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Abstract. Our aim in this article is to provide explicit computable estimates for the cumulative
distribution function (c.d.f.) and the p-th order moment of the exponential functional of a fractional
Brownian motion (fBM) with drift. Using elementary techniques, we prove general upper bounds
for the c.d.f. of exponential functionals of continuous Gaussian processes. On the other hand,
by applying classical results for extremes of Gaussian processes, we derive general lower bounds.
We also find estimates for the p-th order moment and the moment-generating function of such
functionals. As a consequence, we obtain explicit lower and upper bounds for the c.d.f. and the
p-th order moment of the exponential functionals of a fBM, and of a series of independent fBMs.
In addition, we show the continuity in law of the exponential functional of a fBM with respect to
the Hurst parameter.

1. Introduction and background

Let H ∈ (0, 1]. A fractional Brownian motion (fBM for short) with Hurst parameter H is a
centered continuous Gaussian process BH := {BH

t : t ≥ 0} with covariance function

E
[
BH

s BH
t

]
=

1

2

(
s2H + t2H − |s− t|2H

)
, s, t ≥ 0.

The process BH is self-similar with index H. Additionally, BH has stationary increments and locally
Hölder continuous sample paths with an arbitrary exponent smaller than H. For H ∈ (0, 1/2) the
increments of BH are negatively correlated and exhibit short-range dependence, whereas for H ∈
(1/2, 1) they are positively correlated and exhibit long-range dependence. On the other hand, BH

is neither a semimartingale nor a Markov process if H ∈ (0, 1/2)∪(1/2, 1). For H = 1/2 the process
BH coincides with the standard Brownian motion, and for H = 1 we have BH d

= {tN : t ≥ 0},
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where N is a standard normal random variable. For a detailed exposition of fBM, we refer the
reader to Mishura (2008), Nourdin (2012) and the references therein.

In this paper, by an exponential functional of BH we mean a random variable of the form

Iµ,σ,HT :=

∫ T

0
eµt+σBH

t dt,

where µ ∈ R, σ > 0 and T ∈ (0,∞] are constants. In the special case H = 1/2, the functional Iµ,σ,HT
is called Dufresne’s functional, and plays an important role in several domains, e.g. continuous time
finance models (Yor, 2001) and one-dimensional disordered models (Comtet et al., 1998). The law
of Dufresne’s functional has been studied in the literature using different approaches. Pintoux and
Privault (2010) proved an integral representation of the density function of Iµ,σ,1/2T for T < ∞ by
means of a Fokker–Planck equation for the density. In Yor (2001), the law of Iµ,σ,1/2T was studied
replacing T by an exponentially distributed random variable independent of B1/2, and an explicit
expression was obtained for the conditional density function of Iµ,σ,1/2T given B

1/2
T = x for T < ∞.

In the case where T = ∞, the functional Iµ,σ,1/2T is infinite a.s. if µ ≥ 0. On the other hand, if

µ < 0, then I
µ,σ,1/2
∞

d
= 1/Y , where Y has Gamma distribution with shape parameter −2µ/σ2 and

rate parameter 2/σ2. Equivalently, the cumulative distribution function (c.d.f.) of Iµ,σ,1/2∞ is given
by

P
[
Iµ,σ,1/2∞ ≤ x

]
=

∫ x

0

1

Γ
(
−2µ

σ2

)
y

(
2

σ2y

)− 2µ

σ2

exp

(
− 2

σ2y

)
dy, x > 0, µ < 0. (1.1)

This formula was demonstrated originally by Dufresne (1990) using weak convergence methods, and
it was recovered in Yor (2001) by applying Lamperti’s transformation. In Salminen and Yor (2005)
some integral functionals of B1/2, including Dufresne’s functional, were characterized as hitting
times of a point for some diffusions. The research on exponential functionals of Brownian motion
has been extended to other stochastic processes. In particular, the exponential functionals of Lévy
processes have been investigated by several authors (see e.g. Bertoin and Yor (2005) and Vostrikova
(2020)). However, few results are known for the exponential functional of fBM.

To the best of our knowledge, the c.d.f. of Iµ,σ,HT is unknown, and only a few estimates are
available in the literature. Based on techniques from Malliavin calculus, Dung (2018) obtained
explicit upper bounds for the tail probabilities of a general class of exponential functionals that
includes exponential functionals of fBM when T < ∞. In Dung (2019b), an upper bound for the
c.d.f. of Iµ,σ,H∞ was proved for any µ < 0, σ > 0 and H ∈ (0, 1). In a recent paper, Dung et al.
(2022) established a log-normal upper bound for the density function of Iµ,σ,HT for any µ ∈ R, σ > 0,
T < ∞ and H ∈ (1/2, 1).

In this paper we estimate from above and from below the c.d.f. of the exponential functional of
fBM. In order to show the kind of estimates we obtain, let us designate by Φ the c.d.f. of the standard
normal distribution. We first consider a general continuous Gaussian process X ≡ {Xt : t ≥ 0},
and the family of density functions f on [0, T ) for which∫ T

0

(
(log f(t))2 + E[X2

t ]
)
f(t) dt < ∞.

We show that

JX
T (f) :=

∫ T

0
(− log f(t) +Xt)f(t) dt
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is a Gaussian random variable such that eJ
X
T (f) ≤

∫ T
0 eXt dt a.s., hence P

[ ∫ T
0 eXt dt ≤ x

]
≤

P
[
eJ

X
T (f) ≤ x

]
. This allows us to get estimates of the form

P

[∫ T

0
eXt dt ≤ x

]
≤ Φ

(
log x−mX

T (f)

sXT (f)

)
,

where mX
T (f) and sXT (f) are defined in Section 2. By taking the infimum over all such densities f ,

we deduce a sharper estimate (Proposition 2.3).
To deal with the fBM functional

∫ T
0 eµt+σBH

t dt when T < ∞, we have to work with a more
restrictive set of density functions fλ,T given by (3.1) below. We show that

P

[∫ T

0
eµt+σBH

t dt ≤ x

]
≤ Φ

(√
2H + 2

σTH

(
log(x)− log(T )− µT

2

))
, (1.2)

and for the case T = ∞,

P

[∫ ∞

0
eµt+σBH

t dt ≤ x

]
≤ Φ

(
inf

λ∈(0,∞)

λH

σ

√
2

Γ(2H + 1)

(
log(x) + log(λ)− 1− µ

λ

))
, (1.3)

for any µ ∈ R, σ > 0, H ∈ (0, 1] and x > 0. An explicit expression for the infimum in (1.3) is given
in Theorem 3.9, which coincides with the exact c.d.f. of Iµ,σ,H∞ in the case H = 1.

The log-normal estimate (1.2) is consistent with the upper bound proved in Dung et al. (2022).
In contrast to the estimates obtained in Dung (2019b) and Dung et al. (2022), our bounds (1.2) and
(1.3) are valid for any µ ∈ R and H ∈ (0, 1], and do not depend on unknown constant parameters.
Also, they are obtained by elementary arguments. We believe that this approach will be useful for
potential practitioners.

As a companion to estimate (1.2), we prove limit theorems of the form

lim
n→∞

Φ

(√
2H + 2

σnTH
n

(
log(x)− log(Tn)−

µnTn

2

))
− P

[∫ Tn

0
eµnt+σnBH

t dt ≤ x

]
= 0,

valid for all x > 0 under suitable conditions on the sequences of parameters {µn}, {σn} and {Tn}.
In the case T < ∞ we also prove that

lim
(µn,σn,Hn)→(µ,σ,H)

sup
x∈R

∣∣∣P [Iµn,σn,Hn

T ≤ x
]
− P

[
Iµ,σ,HT ≤ x

]∣∣∣ = 0.

Additionally, we derive from (1.2) and (1.3) estimates for the moment-generating function of Iµ,σ,HT
(see Corollary 3.8 and Corollary 3.17). Finiteness and lower bounds for the p-th order moments of
fBM exponential functionals are also explored (Corollary 3.6 and Corollary 3.15).

Lower bounds for the c.d.f. of
∫ T
0 eXt dt are obtained by using the inequality

P

[∫ T

0
eXt dt ≤ x

]
≥ P

[
sup

t∈[0,T )
(Xt − E[Xt]− f(t)) ≤ log

(
x∫ T

0 eE[Xt]+f(t) dt

)]
, x > 0,

for a suitable continuous function f that satisfies
∫ T
0 eE[Xt]+f(t) dt < ∞. By applying standard

results for extremes of Gaussian processes, we are able to prove lower bounds for P
[ ∫ T

0 eµt+σBH
t dt ≤

x
]

for any µ ̸= 0 and x large enough. In particular, for µ ̸= 0, H ∈ [1/2, 1] and T < ∞, we get

P

[∫ T

0
eµt+σBH

t dt > x

]
≤ 2Φ

(
1

σTH
log

(
eµT − 1

µx

))
, x >

eµT − 1

µ
.

This estimate improves the bound given in Dung (2018) (see Remark 3.5), showing that our approach
allows to obtain similar or better estimates than those obtained previously by using Malliavin
calculus.
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In the final part of the paper, we investigate the exponential functional of the process Z ≡ {Zt :
t ≥ 0} defined by

Zt =
∞∑
n=1

σnB
Hn
n (t), with

∑∞
n=1 σ

2
n ∈ (0,∞),

where {BHn
n } is a sequence of independent fBMs such that the Hurst parameters satisfy Hn ∈ (0, 1]

and H0 := infn≥1Hn > 0. The process Z is a centered continuous Gaussian process with stationary
increments, and it has locally Hölder continuous trajectories with an arbitrary exponent smaller
than H0. It is a natural generalization of the mixed fractional Brownian motion (mfBM), which
was introduced by Cheridito (2001) to model the discounted stock price in some arbitrage-free and
complete financial markets. We refer the interested reader to Mishura and Zili (2018), and the
references therein, for definitions and main properties of the mfBM.

As far as we know, the exponential functionals of Z have not been investigated in the literature.
By using the estimates (1.2) and (1.3), we get upper bounds for the c.d.f. of the exponential func-
tionals of Z, which now involve H0 and H∞ := supn≥1Hn. In addition, we investigate the finiteness
of such functionals. We prove that

∫∞
0 eµt+Zt dt is infinite a.s. if µ > 0. On the other hand, if µ < 0,

we show that
∫∞
0 eµt+Zt dt is finite a.s. provided H∞ < (1 + H0)/2. We estimate the p-th order

moments of these functionals as well.
Another of our motivations to investigate the fBM exponential functionals is to obtain a lower

bound for the blowup probability of positive solutions of stochastic partial differential equations
(SPDEs) of the prototype

du(t, x) =
(
∆u(t, x) + γu(t, x) + C(u(t, x))1+β

)
dt+ κu(t, x) dBH

t , with H ∈ [1/2, 1). (1.4)

This application of the fBM exponential functionals is described in detail and extended in a separated
paper, where we study a semilinear SPDE of the form (1.4) but replacing BH by a centered Gaussian
process Z̃ with Hölder continuous sample paths with exponent greater than 1/3. The bounds
obtained in this article for the exponential functional of Z are then applied to estimate from below
the blowup probability of positive solutions of such SPDE in the case where Z̃ ≡ Z and H0 > 1/3.
We refer the reader to Dozzi et al. (2014), who initially investigated (1.4), and the related papers
Dozzi and López-Mimbela (2010), Dozzi et al. (2020) and Guerrero and López-Mimbela (2017), for
applications of exponential functionals to semilinear SPDEs.

This article is organized as follows. In Section 2, we prove a general log-normal type upper bound
and a lower bound for the c.d.f. of the exponential functionals of continuous Gaussian processes.
We also prove bounds for the moments and the moment-generating function of such functionals.
These estimates are used in Section 3 to derive explicit upper and lower bounds for the c.d.f. and
the moments of the exponential functional of fBM. In addition, we show the continuity in law of
Iµ,σ,HT with respect to parameters µ, σ,H. In Section 4, we consider the exponential functional of a
series of independent fBMs and obtain upper and lower bounds for its c.d.f. and moments. Finally,
in Section 5 we present some plots of our estimates for the c.d.f. of Iµ,σ,HT and discuss our results.

2. Exponential functionals of continuous Gaussian processes

In this section, we establish general upper and lower bounds for the c.d.f. of the exponential
functional of a continuous Gaussian process. We derive estimates for its p-th order moment and
moment-generating function as well.

Let T ∈ (0,∞], and let X := {Xt : t ≥ 0} be a continuous Gaussian process defined on a proba-
bility space (Ω,F , P ). We introduce the random variable

IXT :=

∫ T

0
eXt dt
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and call it the exponential functional of X on [0, T ).

2.1. Upper bounds. We denote by MT the set of all continuous functions f : [0, T ) → (0,∞) such
that

∫ T
0 f(t) dt = 1, and define

MX
T :=

{
f ∈ MT :

∫ T

0

(
(log(f(t)))2 + E[X2

t ]
)
f(t) dt < ∞

}
.

For each f ∈ MX
T , we set

mX
T (f) :=

∫ T

0
(− log(f(t)) + E[Xt])f(t) dt,

sXT (f) :=

(∫ T

0

∫ T

0
Cov(Xs, Xt)f(s)f(t) ds dt

) 1
2

,

and define the random variable

JX
T (f) :=

∫ T

0
(− log(f(t)) +Xt)f(t) dt.

Lemma 2.1. Let f ∈ MX
T . The random variable JX

T (f) has normal distribution with mean mX
T (f)

and variance (sXT (f))2, and it satisfies

eJ
X
T (f) ≤ IXT P -a.s. (2.1)

Proof : Let f ∈ MX
T . From Jensen’s inequality it follows that

E

[(∫ T

0
| − log(f(t)) +Xt|f(t) dt

)2
]
≤ E

[∫ T

0
(− log(f(t)) +Xt)

2f(t) dt

]
≤ 2

∫ T

0

(
(log(f(t)))2 + E[X2

t ]
)
f(t) dt

< ∞.

Therefore, JX
T (f) is P -a.s. well-defined. Moreover, since X is a Gaussian process, we deduce that

JX
T (f) has normal distribution with mean

E
[
JX
T (f)

]
=

∫ T

0
(− log(f(t)) + E[Xt])f(t) dt = mX

T (f),

and variance

E
[(

JX
T (f)−mX

T (f)
)2]

= E

[(∫ T

0
(Xt − E[Xt])f(t) dt

)2
]

=

∫ T

0

∫ T

0
Cov(Xs, Xt)f(s)f(t) ds dt

=
(
sXT (f)

)2
.

Using again Jensen’s inequality, we get

IXT =

∫ T

0
e− log(f(t))+Xtf(t) dt ≥ exp

(∫ T

0
(− log(f(t)) +Xt)f(t) dt

)
= eJ

X
T (f).

This completes the proof. □

Let us denote the c.d.f. of the standard normal distribution by Φ. We have the following upper
bounds for the c.d.f. of IXT .
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Lemma 2.2. Let x > 0 and f ∈ MX
T . It holds that

P
[
IXT ≤ x

]
≤ P

[
eJ

X
T (f) ≤ x

]
. (2.2)

If sXT (f) > 0, then

P
[
IXT ≤ x

]
≤ Φ

(
log(x)−mX

T (f)

sXT (f)

)
. (2.3)

On the other hand, if sXT (f) = 0, then P
[
IXT ≤ x

]
= 0 for all x < em

X
T (f).

Proof : The inequality (2.2) follows from (2.1). If sXT (f) > 0, then

P
[
eJ

X
T (f) ≤ x

]
= P

[
JX
T (f) ≤ log(x)

]
= Φ

(
log(x)−mX

T (f)

sXT (f)

)
.

On the other hand, if sXT (f) = 0, we have P
[
eJ

X
T (f) ≤ x

]
= 1

{em
X
T

(f)≤x}
. □

The estimate (2.2) means that the c.d.f. of the exponential functional IXT is upper bounded by
the c.d.f. of the log-normal random variable eJ

X
T (f) for each f ∈ MX

T . This implies the following
improved upper bound.

Proposition 2.3. Let x > 0. It holds that

P
[
IXT ≤ x

]
≤ Φ

 inf
f∈MX

T :

sXT (f)>0

log (x)−mX
T (f)

sXT (f)

 . (2.4)

Proof : Taking the infimum over all f ∈ MX
T such that sXT (f) > 0 in (2.3), and using the continuity

and monotonicity of Φ, we obtain the desired inequality. □

Remark 2.4. Notice that to obtain non-trivial upper bounds for the c.d.f. of IXT , we need MX
T ̸= ∅.

In the case T < ∞, we observe that MX
T contains all bounded functions in MT . In particular,

the constant function f ≡ 1
T belongs to MX

T . On the other side, in the case T = ∞, the set MX
T

depends strongly on the covariance function of X. Nevertheless, it always contains all functions of
the form

hλ(t) := Cλe
−(λt+E[X2

t ]), t ≥ 0,

where Cλ :=
( ∫∞

0 e−(λt+E[X2
t ]) dt

)−1, for each λ > 0. Thus, MX
T is never empty.

Remark 2.5. The estimate (2.4) remains true if we replace MX
T by any subset M̃X

T ⊂ MX
T . In

order to obtain explicit upper bounds for the c.d.f. of IXT , we need to choose M̃X
T such that both

mX
T (f) and sXT (f) are computable for each f ∈ M̃X

T . Suppose that M̃X
T is indexed by an interval

I ⊂ R, i.e., M̃X
T = {pλ : λ ∈ I}. If the functions λ 7→ mX

T (pλ) and λ 7→ sXT (pλ) are differentiable,
and sXT (pλ) > 0 for all λ ∈ I, then we can apply basic calculus methods to find the value of

Φ

(
inf

f∈M̃X
T

log (x)−mX
T (f)

sXT (f)

)
= Φ

(
inf
λ∈I

log (x)−mX
T (pλ)

sXT (pλ)

)
,

which is an upper bound for P
[
IXT ≤ x

]
. We will implement this strategy to find estimates for the

c.d.f. of exponential functionals of fBM in Section 3.
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Remark 2.6. We can use Proposition 2.3 to estimate from above the c.d.f. of exponential functionals
of self-similar continuous Gaussian processes as follows. Suppose that X is, in addition, self-similar
with index H > 0. Then E[Xt] = tHE[X1] and E[X2

t ] = t2HE[X2
1 ] for each t ≥ 0. Let f : [0,∞) → R

be a continuous function with at most polynomial growth. Denote by X+f the process {Xt+f(t) :
t ≥ 0}. Let N∞ be the set of all densities on [0,∞) of the form fλ(t) := λe−λt, t ≥ 0, for each
λ > 0. Notice that ∫ ∞

0

(
(log(fλ(t)))

2 + E[(Xt + f(t))2]
)
fλ(t) dt < ∞

for all λ > 0. Therefore, N∞ ⊂ MX+f
∞ . We deduce from Proposition 2.3 that

P
[
IX+f
∞ ≤ x

]
≤ Φ

(
inf

λ∈(0,∞)

log (x)−mX+f
T (fλ)

sX+f
T (fλ)

)
,

where

mX+f
∞ (fλ) =

∫ ∞

0
(− log(fλ(t)) + E[Xt + f(t)]) fλ(t) dt

= − log(λ) + 1 +
Γ(H + 1)

λH
E[X1] + λ

∫ ∞

0
f(t)e−λt dt,(

sX+f
∞ (fλ)

)2
=

∫ ∞

0

∫ ∞

0
Cov(Xs + f(s), Xt + f(t))fλ(s)fλ(t) ds dt

= λ2

∫ ∞

0

∫ ∞

0
Cov(Xs, Xt)e

−λ(t+s) dsdt.

The class of self-similar Gaussian processes includes, as particular cases, the fBM, sub-fractional
Brownian motion and bifractional Brownian motion. We refer the reader to Tudor (2013) for
definitions and properties of these processes. It also includes the weighted sub-fractional Brownian
motion (López-Mimbela et al., 2024).

Remark 2.7. Adapting the proof of Lemma 2.1, we can obtain upper estimates for the c.d.f. of
other integral functionals of continuous Gaussian processes. Let f : R → [0,∞) be a convex strictly
increasing function, and let µ be a probability measure on [0, T ). If

∫ T
0 E[X2

t ] dµ(t) < ∞, then

f

(∫ T

0
Xt dµ(t)

)
≤
∫ T

0
f(Xt) dµ(t) P -a.s.

Moreover, if sXT > 0, then

P

[∫ T

0
f(Xt) dµ(t) ≤ x

]
≤ Φ

(
f−1(x)−mX

T

sXT

)
, x > 0,

where

mX
T :=

∫ T

0
E[Xt] dµ(t),

(
sXT
)2

:=

∫ T

0

∫ T

0
Cov(Xs, Xt) dµ(s) dµ(t).

Remark 2.8. Roughly speaking, the estimate in Proposition 2.3 states that the tail of IXT decays no
faster than the tail of a log-normal distribution. In fact, it is possible that the tail of IXT decays as
fast as the tail of a log-normal distribution. As an example, consider the process Xt := µt + σN ,
t ≥ 0, where µ < 0, σ > 0 and N is a standard normal random variable. We have

IX∞ =

∫ ∞

0
eµt+σN dt =

eσN

−µ
,
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so IX∞ has log-normal distribution. In this case, the right-hand side of the estimate (2.4) coincides
with the exact c.d.f. of IX∞. Taking f(t) = (−µ)eµt, t ≥ 0, in (2.3) we obtain

P
[
IX∞ ≤ x

]
≤ Φ

(
log(−µx)

σ

)
, x > 0,

which is in fact an equality. On the other hand, notice that I−X
∞ ≡ ∞, so the tail of I−X

∞ does
not decay as a log-normal tail. From this example, we learn two facts. First, it is reasonable to
estimate from above the c.d.f. of exponential functionals using log-normal type bounds. Secondly,
it is possible that the c.d.f. of exponential functionals can not be lower bounded by a log-normal
c.d.f.

2.2. Lower bounds. In order to estimate from below the c.d.f. of IXT , we now define the set

SX
T :=

{
f : [0, T ) → R

∣∣ f is continuous and
∫ T

0
eE[Xt]+f(t) dt < ∞

}
.

In the following lemma, we obtain a lower bound for the c.d.f. of IXT in terms of the c.d.f. of the
supremum over [0, T ) of the process X with a drift in SX

T .

Lemma 2.9. Let x > 0. Then

P
[
IXT ≤ x

]
≥ sup

f∈SX
T

P

[
sup

t∈[0,T )
(Xt − E[Xt]− f(t)) ≤ log

(
x∫ T

0 eE[Xt]+f(t) dt

)]
.

Proof : Fix f ∈ SX
T . Then we have

P
[
IXT ≤ x

]
= P

[∫ T

0
e(Xt−E[Xt]−f(t))+(f(t)+E[Xt]) dt ≤ x

]
≥ P

[
exp

(
sup

t∈[0,T )
(Xt − E[Xt]− f(t))

)∫ T

0
eE[Xt]+f(t) dt ≤ x

]

= P

[
sup

t∈[0,T )
(Xt − E[Xt]− f(t)) ≤ log

(
x∫ T

0 eE[Xt]+f(t) dt

)]
.

□

Notice that SX
T contains any bounded continuous function on [0, T ) if T < ∞. In this case,

we can estimate from below the c.d.f. of IXT using the Borell-TIS inequality (see Theorem 4.2 in
Nourdin, 2012) as follows.

Lemma 2.10 (Borell-TIS inequality). Let Y := {Yt : t ∈ [0, 1]} be a centered continuous Gaussian
process, and let σ2 := supt∈[0,1] Var(Yt). Then µ := E[supt∈[0,1] Yt] is finite. Moreover,

P

[
sup
t∈[0,1]

Yt ≥ x

]
≤ exp

(
−(x− µ)2

2σ2

)
for all x > µ.

Proposition 2.11. Suppose that T < ∞. Let f : [0, T ) → R be a bounded continuous function.
Then

P
[
IXT ≤ x

]
≥ 1− exp

− 1

2
(
σX
T

)2
(
log

(
x∫ T

0 eE[Xt]+f(t) dt

)
+ finf − µX

T

)2
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for all x > eµ
X
T −finf

∫ T
0 eE[Xt]+f(t) dt, where

µX
T := E

[
sup

t∈[0,T ]
(Xt − E[Xt])

]
,
(
σX
T

)2
:= sup

t∈[0,T ]
Var(Xt), finf := inf

t∈[0,T )
f(t).

Proof : It follows from Lemma 2.9 that

P
[
IXT ≤ x

]
≥ P

[
sup

t∈[0,T )
(Xt − E[Xt]) + sup

t∈[0,T )
(−f(t)) ≤ log

(
x∫ T

0 eE[Xt]+f(t) dt

)]

= P

[
sup

t∈[0,T ]
(Xt − E[Xt]) ≤ log

(
x∫ T

0 eE[Xt]+f(t) dt

)
+ finf

]

for all x > 0. By applying the Borell-TIS inequality, we get

P

[
sup

t∈[0,T ]
(Xt − E[Xt]) ≤ log

(
x∫ T

0 eE[Xt]+f(t) dt

)
+ finf

]

≥ 1− exp

− 1

2
(
σX
T

)2
(
log

(
x∫ T

0 eE[Xt]+f(t) dt

)
+ finf − µX

T

)2


for all x > eµ
X
T −finf

∫ T
0 eE[Xt]+f(t) dt. This concludes the proof. □

Remark 2.12. In the case T = ∞, in order to obtain lower bounds for the c.d.f. of IXT by applying
Lemma 2.9, we need to estimate from below the c.d.f. of supt∈[0,∞) (Xt − E[Xt]− f(t)) for f ∈ SX

∞.
In particular, this requires to know the growth rate of X. The asymptotic behaviour of Gaussian
processes has been investigated in numerous research articles. For instance, bounds for the tails of
the supremum over [0,∞) of Gaussian processes with drift, such as fBM, scaled Brownian motion
and some integrated stationary Gaussian processes, are proved in Dębicki et al. (1998). Asymptotic
estimates for the tails of extremes of Gaussian processes with stationary increments, and of self-
similar Gaussian processes, are studied in Dieker (2005) and the references therein.

2.3. Moment and moment-generating function estimates. Our last objective in this section is to
estimate the p-th order moment and the moment generating function of IXT . By exploiting the
convexity of the exponential function, we get the following bounds for the moments of IXT .

Proposition 2.13. The following statements hold:
(i) If p ∈ (0, 1), then

sup
f∈MX

T

∫ T

0
epE[Xt]+

1
2
p2Var(Xt) (f(t))1−p dt ≤ E

[(
IXT
)p] ≤ (∫ T

0
eE[Xt]+

1
2
Var(Xt) dt

)p

.

(ii) If p ≥ 1, then

sup
f∈MX

T

exp

(
pmX

T (f) +
1

2
p2
(
sXT (f)

)2) ≤ E
[(
IXT
)p] ≤ inf

f∈MX
T

∫ T

0
epE[Xt]+

1
2
p2Var(Xt) (f(t))1−p dt.

Proof : From Lemma 2.1 we have

E
[(
IXT
)p] ≥ E

[
epJ

X
T (f)

]
= exp

(
pmX

T (f) +
1

2
p2
(
sXT (f)

)2)
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for all p ≥ 0 and f ∈ MX
T , which implies the left-hand side inequality in statement (ii). If p ≥ 1

and f ∈ MX
T , it follows from Jensen’s inequality that

E
[(
IXT
)p]

= E

[(∫ T

0
e− log(f(t))+Xtf(t) dt

)p
]
≤
∫ T

0
E
[
ep(− log(f(t))+Xt)

]
f(t) dt,

which implies the right-hand side inequality in (ii). The estimates in (i) follow by applying Jensen’s
inequality for concave function. □

Corollary 2.14. If T < ∞, then IXT ∈ Lp(Ω) for all p ≥ 1.

Now, by using the previous bounds for the c.d.f. of IXT , we can estimate the moment-generating
function of IXT as follows.

Proposition 2.15. The following statements hold:
(i) Suppose that there exists f ∈ MX

T such that sXT (f) > 0. If λ > 0, then

E
[
e−λIXT

]
≤ inf

ε∈(0,1)

{
ε+ (1− ε)Φ

(
log(log(1ε ))− log(λ)−mX

T (f)

sXT (f)

)}
.

Also, E
[
e−λIXT

]
= ∞ for all λ < 0.

(ii) Suppose that T < ∞ and f : [0, T ) → R is bounded and continuous. Then for any λ > 0,

E
[
e−λIXT

]

≥
∫ exp

(
−λeµ

X
T −finf

∫ T
0 eE[Xt]+f(t) dt

)
0

1− exp

−

(
log

(
log( 1

x)
λ
∫ T
0 eE[Xt]+f(t) dt

)
+ finf − µX

T

)2

2
(
σX
T

)2

 dx,

where µX
T , σX

T and finf are as in Proposition 2.11.

Proof : We first prove (i). Let λ > 0, ε ∈ (0, 1) and f ∈ MX
T with sXT (f) > 0. From estimate (2.3)

we have

E
[
e−λIXT

]
=

∫ 1

0
P
[
e−λIXT ≥ x

]
dx

=

∫ 1

0
P

[
IXT ≤ − log(x)

λ

]
dx

≤
∫ 1

0
Φ

(
log(log( 1x))− log(λ)−mX

T (f)

sXT (f)

)
dx

≤ ε+

∫ 1

ε
Φ

(
log(log( 1x))− log(λ)−mX

T (f)

sXT (f)

)
dx

≤ ε+ (1− ε)Φ

(
log(log(1ε ))− log(λ)−mX

T (f)

sXT (f)

)
,

where we have used the monotonicity of the function x 7→ log(log(1/x)) on (0, 1). Now, using the
fact that the moment-generating function of a log-normal random variable is infinite on (0,∞), we
obtain that

E
[
eλI

X
T

]
≥ E

[
exp

(
λeJ

X
T (f)

)]
= ∞ for all λ > 0.
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If T < ∞ and f : [0, T ) → R is bounded and continuous, it follows from Proposition 2.11 that

E
[
e−λIXT

]
≥
∫ exp

(
−λeµ

X
T −finf

∫ T
0 eE[Xt]+f(t) dt

)
0

P

[
IXT ≤ − log(x)

λ

]
dx

≥
∫ exp

(
−λeµ

X
T −finf

∫ T
0 eE[Xt]+f(t) dt

)
0

1− exp

−

(
log

(
− log(x)

λ
∫ T
0 eE[Xt]+f(t) dt

)
+ finf − µX

T

)2

2
(
σX
T

)2

 dx.

This completes the proof. □

Remark 2.16. Suppose that there exists f ∈ MX
T such that sXT (f) > 0. As a result of Proposition

2.15 (i), we have limx→∞ eλxP
[
Iµ,σ,HT > x

]
= ∞ for all λ > 0, i.e., Iµ,σ,HT has a heavy-tailed

distribution.

3. Exponential functionals of fBM

In this section we focus on the special case of fBM. Our aim is to provide explicit computable
estimates for the c.d.f. and the p-th order moment of the exponential functional of a fBM with drift.

Let µ ∈ R, σ ∈ (0,∞), T ∈ (0,∞] and H ∈ (0, 1]. Let BH := {BH
t : t ≥ 0} be a fBM with Hurst

parameter H, and denote by Bµ,σ,H := {Bµ,σ,H
t : t ≥ 0} the process given by Bµ,σ,H

t := µt + σBH
t

for each t ≥ 0. Notice that Bµ,σ,H is a continuous Gaussian process with covariance function

E
[
Bµ,σ,H

s Bµ,σ,H
t

]
=

σ2

2

(
s2H + t2H − |s− t|2H

)
≥ 0, s, t ≥ 0,

and mean function E
[
Bµ,σ,H

t

]
= µt for each t ≥ 0. We write the exponential functional of Bµ,σ,H

on [0, T ) as

Iµ,σ,HT := IB
µ,σ,H

T =

∫ T

0
eB

µ,σ,H
t dt.

We distinguish the cases where T < ∞ and T = ∞.

3.1. Case T ∈ (0,∞). In order to apply Proposition 2.3 to estimate from above the c.d.f. of Iµ,σ,HT ,
we need to replace MBµ,σ,H

T by a more suitable set of densities on [0, T ). One simple choice is the
set {f0,T }, where f0,T denotes the uniform density on [0, T ). This choice leads to the estimate in
(3.2) below. We can improve this estimate by taking a larger set of densities. We consider the set
NT := {fλ,T : λ ∈ R}, where fλ,T : [0, T ) → (0,∞) is the function given by

fλ,T (t) :=

{
λeλt

eλT−1
if λ ̸= 0,

1
T if λ = 0,

(3.1)

for each λ ∈ R. Since MBµ,σ,H

T contains all bounded continuous positive densities on [0, T ), in
particular we have NT ⊂ MBµ,σ,H

T . For this family of densities we can obtain a collection of explicit
upper estimates for the c.d.f. of Iµ,σ,HT .
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We proceed to compute mµ,σ,H
T (λ) := mBµ,σ,H

T (fλ,T ) and sµ,σ,HT (λ) := sB
µ,σ,H

T (fλ,T ). For λ ̸= 0,
we have

mµ,σ,H
T (λ) =

∫ T

0

(
− log

(
λ

eλT − 1

)
− λt+ µt

)(
λeλt

eλT − 1

)
dt

= log

(
eλT − 1

λ

)
+

(µ− λ)(λTeλT − eλT + 1)

λ(eλT − 1)
,(

sµ,σ,HT (λ)
)2

=

∫ T

0

∫ T

0

σ2

2

(
s2H + t2H − |s− t|2H

)( λeλs

eλT − 1

)(
λeλt

eλT − 1

)
ds dt

=
λσ2

eλT − 1

∫ T

0
t2Heλt dt− σ2

2

∫ T

−T
|t|2H

(
λ

2(eλT − 1)2
eλ|t|

(
e2λ(T−|t|) − 1

))
dt

=
λσ2

eλT − 1

∫ T

0
t2Heλt dt− σ2

2

(
λe2λT

(eλT − 1)2

∫ T

0
t2He−λt dr +

λ

(eλT − 1)2

∫ T

0
t2Heλt dt

)
=

λσ2

2 (eλT − 1)
2

((
2eλT − 1

)∫ T

0
t2Heλt dt− e2λT

∫ T

0
t2He−λt dt

)
.

On the other hand, for the case λ = 0 we have

mµ,σ,H
T (0) =

∫ T

0

(
− log

(
1

T

)
+ µt

)
1

T
dt = log(T ) +

µT

2
,(

sµ,σ,HT (0)
)2

=
σ2

T 2

∫ T

0

∫ T

0

1

2

(
s2H + t2H − |s− t|2H

)
ds dt =

σ2

T 2

(
T 2H+2

2H + 2

)
=

σ2T 2H

2H + 2
.

By applying directly Proposition 2.3, we obtain the following upper bounds for the c.d.f. of Iµ,σ,HT .

Theorem 3.1. Let x > 0. It holds that

P
[
Iµ,σ,HT ≤ x

]
≤ Φ

(
log(x)−mµ,σ,H

T (λ)

sµ,σ,HT (λ)

)
for all λ ∈ R. In particular, for λ = 0 we have

P
[
Iµ,σ,HT ≤ x

]
≤ Φ

(√
2H + 2

σTH

(
log(x)− log(T )− µT

2

))
. (3.2)

Figure 3.1. Upper bounds for the c.d.f. of I1,1,3/41 obtained in Theorem 3.1 with
λ = −1, 0.5, 0, 0.5, 1. The red line corresponds to the case λ = 0.

We appreciate in Figure 3.1 that the upper bounds obtained in Theorem 3.1 improve the estimate
in (3.2) for some values of λ. The optimal value of λ may depend on x, µ, σ,H, T . However, there
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remains as a challenge to obtain explicitly this value. One advantage of the estimate in (3.2) is that
it has a tractable expression. We have the following convergence result for this estimate.

Proposition 3.2. Suppose that H ∈ (0, 1). Let {µn}n≥1, {σn}n≥1, {Tn}n≥1 be sequences that satisfy
one of the following conditions:

(i) µnTn → 0, σnTH
n → 0, and Tn → L ∈ [0,∞);

(ii) µnTn → ∞, {σnTH
n }n≥1 is bounded, and {Tn}n≥1 is bounded away from zero;

(iii) µnTn → −∞, and {σnTH
n }n≥1, {Tn}n≥1 are bounded.

Then

lim
n→∞

Φ

(√
2H + 2

σnTH
n

(
log(x)− log(Tn)−

µnTn

2

))
− P

[
Iµn,σn,H
Tn

≤ x
]
= 0

for all x > 0, x ̸= L.

Proof : Let

Jµn,σn,H
Tn

(0) := JBµn,σn,H

Tn
(f0,Tn) =

∫ Tn

0

(
log(Tn) + µnt+ σnB

H
t

) 1

Tn
dt.

By the self-similarity of BH , we have

Iµn,σn,H
Tn

= Tn

∫ 1

0
eµn(Tns)+σnBH

Tns ds = Tn

∫ 1

0
e(µnTn)s+σnTH

n BH
s ds = TnI

µnTn,σnTH
n ,H

1 ,

exp
(
Jµn,σn,H
Tn

(0)
)
= Tne

µnTn
2 eσn

∫ 1
0 BH

Tns ds = Tne
µnTn

2 eσnTH
n

∫ 1
0 BH

s ds = Tne
µnTn

2 exp
(
J
0,σnTH

n ,H
1 (0)

)
.

We suppose first that condition (i) holds. Using the continuity of the sample paths of BH , it follows

from the dominated convergence theorem that I
µnTn,σnTH

n ,H
1 , e

µnTn
2 eJ

0,σnTH
n ,H

1 (0) → 1 P -a.s. as n

tends to infinity. Then, Iµn,σn,H
Tn

, eJ
µn,σn,H
Tn

(0) → L P -a.s. Consequently, we obtain

P
[
eJ

µn,σn,H
Tn

(0) ≤ x
]
− P

[
Iµn,σn,H
Tn

≤ x
]
→ 0

for any x > 0, x ̸= L. Notice that we can only ensure that this limit holds for x ̸= L because
Iµn,σn,H
Tn

, eJ
µn,σn,H
Tn

(0) converge in distribution to a constant limit. Since

P
[
eJ

µn,σn,H
Tn

(0) ≤ x
]
= Φ

(√
2H + 2

σnTH
n

(
log(x)− log(Tn)−

µnTn

2

))
,

we deduce the desired limit. If condition (ii) holds, then Iµn,σn,H
Tn

, eJ
µn,σn,H
Tn

(0) → ∞ P -a.s. On other

hand, if condition (iii) holds, then Iµn,σn,H
Tn

, eJ
µn,σn,H
Tn

(0) → 0 P -a.s. In both cases, the desired limit
follows. □

Remark 3.3. It follows from Proposition 3.2 (i) that the difference between P
[
Iµ,σ,HT ≤ x

]
and

Φ
(√

2H+2
σTH

(
log(x)− log(T )− µT

2

))
is small for sufficiently small values of µ and σ. We deduce

from Proposition 3.2 (ii) and (iii) that this difference is small as well for sufficiently large values of
|µ|.

We now proceed to estimate from below the c.d.f. of Iµ,σ,HT following the approach of Lemma 2.9.
We will denote by erfc the complementary error function, i.e.,

erfc(z) :=
2√
π

∫ ∞

z
e−y2 dy, z ∈ R.
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Theorem 3.4. Let f : [0, T ) → R be a bounded continuous function. If H ∈
(
0, 12
)
, then

P
[
Iµ,σ,HT ≤ x

]
≥ 1− exp

−

(
log

(
x∫ T

0 eµt+f(t) dt

)
+ finf − 3.75σTH

√
2π

H(log 2)3
erfc

(√
H log 2

2

))2

2σ2T 2H


for all

x > exp

(
3.75σTH

√
2π

H(log 2)3
erfc

(√
H log 2

2

)
− finf

)∫ T

0
eµt+f(t) dt.

If H ∈
[
1
2 , 1
]
, then

P
[
Iµ,σ,HT ≤ x

]

≥ Φ

 log

(
x∫ T

0 eµt+λt2H dt

)
+ λT 2H

σTH

−

(
x∫ T

0 eµt+λt2H dt

)− 2λ
σ2

Φ

 log

(∫ T
0 eµt+λt2H dt

x

)
+ λT 2H

σTH


for any λ ∈ R and x >

∫ T
0 eµt+λt2H dt.

Proof : Let H ∈
(
0, 12
)
. By applying Proposition 2.11, we get

P
[
Iµ,σ,HT ≤ x

]
≥ 1− exp

− 1

2
(
σBµ,σ,H

T

)2
(
log

(
x∫ T

0 eµt+f(t) dt

)
+ finf − µBµ,σ,H

T

)2


for all x > exp
(
µBµ,σ,H

T − finf

) ∫ T
0 eµt+f(t) dt. The desired estimate follows by noticing that(

σBµ,σ,H

T

)2
= sup

t∈[0,T ]
Var(Bµ,σ,H

t ) = σ2T 2H ,

and

µBµ,σ,H

T = E

[
sup

t∈[0,T ]

(
Bµ,σ,H

t − E
[
Bµ,σ,H

t

])]

= σTHE

[
sup
t∈[0,1]

BH
t

]

< 3.75σTH

√
2π

H(log 2)3
erfc

(√
H log 2

2

)
,

where we have used the estimate for E
[
supt∈[0,1]B

H
t

]
proved in Theorem 2.2 (ii) in Borovkov et al.

(2017).
Assume now that H ∈

[
1
2 , 1
]
. Let RT be the set of all functions rλ : [0, T ) → R defined by

rλ(t) := λt2H , t ∈ [0, T ), for each λ ∈ R. It follows from Lemma 2.9, substituting SBµ,σ,H

T by RT ,
that

P
[
Iµ,σ,HT ≤ x

]
≥ sup

λ∈R
P

[
sup

t∈[0,T ]

(
σBH

t − λt2H
)
≤ log

(
x∫ T

0 eµt+λt2H dt

)]
, x > 0.
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Fix λ ∈ R. Let B := B1/2 be a standard Brownian motion. Since {σBH
t − λt2H : 0 ≤ t ≤ T} and

{σBt2H − λt2H : 0 ≤ t ≤ T} are continuous Gaussian processes such that

E[σBH
t − λt2H ] = E[σBt2H − λt2H ],

Var(σBH
t − λt2H) = Var(σBt2H − λt2H),

Cov(σBH
s − λs2H , σBH

t − λt2H) ≥ Cov(σBs2H − λs2H , σBt2H − λt2H),

for all 0 ≤ s, t ≤ T , it follows from Slepian’s lemma (see Theorem 4.1 in Dębicki et al., 1998) that

P

[
sup

t∈[0,T ]

(
σBH

t − λt2H
)
≥ x

]
≤ P

[
sup

t∈[0,T ]

(
σBt2H − λt2H

)
≥ x

]
, x > 0.

Therefore,

P

[
sup

t∈[0,T ]

(
σBH

t − λt2H
)
≤ log

(
x∫ T

0 eµt+λt2H dt

)]

≥ P

[
sup

t∈[0,T ]

(
σBt2H − λt2H

)
≤ log

(
x∫ T

0 eµt+λt2H dt

)]

= P

[
sup

t∈[0,T 2H ]

(σBt − λt) ≤ log

(
x∫ T

0 eµt+λt2H dt

)]

= Φ

 log

(
x∫ T

0 eµt+λt2H dt

)
+ λT 2H

σTH

−

(
x∫ T

0 eµt+λt2H dt

)− 2λ
σ2

Φ

 log

(∫ T
0 eµt+λt2H dt

x

)
+ λT 2H

σTH


for any x >

∫ T
0 eµt+λt2H dt, where we have used the identity (see the last formula in Borodin and

Salminen, 2002, pg. 250)

P

[
sup

t∈[0,T ]
(σBt + λt) ≤ y

]
= Φ

(
y − λT

σ
√
T

)
− e

2λy

σ2 Φ

(
−y + λT

σ
√
T

)
, y > 0, λ ∈ R.

□

Remark 3.5. In Corollary 3.1 in Dung (2018), the tail of Iµ,σ,HT was estimated, obtaining

P
[
Iµ,σ,HT > x

]
≤ 2 exp

− 1

2σ2T 2H

(
log

(
x∫ T

0 eµt+
1
2
σ2t2H dt

))2
 , x >

∫ T

0
eµt+

1
2
σ2t2H dt.

This estimate is similar, as x → ∞, to the bound obtained in Theorem 3.4 for the case H < 1/2.
On the other hand, for the case H ≥ 1/2, our bounds are sharper. Indeed, for H ≥ 1/2, from
Theorem 3.1 and Theorem 3.4 we get

Φ

(√
2H + 2

σTH

(
log

(
T

x

)
+

µT

2

))
≤ P

[
Iµ,σ,HT > x

]
≤ 2Φ

(
1

σTH
log

(
eµT − 1

µx

))
for all x > eµT−1

µ , where µ ̸= 0. This estimate is sharper than that obtained in Dung (2018) since

2Φ

(
1

σTH
log

(
eµT − 1

µx

))
≤

√
2σTH

√
π log

(
µx

eµT−1

) exp

(
− 1

2σ2T 2H

(
log

(
µx

eµT − 1

))2
)
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for all x > eµT−1
µ , where µ ̸= 0, which decays faster as x → ∞. In the case µ = 0 we have the

estimate

Φ

(√
2H + 2

σTH
log

(
T

x

))
≤ P

[
I0,σ,HT > x

]
≤ 2Φ

(
1

σTH
log

(
T

x

))
, x > T.

These estimates tell us that the tail of Iµ,σ,HT , with H ≥ 1/2, decays as the tail of the log-normal
distribution. Equivalently, this suggest that the tail of log

(
Iµ,σ,HT

)
may be approximated by the

tail of a normal distribution.

We now estimate the moments of Iµ,σ,HT .

Corollary 3.6. It holds that Iµ,σ,HT ∈ Lp(Ω) for all p ≥ 1. Moreover, for any p ≥ 1,

T p exp

(
µpT

2
+

p2σ2T 2H

4H + 4

)
≤ E

[(
Iµ,σ,HT

)p]
≤


T pe

1
2
p2σ2T 2H

if µ = 0,(
eµpT−1

µp

)
T p−1e

1
2
p2σ2T 2H

if µ > 0,(
eµT−1

µ

)p
e

1
2
p2σ2T 2H

if µ < 0.

Proof : By Proposition 2.13 (ii), we get

E
[(

Iµ,σ,HT

)p]
≥ exp

(
pmµ,σ,H

T (0) +
1

2
p2
(
sµ,σ,HT (0)

)2)
= T p exp

(
µpT

2
+

p2σ2T 2H

4H + 4

)
.

If µ > 0, we have

E
[(

Iµ,σ,HT

)p]
≤
∫ T

0
eµpt+

1
2
p2σ2t2H (f0,T (t))

1−p dt ≤
(
eµpT − 1

µp

)
T p−1e

1
2
p2σ2T 2H

,

and if µ < 0 we obtain

E
[(

Iµ,σ,HT

)p]
≤
∫ T

0
eµpt+

1
2
p2σ2t2H (fµ,T (t))

1−p dt ≤
(
eµT − 1

µ

)p

e
1
2
p2σ2T 2H

.

The case µ = 0 can be proved in a similar way. □

Remark 3.7. Let x > 0. The error in (3.2) is upper bounded by

Φ

(√
2H + 2

σTH

(
log(x)− log(T )− µT

2

))
− P

[
Iµ,σ,HT ≤ x

]
= P

[
eJ

µ,σ,H
T (0) ≤ x, Iµ,σ,HT > x

]
≤ P

[
eJ

µ,σ,H
T (0) ≤ x

]
∧ P

[
Iµ,σ,HT > x

]
≤ Φ

(√
2H + 2

σTH

(
log(x)− log(T )− µT

2

))
∧

(
eµT−1

µ

)
e

1
2
σ2T 2H

x

for any µ ̸= 0. If µ = 0, then the above bound remains true if we replace
(
eµT−1

µ

)
by T .

We have the following bounds for the moment-generating function of Iµ,σ,HT for µ ̸= 0. The case
µ = 0 can be derived replacing

(
eµT−1

µ

)
by T in the corresponding expressions.

Corollary 3.8. Let λ > 0. Then

E
[
e−λIµ,σ,HT

]
≤ inf

ε∈(0,1)

{
ε+ (1− ε)Φ

(√
2H + 2

σTH

(
log

(
log

(
1

ε

))
− log(λ)− log(T )− µT

2

))}
.
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If H ∈
(
0, 12
)

and µ ̸= 0, then

E
[
e−λIµ,σ,HT

]
≥
∫ exp

(
−λe

16.3σTH
√
H

(
eµT−1

µ

))
0

1− exp

−

(
log
(
log
(
1
x

))
− log

(
λ
(
eµT−1

µ

))
− 16.3σTH

√
H

)2
2σ2T 2H


 dx.

If H ∈
[
1
2 , 1
]

and µ ̸= 0, then

E
[
e−λIµ,σ,HT

]
≥
∫ exp

(
−λ
(

eµT−1
µ

))
0

2Φ

 log
(
log
(
1
x

))
− log(λ)− log

(
eµT−1

µ

)
σTH

− 1

 dx.

3.2. The case T = ∞. Our first objective will be to estimate from above the c.d.f. of Iµ,σ,H∞ . Let
N∞ := {fλ : λ > 0} be the set of all exponential densities fλ : [0,∞) → (0,∞) defined by

fλ(t) := λe−λt, t ≥ 0, (3.3)

for each λ > 0. Notice that N∞ ⊂ MBµ,σ,H

∞ . We can obtain explicit upper bounds for the c.d.f. of
Iµ,σ,H∞ for this family of densities. This is due to the fact that log(fλ) and E[Bµ,σ,H

· ] are both linear
functions, which simplify many computations. Other families of densities, such as Gamma densities
or folded normal densities, lead to intractable expressions. We denote

mµ,σ,H
∞ (λ) := mBµ,σ,H

∞ (fλ) and sµ,σ,H∞ (λ) := sB
µ,σ,H

∞ (fλ) for each λ > 0.

Fix λ > 0. Let us compute mµ,σ,H
∞ (λ) and sµ,σ,H∞ (λ). We have

mµ,σ,H
∞ (λ) =

∫ ∞

0
(− log(λ) + λt+ µt) (λe−λt) dt

= − log(λ) + 1 +
µ

λ
,(

sµ,σ,H∞ (λ)
)2

=

∫ ∞

0

∫ ∞

0

σ2

2

(
s2H + t2H − |s− t|2H

)
(λe−λs)(λe−λt) ds dt

= λσ2

∫ ∞

0
t2He−λt dt− σ2

2

∫ ∞

−∞
|t|2H

(
λ

2
e−λ|t|

)
dt

=
λσ2

2

∫ ∞

0
t2He−λt dt

=
σ2

2λ2H
Γ(2H + 1).

Thus, from Proposition 2.3 it follows that

P
[
Iµ,σ,H∞ ≤ x

]
≤ Φ

(
inf

λ∈(0,∞)

1

σ

√
2

Γ(2H + 1)

(
λH log(x) + λH log(λ)− λH − µλH−1

))
(3.4)

for all x > 0.
Let W : [−1/e,∞) → [−1,∞) be the principal branch of the Lambert W function, i.e., W is the

inverse function of the mapping x 7→ xex restricted to the interval [−1,∞). By using elementary
calculus, we can obtain an explicit expression for the infimum in the right-hand side of estimate
(3.4). This is proved in the next theorem.

Theorem 3.9. Let x > 0. The following statements hold:



678 José Alfredo López-Mimbela and Gerardo Pérez-Suárez

(i) If µ > 0 and H ∈ (0, 1), then

P
[
Iµ,σ,H∞ = ∞

]
= 1.

(ii) If µ = 0 and H ∈ (0, 1), then

P
[
Iµ,σ,H∞ ≤ x

]
≤ Φ

(
−

√
2

Γ(2H + 1)
· 1

σHe1−HxH

)
. (3.5)

(iii) If µ < 0 and H ∈ (0, 1), then

P
[
Iµ,σ,H∞ ≤ x

]
≤ Φ

(
−

√
2

Γ(2H + 1)
·
µ+ λµ,x,H

σHλ1−H
µ,x,H

)
(3.6)

≤ Φ

(
(−µ)H

σ

√
2

Γ(2H + 1)
log(−µx)

)
, (3.7)

where λµ,x,H :=
(1− 1

H )µ

W

(
(1− 1

H )µxe−1+ 1
H

) .

(iv) If µ ∈ R and H = 1, then

P
[
Iµ,σ,H∞ ≤ x

]
≤ Φ

(
− 1

σ

(
µ+

1

x

))
.

Proof : Let F : (0,∞) → R be the function given by

F (λ) := λH log(x) + λH log(λ)− λH − µλH−1, λ > 0.

We have

lim
λ→∞

F (λ) = ∞, (3.8)

and

lim
λ↓0

F (λ) =


−∞ if µ > 0, H ∈ (0, 1), (3.9)
0 if µ = 0, H ∈ (0, 1), (3.10)
∞ if µ < 0, H ∈ (0, 1), (3.11)
−µ if µ ∈ R, H = 1. (3.12)

Observe that F is differentiable and its derivative is given by

F ′(λ) = HλH−1 log(λ) + λH−1(H log(x) + 1−H) + (1−H)µλH−2, λ > 0.

We set A := H, B := H log(x) + 1−H and C := (1−H)µ. Notice that a number λ∗ > 0 satisfies
F ′(λ∗) = 0 if and only if

Aλ∗ log(λ∗) +Bλ∗ + C = 0, (3.13)

or, equivalently,

−C

A
e

B
A = zez, (3.14)

where z := log(λ∗) + B
A . Let us first assume that µ < 0 and H ∈ (0, 1). Since −C

Ae
B
A > 0, it follows

from (3.14) that z = W
(
−C

Ae
B
A

)
. This implies that equation (3.13) has a unique solution λ∗, and

it is given by

λ∗ = exp

(
W

(
−C

A
e

B
A

)
− B

A

)
=

exp
(
W
((

1− 1
H

)
µxe−1+ 1

H

))
xe−1+ 1

H

=

(
1− 1

H

)
µ

W
((

1− 1
H

)
µxe−1+ 1

H

) ,
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where we have used the identity eW (y) = y
W (y) , which holds for any y > 0. We deduce from (3.8)

and (3.11) that F has a unique global minimum at λ∗. Therefore, we can rewrite (3.4) as

P
[
Iµ,σ,H∞ ≤ x

]
≤ Φ

(
1

σ

√
2

Γ(2H + 1)
F (λ∗)

)
. (3.15)

We notice that

F (λ∗) = (λ∗)H−1 (λ∗ (log(x) + log(λ∗)− 1)− µ)

= (λ∗)H−1

(
λ∗
(
W

((
1− 1

H

)
µxe−1+ 1

H

)
− 1

H

)
− µ

)
= − µ+ λ∗

H(λ∗)1−H
.

Hence, the inequality (3.15) becomes (3.6). The estimate (3.7) follows from (3.15), replacing λ∗ by
−µ. This proves statement (iii).

Suppose now that µ = 0 and H ∈ (0, 1). Then we have C = 0. This implies, as before, that
equation (3.13) has a unique solution, and it is given by λ∗ = 1/

(
xe−1+1/H

)
. Since

F (λ∗) = −eH−1

HxH
< 0,

we deduce from (3.8) and (3.10) that F has a unique global minimum at λ∗. Part (ii) follows due
to (3.4).

Assume that µ ∈ R and H = 1. Then the unique solution of (3.13) is λ∗ = 1
x . We observe that

F (λ∗) = −µ− 1

x
< −µ.

Thus, from (3.8) and (3.12) we obtain that F attains its minimum value at λ∗. This yields part
(iv).

Finally, if µ > 0 and H ∈ (0, 1), due to (3.4) and (3.9) we get that P
[
Iµ,σ,H∞ ≤ x

]
= 0 for any

x > 0. Therefore, the statement (i) holds. □

Remark 3.10. Suppose that H ∈ (0, 1). Theorem 3.9 (i) implies that P
[
Iµ,σ,H∞ < ∞

]
= 0 for any

µ > 0. By using the law of the iterated logarithm for fBM, this result was proved in Lemma 1 in
Dozzi et al. (2020). Moreover, the authors proved that P

[
Iµ,σ,H∞ < ∞

]
= 1 for any µ < 0. For the

case µ = 0, by letting x → ∞ in the estimate (3.5), we obtain that

P
[
I0,σ,H∞ < ∞

]
≤ 1

2
.

We have the following convergence result for estimate (3.7).

Proposition 3.11. Let x > 0, and suppose that H ∈ (0, 1). Then

lim
µ→−∞

Φ

(
(−µ)H

σ

√
2

Γ(2H + 1)
log(−µx)

)
− P

[
Iµ,σ,H∞ ≤ x

]
= 0. (3.16)

Proof : Taking into account Remark 3.10, we know that Iµ,σ,H∞ < ∞ P -a.s. for any µ < 0. Hence,
we can apply the dominated convergence theorem to obtain that Iµ,σ,H∞ → 0 P -a.s. as µ → −∞. On
the other hand, we recall that JBµ,σ,H

∞ (f−µ)
d
= mµ,σ,H

∞ (−µ) + sµ,σ,H∞ (−µ)N , where N is a standard
normal random variable, and

P

[
eJ

Bµ,σ,H
∞ (f−µ) ≤ x

]
= Φ

(
(−µ)H

σ

√
2

Γ(2H + 1)
log(−µx)

)
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for any µ < 0. Since mµ,σ,H
∞ (−µ) = − log(−µ) → −∞ and sµ,σ,H∞ (−µ) = σ

(−µH)

√
Γ(2H+1)

2 → 0

as µ → −∞, we obtain that eJ
Bµ,σ,H
∞ (f−µ) converges weakly to zero as µ → −∞. Therefore,

P
[
eJ

Bµ,σ,H
∞ (f−µ) ≤ x

]
− P

[
Iµ,σ,H∞ ≤ x

]
→ 0 as µ → −∞. □

We now proceed to estimate from below the c.d.f. of Iµ,σ,H∞ in the case where µ < 0.

Theorem 3.12. Assume that µ < 0. Let

Λµ,σ,x,H :=

 −µ

W
((

1− 1
H

)
µxe−1+ 1

H

)
 H

1−H
W

((
1− 1

H

)
µxe−1+ 1

H

)
+ 1− 1

H

σ


1

1−H

, x > − 1

µ
.

If H ∈
(
0, 12
)
, then

P
[
Iµ,σ,H∞ ≤ x

]
≥ 1− M (H)

Λµ,σ,x,H
, x > − 1

µ
,

where M (H) := E
[
supt≥0(−t+BH

t )
]
. On the other hand, if H ∈

(
1
2 , 1
)
, then

P
[
Iµ,σ,H∞ ≤ x

]
≥ 1− lH (Λµ,σ,x,H) , x > − 1

µ
,

where lH : (0,∞) → (0,∞) is the function given by

lH(x) :=
1√
2π

∫ ∞

0

1

tH
exp

(
−(t+ x)2

2t2H

)
dt, x > 0.

Proof : Let G be the set of all functions gλ : [0,∞) → R given by gλ(t) = −λt, t ≥ 0, for each
λ ∈ (µ, 0). It follows from Lemma 2.9, substituting SBµ,σ,H

∞ by G, that

P
[
Iµ,σ,H∞ ≤ x

]
≥ sup

λ∈(µ,0)
P

[
sup
t≥0

(
λt+ σBH

t

)
≤ log (x(λ− µ))

]
.

Fix λ ∈ (µ, 0). By the self-similarity of BH , we have (see Bisewski et al., 2021, pg. 2)

sup
t≥0

(
λt+ σBH

t

) d
=

σ
1

1−H

(−λ)
H

1−H

sup
t≥0

(
−t+BH

t

)
.

Hence,

P

[
sup
t≥0

(
λt+ σBH

t

)
≤ log (x(λ− µ))

]
= P

[
sup
t≥0

(
−t+BH

t

)
≤ (−λ)

H
1−H log (x(λ− µ))

σ
1

1−H

]
.

Let F : (µ, 0) → R be the function given by

F (λ) :=
(−λ)

H
1−H log (x(λ− µ))

σ
1

1−H

, µ < λ < 0.

We notice that F ′(λ∗) = 0 if and only if(
H

1−H

)
z log(z) + z + µx = 0,

where z := x(λ∗−µ). Proceeding as in the proof of Theorem 3.9, we obtain that the above equation
has a unique solution, and it is given by z = exp

(
W
((

1− 1
H

)
µxe−1+ 1

H

)
+ 1− 1

H

)
≥ 1. Since
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limλ↓µ F (λ) = −∞ and limλ↑0 F (λ) = 0, we deduce that F attains its maximum at

λ∗ = µ+
z

x
= µ+

(
1− 1

H

)
µ

W
((

1− 1
H

)
µxe−1+ 1

H

) ∈ (µ, 0).

Thus, if H ∈
(
0, 12
)
, we apply Markov’s inequality and get

P
[
Iµ,σ,H∞ ≤ x

]
≥ P

[
sup
t≥0

(
−t+BH

t

)
≤ F (λ∗)

]
≥ 1− M (H)

F (λ∗)
.

On the other hand, if H ∈
(
1
2 , 1
)
, we deduce from Slepian’s lemma that

P

[
sup
t≥0

(
−t+BH

t

)
≤ F (λ∗)

]
≥ P

[
sup
t≥0

(−t+Bt2H ) ≤ F (λ∗)

]
,

where B is a standard Brownian motion. Using Theorem 3.1 in Dębicki et al. (1998), we conclude
that

P
[
Iµ,σ,H∞ ≤ x

]
≥ P

[
sup
t≥0

(−t+Bt2H ) ≤ F (λ∗)

]
≥ 1− lH(F (λ∗)).

□

Remark 3.13. Suppose that µ < 0 and H ∈
(
0, 12
)
. An estimate for the expected value M (H)

was obtained in Proposition 5 in Bisewski et al. (2021). This result implies that M (H) is upper
bounded by ((

2(2H)
H

1−H (1− 2H)
1−2H
2−2H

)
∧
(
HH(1−H)1−H

))
·

(
λ

1
1−H

H +

√
π/2

1−H

(
λ

H
1−H

H +
2

H
2−2H

√
π

Γ

(
1

2− 2H

)))
,

where λH := 1.695√
2/ log2⌈22/H⌉

. Using this estimate, we can obtain an explicit lower bound for the c.d.f.

of Iµ,σ,H∞ in Theorem 3.12. Also, since E
[
Iµ,σ,H∞

]
< ∞ (see Corollary 3.15 below), applying Markov’s

inequality we get the estimate

P
[
Iµ,σ,H∞ ≤ x

]
≥ 1− 1

x
E
[
Iµ,σ,H∞

]
≥ 1 +

2

µx
exp

(1

2
−H

)((
−2H

µ

)H

σ

) 2
1−2H

 , x > 0.

Remark 3.14. Our method to obtain lower bounds for the c.d.f. of exponential functionals does
not apply for Iµ,σ,H∞ in the case µ = 0. The law of I0,σ,H∞ is only known for H = 1

2 and H = 1.
When H = 1

2 , we have I0,σ,H∞ = ∞ P -a.s. On the other hand, it follows from Proposition 3.19 that
P
[
I0,σ,1∞ ≤ x

]
= Φ

(
− 1

σx

)
1{x>0}. In particular, P [I0,σ,1∞ = ∞] = 1

2 .

We estimate the moments of Iµ,σ,H∞ in the following corollary.

Corollary 3.15. The following statements hold:

(i) If µ ≥ 0 and H ∈ (0, 1], then E
[(

Iµ,σ,H∞
)p]

= ∞ for all p > 0.

(ii) If µ < 0 and H > 1
2 , then E

[(
Iµ,σ,H∞

)p]
= ∞ for all p > 0.

(iii) If µ < 0 and H = 1
2 , then Iµ,σ,H∞ ∈ Lp(Ω) if and only if p < −2µ/σ2, and

E
[(
Iµ,σ,H∞

)p]
=

Γ
(
−2µ

σ2 − p
)

Γ
(
−2µ

σ2

) (
2

σ2

)p

, 0 < p < −2µ

σ2
.
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(iv) If µ < 0 and H < 1
2 , then Iµ,σ,H∞ ∈ Lp(Ω) for all p ≥ 1, and

E
[(
Iµ,σ,H∞

)p] ≤ 2

(−µ)p
exp

(1

2
−H

)((
−2H

µ

)H

pσ

) 2
1−2H

 , p ≥ 1.

Also,

E
[(
Iµ,σ,H∞

)p] ≥ sup
λ>0

1

λp
exp

(
p
(
1 +

µ

λ

)
+

p2σ2Γ(2H + 1)

4λ2H

)
, p > 0,

where the supremum is attained at the unique solution of the equation

λ+
pσ2HΓ(2H + 1)

2
λ1−2H + µ = 0.

Proof : Assertion (i) follows from Theorem 3.9 (i) and (ii). If µ < 0 and H > 1
2 , we apply Proposition

2.13 (i) and obtain

E
[(
Iµ,σ,H∞

)p] ≥ ∫ ∞

0
eµpt+

1
2
p2σ2t2H (f−µ(t))

1−p dt = (−µ)1−p

∫ ∞

0
eµt+

1
2
p2σ2t2H dt = ∞

for any p ∈ (0, 1). This proves part (ii). The statement in (iii) follows from (1.1). Now suppose
that µ < 0 and H < 1

2 . Using Proposition 2.13 (ii) we get

E
[(
Iµ,σ,H∞

)p] ≤ ∫ ∞

0
eµpt+

1
2
p2σ2t2H (f−µ(t))

1−p dt

= (−µ)1−p

∫ ∞

0
eµt+

1
2
p2σ2t2H dt

≤ 1

(−µ)p−1

(∫ ∞

0
e

1
2
µt dt

)(
sup
t≥0

e
1
2
µt+ 1

2
p2σ2t2H

)

=
2

(−µ)p
exp

(1

2
−H

)((
−2H

µ

)H

pσ

) 2
1−2H


for any p ≥ 1. Hence, Iµ,σ,H∞ ∈ Lp(Ω) for all p ≥ 1. We deduce from Proposition 2.13 (ii) that

E
[(
Iµ,σ,H∞

)p] ≥ sup
λ>0

exp

(
p
(
− log(λ) + 1 +

µ

λ

)
+

p2σ2Γ(2H + 1)

4λ2H

)
= sup

λ>0
epF (λ)

for any p > 0, where F (λ) := − log(λ)+1+ µ
λ +

pσ2Γ(2H+1)
4λ2H for each λ > 0. Notice that F (λ) → −∞

if λ → 0 or λ → ∞. Since F is differentiable on (0,∞), F has a unique global maximum at λ∗, the
unique number that satisfies F ′(λ∗) = 0, i.e., λ∗ + pσ2HΓ(2H+1)

2 (λ∗)1−2H + µ = 0. □
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Remark 3.16. Let x > 0. Suppose that µ < 0 and H < 1
2 . The error in the estimate (3.7) is upper

bounded by

Φ

(
(−µ)H

σ

√
2

Γ(2H + 1)
log(−µx)

)
− P

[
Iµ,σ,H∞ ≤ x

]
= P

[
eJ

Bµ,σ,H
∞ (f−µ) ≤ x, Iµ,σ,H∞ > x

]
≤ P

[
eJ

Bµ,σ,H
∞ (f−µ) ≤ x

]
∧ P

[
Iµ,σ,H∞ > x

]

≤ Φ

(
(−µ)H

σ

√
2

Γ(2H + 1)
log(−µx)

)
∧
2 exp

((
1
2 −H

)((
−2H

µ

)H
σ

) 2
1−2H

)
−µx

.

Notice that this error is small for a sufficiently large negative value of µ.

Using the lower and upper bounds for the c.d.f. of Iµ,σ,H∞ proved above, we can estimate its
moment-generating function. The upper bound has the following form.

Corollary 3.17. Let λ > 0. Then

E
[
e−λIµ,σ,H∞

]
≤ inf

ε∈(0,1),
δ>0

{
ε+ (1− ε)Φ

(
δH

σ

√
2

Γ(2H + 1)

(
log

(
log

(
1

ε

))
− log(λ) + log(δ)− 1− µ

δ

))}
.

3.3. The case H = 1. In this subsection, we compute the exact c.d.f. of Iµ,σ,HT in the case where
H = 1.

Let W−1 : [−1/e, 0) → (−∞,−1] be the lower branch of the Lambert W function, i.e., W−1 is the
inverse function of the mapping x 7→ xex restricted to the interval (−∞,−1]. We consider first the
case T < ∞.

Proposition 3.18. Suppose that T < ∞. For any x > 0, we have

P
[
Iµ,σ,1T ≤ x

]
= Φ

(
− 1

σ

(
µ+

1

x
+

1

T
W−1

(
−T

x
e−

T
x

)))
.

Proof : Let N be a standard normal random variable. Since B1 d
= {tN : t ≥ 0}, we have

P
[
Iµ,σ,HT ≤ x

]
= P

[∫ T

0
et(µ+σN) dt ≤ x

]
= P [F (µ+ σN) ≤ x] , x > 0,

where F : R → R is the function given by

F (y) :=

{
eTy−1

y if y ̸= 0,

T if y = 0.

It is easy to see that F is continuous and strictly increasing. Therefore,

{F (µ+ σN) ≤ x} =
{
µ+ σN ≤ F−1(x)

}
.
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Let u = F−1(x). Then −T
x e

−T
x = zez, were z := −Tu− T

x . We notice that −T
x e

−T
x ∈ [−1/e, 0) and

z ∈ (−∞,−1], which implies that z = W−1

(
−T

x e
−T

x

)
. Thus,

P
[
µ+ σN ≤ F−1(x)

]
= P

[
µ+ σN ≤ −1

x
− 1

T
W−1

(
−T

x
e−

T
x

)]
= Φ

(
− 1

σ

(
µ+

1

x
+

1

T
W−1

(
−T

x
e−

T
x

)))
.

□

We now deal with the case T = ∞.

Proposition 3.19. Let x > 0. Then

P
[
Iµ,σ,1∞ ≤ x

]
= Φ

(
− 1

σ

(
µ+

1

x

))
.

Proof : Let N be a standard normal variable. The result follows by a straightforward calculation:

P
[
Iµ,σ,1∞ ≤ x

]
= P

[∫ ∞

0
eµt+σtN dt ≤ x

]
= P

[
µ+ σN ≥ 0,

∫ ∞

0
et(µ+σN) dt ≤ x,

]
+ P

[
µ+ σN < 0,

∫ ∞

0
et(µ+σN) dt ≤ x

]
= P

[
µ+ σN < 0,− 1

µ+ σN
≤ x

]
= P

[
N < −µ

σ
, N ≤ − 1

σ

(
µ+

1

x

)]
= Φ

(
− 1

σ

(
µ+

1

x

))
.

□

Remark 3.20. Notice that the estimate in Theorem 3.9 (iv) coincides with the exact c.d.f. of Iµ,σ,1∞ .
Let N be a standard normal variable. Since

Φ

(
− 1

σ

(
µ+

1

x

))
= P

[
−µ− σN ≥ 1

x

]
= P

[
1

(−µ− σN)1{−µ−σN>0}
≤ x

]
, x > 0,

it follows that Iµ,σ,1∞
d
= 1

Y 1{Y >0}
, where Y has normal distribution with mean −µ and variance σ2.

In particular, we have

P
[
Iµ,σ,1∞ = ∞

]
= P [Y ≤ 0] = 1− Φ

(
−µ

σ

)
.

3.4. The case H = 1/2. The law of Iµ,σ,HT is well known in the case where H = 1/2, see Dufresne
(1990), Yor (2001). However, we do not recover these results with our approach. This is so because
our approach relies solely on the Gaussianity of fBM. We remark that the results known for Iµ,σ,1/2T
have been obtained by exploiting nice properties of standard Brownian motion, such as the Markov
property and the independent increments property. Since fBM does not satisfy such properties, the
techniques used to investigate I

µ,σ,1/2
T can not be extrapolated to exponential functionals of fBM.

Nevertheless, our approach provides log-normal type approximations to the c.d.f. of Iµ,σ,HT for any
Hurst parameter H, including H = 1/2.
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In the case T = ∞, the functional Iµ,σ,1/2T has inverse Gamma distribution and its c.d.f. is given
by (1.1) for µ < 0 and σ > 0. It follows from Theorem 3.9 (iii) that

P
[
Iµ,σ,1/2∞ ≤ x

]
≤ Φ

(
2
√
−2µ

σ

(√
W (−µxe)− 1√

W (−µxe)

))
≤ Φ

(√
−2µ

σ
log(−µx)

)
for µ < 0 and σ, x > 0. The error in these estimates can be written as

Φ

(√
−2µ

σ
log(−µx)

)
− P

[
Iµ,σ,1/2∞ ≤ x

]
=

∫ x

0

 1

σy

√
−µ

π
exp

( µ

σ2
(log(−µy))2

)
− 1

Γ
(
−2µ

σ2

)
y

(
2

σ2y

)− 2µ

σ2

exp

(
− 2

σ2y

) dy.

This expression corresponds to the difference between a log-normal and an inverse Gamma c.d.f.
To the best of our knowledge, there are no results dealing with this expression. Nevertheless, it
follows from Proposition 3.11 that it goes to zero as µ → −∞. This is corroborated by numerical
experiments in Section 5.

In the case T < ∞, several integral representations for the density of Iµ,σ,1/2T have been obtained
in the literature (see for instance Proposition 2.3 in Pintoux and Privault (2010) and Paper 2 in Yor
(2001)). However, all these representations are complicated and difficult to analyze because they
involve several special functions. From Theorem 3.1 and Theorem 3.4 we get

Φ

(
1

σ

√
2

T

(
log

(
T

x

)
+

µT

2

))
≤ P

[
I
µ,σ,1/2
T > x

]
≤ 2Φ

(
1

σ
√
T
log

(
eµT − 1

µx

))
for all x > eµT−1

µ , where µ ̸= 0. These estimates are more tractable, and reveal that the tail of

I
µ,σ,1/2
T decays similarly as the tail of a log-normal distribution.

3.5. Continuity in law of exponential functionals of fBMs. In this subsection, we prove the continuity
in law of Iµ,σ,HT with respect to parameters µ, σ,H.

Let C := C([0,∞);R) be the set of all real-valued continuous functions on [0,∞) endowed with
the metric

ρ(f, g) :=
∞∑
k=1

(
1

2k

)(
ρk(f, g)

1 + ρk(f, g)

)
, f, g ∈ C,

where ρk(f, g) := supt∈[0,k] |f(t)− g(t)|, k ≥ 1. For each k ≥ 1, let Ck := C([0, k];R) be the Banach
space of all real-valued continuous functions on [0, k] equipped with the norm

∥f∥k := sup
t∈[0,k]

|f(t)|, f ∈ Ck. (3.17)

First, we prove that BH is continuous in law with respect to its Hurst parameter H.

Lemma 3.21. If {Hn}n≥1 ⊂ (0, 1] is a sequence that converges to H ∈ (0, 1], then {BHn}n≥1

converges weakly to BH in (C, ρ).

Proof : We notice that E[BHn
t ] = 0 for all n ≥ 1 and t ≥ 0, and

E[BHn
s BHn

t ] =
1

2

(
s2Hn + t2Hn − |s− t|2Hn

)
→ 1

2

(
s2H + t2H − |s− t|2H

)
= E[BH

s BH
t ]
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as n → ∞ for all s, t ≥ 0. Since BH and BHn , n ≥ 1, are Gaussian processes, it follows that the
finite-dimensional distributions of BHn converge to those of BH as n → ∞. Fix k ≥ 1. Define
h := infn≥1Hn > 0, and let p ≥ 1 be an even integer such that ph > 1. We have

E
[∣∣∣BHn

t −BHn
s

∣∣∣p] = E
[∣∣∣BHn

t−s

∣∣∣p] = (p− 1)!!|t− s|pHn ≤ kp(p− 1)!!|t− s|ph

for all 0 ≤ s ≤ t ≤ k and n ≥ 1, where (p−1)!! denotes the double factorial of p−1. Since BHn
0 ≡ 0

for all n ≥ 1, it follows from the Kolmogorov-Chentsov tightness criterion (see Theorem 23.7 in
Kallenberg, 2021) that {{BHn

t : 0 ≤ t ≤ k}}n≥1 is tight. By using Prohorov’s theorem, we deduce
that {{BHn

t : 0 ≤ t ≤ k}}n≥1 converges weakly to {BH
t : 0 ≤ t ≤ k} in (Ck, ρk). Finally, applying

Theorem 5 in Whitt (1970), we conclude that {BHn}n≥1 converges weakly to BH in (C, ρ). □

We define the process Iµ,σ,H := {Iµ,σ,Ht : t ≥ 0} for any µ ∈ R, σ ≥ 0 and H ∈ (0, 1]. In the next
proposition we show that Iµ,σ,H is continuous in law with respect to parameters µ, σ,H.

Proposition 3.22. If {(µn, σn, Hn)}n≥1 ⊂ R× [0,∞)× (0, 1] converges to (µ, σ,H) ∈ R× [0,∞)×
(0, 1], then {Iµn,σn,Hn}n≥1 converges weakly to Iµ,σ,H in (C, ρ).

Proof : By Skorohod’s representation theorem, there exist C-valued random elements B̃H and B̃Hn
n ,

n ≥ 1, defined on a common probability space (Ω̃, F̃ , P̃ ), such that B̃Hn
n (ω) → B̃H(ω) in (C, ρ) for

every ω ∈ Ω̃, B̃H has the same distribution as BH , and B̃Hn
n has the same distribution as BHn ,

n ≥ 1.
Fix k ≥ 1. Let Ĩµn,σn,Hn,k be the Ck-valued random element defined by

Ĩµn,σn,Hn,k(ω)(t) :=

∫ t

0
eµns+σnB̃

Hn
n (ω)(s) ds, ω ∈ Ω̃, t ∈ [0, k],

for each n ≥ 1. We define similarly Ĩµ,σ,H,k. Let ω ∈ Ω̃, and let

M(ω) := k|µ|+ k sup
n≥1

|µn|+
(
sup
n≥1

σn

)(
sup
n≥1

sup
t∈[0,k]

B̃Hn
n (ω)(t)

)
+ σ sup

t∈[0,k]
B̃H(ω)(t).

Notice that M(ω) < ∞. From the mean value theorem we get∥∥∥Ĩµn,σn,Hn,k(ω)− Ĩµ,σ,H,k(ω)
∥∥∥
k

≤
∫ k

0

∣∣∣eµnt+σnB̃
Hn
n (ω)(t) − eµt+σB̃H(ω)(t)

∣∣∣ dt
≤ eM(ω)

∫ k

0

∣∣∣(µnt+ σnB̃
Hn
n (ω)(t)

)
−
(
µt+ σB̃H(ω)(t)

)∣∣∣ dt
≤ eM(ω)

(
k2|µn − µ|+ k|σn − σ|

(
sup
n≥1

sup
t∈[0,k]

B̃Hn
n (ω)(t)

)
+ kσρk

(
B̃Hn

n (ω), B̃(ω)
))

→ 0

as n → ∞, where the norm ∥·∥k is defined in (3.17). Hence, using Theorem 3.1 in Billingsley (1968),
we deduce that {Ĩµn,σn,Hn,k}n≥1 converges weakly to Ĩµ,σ,H,k in (Ck, ρk). Applying Theorem 5 in
Whitt (1970), we obtain the desired conclusion. □

We conclude this section by proving the following convergence results.

Corollary 3.23. Let T ∈ (0,∞). If {(µn, σn, Hn)}n≥1 ⊂ R× [0,∞)×(0, 1] converges to (µ, σ,H) ∈
R× (0,∞)× (0, 1], then

lim
n→∞

sup
x∈R

∣∣∣P [Iµn,σn,Hn

T ≤ x
]
− P

[
Iµ,σ,HT ≤ x

]∣∣∣ = 0.
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Proof : It follows from Proposition 3.22 that {Iµn,σn,Hn

T }n≥1 converges in distribution to Iµ,σ,HT . We
deduce from Theorem 2.1.3 in Nualart (2006) and Lemma 2.1 in Dung (2019a) that the c.d.f. of
Iµ,σ,HT is absolutely continuous for any H ∈ (0, 1). On the other hand, we obtain from Proposition
3.18 that the c.d.f. of Iµ,σ,1T is continuous. Hence, the conclusion follows from Polya’s theorem (see
Lemma 3 in Chow and Teicher, 1997, pg. 283). □

Remark 3.24. The preceding corollary tells us that Iµn,σn,Hn

T converges in Kolmogorov distance to
Iµ,σ,HT as (µn, σn, Hn) → (µ, σ,H). For the case µn ≡ µ and σn ≡ σ, an estimate for the Kolmogorov
distance between Iµn,σn,Hn

T and Iµ,σ,HT is obtained in Dung (2019a, Thm. 1.1).

Corollary 3.25. Let M > 0 and x ∈ R. If {Tn}n≥1 ⊂ [0,∞) converges to T ∈ (0,∞), then

lim
n→∞

sup
(µ,σ,H)∈[−M,M ]×[ 1

M
,M]×[ 1

M
,1]

∣∣∣P [Iµ,σ,HTn
≤ x

]
− P

[
Iµ,σ,HT ≤ x

]∣∣∣ = 0.

Proof : Let {Tnk
}k≥1 be a monotone subsequence of {Tn}n≥1, and assume it is increasing. The

other case can be proved similarly. Let Fk : [−M,M ] × [ 1
M ,M ] × [ 1

M , 1] → [0, 1] be the function
given by Fk(µ, σ,H) := P [Iµ,σ,HTnk

≤ x], (µ, σ,H) ∈ [−M,M ]× [ 1
M ,M ]× [ 1

M , 1], for each k ≥ 1. We
observe that Fk is continuous and Fk ≥ Fk+1 for all k ≥ 1. Since {Fk}k≥1 converges pointwise to
(µ, σ,H) 7→ P [Iµ,σ,HT ≤ x], the desired limit follows from Dini’s theorem. □

4. Exponential functional of a series of independent fBMs

In this section we investigate estimates for the exponential functional of a series of independent
fBMs.

Let µ ∈ R and {σn}n≥1 ⊂ R be a sequence of numbers such that

σ2 :=

∞∑
n=1

σ2
n ∈ (0,∞).

Let {BHn
n }n≥1 be a sequence of independent fBMs defined on a common probability space (Ω,F , P ),

where BHn
n := {BHn

n (t) : t ≥ 0} denotes a fBM with Hurst parameter Hn ∈ (0, 1]. Set

H0 := inf
n≥1:
σn ̸=0

Hn, H∞ := sup
n≥1:
σn ̸=0

Hn.

We will assume that H0 > 0. Let us consider the stochastic process Z := {Zt : t ≥ 0} given by

Zt :=
∞∑
n=1

σnB
Hn
n (t) (4.1)

for each t ≥ 0. We notice that E
[
σnB

Hn
n (t)

]
= 0 for all n ≥ 1, and

∞∑
n=1

Var(σnBHn
n (t)) =

∞∑
n=1

σ2
nt

2Hn ≤ (1 + t)2σ2 < ∞

for all t ≥ 0. Hence, by applying Kolmogorov’s two-series theorem (Lemma 5.16 in Kallenberg,
2021) we get that the series in (4.1) converges P -a.s. for each t ≥ 0. Moreover, this series converges
in L2(Ω) uniformly on any compact interval of [0,∞). Therefore, Z is a centered Gaussian process
whose covariance function is given by

E [ZsZt] =
∞∑
n=1

σ2
nE
[
BHn

n (s)BHn
n (t)

]
=

∞∑
n=1

σ2
n

2

(
s2Hn + t2Hn − |s− t|2Hn

)
, s, t ≥ 0.
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We notice that

E
[
(Zt − Zs)

2
]
=

∞∑
n=1

σ2
n|t− s|2Hn = E

[
Z2
t−s

]
, 0 ≤ s ≤ t,

which implies that Z has stationary increments. Furthermore, since

E
[
(Zt − Zs)

2
]
= |t− s|2H0

∞∑
n=1

σ2
n|t− s|2(Hn−H0) ≤ (1 + s ∨ t)2σ2|t− s|2H0 , s, t ≥ 0,

it follows from the Kolmogorov continuity theorem that Z has a modification which has locally
Hölder continuous trajectories with an arbitrary exponent smaller than H0 P -a.s., i.e.,

sup
r,s∈[0,t]:

r ̸=s

|Zr − Zs|
|r − s|α

< ∞ for all t ≥ 0 and α ∈ (0, H0) P -a.s.

Let Zµ := {Zµ
t : t ≥ 0} be the continuous Gaussian process given by Zµ

t := µt+ Zt for each t ≥ 0.
The mean and covariance functions of Z are given by

E [Zµ
t ] = µt, Cov (Zµ

s , Z
µ
t ) = E [ZsZt] , s, t ≥ 0.

Fix T ∈ (0,∞]. We have f ∈ Mµ,σn,Hn

T for any f ∈ MZµ

T and n ≥ 1. Moreover,

mZµ

T (f) = mµ,0,1
T (f),

(
sZ

µ

T (f)
)2

=

∞∑
n=1

(
sµ,σn,Hn

T (f)
)2

.

From Proposition 2.3 we obtain the estimate

P
[
IZ

µ

T ≤ x
]
≤ Φ

 inf
f∈MZµ

T

log(x)−mµ,0,1
T (f)(∑∞

n=1

(
sµ,σn,Hn

T (f)
)2) 1

2


for each x > 0. It seems impossible to us to give an explicit expression for the above infimum, even
if we replace MZµ

T by NT . Instead, we can establish explicit upper bounds for the c.d.f. of IZµ

T that
depends only on the parameters µ, σ, T,H0, H∞.

Corollary 4.1. Let x > 0. Suppose that T < ∞. Then

P
[
IZ

µ

T ≤ x
]
≤


Φ

( √
2H0+2

σ(TH0∨TH∞)

(
log(x)− log(T )− µT

2

))
if x < TeµT/2,

Φ

( √
2H∞+2

σ(TH0∧TH∞)

(
log(x)− log(T )− µT

2

))
if x ≥ TeµT/2.

Proof : First notice that f0,T ∈ MZµ

T , where f0,T is defined in (3.1). We have

mZµ

T (f0,T ) = mµ,0,1
T (0) = log(T ) +

µT

2
,

(
sZ

µ

T (f0,T )
)2

=

∞∑
n=1

(
sµ,σn,Hn

T (0)
)2

=

∞∑
n=1

σ2
nT

2Hn

2Hn + 2
.

Then

P
[
IZ

µ

T ≤ x
]
≤ Φ

(
log(x)−mZµ

T (f0,T )

sZ
µ

T (f0,T )

)
= Φ

 log(x)− log(T )− µT
2√∑∞

n=1
σ2
nT

2Hn

2Hn+2

 .
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Using the fact that Φ is increasing and the inequality(
T 2H0 ∧ T 2H∞

)
σ2

2H∞ + 2
≤

∞∑
n=1

σ2
nT

2Hn

2Hn + 2
≤
(
T 2H0 ∨ T 2H∞

)
σ2

2H0 + 2
,

we obtain the desired estimate. □

Remark 4.2. Notice that if σn = 0 for all n ≥ 2, then IZ
µ

T coincides with the functional Iµ,σ,H0

T . In
this case, the estimates for P

[
IZ

µ

T ≤ x
]

proved in Corollary 4.1 coincide with the one obtained in
(3.2).

Corollary 4.3. Let x > 0. The following statements hold:
(i) If µ > 0 and H∞ < 1, then P

[
IZ

µ

∞ = ∞
]
= 1.

(ii) If µ = 0 and H∞ < 1, then

P
[
IZ

µ

∞ ≤ x
]
≤ Φ

(
−

√
2

Γ(2H0 + 1) ∨ Γ(2H∞ + 1)
· 1

σ (xH0 ∨ xH∞)

)
.

(iii) If µ < 0 and H∞ < 1, then

P
[
IZ

µ

∞ ≤ x
]
≤

Φ
(
(−µ)H0∨(−µ)H∞

σ

√
2
Γ0

log(−µx)
)

if µ ≤ − 1
x ,

Φ
(
(−µ)H0∧(−µ)H∞

σ

√
2

Γ(2H0+1)∨Γ(2H∞+1) log(−µx)
)

if µ > − 1
x ,

where Γ0 := minz>0 Γ(z) ≈ 0.88.
(iv) If µ ∈ R and H∞ = 1, then

P
[
IZ

µ

∞ ≤ x
]
≤


Φ

(
−
√

2
Γ0

· 1+µx

σ(x∧xH0)

)
if µ ≤ − 1

x ,

Φ

(
− 1+µx

σ(x∨xH0)

)
if µ > − 1

x .

Proof : Let λ > 0. Notice that fλ ∈ MZµ

∞ , where fλ is defined in (3.3). We have

mZµ

∞ (fλ) = mµ,0,1
∞ (λ) = − log(λ) + 1 +

µ

λ
,

(
sZ

µ

∞ (fλ)
)2

=

∞∑
n=1

(
sµ,σn,Hn
∞ (λ)

)2
=

∞∑
n=1

σ2
n

2λ2Hn
Γ(2Hn + 1).

Then

P
[
IZ

µ

∞ ≤ x
]
≤ Φ

(
log(x)−mZµ

∞ (fλ)

sZµ

∞ (fλ)

)
= Φ

 log(x) + log(λ)− 1− µ
λ√∑∞

n=1
σ2
n

2λ2Hn
Γ(2Hn + 1)

 .

Using the inequality

σ2Γ0

2 (λ2H0 ∨ λ2H∞)
≤

∞∑
n=1

σ2
n

2λ2Hn
Γ(2Hn + 1) ≤ σ2 (Γ(2H0 + 1) ∨ Γ(2H∞ + 1))

2 (λ2H0 ∧ λ2H∞)
,

we deduce that

P
[
IZ

µ

∞ ≤ x
]
≤

Φ
(
λH0∨λH∞

σ

√
2
Γ0

(
log(x) + log(λ)− 1− µ

λ

))
if eµ/λ

λ ≤ x
e ,

Φ
(
λH0∧λH∞

σ

√
2

Γ(2H0+1)∨Γ(2H∞+1)

(
log(x) + log(λ)− 1− µ

λ

))
if eµ/λ

λ > x
e .

(4.2)
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Suppose first that µ > 0 and H∞ < 1. Since limλ↓0
eµ/λ

λ = ∞, we have

P
[
IZ

µ

∞ ≤ x
]
≤ Φ

(
λH∞

σ

√
2

Γ(2H0 + 1) ∨ Γ(2H∞ + 1)

(
log(x) + log(λ)− 1− µ

λ

))
for all sufficiently small λ. By letting λ tend to zero in the above expression, we get P

[
IZ

µ

∞ ≤ x
]
= 0.

Then, by letting x tend to infinity, we conclude that P
[
IZ

µ

∞ < ∞
]
= 0, which proves part (i). The

statement (iii) follows from (4.2), replacing λ by −µ. On the other hand, parts (ii) and (iv) follow
from (4.2) but now replacing λ by 1

x . □

Remark 4.4. Let z0 := arg minz>0Γ(z) ≈ 1.46. We recall that the Gamma function is increasing on
the interval [z0,∞), and decreasing on [0, z0]. If 2H0+1 > z0, then we can replace Γ0 by Γ(2H0+1)
in the proof of Corollary 4.3 and obtain a better bound. If 2H∞ + 1 < Γ0, then Γ0 can be replaced
by Γ(2H∞ + 1).

The moments of IZµ

T are estimated in the next corollaries.

Corollary 4.5. Let T ∈ (0,∞). Then IZ
µ

T ∈ Lp(Ω) for all p ≥ 1. Moreover,

T p exp

(
µpT

2
+

p2σ2
(
T 2H0 ∧ T 2H∞

)
4H∞ + 4

)
≤ E

[(
IZ

µ

T

)p]

≤


T p exp

(
1
2p

2σ2
(
T 2H0 ∨ T 2H∞

))
if µ = 0,(

eµpT−1
µp

)
T p−1e

1
2
p2σ2(T 2H0∨T 2H∞) if µ > 0,(

eµT−1
µ

)p
e

1
2
p2σ2(T 2H0∨T 2H∞) if µ < 0,

for any p ≥ 1.

Proof : From Proposition 2.13 (ii) we obtain

E
[(
IZ

µ

T

)p] ≥ exp

(
pmZµ

T (f0,T ) +
1

2
p2
(
sZ

µ

T (f0,T )
)2) ≥ T p exp

(
µpT

2
+

σ2p2
(
T 2H0 ∧ T 2H∞

)
4H∞ + 4

)
.

If µ > 0, we have

E
[(
IZ

µ

T

)p] ≤ ∫ T

0
eµpt+

1
2
p2
∑∞

n=1 σ
2
nt

2Hn
(f0,T (t))

1−p dt ≤
(
eµpT − 1

µp

)
T p−1e

1
2
p2σ2(T 2H0∨T 2H∞),

and if µ < 0 we get

E
[(
IZ

µ

T

)p] ≤ ∫ T

0
eµpt+

1
2
p2
∑∞

n=1 σ
2
nt

2Hn
(fµ,T (t))

1−p d ≤
(
eµT − 1

µ

)p

e
1
2
p2σ2(T 2H0∨T 2H∞).

The case µ = 0 can be handled in a similar way. □

Corollary 4.6. The following statements hold:
(i) If µ ≥ 0, then E

[(
IZ

µ

∞
)p]

= ∞ for all p > 0.
(ii) If µ < 0 and H∞ > 1

2 , then E
[(
IZ

µ

∞
)p]

= ∞ for all p > 0.
(iii) If µ < 0 and H∞ < 1

2 , then IZ
µ

∞ ∈ Lp(Ω) for all p ≥ 1 , and

E
[(
IZ

µ

∞
)p] ≤ 1

(−µ)p

(1− eµ)e
1
2
p2σ2

+ 2e
µ
2 exp

(1

2
−H∞

)((
−2H∞

µ

)H∞

pσ

) 2
1−2H∞


for any p ≥ 1. Also,

E
[(
IZ

µ

∞
)p] ≥ sup

λ>0

1

λp
exp

(
p
(
1 +

µ

λ

)
+

p2σ2Γ0

4 (λ2H0 ∨ λ2H∞)

)
, p > 0.
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Proof : Part (i) follows from Corollary 4.3 (i), (ii) and (iv). If µ < 0 and H∞ > 1
2 , then there exists

k ≥ 1 such that σk ̸= 0 and Hk > 1
2 . Then it follows from Proposition 2.13 (i) that

E
[(
IZ

µ

∞
)p] ≥ ∫ ∞

0
eµpt+

1
2
p2
∑∞

n=1 σ
2
nt

2Hn
(f−µ(t))

1−p dt

= (−µ)1−p

∫ ∞

0
eµt+

1
2
p2
∑∞

n=1 σ
2
nt

2Hn
dt

≥ (−µ)1−p

∫ ∞

0
eµt+

1
2
p2σ2

kt
2Hk dt

= ∞

for any p ∈ (0, 1). Thus, part (ii) holds. Now suppose that µ < 0 and H∞ < 1
2 . From Proposition

2.13 (ii) we get

E
[(
IZ

µ

∞
)p] ≤ ∫ ∞

0
eµpt+

1
2
p2
∑∞

n=1 σ
2
nt

2Hn
(f−µ(t))

1−p dt

= (−µ)1−p

∫ ∞

0
eµt+

1
2
p2
∑∞

n=1 σ
2
nt

2Hn
dt

≤ (−µ)1−p

(∫ 1

0
eµt+

1
2
p2σ2t2H0

dt+

∫ ∞

1
eµt+

1
2
p2σ2t2H∞

dt

)

≤ 1

(−µ)p−1

(eµ − 1

µ

)
e

1
2
p2σ2 − 2e

µ
2

µ
exp

(1

2
−H∞

)((
−2H∞

µ

)H∞

pσ

) 2
1−2H∞


for any p ≥ 1. Hence, IZµ

∞ ∈ Lp(Ω) for all p ≥ 1, and it follows from Proposition 2.13 (ii) that

E
[(
IZ

µ

∞
)p] ≥ sup

λ>0
exp

(
p
(
− log(λ) + 1 +

µ

λ

)
+

1

2
p2

∞∑
n=1

σ2
n

2λ2Hn
Γ(2Hn + 1)

)

≥ sup
λ>0

1

λp
exp

(
p
(
1 +

µ

λ

)
+

σ2p2Γ0

4 (λ2H0 ∨ λ2H∞)

)
.

□

We now give some lower bounds for the c.d.f. of IZµ

T .

Corollary 4.7. The following statements hold:

(i) Let T < ∞ and H∞ < 1
2 . Suppose that ρ :=

∑∞
n=1 σn < ∞. Then for any bounded

continuous function f on [0, T ) we have

P
[
IZ

µ

T ≤ x
]

≥ 1− exp

−

(
log

(
x∫ T

0 eµt+f(t) dt

)
+ finf −

3.75
√
2πρ(TH0∨TH∞)√
H0(log 2)3

erfc
(√

H0 log 2
2

))2

2σ2 (T 2H0 ∨ T 2H∞)


for all x > exp

(
3.75

√
2πρ(TH0∨TH∞)√
H0(log 2)3

erfc
(√

H0 log 2
2

)
− finf

)∫ T
0 eµt+f(t) dt.
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(ii) Let T < ∞ and H0 ≥ 1
2 . Suppose that ρ :=

∑∞
n=1 σn < ∞. Then for any bounded continuous

function f on [0, T ) we have

P
[
IZ

µ

T ≤ x
]
≥ 1− exp

−

(
log

(
x∫ T

0 eµt+f(t) dt

)
+ finf −

√
2
πρ
(
TH0 ∨ TH∞

))2

2σ2 (T 2H0 ∨ T 2H∞)


for all x > exp

(√
2
πρ
(
TH0 ∨ TH∞

)
− finf

) ∫ T
0 eµt+f(t) dt.

(iii) If µ < 0 and H∞ < 1
2 , then

P
[
IZ

µ

∞ ≤ x
]
≥ 1 +

1

µx

(1− eµ)e
σ2

2 + 2e
µ
2 exp

(1

2
−H∞

)((
−2H∞

µ

)H∞

σ

) 2
1−2H∞


for any x > 0.

Proof : Assertions (i) and (ii) follow from Proposition 2.11, using the estimates

E

[
sup

t∈[0,T ]
(Zµ

t − E[Zµ
t ])

]
≤

3.75
√
2πρ

(
TH0 ∨ TH∞

)√
H0(log 2)3

erfc

(√
H0 log 2

2

)
if H∞ <

1

2
,

and

E

[
sup

t∈[0,T ]
(Zµ

t − E[Zµ
t ])

]
≤
√

2

π
ρ
(
TH0 ∨ TH∞

)
if H0 ≥

1

2
,

where we have used the inequality E
[
supt∈[0,1]B

H
t

]
≤
√

2
π which is valid for any H ∈

[
1
2 , 1
]

(see
Lemma 5 in Shao, 1996). The statement in (iii) follows from Markov’s inequality and Corollary 4.6
(iii). □

We conclude this section by examining the finiteness of IZµ

∞ . By Corollary 4.3 (i), we know that
IZ

µ

∞ = ∞ P -a.s. if µ > 0 and H∞ < 1. Also, from Corollary 4.3 (iv) we have P
[
IZ

µ

∞ < ∞
]
≤ Φ

(
−µ

σ

)
if µ ≥ 0 and H∞ = 1, and it follows from Corollary 4.3 (ii) that P

[
IZ

µ

∞ < ∞
]
≤ 1

2 if µ = 0 and
H∞ < 1. On the other hand, we deduce from Corollary 4.6 (iii) that IZ

µ

∞ < ∞ P -a.s. if µ < 0 and
H∞ < 1

2 . Suppose now that µ < 0, H∞ < 1 and there exists N ≥ 1 such that σn = 0 for all n > N ,
i.e., Z is a mfBM. By Hölder’s inequality we have

IZ
µ

∞ =

∫ ∞

0
eµt

N∏
n=1

eσnB
Hn
n (t) dt ≤

N∏
n=1

(∫ ∞

0
eµt+σnNBHn

n (t) dt

)1/N

=
N∏

n=1

(
Iµ,σnN,Hn
∞

)1/N
.

Hence, IZµ

∞ < ∞ P -a.s. We also have the following criterion for the finiteness of Zµ.

Proposition 4.8. If H∞ < 1+H0
2 and µ < 0, then Zµ < ∞ P -a.s.

Proof : Let v : [0,∞) → [0,∞) be the function given by

v(t) :=
1

2
E
[
Z2
t

]
=

1

2

∞∑
n=1

σ2
nt

2Hn , t ≥ 0.

We have

0 <

(
t

s

)2H0

v(s) ≤ v(t) ≤
(
t

s

)2H∞

v(s)
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for all 0 < s ≤ t. Since 2H∞ < 1
2(2H0) + 1, we can apply Theorem 1.1 in Orey (1972) to obtain

lim sup
t→∞

Zt

σtH∞
√

2 log(log(t))
≤ 1 P -a.s.

By a similar argument to the one given in Lemma 1 in Dozzi et al. (2020), we obtain the desired
conclusion. □

5. Numerical examples and discussion

In this last section, we present some plots of our estimates for the c.d.f. of the exponential
functional of fBM. We do not make an exhaustive analysis of all possible cases for the parameters
µ, σ, T and H. Instead, our aim is to illustrate graphically the applicability of our estimates. Let
us remark that one advantage of our bounds is that they are computable and not asymptotical.

First, we estimate the c.d.f. of Iµ,σ,HT in the case where T < ∞. We consider the values µ =
−1, 0, 1, σ = 1/10, 1, 2, T = 1 and H = 1/4, 3/4. Notice that in this case, we can simulate the
random variable Iµ,σ,HT by simulating paths of fBM on [0, T ] and computing the integral of their
exponentials. Furthermore, if our sample size for Iµ,σ,HT is large enough, we may expect that the
empirical cumulative distribution function (e.c.d.f.) of Iµ,σ,HT approximates well the c.d.f. of Iµ,σ,HT .
For the case H = 1/4, we observe in Figure 5.2 that the lower bound is not so accurate. Recall that
the lower bound proved in Theorem 3.4 for H < 1/2 was obtained by applying maximal inequalities,
and this bound is similar to the one obtained in Dung (2018) as x → ∞. In contrast, the upper
bound seems to approximate well the e.c.d.f. of Iµ,σ,HT , especially in the case µ = 0. Thus, it
seems reasonable to conjecture that the c.d.f. of Iµ,σ,HT , with H < 1/2, can be approximated by a
log-normal c.d.f.

For the case H = 3/4, we can appreciate in Figure 5.3 that the lower bound is more accurate in
comparison to the previous case. Recall from Remark 3.5 that for H ≥ 1/2, the c.d.f. of Iµ,σ,HT is
upper and lower bounded by some log-normal c.d.f.s for x large enough. Again, the upper bound
seems to be close to the e.c.d.f. of Iµ,σ,HT . As an example, we present in Figure 5.4 a plot of
our estimates for the moment-generating function of exponential functionals of fBM obtained in
Corollary 3.8. These estimates have a better performance when H ≥ 1/2.

Now, for the case where T = ∞, we consider the values µ = −1/10,−1,−10, σ = 1 and
H = 1/4, 1/2, 3/4. We observe in Figure 5.5 that Iµ,σ,H∞ has a heavy-tailed distribution. This is
especially notorious in the case µ = −1/10 and H = 3/4. Since our lower bounds are non-trivial
for very large values of x, they do not appear in most of the plots. So our lower bounds do not
provide us with insightful information at most of the considered cases. Nevertheless, in the case
H = 3/4, we notice that both bounds appear for large negative values of µ, such as µ = −1,−10.
Let us recall from Proposition 3.11 that Iµ,σ,H∞ converges to zero a.s. as µ → −∞, which justifies
the shape of the upper bound in these cases. In contrast to the case where T < ∞, we are not able
to simulate the random variable Iµ,σ,H∞ . Although we know that Iµ,σ,HT → Iµ,σ,H∞ a.s. as T → ∞, it
is not clear how large we should take T . For the case H < 1/2, we know from Corollary 3.15 (iv)
that all the moments of Iµ,σ,H∞ are finite. Therefore, the tail of Iµ,σ,H∞ , with H < 1/2, decays faster
than any power function 1/xp, p > 0, as x → ∞. In the special case H = 1/2, we know the exact
c.d.f. of Iµ,σ,H∞ , which is given by (1.1). We observe that our upper bound is close to the exact c.d.f.
of Iµ,σ,1/2∞ as µ → −∞. However, for small values of µ, such as µ = −1/10, we observe that there
is a notorious discrepancy between our upper bound and the exact c.d.f. of I

µ,σ,1/2
∞ . This is due

to the fact that the inverse Gamma distribution has, in general, a heavier tail than the log-normal
distribution. The Kolmogorov distance between the c.d.f. of Iµ,σ,1/2∞ and the upper bound obtained
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Figure 5.2. Upper bounds (blue lines) are derived from Theorem 3.1 with λ = 0.
Lower bounds (red lines) are derived from Dung (2018, Cor. 3.1). The e.c.d.f. of
Iµ,σ,HT (green lines) was plotted with 1000 simulations of Iµ,σ,HT .

Figure 5.3. Upper bounds (blue lines) are derived from Theorem 3.1 with λ = 0.
Lower bounds (red lines) are derived from Theorem 3.4 with λ = 0. The e.c.d.f. of
Iµ,σ,HT (green lines) was plotted with 1000 simulations of Iµ,σ,HT .
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Figure 5.4. Upper bounds (blue lines) and lower bounds (red lines) for
E
[
exp(−λIµ,σ,HT )

]
are derived from Corollary 3.8.

Figure 5.5. Upper bounds (blue lines) are derived from Theorem 3.9 (iii). Lower
bounds (red lines) are derived from Theorem 3.12. The exact c.d.f. of Iµ,σ,1/2∞ (orange
lines) is given by (1.1).
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in Theorem 3.9 (iii) may be bounded as

sup
x>0

(
F (x)− P

[
Iµ,σ,1/2∞ ≤ x

])
≤ max

{
sup

x∈[0,T ]

(
F (x)− P

[
Iµ,σ,1/2∞ ≤ x

])
, sup
x>T

(
1− P

[
Iµ,σ,1/2∞ ≤ x

])}

≤ max

{
sup

x∈[0,T ]

(
F (x)− P

[
Iµ,σ,1/2∞ ≤ x

])
, P
[
Iµ,σ,1/2∞ ≥ T

]}
(5.1)

for any T > 0, where F (x) := Φ
(
2
√
−2µ
σ

(√
W (−µxe)− 1/

√
W (−µxe)

))
for µ < 0 and σ, x > 0.

In Figure 5.6, we appreciate that this distance decreases quickly to zero as µ → −∞. For the case
H > 1/2, from Corollary 3.15 (ii) we know that the p-th order moment of Iµ,σ,H∞ is infinite for any
p > 0. This tells us that Iµ,σ,H∞ has a "very heavy tail" when H > 1/2. In this case, the c.d.f. of
Iµ,σ,H∞ can not be lower bounded by a log-normal c.d.f. Nevertheless, our lower bound allows us to
have an idea about how fast the tail of Iµ,σ,H∞ decays as x → ∞ when H ∈ (1/2, 1). Replacing λ∗

by µ/2 in the proof of Theorem 3.12 and using Lemma 2.1 in Dębicki et al. (1998), we have

P [Iµ,σ,H∞ > x] ≤ lH

(
1

σ
1

1−H

(
−µ

2

) H
1−H

log
(
−µx

2

))
∼
(

H

1−H

)1/2

exp

(
− 1

2σ2

(
1

H

)2H ( 1

1−H

)2−2H (
−µ

2

)2H (
log
(
−µx

2

))2−2H
)

as x → ∞. In conclusion, our bounds allow us to estimate P
[
Iµ,σ,H∞ ≤ x

]
for very small or very

large values of x. However, further research is needed to estimate P
[
Iµ,σ,H∞ ≤ x

]
for intermediate

values of x, especially for the case where µ is small.

Figure 5.6. Upper bound for the Kolmogorov distance between the c.d.f. of Iµ,1,1/2∞
and its upper bound given by (5.1). We considered T = 100 and µ ∈ [−10, 0). For
µ = −10 the distance reported is 0.029.

5.1. Comparison with previous results. To the best of our knowledge, the estimates for the law of
exponential functionals of fBM reported in the literature are due to N.T. Dung and his coauthors. In
Dung (2018), the tail of a general class of exponential functionals was investigated. As a particular
case, an upper bound for the tail of Iµ,σ,HT , with T < ∞, was obtained. As we mentioned in Remark
3.5, for H < 1/2 such estimate and the bound we proved in Theorem 3.4 are similar as x → ∞.
However, the estimate obtained in Dung (2018) is informative for a larger set of values of x. This
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Figure 5.7. The red lines are upper bounds for the tail of Iµ,σ,HT obtained in Dung
(2018). The blue lines are upper bounds for the tail of Iµ,σ,HT proved in Theorem
3.4.

is illustrated in the left plot in Figure 5.7. On the other hand, for H ≥ 1/2 our estimate is sharper.
This is shown in the right plot in Figure 5.7.

In Dung (2019b), an upper bound for the c.d.f. of I−µ,σ,H
∞ was proved for any µ, σ > 0 and

H ∈ (0, 1). It states that

P
[
I−µ,σ,H
∞ < x

]
≤ exp

(
− 1

2σ2

(
α

α−H

)2−2H/α

(log(x+ 1))2−2H/α(mx(α)− 1)2

)
, x > 0,

for any α > H, where

mx(α) := E

sup
t≥0

log
(∫ t

0 e
−µs− 1

2
σ2s2H+σBH

s ds
)
+ tα

log(x+ 1) + tα

 .

However, it is not clear how to numerically compute this expression. In contrast, we have obtained
explicit computable upper bounds for P

[
Iµ,σ,H∞ ≤ x

]
for any µ ∈ R, σ > 0 and H ∈ (0, 1] in

Theorem 3.9.
The Kolmogorov distance between Iµ,σ,H1

T and Iµ,σ,H2

T is studied in Dung (2019a) for any H1, H2 ∈
(0, 1) and T < ∞. The main result states that

sup
x≥0

∣∣∣P [Iµ,σ,H1

T ≤ x
]
− P

[
Iµ,σ,H2

T ≤ x
]∣∣∣ ≤ C|H1 −H2|,

where C is a positive constant depending on µ, σ, T,H1 and H2. We proved in Corollary 3.23 that
supx≥0

∣∣P [Iµ,σ,H1

T ≤ x
]
− P

[
Iµ,σ,H2

T ≤ x
]∣∣ → 0 as H1 → H2 for T < ∞. We remark that this

convergence is not implied by the result in Dung (2019a) since the constant C depends on H1, H2.
The Kolmogorov distance between Iµ,σ,H1

∞ and Iµ,σ,H2
∞ has not been investigated in the literature.

Finally, in Dung et al. (2022) a log-normal upper bound for the density function of Iµ,σ,HT was
proved for H ∈

(
1
2 , 1
)

and T < ∞. This was achieved by exploiting the fact that Iµ,σ,HT is Malliavin
differentiable for T < ∞. However, this bound depends on unknown constants. Our present results
do not address the density of Iµ,σ,HT . Nevertheless, both the upper bound obtained in Dung et al.
(2022) and our estimates yield that the c.d.f. of Iµ,σ,HT is upper bounded by a log-normal c.d.f. The
existence of the density of Iµ,σ,H∞ has not been proved yet.

Acknowledgements

The authors are grateful to two anonymous referees for their constructive comments and sugges-
tions, which greatly improved this paper.



698 José Alfredo López-Mimbela and Gerardo Pérez-Suárez

References

Bertoin, J. and Yor, M. Exponential functionals of Lévy processes. Probab. Surv., 2, 191–212 (2005).
MR2178044.

Billingsley, P. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-
Sydney (1968). MR233396.
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