p) := I(p) + f(t)λ · p, where t ∈ [0, 1] and p ∈ Rd, but
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the corresponding results of classical variational calculus (see, e.g., Cesari 1983, Sections 2.2 and
2.7) require the additional assumptions f ∈ C1[0, 1] and DI = Rd; the latter one is equivalent to
conv(supp(X1)) = Rd.

d) Let us give a concrete example. Assume that X1 is a non-generate Gaussian vector in Rd.
We have K(v) = 1

2v
>Σv + µ · v and I(v) = 1

2(v − µ)>Σ−1(v − µ) for v ∈ Rd, where µ := EX1

and Σ := E(X1X
>
1 ) − µµ>. Then ∇K(v) = Σv + µ and ∇Ef (λ) = m1µ + m2Σλ for λ ∈ Rd,

where mi :=
∫ 1

0 f
i(s)ds for i ∈ {1, 2}, hence h(x)(t) = tµ + m−1

2 (x −m1µ)F (t) for x ∈ Rd, where
F (t) :=

∫ t
0 f(s)ds. This gives If (x) = 1

2m
−1
2 (x−m1µ)>Σ−1(x−m1µ).

Proof of Theorem 6.1: We use the representation

1

n

n∑
k=1

f
(k
n

)
Xk =

∫ 1

0
fd
( 1

n
S[n·]

)
for the kernel-weighted sums. Any Lipschitz function is absolutely continuous, and the integration
by parts formula (Folland 1999, Theorem 3.36) yields

∫ 1
0 fdh = f(1)h(1)−

∫ 1
0 f
′hdt for h ∈ BV [0, 1].

Hence the functional h 7→
∫ 1

0 fdh on BV [0, 1] is continuous in the metric ρ∗ since f ′ is bounded and
L∞[0, 1] is dual to L1[0, 1]. Therefore, by the usual contraction principle (Dembo and Zeitouni 2010,
Theorem 4.2.1) it follows from Proposition 5.2 that the sequence of kernel-weighted sums satisfies
the LDP in Rd with the tight rate function

If (x) = inf
h∈BV ([0,1];Rd):

∫ 1
0 fdh=x

ID(h), x ∈ Rd, (6.4)

where the infimum is always attained at some h. Let us compute this function.
Denote by χC the convex-analytic characteristic function of a set C ⊂ Rd, defined to be 0 on the

set and +∞ on its complement. By definition (2.10) of the Legendre–Fenchel transform, which we
denote by ∗, for any λ ∈ Rd,

I∗f (λ) = sup
x∈Rd

(
λ · x− If (x)

)
= sup

x∈Rd

(
λ · x− inf

h∈BV

[
ID(h) + χ{x}

(∫ 1

0
fdh

)])
= sup

x∈Rd
sup
h∈BV

(
λ · x− ID(h)− χ{x}

(∫ 1

0
fdh

))
= sup

h∈BV

(∫ 1

0
λf · dh− ID(h)

)
,

where the last equality follows after interchanging the suprema. Thus, I∗f (λ) = I∗D(λf), where I∗D is
the Legendre–Fenchel transform of the function ID on BV , defined by the standard duality (given
by the respective integral) between the spaces BV [0, 1] and C[0, 1].

By representation (5.6), we have

I∗f (λ) = sup
h∈AC0

(∫ 1

0
λf · h′dt−

∫ 1

0
I(h′)dt

)
+ sup
h∈BV :ha=0

(∫ 1

0
λf · dh−

∫
Sd−1

I∞(`)σh(d`)

)
.

To find the first supremum, we use Proposition IX.2.1 in the book by Ekeland and Témam (1999),
which computes the Legendre–Fenchel transform of the functional g 7→

∫ 1
0 I(g(t))dt on L1([0, 1];Rd),

defined by the standard duality (given by the respective integral) between the spaces L1[0, 1] and
L∞[0, 1]. This result applies, in the notation and terminology of Ekeland and Témam (1999),
with α = 1, u0 ≡ EX1, and the integrand f = I, which is non-negative and normal (i.e., lower
semi-continuous) on B = Rd. This gives, by I∗ = K,

I∗f (λ) =

∫ 1

0
K(λf(t))dt+ sup

h∈BV :ha=0

(∫ 1

0
λf · dh−

∫
Sd−1

I∞(`)σh(d`)

)
, (6.5)
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where the first term is Ef (λ).
Consider the second term in (6.5). For h ∈ BV [0, 1], put h±(t) := dh([0, t] ∩ {±f > 0}) for

t ∈ [0, 1] and h= := h − h+ − h−. We have h±, h= ∈ BV [0, 1]. It follows from (5.1) that V h =

V h+ + V h− + V h= , hence σh = σh
+

+ σh
−

+ σh
= by the definition of directional total variation.

Therefore,∫ 1

0
λf · dh−

∫
Sd−1

I∞(`)σh(d`) =
∑

ς∈{+,−,=}

[ ∫ 1

0
λf · ḣς dV hς −

∫
Sd−1

I∞(`)σh
ς
(d`)

]

≤
∑

ς∈{+,−}

[ ∫ 1

0
(ς max fς · λ · ḣς)+ dV

hς −
∫
Sd−1

I∞(`)σh
ς
(d`)

]

=
∑

ς∈{+,−}

[ ∫
Sd−1

(
(ς max fς · λ · `)+ − I∞(`)

)
σh

ς
(d`)

]
, (6.6)

where the inequality follows from 0 ≤ ±f ≤ max f± (dV h±)-a.e. We estimate the integrands using
that I∞(`) = supu∈DL u · ` = supu∈clDL u · `, and recall that Df = DL

max f+
∩ −DL

max f−
. Then∫ 1

0
λf · dh−

∫
Sd−1

I∞(`)σh(d`) ≤ χclDL
(

max f+λ
)

+ χclDL
(
−max f−λ

)
= χclDf (λ). (6.7)

By (6.5) and (6.7), we have I∗f (λ) = Ef (λ) for λ ∈ clDf . On the other hand, I∗f (λ) ≥ Ef (λ) =

+∞ for λ 6∈ clDf because for such λ, K(λf(t)) = +∞ for t in a non-empty interval since f is
continuous on [0, 1] and DK = DL. All together, we get I∗f = Ef .

The function Ef is convex on Rd as a mixture of convex functions λ 7→ K(λf(t)). Since K is
lower semi-continuous by Fatou’s lemma, so is Ef , again by Fatou’s lemma. Therefore, I∗f = Ef
yields the required identity If = E∗f by Rockafellar (1970, Theorem 12.2 and Corollary 12.1.1).

Next we prove formula (6.2) for If . By Theorem 26.4 in Rockafellar (1970), which applies because
Ef is a continuous convex function differentiable on intDf (since so is K on intDL), we have

If (x) = x · (∇Ef )−1(x)− Ef ((∇Ef )−1(x)), x ∈ ∇Ef (intDf ).

The result used also states that the r.h.s. is well-defined even if (∇Ef )−1(x) contains more than one
element, in which case we shall understand the r.h.s. replacing (∇Ef )−1(x) by any λ ∈ (∇Ef )−1(x),
and the resulting value does not depend on the particular choice of λ. This justifies Remark 6.2.a.

For any x ∈ ∇Ef (intDf ) and λ ∈ (∇Ef )−1(x), we have

x = ∇Ef (λ) = ∇
(∫ 1

0
K(λf(t))dt

)
=

∫ 1

0
∇K(λf(t))f(t)dt,

because the cumulant generating function K is smooth on intDL and λf(t) ∈ intDL for every
t ∈ [0, 1] by λ ∈ (∇Ef )−1(x) ⊂ intDf . Then

If (x) = x · λ−
∫ 1

0
K(λf(t))dt

=

∫ 1

0

(
∇K(λf(t)) · λf(t)−K(λf(t))

)
dt =

∫ 1

0
I(∇K(λf(t)))dt,

where in the last equality we applied Rockafellar (1970, Theorem 26.4) again. This proves (6.2).
Furthermore, dim(supp(X1)) < d if and only if X1 is supported on a hyperplane, in which case

K, and hence Ef , is constant along the lines orthogonal to the hyperplane. Therefore ∇Ef cannot
be injective in this case. On the contrary, if dim(supp(X1)) = d, then it follows by a standard
application of the Cauchy–Schwartz inequality that the Hessian of K is positive-definite on the
interior of its effective domain. Then the same holds for Ef , which is a mixture of functions
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λ 7→ K(λf(t)) which are positively definite when f(t) 6= 0. This implies that ∇Ef is injective, as
claimed, since the scalar function t 7→ ∇Ef ((1 − t)λ1 + tλ2) · (λ2 − λ1) for t ∈ [0, 1] has strictly
positive derivative whenever λ1, λ2 ∈ Rd are distinct.

It remains to prove equality (6.3). Here d = 1 and intDf = (−M−,M+). For x ∈ E′f (intDf ),
(6.3) reduces to equality (6.2) and there is nothing to prove. Since K is continuously differentiable
and convex on intDL, so is Ef on intDf . Therefore E′f (intDf ) = (inf E′f , supE′f ). Assume that
the complement of this set is non-empty and consider an x from there. W.l.o.g., we can assume that
supE′f <∞ and prove (6.3) only on [supE′f ,∞). Also, assume that X1 is not constant, otherwise
the claim is trivial.

We can check that equality (6.3) holds true for x = supE′f by taking x ↗ supE′f in (6.3)
and using lower semi-continuity of I combined with the facts that If increases on [m1µ,+∞) and
supE′f > E′f (0) = m1µ, where m1 =

∫ 1
0 f(t)dt and µ = EX1. Therefore it remains to prove (6.3) for

x > supE′f . We have If (x) = E∗f (x) = supλ∈Rd(x ·λ−Ef (λ)). IfM+ =∞, this gives If (x) =∞ for
x > supE′f , matching (6.3). If M+ < ∞, this gives, by taking into account that Ef (λ) = +∞ for
λ > M+, that If (x) = M+x−Ef (M+) for x > supE′f . By the equality I(K ′(u)) = uK ′(u)−K(u)

for u ∈ cl(−M−,M+), we get

If (x) = M+x−M+

∫ 1

0
f(t)K ′(M+f(t))dt+

∫ 1

0

(
M+f(t) ·K ′(M+f(t))−K(M+f(t))

)
dt

= M+(x− E′f (M+−)) +

∫ 1

0
I(K ′(M+f(t))dt,

which coincides with (6.3) for x > supE′f since supE′f = E′f (M+−) and (E′f )−1(x) = M+. �

Proof of Remark 6.2: b) If dim(supp(X1)) = d, then a standard application of Hölder’s inequal-
ity implies strict convexity of K on DL. So is Ef on its effective domain intDf . If we additionally
require that DL = Rd, then Df = Rd and hence int(DIf ) = ∇Ef (intDf ) by Theorem 26.5 in
Rockafellar (1970). If we further assume that conv(supp(X1)) = Rd, then conv(supp(u ·X1)) = R
for any non-zero u ∈ Rd. This readily implies limt→∞K(tu)/t = +∞. Therefore Theorem 26.6
from Rockafellar (1970) applies, ensuring that ∇Ef is a homeomorphism from Rd to Rd.

c) Fix any x ∈ Rd and h ∈ BV [0, 1] such that x =
∫ 1

0 fdh. Put xa :=
∫ 1

0 fdha and xs :=
∫ 1

0 fdhs.
For any λ ∈ Rd, by Fenchel’s inequality we have

I(h′(t)) +K(λf(t)) ≥ λf(t) · h′(t), a.e. t ∈ [0, 1], (6.8)

hence ID(ha) ≥ λxa − Ef (λ). Combining this with inequality (6.7) and optimizing over λ ∈ clDf

yields
ID(h) ≥ sup

λ∈clDf

(
λx− Ef (λ)

)
= If (x), (6.9)

where the equality follows from the facts that If = E∗f and DEf ⊂ clDf .
If x ∈ ∇Ef (intDf ), the supremum in (6.9) is attained at λ = (∇Ef )−1(x); recall that ∇Ef

is injective due to the assumption dim(supp(X1)) = d. Therefore, ID(h) = If (x) implies that
(6.7) is an equality and (6.8) is an a.e. equality for this particular λ. Since λ ∈ intDf , we have
λf(t) ∈ intDK for every t ∈ [0, 1], hence Fenchel’s inequality (6.8) is an equality if and only if
h′(t) = ∇K(λf(t)) for a.e. t (Rockafellar 1970, Theorem 23.5). Also, since max f± · λ ∈ intDL,
inequality (6.7) is strict when hs 6= 0 because the integrands in the last line of (6.6) are strictly
negative. All together, this means that h(t) =

∫ t
0 ∇K((∇Ef )−1(x)f(s))ds is the unique minimizer

of ID, i.e. h = h(x), as claimed.
If d = 1, supE′f < ∞, and M+ < ∞, the implication (ID(h) = If (x)) ⇒ (h = h(x)) extends to

x = supE′f (corresponding to λ = M+) by continuity as in the corresponding argument in the proof
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of Theorem 6.1. For λ = M+ and when argmaxt f(t) is a singular set, Fenchel’s inequality (6.8)
still is an equality if and only if h′(t) = ∇K(M+f(t)) for a.e. t because M+f(t) ∈ intDK for a.e. t.
However, for λ = M+ and when f ≥ 0, the last line of (6.6) is zero, and thus (6.6) is an equality if
and only if dhs is a non-negative finite measure supported on argmaxt f(t). Thus, for x > supE′f ,

the equality ID(h) = If (x) implies that ha = h(supE′f ) and hs(1) =
x−supE′f
max f+

, as claimed. �
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