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Abstract. We give a general criterion for the Dirichlet problem at infinity (DPI) on a Cartan-
Hadamard surface to be solvable, which we primarily use to give the best possible upper radial radial
curvature bound for solvability of the DPI, but which is also flexible enough to accommodate flats.
In particular, any (upper) radial curvature bound which implies transience also implies solvability of
the DPI, which is perhaps surprising. Taking advantage of the structure provided by uniformization,
we show that solvability of the DPI implies there is a natural continuous surjection of the Martin
boundary onto the geometric boundary at infinity. Finally, we give matched upper and lower radial
curvature bounds that imply the natural identification of the geometric and Martin boundaries (for
Cartan-Hadamard surfaces) that are more generous than the bounds that are known in arbitrary
dimension.

1. Introduction

The space of positive harmonic functions on a Riemannian manifold and its relationship to
geodesic geometry has been studied for many years, by both analytic and stochastic methods. One
natural context in which to study this question is that of Cartan-Hadamard manifolds satisfying
radial curvature bounds. In particular, if M is a Cartan-Hadamard manifold of dimension n, any
point p is a pole (meaning the exponential map at p is a diffeomorphism), so that there are polar
coordinates (r, θ) ∈ [0,∞) × Sn−1 on M based at p. Then we are interested in curvature bounds
that depend on r.

1.1. Basic definitions. A Cartan-Hadamard manifold M (sometimes referred to simply as a
Hadamard manifold) is a simply-connected (complete) Riemannian manifold with non-positive sec-
tional curvature. The fundamental result, due to Cartan and Hadamard, is that, for any such
manifold of dimension n, the exponential map, based at any point p, gives a (global) diffeomor-
phism from the tangent space TpM ' Rn to M (see any textbook on Riemannian geometry, for
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example, Theorem 3.1 of do Carmo, 1992 or Corollary 4.8.1 of Jost, 2002). In particular, any p ∈M
is a pole, and we can introduce global polar coordinates on M centered at p. Further, M has a
geometric boundary at infinity S∞(M), which is topologically a sphere of dimension n − 1, given
abstractly as equivalence classes of rays, and there is a natural topology, the cone topology, on
M ∪ S∞(M) making it compact. Concretely, for any pole p and associated polar coordinates (r, θ),
S∞(M) can be identified with the unit sphere in TpM so that θ gives coordinates on S∞(M), and for
any other pole p′ and polar coordinates (r′, θ′), the induced map from θ to θ′ is a homeomorphism.
Moreover, a sequence of points (ri, θi) in M converges to a point θ̂0 ∈ S∞(M) if and only if ri →∞
and θi → θ̂0. (The geometric boundary at infinity was first introduced in Eberlein and O’Neill,
1973— see the first two sections and, in particular, Theorem 2.10 and Remark 2.11 for the fact that
S∞(M) can be identified with the unit sphere in TpM . There is also an efficient summary of this
material in Section 4.8 of Jost (2002), while the first three chapters of Ballmann (1995) develop
the basic theory of Cartan-Hadamard manifolds in the increased generality of metric spaces with
nonpositive Aleksandrov curvature, for which Cartan-Hadamard manifolds provide the prototype.)

Let g be a continuous function on S∞(M). Then the Dirichlet problem at infinity (abbreviated
DPI in what follows) on M for boundary data g is the problem of finding a function u which is
continuous onM ∪S∞(M), harmonic onM , and such that u|S∞(M) = g. We say the DPI is solvable
on M if the DPI has a unique solution for every choice of continuous boundary data g. One of our
primary interests is curvature conditions on M which imply solvability of the DPI.

More generally, we can consider the Martin boundary of M , which we denote ∂M , and the
associated Martin compactification M ∪ ∂M . (See the beginning of Section 4 for background on
the Martin boundary. Intuitively, the Martin boundary encodes the space of all positive harmonic
functions on M .) Then one might also hope for curvature conditions under which S∞(M) and ∂M
are naturally homeomorphic (meaning that if one considers the geometric compactification of M
and the Martin compactification of M , then the identity map on M extends to a homeomorphism
of these two compactifications), which is a stronger result than solvability of the DPI.

Before briefly describing the previous results on the DPI and the identification of the Martin
boundary under radial curvature bounds, we note that there is an enormous literature on potential
theory, in a variety of contexts, via both analytic and stochastic methods. In terms of other
approaches to Cartan-Hadamard manifolds, we mention the following (incomplete list of) examples
of criteria other than the type of radial curvature bounds with which we work– convexity at infinity
(see Choi, 1984), visibility at the boundary and Gromov hyperbolicity (see Kifer, 1995), and (ratios
of) radial curvature bounds sufficient to also treat p-Laplacians (see Holopainen and Vähäkangas,
2007).

1.2. Previous work in arbitrary dimensions. It was famously shown in Anderson and Schoen (1985)
that, if the sectional curvatures ofM are pinched between negative constants, then S∞(M) and ∂M
are naturally homeomorphic. To go beyond this, one can consider radial curvature bounds in which
the the upper bound is allowed to decay to 0 and/or the lower bound is allowed to blow up to −∞.
In this context, the best known radial curvature bounds for solvability of the DPI are due to Hsu
(2002) (see also Hsu, 2003). By studying the angular behavior of Brownian motion, he proved that
if M is a Cartan-Hadamard manifold (of any dimension), and for some pole p one of the followings
set of curvature bounds holds:

• for constants 0 < λ < 2 and C > 0,

−Ceλr ≤ Ric and K ≤ −1,

or
• for positive constants α > 2, β < α− 2,

−r2β ≤ Ric and K ≤ −α(α− 1)

r2
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outside of a compact,
then the DPI is solvable on M . Here K is the sectional curvature as a function of r, θ, and a plane
in T(r,θ)M , and Ric is the Ricci curvature as a function of r, θ, and a unit vector in T(r,θ)M . (Note
that in the first set of conditions, the upper bound of −1 is just a choice of normalization; rescaling
by a factor of a > 0 gives an upper bound of −a2 for the sectional curvature and corresponding
lower bound of −Ceλar, perhaps for a different choice of C > 0 and λ ∈ (0, 2), for the Ricci
curvature.) The proof of these results amounts to showing that a certain series has a finite sum,
where the size of the terms coming from a given (higher-dimensional) annulus (in r) is controlled by
the upper curvature bound, while the number of terms coming from a given annulus is (primarily)
controlled by the lower curvature bound. Thus any pair of bounds that adequately controls this
series should be sufficient to obtain the result, and the two cases above are just particularly natural
pairs (indeed, see Proposition 6.1.2 of Hsu, 2002 and the surrounding discussion). We encounter a
similar phenomenon in our Theorem 1.4, as exhibited in the argument in Section 5.

Recently, Ji (2019) gave an analytic proof of (essentially) Hsu’s results, and furthermore, gave
similar, but more restrictive, curvature bounds under which the geometric and Martin boundaries
can be shown to naturally homeomorphic. In particular, he showed that, for such an M , if either
of the following sets of curvature bounds holds (relative to some pole):

• for constants 0 < λ < 2
3 and C > 0,

−Ceλr ≤ K ≤ −1,

or
• for positive constants α > 2 and β < α−4

3 ,

−r2β ≤ Ric and K ≤ −α(α− 1)

r2

outside of a compact,
then the geometric and Martin boundaries of M are naturally homeomorphic.

1.3. Previous work for surfaces. The case of surfaces (that is, n = 2 in the above) is substantially
different from the higher dimensional case. In particular, Hsu and Kendall (1992) showed that on
a Cartan-Hadamard surface, the upper curvature bound

K ≤ −C
r2

for r > R

(relative to some pole, where C and R are positive constants) is sufficient for solvability of the
DPI, with no lower curvature bound required. (In this case, K reduces to a scalar function of
(r, θ), namely the Gauss curvature.) That a lower curvature bound is needed in dimension 3 and
higher is known from the work of Ancona (1994), where a variety of examples of Cartan-Hadamard
manifolds of dimension 3 with all sectional curvatures bounded above by −1 but on which the DPI
is not solvable are constructed (the ways in which the DPI fails to be solvable and its relationship to
the behavior of Brownian motion and the existence of bounded harmonic functions is an interesting
aspect, which is explored in Arnaudon and Thalmaier, 2011). Kendall and Hsu note that their
method does not extend to a better upper bound. In Neel (2014a), the author developed a different,
though still probabilistic, approach to show that the DPI on a Cartan-Hadamard surface is solvable
under the classical condition for transience of Milnor (1977), that

K ≤ − 1 + ε

r2 log r
for r > R

for some ε > 0 and some R > 1.
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1.4. Summary of results. The purpose of the present work is to improve this result for solvability
of the DPI on Cartan-Hadamard surfaces, in particular, to give the best possible radial curvature
bound, and to give curvature bounds under which the Martin boundary and geometric boundary
on such a surface are naturally homeomorphic which are more generous than the bounds for higher
dimensions given above. We now describe these results in more detail.

Recall that in polar coordinates around a pole p, the metric on M can be written as

ds2 = dr2 + J2(r, θ) dθ2

where the notation is chosen to reflect the fact that, for each θ, J(r, θ), as a function of r, is the
length of the Jacobi field perpendicular to the radial geodesic ray r 7→ (r, θ). Then our fundamental
criterion for solvability of the DPI in terms of J(r, θ) is the following (see Section 3.1).

Theorem 1.1. Let M be a Cartan-Hadamard surface with polar coordinates around a point p.
Suppose that for any θ0, any β ∈ (0, π), and any ε > 0, there exists ρ > 0 such that∫

{r>α,|θ−θ0|<β}

1

J2(r, θ)
d(area) =

∫
{r>α,|θ−θ0|<β}

1

J(r, θ)
dr dθ < ε (1.1)

whenever α > ρ. Then the DPI on M is solvable.

It is interesting to observe that a sufficient condition for transience on a surface with a pole, going
back to Doyle (1988) (but see Theorem 12.1 of Grigor’yan, 1999 for a rigorous proof) is as follows.
If the (Lebesgue) measure of the set{

θ ∈ S1 :

∫ ∞ 1

J(r, θ)
dr <∞

}
is positive, then M is transient. Equation (1.1) implies that

∫∞
1/J(r, θ) dr is finite for (Lebesgue)

almost every θ ∈ S1. This certainly means that M is transient, as it must be for the DPI to be
solvable, but also makes Theorem 1.2 below seem somewhat more plausible.

Theorem 1.1 is flexible enough to accommodate flats, as described in Section 3.2. Moreover,
curvature bounds give estimates on J via the Jacobi equation (see Section 3.3). This allows us
to show that, perhaps surprisingly in spite of the above, any radial curvature bound that implies
transience also implies solvability of the DPI (which is not true in higher dimensions, as seen from
Euclidean space). We can record this, slightly informally, as follows, with a more precise statement
and proof given in Section 3.3.

Theorem 1.2 (informal version of Theorem 3.1). Let M be a Cartan-Hadamard surface, and
suppose that M satisfies a transient upper curvature bound. Then the DPI on M is solvable.

This is nice in part because whether or not an upper curvature bound implies transience essentially
reduces to a tractable ODE question, and this allows one to consider other functional forms for the
curvature bound in a systematic way. We discuss this in Section 3.4.

For a transient Cartan-Hadamard surfaceM , uniformization implies that ∂M is S1, thought of as
the boundary of the unit disk under a conformal map (and ∂M is also the minimal Martin boundary).
Even though ∂M and S∞(M) are both copies of S1, it is not true in general that they are “the same
S1,” that is, they may not be naturally homeomorphic as discussed above. However, the potential
relationships between them can be described in more detail for surfaces than in higher dimensions,
and in Section 4 we describe the various possibilities. Moreover, if the DPI is solvable, we can give
the following relationship between S∞(M) and ∂M , and a natural condition characterizing when
they are homeomorphic.

Theorem 1.3. Let M be a Cartan-Hadamard surface on which the DPI is solvable. Then there is a
natural surjection of the Martin boundary onto S∞(M), and this surjection is continuous. Further,
this surjection is a homeomorphism if and only if the hitting measure of Brownian motion (started
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from any point) on S∞(M) has no atoms, or equivalently, if and only if each geodesic ray (from any
pole) accumulates at a single point of the Martin boundary.

Starting from this condition and uniformization, we can give a natural geometric approach to
proving that certain pairs of upper and lower curvature bounds imply that S∞(M) and ∂M are
naturally homeomorphic. In particular, we have the following, proven in Section 5.

Theorem 1.4. Let M be a Cartan-Hadamard surface, and suppose that, for some p ∈M , we have
one of the following pairs of upper and lower radial curvature bounds

• K is bounded from below and, for some ε > 0 and R > 0,

K(r, θ) ≤ −2 + ε

r2
for r > R

or,
• K ≤ −1 and for some C > 0 and R > 0 and some 0 < λ < 2,

K(r, θ) ≥ −Ceλr for r > R.

Then the Martin boundary of M is naturally homeomorphic to S∞(M).

Note that differences in the constants in such curvature bounds generally translate into substantial
differences in the asymptotic behavior of J (see, for example, Section 2 of Neel, 2014b), so depending
on one’s point of view, the improvement over the bounds in Section 1.2 that we obtain for surfaces
is considerable.

2. Background results

From now on, we let M denote a Cartan-Hadamard surface, frequently with choice of pole p and
polar coordinates. We begin with a more precise formulation of the basic relationship between the
angular behavior of Brownian motion and the Dirichlet problem at infinity on a surface. In what
follows, we let Bt be Brownian motion on M and ζ its lifetime (in particular, there is no need to
assume M is stochastically complete). Also, Px and Ex refer to the probability of an event and
the expectation of a random variable, respectively, with respect to Brownian motion started from
x ∈M . We will generally write rt and θt for r(Bt) and θ(Bt), respectively.

Theorem 2.1. Let M be a Cartan-Hadamard surface. Then the following are equivalent:
(1) Brownian motion started from some (and hence any) point in M converges in the cone

topology (that is, Bζ ∈ S∞(M) exists a.s.), and for any θ̂0 ∈ S∞(M) and any neighborhood
N ⊂ S∞(M) of θ̂0,

lim
x→θ̂0

Px(Bζ ∈ N) = 1.

(2) For some pole p and corresponding system of polar coordinates (and hence for any p), for
any θ0 and any δ > 0, there exists R > 0 such that

P(r0,θ0)(‖θt − θ0‖ < δ for all t ∈ [0, ζ)) > 1− δ

whenever r0 > R. (Here ‖ · ‖ is the standard distance on S1 ' S∞(M).)
(3) The DPI on M is (uniquely) solvable.

Given any (hence all) of these conditions, the (unique) solution to the DPI, for any continuous
boundary data g, is given by

u(x) = Ex
[
g(Bζ)

]
for any x ∈M . (2.1)
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Proof : First note that any of these three conditions clearly implies that M is transient. That (1)
implies (3) is the basis for the probabilistic approach to the DPI and is well known, as is the fact that
condition (1) implies the representation of the solution given in Equation (2.1)– see Proposition 6.1.1
of Hsu (2002), for example. Note that θt converging, starting from some x ∈M , is a tail-measurable
event, and thus the probability that θt converges is a harmonic function of x, with values in [0, 1].
Thus if θt converges a.s. starting from some x, by the (strong) maximum principle, θt converges a.s.
starting from any x ∈M , which also means that the displayed expression is well defined.

We next show that (3) implies (2) holds for any p. Choose any p with some associated polar
coordinates, and choose θ0 and δ. Then we can take a continuous g on S∞(M) such that 0 ≤ g ≤ 1,
g = 1 on some neighborhood of θ̂0, and g(θ̂) = 0 if ‖θ̂−θ̂0‖ ≥ δ/2. Solvability of the DPI implies that
there is a unique harmonic function f on M with boundary values given by g. If we now consider
f(Bt) for Brownian motion started at x, then f(Bt) is a (continuous) martingale with values in [0, 1]
and E[f(Bt∧ζ)] = f(x). It follows from standard estimates for martingales that f(Bt∧ζ) converges
as t → ζ almost surely and that for any η > 0 there exists ε > 0 such that, if f(x) > 1 − ε, then
f(Bt∧ζ) stays above 1− η with probability as least 1− η. Now f is continuous on M ∪ S∞(M) and
has boundary values given by g, and thus, for small enough η, the superlevel set {f > 1 − η} will
be contained in the cone {‖θt− θ0‖ < δ, r > 0}. Since f(r, θ0) converges to 1 as r →∞, we see that
for large enough R, the ray [R,∞)× {θ0} is contained in the superlevel set {f > 1− ε}. It follows
that this R satisfies the condition of (2).

Finally, we show that having property (2) for some p implies (1). Choose some δ > 0, and let
γδ(x) be the probability that, for Brownian motion started from x ∈M , all the accumulation points
of θt in S∞(M) (as t→ ζ) lie in an interval of length δ (that is, the “asymptotic oscillation” of θt is
no more than δ). Now let θ̂1 < . . . < θ̂n be a partition of S∞(M) into intervals of length less than
δ/3 (that is, ‖θ̂i − θ̂i−1‖ < δ/3, where θ̂ is understood mod 2π and the indices are understood mod
n, as necessary). Then by (3) and the transience of M , for any η > 0, we can find R > 0 such that,
for all i,

P(r0,θi)(‖θt − θ0‖ < δ/3 for all t ∈ [0, ζ)) > 1− η/3
whenever r0 > R/2, and for any θ,

P(r0,θ)(rt > R/2 for all t ∈ [0, ζ)) > 1− η/3
whenever r0 ≥ R. Now consider Brownian motion started from some (r0, θ0) with r0 > R. Let i be
such that θ̂i−1 ≤ θ0 < θ̂i. Then with probability 1− η/3, rt > R/2 for all time. In this case, one of
two things happens. Either the process hits one of the rays (R/2,∞)× {θ̂i−1} or (R/2,∞)× {θ̂i},
in which case we see that ‖θt − θ0‖ < 2δ/3 for all t ∈ [0, ζ) with probability 1− η/3, or the process
stays between these two rays for all time, in which case ‖θt − θ0‖ < δ/3 for all t ∈ [0, ζ) with
probability 1. Putting this together, we see that γδ ≥ 1− η on {r > R}. Since γδ depends only on
the asymptotic behavior of Bt, we see that γδ is harmonic. Then since η was arbitrary, it follows
from the mean-value property of γδ that γδ ≡ 1 on M . Since this is true for every δ > 0, recalling
the definition of γδ, we see that Bt almost surely converges in the cone topology. Next, choose some
θ̂ and neighborhood N as in (2). Then we can find δ > 0 such that (θ̂ − δ, θ̂ + δ) ⊂ N . From the
preceding argument, we know that, for any η > 0, we can find R such that ‖θt − θ0‖ < δ with
probability 1− η whenever r0 > R. Then it follows that

lim
x→θ̂

Px(Bζ ∈ N) = 1,

and we’ve established (1).
Also note that the preceding shows that if condition (2) holds for some p, then it holds for

every p. �

Next, we recall two “soft” results that will be used in what follows, and for which we need some
definitions. As usual, we assume we have polar coordinates around a pole p. For any θ0, α > 0, and
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β ∈ (0, π), we have the (open) truncated sector

Sθ0(α, β) =
{

(r, θ) : r > α, θ ∈ (θ0 − β, θ0 + β)
}
⊂M

centered around θ0. Given such an S = Sθ0(α, β), an exhaustion of S will mean an increasing
sequence of open subsets S1 ⊂ S2 ⊂ · · · such that Sn is compact with smooth boundary and
contained in S for all n, and such that for any compact Ω ⊂ M , there exists n such that Ω ⊂ Sn.
Next, if µ is a probability measure supported in S, then we let GSµ be the associated Green’s
function, with Dirichlet boundary conditions on the (finite part of) the boundary. Recall that GSµ
gives the occupation density, with respect to d(area), of Brownian motion started at µ and killed at
the boundary (and explosion time). Then GSnµ is defined analogously for any exhaustion of S and
any n with µ supported in Sn. (All of these Green’s functions will be locally integrable, since S is
clearly conformally equivalent to the open unit disk.)

Lemma 2.2. Let M be a Cartan-Hadamard surface with polar coordinates around p. For some
point (r′, θ0), let S = Sθ0(α, β) be any truncated sector containing (r′, θ0). Then there exists r′′ > r′

and a probability measure µ such that the support of µ is [r′, r′′]× {θ0} and GSµ is identically equal
to one on [r′, r′′]× {θ0}. We have that∫

S

∣∣∇GSµ∣∣2 d(area) = 2,

where ∇GSµ is interpreted in the weak sense on supp(µ). Further, there is an exhaustion Sn of S
such that ∫

Sn

∣∣∇GSnµ ∣∣2 d(area) < 2 for all n,

where again ∇GSnµ is interpreted in the weak sense on supp(µ).

This is Lemma 5 of Neel (2014a) (with the additional observation that the Sn can be chosen to
have smooth boundary, which is explicit in the proof of Lemma 5, and was accidentally omitted
from the statement of Lemma 5). Note that by conformal invariance, it is enough to prove that the
result holds for divergent curves on the 2-dimensional hyperbolic space H2 (rather than geodesics
on M). Using that the Green’s function on H2 decays uniformly from any point (with respect to
the hyperbolic distance), it’s easy to see that such a µ exists, and then the rest of the theorem is
an exercise in integration by parts.

Theorem 2.3. Let M be a Cartan-Hadamard surface with polar coordinates around a pole p, and
suppose that, for any θ0, R > 0, and δ > 0, there exists r0 with r0 > R such that

P(r0,θ0)(‖θt − θ0‖ < δ for all t ∈ [0, ζ)) > 1− δ.
Then the Dirichlet problem at infinity on M is solvable. (Note that the condition is not that the
inequality holds for every r0 > R, but rather just for some r0 > R, which is the key difference with
condition (2) of Theorem 2.1.)

The proof uses the fact that curves locally divide surfaces to “corral” Brownian motion from
all points with large r by using Brownian motion from a finite number of the points assumed in
the theorem. The logic is quite similar to that used to show that (3) implies (2) in the proof of
Theorem 2.1, and the details can be found in Lemma 9 and the subsequent proof of Theorem 7 in
Neel (2014a).

3. Solvability of the DPI on a surface

Recall that in polar coordinates around a pole p, we write the metric on M as

ds2 = dr2 + J2(r, θ) dθ2
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Then K(r, θ) determines J(r, θ) via the Jacobi equation

∂2rJ(r, θ) +K(r, θ)J(r, θ) = 0 with J(0, θ) = 0 and ∂rJ(0, θ) = 1

along rays (and vice versa viaK(r, θ) = −∂2rJ
J (r, θ)). (This is a classical result for surfaces going back

to Gauss; see Section 4.6 of do Carmo, 1976 or Section 3.1.4 of Berger, 2003 where the connection
to the more general theory of Jacobi fields is made explicit.) Once we have the written the metric
in polar coordinates, the standard coordinate expressions for the area form and the gradient of
a function in terms of the metric tensor (see Section 2.1 of Jost, 2002, for example) give that
d(area) = J(r, θ) dr dθ and ∇θ = 1

J2(r,θ)
∂θ, in polar coordinates, so that also |∇θ| = 1

J(r,θ) .

3.1. A criterion for DPI in terms of J . The proof of our basic criterion for solvability of the DPI
is an improvement on the ideas in the proof of Lemma 8 in Neel (2014a).

Proof of Theorem 1.1: First, as noted above, the hypothesis implies that M is transient. Let θ0, R,
and δ be as in Theorem 2.3; we wish to find a corresponding r0. Letting β = δ and ε = δ4/8, we can
find corresponding ρ as in the theorem, and we can also also choose α such that α > ρ and α > R.
Let σα be the first hitting time of {r = α} and σβ be the first hitting time of {|θ − θ0| = β = δ}.
Then the first hitting time of ∂Sθ0(α, β) is σα ∧ σβ . By transience, we can find r′ > α large enough
so that, for any r0 ≥ r′,

P(r0,θ0)[σα <∞] <
δ

2
. (3.1)

Next, given S = Sθ0(α, β) and r′ as above, let r′′, µ, and Sn be the corresponding radius,
measure, and exhaustion from Lemma 2.2. Let σn be the first hitting time of ∂Sn, and note that
σn ↗ (σα ∧ σβ) as n → ∞. We want to bound the expectation of (θ − θ0)2(Bσn), for Brownian
motion started from µ. Writing (θ − θ0)2t for (θ − θ0)2(Bt), Itô’s rule shows that

d
(
(θ − θ0)2

)
t

= 2(θ − θ0) |∇θ| dWt +
(

(θ − θ0)∆θ + |∇θ|2
)
dt.

Recall that Sn is compact. Then GSnµ , which gives the occupation density of Brownian motion from
µ, stopped at σn, is integrable. Also, (θ − θ0)0 = 0, so we have

Eµ
[
(θ − θ0)2σn

]
=

∫
Sn

(θ − θ0)∆θGSnµ d(area) +

∫
Sn

|∇θ|2GSnµ d(area).

Integration by parts (recalling that Sn has compact closure and smooth boundary) gives∫
Sn

(
(θ − θ0)GSnµ

)
∆θ d(area) =

∫
∂Sn

(θ − θ0)GSnµ 〈∇θ, η〉 d(length)

−
∫
Sn

GSnµ |∇θ|
2 d(area)−

∫
Sn

(θ − θ0)〈∇GSnµ ,∇θ〉 d(area),

where η is the outward unit normal. We know that GSnµ vanishes on the boundary of Sn (again
by smoothness of the boundary), and thus the boundary term is zero. Using this in the above and
simplifying, we find

Eµ
[
(θ − θ0)2σn

]
= −

∫
Sn

(θ − θ0)〈∇GSnµ ,∇θ〉 d(area).

Now the fact that |θ − θ0| ≤ δ on Sn plus the Cauchy-Schwarz inequality imply that

Eµ
[
(θ − θ0)2σn

]
≤ δ

√∫
Sn

|∇θ|2 d(area)

√∫
Sn

∣∣∣∇GSnµ ∣∣∣2 d(area).
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The L2-norm of ∇GSnµ is less than
√

2 by Lemma 2.2. Further, since Sn ⊂ S, we have∫
Sn

|∇θ|2 d(area) ≤
∫
S
|∇θ|2 d(area) =

∫ θ0+β

θ0−β

∫ ∞
α

1

J2(r, θ)
d(area),

(where we have used the explicit description of S and |∇θ| in polar coordinates) and thus we see
that the L2-norm of ∇θ is less than

√
ε = δ2/(2

√
2), by hypothesis. Thus,

Eµ
[
(θ − θ0)2σn

]
≤ δ3

2
.

Note that the event {σα ∧ σβ < ∞} is given by the (not necessarily disjoint) union {σβ <
σα}∪ {σα <∞} (and this first event requires that σβ <∞). By the definition of σβ and our choice
of β, we see that

δ2 · Pµ(σβ < σα) ≤ Eµ
[
(θ − θ0)2σα∧σβ1{σα∧σβ<∞}

]
,

where the expectation is well defined because (θ − θ0)
2
σα∧σβ is well defined on {σα ∧ σβ < ∞}.

Moreover, (θ − θ0)2σn converges to (θ − θ0)2σα∧σβ almost surely on the event {σα ∧ σβ <∞}, so the
dominated convergence theorem combined with the above shows that

Pµ(σβ < σα) ≤ 1

δ2
· δ

3

2
=
δ

2
.

Along with (3.1) (recall that µ is supported on [r′, r′′]× θ0), this shows that
Pµ(σβ ∧ σα <∞) > 1− δ.

In the context of Theorem 2.3, note that the event {‖θt − θ0‖ < δ for all t ∈ [0, ζ)} contains the
event {σβ ∧ σα < ∞}. This means that we have established that the hypothesis of Theorem 2.3
holds, except that our process starts from µ rather than from some (r0, θ0) with r0 > R.

However, the µ-probability of any event is the µ-average of the probability when the process is
started from any (r0, θ0) in the support of µ. And since r′ > R, it follows that there is a point
(r0, θ0) in the support of µ satisfying the hypothesis of Theorem 2.3, and thus the DPI on M is
solvable.

�

3.2. Flats. While our primary interest is in radial curvature bounds, for which
∫∞
α J(r, θ0) dr can

be made arbitrarily small by making α large, uniformly in θ0, we note that Theorem 1.1 naturally
accommodates “flats.” A flat is a subset ofM which is isometric to a strip [−a, a]×R ⊂ R2 for some
a > 0 (with the flat metric). Indeed, if p is in the interior of such a flat, there will be a geodesic
through p, which, without loss of generality, we take to be given by the union of the rays {θ = π/2}
and {θ = 3π/2}, such that J(r, π/2) = J(r, 3π/2) = r. Then∫ ∞

α

1

J(r, π2 )
dr =

∫ ∞
α

1

J(r, 3π2 )
dr =∞

for any α > 0, so (in contrast to the proof of Theorem 3.1 below) we won’t be able to bound the
inner integral (the one with respect to dr) in Equation (1.1) uniformly in θ. Nonetheless, every
ray for θ 6∈ {π/2, 3π/2} exits this flat after a finite distance (and never returns), and thus if the
curvature off of the flat is sufficiently negative, we could have that∫ π/2+β

π/2−β

(∫ ∞
α

1

J(r, θ)
dr

)
dθ <∞

(essentially because, viewing the inner integral as a function of θ, the singularity at π/2 is nonetheless
integrable), and similarly for a truncated sector around 3π/2. And this allows the possibility that
the hypothesis of Theorem 1.1 is satisfied in spite of the flat.
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3.3. Radial curvature bounds. We now turn our attention to radial curvature bounds. If (for some
pole p) K, or equivalently J , does not depend on θ, we say that the surface is radially symmetric
(with respect to p), and we write K and J as functions of r alone. We suppress the dependence on
p and denote such a manifold by M∗ with associated functions K∗(r) and J∗(r) (such a manifold is
determined up to isometry by K∗(r) anyway). Such radially symmetric manifolds serve as natural
comparison manifolds. In particular, suppose that for some M with some pole p, we have a radially
symmetric surface M∗ such that 0 ≥ K∗(r) ≥ K(r, θ) for all r ∈ [0,∞) and all θ ∈ S1. Then

r ≤ J∗(r) ≤ J(r, θ) for all r ∈ [0,∞) and θ ∈ S1

and

(∂rJ
∗/J∗)(r) ≤ (∂rJ/J)(r, θ) for all r ∈ [0,∞) and θ ∈ S1

by standard comparison theorems. Note that this last inequality is an inequality for the drift terms
in the SDE for the radial process, which is one way to show that transience ofM∗ implies transience
of M . Also, recall the classical result of Milnor (1977) that a radially symmetric Cartan-Hadamard
surface M∗ is transient if and only if∫ ∞

α

1

J∗(r)
dr <∞ for some (hence any) α > 0.

(Note this is just a radially symmetric version of Doyle’s later result.)
With this background, the desired radially curvature result is an immediate corollary of Theorem

1.1.

Theorem 3.1. Let M be a Cartan-Hadamard surface, and suppose for some p ∈ M , there is a
transient radially symmetric surface M∗ with

0 ≥ K∗(r) ≥ K(r, θ) for all r ∈ [0,∞) and θ ∈ S1

(this is what was meant by saying M satisfies a “transient upper curvature bound” in Theorem 1.2).
Then the DPI on M is solvable.

Proof : Using the comparison results just mentioned, plus Milnor’s characterization of transience,
we have that, for any θ ∈ S1,∫ ∞

α

1

J(r, θ)
dr <

∫ ∞
α

1

J∗(r)
dr <∞ for any α > 0.

This second integral can be made arbitrarily small by taking α large enough. Then, referring to
Theorem 1.1, we see that ∫ θ0+β

θ0−β

(∫ ∞
α

1

J(r, θ)
dr

)
dθ ≤ 2β

∫ ∞
α

1

J∗(r)
dr,

and, for any ε > 0, we can find ρ such that the integral on the right-hand side is less than ε/(2β)
whenever α > ρ, independent of θ0. Thus M satisfies the assumptions of Theorem 1.1, and the DPI
on M is solvable.

�

This is the best possible result in terms of radial curvature bounds, since any weaker radial
curvature bound would be one that does not imply transience, and transience is a necessary condition
for the DPI to be solvable (indeed, for there to exist any non-constant positive harmonic functions
at all).
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3.4. Radial comparison. Theorem 3.1 (plus Milnor’s criterion for transience) allows one to consider
any potential radial curvature bound just in terms of ODEs (see Section 2 of Neel, 2014b for several
related examples of comparison geometry, including more detail on the computations that follow).
For example, we can recover the result of Neel (2014a), that the DPI is solvable on a Cartan-
Hadamard surface M satisfying the radial curvature bound

K(r, θ) ≤ − 1 + ε

r2 log(r)
for r > R (3.2)

for some ε > 0 and some R > 1.
To do so, note that if M satisfies such a bound, then we can consider a (Cartan-Hadamard)

radially symmetric comparison manifold M∗ such that

K∗(r) = −
1 + ε

2

r2 log r

(
1 +

ε

log r

)
for r ≥ A,

for some A > R. The point is that for such K∗, we can solve the Jacobi equation more or less
explicitly. In particular, we find (by first finding one solution J1 and then using reduction of order
to find the other independent solution) that a basis for the solution to the Jacobi equation for K∗
on the interval r ∈ [A,∞) is given by

J1(r) = r(log r)1+
ε
2 and J2(r) = J1(r)

∫ r 1

s2(log s)2+ε
ds.

The exact linear combination that gives J∗(r) on r ∈ [A,∞) depends on the initial conditions at
R = A, which in turn depend on K∗ and thus K for r ∈ [0, A], and which is not given. Still, we
know that J∗(r) ≥ r for all r > 0 by comparison with (flat) R2, and because

∫ r
1/(s2(log s)2+2ε) ds

is increasing and bounded, we see that there is some constant c > 0 such that J∗(r) ∼ cJ1(r) as
r →∞, where “∼” means that the ratio of the two sides approaches 1. Since 1/J1 can be explicitly
integrated, we see from Milnor’s criterion that M∗ is transient, and thus the DPI on M is solvable,
as desired.

While the curvature bound of Inequality (3.2) is known to be sharp for bounds of the form
c

r2 log(r)
(where c is some positive constant), Theorem 3.1 opens up the possibility of considering

more baroque functional forms (iterated logarithms, for example), by following a similar ODE-based
analysis of a comparison manifold.

4. DPI and the Martin boundary

We have already noted that, for a Cartan-Hadamard surface M , the geometric circle at infinity
S∞(M) can be given an explicit coordinate θ̂ ∈ [0, 2π), understood in the usual way for S1. Indeed,
for any p ∈ M , polar coordinates based at p determine such a coordinate uniquely up to rotation.
(This is assuming that we parametrize S∞(M) counter-clockwise, but since any Cartan-Hadamard
surface is orientable, there is no problem with assuming we have an orientation and choosing polar
coordinates in a compatible way.) For the rest of this section, we assume M is a transient Cartan-
Hadamard surface. We are interested in the Martin boundary ofM , and we take a moment to recall
the basic features of the subject.

Let B be the open unit ball in Rn (centered at the origin), and let ∂B be its boundary, the unit
sphere of dimension n− 1. Then for each y ∈ ∂B we have the Poisson kernel

Ky(x) =
1− |x|2

|y − x|n
for x ∈ B, (4.1)

where |x| is the Euclidean norm. For future reference, note that Ky(x) gives the exit density of
Brownian motion with respect to the uniform probability measure on the sphere. That is, Px(Bζ ∈
dy) = Ky(x)ν(dy) where, consistent with our general notation, Bt is a (Euclidean) Brownian motion



1680 Robert W. Neel

started from x and ζ is the first hitting time of ∂B, and ν(dy) is the n−1-dimensional surface measure
on ∂B, normalized to have total mass 1. (See Theorem 1.17 of Bass, 1995.)

More relevant to the Martin boundary, if h is any positive harmonic function on B, there is a
unique finite measure µ on ∂B such that

h(x) =

∫
∂B
Ky(x)µ(dy) for x ∈ B, (4.2)

and conversely, any finite measure µ on ∂B determines a positive harmonic function in this way.
Thus, there is a 1-1 correspondence between positive harmonic functions on B and finite measures
on ∂B. Moreover, we say that a positive harmonic function on B is minimal if h whenever h′ is
a positive harmonic function with h′ ≤ h, we have h′ = ch for some constant c. Then the Ky are
exactly the minimal positive harmonic functions on B, so that we can identify ∂B with the space of
minimal positive harmonic functions and represent every positive harmonic function on B uniquely
as an integral over ∂B as in (4.2). The Martin boundary was introduced in order to generalize this
structure to other spaces, by introducing an ideal boundary to play the role of ∂B. The idea is to
take limits of ratios of Green’s functions to compactify the space, which gives the Martin boundary.
(Indeed, for the ball, note that, for any fixed reference point x0 ∈ B, GBx (y)

GBx0 (y)
→ Ky0(x) as y → y0.)

Then the Martin boundary points corresponding to minimal positive harmonic functions form the
minimal Martin boundary (which or may not coincide with the Martin boundary), and one obtains
a representation theorem for positive harmonic functions analogous to the above. For the details,
Brelot (1971) Chapter 14 gives the definition of the Martin boundary and the basic theory thereof
in the generality of Green spaces (which include all hyperbolic Riemann surfaces; see Chapter 6
section 5); Section 4 of that chapter is then devoted to showing that in the case of the open unit
ball in Rn, these notions reduce to the the classical potential theory of the ball as just described.
(See Propositions 1.21 and 1.22 of Bass, 1995 for a probabilistic discussion of the theory for the
ball. See Section 2.3 of Schoen and Yau, 1994 for a treatment of the Martin boundary on some
Cartan-Hadamard manifolds.)

We don’t pursue the general theory of the Martin boundary further, because in the present
context of a transient Cartan-Hadamard surface M , it is unnecessary. In 2 dimensions, harmonic
functions are conformally invariant, and thus all of the potential theory discussed above (Green’s
functions, minimal positive harmonic functions, the Martin boundary, etc.) is preserved under
conformal diffeomorphisms (this is implicit in the fact that one can talk about potential theory
on a Riemann surface). Since M is transient and simply-connected, the uniformization theorem
implies that M is conformally equivalent to the open unit disk D (which is just the ball ball B
from above in the case n = 2). Concretely, for any p ∈ M , there is a conformal diffeomorphism
from M to D that takes p to the origin, and this map is unique up to rotation of D (see Section
5 for a construction of this map using the Green’s function). If ρ and ϕ are polar coordinates on
D, then they induce global coordinates on M , and the Martin boundary ∂M is identified with the
boundary circle {ρ = 1} = ∂D, which is exactly the classical situation just described (and the space
of positive harmonic functions on M is identified with the space of positive harmonic functions on
D, and so on). Thus, ϕ induces a coordinate on the Martin boundary, which we denote ϕ̂. So for
any p ∈ M , we have a coordinate θ̂ on S∞(M) and a coordinate ϕ̂ on ∂M ' S1, each uniquely
determined up to rotation. (Note that choosing a different pole p changes ϕ by a homeomorphism,
which is easily verified since the conformal automorphisms of the disk are well known. So all of our
considerations will be seen to be independent of the choice of pole, as they must be.)

In light of the above, it is natural to consider the geodesic ray γθ started from p with initial
direction θ (that is, γθ is the ray [0,∞) × θ in polar coordinates), for each θ ∈ S1. Moreover, we
identify γθ with its image in the unit disk under the above conformal diffeomorphism, and this is
the framework in which Figure 4.1 is to be understood. Note that the set of such γθ is canonically
identified with S∞(M).
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For an arbitrary transient Cartan-Hadamard surface, there is no reason that there should be
any particular relationship between the geometric and Martin boundaries. Presumably, one could
have a situation like Figure 4.1a in which an arc of geodesics accumulates at an arc of the Martin
boundary, and thus neither boundary maps into the other. However, the author is not aware
of a construction of such a metric. Indeed, it appears that the only “trivial” constructions of
(transient) Cartan-Hadamard surfaces where the geometric and Martin boundaries can be see not
to be naturally homeomorphic come from having flat regions and for which the geometric boundary
naturally surjects onto the Martin boundary. For example, let M be a Cartan-Hadamard surface
such that, in polar coordinates, the metric satisfies K(r, θ) = 0 on U = {(r, θ) : r ≥ 1, π/3 ≤
θ ≤ 2π/3}, K(r, θ) = −1 on V = {(r, θ) : r ≥ 1, 4π/3 ≤ θ ≤ 5π/3} (so that U is isometric
to a truncated sector of Euclidean space and V is isometric to a truncated sector of hyperbolic
space), and K(r, θ) = k(θ) for r ≥ 1 and θ ∈ (2π/3, 4π/3) where k smoothly and monotonically
interpolates between 0 and −1 and similarly for θ ∈ (−π/3, π/3). Then M is transient, which
follows from the fact that Brownian motion in V has a positive probability of going to infinity
without leaving V , and indeed, θ̂ ∈ (4π/3, 5π/3) will give an arc in the Martin boundary. However,
Brownian motion started in U almost surely cannot go to infinity without leaving U , so the arc
θ̂ ∈ (π/3, 2π/3) collapses to a single point in the Martin boundary, as illustrated in Figure 4.1b.
(This also underscores the point that Theorem 3.1 does not say that the DPI is solvable on any
transient Cartan-Hadamard surface.) In this case, the map that sends θ̂ to ϕ̂ by sending γθ̂ to its
limit point in ∂D gives the surjection of S∞(M) onto ∂M .

However, as stated in Theorem 1.3, if the DPI is solvable on a Cartan-Hadamard surface, then
there is a surjection of the Martin boundary onto the sphere at infinity, which we now prove.

Proof of Theorem 1.3: It’s clear thatM must be transient, so consider the Martin compactification,
explicitly realized as the closed unit disk under uniformization, as above, with angular coordinate
ϕ. The central point is that for each point of the Martin boundary, meaning for each ϕ̂ ∈ ∂D, there
is a unique θ such that the geodesic ray γθ accumulates at ϕ̂. To see this, note that, if not, we can
find ϕ0, θ0, and δ > 0 such that every ray γθ in the arc (θ0 − δ, θ0 + δ) has ϕ0 as an accumulation
point. But Brownian motion on M is given by a (non-degenerate) time-change of Brownian motion
on D (under the conformal diffeomorphism relating the two, see Section 5.1 of Bass (1995)), and
Brownian motion on D, from any point, has a hitting measure on ∂D that is absolutely continuous
with respect to Lebesgue measure on S1 (explicitly, it is given by Equation (4.1) with n = 2 with a
normalization factor of 2π). Since both γθ and the paths of Brownian motion are continuous curves,
it follows that, for any r0 > 0,

P(r0,θ0)

(
lim sup
t→ζ

∣∣θt − θ0∣∣ ≥ δ) = 1.

But this contradicts Theorem 2.1 (indeed, this is the only part of the paper where we directly use
Theorem 2.1). So we conclude that for each ϕ̂ ∈ ∂D, there is a unique θ such that the geodesic
ray γθ accumulates at ϕ̂. Then let F : ∂M → S∞(M) be the map given in coordinates by taking
ϕ̂ ∈ ∂M to the unique θ̂ such that γθ̂ accumulates at ϕ̂.

By compactness, every ray γθ has at least one accumulation point on ∂D, and thus F must be
surjective. Suppose that F is not injective. Then if F (ϕ̂0) = F (ϕ̂1) for ϕ̂0 6= ϕ̂1, because the rays
γθ cannot cross outside of the origin, F must be constant on one of the two arcs between ϕ̂0 and
ϕ̂1. It follows that there are at most countable many such arcs (on which F is constant), and so,
after rotation in θ̂, we can assume that F (0) = 0 and that 0 is the unique pre-image of 0.

Hence we can write F in coordinates as a function from ϕ̂ ∈ [0, 2π] to θ̂ ∈ [0, 2π] such that
F (0) = 0 and F (2π) = 2π. Moreover, because the rays γθ cannot cross outside of the origin, F is
monotone non-decreasing. Then because F is a surjection, it is necessarily continuous, and F is a
homeomorphism if and only if F is injective, which is equivalent to F being strictly increasing. And
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(a) An arc’s worth of geodesics accumulate
at an arc of the Martin boundary.

(b) An arc’s worth of geodesics that all
converge to the same point of the Martin
boundary.

(c) A single geodesic accumulates at an arc
of the Marin boundary, and it is the only ge-
odesic accumulating anywhere on this arc.

Figure 4.1. Three (potentially) possible ways in which the geometric boundary at
infinity and the Martin boundary can fail to be naturally homeomorphic. If the the
DPI is solvable, only 4.1c is possible.

F only fails to be strictly increasing if there is a non-trivial interval on which it is constant, but in
light of the above, this is exactly the case when there is a geodesic ray that accumulates at more than
one point of ∂D (which we identify with ∂M), in which case it must accumulate at an entire arc.
And if a geodesic ray accumulates at a non-trivial arc, it must be the only geodesic that accumulates
at any point of that arc (see Figure 4.1c). Finally, since the hitting measure of Brownian motion
from any point in (the interior of) D has a smooth density, bounded from below, on ∂D (again, the
hitting density is explicitly given by Equation (4.1) with n = 2 with a normalization factor of 2π),
we see that when this hitting measure is pushed to S∞(M) by F , there is an atom if and only if the
corresponding geodesic accumulates at a (non-trivial) arc.
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�

To complete the discussion of the possible relationships between the geometric boundary at infin-
ity and the Martin boundary, note that the case when S∞(M) and ∂M are naturally homeomorphic
is most clearly illustrated by the hyperbolic plane. Indeed, in this case, the conformal diffeomor-
phism of M onto D just gives the Poincaré disk model of hyperbolic geometry and the rays γθ are
exactly the Euclidean rays from the origin, so that the homeomorphism from S∞(M) to ∂M is just
the identity map on S1, after possible rotation (and it seems unnecessary to draw the corresponding
picture). More generally, when S∞(M) and ∂M are naturally homeomorphic, the homeomorphism
is given by the map F above that takes θ̂ to the unique ϕ̂ such that γθ̂ accumulates at ϕ̂.

5. Identification of the Martin boundary with S∞(M)

Again assumeM is a transient Cartan-Hadamard surface, and let Gp(r, θ) be the Green’s function
associated to a point mass at p, that is, the occupation density of Brownian motion started from
p, where p is the pole for our polar coordinates. As already mention, there is a conformal map
from M to the unit disk D taking p to the origin. Moreover, this map is closely related to Gp.
Indeed, one of the standard proofs of the hyperbolic case of uniformization uses this connection, as
we now sketch. Given that M admits a (positive, finite) Green’s function Gp, which is the case for
any transient Cartan-Hadamard surface (see Theorem 5.1 of Grigor’yan, 1999), the remainder of
the argument is more or less an exercise in complex analysis, as done, for example, in Section 10.4
of Ahlfors (1973), and the results of which we now summarize. We have that Gp is harmonic on
M \ {p} and admits a harmonic conjugate Fp which is defined modulo 2 and up to an additive
constant c ∈ R. Then for any choice of c, the function g = e−π(Gp+iFp) is a well-defined (that is,
single-valued) conformal bijection from M to D, which establishes the uniformization theorem in
this case. (One can compare this construction to the explicit Green’s function on the disk to see the
motivation.) Moreover, g maps p to the origin and we have specified g up to the additive constant c,
which corresponds to specifying it up to a rotation of the disk (and thus choosing p and c accounts
for the conformal automorphisms of the disk).

Given this, we see that the conformal factor relating the metric on M to the Euclidean metric
on D is π‖∇Gp‖|g|. As above, let γθ0 be the image in D of the geodesic ray from p corresponding
to {θ = θ0} in polar coordinates. Then the Euclidean length of γθ0 in D is given by integrating this
conformal factor along the geodesic ray. In particular, since γθ is a proper curve (so that the length
of the portion in any neighborhood of the origin is finite) and the conformal factor is comparable to
‖∇Gp‖ outside of any neighborhood of the origin, γθ0 will have finite Euclidean length if and only
if ∫ ∞

‖∇Gp(r, θ0)‖ dr <∞.

Further, in light of Section 4, we see that γθ0 having finite Euclidean length implies that the
hitting measure on S∞(M) cannot charge θ0. Thus, to prove that ∂M and S∞(M) are naturally
homeomorphic (assuming that the DPI is solvable on M), it is sufficient to show that γθ0 has finite
Euclidean length for every θ0, and thus it is sufficient to show that ‖∇Gp(r, θ0)‖ is integrable near
r =∞ for every (fixed) θ0.

This will be our approach to proving Theorem 1.4. To carry this out, we will make use of the
Cheng-Yau inequality (which goes back to Cheng and Yau, 1975, and we also refer to Arnaudon
et al., 2007 for a version proven by stochastic methods and also providing an explicit value for the
dimensional constant, though we won’t use that explicit value). The Cheng-Yau inequality compares
the gradient of a positive harmonic function to the value of the function at every point of a relatively
compact domain. For any r0 > 3, we consider the annulus Ar0 = {r0− 1 < r < r0 + 1, θ ∈ S1}, and
then we let k(r0) = supAr0

√
−K(r, θ). Then since Gp is positive and harmonic away from p, for
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any r > 3, the Cheng-Yau inequality implies the estimate

‖∇Gp(r, θ)‖ ≤ c(k(r) + 1)Gp(r, θ), (5.1)

where c is a dimensional constant.
Thus, given a radial lower curvature bound, we will be able to estimate ‖∇Gp‖ in terms of Gp.

Then to estimate Gp, we will use a radial upper curvature bound in the following way. First,
because Gp is a positive, bounded harmonic function on {r > 2} that goes to 0 as r → ∞, Gp on
{r > 2} is determined by its boundary values on {r = 2}, and these boundary values are continuous
and bounded above and below by some positive constants. More precisely, Gp(r0, θ0) for r > 2 is
given as the integral of these boundary values with respect to the hitting measure on {r = 2} of
Brownian motion started at (r0, θ0), where this hitting measure will have total mass strictly less
than 1 by the transience of M (if we think about the unit disk under uniformization, we’re just
solving the Dirichlet problem on a topological annulus where the outer boundary has 0 boundary
value). Now if M∗ is a (transient) radially symmetric upper comparison manifold as in Section 3.3
with Green’s function at its pole written as G∗(r), we have an analogous representation of G∗(r) as
the mass of the hitting measure from r times G∗(2) (taking advantage of the radial symmetry to
reduce everything to 1 dimension). Radial comparison implies that the probability that Brownian
motion onM from (r0, θ0) hits {r = 2} is less than or equal to the probability that Brownian motion
on M∗ from (r0, ·) hits {r = 2}. Putting this together, we see that, for any r0 > 2 and any θ0,
Gp(r0, θ0) is less or equal to a constant times G∗(r0), where this constant depends only on the ratio
of maxθGp(2, θ) and G∗(2), and thus not on r0 or θ0. Further, on a radially symmetric manifold,
G∗(r) can be readily expressed in terms of J∗(r). Namely, one checks that, up to a normalizing
constant depending only on dimension, G∗(r) is given by

∫∞
r

1
J∗(s) ds. (Note that in 2 dimensions,

the finiteness of this integral is exactly the well-known condition for M∗ to be transient.) Thus,
using standard comparison geometry as in Section 3.4, upper curvature bounds will translate into
upper bounds on Gp for large enough r.

Proof of Theorem 1.4: First note that, in both cases, the DPI on M is solvable by Theorem 3.1
(in particular, M is transient, and also Theorem 1.3 applies). Referring to the discussion above,
for the first set of conditions, we have that k is constant in the Inequality (5.1), so |∇Gp| will be
bounded by a constant times Gp for large r, and thus it is sufficient to find a comparison manifold
such that G∗(r) is integrable near infinity. The argument is analogous to that of Section 3.4. In
particular, let δ > 0 be such that 2 + ε = (2 + δ)(1 + δ). Then we can find a (radially symmetric
Cartan-Hadamard) comparison manifold M∗ such that

K∗(r) = −(2 + δ)(1 + δ)

r2
for r > R,

so that
J1(r) = r2+δ and J2(r) = J1(r)

∫ r 1

s4+2δ
ds

are a basis for the solution space of the Jacobi equation on r ∈ (R,∞). Then there is some c > 0
such that

J∗(r) ∼ cr2+δ as r →∞.
From here, it’s straightforward to see that∫ ∞(∫ ∞

r

1

J∗(ρ)
dρ

)
dr <∞,

which is equivalent to showing that G∗(r) is integrable near infinity.
For the second set of conditions, again referring to the discussion above, we have k(r) =

√
ceλ(r+1)

in Inequality (5.1). Thus, after adjusting c, we have that |∇Gp| ≤ ceλr/2G∗(r) for all sufficiently
large r, independent of θ. On the other hand, the upper curvature bound K ≤ −1 means that we
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can take the hyperbolic plane as our comparison manifold. Here the Green’s function is well known,
but for our purposes, we note that, up to a constant, it is given by∫ ∞

r

1

sinh ρ
dρ = − log(tanh(r/2)).

Thus it’s enough to show that ∫ ∞
−eλr/2 log(tanh(r/2)) dr <∞.

But, restricting our attention to positive λ, we see that this is true exactly when λ < 2, say, by
using that log(tanhx) ∼ −2/(1 + e2x) for large x. �

Presumably other matched pairs of upper and lower curvature bounds can be produced by the
same approach, again as in Hsu’s work.

Of course, in the above, we are not necessarily giving sharp results. In particular, it is not
necessary for γθ0 to have finite Euclidean length in order for it to converge at the boundary of the
disk. One just needs that the oscillations in ϕ cancel sufficiently for ϕ to converge along γθ0 . So
one might hope that better curvature bounds are possible. Moreover, in light of the results for the
DPI, one might naturally wonder if lower curvature bounds are necessary for the identification of
the geometric boundary at infinity with the Martin boundary. While we don’t resolve that here,
it’s not clear that it is a reasonable hope. As Section 4 illustrates, the natural inclusion of the
geometric boundary at infinity into the Martin boundary and the natural inclusion of the Martin
boundary into the geometric boundary at infinity are in some sense “opposite phenomenon.” In one
case, one wants to prevent more than one geodesic from accumulating at a given point of the Martin
boundary, and in the other one wants to prevent a geodesic from accumulating at multiple Martin
boundary points.

Finally, we note that one can give a more stochastic argument for the results of Theorem 1.4
that, in the end, amounts to the same thing. Namely, for any given θ0, let fλ(θ) be the continuous
function on S1 that is 0 on the complement of (θ0−λ, θ0+λ), 1 when θ = θ0, and linear on [θ0−λ, θ0]
and also on [θ0, θ0 + λ], for any λ ∈ (0, 1] (that is, fλ is a triangle function that gets narrower as λ
decreases). Then we can view fλ as a function on (M ∪ S∞(M)) \ {p} in the natural way using the
polar coordinates. Letting µ be a conveniently chosen initial probability measure with a smooth,
compactly supported density, we see that limλ↘0 Eµ[fλ(Bζ)] gives the mass at θ0 ∈ S∞(M) of the
hitting measure corresponding to µ, and so we want conditions under which this limit is 0. Starting
from the SDE satisfied by fλ and using the Gµ as the occupation density of Brownian motion,
integration by parts, and standard approximations and exhaustions, similar to the what was done
in Section 3.1, we see that we want to show that, for large R,

1

λ

∫ ∞
R

[ ∫ 0

−λ

1

J

∂Gµ
∂θ

dθ −
∫ λ

0

1

J

∂Gµ
∂θ

dθ

]
dr

goes to 0 with λ (assuming we can also justify exchanging limits with integration). Then the
estimates on ‖∇Gp‖ just given can also be used to show that this limit is 0 under the given
curvature conditions, and they also justify the various limits. (Note that (1/J)∂G/∂θ is the θ-
component of ∇G.) The previous argument in terms of the Euclidean length of γθ0 seems technically
simpler and more intuitive, which is why we prefer it. It is also the case that we see the same
possibilities for improvement, namely, it would be enough to control the θ-component of the gradient,
which corresponds to controlling the ϕ oscillation along γθ0 , and one could take advantage of the
cancellation of these two dθ integrals, which corresponds to allowing γθ0 to have infinite oscillation
in ϕ but nonetheless having it converge.
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