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Abstract. We derive explicit formulas for the two first moments of the site frequency spectrum
(SFSn,b)1≤b≤n−1 of the Bolthausen-Sznitman coalescent along with some precise and efficient ap-
proximations, even for small sample sizes n. These results provide new L2-asymptotics for some
values of b = o(n). We also study the length of internal branches carrying b > n/2 individuals,
we provide their joint distribution function as well as a convergence in law for their marginal dis-
tribution. Our results rely on the random recursive tree construction of the Bolthausen-Sznitman
coalescent.

1. Introduction

The Bolthausen-Sznitman coalescent (Bolthausen and Sznitman, 1998) is an exchangeable coa-
lescent with multiple collisions (Pitman, 1999; Sagitov, 1999) that has recently gained attention in
the theoretical population genetics literature. It has been described as the limit process of the ge-
nealogies of different population evolution models, most importantly in models that incorporate the
effect of natural selection (Schweinsberg, 2003, 2017). As such it has been proposed as a new null
model for the genealogies of rapidly adapting populations, such as pathogen microbial populations,
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and other populations undergoing natural selection and showing departures from Kingman’s null
model (Desai et al., 2013; Neher and Hallatschek, 2013).

A measure of the genetic diversity in a present day sample of a population is often used in
population genetics in order to infer its evolutionary past and the forces at play in its dynamics.
The Site Frequency Spectrum (SFS) (see Kimura, 1969) is a well known theoretical model of the
genetic diversity present in a population, it assumes that neutral mutations arrive to the population
as a Poisson Process and that each arriving mutation falls in a different site of the genome (infinite
sites model), in contrast to the Allele Frequency Spectrum in which mutations are assumed to fall
on the same site but create a new allele every time (infinite alleles model). Given the close relation
between the site frequency spectrum and the whole structure of the underlying genealogical tree, it
can be used as a model selection tool for the evolutionary dynamics of a population (Eldon et al.,
2015; Koskela, 2018; Freund and Siri-Jégousse, 2021). Our results and easy-to-compute expressions
on the SFS are well suited for applications where the aim is to determine, from genetic data, whether
the genealogy of a population can be reasonably modeled by a Bolthausen-Sznitman coalescent, a
problem which is made more challenging by the fact that the effect of selection on genetic data can
be similar to the effect resulting from, for example, increasing population size.

In this work we give explicit expressions of the first and second moments for the whole site
frequency spectrum (SFSn,b)1≤b<n of the Bolthausen-Sznitman coalescent, which to our knowledge
were only known for Kingman’s coalescent until now (Fu, 1995). Here SFSn,b denotes the number
of mutations shared by b individuals in the sample of size n. For the expectation we obtain the
formula

E [SFSn,b] = θn

∫ 1

0

Γ(b− p)
Γ(b+ 1)

Γ(n− b+ p)

Γ(n− b+ 1)

dp

Γ(1− p)Γ(1 + p)
,

where θ denotes the mutation rate. This expression is easily evaluated using existing numerical
routines that compute log Γ(a) for a > 0 and by writing the gamma ratios Γ(a)

Γ(b) as elog Γ(a)−log Γ(b);
however this formula allows no insight into the shape of the expected site frequency spectrum. For
this purpose, and moreover to characterize the asymptotic behaviour of the SFS, approximations
are helpful. A simple approximation resting on Stirling’s formula reads for 2 ≤ b ≤ n− 1

E[SFSn,b] ≈
θ

n− 1

b− 1

b
f1

(
b− 1

n− 1

)
(1.1)

where f1 is a convex, non-monotone function on (0, 1) defined by

f1(u) :=

∫ 1

0
u−p−1(1− u)p−1 sin(πp)

πp
dp . (1.2)

We remark that this integral may be reduced to the (complex) exponential integral Ei(·). This ap-
proximation shows that the shape of the site frequency spectrum, restricted to the range 2 ≤ b < n,
is explained essentially by one function not depending on the population size n. Also our approxi-
mations update those given in Neher and Hallatschek (2013) for the case of families with frequencies
close to 0 and 1 since we have f1(u)∼(u log u)−2 close to 0 and f1(u)∼((u− 1) log(1− u))−1 close
to 1, see equations (5.4) and (5.5) below. The case b = 1 is not covered by (1.1), it has to be
treated separately, which reflects the dominance of external branches in the Bolthausen-Sznitman
coalescent. See Theorem 3.5 for a rigorous and complete summary.

We also study the asymptotic behavior of the second moments which, together with the above
asymptotics for the first moment, leads to the following L2 convergences:

log n

n
SFSn,1 → θ,
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and, whenever b ≥ 2 and b = o (
√
n/ log n),

b(b− 1) log2 (n/b)

n
SFSn,b → θ.

These generalize and strengthen the results in Diehl and Kersting (2019) for the Bolthausen-
Sznitman coalescent, and are also compatible with the asymptotics for the allele frequency spectrum
presented in Basdevant and Goldschmidt (2008).

Finaly we provide the joint distribution function of the branch lengths of large families, i.e families
of size at least half the total population size, and their marginal distribution function; for the latter
we also obtain a simple limit law which can be particularly useful in applications since this regime,
the high frequency end of the site frequency spectrum, is where one sees a difference between
the Bolthausen-Sznitman coalescent and the time-changed Kingman’s coalescent resulting from an
exponentially growing population (Eldon et al., 2015; Freund and Siri-Jégousse, 2021; Koskela, 2018;
Koskela and Wilke Berenguer, 2019). From these results one can also obtain explicitly the marginal
distribution function of the site frequency spectrum and a sampling formula for the half of the vector
corresponding to large family sizes, although we do not present such tedious computations here.

Asymptotic results for related functionals on the Bolthausen-Sznitman coalescent have been de-
rived by studying the block count chain of the coalescent through a coupling with a random walk
as in Iksanov and Möhle (2007) and Kersting et al. (2014), where asymptotics for the total number
of jumps, and the total, internal, and external branch lengths of the Bolthausen-Sznitman coales-
cent are described; these results give the asymptotic behaviour of the total number of mutations
present in the population, the number of mutations present in a single individual, and the number
of mutations present in at least 2 individuals. Also, a Markov chain approximation of the initial
steps of the process was developed in Diehl and Kersting (2019) where asymptotics for the total tree
length and the site frequency spectrum of small families were derived for a class of Λ-coalescents
containing the Bolthausen-Sznitman coalescent.

Progress has also been made for the finite coalescent even for the general coalescent process.
The finite Bolthausen-Sznitman coalescent has been studied through the spectral decomposition
of its jump rate matrix described in Kukla and Pitters (2015) where the authors used it to derive
explicit expressions for the transition probabilities and the Green’s matrix of this coalescent, and
also the Kingman coalescent. The spectral decomposition of the jump rate matrix of a general
coalescent, including coalescents with multiple mergers, is also used in Spence et al. (2016) where
an expression for the expected site frequency spectrum is given in terms of matrix operations which
in the case of the Bolthausen-Sznitman coalescent result in an algorithm requiring on the order of
n2 computations. In Hobolth et al. (2019) another expression in terms of matrix operations is given
for this and other functionals on general coalescent processes, both in expected value (and higher
moments) and in distribution; these expressions however are deduced from the theory of phase-type
distributions, in particular distributions of rewards constructed on top of coalescent processes, and
also require vast computations for large population sizes.

Our method, mainly based on the Random Recursive Tree construction of the Bolthausen-
Sznitman coalescent given in Goldschmidt and Martin (2005), gives easy-to-compute expressions
for the first and second moments of the site frequency spectrum of this particular coalescent. This
combinatorial construction not only allows us to study the bottom but also the top of the tree thus
providing an additional insight into the past of the population and large families, both asymptoti-
cally and for any fixed population size.

In Section 2 we lay out the basic intuitions that compose the bulk of our method, including the
Random Recursive Tree construction of the Bolthausen-Sznitman coalescent and the derivation of
the first moment of the site frequency spectrum for the infinite coalescent as a first application
(Corollary 2.2). In Section 3 we present our results on the first and second moments of the branch
lengths (Theorem 3.1) and of the site frequency spectrum (Corollary 3.2) for any fixed family size
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and initial population. We then use these expressions to obtain asymptotic approximations of
these moments as the initial population goes to infinity (Theorems 3.5 and 3.6) which lead to L2

convergence results on the SFS (Corollary 3.7). In Section 4 we restrict ourselves to the case of
large family sizes and present the joint and marginal distribution functions of their branch lengths
(Theorems 4.1 and 4.3), along with a limit in law result (Corollary 4.2). Finally, in Sections 5 and 6
we provide detailed proofs of our results.

2. Preliminaries

Consider the Bolthausen-Sznitman coalescent (Π∞(t))t≥0 with values in P∞, the space of par-
titions of N, and the ranked coalescent (|Π∞(t)|↓)t≥0, with values in the space of mass partitions
P[0,1], made of the asymptotic frequencies of Π∞(t) reordered in a non-increasing way. In what
follows we present the Random Recursive Tree (RRT) construction of the Bolthausen-Sznitman
coalescent given by Goldschmidt and Martin (2005); then we follow the argument given in the same
paper to establish that

|Π∞(t)|↓ d
= PD(e−t, 0), (2.1)

where PD(α, θ) is the (α, θ)−Poisson-Dirichlet distribution (Bolthausen and Sznitman, 1998; Gold-
schmidt and Martin, 2005).

Briefly, the construction of the Bolthausen-Sznitman coalescent in terms of Random Recursive
Trees proceeds as follows. We work on the set of recursive trees whose labeled nodes form a partition
π of [n] := {1, . . . , n}, where the ordering of the nodes that confers the term “recursive” is given
by ordering the blocks of π according to their least elements. A cutting-merge procedure is defined
on the set of recursive trees of this form with a marked edge, this procedure consists of cutting the
marked edge and merging all the labels in the subtree below with the node above, thus creating a
new recursive tree whose labels form a new (coarser) partition of [n] (see Figure 2.1). With this
operation in mind we consider a RRT with labels {1}, · · · , {n}, say T , to which we also attach
independent standard exponential variables to each edge. Then, for each time t > 0 we retrieve
the partition of [n] obtained by performing a cutting-merge procedure on all the edges of T whose
exponential variable is less than t. This gives a stochastic process (Πn(t))t≥0 with values on the set
of partitions of [n] that can be proven to be the n-Bolthausen-Sznitman coalescent.

{1,3}

{4} {2}

{5,7} {6} {9}

{8,10}

{1,3}

{4,6,8,10} {2}

{5,7} {9}

Figure 2.1. On the left, an example of a recursive tree whose labels constitute a
partition of {1, · · · , 10}. On the right, the resulting recursive tree after a cutting-
merge procedure performed on the marked edge (dashed line) of the first tree.
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The fact that |Π∞(t)|↓ d
= PD(e−t, 0) now follows readily. To see this, consider the construction of

T where nodes arrive sequentially and each arriving node attaches to any of the previous nodes with
equal probability. Considering also their exponential edges and having in mind the cutting-merge
procedure we see that for any fixed time t, and assuming that b− 1 nodes have arrived and formed
k blocks of sizes s1, . . . , sk in Πb−1(t), the next arriving node, node {b}, will form a new block in
Πb(t) if and only if it attaches to any of the roots of the sub-trees of T that form the said k blocks
and if, furthermore, its exponential edge is greater than t; this occurs with probability ke−t

b−1 . On the
other hand, in order for {b} to join the jth block of size sj it must either attach to the root of the
sub-tree of T that builds this block and its exponential edge must be less than t, which happens
with probability 1−e−t

b−1 , or it must attach to any other node of the said sub-tree, which happens

with probability sj−1
b−1 ; thus, the probability of attaching to the jth block is sj−e−t

b−1 . We recognize
in these expressions the probabilities that define the Chinese Restaurant Process with parameters
α = e−t and θ = 0. An extension of these arguments will be used in the following proofs

R1 ≡ {1}

R2 R4

R3

Case (ii)
Case (iii)

Case (i)

Figure 2.2. Schematic representation of passing from Πn(t) to Πn+1(t) for fixed
t, by adding a new node (blue) to a RRT. Solid lines and dotted lines represent
edges whose exponential variables are greater than t and less than or equal to t,
respectively. In this case at time t there are four subtrees rooted at R1, R2, R3, and
R4, which form the blocks that constitute Πn(t); these blocks are also the tables of
a Chinese Restaurant Process. In case (i) the new node will be included in the block
formed by R2 at time t, irrespective of whether its exponential edge is greater than
t or not. In case (ii) the new node forms part of the block rooted at R2 because its
exponential edge is less than t. Finally, in case (iii) the new node is a new root of
a subtree that will form an additional block of Πn+1(t) (i.e. the new node opens a
new table in the Chinese Restaurant Process).

We now provide two straightforward applications of the RRT construction described above which
nonetheless contain the essential intuitions underlying the forthcoming proofs.

2.1. Site Frequency Spectrum in the Infinite Coalescent. For the first application consider a subset
I ⊂ (0, 1) and define (CI(t))t≥0 to be the process of the number of blocks in Π∞(t) with asymptotic
frequencies in I. Then

`I :=

∫ ∞
0

CI(t) dt (2.2)

gives the total branch length of families with size frequencies in I in the infinite coalescent.
Our first theorem is a simple corollary of the equality in law (2.1).
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Theorem 2.1. For I ⊂ (0, 1), we have

E[`I ] =

∫
I

∫ 1

0
u−p−1(1− u)p−1 sin(πp)

πp
dp du.

In particular, note that if in the infinite sites model with mutation rate θ we define SFSI to
be the number of mutations shared by a proportion u of individuals with u ranging in I, then by
conditioning on `I we get

Corollary 2.2. For I ⊂ (0, 1), we have

E [SFSI ] = θ

∫
I

∫ 1

0
u−p−1(1− u)p−1 sin(πp)

πp
dp du. (2.3)

Proof of Theorem 2.1: Since

E [`I ] =

∫ ∞
0

E [CI(t)] dt

it only remains to compute E [CI(t)] and simplify the expressions, but this is a straightforward
consequence of Equation (6) in Pitman and Yor (1997) which states that if % = (a1, · · · ) is PD(α, θ)
distributed, and f : R→ R is a function, then

E

[ ∞∑
i=1

f(ai)

]
=

Γ(θ + 1)

Γ(θ + α)Γ(1− α)

∫ 1

0
f(u)

(1− u)α+θ−1

uα+1
du. (2.4)

Taking f(u) = 1I(u)we get

E[CI(t)] =
1

Γ(e−t)Γ(1− e−t)

∫ 1

0
1I(u)

(1− u)e
−t−1

ue−t+1
du.

Using Euler’s reflection formula, making p = e−t on the above expression and integrating on [0,∞)
we finish the proof. �

2.2. Time to the absorption. In this section we prove a useful lemma for the upcoming proofs, but
a first consequence of this lemma gives the distribution function of

An := inf{t > 0: #Πn(t) = 1}

where #Πn(t) is the number of blocks in Πn(t); i.e the distribution function of the time to absorption
of the Bolthausen-Sznitman coalescent with n initial individuals, a result already proved in Möhle
and Pitters (2014).

Here B stands for the Beta function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

and Ψ for the digamma function

Ψ(x) =
Γ′(x)

Γ(x)
= −γ −

∞∑
n=1

(
1

x+ n− 1
− 1

n

)
where γ stands for the Euler-Mascheroni constant.

Lemma 2.3. Let T be a RRT on a set of n labels and with exponential edges. Define the two
functionals m(T ) and M(T ) that give the minimum and the maximum of the exponential edges
attached to the root of T . Then

P(m(T ) > s) =
1

(n− 1)B(n− 1, e−s)
, (2.5)
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and

P(M(T ) ≤ s) =
1

(n− 1)B(n− 1, 1− e−s)
. (2.6)

Also, for independent trees T1 and T2 of respective size n1 and n2, we have

P(m(T2)−M(T1) > s)

=
1

(n1 − 1)(n2 − 1)

∫ 1

0

Ψ(n1 − p)−Ψ(1− p)
B(n2 − 1, e−sp)B(n1 − 1, 1− p)

dp. (2.7)

The proof of (2.6) follows the same lines as in Möhle and Pitters (2014) where the law of the time
to absorption An of the Bolthausen-Sznitman coalescent is derived, since this time is the maximum
of the exponential edges attached to the root of a RRT. That is,

P(An ≤ s) =
1

(n− 1)B(n− 1, 1− e−s)
, (2.8)

and, as n→∞,

An − log logn
d→ − logE (2.9)

where E is a standard exponential random variable. The latter convergence in distribution was
elegantly proved in Goldschmidt and Martin (2005) using a construction of random recursive trees
in continuous time, whereas in this case it follows from Stirling’s approximation to the Gamma
functions appearing in (2.8).

On the other hand, the equality (2.7) will be used in the computation of the distribution function
of branch lengths with large family sizes presented in Section 4.

Proof of Lemma 2.3: Let E2, · · · , En be the exponential edges associated to the nodes of T . For
the proof of (2.5) we consider the event {m(T ) > s}. This event occurs when, in the recursive
construction of T along with the exponential edges, the ith node (2 ≤ i ≤ n) does not attach to
{1} whenever Ei < s; this happens with probability 1− 1−e−s

i−1 . Thus, considering the n nodes, we
obtain

P(m(T ) > s) = e−s
(

1 + e−s

2

)
. . .

(
n− 2 + e−s

n− 1

)
=

1

(n− 1)B(n− 1, e−s)
.

For (2.6) we instead build the tree such that the ith node does not attach to {1} whenever Ei > s;
this happens with probability 1− e−s

i−1 . Thus we obtain

P(M(T ) ≤ s) = (1− e−s)
(

2− e−s

2

)
. . .

(
n− 1− e−s

n− 1

)
=

1

(n− 1)B(n− 1, 1− e−s)
.

Finally we compute

P(m(T2)−M(T1) > s)

=
1

(n1 − 1)(n2 − 1)

∫ ∞
0

1

B(n2 − 1, e−(s+t))

d

dt

(
1

B(n1 − 1, 1− e−t)

)
dt

and by changing the variable p = e−t we obtain (2.7). �
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3. Moments of the Site Frequency Spectrum

By a simple adaptation of our previous notation for branch lengths in the infinite coalescent (CI
and `I), in the finite case we also define for 1 ≤ b ≤ n− 1 the process (Cn,b(t))t≥0 and the random
variables (`n,b), where Cn,b(t) is the number of blocks of size b in Πn(t), and

`n,b :=

∫ ∞
0

Cn,b(t) dt. (3.1)

We now provide explicit expressions for E [`n,b] and E [`n,b1`n,b2 ]; for this we define the functions

F1(n, b) =

∫ 1

0

Γ(b− p)
Γ(b+ 1)

Γ(n− b+ p)

Γ(n− b+ 1)

dp

Γ(1− p)Γ(1 + p)
,

F2(n, b1, b2) =

∫ 1

0

∫ p1

0

Γ(b1 − p1)

Γ(b1 + 1)

Γ(b2 − b1 + p1 − p2)

Γ(b2 − b1 + 1)

× Γ(n− b2 + p2)

Γ(n− b2 + 1)

dp2 dp1

p1Γ(1− p1)Γ(p1 − p2)Γ(p2 + 1)

and

F3(n, b1, b2) =

∫ 1

0

∫ 1

0

Γ(b1 − p1)

Γ(b1 + 1)

Γ(b2 − p2)

Γ(b2 + 1)

× Γ(n− b1 − b2 + p1 + p2)

Γ(n− b1 − b2 + 1)

dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)
.

Theorem 3.1. For any pair of integers n, b such that 1 ≤ b ≤ n− 1, we have

E[`n,b] = nF1(n, b) (3.2)

Also, for any triple of integers n, b1, b2, with 1 ≤ b1 ≤ b2 ≤ n− 1, we have

E [`n,b1`n,b2 ] = nF2(n, b1, b2) + nF3(n, b1, b2)1{b1+b2≤n} (3.3)

As before, we may define SFSn,b as the number of mutations shared by b individuals in the
n-coalescent. By conditioning on the value of the associated branch lengths we get

Corollary 3.2. For 1 ≤ b ≤ n− 1,

E[SFSn,b] = θnF1(n, b)

and, for 1 ≤ b1 ≤ b2 ≤ n− 1, we have,

Cov (SFSn,b1 , SFSn,b2) =θ2nF2(n, b1, b2) + θ2nF3(n, b1, b2)1b1+b2≤n

− θ2n2F1(n, b1)F1(n, b2) + θnF1(n, b)1b1=b=b2 .

We also characterize the asymptotic behavior of the functions F1, F2 and F3 as n→∞, which in
turn give asymptotic approximations for the first and second moments of the branch lengths and of
the SFS. For this we recall the function f1 defined in (1.2) and also define for 0 < u1 < u2 < 1,

f2(u1, u2) :=

∫ 1

0

∫ p1

0

u−p1−1
1 (u2 − u1)p1−p2−1 (1− u2)p2−1

p1Γ(1− p1)Γ(p1 − p2)Γ(p2 + 1)
dp2 dp1 , (3.4)

and, for u1, u2 > 0, u1 + u2 < 1,

f3(u1, u2) :=

∫ 1

0

∫ 1

0

u−p1−1
1 u−p2−1

2 (1− u1 − u2)p1+p2−1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)
dp2 dp1 . (3.5)
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Lemma 3.3. We have as n→∞,

max
2≤b≤n−1

∣∣∣∣∣∣n
2F1(n, b)

f1

(
b−1
n−1

) − b− 1

b

∣∣∣∣∣∣→ 0, (3.6)

whereas for b = 1,
n2

(log n)f1

(
1

n−1

)F1(n, 1)→ 1. (3.7)

Similarly

max
2≤b1<b2≤n−1

∣∣∣∣∣∣ n
3F2(n, b1, b2)

f2

(
b1−1
n−1 ,

b2−1
n−1

) − b1 − 1

b1

∣∣∣∣∣∣→ 0, (3.8)

and if also b1 ∨ (n− b2)→∞ then

max
2≤b1≤b2≤n−1
b1+b2<n

∣∣∣∣∣∣ n
3F3(n, b1, b2)

f3

(
b1−1
n−2 ,

b2−1
n−2

) − (b1 − 1

b1

)(
b2 − 1

b2

)∣∣∣∣∣∣→ 0. (3.9)

Remark 3.4. The above lemma does not cover the cases b1 = 1 or b1 = b2 for F2, nor the cases
b1 = 1, b2 = 1, n = b1 + b2 or b1 ∨ (n − b2) 6→ ∞ for F3. However, using the same techniques we
also obtain asymptotics in these cases which are used in Theorem 3.6 below.

The proof of the above lemma also gives asymptotic expressions for the functions f1, f2 and f3,
leading to straightforward asymptotics for the expectation and covariance of SFS. The complete
picture for the first moment is given in the next result.

Theorem 3.5. As n goes to infinity,
(i) The expected number of external mutations (b = 1) has the following asymptotics

log n

n
E[SFSn,1]→ θ.

(ii) If b ≥ 2 and b
n → 0, then

b(b− 1)

n
log2

(n
b

)
E[SFSn,b]→ θ.

(iii) If b
n → u ∈ (0, 1), then

nE[SFSn,b]→ θf1(u) = θ

∫ 1

0
u−1−p(1− u)p−1 sin(πp)

πp
dp.

(iv) If n−b
n → 0, then

(n− b) log

(
n

n− b

)
E[SFSn,b]→ θ.

(v) Let I = (x, y) with 0 < x < y < 1 and define

SFSn,I :=

bnyc∑
b=dnxe

SFSn,b.

Then
E [SFSn,I ]→ E[SFSI ]

as it is defined in (2.3).
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Case (i) and case (ii) for fixed b also follow from Theorem 4 in Diehl and Kersting (2019). A
proportional expression for case (iii) was derived in Kosheleva and Desai (2013) through a forwards
in time argument. Cases (ii) and (iv) give an update to the approximation of the SFS for small and
large families made in Neher and Hallatschek (2013).

0 200 400 600 800 1000

1e
-0
2

1e
+
00

1e
+
02

Family Size

E
[S
F
S

]

Figure 3.3. Exact and asymptotic approximations for E[SFS] in a population of
size 1000: The blue circles give the exact value as given in Corollary 3.2. The gray
line is the asymptotic approximation as given in Theorem 3.5 (iii). Red (resp. yellow)
line is given by Theorem 3.5 (ii) (resp. (iv)).

In the same spirit and using the same techniques we now provide the complete picture for the
second moments. In what follows we use the notation f(n) ∼ g(n) to denote that

f(n)

g(n)
→ 1

as n→∞.
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Theorem 3.6. The covariance function has the following asymptotics as n goes to infinity, in each
of the following cases as in Table 3.1:

b1 b2 − b1 n− b2 Cov(SFSn,b1 , SFSn,b2)

> 1 > 0 ∼ n θ2

b1(b1−1)b2(b2−1)O
(

n2

log5 n

)
∼ n > 0 > 0 θ2

(b2−b1)(n−b1)
1

log2 n

∼ n 0 > 0 θ2+θ
n−b2

1
logn

> 1 ∼ n = b1 θ2O
(

n
log4 n

)
> 1 ∼ n = b1 + const+ θ2F1(n− b2, b1) n

logn

1 0 ∼ n θ2O
(

n2

log3 n

)
1 > 0 ∼ n θ2O

(
n2

log4 n

)
1 ∼ nu ∼ n(1− u) θ2O

(
1

log2 n

)
1 ∼ n > 1 θ2O

(
n

log3 n

)
1 ∼ n 1 θ2O

(
n

log3 n

)
> 1 0 ∼ n θ2O

(
n2

log5 n

)
∼ nu > 0 ∼ n(1− u) θ2

(1−u)(b2−b1)
1

n log2 n

∼ nu 0 ∼ n(1− u) θf1(u)
n

> 1 ∼ nu ∼ n(1− u) θ2O
(

1
log3 n

)
∼ nu ∼ n(1− u) > 0 − θ2f1(u)

n−b2
1

logn

∼ nu1 ∼ nu2 ∼ n(1− u1 − u2)
θ2(f2(u1,u1+u2)+f3(u1,u1+u2)12u1+u2≤1−f1(u1)f1(u1+u2))

n2

∼ nu ∼ n(1− 2u) = b1
θ2

∫∞
0

∫∞
0

e−y1e−y2
y1∨y2

dy1 dy2

u(1−u)
1

n logn

∼ nu ∼ n(1− 2u) = b1 + const+
θ2

∫∞
0

∫∞
0

e−y1e−y2 (y1+y2)
y1∨y2

dy1 dy2

u(1−u)(n−b2−b1)
1

n log2 n

Table 3.1. Cases

Also for I, Î ⊂ (0, 1), and SFSn,I , SFSn,Î as defined in Theorem 3.5 (V), we have

Cov

(
SFSn,I , SFSn,Î

)
→ (3.10)

θ2

∫
I

∫
Î
f2(u1, u2) + f3(u1, u2)1u1+u2<1 − f1(u1)f1(u2) du2 du1 + θ

∫
I∩Î

f1(u) du.
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These approximations follow from the asymptotics for F1, F2, and F3 substituted in the covari-
ance formula given in Corollary 3.2. For the sake of simplicity we do not provide the explicit
computations. We only treat the case where the expected value E[SFSn,b] diverges, then an appli-
cation of Chebyshev’s inequality allows us to prove the following weak law of large numbers with
L2-convergence, which generalizes and strengthens results on the Bolthausen-Sznitman coalescent
derived in Diehl and Kersting (2019).

Corollary 3.7. Suppose that b/n → 0 in such a way that E[SFSn,b] → ∞, or equivalently that
b = o (

√
n/ log n). Then we have the following L2-convergence:

SFSn,b
E[SFSn,b]

→ θ.

In view of Theorem 3.5 this means that for b = 1

log n

n
SFSn,1

L2

→ θ,

and for b ≥ 2, b = o (
√
n/ log n)

b(b− 1) log2 (n/b)

n
SFSn,b

L2

→ θ.

4. Distribution of the Branch Lengths by Family Size

In this section we discuss the particular case of `n,b when b > n/2. In this case we are able to
provide an explicit formula for the distribution function of the length of the coalescent of order b.
This leads to convergence in law results, but also to the law of SFSn,b. Observe that in this case,
for all t ≥ 0, Cn,b(t) ∈ {0, 1} and `n,b is just the time during which the block of size b survives
before coalescing with other blocks (if it ever exists, otherwise obviously `n,b = 0). We first find an
expression for the distribution function of `n,b.

Theorem 4.1. Suppose that n/2 < b < n. For any s ≥ 0,

P(`n,b > s) =
n

(n− b)b(b− 1)

∫ 1

0

Ψ(b− p)−Ψ(1− p)
B(n− b, e−sp)B(b− 1, 1− p)

dp. (4.1)

From the derived distribution of `n,b in Theorem 4.1 we obtain that, conditioned on `n,b > 0, the
variable (log n) `n,b has a limiting distribution.

Corollary 4.2. Suppose that b/n→ u ∈ [1/2, 1) as n→∞, then letting α = log(1− u)− log u, we
have

n

log n
P(`n,b > 0)→ G(α)

u(1− u)

where

G(x) =

∫ 1

0
epx

sinπp

π
dp =

1 + ex

π2 + x2
.

Furthermore,

P((log n) `n,b > s|`n,b > 0)→ G(α− s)
G(α)

.

We now give the joint distribution of the branch lengths for large families, i.e. the joint distri-
bution of the vector (`n,b)b>n/2. For this we introduce the following events: for any collection of
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integers b = (b1, · · · , bm) such that n/2 < b1 < b2 < · · · < bm < n, and any collection of nonnegative
numbers s = (s1, · · · , sm), define the event

Λb,s :=

(
m⋂
i=1

{`bi > si}

)⋂ ⋂
n>b>b1
b6∈b

{`b = 0}

 ,

that is, the event that a block of size b1 exists for a time larger than s1, that this block then merges
with some other blocks of total size exactly b2− b1, that this new block exists for a time larger than
s2, and so on, until the last merge of the growing block occurs with the remaining blocks of total
size exactly n− bm.

Theorem 4.3. For b = (b1, · · · , bm) and s = (s1, · · · , sm) as above, we have

P (Λb,s) =
n

b1(b2 − b1) · · · (n− bm)

exp{−〈(m : 1), s〉}
m!

∫ 1

0
pm

Ψ(b1 − p)−Ψ(1− p)
B(b1 − 1, 1− p)

dp (4.2)

and

P

Λb,s,
⋂

n/2<b<b1

{`n,b = 0}

 (4.3)

=
n

(b2 − b1) · · · (n− bm)

exp{−〈(m : 1), s〉}
m!

×∫ 1

0

pm

b1

Ψ(b1 − p)−Ψ(1− p)
B(b1 − 1, 1− p)

− pm+1

m+ 1

∑
n/2<b<b1

1

b(b1 − b)
Ψ(b− p)−Ψ(1− p)
B(b− 1, 1− p)

dp

 ,

where
(m : 1) := (m,m− 1, . . . , 1).

and 〈·, ·〉 is the usual inner product in Euclidean space.

By conditioning on (`n,b)b>n/2 and using equation (4.3) one can obtain a sampling formula for
the vector (SFSn,b)b>n/2, although the computations are rather convoluted and we do not present
them here.

5. Proofs of Results in Section 3

As in the infinite coalescent case, the proof of Theorem 3.1 begins with the definition (3.1) and
by noting that

E [`n,b] = E

[∫ ∞
0

Cn,b(t) dt

]
=

∫ ∞
0

E [Cn,b(t)] dt,

and similarly

E [`n,b1`n,b2 ] =

∫ ∞
0

∫ ∞
0

E [Cn,b1(t1)Cn,b2(t2)] dt1 dt2,

so it only remains to compute E [Cn,b(t)] and E [Cn,b1(t)Cn,b2(t)] in each case and simplify the
expressions.

Proof of Theorem 3.1 (first moment): Let B be the collection of all possible blocks of size b in a
partition of [n]. Then

E [Cn,b(t)] = E

[∑
B∈B

1B∈Πn(t)

]
=
∑
B∈B

P (B ∈ Πn(t)) ,
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and by exchangeability of Πn(t),

E [Cn,b(t)] =

(
n

b

)
P ({1, · · · , b} ∈ Πn(t)) .

Thus, using (2.4), the fact that |Π∞(t)|↓ =: (A1, A2, . . . )
d
= PD(e−t, 0), and writing Πn as Π∞|n , we

obtain

E[Cn,b(t)] =

(
n

b

)
E

[ ∞∑
i=1

Abi(1−Ai)n−b
]

=

(
n

b

)∫ 1

0
ub−1(1− u)n−b

u−e
−t

(1− u)e
−t−1

Γ(1− e−t)Γ(e−t)
du

=
nΓ(n)

Γ(n− b+ 1)Γ(b+ 1)

B(b− e−t, n− b+ e−t)

Γ(1− e−t)Γ(1 + e−t)
.

Finally, by changing the variable p = e−t, we obtain (3.2). �

Now we use the random tree construction of the n-Bolthausen-Sznitman coalescent in order to
compute the second moments of `n,b.

Proof of Theorem 3.1 (second moments): Let 1 ≤ b1 ≤ b2 ≤ n − 1, and B1,B2 be the collection of
all possible blocks of sizes b1 and b2 respectively in a partition of [n]. Then

E [`n,b1`n,b2 ] =

∫ ∞
0

∫ ∞
0

E [Cn,b1(t1)Cn,b2(t2)] dt2 dt1

=

∫ ∞
0

∫ ∞
0

∑
B1∈B1

∑
B2∈B2

P (B1 ∈ Πn(t1), B2 ∈ Πn(t2)) dt2 dt1. (5.1)

We now compute P (B1 ∈ Πn(t1), B2 ∈ Πn(t2)) by cases.
i) Suppose that B1 ∩B2 = ∅. By exchangeability we have

P (B1 ∈ Πn(t1), B2 ∈ Πn(t2)) = P({1, · · · , b1} ∈ Πn(t1), {b1 + 1, · · · , b1 + b2} ∈ Πn(t2))

where this probability is of course 0 if b1 + b2 > n. Now suppose that t1 ≤ t2. In terms of the RRT
construction of the Bolthausen-Sznitman coalescent, the event

{{1, · · · , b1} ∈ Πn(t1), {b1 + 1, · · · , b1 + b2} ∈ Πn(t2)}

is characterized by a RRT with exponential edges, say E2, · · · , En, constructed as follows: for
i ∈ {1, · · · , b1−1} the node {i+1} along with Ei+1 arrive to the tree but with the imposed restriction
that it may not attach to {1} and have Ei+1 > t1 at the same time, which occurs with probability
e−t1/i; this ensures that {i + 1} coalesces with {1} before time t1 for all i < b1, thus creating the
block {1, · · · , b1} up to time t1. After {1}, · · · , {b1} have arrived, the node {b1 + 1} must attach to
{1} and Eb1+1 must be greater than t2, which occurs with probability e−t2/b1; the node {b1 +1} will
be the root of a sub-tree formed with the nodes {b1 + 2}, · · · , {b1 + b2} which will build the block
{b1 + 1, · · · , b1 + b2} at time t2. Thus, for each i ∈ {1, · · · , b2− 1} the node {b1 + i+ 1} must arrive
and attach to any of {b1 + 1}, · · · , {b1 + i}, which occurs with probability i

b1+i , and, furthermore,
conditional on this event, it may not attach to {b1 + 1} and have Eb1+i+1 > t2 at the same time,
which occurs with probability e−t2

i . Finally, if n − b1 − b2 > 0, for i ∈ {0, · · · , n − b1 − b2 − 1}
the node {b1 + b2 + i + 1} must either attach to any of {b1 + b2 + j}, 1 ≤ j ≤ i, or attach to {1}
or {b1 + 1} and have Eb1+b2+i+1 > t1 or Eb1+b2+i+1 > t2 respectively; this occurs with probability
e−t1+e−t2+i
b1+b2+i . Putting all together we obtain



Site Frequency Spectrum of the Bolthausen-Sznitman Coalescent 1497

P (B1 ∈ Πn(t1), B2 ∈ Πn(t2))

=

[
b1−1∏
i=1

(
1− e−t1

i

)][
e−t2

b1

b2−1∏
i=1

(
1− e−t2

i

)
i

b1 + i

][
n−b1−b2−1∏

i=0

e−t1 + e−t2 + i

b1 + b2 + i

]

=
1

(n− 1)!

Γ(b1 − e−t1)

Γ(1− e−t1)
e−t2

Γ(b2 − e−t2)

Γ(1− e−t2)

Γ(n− b1 − b2 + e−t1 + e−t2)

Γ(e−t1 + e−t2)
,

where the last product is set to 1 if n−b2−b1 = 0. On the other hand, if t2 < t1, by exchangeability
we may instead compute

P({1, · · · , b2} ∈ Πn(t2), {b2 + 1, · · · , b2 + b1} ∈ Πn(t1))

obtaining

P (B1 ∈ Πn(t1), B2 ∈ Πn(t2))

=
1

(n− 1)!

Γ(b2 − e−t2)

Γ(1− e−t2)
e−t1

Γ(b1 − e−t1)

Γ(1− e−t1)

Γ(n− b2 − b1 + e−t2 + e−t1)

Γ(e−t2 + e−t1)
.

ii) Suppose that B1 ⊂ B2. Of course if t1 > t2 we have P (B1 ∈ Πn(t1), B2 ∈ Πn(t2)) = 0
whenever B1 is strictly contained in B2. Assuming that t1 ≤ t2 and using the same rationale as
before we obtain

P (B1 ∈ Πn(t1), B2 ∈ Πn(t2))

=

[
b1−1∏
i=1

i− e−t1
i

][
b2−b1−1∏
i=0

i+ e−t1 − e−t2
b1 + i

][
n−b2−1∏
i=0

e−t2 + i

b2 + i

]

=
1

(n− 1)!

Γ(b1 − e−t1)

Γ(1− e−t1)

Γ(b2 − b1 + e−t1 − e−t2)

Γ(e−t1 − e−t2)

Γ(n− b2 + e−t2)

Γ(e−t2)
,

where the product in the middle is set to 1 if B1 = B2.
iii) If B1 ∩B2 6= ∅ and B1 6⊂ B2, we clearly have P (B1 ∈ Πn(t1), B2 ∈ Πn(t2)) = 0.
From the previous computations, and summing over the corresponding cases, we see that if

b1 + b2 ≤ n then, changing the variable p = e−t, the integral in (5.1) is given by

E [`n,b1`n,b2 ] =
n

b1!b2!(n− b1 − b2)!∫ 1

0

∫ 1

0

Γ(b1 − p1)

Γ(1− p1)

Γ(b2 − p2)

Γ(1− p2)

Γ(n− b1 − b2 + p1 + p2)

Γ(p1 + p2)

dp1 dp2

p1 ∨ p2

+
n

b1!(b2 − b1)!(n− b2)!∫ 1

0

∫ p1

0

Γ(b1 − p1)

Γ(1− p1)

Γ(b2 − b1 + p1 − p2)

Γ(p1 − p2)

Γ(n− b2 + p2)

Γ(p2 + 1)

dp2 dp1

p1

whereas if b1 + b2 > n the first summand in the above expression is set to zero. Rearranging terms
we obtain (3.3). �

Proof of Lemma 3.3 (asymptotics for F1): Again, we have from Stirling’s formula that
Γ(m + c)/Γ(m + d) = mc−d(1 + O (1/m)) for any real numbers c and d, where the O (1/m) term
holds uniformly for 0 ≤ c, d ≤ 1. Letting m = b− 1 and n− b leads to the following equality:

n

b(n− b)
Γ(n− b+ p)

Γ(n− b)
Γ(b− p)

Γ(b)

=
n

b(n− b)
(n− b)p(b− 1)−p

(
1 +O

(
1

b

)
+O

(
1

n− b

))
.
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Thus, using Euler’s reflection formula to write Γ(1− p)Γ(1 + p) as πp/ sin (πp) in the definition of
F1, we get

F1(n, b) =

(
1 +O

(
1

b

)
+O

(
1

n− b

))
1

b(n− b)

∫ 1

0

sin (πp)

πp

(
n− b
b− 1

)p
dp

=

(
1 +O

(
1

b

)
+O

(
1

n− b

))
b− 1

b(n− 1)2
f1

(
b− 1

n− 1

)
Thus, for every ε > 0 there is a b0 ∈ N such that for large enough n ∈ N we have

max
b0≤b≤n−b0

∣∣∣∣∣∣n
2F1(n, b)

f1

(
b−1
n−1

) − b− 1

b

∣∣∣∣∣∣ < ε. (5.2)

It remains to study the approximation as n → ∞ in the cases where n − b or b remain constant.
In the first case, when n − b = c, we have b → ∞ as n → ∞ and, by Stirling’s approximation and
dominated convergence and substituting p = y/ log b on the one hand

F1(n, b) ∼
∫ 1

0

sin (πp)

πp
b−p−1 Γ(c+ p)

Γ(c+ 1)
dp

=
1

bc

∫ log b

0

sin (πy/ log b)

πy/ log b
e−y

Γ(c+ y/ log b)

Γ(c)

dy

log b

∼ 1

bc log b

∫ ∞
0

e−y dy.

and on the other hand because of b→∞
1

n2
f1

(
b− 1

n− 1

)
∼ 1

bc

∫ 1

0

sin(πp)

πp
b−pcp dp

=
1

bc

∫ log b

0

sin (πy/ log b)

πy/ log b
e−ycy/ log b dy

log b

∼ 1

bc log b

∫ ∞
0

e−y dy.

Thus F1(n, b) ∼ n−2f1((b− 1)/(n− 1)) which extends (5.2) for b > n− b0.
Similarly for the second case, if b ≥ 2 is fixed, we have n − b → ∞ as n → ∞. Thus, with

1− p = y/ log n

F1(n, b) ∼
∫ 1

0

sin (πp)

πp

Γ(b− p)
Γ(b+ 1)

np−1 dp

=
1

log2(n)

∫ logn

0

sin (π − πy/ log n)

(1− y/ log n)πy/ log n

Γ
(
b− 1 + y

logn

)
Γ(b+ 1)

ye−y dy

∼ 1

b(b− 1) log2 n

∫ ∞
0

ye−y dy

and
1

n2
f1

(
b− 1

n− 1

)
∼ 1

(b− 1)2

∫ 1

0

sinπp

πp
(b− 1)1−pnp−1 dp

=
1

(b− 1)2 log2 n

∫ logn

0

sin (π − πy/ log n)

(1− y/ log n)πy/ log n
(b− 1)y/ lognye−y dy

∼ 1

(b− 1)2 log2 n

∫ ∞
0

ye−y dy. (5.3)
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Thus F1(n, b) ∼ (b − 1)n−2f1((b − 1)/(n − 1))/b, which extends (5.2) for b < b0. Thus we proved
(3.6).

For the proof of (3.7), we substitute b by 1 and perform similar computations:

F1(n, 1) =

∫ 1

0

Γ(1− p)
Γ(2)

Γ(n− 1 + p)

Γ(n)

dp

Γ(1− p)Γ(1 + p)

∼
∫ 1

0
np−1 dp

Γ(1 + p)

=

∫ logn

0
e−y

dy

(log n)Γ(2− y/ log n)

∼ 1

log n

∫ ∞
0

e−y dy,

and from (5.3) with choosing b = 2

1

n2
f1

(
1

n− 1

)
∼ 1

log2 n

∫ ∞
0

ye−y dy.

This proves (3.7). �

Proof of Lemma 3.3 (asymptotics for F2 and F3) : The arguments here are similar to the argu-
ments in the proof of the asymptotics for F1, but we avoid repeating similar and tedious com-
putations. We only lay out the first steps of the proof. By Stirling’s approximation applied to the
integrands appearing in F2 and F3, we obtain, for b2 − b1 > 0,

Γ(b1 − p1)

Γ(b1 + 1)

Γ(b2 − b1 + p1 − p2)

Γ(b2 − b1 + 1)

Γ(n− b2 + p2)

Γ(n− b2 + 1)
=

1

(n− 1)3

(
b1 − 1

n− 1

)−p1−1(b2 − b1
n− 1

)p1−p2−1(n− b2
n− 1

)p2−1

×(
1 +O

(
1

b1

)
+O

(
1

b2 − b1

)
+O

(
1

n− b2

))
,

and, for n− b2 − b1 > 0,
Γ(b1 − p1)

Γ(b1 + 1)

Γ(b2 − p2)

Γ(b2 + 1)

Γ(n− b1 − b2 + p1 + p2)

Γ(n− b1 − b2 + 1)
=

1

(n− 2)3

(
b1 − 1

n− 2

)−p1−1(b2 − 1

n− 2

)−p2−1(
1− b1 + b2

n− 2

)p1+p2−1

×(
1 +O

(
1

b1

)
+O

(
1

b2

)
+O

(
1

n− b1 − b2

))
;

thus

F2(n, b1, b2) =
1

(n− 1)3
f2

(
b1 − 1

n− 1
,
b2 − 1

n− 1

)(
1 +O

(
1

b1

)
+O

(
1

b2 − b1

)
+O

(
1

n− b2

))
,

and

F3(n, b1, b2) =
1

(n− 2)3
f3

(
b1 − 1

n− 2
,
b2 − 1

n− 2

)(
1 +O

(
1

b1

)
+O

(
1

b2

)
+O

(
1

n− b1 − b2

))
.

Similar to the analysis in the proof of (3.6), to obtain (3.8) it remains to study the cases where at
least one of b1, b2 − b1, or n− b2 remains constant, whereas for (3.9) the cases of interest are where
one of b1, b2, or n − b2 − b1 remain constant. We refer the reader to the Appendix where these
computations are provided. �
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Proof of Theorem 3.5: We first derive the asymptotic behavior of the function f1. We have

f1(u) ∼ 1

u2 log2 u
as u ↓ 0. (5.4)

For the proof note that for u < 1/2 we have (1 − u)p−1 ≤ 2. Therefore dominated convergence
implies for u ↓ 0

f1(u) =
1

u2

∫ 1

0
u1−p(1− u)p−1 dp

Γ(1− p)Γ(1 + p)

=
1

u2

∫ 1

0
e−(p−1) log u(1− u)p−1(1− p) dp

Γ(2− p)Γ(1 + p)

=
1

u2

∫ − log u

0
e−y(1− u)y/ log 1

u
y

log 1
u

· dy

log 1
uΓ(1− y

log u)Γ(2 + y
log u)

∼ 1

u2 log2 u

∫ ∞
0

ye−y dy

implying (5.4). Also

f1(u) ∼ − 1

(1− u) log(1− u)
as u ↑ 1, (5.5)

which we obtain again by means of dominated convergence in the limit u ↑ 1 as follows:

f1(u) =
1

u(1− u)

∫ 1

0
ep log(1−u)u−p

dp

Γ(1− p)Γ(1 + p)

=
1

u(1− u)

∫ − log(1−u)

0

e−yuy/ log(1−u) dy

(− log(1− u))Γ(1 + y
log(1−u))Γ(1− y

log(1−u))

∼ − 1

(1− u) log(1− u)

∫ ∞
0

e−y dy.

These asymptotics together with Lemma 3.3 imply our claims. Without loss of generality let
θ = 1. From (3.7) we obtain

E [SFSn,1] = nF1(n, 1) ∼ 1

n
f1

(
1

n− 1

)
∼ log n

n

(n− 1)2

log2(n− 1)

which yields claim (i).
Similary from (3.6) we get for b ≥ 2 and b/n→ 0

E [SFSn,b] = nF1(n, b) ∼ b− 1

nb
f1

(
b− 1

n− 1

)
∼ b− 1

nb

(n− 1)2

(b− 1)2 log2 b−1
n−1

which in view of b/n→ 0 yields assertion (ii).
Claim (iii) is an immediate consequence of formula (3.6), since here we have (b− 1)/b→ 1.
Next under the condition (n− b)/n→ 0 we get from (3.6) and (5.5)

E [SFSn,b] ∼
b− 1

nb
f1

(
b− 1

n− 1

)
∼ −b− 1

nb

n− 1

(n− b) log n−b
n−1

∼ 1

(n− b) log n
n−b

which confirms assertion (iv).
Finally, we have from (3.6)

E [SFSn,I ] ∼
1

n

∑
b
n
∈I

f1

(
b

n

)
∼
∫
I
f1(u) du,

which is claim (v). This finishes the proof. �
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Proof of Theorem 3.6: The approximations follow from the asymptotics for F1, F2, and F3 substi-
tuted in the covariance formula given in Corollary 3.2. �

Proof of Corollary 3.7: We have to prove that

Var(SFSn,b) = o
(
E[SFSn,b]

2
)
.

From the monotonicity properties of the gamma function we have for 1 ≤ b ≤ n− 1

F2(n, b, b) =

∫ 1

0

∫ p1

0

Γ(b− p1)

Γ(b+ 1)

Γ(n− b+ p2)

Γ(n− b+ 1)

dp2 dp1

p1Γ(1− p1)Γ(p2 + 1)

≤
∫ 1

0

Γ(b− p1)

Γ(b+ 1)

Γ(n− b+ p1)

Γ(n− b+ 1)

1

Γ(1− p1)p1

∫ p1

0

Γ(1 + p1)

Γ(1 + p1)Γ(1 + p2)
dp2 dp1

≤ sup
1≤x≤y≤2

Γ(y)

Γ(x)

∫ 1

0

Γ(b− p1)

Γ(b+ 1)

Γ(n− b+ p1)

Γ(n− b+ 1)

dp1

Γ(1− p1)Γ(p1 + 1)

= sup
1≤x≤y≤2

Γ(y)

Γ(x)
F1(n, b). (5.6)

Concerning F3(n, b, b) we have for b = o(n) by Stirling’s approximation uniformly in 0 ≤ p1, p2 ≤ 1

Γ(n− 2b+ p1 + p2)

Γ(n− 2b+ 1)
∼ nΓ(n− b+ p1)

Γ(n− b+ 1)

Γ(n− b+ p2)

Γ(n− b+ 1)
,

hence, with 1 < η < 2∫∫
0≤p1,p2≤1
η<p1+p2≤2

Γ(b− p1)

Γ(b+ 1)

Γ(b− p2)

Γ(b+ 1)

Γ(n− 2b+ p1 + p2)

Γ(n− 2b+ 1)

× dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)

∼ n
|∫∫

0≤p1,p2≤1
η<p1+p2≤2

Γ(b− p1)

Γ(b+ 1)

Γ(b− p2)

Γ(b+ 1)

Γ(n− b+ p1)

Γ(n− b+ 1)

Γ(n− b+ p2)

Γ(n− b+ 1)

× dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)

≤ n

η − 1
sup
η≤x≤2

1

Γ(x)

∫ 1

0

∫ 1
∣∣

0

Γ(b− p1)

Γ(b+ 1)

Γ(b− p2)

Γ(b+ 1)

Γ(n− b+ p1)

Γ(n− b+ 1)

× Γ(n− b+ p2)

Γ(n− b+ 1)

dp2 dp1

Γ(1− p1)Γ(1− p2)Γ(1 + p1)Γ(1 + p2)

=
n

η − 1
sup
η≤x≤2

1

Γ(x)
F1(n, b)2. (5.7)

Also, by another application of Stirling’s approximation and for b = o(n)∫∫
0≤p1,p2≤1
0<p1+p2≤η

Γ(b− p1)

Γ(b+ 1)

Γ(b− p2)

Γ(b+ 1)

Γ(n− 2b+ p1 + p2)

Γ(n− 2b+ 1)

× dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)
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= O
( ∫∫

0≤p1,p2≤1
0<p1+p2≤η

b−p1−p2−2(n− 2b)p1+p2−1

× dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)

)

= O
(
b−η−2(n− 2b)η−1

|∫∫
0≤p1p2≤1

dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)

)
= o
( n

b4 log4 n

)
(5.8)

Combining (5.7) and (5.8) with Theorem 3.5 (i) and (ii) and letting η → 2 we obtain

F3(n, b, b) = nF1(n, b)2(1 + o(1)) + o(n−1E[SFSn,b]
2).

Using this estimate together with (5.6) and with Theorem 3.1, Corollary 3.2 yields

Var(SFSn,b) = O(E[SFSn,b]) + o(E[SFSn,b]
2)

Because of our assumption E[SFSn,b]→∞ our claim is proved. �

6. Proofs of Results in Section 4

Proof of Theorem 4.1: Note that since b > n/2, and by the exchangeability of Πn, we have:

P(`n,b > s) =

(
n

b

)
P (L({t : {1, · · · , b} ∈ Πn(t)}) > s) ,

where L is the Lebesgue measure, and L({t : {1, · · · , b} ∈ Πn(t)}) gives the time that the block
{1, · · · , b} exists in the Bolthausen-Sznitman coalescent starting with n individuals.

We now describe the event {L({t : {1, · · · , b}} ∈ Πn(t)) > s} in terms of the RRT construction
of the Bolthausen-Sznitman coalescent. Let G be the event that the nodes {1}, {2}, · · · , {b} and
{1}, {b+ 1}, · · · , {n} form two sub-trees, say T1 and T2 rooted at {1}; i.e.

G :={T : {j} does not attach to {i}, for all 2 ≤ i ≤ b and b < j ≤ n}.
Then

L({t : {1, · · · , b}} ∈ Πn(t)) =

{
0 if T 6∈ G
(m (T2)−M (T1)) ∨ 0 if T ∈ G.

Indeed, observe that by the cutting-merge procedure T 6∈ G if and only if any block of Πn that
contains all of {1, · · · , b} also contains some j ∈ {b + 1, · · · , n}. On the other hand, on the event
{T ∈ G}, the random variable M(T1) is just the time at which the block {1, · · · , b} appears in Πn,
whilem(T2) is the time at which it coalesces with some other block in T2. Furthermore, observe that
conditioned on {T ∈ G}, T1 and T2 are two independent RRTs of sizes b and n− b+ 1 respectively.
Thus, by Lemma 2.3 we have

P(`n,b > s) =

(
n

b

)
P(T ∈ G)P(m(T2)−M(T1) > s)

=

(
n

b

) n−b−1∏
i=0

(
1 + i

b+ i

)
1

(b− 1)(n− b)

∫ 1

0

Ψ(b− p)−Ψ(1− p)
B(n− b, e−sp)B(b− 1, 1− p)

dp

=
n

(n− b)b(b− 1)

∫ 1

0

Ψ(b− p)−Ψ(1− p)
B(n− b, e−sp)B(b− 1, 1− p)

dp.

�
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Proof of Corollary 4.2: Observe that, uniformly for p ∈ (0, 1), we have

Ψ(b− p)−Ψ(1− p) =
b−1∑
k=1

1

k − p
=

1

1− p
+ log b+O (1) ,

thus, substituting in (4.1) and also using Stirling’s approximation and Euler’s reflection formula,
we obtain

P(`n,b > 0) ∼ 1

u(1− u)n

∫ 1

0

(
1− u
u

)p sinπp

π

(
1

1− p
+ log n+O (1)

)
dp

∼ log n

u(1− u)n

∫ 1

0
epα

sinπp

π
dp

=
log n

u(1− u)n
G(α).

On the other hand, for any s > 0 we have

P ((log n) `n,b > s) ∼ 1

u(1− u)n

∫ 1

0

b−p (n− b)pe
−s/ logn

Γ(1− p)Γ(pe−s/ logn)

(
1

1− p
+ log b+O (1)

)
dp

∼ log n

u(1− u)n

∫ 1

0
epα(n− b)p(e−s/ logn−1) 1

Γ(1− p)Γ(p)
dp

∼ log n

u(1− u)n

∫ 1

0
epα(n− b)−ps/ logn 1

Γ(1− p)Γ(p)
dp

∼ log n

u(1− u)n

∫ 1

0
ep(α−s)

sinπp

π
dp

=
log n

u(1− u)n
G(α− s).

�

Proof of Theorem 4.3: Letting `π := L (t : π ∈ Πn(t)) for any subset π ⊂ [n], by exchangeability of
Πn(t) we have

P (Λb,s) =
n!

b1!(b2 − b1)! · · · (n− bm)!
P

 ⋂
1≤i≤m

Abi,si ,
⋂
b>b1
b 6∈b

Āb,0


where

Ab,s = {`{1,...,b} > s}
and

Āb,0 = {`{1,...,b} = 0}.

Recall that M
(
T
∣∣
b1

)
is defined as the maximum of the exponential edges associated to the root of

T
∣∣
b1
. Letting bm+1 := n, and also letting Eb, 1 ≤ b ≤ n, be the exponential variable associated to

b, we have

P

 ⋂
1≤i≤m

Abi,si ,
⋂
b>b1
b 6∈b

Āb,0


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=

(
m+1∏
i=1

1 · 2 · · · (bi+1 − bi)
bi(bi + 1) · · · (bi+1 − 1)

)
P

(
Eb1+1 −M

(
T
∣∣
b1

)
> s1,

m⋂
i=2

Ebi+1 − Ebi−1+1 > si

)
,

where the product above is the probability that T is structured in such a way that {b1 +1} attaches
to {1} and is the root of a subtree formed with {b1 + 1, . . . , b2}, that {b2 + 1} attaches to {1} and
is the root of a subtree formed with {b2 + 1, . . . , b3}, and so forth. Using the independence of the
exponential variables we obtain

P

(
Eb1+1 −M

(
T
∣∣
b1

)
> s1,

m⋂
i=2

{Ebi+1 − Ebi−1+1 > si}

)

=

∫ ∞
0

dt1

∫ ∞
t1+s1

dt2· · ·
∫ ∞
tm+sm

dtm+1

(
d

dt1
P

(
M(T

∣∣
b1

) ≤ t1
))

e−t2 . . . e−tm+1

=

∫ ∞
0

dt1

∫ ∞
t1+s1

dt2· · ·
∫ ∞
tm−1+sm−1

dtm

(
d

dt1
P

(
M(T

∣∣
b1

) ≤ t1
))

e−t2 . . . e−2tme−sm

...

=
exp{−〈(m : 1), s〉}

m!

∫ ∞
0

e−mt1
d

dt1
P

(
M(T

∣∣
b1

) ≤ t
)
dt1.

From (2.6) and making p = e−t in the above integral, and putting everything together we obtain
(4.2). Finally (4.3) follows from

P (Λb,s, `n,b1−1 = 0) = P (Λb,s)−P (Λb,s, `n,b1−1 > 0)

and, recursively,

P

Λb,s,
⋂

n/2<b<b1

{`n,b = 0}

 = P (Λb,s)−
∑

n/2<b<b1

P

(
Λb,s, `n,b > 0,

b1−b−1⋂
i=1

{`n,b+i = 0}

)
.

Substituting (4.2) in the above expression, we obtain (4.3). �
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