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Abstract. We extend known results concerning directional transience of nearest-neighbor random
walks in random environments to allow for bounded jumps. Zerner and Merkl (2001) proved a
0-1 law for directional transience for planar random walks in random environments. We extend the
result to non-planar i.i.d. random walks in random environments on Z2 with bounded jumps. Sabot
and Tournier (2017) characterized directional transience for a given direction for nearest-neighbor
random walks in Dirichlet environments on Zd, d ≥ 1. We extend this characterization to random
walks in Dirichlet environments with bounded jumps.

1. Introduction

Kalikow (1981) asked whether, for i.i.d. random walks in random environments (RWRE) in 2
dimensions, the x-coordinate of the walker’s position must approach infinity with probability either
0 or 1. Zerner and Merkl (2001) answered this question in the affirmative for nearest-neighbor, i.i.d.,
elliptic RWRE in 2 dimensions, and not just for the horizontal component but for the component
in any direction ℓ ∈ S1, where S1 is the unit circle in R2. Such a 0-1 law is still an open conjecture
for dimensions d ≥ 3. In this paper, we extend the result of Zerner and Merkl by removing the
nearest-neighbor assumption, showing that for i.i.d. elliptic RWRE with bounded jumps on Z2, the
0-1 law holds for all directions ℓ ∈ S1. Our approach is largely based on that of Zerner (2007),
which is a simplification of the proof given in Zerner and Merkl (2001). However, the removal of
the nearest-neighbor assumption creates a need for additional work and a number of adjustments.

We then turn our attention to random walks in Dirichlet environments (RWDE). For a given
direction ℓ ∈ Sd−1 (where Sd−1 is the unit sphere in Rd), the question of transience and recurrence
in direction ℓ is completely understood for nearest-neighbor RWDE. A remark in Tournier (2015)
notes that many of the results used in the characterization of transience do not rely on the nearest-
neighbor assumption, so much of what was known in the nearest-neighbor case carries over to
the bounded-jumps case. However, not everything carries over directly. One crucial step toward
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characterizing directional transience is a 0-1 law. As Tournier points out in his remark, the proof
of the 0-1 law for RWDE in dimensions d ≥ 3 given in Bouchet (2013) does not require the nearest-
neighbor assumption, but the proof for RWRE in dimension d = 2 in Zerner and Merkl (2001)
and Zerner (2007) does require the nearest-neighbor assumption. Our extension of the 0-1 law for
d = 2 to bounded jumps means that for RWDE with bounded jumps, the 0-1 law is now proven
for all dimensions. Removing the nearest-neighbor assumption creates one other obstacle to fully
characterizing directional transience in a given direction. When the annealed drift is zero, the
nearest-neighbor argument relies on a symmetry that does not necessarily exist in the bounded-
jump case. Therefore, once the two-dimensional 0-1 law is proven, completing a characterization
of directional transience amounts to showing, for all dimensions d and for every fixed direction
ℓ ∈ Sd−1, that zero annealed drift implies recurrence in direction ℓ.

The rest of this section formally defines our model. Section 2 states and proves the 0-1 law. Section
3 completes the characterization of directional transience for a given direction in the Dirichlet case.

Model. Let V be a finite or countable set. For the theorems stated in this paper, we always have
V = Zd (with d = 2 in Section 2), but the proofs in Section 3 will require constructing RWRE
on other sets. An environment on V is a nonnegative function ω : V × V → [0, 1] such that for
all x ∈ V ,

∑
y∈V ω(x, y) = 1. We denote by ΩV the set of all environments on V . For a given

environment ω and x ∈ V , we can define the quenched measure P x
ω on V N (where we assume 0 ∈ N)

to be the law of a Markov chain X = (Xn)n≥0 on V , started at x, with transition probabilities given
by ω. That is: P x

ω (X0 = x) = 1, and for n ≥ 1, P x
ω (Xn+1 = y|X0, . . . , Xn) = ω(Xn, y).

Let FV be the Borel sigma field with respect to the product topology on ΩV , and let P be a
probability measure on (ΩV ,FV ). For a given x ∈ V , we define the annealed measure P x = P×P x

ω

on ΩV × V N by

P x(A×B) =

∫
A
P x
ω (B)P(dω)

for measurable A ⊂ ΩV , B ⊂ V N. In particular, for measurable B ⊂ V N, P x(ΩV ×B) = E[P x
ω (B)].

We often abuse notation by writing P x(B) instead of P x(ΩV ×B). When referring to “the law” of
a RWRE, we mean the annealed law unless otherwise specified.

All measures P on ΩZd considered in this paper satisfy the following conditions.
(C1) Under P, if ωx(y) = ω(x, x+ y), the (ωx)x∈Zd are i.i.d.;
(C2) With P-probability 1, the Markov chain induced by ω has only one infinite communicating

class, and it is reachable from every site.
(C3) There is an R > 0 such that with P-probability 1, ω(x, y) = 0 whenever |x− y| > R;

Condition (C2) replaces the weak ellipticity assumption from Zerner and Merkl (2001) and Zerner
(2007), under which P(ω(0, y) > 0) = 1 for all four nearest neighbors y of 0. Our condition (C2) is
satisfied whenever the Markov chain induced by ω is P–almost surely irreducible. In particular, if
there is a set of possible jumps that always have positive probability for P–almost every environment,
and it is possible to reach any site from any other site using such jumps, then (C2) is satisfied (under
the weak ellipticity assumption of Zerner and Merkl (2001) and Zerner (2007), the set of nearest-
neighbor jumps has this property). For an example where the Markov chain is P–almost surely not
irreducible but condition (C2) is still satisfied, see Appendix B.

For ℓ ∈ Sd−1, define the event

Aℓ := {X ∈ (Zd)N : lim
n→∞

Xn · ℓ = ∞}.

2. The 0-1 Law for Dimension 2

We prove the 0-1 law for directional transience for i.i.d. RWRE on Z2 with bounded jumps.
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Theorem 2.1. Let d = 2, let assumptions (C1), (C2), and (C3) hold, and let ℓ ∈ S1. Then
P 0(Aℓ) ∈ {0, 1}.

Before giving the proof, we summarize the proof in Zerner (2007) and discuss where ours will
differ. The idea of Zerner’s proof is that if the probability of transience in both direction to the left
and to the right (for instance) is positive, then with non-vanishing probability, one should be able
to start two walks in the same environment on different sides of a wide strip and have both walks
cross the strip and exit on the opposite side from where they started (call this the strip traversal
event). If the starting points are chosen correctly, this should lead to the paths of the walks crossing
at least half the time. The nearest-neighbor assumption is leveraged here, as it implies that crossing
paths must intersect. This intersection entails a low-probability event. Consider the meeting point.
A walk came a long way from the right to hit that point, so it must have a very high probability
of transience to the left. But another walk went through this same point, and then traveled a long
distance to the right. The probability of such an event can be made arbitrarily low, implying that
transience to the left or to the right must have zero probability.

We now discuss differences between the above argument and ours. The argument from Zerner
(2007) breaks the strip-traversal event into the event that the two paths intersect and the event
that they do not intersect, the latter being a subset of the event that the walks land on opposite
sides of a straight line through their starting points. We must consider three events: that the paths
intersect, that the paths come within a specified distance of each other, and that the paths land on
opposite sides of the line through their starting points. Showing that these events are the entirety
of the strip-traversal event is a step not required in Zerner’s argument. If the linear interpolations
of the paths cross, then the finite range assumption implies that the paths must come near each
other. However, unlike in the planar case, it is possible for them to land on the same side of the
line through their starting points without the linear interpolations crossing, and we must show that
this event also entails the walks coming near each other.

A more significant difficulty is in comparing the probability of the event that the walks come
near each other to the probability that they actually meet. Because we are not assuming uniform
ellipticity, and because a part of the environment where both paths come near each other is not
necessarily a “typical” part of the environment, arguments dealing with the quenched probability
of a modified path that causes an intersection would be difficult. Instead, we focus on annealed
probabilities, which requires us to leverage independence of the environment at different sites while
still forcing the walks to meet. This requires careful attention to the work of defining the right
stopping times and events, and unlike in Zerner’s argument, results in our defining a meeting event
where one of the walks does not necessarily complete the strip traversal, but which nonetheless has
vanishing probability.

Proof of Theorem 2.1: We divide this proof into steps.
Step 1: Preliminaries

Fix ℓ ∈ S1. For a ∈ R and X a sequence in Z2, consider the stopping times

T≥a = T≥a(X) := inf{n ≥ 0 : (Xn · ℓ) ≥ a},

and likewise for T≤a, T>a, and T<a. Similarly, for a set S ⊂ Z2, define

TS = TS(X) := inf{n ≥ 0 : Xn ∈ S}.

We often suppress the argument X when the sequence intended is clear from the context.
For y ∈ Z2 and a path γ = (x0, x1, . . . , xn) (which is a path of length n, and is a loop if xn = x0),

define y + γ := (y + x0, y + x1, . . . , y + xn). This is simply a space shift of the path γ. For a path
γ = (x0, x1, . . . , xn), we will talk about the annealed probability of γ, or the probability that X takes
γ. This simply means

P x0(X0 = x0, X1 = x1, . . . , Xn = xn).
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Call a path γ a possible path if it has positive annealed probability. Note that a loop (x0) of zero
length has annealed probability 1, since P x0(X0 = x0) = 1.

Now by assumption (C2), there is a possible path connecting any two points. This is because
if x, y ∈ Zd, then with positive P-probability, y is in the infinite communicating class and thus
reachable from x by some finite path. Since there are countably many finite paths from x to y, at
least one must have positive annealed probability. Let M be large enough that for any vertex y in
a closed unit disc of radius 2R centered at 0, there is a path of positive probability from 0 to y with
length no more than M .

By Kalikow’s 0-1 law (Theorem A.1 in Appendix A), P 0(Aℓ ∪A−ℓ) ∈ {0, 1}. Thus, it suffices to
show that P 0(Aℓ)P

0(A−ℓ) = 0 under the assumption that P 0(Aℓ ∪ A−ℓ) = 1. Lemma A.2 tells us
that P 0(Aℓ) > 0 if and only if P 0(T<0 = ∞) > 0 and P 0(A−ℓ) > 0 if and only if P 0(T>0 = ∞) > 0.
Thus, it suffices to show

P 0(T<0 = ∞)P 0(T>0 = ∞) = 0. (2.1)
For a, b ∈ R, define the event

Gb
a :=

{T≥b < T<a} if b > a;

{T≤b < T>a} if b < a.

Note that for fixed a,

lim
b→∞

Gb
a =

⋂
b>a

Gb
a ⊂ {T<a = ∞}; lim

b→−∞
Gb

a =
⋂
b<a

Gb
a ⊂ {T>a = ∞}. (2.2)

Step 2: Two walks in one environment
In this step, we define a point zL and measures on (Z2)N × (Z2)N that encapsulate the notion of

running two random walks in the same environment, one from 0 and one from zL. We define a “strip-
traversal event” in which the two walks cross a strip in opposite directions with certain restrictions,
and then define three subsets of this event and show that their union is the whole event. Showing
this last statement requires more delicate work than showing the analogous statement in Zerner
(2007), due to fringe cases which do not appear in the nearest-neighbor model.

Fix a unit vector ℓ⊥ perpendicular to ℓ. Choose a sequence zL ∈ Z2 indexed by L ∈ N such that
• zL · ℓ ≥ 2L,
• With positive P 0-probability, XT≥2L

= zL, and
• zL · ℓ⊥ is a median of the distribution of XT≥2L

· ℓ⊥ under the measure P 0(·|G2L
0 ). That is,

P 0(XT≥2L
· ℓ⊥ > zL · ℓ⊥|G2L

0 ) ≤ 1
2 and P 0(XT≥2L

· ℓ⊥ < zL · ℓ⊥|G2L
0 ) ≤ 1

2 .
Define xL := zL · ℓ. Due to the allowance of jumps, zL may not be uniquely defined for each L—for
example, if ℓ = (1, 0) and a jump of two steps to the right is possible, then (2L, h) and (2L+ 1, h)
would both be candidates for zL for some h—but one may, for instance, always take the candidate
with the smallest ℓ component. Now consider two independent random walks X1 = (X1

n)n and
X2 = (X2

n)n moving in the same environment, with the first walk starting at 0 and the second
starting at zL. For ω ∈ ΩZ2 and a, b ∈ Z2, let P a,b

ω be the product measure P a
ω × P b

ω on the set
(Z2)N × (Z2)N with typical element (X1,X2). Let P a,b be the corresponding annealed measure.

We consider the “strip traversal event” G2L
0 × G0

xL
, which is roughly the event that both walks

cross the strip {0 ≤ x · ℓ ≤ 2L} before leaving it; the walk starting at 0 is in G2L
0 , while the walk

starting at zL is in G0
xL

. Zerner (2007, equation (10)) shows1 that

P 0(T<0 = ∞)P 0(T>0 = ∞) = lim
L→∞

P 0,zL(G2L
0 ×G0

xL
). (2.3)

1Zerner actually shows P 0(T<0 = ∞)P 0(T>0 = ∞) ≤ lim infL→∞ P 0,zL(G2L
0 ×G0

xL
), and this is all that is needed

for his argument and ours. However, a very brief and straightforward addition to Zerner’s argument would show that
the liminf is actually a limit and that equality holds, so we write it that way for cosmetic reasons.
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Figure 2.1. On the left, we have (X1
T≥2L

− zL) · ℓ⊥ > 0 and X2
T≤0

· ℓ⊥ > 0, but
β2 · ℓ⊥ < 0. On the right, different ways to have β2 · ℓ⊥, (β1 − z′L) · ℓ⊥ > 0 are
depicted. The upper path from zL shows the situation α2 · ℓ⊥ > β1 · ℓ⊥, while the
lower path from zL shows α2 · ℓ⊥ < β1 · ℓ⊥.

Now consider the following three subsets of the strip traversal event:
• OL, the opposite-sides event. This is the event that X1 ∈ G2L

0 , X2 ∈ G0
xL

, and[
(X1

T≥2L
− zL) · ℓ⊥

] [
X2

T≤0
· ℓ⊥

]
< 0.

• IL, the intersection event. This is the event that X1 ∈ G2L
0 , X2 ∈ G0

xL
, and for some

0 ≤ m ≤ T≥2L(X
1), 0 ≤ n ≤ T≤0(X

2), X1
m = X2

n.
• PL, the proximity event. This is the event that X1 ∈ G2L

0 , X2 ∈ G0
xL

, and for some
0 ≤ m ≤ T≥2L(X

1), 0 ≤ n ≤ T≤0(X
2), |X1

m −X2
n| ≤ 2R.

Clearly IL ⊂ PL. We claim that the three events together comprise the entirety of the strip traversal
event.

Claim 1.
G2L

0 ×G0
xL

= OL ∪ PL = OL ∪ PL ∪ IL. (2.4)

The events OL and PL are each specified to be contained in the event G2L
0 ×G0

xL
, so their union

is as well. Now assume X1 ∈ G2L
0 and X2 ∈ G0

xL
. We will show that either OL or PL occurs. Let

π1 be the continuous linear interpolation of the path taken by X1, and let π2 be the continuous
linear interpolation of the path taken by X2. Let α2 be the last point in R2 where π2 crosses the
line {x · ℓ = 2L}. Let β1 be the first point where π1 crosses {x · ℓ = 2L}, and let β2 be the first point
where π2 crosses {x · ℓ = 0}. Let z′L be the point on the line {x · ℓ = 2L} with (zL − z′L) · ℓ⊥ = 0

(thus, zL = z′L + (xL − 2L)ℓ). Note α2, β1, β2, and z′L need not be in Zd.
To show that either OL or PL occurs, we will assume OL does not occur and prove that PL must

occur. If OL does not occur, then (X1
T≥2L

− zL) · ℓ⊥ and X2
T≤0

· ℓ⊥ are either both positive or both
negative, or else at least one is 0. If (X1

T≥2L
− zL) · ℓ⊥ = 0, then PL occurs, because XT≥2L

and
zL have the same ℓ⊥ component and both have ℓ component between 2L and 2L+R. Similarly, if
X2

T≤0
· ℓ⊥ = 0, then PL occurs.

Now suppose (X1
T≥2L

− zL) · ℓ⊥ and X2
T≤0

· ℓ⊥ are both nonzero and have the same sign. Without
loss of generality, we may assume both are positive (otherwise, rename the directions ℓ⊥ and −ℓ⊥).
To show that PL occurs, we must show that for some 0 ≤ m ≤ T≥2L(X

1) and for some 0 ≤ n < T 2
0 ,

|X1
m −X2

n| ≤ 2R.
First, suppose that β2 · ℓ⊥ < 0; this situation is depicted in on the left in Figure 2.1. Then

X2
T≤0−1 · ℓ > 0 and X2

T≤0−1 · ℓ⊥ < 0, but X2
T≤0

· ℓ < 0 and X2
T≤0

· ℓ⊥ > 0. In one step, the walker
that started at zL crosses the line {x · ℓ = 0} and the line {x · ℓ⊥ = 0}. It follows that X2

T≤0−1 must
be within a radius R of 0, and the event PL occurs.
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Similarly, if (β1 − zL) · ℓ⊥ < 0, then X1
T≥2L−1 must be within a radius R of z′L. Since z′L is within

distance R from zL, we conclude that X1
T≥2L−1 is within a radius 2R of zL, and the event PL occurs.

We may therefore assume β2 · ℓ⊥ and (β1 − z′L) · ℓ⊥ are both positive. This situation is depicted
on the right in Figure 2.1. If α2 · ℓ⊥ > β1 · ℓ⊥, then π2 must cross the line {x · ℓ⊥ = β1 · ℓ⊥} at some
point y between β1 and β1 + (xL − 2L)ℓ. This crossing point is a distance no more than R

2 from
X2

n for some 0 ≤ n < T≤0(X
2). Its distance from β1 is no more than R, and β1 is no more than R

2

units of distance away from some X1
m for some 0 ≤ m ≤ T≥2L(X

1). Thus, PL occurs.
Finally, assume α2 · ℓ⊥ < β1 · ℓ⊥. Then the path taken by π1 from 0 to β1 must intersect the path

taken by π2 from α2 to β2, since they are paths connecting different pairs of opposite corners of the
quadrilateral (0, β2, β1, α2). The point of intersection is no more than R

2 units of distance away from
X1

m for some 0 ≤ m ≤ T≥2L(X
1) and no more than R

2 away from X2
n for some 0 ≤ n < T≤0(X

2).
Thus, PL occurs. This finishes the justification of Claim 1.

Now (2.4), together with (2.3), yields

lim
L→∞

P 0,zL(OL ∪ PL) = P 0(T<0 = ∞)P 0(T>0 = ∞). (2.5)

Step 3: Handling OL \ IL
In this step, we consider the event OL \ IL and and show that its probability is less than

1
2P

0(G2L
0 )P zL(G0

xL
).

Because this event does not involve the walks intersecting (and thus “sharing” part of the en-
vironment), its probability is the same as the probabilities of an analogous event where the two
walks are run independently in different environments. And it is therefore bounded above by the
probability of a similar event where two walks are run independently in different environments but
are allowed to intersect paths. To formalize this idea, let G2L,+

0 be the subset of G2L
0 on which

XT≥2L
· ℓ⊥ > zL · ℓ⊥. Let G0,+

xL be the subset of G0
xL

on which XT≤0
· ℓ⊥ > 0. Define G2L,−

0 and G0,−
xL

analogously. And define

ΠL := {(0 = X0, X1, . . . , XT≥2L
) : X ∈ G2L

0 },

ΠL,+ := {(0 = X0, X1, . . . , XT≥2L
) : X ∈ G2L,+

0 },

ΠL,− := {(0 = X0, X1, . . . , XT≥2L
) : X ∈ G2L,−

0 }.

We will abuse notation by using π to denote both a path in one of these sets and the set of vertices
in that path. Then

P 0,zL(OL \ IL) =
∑

π∈ΠL,+

P 0(X takes π)P zL(G0,−
xL

, T≤0 < Tπ)

+
∑

π∈ΠL,−

P 0(X takes π)P zL(G0,+
xL

, T≤0 < Tπ)

≤
∑

π∈ΠL,+

P 0(X takes π)P zL(G0,−
xL

)

+
∑

π∈ΠL,−

P 0(X takes π)P zL(G0,+
xL

)

= P 0(G2L,+
0 )P zL(G0,−

xL
) + P 0(G2L,−

0 )P zL(G0,+
xL

)

≤ 1

2
P 0(G2L

0 )P zL(G0
xL
).

=
1

2
P 0(G2L

0 )P 0(G−xL
0 ).
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The last inequality comes from the median property of zL, the last equality comes from translation
invariance. Now, using (2.2) and the fact that IL ⊂ PL, we have

lim sup
L→∞

P 0,zL(OL \ PL) ≤ lim sup
L→∞

P 0,zL(OL \ IL) ≤
1

2
P 0(T<0 = ∞)P 0(T>0 = ∞)

Hence, due to (2.5),
1

2
P 0(T<0 = ∞)P 0(T>0 = ∞) ≤ lim inf

L→∞
P 0,zL(PL).

Therefore, to prove (2.1), it suffices to show

lim
L→∞

P 0,zL(PL \ IL) = 0, (2.6)

and
lim
L→∞

P 0,zL(IL) = 0. (2.7)

Step 4: Forcing an unlikely meeting.
In this step, we show that the above quantities can be compared to the probability of a certain

“meeting event,” which occurs with vanishing probability. To do this, we exhibit a strategy for X2

to hit the path taken by X1 at a point appropriately far from zL.
First, assume that

P 0,zL(P ′
L \ IL) ≥

1

2
P 0,zL(PL \ IL), (2.8)

where P ′
L ⊂ PL is the event X1 ∈ G2L

0 , X2 ∈ G0
xL

, and |X1
m−X2

n| ≤ 2R for some 0 ≤ m ≤ T≥2L(X
1),

0 ≤ n < T≤0(X
2) with X1

m ·ℓ ≤ L. (We will handle the remaining case with an essentially symmetric
argument.)

Recall that M is such that for any vertex y in a closed disc of radius 2R centered at 0, there is a
possible path of length no more than M . Now for a given path π, define the stopping time

T ′
π,L = T ′

π,L(X) := inf

{
n ≥ 0 :

for some x ∈ π with x · ℓ ≤ L, there is a possible path
of length M or less from Xn to x

}
.

Notice that P ′
L implies that T ′

π,L(X
2) ≤ T≤0(X

2) for π = (X1
n)

T≥2L

n=0 . This is because if |X1
m−X2

n| ≤
2R, then there is a possible path of length no more than M from X2

n to X1
m. Therefore,

P 0,zL(P ′
L \ IL) ≤

∑
π∈ΠL

P 0,zL(X1 takes π)P 0,zL(T ′
π,L(X

2) ≤ T≤0(X
2) < Tπ(X

2) ∧ T>xL(X
2))

=
∑
π∈ΠL

P 0(X takes π)P zL(T ′
π,L ≤ T≤0 < Tπ ∧ T>xL)

≤
∑
π∈ΠL

P 0(X takes π)P zL(T ′
π,L < Tπ). (2.9)

The first inequality comes from independence of transition probabilities at different sites (condition
(C1)). Notice that this is where the splitting off of the event IL becomes important, because it
allows us to leverage independence.

Now fix a path π ∈ ΠL, and let y0 be possible candidate (under the measure P zL) for XT ′
π,L

—that
is, a vertex such that for some x ∈ π with x · ℓ ≤ L, there is a possible path of length M or less
from y0 to x. Also fix n < ∞. Now let a = (a0 = zL, a1, a2, . . . , an = y0) be a possible path of n
steps from zL to y0 such that if X takes a—that is, if Xi = ai for 0 ≤ i ≤ n—then T ′

π,L = n and
XT ′

π,L
= Xn = y0. Let Ea ⊂ (Z2)N be the event that X takes a. Then on Ea, there is a possible

path γ = (y0, y1, y2, . . . , yk) with k < M , yk ∈ π, and yk · ℓ ≤ L. This path does not include any
vertices in the path (X0, X1, . . . , Xn−1), because if such a vertex were included, there would be a
shorter path from that vertex to yk, violating the infimum part of the definition of T ′

π,L. It may
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include multiple vertices from π, but taking j = inf{0 ≤ i ≤ k : yi ∈ π}, we may consider the path
γ′ = (y0, y1, y2, . . . , yj) that intersects neither (X0, X1, . . . , Xn−1) nor π, except at the terminating
vertex yj (note that we do not necessarily have yj · ℓ ≤ L, but we do have yj · ℓ ≤ L+RM). By the
strong Markov property, for every ω with P zL

ω (Ea) > 0, we have

P zL
ω

(
(Xn, Xn+1, . . . , Xn+j) = γ′ Ea

)
= P y0

ω (X takes γ′). (2.10)

We will take expectations under the measure E[·|Ea] on both sides of the above, and apply the
following lemma, a version of the double conditioning theorem.

Lemma 2.2. For all measurable events A,B ⊂ (Z2)N with P a(A) > 0

P a(B|A) = Ea[P a
ω(B|A)|A]

We defer the proof to Appendix A. Now taking expectations in (2.10) and applying the above
lemma gives us

P zL
(
(Xn, Xn+1, . . . , Xn+j) = γ′ Ea

)
= EzL [P y0

ω (X takes γ′)|Ea].

Now by the independence assumption (C1) and the fact that the paths a and γ′ are disjoint, this
gives us

P zL
(
(Xn, Xn+1, . . . , Xn+j) = γ′ Ea

)
= P y0(X takes γ′) (2.11)
≥ κ, (2.12)

where κ > 0 is the minimum annealed probability of any possible path of length less than M .
A minimum exists because, up to translation invariance, there are only finitely many possible
paths of a given length, and it is positive because by definition, all possible paths have positive
annealed probability. Now yj is of a distance at most R(k− j) ≤ Rk < RM from yk, and therefore
yj · ℓ ≤ L + RM . Thus, if a portion of the walk takes the path γ′, which ends at yj , then
Tπ = Tπ∩{x·ℓ<L+RM} < ∞. By (2.12), then, we have

P zL
(
Tπ = Tπ = Tπ∩{x·ℓ<L+RM} < ∞ Ea

)
≥ κ. (2.13)

Now the event {T ′
π,L = n} is, up to a set of P zL-probability 0, the disjoint union of Ea, over all

possible paths a of length n from zL such that if X takes a then T ′
π,L = n. Likewise, the event

{T ′
π,L < ∞} is the disjoint union of {T ′

π,L = n} over all finite values of n. Therefore, from (2.13) we
get

P zL
(
Tπ = Tπ∩{x·ℓ<L+RM} < ∞ T ′

π,L < ∞
)
≥ κ. (2.14)

We next define another event for (X1,X2) that involves the walks intersecting, but this one is
not contained in the strip traversal event. Let the meeting event ML be the event that X1 ∈ G2L

0

and X2 intersects with the path (X1
n)

T≥2L

n=0 at a point y with y · ℓ ≤ L + RM . Note that our event
ML is less restrictive than the event IL in that it does not require that X2 complete the event
G0

xL
, nor does it require that the intersection occur at some X2

n with n ≤ T≤0(X
2). However, unlike

IL, ML imposes the restriction that the intersection must occur on or near the half of the strip
{0 ≤ x·ℓ ≤ 2L} that is closer to 0. Now if X1 takes π for some π ∈ ΠL and Tπ∩{x·ℓ<L+RM}(X

2) < ∞,
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then (X1,X2) ∈ ML. By independence, we therefore have

P 0,zL(ML) ≥ P 0,zL(X1 takes π, Tπ(X
2) = Tπ∩{x·ℓ<L+RM}(X

2) < ∞)

=
∑
π∈ΠL

P 0(X takes π)P zL(Tπ = Tπ∩{x·ℓ<L+RM} < ∞)κ

(2.14)
≥

∑
π∈ΠL

P 0(X takes π)P zL(T ′
π,L < ∞)κ

(2.9)
≥ P 0,zL(P ′

L \ IL)κ
(2.8)
≥ 1

2
κP 0,zL(PL \ IL), (2.15)

Step 5: Finishing the argument.
We are now to show that P 0,zL(ML) vanishes. In Zerner (2007), it is shown that the event we

are calling IL has vanishing probability in the nearest-neighbor case. His argument here does not
use the nearest-neighbor assumption, and it also works for our event ML. We summarize it here,
applying it to ML. Fix ε > 0, and suppose the intersection occurs at a point y. Either P y

ω(Aℓ) < ε
or P y

ω(Aℓ) ≥ ε. In the former case, a walk from 0 passes through y but still has T≥L < T<0. Zerner
shows that the probability of this event has limsup bounded above by ε. In the latter case, a walk
started from zL travels a great distance in direction −ℓ (here, a distance at least L−RM) and still
reaches a point where the probability of Aℓ is at least ε. The chance of traveling such a distance in
direction −ℓ but still having X2 ∈ Aℓ approaches 0 as L → ∞. On the other hand, if X2 ∈ A−ℓ,
then PXn

ω (Aℓ) must approach 0, being a bounded martingale, and so the probability that it is still
above ε after L−RM

R units of time (long enough to travel distance L−RM) approaches 0 as L → ∞.
One may then take ε to 0. Hence we may conclude that

lim
L→∞

P 0,zL(ML) = 0.

Since (2.15) is true whenever (2.8) is true, we may conclude that

lim
L→∞

P 0,zL(PL \ IL)1(2.8) holds = 0.

Now if (2.8) does not hold, then we can make a nearly symmetric argument. We must have

P 0,zL(P ′′
L \ IL) ≥

1

2
P 0,zL(PL \ IL),

where P ′′
L is the event X1 ∈ G2L

0 , X2 ∈ G0
xL

, and |X1
m − X2

n| ≤ 2R for some 0 ≤ m ≤ T≥2L(X
1),

0 ≤ n < T≤0(X
2) with X2

n · ℓ ≥ L − 2R. Define M′ to be the event that X2 ∈ G0
xL

and X1

intersects with the path (X2
m)

T≤0

m=0 at a point y with y · ℓ ≥ L − 2R − RM . As in (2.15), we can
argue that P 0,zL(M′

L) ≥
1
2κP

0,zL(PL \ IL), and we can show as before that P 0,zL(M′
L) vanishes in

L. Therefore,
lim
L→∞

P 0,zL(PL \ IL)1(2.8) does not hold = 0.

It follows that limL→∞ P 0,zL(PL \ IL) = 0, which is (2.6). To get (2.7), note that IL ⊂ ML ∪M′
L,

so its probability must likewise vanish. □

3. Random Walks in Dirichlet Environments

We now turn our attention to random walks in Dirichlet environments (RWDE). Because the
proofs will require graphs other than Zd, we define RWDE on more general graphs.
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Let H = (V,E,w) be a weighted directed graph with vertex set V , edge set E ⊆ V × V , and
a positive-valued weight function w : E → R. To the weighted directed graph H, we can associate
the Dirichlet measure PH on (ΩV ,FV ), which we now describe.

Recall the definition of the Dirichlet distribution: for a finite set I, take parameters α = (αi)i∈I ,
with αi > 0 for all i. The Dirichlet distribution with these parameters is a probability distribution
on the simplex ∆I := {(xi)i∈I :

∑
i∈I xi = 1} with density

D ((xi)i∈I) = C(α)
∏
i∈I

xαi−1
i ,

where C(α) is a normalizing constant.
Define PH to be the measure on ΩV under which transition probabilities at the various vertices

x ∈ V are independent, and for each vertex x ∈ V , (ω(x, y))(x,y)∈E is distributed according to a
Dirichlet distribution with parameters (w(x, y))(x,y)∈E . With PH-probability 1, ω(x, y) > 0 if and
only if (x, y) ∈ E for all x, y ∈ V . We will call a random environment chosen according to PH a
Dirichlet environment on H. We will use EH to denote the associated expectation, and P x

H and Ex
H

to denote the annealed measure and expectations.
Now let N ⊂ Zd be a finite set such that SpanN(N) :=

⋃∞
N=0

∑N
i=1 N = Zd. Let G be a weighted

directed graph with vertex set Zd, and let (αy)y∈N be positive weights. Let G = (Zd, E, w) be the
weighted directed graph with vertex set Zd, edge set E := {(x, y) ∈ Zd × Zd : y − x ∈ N}, and
weight function w with w(x, y) = αy−x for all (x, y) ∈ E (the condition on N simply ensures that G
is strongly connected). Then PG is the law of a Dirichlet environment on Zd satisfying (C1), (C2),
and (C3), and P 0

G is the corresponding annealed measure for a walk started at 0.
It is known in nearest-neighbor RWDE that for a given direction ℓ ∈ Sd−1, transience and

recurrence in direction ℓ under P 0
G are characterized by the relationship between ℓ and the annealed

drift.

Theorem 3.1 (Sabot and Tournier (2017, Theorem 1)). Let P 0
G be the measure of a nearest-neighbor

RWDE on Zd. Let ∆ = E0[X1] be the annealed drift, and let ℓ ∈ Sd−1. Then P 0
G(Aℓ) = 1 if and

only if ℓ ·∆ > 0; otherwise, P 0
G(Aℓ) = 0.

Our goal is to extend this theorem to RWDE with bounded jumps.

Theorem 3.2. Let P 0
G be the measure of a RWDE with bounded jumps on Zd. Let ∆ = E0[X1]

be the annealed drift, and let ℓ ∈ Sd−1. Then P 0
G(Aℓ) = 1 if and only if ℓ · ∆ > 0; otherwise,

P 0
G(Aℓ) = 0.

As Tournier points out in Tournier (2015), many of the arguments used in the proof of the
theorem from Sabot and Tournier (2017) do not rely on the nearest-neighbor assumption, and
therefore already work for RWDE with bounded jumps as well. In particular, Theorem 3.2 is known
to be true provided ∆ ̸= 0 and d ̸= 2.

If ∆ ̸= 0 and d = 2, we know from Tournier (2015) that ℓ ·∆ > 0 implies P 0
G(Aℓ) > 0, and from

Drewitz and Ramírez (2010, Theorem 1.8) that ℓ · ∆ = 0 implies P 0
G(Aℓ) = 0 (the arguments in

the latter paper are given for the nearest-neighbor case, but can be easily modified to work for our
bounded-jump model). From here, our 0-1 law of Theorem 2.1 allows us to reach the conclusion of
Theorem 3.2.

The only remaining case is where ∆ = 0. In the nearest-neighbor case, ∆ = 0 implies a symmetry
that forces P 0

G(Aℓ) = P 0
G(A−ℓ) for all directions ℓ. The 0-1 laws of Zerner and Merkl (2001) for

d = 2 and of Bouchet (2013) for d ≥ 3 then yield the conclusion P 0
G(Aℓ) = 0 for all ℓ. In the

bounded-jumps case, zero drift does not imply symmetry, so even the 0-1 law of Theorem 2.1 is not
by itself enough to prove the theorem. Theorem 3.2 will be proven if we can prove the following
theorem, which will rely on Theorem 2.1 for the case d = 2.
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Theorem 3.3. Let P 0
G be the measure of a RWDE with bounded jumps on Zd. Assume ∆ = 0, and

let ℓ ∈ Sd−1. Then P 0
G(Aℓ) = 0.

As with many proofs of results in RWDE, our proof involves comparing the graph G to a sequence
of larger and larger finite graphs (HN,L), which look like G except possibly near boundaries, and
applying a key “time-reversal” lemma from Sabot (2011). We will state only the part of this lemma
that we need, beginning with a definition. Let H = (V,E,w) be a weighted directed graph. For a
site x ∈ V , define the divergence of x by div(x) :=

∑
(x,y)∈E w(x, y)−

∑
(y,x)∈E w(y, x). Say x has

zero divergence if div(x) = 0, and say H is divergence-free if every vertex in V has zero divergence.

Lemma 3.4 (See Sabot, 2011, Lemma 1; Sabot and Tournier, 2011, Lemma 1). Let H = (V,E,w)
be a divergence-free weighted directed graph, and let x, y ∈ V such that there is an edge e from y to
x in H. Then, letting T̃x denote the first positive hitting time of x, P x

H(XT̃x−1 = y) = w(y,x)∑
v∈V w(v,x) .

The finite graphs we construct are closely related to those constructed in Tournier (2015) for
the characterization of transience in the nonzero-drift case, and we invoke a key property of these
graphs that is proven in Tournier (2015) and also applies to our graphs. However, the graphs from
Tournier (2015) are slightly altered to suit our argument, which is new, though of a similar flavor.

A significant difference between the argument in Tournier (2015) and ours is that the former need
only be given for directions with rational slopes, and the result follows for arbitrary directions as
an immediate consequence. That is, let Sd−1

r :=
{

u
|u| : u ∈ Zd \ {0}

}
⊂ Sd−1 be the set of vectors

in the unit sphere Sd−1 that have all rational slopes. The finite graphs used in Tournier (2015)
are naturally set up to work for directions in Sd−1

r , but once the result is proven, extending to
arbitrary directions follows immediately from convexity of the set of transient directions. For us,
extending the result from rational directions to all ℓ ∈ Sd−1 is not so immediate. Indeed, the
following conjecture remains open for general RWRE.

Conjecture 3.5. Let P 0 be the law of an i.i.d. RWRE on Zd, and let Sd−1 be the set of a unit vectors
in Rd. For ℓ ∈ Sd−1, let A0

ℓ be the event that limn→∞Xn · ℓ = ∞, and there is no neighborhood
U ∈ Sd−1 containing ℓ such that for all ℓ′ ∈ U , limn→∞Xn · ℓ′ = ∞. Then for all ℓ ∈ Sd−1,
P 0(A0

ℓ ) = 0.

In the nearest-neighbor case of RWDE, Conjecture 3.5 is seen to be true from Sabot and Tournier
(2017, Theorem 1), and in the bounded-jump case it will follow from Theorem 3.2, once it is proven
(again, it only remains to prove Theorem 3.3). However, because we cannot rely on the truth of
Conjecture 3.5, proving Theorem 3.3 for all directions ℓ ∈ Sd−1

r is not sufficient to prove it for all
directions ℓ ∈ Sd−1, even though Sd−1

r is dense in Sd−1. For ℓ ∈ Sd−1 \ Sd−1
r , we must rule out the

possibility that a walk could with positive probability be transient in direction ℓ while recurrent in
all directions not parallel to ℓ.

For the sake of readability, we will first prove Theorem 3.3 for rational slopes. However, we do not
know of a way to generalize directly to arbitrary directions. Rather, the generalization will require
going through the same argument more carefully, choosing directions v ∈ Sd−1

r sufficiently close to ℓ
to satisfy certain properties and constructing graphs in terms of these v. We will describe necessary
differences as they come up. This approach should be easier to follow, as the ideas involved in
constructing the graphs and leveraging the time reversal lemma are quite separate from the ideas
involved in comparing arbitrary directions with directions in Sd−1

r .

3.1. Preliminaries. Because we are discussing multiple directions, we must replace our notation T≤a

for hitting times of half-spaces with the slightly more cumbersome

T ℓ
≤a = T ℓ

≤a(X) := inf{n ≥ 0 : (Xn · ℓ) ≤ a},



712 Daniel J. Slonim

and similarly for <, ≥, and >. We use this notation even for the proof that assumes ℓ ∈ Sd−1
r in

order to facilitate comparisons later.
Moreover, for ℓ ∈ Sd−1 we will also need to define the “lateral hitting times”

Hℓ
≥a := inf{n ≥ 0 : Xn · ℓ⊥ ≥ a for some ℓ⊥ ∈ Sd−1 with ℓ⊥ ⊥ ℓ}.

For a vertex set V and v ∈ V , define

Tv = Tv(X) := inf{n ≥ 0 : Xn = v}.
Finally, for any stopping time defined as the first n ≥ 0 satisfying a certain condition, we use the

same notation but with a tilde (∼) over it to denote the corresponding positive stopping time: that
is, the first n > 0 satisfying the same condition.

We will use the following lemma, which is also an ingredient in Kalikow’s 0-1 law. It is proven in
Appendix A.

Lemma 3.6. Let P 0 be the annealed measure of a RWRE on Zd satisfying assumptions (C1), (C2),
and (C3). Then for every ℓ ∈ Sd−1 and a < b ∈ R,

P 0(#{n ≥ 0 : Xn · ℓ ≥ a} = ∞, T ℓ
≥b = ∞) = 0. (3.1)

3.2. Rational slopes. We now state and prove Theorem 3.3 for directions with rational slopes.

Theorem 3.7. Let P 0
G be the measure of a RWDE with bounded jumps on Zd. Let ∆ = 0, and let

ℓ ∈ Sd−1
r . Then P 0

G(Aℓ) = 0.

Proof of Theorem 3.7: Let ℓ ∈ Sd−1
r . Assume for a contradiction that P 0

G(A−ℓ) > 0. Then, as
in Kalikow (1981, page 765), we have P 0

G(T
ℓ
>0 = ∞) > 0, from which it easily follows that α :=

P 0
G(T̃

ℓ
≥0 = ∞) > 0. By Lemma 3.6, P 0

G(T
ℓ
≤−L = T̃ ℓ

≥0 = ∞) = 0, so P 0
G(T

ℓ
≤−L < T̃ ℓ

≥0 = ∞) = α. For
PG-almost every environment, it is possible, with positive probability, for a walk to hit the half-space
{x · ℓ ≤ −L} and then return to {x · ℓ ≥ 0}. Therefore, we have P 0

G(T
ℓ
≤−L < T̃ ℓ

≥0) > α for all L ≥ 0.
And on the event {T ℓ

≤−L < T̃ ℓ
≥0}, there is necessarily some a such that T ℓ

≤−L < T̃ ℓ
≥0 ∧ Hℓ

≥a. It
therefore follows that for any L > 0, there exists K = K(L) > 0 such that

P 0
G(T

ℓ
≤−L < T̃ ℓ

≥0 ∧Hℓ
≥ 1

2
K
) > α. (3.2)

For L ≥ R, let K = K(L) be an increasing function satisfying (3.2) for all L. Let u be a constant
multiple of ℓ such that u ∈ Zd. Then let (u, u2, . . . , ud) be an orthogonal basis for Rd such that
ui ∈ Zd for all i. Let N be large enough that N |ui| ≥ K for all i.

We will define a graph HN,L in nearly the same way as the GN,L defined in Tournier (2015).
Consider the cylinder

CN,L := {x ∈ Zd : 0 ≤ x · ℓ ≤ L}/(NZu2 + · · ·+NZud).

This is the slab SN,L := {0 ≤ x ·ℓ ≤ L}∩Zd where vertices that differ by Nui for some i ∈ {2, . . . , d}
are identified. We note that Tournier (2015) uses L|u| rather than L here. We use L for reasons
related to our plans for generalizing the proof to ℓ /∈ Sd−1

r .
Now define the graph HN,L with vertex set

VN,L := CN,L ∪ {M} ∪ {∂},
where M and ∂ are new vertices (in Tournier (2015), R and ∂ are used, but in this paper, R refers
to the jump range, as defined in (C3)), and edges of HN,L are as follows:
1. All edges induced by those of G inside CN,L are also edges in HN,L ;;
2. If x ∈ CN,L corresponds to a vertex x′ ∈ SN,L, there is

(a) an edge from x to ∂ for each y ∈ N such that (x′ + y) · ℓ < 0,
(b) an edge from ∂ to x for each y ∈ −N such that (x′ + y) · ℓ < 0,
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(c) an edge from x to M for each y ∈ N such that (x′ + y) · ℓ > L,
(d) an edge from M to x for each y ∈ −N such that (x′ + y) · ℓ > L;

3. There is a new “special” edge from M to ∂ and one from ∂ to M .

Weights of all edges but the last two are induced by the corresponding weights in G. Note that
several edges may share the same head and tail. If that is the case, identify such edges into one
edge whose weight is the sum of all of the original weights in order to create a graph that is not a
multigraph and fits our definitions (there is also a way to define RWDE on a multigraph by keeping
track of vertices visited and edges taken, and if we used such a definition, the identification of
multiple edges would not affect the distribution of the vertex path). By construction, all vertices in
CN,L have zero divergence. It remains to describe the weights of the new edges connecting ∂ and
M (the paper Tournier (2015) only defines an edge from M to ∂). It is shown in Tournier (2015, p.
722) that the quantity(∑

weights of edges in 2(c)
)
−
(∑

weights of edges in 2(a)
)

is a positive multiple of the dot product of v with the annealed drift. Thus, because of our assumption
the annealed drift is zero, the two sums are equal. Note that by the shift-invariant structure of the
graph G, the sum on the left is also the weight exiting ∂ by edges in 2(b). Similarly, the sum on
the right is also the weight exiting M by edges in 2(d). Hence the total weights of edges in 2(a),
2(b), 2(c), and 2(d) are all the same. Because weights in 2(a) and 2(b) are the same, ∂ has zero
divergence, and because 2(c) and 2(d) are the same, M has zero divergence. In order to preserve
the divergence-free character of the graph, we give both of the special edges the same weight W ,
which we take to be the value of each of the two sums above. It follows from well known properties
of Dirichlet random variables that when the walk is started at either of the endpoints, its first step
is along the special edge to the other endpoint with annealed probability 1

2 . Figure 3.2 shows an
example of the graph HN,L. (Because Figure 3.2 is also intended to be used for the argument for
Theorem 3.3, it uses v rather than ℓ in its labeling. For the purpose of the current argument, simply
take v = ℓ.)

Define the stopping time τ = inf{n ∈ N : Xn = ∂,Xn−1 = M}. Note that {T̃∂ = τ} = {XT̃∂−1 =

M} is the event that the first return to zero is by the special edge.
We note, by Lemma 3.4,

P ∂
HN,L

(T̃∂ = τ) =
1

2

On the other hand, we also have P ∂
HN,L

(X1 = M) = 1
2 . Now by considering the possibility that the

first step from ∂ is to M (by the special edge) and the possibility that the first step from ∂ is not
to M , we get

P ∂
HN,L

(T̃∂ = τ) ≤ P ∂
HN,L

(X1 = M, T̃∂ = τ) + P ∂
HN,L

(X1 ̸= M,TM < T̃∂)

= P ∂
HN,L

(X1 = M)PM
HN,L

(T∂ = τ) + P ∂
HN,L

(X1 ̸= M,TM < T̃∂). (3.3)

The equality comes from the Markovian property of the quenched measure, Lemma 2.2, and inde-
pendence of sites, arguing as we did for (2.11). Now (3.3) can be rewritten as

1

2
≤ 1

2
PM
HN,L

(T̃∂ = τ) + P ∂
HN,L

(X1 ̸= M,TM < T̃∂), (3.4)

We claim that the term P ∂
HN,L

(X1 ̸= M,TM < T̃∂) approaches 0 as L and K increase. Let
B = B(L,K) be a box of radius L∧K

3 around 0, and for x ∈ CN,L, let x+ B be the set of vertices
in CN,L that can be written as x+ y for some y ∈ B. Note that for x ∈ CN,L, the dot product with
ℓ is well defined, since vertices in SN,L that are identified to form CN,L have the same dot product
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Figure 3.2. Graph HN,L. Here N = {(0, 1), (1,−1), (−2, 0)}, and v = (2, 1).
Boundary conditions in direction perpendicular to v are periodic; vertices labeled
with the same letters are identified. Arrows to and from the main part of the graph
on the left are understood to originate from or terminate at ∂, and similarly with M
on the right side.

with ℓ. Then for sufficiently large L,

P ∂
HN,L

(X1 ̸= M,TM < T̃∂) =
∑

x∈CN,L,
0≤x·ℓ≤R

P ∂
HN,L

(X1 = x)P x
HN,L

(TM < T∂)

≤
∑

x∈CN,L,
0≤x·ℓ≤R

P ∂
HN,L

(X1 = x)P x
HN,L

(T(x+B)c < T∂)

≤
∑

x∈CN,L,
0≤x·ℓ≤R

P ∂
HN,L

(X1 = x)P 0
G(TBc < T ℓ

≤−R)

= P 0
G(TBc < T ℓ

≤−R). (3.5)

The first equality comes from the strong Markov property and independence of sites. The first
inequality holds as long as L is large enough that M /∈ x + B. To get the second inequality, note
that a finite path from x that stays in x+B until the last step does not use the periodic boundary
conditions (provided L∧K

3 > R), and so it has the same probability as a corresponding path in G.
And for x ∈ CN,L with x · ℓ ≤ R, a walk from x on HN,L that leaves x + B without hitting ∂
corresponds to a walk on G (which we may take to start at 0 by translation invariance) that leaves
B without traveling x · ℓ or more units (of distance in Rd) in direction −ℓ. Since x · ℓ ≤ R for all x
with P ∂

HN,L
(X1 = x) > 0, the second inequality follows. The final equality comes from pulling the

second term out of the sum, which is then equal to 1.
To prove our claim, we must show that (3.5) goes to 0 as L increases (along with K). Let ε > 0.

By assumption, P 0
G(A−ℓ) > 0. By Theorem 2.1 for d = 2, or by the 0-1 law of Bouchet for d ≥ 3
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in Bouchet (2013) (where, as Tournier points out in Tournier (2015), the proof works for bounded
jumps), this means P 0

G(A−ℓ) = 1. Thus, P 0
G(T

ℓ
≤−R < ∞) = 1. Now take an increasing sequence

(Qr) of finite sets converging to Zd. Then the event {T ℓ
≤−R < ∞} is the limit as r increases (i.e.,

the union over all r) of the events {T ℓ
≤−R < TQc

r
}. Let Q = Q(ε) be one such Qr large enough that

P 0
G(TQc < T ℓ

≤−R) < ε. Note that although Q depends on ε, it does not depend on L. Thus, for
large enough L, B contains Q, so that

{TBc ≤ T ℓ
≤−R} ⊂ {TQc ≤ T ℓ

≤−R}. (3.6)

It follows that, for large enough L,

P 0
G(TBc ≤ T ℓ

≤−R) ≤ P 0
G(TQc ≤ T ℓ

≤−R) < ε.

Since this can be true for arbitrary ε > 0, the right side of (3.5) goes to 0, and therefore so does
P ∂
HN,L

(X1 ̸= M,TM < T̃∂).
Next, we will show that PM

HN,L
(T∂ = τ) is bounded away from 1 as M increases. We have

PM
HN,L

(T∂ ̸= τ) ≥
∑

x∈CN,L,L−R≤x·ℓ≤L

PM
HN,L

(X1 = x)P x
HN,L

(T∂ < T ℓ
>x·ℓ)

≥
∑

x∈CN,L,L−R≤x·ℓ≤L

PM
HN,L

(X1 = x)P 0
G(T

ℓ
≤−L < T̃ ℓ

≥0 ∧Hℓ
≥ 1

2
K
)

>
∑

x∈CN,L,L−R≤x·ℓ≤L

PM
HN,L

(X1 = x)α

=
1

2
α.

The first inequality comes from the strong Markov property and independence of sites. To get
the second inequality, note that the probability P x

HN,L
(T∂ < T>x·ℓ) is greater than the probability,

starting from x, that a walk on HN,L reaches ∂ without ever traveling more than N
3 units in any

direction perpendicular to u. Since this event precludes the walk from using the periodic boundary
conditions, (and because weights to ∂ in HN,L are the same as the weights from corresponding sites
to the set {y : y · u < 0}) its probability is the same as the probability that a walk in G travels
more than x · ℓ units in direction −u without ever traveling more than N

3 units in any perpendicular
direction. Since x ·u ≤ L, the second inequality follows. The third inequality comes from (3.2), and
the equality comes from the expectation of a beta random variable.

Now taking the limsup in (3.4) as M → ∞ yields the contradiction

1

2
≤ 1

2

(
1− 1

2
α

)
<

1

2
.

□

3.3. Generalizing to directions in Sd−1 \ Sd−1
r . We now describe how to prove Theorem 3.3 for

directions that do not necessarily have rational slopes.
The graph constructed in Tournier (2015) is used to analyze a direction ℓ with rational slopes,

and uses the rationality in a significant way. Rather than attempt to construct and analyze an
analogous graph for an irrational direction ℓ ∈ Sd−1, we use a sequence of rational slopes v ∈ Sd−1

r

approaching ℓ. The following lemma is simple, but important.

Lemma 3.8. Fix ℓ ∈ Sd−1, h > 0, and L′ > L > 0. For v ∈ Sd−1 close enough to ℓ, any x ∈ Rd

with x · ℓ ≥ L′ and x · v ≤ L must necessarily have x · ℓ⊥ > h for some unit vector ℓ⊥ ⊥ ℓ.
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Proof : Choose a unit vector v close to ℓ and let ℓ⊥ = ℓ⊥(v) ∈ Sd−1 be the unit vector perpendicular
to ℓ such that v = aℓ −

√
1− a2ℓ⊥, where a = v · ℓ (for v = ℓ, let ℓ⊥ be an arbitrary unit vector

perpendicular to ℓ; the statement is vacuous in this case since the hypotheses contradict each other).
Then a↗1 as v → ℓ, and ℓ− v = (1− a)ℓ+

√
1− a2ℓ⊥. By writing x · (ℓ− v) in different ways, we

get
(1− a)x · ℓ+

√
1− a2x · ℓ⊥ = x · ℓ− x · v.

From this we get √
1− a2x · ℓ⊥ = ax · ℓ− x · v

≥ aL′ − L.

For v sufficiently close to ℓ, a is close enough to 1 that this gives us√
1− a2x · ℓ⊥ ≥ 1

2
(L′ − L)

and
x · ℓ⊥ ≥ 1

2
√
1− a2

(L′ − L).

Taking v close to ℓ makes a close to 1, which suffices to prove the lemma. □

We now proceed with the proof, describing only the parts where it differs from the proof of
Theorem 3.7.

Proof of Theorem 3.3: Recall that we are assuming for a contradiction that P 0
G(A−ℓ) > 0.

The first challenge is to get the same bound as in (3.2), but for a direction v with rational slopes.
We will show that for any L, there is a unit vector v = v(L) ∈ Sd−1

r close enough to ℓ and a
K = K(L) large enough that

P 0
G(T

v
≤−L < T̃ v

≥0 ∧Hv
≥ 1

2
K
) > α. (3.7)

Fix L > 0, and choose any L′ > L. Let K ′ be such that

P 0
G(T

ℓ
≤−L′ < T̃ ℓ

≥0 ∧Hℓ
≥ 1

2
K′) > α.

(Such a K ′ exists by (3.2).) Now on the event {T ℓ
≤−L′ < T̃ ℓ

≥0}, there is necessarily an open
neighborhood around ℓ such that for any v in the neighborhood, T ℓ

≤−L′ < T̃ v
≥0. This is because the

walk only hits finitely many points before T≤−L′ , and each such point x (other than 0) has x · ℓ < 0,
so that for v close enough to ℓ, x · v < 0. Hence

lim
v→ℓ

P 0
G(T

ℓ
≤−L′ < T̃ ℓ

≥0 ∧ T̃ v
≥0 ∧Hℓ

≥ 1
2
K′) = P 0

G(T
ℓ
≤−L′ < T̃ ℓ

≥0 ∧Hℓ
≥ 1

2
K′).

In particular, for v close enough to ℓ,

P 0
G(T

ℓ
≤−L′ < T̃ ℓ

≥0 ∧ T̃ v
≥0 ∧Hℓ

≥ 1
2
K′) > α. (3.8)

Now let v ∈ Sd−1 have rational slopes, satisfy (3.8), and also be close enough to ℓ that if x · ℓ ≥ L′

and x · v ≤ L, then x · ℓ⊥ ≥ K ′ for some ℓ⊥ ⊥ ℓ (this is possible by Lemma 3.8). Choose K large
enough that any y with y · v⊥ ≥ K

2 for any v⊥ ⊥ v is necessarily outside the set

Z :=

{
−L′ −R ≤ x · ℓ ≤ 0, x · v ≤ 0, x · ℓ⊥ ≤ K ′

2
for all ℓ⊥ ⊥ ℓ

}
.

Now on the event {T ℓ
≤−L′ < T̃ ℓ

≥0 ∧ T̃ v
≥0 ∧ Hℓ

≥ 1
2
K′}, it is necessarily the case that Xn ∈ Z for

0 ≤ n ≤ T ℓ
≤−L′ . Furthermore, if z := XT ℓ

≤−L′
, then since z · ℓ ≤ −L′ and z · ℓ⊥ ≤ K′

2 for all ℓ⊥ ⊥ ℓ,
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Figure 3.3. In order for the walk to cross the line {x · ℓ = −L′} before leaving the
set Z, it must exit the lighter shaded box through the line {x · v = −L}.

the choice of v implies that z · v ≤ −L. Thus T v
≤−L ≤ T ℓ

≤−L′ , so Xn ∈ Z for 0 ≤ n ≤ T v
≤−L, and

therefore T v
≤−L < T̃ v

≥0 ∧Hv
≥ 1

2
K

. Hence (using (3.8)),

P 0
G(T

v
≤−L < T̃ v

≥0 ∧Hv
≥ 1

2
K
) ≥ P 0

G(T
ℓ
≤−L′ < T̃ ℓ

≥0 ∧ T̃ v
≥0 ∧Hℓ

≥ 1
2
K′) > α.

This is (3.7).
For L ≥ 0, let v = v(L) and K = K(L) be defined as in (3.7), with K increasing in L. As before,

let u be a constant multiple of v such that u ∈ Zdand let (u, u2, . . . , ud) be an orthogonal basis for
Rd such that ui ∈ Zd for all i, and define N as before as well.

We define the graph HN,L as described before, using the rational direction v, rather than the
direction ℓ, to define it. Thus,

CN,L := {x ∈ Zd : 0 ≤ x · v ≤ L}/(NZu2, . . . , NZud),

We note here our reason for using L as the length of the cylinder, rather than L|u| as in Tournier
(2015). The choice of v depends on the length of the cylinder, but |u| depends on v, and may be
unbounded as v → ℓ.

As before, arguments based on the graph HN,L give us

1

2
≤ 1

2
PM
HN,L

(T̃∂ = τ) + P ∂
HN,L

(X1 ̸= M,TM < T̃∂), (3.9)

and we must show that the term P ∂
HN,L

(X1 ̸= M,TM < T̃∂) approaches 0 as L and K increase.
Defining B = B(L,K) as before, our previous arguments give us

P ∂
HN,L

(X1 ̸= M,TM < T̃∂) = P 0
G(TBc < T v

≤−R). (3.10)



718 Daniel J. Slonim

Comparing with (3.5), the only difference is that the right hand side considers the event {TBc <
T v
≤−R}, rather than {TBc < T ℓ

≤−R}.
We now must show that (3.10) goes to 0 as L increases (along with N , and with u approaching

ℓ). Let ε > 0 and choose R′ > R. Just as P 0
G(T

ℓ
≤−R < ∞) = 1, we have P 0

G(T
ℓ
≤−R′ < ∞) = 1.

Choose Q = Q(ε) so that P 0
G(TQc ≤ T ℓ

≤−R′) < ε. For large enough L, as in (3.6), we have

{TBc ≤ T v
≤−R} ⊂ {TQc ≤ T v

≤−R}. (3.11)

Now by Lemma 3.8, for v close enough to ℓ (i.e., for large enough L), if x · ℓ ≤ −R′ and x · v ≥ −R,
then x is not in Q, so that the event {T ℓ

≤−R′ ≤ TQc ≤ T v
≤−R} is impossible, and therefore

{TQc ≤ T v
≤−R} ⊂ {TQc ≤ T ℓ

≤−R′}. (3.12)

It follows from (3.11), (3.12), and the choice of Q that for large enough L,

P 0
G(TBc ≤ T v

≤−R) ≤ P 0
G(TQc ≤ T ℓ

≤−R′) < ε.

Since this can be true for arbitrary epsilon, P 0
G(TBc ≤ T v

≤−R) goes to 0, and therefore so does
P ∂
HN,L

(X1 ̸= M,TM < T̃∂).
Next, we will must show that PM

HN,L
(T∂ = τ) is bounded away from 1 as M increases. Using (3.7)

in place of (3.2), we are able to argue as before to get

PM
HN,L

(T∂ ̸= τ) ≥ 1

2
α.

Now taking the limsup in (3.9) as M → ∞ yields the contradiction

1

2
≤ 1

2

(
1− 1

2
α

)
<

1

2
.

□

We now have enough to prove Theorem 3.2.

Proof of Theorem 3.2: First, suppose △ ̸= 0. Then if ℓ · △ > 0, the arguments in Tournier (2015),
which work for bounded jumps, show that P 0(Aℓ) > 0. For d ≥ 3, the proof of the 0-1 law in
Bouchet (2013) can easily be modified to work for bounded jumps, as a remark in Tournier (2015)
points out. If d = 1, the 0-1 law of Key (1984) applies, and if d = 2, Theorem 2.1 applies. Thus,
we get P 0(Aℓ) = 1. If ℓ ·△ < 0, then −ℓ ·△ > 0, so we get P 0(A−ℓ) = 1, and therefore P 0(Aℓ) = 0.
Finally, if ℓ · △ = 0, then the results of Drewitz and Ramírez (2010) (which can easily be made to
work for bounded jumps, as noted in the aforementioned remark in Tournier (2015)) imply that
P 0(Aℓ) = 0. This handles the case △ ̸= 0. On the other hand, if △ = 0, then the conclusion is that
of Theorem 3.3. □

3.4. Further remarks. We have generalized to RWDE with bounded jumps the complete character-
ization of P 0

G(Aℓ) that was known for nearest-neighbor RWDE.
However, there is one nagging difficulty in the zero-drift case that must be dealt with before we

may claim absolute victory over the issue of directional transience for RWDE. Because there are
uncountably many directions, proving that the probability of transience in any given direction is
zero does not automatically mean that it is impossible for the walk to be directionally transient. For
example, however unlikely it seems, one could imagine the possibility that a walk is almost surely
transient in some random direction ℓ ∈ Sd−1 with continuous (or otherwise atom-free) distribution
and recurrent in all directions ℓ′ ̸= ±ℓ. This pathological behavior has yet to be ruled out, even for
the nearest-neighbor Dirichlet case. To resolve this difficulty we would need to prove, at least for
Dirichlet environments, a strengthened version of Conjecture 3.5 (recall that Conjecture 3.5 states
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that for all ℓ ∈ Sd−1, P 0(A0
ℓ ) = 0, where A0

ℓ is the event that the walk is transient in direction ℓ,
but not in a neighborhood of directions around ℓ).

Conjecture 3.9. Let P 0 be the law of an i.i.d. RWRE on Zd. Then P 0
(⋃

ℓ∈Sd−1 A0
ℓ

)
= 0. Equiv-

alently, the set of ℓ ∈ Sd−1 such that Aℓ holds is almost-surely open in the subspace topology of
Sd−1.

Appendix A. Kalikow’s 0-1 Law and Other Lemmas

In the proof of Theorem 2.1, we appealed to the following theorem.

Theorem A.1 (Kalikow’s 0-1 Law). Let P 0 be the annealed measure of a RWRE on Zd satisfying
assumptions (C1), (C2), and (C3). Then for every ℓ ∈ Sd−1, P 0(Aℓ ∪A−ℓ) ∈ {0, 1}.

We also appealed directly to the following lemma, which is an ingredient in the proof of Theorem
A.1.

Lemma A.2. P 0(Aℓ) > 0 if and only if P 0(T<0 = ∞) > 0 and P 0(A−ℓ) > 0 if and only if
P 0(T>0 = ∞) > 0.

A rudimentary version of Theorem A.1 for two dimensions, using a uniform ellipticity assumption
and assuming ℓ = (0, 1), was first given by Kalikow in Kalikow (1981). Improvements were made
in Sznitman and Zerner (1999) (allowing general d and general ℓ) and Zerner and Merkl (2001)
(removing the uniform ellipticity assumption), but the overall structure of the argument changed
very little. The proof in Zerner and Merkl (2001) does not use the nearest-neighbor assumption,
except in a version of Lemma 3.6, which we now re-prove using the same ideas but without the
nearest-neighbor assumption.

Proof of Lemma 3.6: Observe that on the event in question, it is either the case that for some y
with a ≤ y · ℓ < b, Xn = y infinitely often, or that Xn hits infinitely many vertices in the slab
{a ≤ x · ℓ < b}. It therefore suffices to show that the intersection of each of these events with the
event T ℓ

≥b = ∞ has probability 0.
First, fix y with a ≤ y · ℓ < b. By the irreducibility assumption (C2), P y

ω(T ℓ
≥b < T̃y) > 0 for

almost every ω. For such an ω, the strong Markov property implies that the quenched probability
of hitting y at least n times before T ℓ

≥b is no more than P y
ω(T̃y < T ℓ

≥b)
n−1, which approaches 0 as

n → ∞. Thus, the (quenched or annealed) probability of hitting y infinitely many times without
ever reaching the half-space {x ·ℓ ≥ b} is 0. Summing over countably many y still gives a probability
of 0.

Now consider the event that infinitely many points in {a ≤ x ·ℓ < b} are hit. By assumption (C2),
each of these points x has a possible path (in the notation introduced in the proof of Theorem 2.1) to
{x·ℓ ≥ b}. By shift-invariance, there is some N > 0 and ε > 0 such that each x in {a ≤ x·ℓ < b} has
a possible path of length no more than N and with annealed probability at least ε. Thus, in order
to hit infinitely many points in {a ≤ x · ℓ < b}, the walk must hit the vertex sets of infinitely many
disjoint paths to {x · ℓ ≥ b}, each of which has length no more than N and annealed probability
at least ε. Now by the i.i.d. assumption (C1), each time the walk hits an unexplored vertex set
of such a path, its probability, conditioned on its entire past, of immediately taking (the rest of)
that path is at least ε. The probability of hitting vertex sets of n unique such paths before hitting
{x · ℓ ≥ b} is therefore no more than (1− ε)n−1, which approaches 0 as n → ∞. Thus, the annealed
probability of hitting the vertex sets of infinitely many disjoint paths to {x ·ℓ ≥ b}, each with length
no more than N and annealed probability at least ε, without ever reaching {x · ℓ ≥ b}, is 0. Since
these paths have no more than N vertices in them, hitting infinitely many sites in {a ≤ x · ℓ < b}
requires hitting the disjoint vertex sets of infinitely many such paths, and therefore the annealed
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probability of hitting infinitely many sites in {a ≤ x · ℓ < b} without ever reaching {x · ℓ ≥ b} is 0.
This gives us (3.1). □

Lemma A.2 is an easy consequence of Lemma 3.6 (see Sznitman and Zerner, 1999; Zerner, 2007).
We repeat the proof here because it is short.

Proof of Lemma A.2: By Lemma 3.6, the event {T<0 = ∞} \ Aℓ must have zero probability, so
P 0(T<0 = ∞) > 0 implies P 0(Aℓ) > 0. On the other hand, suppose P 0(T<0 = ∞) = 0. By
shift-invariance, P x(T<x·ℓ = ∞) = 0 for all x ∈ Z2, which implies that with P-probability 1,
P x
ω (T<x·ℓ < ∞) = 1 for all x. By the strong Markov property, this implies P 0(Aℓ) = 0. For the

second result, just take ℓ′ = −ℓ. □

Now the proof of Theorem A.1 is simply the proof of Zerner and Merkl (2001, Proposition 3),
replacing Lemma 4 from that paper with our Lemma 3.6.

The final missing ingredient is Lemma 2.2, which we now prove.

Proof of Lemma 2.2: For any probability measure P , random variable Y , and event A of positive
probability, we have E[Y |A] = E[Y 1A]

P (A) . Using P a as our probability measure and letting Y =

P a
ω(B|A), we get

Ea[P a
ω(B|A)|A] =

Ea[P a
ω(B|A)1A]

P a(A)

=
1

P a(A)
Ea

[
P a
ω(B ∩A)

P a
ω(A)

1A

]
=

1

P a(A)
Ea

[
Ea

[
P a
ω(B ∩A)

P a
ω(A)

1A ω

]]
.

Now pulling the part that is ω-measurable out of the conditional expectation and noting that
Ea[1A|ω] is simply P a

ω(A), we have

Ea[P a
ω(B|A)|A] =

1

P a(A)
Ea

[
P a
ω(B ∩A)

P a
ω(A)

Ea [1A ω]

]
=

1

P a(A)
Ea

[
P a
ω(B ∩A)

P a
ω(A)

P a
ω(A)

]
=

Ea[P a
ω(B ∩A)]

P a(A)

= P a(B|A).

□

Appendix B. A non-elliptic model satisfying the conditions for Theorem 2.1

In this appendix, we present an example of a two-dimensional RWRE model where the Markov
chain is almost surely not irreducible, but nevertheless conditions (C1), (C2), and (C3) are satisfied.
Recall that (C1) is the i.i.d. condition, condition (C3) requires bounded jumps, and (C2), which
replaces the ellipticity condition of Zerner and Merkl (2001), states that with P-probability 1, the
Markov chain induced by ω has only one infinite communicating class, and it is reachable from every
site.

For an environment ω ∈ ΩZ2 , say a site x ∈ Z2 is blue under ω if ω(x, x + y) > 0 ⇔ y ∈
{±2e1,±e2}, where e1 and e2 are the sites directly to the right of and above the origin, respectively.
Say x is red if ω(x, x+ y) > 0 ⇔ y ∈ {±e1,±2e2}. See Figure B.4. Consider an i.i.d. measure P on
ΩZ2 (that is, a measure satisfying condition (C1) whose marginals are such that each site x is blue
with probability p ∈ (0, 1) and red with probability (1 − p) (note that conditioned on a site being
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Figure B.4. A blue site is pictured on the left and a red site on the right, with
their possible jumps.

Figure B.5. A site x that is not reachable from any other site.

red or blue, the values of the transition probabilities that are specified to be positive may still be
random).

Under P, the environment will almost surely not be irreducible. Indeed, if the two nearest vertical
neighbors of x are red, and the two sites above and below these are blue, and the nearest horizontal
neighbors are blue, and the two sites to the right and left of these are red, then x will not be
reachable from any other vertex. See Figure B.5. Nevertheless, P satisfies the assumptions needed
for Theorem 2.1.

Proposition B.1. The measure P described in this appendix satisfies conditions (C1), (C2), and
(C3).

We break the proof up into a series of lemmas.

Lemma B.2. For almost every ω, there exists a site that is reachable from every site in Z2.

Proof : Let j ≥ 0 be the lowest non-negative integer such that (j + 1)e1 is red. Such j exists for
almost every environment ω by independence. Now from every site, it is possible to step to the
right, to the left, up, or down (in this argument, “possible” means possible with positive probability
in almost every environment ω). Therefore, from every site, it is possible to proceed to a point that
is above and to the right of the origin. From there, it is possible to step down repeatedly, either
to a site that is horizontally level with the origin (i.e., ke1 for some k ∈ N), or a site that is one
unit higher than the origin (i.e., e2 + ke1) for some k ∈ N). In the latter case, if one is at a blue
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Figure B.6. A portion of an environment ω. Squares of four elements, each with
the bottom left element in (2Z)2, are shown with a brown background if the bottom
left element is in B. The origin is highlighted, and vertices in D are marked with
dots.

site, it is possible to step down to ke1. Otherwise, it is possible to step repeatedly to the right until
reaching a blue site, which happens in finitely many steps for almost every ω, and then step down
from there to k′e1. Now by stepping repeatedly to the right or to the left, one can reach either je1
or (j + 1)e1, and since (j + 1)e1 is red, one may step from there to je1. □

Lemma B.3. There almost surely exists an infinite communicating class C = C(ω) which is precisely
the set of points that are reachable from every site.

Proof : Take one site x that is reachable from every other site. Let C be the set containing that site
and all sites reachable from there. It is infinite by the fact that it is always possible to take a step
in any direction. If y ∈ C, then since y can be reached from x, y can be reached from every site. On
the other hand, if y can be reached from every site, then y can be reached from x, so by definition
y ∈ C. □

It remains to show that there is no infinite communicating class but C.

Lemma B.4. For almost every ω, if a site x ∈ Z2 is not in C, then each of its four nearest neighbors
is in C. Moreover, the sites x± e1 are blue, and the sites x± e2 are red.

Proof : By the proof of Lemma B.2 (or by the statement plus the ergodic theorem) there is a j ≥ 0
such that je1 is reachable from every site. From there, it is possible to step to the left until hitting
the origin or e1. Therefore, if the origin is not in C, then e1 is reachable from every site and thus
in C. By symmetry, if the origin is not in C then every nearest neighbor of the origin is in C. By
shift-invariance, this is true of every site x. Now if a site immediately to the right of x were red or
a site immediately to the left were blue, it would be possible to step from such a site to x, putting
x in C. Therefore, the sites x± e1 are blue, and the sites x± e2 are red. □

Lemma B.5. Let D = D(ω) be the communicating class containing the origin. It is almost surely
the case that if D ≠ C, then |D| < ∞.
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Proof : Suppose D ≠ C. Then by Lemma B.4, any site in D that is reachable in one step from the
origin must almost surely be in the “even sublattice” (2Z)2. By induction, applying Lemma B.4
repeatedly, this conclusion extends to every site in D that is reachable in any number of steps from
the origin. But by definition, every site in D is reachable from the origin, so D ⊆ (2Z2). Now in
order for a site x ∈ (2Z)2 to be in D, it must avoid being in C, which by Lemma B.4 almost surely
requires at least that the site to its immediate right be blue and the site immediately above it be
red. Let B be the set of sites x ∈ (2Z)2 such that x + e1 is blue and x + e2 is red. Then almost
surely, if D ≠ C, then D is a subset of B which is connected in the superlattice (2Z)2.

Notice, however, that the events {x ∈ B}x∈(2Z)2 are independent, and each have probability
p(1 − p) ≤ 1

4 (recall that p is the probability that a given site is blue). Now 1
4 is well below the

critical percolation threshold2 for site percolation on Z2. Indeed, a union bound puts the threshold
at least at 1

3 , since there are at most 3n loop-free paths of length n from the origin. If the occupation
probability is less than 1

3 , this means the probability that there exists an occupied path to a point
of distance n from the origin (under, say, the lattice metric) decays exponentially in n. Therefore,
every component of B that is “connected in (2Z)2” (meaning any two two points in a component are
joined by a nearest-neighbor path in (2Z)2) is finite. In particular, D is finite, since it is a subset of
such a component. □

We now have enough to prove that our model satisfies (C1), (C2), and (C3).

Proof of Proposition B.1: It satisfies condition (C1) by assumption. Likewise, it satisfies condition
(C3) with R = 2. Thus, we need only show that condition (C2) is satisfied. The existence of a
communicating class C that is infinite and reachable from every site is the content of Lemma B.3.
To show that there is only one infinite communicating class, it suffices by shift-invariance to show
that if the origin is not in C then it is in a finite communicating class. This is the content of Lemma
B.5. □
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